Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

On the Use of Semantic Web Agents in Video Analysis Sharing

Hubaux, Arnaud

Award date:
2007

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 28. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/6f6fb2b6-8eb4-439d-91fd-16d0a29cd85b

€S Y
& O/;’o
§ 2
= =2
z= ™
= o
$ m

2 N

3 & ;

oAl INSTITUT D’ INFORMATIQUE
NAMUR, BELGIUM

On the Use of Semantic Web Agents
in Video Analysis Sharing

Arnaud Hubaux

NN XeY ol SV [lelV =0 0 SRl lo | \Mémoire présenté en vue de I'obtention du
grade de Maitre en Informatique

ABSTRACT

KEYWORDS

Video cameras are increasingly present in our every-day envi-
ronment. As a result their monitoring by human users has be-
come basically unrealizable. At the hands of this problem, au-
tomatic processing technologies have been gradually developed
and now offer reliable analysis methods. Notwithstanding, the in-
tegration and use of analysis results are currently barely tackled.
Furthermore, the development of a system allowing these kinds
of activities calls for particularly adapted technologies. The fea-
sibility demonstration of such systems is consequently a daring
challenge.

In order to take it up, state-of-the-art technologies are to be
combined in an efficient way. Traditional object-oriented and data
storage approaches may fail to offer the required flexibility and
scalability. Less common and mature technologies were thus ex-
plored. The knowledge processing mechanisms we set up are
based on agents. Agents are notably autonomous and reac-
tive entities exhibiting very adaptive behaviours. The knowledge
structuring and storing resulting from varying video analysis lev-
els are based on Semantic Web technologies. The RDF graph
structure appears to perfectly support our needs of a priori unde-
fined metadata schema.

Moreover the integration of these components in a distributed
and possibly heterogeneous environment raises concerns re-
garding knowledge exchange and sharing. The system we de-
veloped intends to handle these concerns by associating com-
puter science specific concepts in order to enable real-time video
analysis sharing.

agent, agent system engineering, knowledge, RDF, semantic
web, video analysis

Les caméras videos sont de plus en plus présentes dans
notre environement quotidien. Par conséquent, leur surveil-
lance par des utilisateurs humains est devenue tout simple-
ment irréalisable. Face a ce probleme, des technologies de
traitement automatique ont été progressivement mises au point
et offrent maintenant des méthodes d’analyse fiables. Toute-
fois, l'intégration et I'utilisation de résultats d’analyse vidéo sont
actuellement a peine abordées. En outre, le développement d’'un
systéeme permettant ces types d’activités nécessite des technolo-
gies particulierement adaptées. La démonstration de la faisabilité
d’'un tel systeme est par conséquent un défi audacieux.

Afin de le relever, des technologies de pointe se doivent d’étre
combinées de maniére efficace. Les approches orientées-objets
et de stockage de données traditionnelles peuvent ne pas offrir
la flexibilité et I'extensibilité nécessaires. Des technologies moins
utilisées et matures furent donc explorées. Les mécanismes de
traitement de la connaissance que nous avons développés sont
basés sur des agents. Les agents sont notamment des entités
autonomes et réactives montrant des comportements trés adap-
tifs. La structuration et le stockage de la connaissance résultant
de niveaux d’analyse variables sont basés sur des technologies
de Web Sémantique. La structure de graphe RDF apparait par-
faitement supporter nos besoins de non-définition a priori des
schémas de meta-données.

De plus, l'intégration de ces composants dans un systeme
distribué et éventuellement hétérogéne souléve des préoccu-
pations a propos de I'échange et du partage de la connais-
sance. Le systéme que nous avons développé a pour objectif
de traiter ces préoccupations en associant des concepts spéci-
fiques a I'informatique afin de permettre le partage en temps réel
d’analyses vidéo.

agent, ingénierie des systemes d’agents, connaissance, RDF,
web sémantique, analyse vidéo

ACKNOWLEDGMENTS

To the Multitel research centre for having welcomed and followed
me during five months. More particular thanks to Cyril Carincotte
for his endless technical backing and help throughout my intern-
ship and the writing of this master’s thesis. To Bruno Lienard for
his tips and precious monitoring during development stages. To
Xavier Desurmont for his constructive reviews of the carried out
work.

To my promotor, Professor Pierre-Yves Schobbens, for his excel-
lent advice and continuous support.

To Daniel Poncelet whose English skills greatly helped me to im-
prove the quality of this document.

To my fiancée for her unending joie de vivre being a constant
source of inspiration.

To my professors and mates of the Institute of Computer Science,
and my family for their implicit contributions to this work.

PREFACE

In formal logic, a contradiction is the signal of defeat: but in the
evolution of real knowledge, it marks the first step in progress
toward victory.

Alfred North Whitehead

Video analysis and knowledge processing are both very active research areas. Recent con-
cerns focus on the adaptation of principles from the latter to centralize and share knowledge
from results of the former!. This work intends to propose a possible solution to these issues
by means of a video analysis sharing system based on the latest knowledge management and
structuring technologies. The following points will first precise the motivations underlying
this project and then outline the document’s global structure.

Motivations

Automatic processing of data coming from video cameras is currently a field of activity
stirring up the utmost attention. State-of-the-art advances in this area enable the reliable
extraction of important amounts of low-level knowledge. The analysis and interpretation
of this metadata? allow complex event processing such as people tracking or abandoned
luggage detection. Nevertheless, the way the produced knowledge is used and shared calls
now for more considerations so as to bridge the gap between end-users and specific analysis
algorithms. For example, a security operator may have to rapidly and dynamically analyse
the produced metadata when an unexpected or important event is identified by the mon-
itoring system without interrupting the ongoing real-time analysis. However, traditional
video analysis systems are based on a posteriori analysis implying offline processing and
preventing interactive query mechanisms.

Furthermore the lack of standards regarding low, mid and high-level analysis outputs
makes tough the reuse of existing systems. They are usually targetted to specific contexts

LOne can cite the IBM Smart Surveillance System (S3) [SHL105] which illustrates them.
?Note that metadata and knowledge will both refer to the same elements.

and data formats and based on relational databases structured according to these pre-
defined schemas. As a result, the exact specification of transmitted data must be a priori
determined, ruling out any context and purpose-based data schema definition.

The main motivation of this work is to present an innovative way of handling and storing
distributed video processing results in a real-time context. In order to achieve this goal, intel-
ligent agents and data-oriented agents, named autotroph, were combined with the knowledge
description framework used in the Semantic Web and data warehousing aspects®. We will
demonstrate in the second part of this work how the association of these components enables
the creation of a generic, context-independent and scalable knowledge sharing system.

Outline

For a long time now computer science has been struggling to find the right level of abstrac-
tion. Both the A-calculus developed by Alonzo Church and Stephen Cole Kleene in the
30s and the Turing machine described in 1936 initiated mathematical formalisms to express
algorithms. The creation and improvement of programming language paradigms ranging
from machine to declarative and imperative were other breakthroughs in the evolution of
software development. The growing size of computer systems leads to major advances in
data, information and knowledge management, artificial intelligence and in system and re-
quirement engineering. The repercussions they have had on mainstream computer science
are commonly known.

The noticeable fact about these evolutions is the increasing abstraction degree. As sys-
tems grew and became more complex new techniques were required to keep them human
understandable and manageable. Furthermore, the incontrovertible deployment of the Web
offered a totally new view of data management. Data was no more this bundle of bytes re-
sulting from the ongoing business. It has become the playground of world-scale transactions
and communication. This highly interconnected net of data has caused much concern about
knowledge representation and sharing.

The swift and incomplete overview of the progression of computer science presented so far
directs the first part of this document. The four chapters it includes will present concepts
of increasing granularity regarding software development.

The first chapter addresses the concept of agent. These entities focus the attention on
many fields of activity as they enable the embodiment of human-like concepts such as goals
or beliefs. Consequently much time will be spent on their definition and design. Existing
languages, toolkits and the FIPA standard will also be overviewed.

The second chapter intends to clarify the concept of ontology and secondarily to precise
the notions of data, information and knowledge, too easily mixed and misused. It will also
introduce some common ontology definition languages and most notably OWL.

The third chapter focuses on the Semantic Web which is a hot topic of computer science
as it can be the playground of many fields. Its context, definition and way of representing
knowledge will be clearly investigated. Arguments vindicating the selection of the RDF will
be put forward. The current status of the Semantic Web as well as its acceptance state will
also be carefully discussed.

The fourth chapter classifies the different agent system engineering methodologies into
three main categories. The most common methodologies belonging to each of them will be
presented. A synthesis outlining their main characteristics and development lifecycle cover-
age will be performed. Finally, the current status and pitfalls of agent software engineering
will be put forward.

3This part has been inspired by the work performed by B. Lienard in [LDBDO6].

The second part will present a sharing system putting together the concepts described
in the first part. It addresses the description of an agent-based system resorting to Semantic
Web concepts and technologies to implement the sharing of video analysis results. Recent
advances in video analysis now enable the relatively faithful identification of complex sce-
narios grabbed from video cameras. As a result, the need to centralize and benefit from the
acquired knowledge becomes more and more present. The proposed solution is described in
three chapters demonstrating the feasibility of the Semantic Web agent-based approach.

The fifth chapter thoroughly introduces the case and the chosen engineering methodology,
the required concepts to its understanding, the context and the architecture of the developed
system. It also describes a characteristic scenario handled by the system.

The sizth chapter investigates the detailed design of the system and defines the agents
and events composing it. It also depicts the external and internal interactions constituting
the system.

The seventh chapter describes in much detail the knowledge storage framework as well
as the physical knowledge management system employed. The generic schema of the RDF
graph as well as the specifically created autotroph agent concept will be presented.

The third part will synthesize both the sharing system and the theoretical parts. It is
divided into two succinct chapters intending to assess the performed work.

The eighth chapter evaluates the solution proposed as much from the performance as
from the design perspectives. Its last section will be dedicated to an overview of the possible
system evolutions and extensions.

The ninth chapter reviews the explained concepts in order to clarify the purpose of this
work.

Contents

I State Of The Art

1

Agent
1.1 Historical background L L oL
1.2 Definition
1.2.1 Various meanings oo
1.2.2 Unified meaning o
1.3 Architecture e e e
1.3.1 Deliberative architecture
1.3.2 Reactive architecture
1.3.3 Hybrid architecture o L.
1.3.4 Distributed architecture
1.4 Languages oo oo e
1.4.1 Concurrent Object Languages
142 AgentO. oL
1.4.3 PLACA e
1.4.4 Concurrent MetateM o
1.4.5 Telescript
1.4.6 Toolkits e e e
1.5 Standards
Ontology
2.1 Definitions e
2.1.1 Ontology o
2.1.2 Related concepts L L
2.2 Languages
2.2.1 CycL. . . . o e e e
2.2.2 DAMLAHOIL e
223 KIF e e e
224 Ontolingua L
2.2.5 SHOE e
2.2.6 OWL e
Semantic Web
3.1 Contextualisation e e
3.2 Definition
3.3 Data structure e e e e
3.3.1 Definitions
3.3.2 RDFstack e

Xiv

3.3.3 Vindication
3.4 Discussion oo

4 Agent System Engineering

4.1 Classification
4.2 Knowledge-oriented approaches
421 CommonKADS
4.2.2 MAS-CommonKADS
4.3 Agent-oriented approaches
431 Gaia
4.4 Object-oriented approaches
441 MaSE
442 MESSAGE
4.4.3 Prometheus
444 Tropos o v i
445 AUML
4.5 Synthesis Lo
4.6 Discussion Lo

IT Sharing System

5 System Presention

5.1 Imtroduction.
51.1 Objectives
5.1.2 Methodology

5.2 Definitions L L
5.2.1 Datatransfer
5.2.2 Datastorage
52.3 Datatypes L.

5.3 Description L oo
5.3.1 System framework
5.3.2 System architecture
5.3.3 Characteristic scenario

6 System Design

6.1 Environment
6.1.1 RSSflow
6.1.2 Dataschema

6.2 Design L L
6.2.1 External interactions
6.2.2 Architecture
6.2.3 Internal interactions

7 Knowledge Handling

7.1 Architecture
7.1.1 Autotroph agents
712 38tore
713 Cache o0

7.2 Knowledge structure management

Contents

Contents

7.2.1 RDF graph schema oo 83

7.2.2 RDF graph handling o 0L 85

7.3 Triple store selection L oL 87
III Synthesis 89
8 System Evaluation 91
8.1 Performance oL 92
8.2 Discussion L L e 92
8.3 Perspectives L e 93

9 Conclusion 97
9.1 Ourvisiono L 98
9.2 Contributions L 98
9.3 Futurework 99
IV Appendix 101
A Specifications 103
AL RSS . e 104
A1l Required fields L 104

A2 Synmtaxo L 104

A3 Semantics 104

A.1l.4 Field specifications o 105

A.1.5 Implementation detailso Lo 105

A2 Queries e 106
A271 Format 106

A22 Syntax 107

A2.3 Semantics 107

A2.4 Implementation details oL Lo 107

A3 Masks . . . L 108
A3 Format 108

A.3.2 Implementation details 108

Index 109

Bibliography 113

Contents

Part |

State Of The Art

OVERVIEW

Agent

All our thoughts and concepts are called up by sense-experiences and have a mean-
ing only in reference to these sense-experiences. On the other hand, however, they
are products of the spontaneous activity of our minds; they are thus in no wise log-
ical consequences of the contents of these sense-experiences. If, therefore, we
wish to grasp the essence of a complex of abstract notions we must for the one
part investigate the mutual relationships between the concepts and the assertions
made about them; for the other, we must investigate how they are related to the
experiences.

Albert Einstein

The concept of agent regularly comes over in computer science.
However its definition does not seem to be unanimously acknowl-
edged by practitioners. Before addressing this issue, a short his-
torical overview of the agent notion will be put forward. Common
types of architectures and languages used in agent-oriented ap-
plications will then be described. The last point will focus on the
agent de facto standard, i.e. the FIPA.

1 Agent

1.1 Historical background

The agent fashion which seems to have boomed for a small decade relies on much older bases
than we might think. Indeed, facts show that the agent perspective recurrently comes to
light over time.

The first known agent was created by Joseph Weizenbaum [Wei66]. It was named ELIZA
and was born in 1966 in the MIT labs. Its goal was to simulate a conversation between a
user and a computer in the same way as a dialog with a psychiatrist. The “patient” interacts
with the computer by means of a natural language, e.g. English. The main operations
performed were keyword recognition, sentence transformation according to pre-defined rules
and context recognition. Even if FLIZA was far from passing Turing’s test [Tur50] it settled
the premises of agents in the field of artificial intelligence (AT).

The notion of agent was also introduced in 1973 by Carl Hewitt, Peter Bishop, and
Richard Steiger in their Actor model [Hew77]. According to their model, everything is an
Actor evolving in a concurrent world. Each Actor can send messages, create new Actors
and decide which behaviour will be applied when receiving a new message. Furthermore,
the communication occurring between the Actors is asynchronous, which guarantees them
some level of computational autonomy.

Advances in the world of Al sorely contributed to the development of agent theories.
More precisely, Multi-Agent Systems (MAS) arose directly from Distributed AT (DAI), a
subfield of AL Main streams of DAT are Distributed Problem Solving (DPS), Parallel Prob-
lem Solving (PPS) and Multi-Agent Based Simulation (MABS).

Moreover, the expansion of middlewares such as CORBA or Java RMI and the develop-
ment of programming languages indirectly supported the distribution of agent systems.

More recently, the use of intelligent agents in the Semantic Web, notably in the field of
Web Services, has become common place as described in [CFJT04, Hen01, MSZ01, GHS03].
[Hen99] depicts a world where human beings are represented by fully autonomous agents
roaming the Internet. Even if this vision is still closer to fiction than reality, recent progress
points to a massive spreading of autonomous agents on the Web. In addition, their use in bee
and ant behaviours simulations [Vot04], the e-science grid [DRHO04] or even in interactions
between a human being and a virtual world! is only a few examples of their versatility.

This short overview of agent history shows that the agent technology is far from being
a new paradigm. It can thus be seen as an aggregation of concepts mainly coming from Al,
distributed systems and evolutions of programming languages.

1.2 Definition

Now that a brief overview of the history of agent programming has been drawn, it is time to
focus on its definition. Defining of a concept used for such a long time and so widely should
be easy business. Nevertheless, field specialists tend not to agree on a common definition. As
presented in [FG96], we can notice a case-by-case practice in the world of agent definition.

In order to settle the meaning of this term, we will follow a two-step approach. In the
first place, some definitions of agents will be introduced. In the second place, we will try
to extract common meanings and lay down a definition which is general enough to meet
all those previously given. Afterwards, a short introduction to agent taxonomy will be put
forward.

IThis virtual world was developed in the ALIVE project. See [Mae95] for a good introduction.

1.2 Definition

1.2.1 Various meanings

The level of accuracy of the following definitions ranges from low to high, involving wide to
narrow classes of entities which might be considered as agents.

The AIMA Agent

An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors.

Russell and Norvig defined in [RN95] their vision of software agents incarnating AL It is
easy to see that such a definition may be extremely general without any clear definitions of
environment, sensor and effectors. Indeed any program with inputs and outputs could be
assimilated to an agent.

The Maes Agent

Autonomous agents are computational systems that inhabit some complex dynamic
environment, sense and act autonomously in this environment, and by doing so
realize a set of goals or tasks for which they are designed.

Maes’ definition presented in [Mae95] reinforces the notions of autonomy and goal. Note

that this combination is pretty straightforward as autonomy entails the need of goals to
fulfill.

The KidSim Agent

An agent is a persistent software entity dedicated to a specific purpose. 'Persistent’
distinguishes agents from subroutines; agents have their own ideas about how to
accomplish tasks, their own agendas. ’'Special purpose’ distinguishes them from
entire multifunction applications; agents are typically much smaller.

Smith, Cypher and Spohrer introduce in [SCS94] the concepts of persistence and special
purpose. 1If persistence appears as a key point of agents, the special purpose feature might
be too restrictive and not crucial in the definition of agents. Moreover, they tend to define
agents as simple “active objects”, which seems to be somewhat limiting.

The IBM Agent

Intelligent agents are software entities that carry out some set of operations on be-
half of a user or another program with some degree of independence or autonomy,
and in so doing, employ some knowledge or representation of the user’s goals or
desires.

The definition from IBM’s Intelligent Agent Strategy added the concept of control. This
means that the behaviour of agents is guided by other entities. The control performed on
the agent may not rule out any program from being considered as an agent, e.g. an antivirus
software ordering itself to update its database every second day.

1 Agent

The Wooldridge & Jennings Agent
A hardware or (more usually) software-based computer system that enjoys the fol-
lowing properties:

e autonomy: agents operate without the direct intervention of humans or oth-
ers, and have some kind of control over their actions and internal state;

e social ability: agents interact with other agents (and possibly humans) via
some kind of agent-communication language;

e reactivity: agents perceive their environment, (which may be the physical
world, a user via a graphical user interface, a collection of other agents, the
Internet, or perhaps all of these combined), and respond in a timely fashion
to changes that occur in it;

e pro-activeness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behaviour by taking the initiative.

Wooldridge and Jennings’s definition was presented in [WJ95b, WJ95a]. The interesting
concept introduced here is the communication between agents entailed by their social ability.

Nevertheless, some researchers, mainly from the Al field, tend to consider this definition
as weak and prefer to ascribe human like concepts to agents. So besides autonomy, social
ability, reactivity and pro-activeness they tack on more mentalistic notions such as emotion.
Other attributes of agency may be:

e benevolence: an agent always tries to do what it is asked for;
e mobility: an agent can move around a network [KG99]?;

e rationality: an agent acts in order to achieve a goal and not to prevent it from hap-
pening;

e veracily: an agent does not communicate false information.

This non-exhaustive list of definitions highlights the vagueness of the agent concept.
Even if they are widely used and for different purposes, the specification of a common
meaning still lacks. But is it really needed ? Indeed, this fuzziness does not prevent the
development of efficient applications. However, as far as system classification is concerned,
clearer properties need to be settled.

1.2.2 Unified meaning

The above stated meanings show that there is no clear way to uniquely define an agent.
Another approach would be to develop a taxonomy of agents as described in [FG96]. This
would enable the classification of agents in groups and thus offer purpose-oriented grouping.

From the previous section arises that acting is a primary notion. Many entities act either
in the real or virtual world, e.g. human beings, animals, some robots,. .. live in the real world
whereas software agents live in databases, networks, OS, ...and artificial life agents live in
artificial environments. What characterizes and differentiates those agents ?

Franklin and Graesser propose a list of attributes characterizing agents. As we will see,
they do not define strict boundaries, which is what we expected.

2The interested reader may consult [CGO00] from Cardelli and Gordon presenting a mobile ambient and
agent calculus.

1.2 Definition

DEFINITION Agent

An agent is an autonomous system situated in an environment that:
e senses its environment;
acts over time on its environment;

is goal-driven;
o feels the effects of its actions on the environment.

Figure 1.1 sketches the interactions of the agent with its environment. It can be seen that
any effect on its environment will entail modifications of its behaviour through its sensors.
The environment concept used since the beginning of this section calls for more accuracy.
The way an agent uses its sensors and effectors on its environment restricts it sorely. What
the agent senses and effects on must square with what it expects. A robot guided by sounds
in a totally quiet environment can no longer be considered as an agent. Besides respecting
the agency conditions the environment definition requires much attention. A usual way of
defining environments is to use ontologies, which will be addressed in chapter 2.

Goals

Sensors Effectors

Environment

Figure 1.1 e Agent’s interactions in a scalable environment

This agent definition includes many types of subjects ranging from human beings to
thermostats. It calls consequently for more refinement. The most obvious means is taxonomy
definition. Taxonomy comes from the Greek tazis, i.e. order and nomos, i.e. law or science.
Such a law of order induces the notion of root or in our case of most general agent. It
would be somewhat too restrictive again to define a single taxonomy. As we have seen, the
environment as well as the system goals specify what is to be considered as an agent.

Table 1.1, adapted from [FG96], introduces some of the most common properties used
to build agent taxonomies. Figure 1.2 illustrates a taxonomy presented in [FG96].

Note that objects should not be assimilated to agents. Even if objects offer a high level
of abstraction, which proved to be useful in software development, they still lack many
of the agent functionalities. Objects are essentially passive in nature whereas agents are
active. They settle for replying to method invocations where agents consider such new
information as changes in their environments. Agents are thus higher level entities which
may be constituted of objects, subroutines, ... As a result, such software agents are always
programs but programs must only be considered as agents if they meet the previously defined
conditions.

1 Agent

Table 1.1 ¢ Common taxonomy class properties

Property Description
autonomous ability to control its actions and internal state

character ability to exhibit a specific personality and emotional
state

flexible ability to avoid acting according to a pre-defined script

learning ability to adapt its behaviour to previously encountered
situations

mobile ability to move over a network

persistent ability to run over time without being told to

pro-active ability to achieve its goal without necessarily being told
to

reactive ability to respond in a timely fashion to environment
stimuli

social ability to communicate with other agents

Autonomous agents

Biological agents Robotic agents Computational agents
Software agents Artificial life agents
Task-specific agents Entertainment agents Viruses

Figure 1.2 ¢ Example of agent taxonomy

A more formal specification of agents is out of the scope of this document but the
interested reader will find a detailed introduction to this topic in [WJ95b].

1.3 Architecture

Definitions, even the most accurate ones, are of no use if there is no way to apply them. The
goal of this section is to turn those theories into working elements. These working elements
will be specified by means of architectures [LADO4]:

Agent architecture

Architectures provide information about essential data structures, relationships be-
tween these data structures, the processes or functions that operate on these data
structures, and the operation or execution cycle of an agent

Firstly, the emphasis will be put on the agent’s micro architecture, i.e. its internal

1.3 Architecture

structure. There are three commonly accepted types of architectures: deliberative, reactive
and hybrid. Secondly, more attention will be paid to the macro architecture, i.e. the way
agents interact with each other. Given that we do not intend to exhaustively list the available
ones, the focus will be put on the most well known and used architectures.

1.3.1 Deliberative architecture
This architecture can be defined as follows [WJ95b]:

Deliberative agent architecture
One that contains an explicitly represented, symbolic model of the world, and in
which decisions (for example about which action to perform) are made via logical
(or at least pseudo-logical) reasoning, based on pattern matching and symbolic
manipulation.

In other words, some mentalistic aspects are assigned to agents. These attitudes are
grouped into three categories [LADO4]:

e informative: what is considered to be true about the world, i.e. assumption, belief
and knowledge;

e motivational: what is wanted, i.e. desires, goals and motivations;
e deliberative: what directs behaviour, i.e. intentions and plans.

This category of agents gave birth to the Belief Desire Intention (BDI) model. BDI
agents possess an evolutive set of beliefs about the current world. In addition to these
beliefs, a set of desires has to be fulfilled. However, given current beliefs some desires can
not be achieved. Agents have thus to determine a subset of desires that might be met, i.e.
the intentions.

Most of the successful agent systems’ architectures are based on the BDI model. The
Intelligent Resource-Bounded Machine Architecture (IRMA) project [BIP91] and the Pro-
cedural Reasoning System (PRS) initially presented in [GL87] are evidential examples. Fig-
ure 1.3 illustrates the PRS architecture where goals are desires and system operationalization
is performed by means of plans. So plans are selecting desires to become intentions according
to the state of the belief database.

Database Knowledge
i area library
(Beliefs) (Plans)
Sensor input Interpreter Action output
(Reasoner)

/

Intention
Goals
structure

Figure 1.3 e The Procedural Reasoning System architecture

Further investigations about BDI based architectures may be found in [WJ95b, LADO4].

1 Agent

1.3.2 Reactive architecture
As stated in [WJ95b]:

Reactive agent architecture
One that does not include any kind of central symbolic world model, and does not
use complex symbolic reasoning.

The AI view presented in the previous point induces a symbolic representation of the
world to exhibit intelligent behaviours. To determine the best action to perform much
symbolic reasoning is needed, which is very resource and time consuming. As a result,
the action chosen may no longer be the most appropriate one given the modifications of
the environment since the beginning of the reasoning. Reactive architectures are just the
opposite, it is only when placed in the real environment that the system is able to respond
to stimuli and that effective behaviours can occur.

Unlike deliberative architectures where reactive agents’ behaviour is determined at run
time, reactive architectures define behaviours at construction time.

Brooks was one of most fervent opponents of the deliberative model. He described
in [Bro85] the subsumption architecture which is presented in figure 1.4. His architecture
establishes a hierarchy of task-achieving behaviours competing with each other to control
the agent (a robot in the case of figure 1.4) where tasks from higher levels are more specific
than those from lower levels.

reason about
behaviour of objects
plan changes

to the world

identify object

monitor changes

build map

explore

wander

Sensors . . Actuators
avoid objects

Figure 1.4 ¢ The subsumption architecture

Rosenschein and Kaelbing [RK86] followed another approach which is the situated au-
tomata where agents are defined in declarative terms. Once specified, those declarations are
compiled into a digital machine operating in a time-bounded fashion.

However, the scalability of such ad hoc systems may be questioned if more complex
solving behaviours are required. Other types of reactive architectures are discussed in
[LADO4, WJ95b].

1.3 Architecture

1.3.3 Hybrid architecture

Given that reactive architectures may be inadequate to model sophisticated behaviours and
that deliberative architecture may not be able to respond timely fashion, the emergence of
an alternative architecture was fairly natural:

Hybrid agent architecture
One that benefits from both:

e the timely fashion reactiveness in changing environments of reactive archi-
tectures;

e the best progression of action selection in stable environments of deliberative
architectures.

A key application of such architecture is the TouringMachines developed by Ferguson in
his PhD thesis [Fer92] and depicted in figure 1.5.

Modeling layer

¢

Perception . Action
Planning layer

Reactive layer

Figure 1.5 e The TouringMachines architecture

This three-layer architecture offers all the reactivity of reactive architecture through the
Reactive layer. The Planning and Modeling layers enable the handling of plans and the
maintenance of the environment model.

Tt is argued in [WJ95b] that the ad hoc construction and the competition of the various
layers of such constructs prevent the establishment of formal theories.

Other examples of hybrid architectures such as InteRRaP are discussed in [LADO4,
WJ95b].

1.3.4 Distributed architecture

So far we have only considered agents’ internal architectures leaving aside real communica-
tion among agents. Distributed architecture aims at presenting a more holistic approach of
agent system design. If we adapt the concept presented in [LADO4]:

Distributed agent architecture
One that focuses on MAS where the global system structure is the main concern.
It emphasizes the interaction, communication and coordination between agents.

One of the most well known coordination mechanism is probably the Contract Net Pro-
tocol (CNP) [Smi80]. The CNP was designed to handle communication and coordination
between distributed entities such as agents® and aims at solving the connection problem
which is:

30riginally, the CNP was developed to specify problem-solving communication and control for nodes in
a distributed problem solver.

1 Agent

pI=F\le)\} | Connection problem

Discovery of a means whereby nodes with tasks to be executed can find the most
appropriate idle nodes to execute those tasks.

The goal of the CNP is thus to dynamically allocate tasks to the most suitable agents in
the network by establishing contracts between them. Figures from 1.6(a) to 1.6(d) describe
the basic steps of the CNP. Other approaches such as Agentis are discussed in [LAD04].

Potential
O contractor
O O
~~ % ¢ ©
[O
& I~ O O
o O
Potential
O contractor
(a) Sends task announcement with (b) Receives bids for contract
eligibility requirement
O O O O
Manager
O o O
o O o \ ©
O O
Awardee Contractor
(c) Makes an award (d) Concludes new contract

Figure 1.6 e The Contract Net Protocol

1.4 Languages

This section will focus on Agent-Oriented Programming Languages (AOPL). In such tech-
niques, it is the language that builds in mental attitudes, such as transition rules, which
determine how the agent will react to some given inputs. As a result, its mental state is
continuously updated and outputs adapted accordingly. AOPL* could be defined according
to [MRMO02, WJ95b, LAD04] as:

Agent-Oriented Programming Language
Language facilitating the development of agent system by implementing agent re-
lated concepts such as belief, goals, intention or other mentalistic notions. They
thus offer a higher level handling of agent properties.

The aim of the following subsections is to pinpoint some of the AOPL which defined
the basis of modern languages. The interested reader should explore further through the
references and consult [WJ95b, LADO04] which investigate this subject more thoroughly.

Note that more recent and actually used languages will be addressed in the toolkits part.

4Note that this definition suggests the use of a deliberative architecture.

1.4 Languages

1.4.1 Concurrent Object Languages

As stated in point 1.1, agents greatly benefited from the evolution of programming languages.
Object-oriented (OO) languages can be regarded as ancestors of AOPL. Indeed they enable
the construction of self-contained entities executing concurrently, the protection of internal
states and the response to messages coming from entities featuring the same properties.
These notions are closely linked to what constitutes current agents. The Hewitt’s Actor
Model [HewT77] was one of the first frameworks implementing an OO language.

1.4.2 AgentO

Shoham defined in [Sho93] a new paradigm promoting the social view of the system where
he emphasizes the fact that the agent is constituted of mental components. The language
he developed from his theory is Agent0 where the agent is specified in terms of capabilities
(what the agent can do), initial beliefs and commitments, and commitment rules (how the
agent acts).

1.4.3 PLACA

The Planning Communicating Agents (PLACA) language was developed in Thomas’s PhD
Thesis in 1993 [Tho93]. She intended to extend Agent0 to avoid its inability to plan, and
communicate requests for actions via high level goals [WJ95b]. To fulfill this, operators were
introduced for action planning and goal achievement. PLACA agents are defined by mental
states and mental changing rules.

1.4.4 Concurrent MetateM

Concurrent MetateM was developed by Fisher [Fis94]. Unlike the two previous languages,
agents are here specified in a temporal logic which is directly executable. The specification is
thus directly executed to generate the agent’s behaviour. Each agent is defined as a concur-
rently running process communicating with other agents by means of message-passing. As
agents evolve in a dynamic environment, changes are incorporated into the system according
to an ezxecutlion strategy.

1.4.5 Telescript

Telescript was maybe the first commercial agent language [WJ95b|. It was developed by
General Magic in the early 90s which was an Apple Computer spin-off. The two key concepts
of Telescript were agents and places. Agents are seen as communicating mobile processes
moving from one place to another. They both provide and consume goods in electronic mar-
ketplace applications Telescript was supporting. It is backed by a language, an interpreter,
a protocol set and development tools.

1.4.6 Toolkits

Agents toolkits, more than specifying an AOPL, provide sets of tools and developing envi-
ronments that help the creation of complex systems. Some of the most common ones are:
IMPACT [IMPO05|, JADE |[BCT+06], JACK |[Age06], RESTINA [Syc02], Zeus [CNvB00|
... [LADO4] details each of them in a very wise manner.

1 Agent

1.5 Standards

The Foundation for Intelligent Physical Agents (FIPA) started in 1996 and has been an
IEEE Computer Society standards organization since March 2005.

The FIPA intends to specify standards for agent and MAS and is considered as the de
facto standard in this field. The areas covered by the FIPA are presented in Figure 1.7 and
are explained in one or more specification documents [FIP05].

[Applications]

[Abstract Architecture]
Agent Agent Agent Message
Communication Management Transport

Interaction Transport

Protocols Protocols

Communicative Envelope
Acts Representation
Content ACL Message
Languages Encodings

Figure 1.7 e Overview of the FIPA specification taxonomy

The Application specification documents addresses, notably in FIPA00014, FIPAO0091
and FIPA00094, the way agents should be developed according to the application type.

The Abstract Architecture (FIPAO0001) aims at presenting an overall description of the
FIPA standard set and thus to foster interoperability and reusability. It is divided into three
parts:

1. Agent Management: FIPA0O0023 provides the normative framework within which FIPA
agents exist and operate and consists of an agent run-time environment, an agent
management system, a directory facilitator and a message transport system.

2. Agent Message Transport: is divided into several standards such as FIPA0O0O067, FIPA-
00069, FIPA00070, FIPAO0O71, FIPAOOO75, FIPA00084 and FIPAOO088 which focus on
the low-level message transport.

3. Agent Communication: focuses on the meaning of the messages passed by the transport
layer and is mainly defined in FIPAOO008, FIPA0O0037 and FIPAOOO61.

OVERVIEW

Ontology

How could drops of water know themselves to be a river? Yet the river flows on.
Antoine de Saint-Exupéry

Information systems, like agent systems, are based on knowl-
edge or less restrictively on data handling. Arguably data struc-
ture definition is the keystone of an efficient system matching
specific requirements. Furthermore, one has to admit that con-
cept naming is far from respecting pre-defined rules. As a matter
of fact, it is usual to encounter one term defining several con-
cepts or different terms defining the same concept across vari-
ous systems. Such issue is also known as the Tower of Babel
problem [Smi03a]. This variety of meanings associated to knowl-
edge sharing expansions entails the needs of more unicity and
consistency. In other words, it implies the emergence of common
ontologies, which will be the object of the first section. The sec-
ond section will focus on ontology creation languages and more
precisely on OWL.

2 Ontology

2.1 Definitions

Firstly, this section will attempt to provide a definition of ontology. Secondly, the concepts
of data, information and knowledge will be addressed. Their careless use in computer science
leads to confusions, which requires some clarifications. However, the definitions proposed
simply aim at making their meanings clearer and do not intend to thoroughly investigate
the subject.

2.1.1 Ontology

Like many terms used in computer science, the term ontology was borrowed from another

domain. The word ontology was coined in 1613 by two separate philosophers: Rudolf Géckel

in his Lexicon philosophicum and Jacob Lorhard in his Theatrum philosophicum. Ontology

comes from the Greek ontos, i.e. to be and logos, i.e. science. Ontology is often assimilated

to metaphysics' and is thus seen as the science of being or reality. Note that metaphysics

does not have to be confused with epistemology which studies the nature of knowledge.
According to Barry Smith [Smi03a] the definition of ontology is:

Ontology (Philosophy)

The science of what is, of the kinds and structures of objects, properties, events,
processes and relations in every area of reality.

Thomas Gruber defined an ontology as [Gru93]:

Ontology (Computer science)
An explicit specification of a conceptualization.

where conceptualization has to be seen as (adapted from [Gru93]):

Definition of an abstract and simplified view of the world to model. This view in-
cludes entities, e.g. objects or concepts existing in the world and the relationships
among them.

pI=F\Thalel\N | Conceptualization

Ontologies are thus used to specify conceptual entities described by data rather than to
specify data.
Gruber also delineates five ontology design criteria:

1. clarity: in order to effectively specify the defined terms, the definition should be
objective, complete and respect some kind of formalism;

2. coherence: the inferences performed will not contradict with the ontology definition.
Furthermore, there cannot be inconsistencies between informal and formal definitions;

3. extendability: the definition should be structured in a way allowing further evolutions
over time;

4. minimal encoding bias: the language used to express the definition should not influence
its definition. In other words, bias due to a particular encoding must be ruled out;

Literally meaning: what comes after the physics which was called by Aristotle the first philosophy.

2.1 Definitions

5. minimal ontological commitment: the definition should do as few claims as possible
about the world to avoid too restrictive applications. It must be weak enough to
tolerate various instantiations and precise enough to exclude inappropriate models.

It may appear manifest that meeting all those criteria in a single ontology is utopian and
that tradeoffs are mandatory. However, those seeming contradictions may not be as obvious
as what could be expected. For example, on the one hand clarity entails the detailed and
accurate definition of terms which might imply strong restrictions. On the other hand,
ontological commitment entails the definition of a weak theory which might imply many
possible models. Attention should be paid to the fact that clarity focuses on terms whereas
ontological commitment focuses on conceptualization. As a result, a weak model definition
does not rule out strongly defined concepts.

Ontology case studies developed in KIF are presented in [Gru93]. They are followed by
discussions about the chosen design methods. More advanced consideration on the evolution
of ontology in the world of Information Science may be found in [Smi03a].

2.1.2 Related concepts

As the definition of ontology has been established, some terms regularly coming over through-
out this document, and more generally in computer science, have to be precised. T.S. Eliot
wrote in an opening stanza from choruses in [Eli34]:

Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

which might be extended with:
Where is the information we have lost in data?

A conceivable interpration of this quotation is that the focus we put on knowledge drives
us to forget about the wisdom required to manage it. This reasoning can be extended until
we reach data, i.e. the smallest unit handled by systems. Arguably this view matches
the one supported by previous computer systems only focusing on raw data structuring
and storage. Nevertheless, current trends in Business Intelligence (BI) tend to promote
information and more recently knowledge as the fundamental concern in software design.
As the concepts of data, information and knowledge depend on different fields of activity
they must be clearly identified. The approach followed so far could be summarized by the
following transformation chain:

data — information — knowledge

Note that the presented definitions may appear somewhat limiting. Their intent is only to
clarify borders between these terms and make their conceptual links precise. The interested
reader should consult [Hey04] and [DP00], from which the following definitions were adapted,
for a more complete introduction to the topic.

The first link in this chain is with no contest data that can be defined as:

DEFINITION Data

Is a set of discrete and objective facts about events that are most of the time clas-
sified and stored. Data offers possibilities of quantitative and qualitative assess-
ments. Nevertheless, it provides no judgement, no interpretation and no sustain-
able basis of action.

2 Ontology

Therefrom comes out that data only represents facts and says nothing about its im-
portance or relevance. However, it is the essential raw material used to build information.
Information comes from the Latin informare which means to give shape or more precisely:

DEFINITION Information

Is a message that may have a written, audio or video form originating from a sender
and dedicated to a receiver. To be valuable the message must have an impact on
the receiver. It is the value added to data by means of contextualisation, catego-
rization, calculation, correction and condensation that builds up meaning and thus
creates information. Although the medium affects the message, it does not have to
be considered as a part of the message.

For information to become knowledge, a human intervention is required. More precisely,
it is human beings who convert, information into knowledge which might be defined as:

Knowledge

Is a mix of framed experience, values, contextual information and expert insight that
provides a framework for evaluating and incorporating new experiences and infor-
mation. It originates and is applied in the mind of knowers. It may be embedded
in documents, repositories, organizational routines, processes, practices or norms.
Knowledge exists within people, part and parcel of human complexity and unpre-
dictability. The transformation from information to knowledge is achieved through
comparison, consequences, connections and conversation analysis.

One might argue, rightly, that knowledge is not only the privilege of human beings.
Unfortunately, this document is not the most appropriate place to lead such a debate. As
we will see further, the term knowledge will be used in a much more technical context.
Researchers in cybernetics and Al intending to simulate the human behaviour unavoidably
included human related notions into their terminologies. Consequently, the knowledge con-
cept extended somewhat naturally to the whole computer science domain.

2.2 Languages

This section will briefly introduce some of the most common ontology definition languages.
OWL, which is becoming the lingua franca of the Semantic Web, will be investigated more
thoroughly.

2.2.1 CycL

Cyc corporation aims at constructing a foundation of basic "common sense” knowledge—a
semantic substratum of terms, rules, and relations—that will enable a variety of knowledge-
intensive products and services [CYC]. The ontology definition language CycL is specified in
[Ope] and intends to allow applications to perform human-like reasonings. The Cyc project
has been widely criticized notably for its complexity due to its encyclopedic ambition.

2.2.2 DAML+HOIL

The DARPA Agent Markup Language (DAML) project began in 2000 and ended in early
2006. The goal of DAML was to develop tools and a language supporting the development
of ontologies. DAML extends XML [XML| and RDF? [RDF04] to enable the creation of

2.2 Languages

machine readable ontologies: DAML provides a basic infrastructure that allows a machine to
make the same sorts of simple inferences that human beings do [DAMal]. It was also strongly
integrated in the Semantic Web and mainly in Web service descriptions.

Ontology Inference Layer (OIL) proposes four ontology languages with increasing com-
pleteness levels [OIL, FvHH'01]. It intends to combine modelling primitives from frame-
based languages (FBL) and reasoning services provided by description logics, which will be
defined in point 2.2.6. FBL can be defined as (adapted from [WFCF88]):

Frame-Based Language
A frame can be used to represent Al structures, objects and classes but it differs

from, for instance, a property list in that one cannot (usually) add arbitrary data to
a frame. Moreover, not all slots in it need to be filled. It also has some facilities for
inheritance and attached procedures definitions and is commonly context aware.
FBL enable the syntactic and semantic enactment of these concepts.

A characteristic example of FBL is an OO language like Java.

DAML~+OIL is the combination of DAML and OIL and is defined as a semantic markup
language for Web resources [DAMb, DAMc, HPSvH02]. Note that it is now superseded by
OWL3,

2.2.3 KIF

The Knowledge Interchange Format (KIF) is a language designed for use in the interchange
of knowledge among disparate computer systems (created by different programmers, at dif-
ferent times, in different languages, and so forth) [Stab]. It does neither intend to support
interactions with users nor to be used as internal structure of knowledge within computer
systems. In other words, KIF structures have to be converted into internal structures such
as arrays or lists before being handled.

2.2.4 Ontolingua

Ontolingua provides a distributed collaborative environment to browse, create, edit, mod-
ify, and use ontologies [Ont]. More information about Ontolingua ontology creation and
handling is available in [Staa]. Note that it is backed by a KIF parser.

2.2.5 SHOE

As defined in [HHL99] Simple HTML Ontology Extensions (SHOE) is a knowledge repre-
sentation (KR) language allowing the introduction of semantic annotations in Web pages.
SHOE aims at solving inherent web page problems which are: lack of structure, hetero-
geneity and contextual dependency. It also intends to make Web pages understandable and
automatically processable by specialized intelligent agents.

2.2.6 OWL
The Web Ontology Language (OWL) is defined according to [OWLO04a] as:

2For the moment, RDF will simply be considered as a graph-based data structure. A more relevant
definition will be proposed in point 3.3.

3An overview of changes from DAML+OTL to OWL is presented in Appendix D of [OWLO04b] and its
limitations are discussed in [Smi03b].

2 Ontology

owL

Is an ontology definition language that:

e is intended to be used when the information contained in documents needs
to be processed by applications, as opposed to situations where the content
only needs to be presented to humans;

e can be used to explicitly represent the meaning of terms in vocabularies and
the relationships between those terms;

e has more facilities for expressing meaning and semantics than XML, RDF,
and RDFS, and ...goes beyond these languages in its ability to represent
machine interpretable content on the Web.

OWL was created by the Web Ontology (WebONT) Working Group which was chaired by
James Hendler. Its development started in 2001 and the latest recommendation dates from
February 2004. Unlike previous languages, OWL is a Web-dedicated ontology language.
Combined with RDF, OWL adds the following properties to ontologies [Hen04]:

o ability to be distributed across many systems;
e scalable to Web needs;
o compatible with Web standards for accessibility and internationalization;

e open and extensible.

OWL offers three increasingly expressive sublanguages: OWL Lite, OWL DL and OWL
Full which will be developed hereafter. Figure 2.1 illustrates how the different OWL layers
overlap. Note that every layer can express the same things as its sublayers and can draw
the same conclusions.

OWL Full
OWL DL

OWL Lite

Figure 2.1 ¢ OWL expressiveness layers

The last point will outline the evolution of OWL, i.e. OWL 1.1.

OWL Lite

OWL Lite only supports a restricted subset of OWL and is mainly targeted at developers
needing simple constructs or classification hierarchy. It privileges lower expressivity and
higher efficiency which is required to build complete reasoners?.

Table 2.1 contains an overview of the syntactic constructs available in OWL Lite.

4An example of context reasoning based on OWL may be found in [WZGP04].

2.2 Languages

OWL DL

OWL DL holds its name from Description Logic (DL). DL can be defined according to [Lam]
as:

DEFINITION DL

Description logics are knowledge representation languages tailored for expressing
knowledge about concepts and concept hierarchies. ... The basic building blocks
are concepts, roles and individuals. ... Description logic systems have been used
for building a variety of applications including conceptual modeling, information in-
tegration, query mechanisms, view maintenance, software management systems,
planning systems, configuration systems, and natural language understanding.

OWL DL, and consequently OWL Lite, foundations on DL guarantee computational
completeness® and decidability®. Advanced considerations on OWL Lite/DL and DL are
developed in [HPS04b].

Table 2.2 contains an overview of the additional syntactic constructs available in OWL
DL. Unlike OWL Full, some restrictions on the use of those constructs have been set and
outlined in [OWL04b]. [HPS04a] presents also some of OWL’s limitations and extends it to
form the OWL Rules Language intending to make up for them.

OWL Full

OWL Full releases all restrictions active in OWL Lite/DL. As a result, no computational
guarantee can be assured.

Table 2.2 contains an overview of the additional syntactic constructs available in OWL
Full.

OWL 1.1

The new draft version of OWL, OWL 1.1, which is maintained at [GBC™]| has been set up
in order to meet users’ claims about OWL limitations. More precisely, OWL 1.1 is intended
to be the extension of OWL DL.

The four main categories of features added to OWL DL are [PSGO06]:

1. Syntactic sugar: new constructs, DisjointUnion and valueNot, ease the writing of
some common idioms;

2. New description logic construct: recent advances in DL increase its expressive power
by adding properties such as reflexivity /irreflexivity;

3. Datatype expressiveness: new constraints can be added on datatypes;

4. Meta-modelling constructs and annotations: restrictions on individuals, class and prop-
erty names are released. They can now all have the same name without losing com-
putional guarantees.

5Computational completeness entails that all conclusions are assured to be computed.
6Decidability entails that all computations will be performed in finite time.

Table 2.1 ¢ OWL Lite language constructs

(a)

(b)

2 Ontology

RDF Schema Features (In)Equality
Class (Thing, Nothing) equivalentClass
rdfs:subClassOf equivalentProperty
rdf:Property sameAs
rdfs:subPropertyOf differentFrom
rdfs:domain AllDifferent
rdfs:range distinctMembers
Individual

(c)

(d)

Property Characteristics

Property Restrictions

ObjectProperty
DatatypeProperty
inverseOf
TransitiveProperty
SymmetricProperty
FunctionalProperty
InverseFunctional Property

(e)

Restriction
onProperty
allValuesFrom
someValuesFrom
equivalentClass
equivalentProperty
sameAs
differentFrom
AllDifferent
distinctMembers

()

Restricted Cardinality

Header Information

minCardinality (only 0 or 1)
maxCardinality (only 0 or 1)
cardinality (only O or 1)

Ontology
imports

(8)

(h)

Versioning Annotation Properties
versionInfo rdfs:label
priorVersion rdfs:comment
backwardCompatibleWith rdfs:seeAlso
incompatibleWith rdfs:isDefinedBy
DeprecatedClass AnnotationProperty
DeprecatedProperty OntologyProperty

@ 6)

Class Intersection Datatypes

intersectionOf

xsd datatypes

2.2 Languages

Table 2.2 ¢ OWL DL/Full additional language constructs
(a) (b)

Class Axioms Boolean Combinations of
oneOf (dataRange) Class Expressions
disjointWith unionOf
equivalentClass (applied to class complementOf
expressions) intersectionOf
rdfs:subClassOf (applied to class
expressions)

(c) (d)
Arbitrary Cardinality Filler Information
minCardinality hasValue
maxCardinality

cardinality

2 Ontology

OVERVIEW

Semantic Web

If we value independence, if we are disturbed by the growing conformity of knowl-
edge, of values, of attitudes, which our present system induces, then we may wish
to set up conditions of learning which make for uniqueness, for self-direction, and
for self-initiated learning.

Carl Rogers

From previous chapters arises that agents and ontologies are
highly related concepts. As a result, many applications resort
to those technologies to develop complex and distributed sys-
tems. The most patent example of this combination is probably
the Semantic Web (SW). Firstly, we will contextualize and de-
fine the concept of SW. Secondly, we will present the data format
employed in this world-scale project and vindicate its selection.
Finally, the current status of the SW will be assessed.

3 Semantic Web

3.1 Contextualisation

The consciousness of the context on which the SW is based is a key step toward its proper
understanding. As a matter of fact, its definition would not be relevant if not preceded by
an overview of the main Web evolutions which leaded to its conceptualization.

Let us try to find out how the Web is “perceived”. A common trip on the Internet implies
much clicking, various context browsing, information sorting and understanding. The most
natural means to achieve such operations is by using a language you easily master. Human
beings are rather “developed ” beings that have, among other things, the opportunity to view
and hear contents. Such capabilities allow one to process the natural language(s) in which
Web pages are written, watch videos or listen to music, i.e. to process multimedia material.
Processing means in this case combining, deducing and creating associations between facts
and (partial) information. These are easy tasks for a human being?.

From those observations it can be noticed that the role of technologies is fairly static
and dedicated to information display. For example, how could a search engine automatically
combine information, perform analogies between concepts or include multimedia content into
its search 7 If we consider a lower level of abstraction, how could it know that <auto:buyer>
is almost equivalent to <car:owner>? ? As a consequence, search results may be far from
what you could have expected just because the most widely used terminology is not the one
you know, is rarely employed or is simply massively used to market some products. Another
known issue is multimedia finding. Indeed, the only matchings performed are based on file
names and not on contents, and one knows that names may not be relevant to the explicit
content®.

In addition to those search issues, form filling is another common pervasive problem.
Effectively, if field contents are nearly always the same, their labels may vary. There are
numerous times when such information supply is required but the automatic storage and
filling is prevented by this non-uniformity of meanings or at least tagging.

Less customer oriented considerations should also be addressed. Indeed, business-to-
business (B2B) applications also suffer from the lack of uniformity. Even if protocols such
as Simple Object Access Protocol (SOAP) [SOA03] are developed to allow the invocation of
Web services in a standardized way, they do not solve the problem of service description
consistency. As well as Web content, Web service description and sharing calls for more
coherence and formal description.

From the above-mentioned observations comes out that mechanisms should be deployed
to create self-describing data. What intuitively comes to mind is that ontologies could be a
means to achieve this goal. Indeed, ontologies are a means to make an explicit commitment to
shared meaning among an interested community [SHBLO6]. Moreover, the precise definition
of interrelated concepts would be of no use if not coupled with efficient reasoning systems.
Such formal reasoning entails the specification of a well-defined and storage-independent
data structure, which will be the topic of point 3.3. Furthermore, this search evolution could
involve many semantically-linked pages. All this reasoning must be handled by dedicated
and specialized entities such as agents.

L Attention should be paid to the fact that some disabilities prevent such uses of the Web. [W3C05]
presents some of them and introduces alternative means to them to browse the Internet.

2If we consider here the buyer of the car as its owner.

3[NRST*086] depicts methods for multimedia content description by means of ontologies while [SDWWO01]
focuses on picture annotation.

3.2 Definition

3.2 Definition

Probably the first article, called The Semantic Web [BLHLO1], presenting the SW was
published in the Scientific American in 2001. It lays down the foundations of the SW in the
continuity of the efforts made on the Web?.

At this point, it is important to understand that the SW is not intending to develop some
kind of parallel Web. On the contrary, it aims at giving the current Web a more structured
and consistent definition. As presented in [HBLMO02], the SW can be seen as:

Semantic Web

Is an extension of the current Web in which information is given well-defined mean-
ing, better enabling computers and people to work in cooperation. It is based on the
idea of having data on the Web defined and linked such that it can be used for more
effective discovery, automation, integration, and reuse across various applications.
... [It] will provide an infrastructure that enables not just web pages, but databases,
services, programs, sensors, personal devices, and even household appliances to
both consume and produce data on the web.

Figure 3.1 sketches the SW structure originally presented by Tim Berners-Lee in [BLOO]
at the XML 2000 Conference.

Trust
Rules
Proof

Data g

Logic ‘é

Data icﬁh

Self- Ontology vocabulary 5

desc. 2
doc RDF + RDFS

XML + NS + XSD

Figure 3.1 ¢ The Semantic Web layered structure

If we ride up this stack, the following layers successively appear:
e Unicode/URI: basics of the Web as they define data encoding and hyperlink formats;

o XML+NS+XSD: data format specifications enabling the creation of advanced data
structures by providing efficient means to present information;

e RDF+RDFS: data format specifications constituting the basics of the SW as they are
used to structure the shared knowledge;

e Ontology vocabulary: meta-information enabling the complex definition of interopera-
ble ontologies;

4The interested reader should consult [BLMO02] that highlights some projects which contribute to the
development of the SW.

3 Semantic Web

e Logic: inference engine working on data in order to retrieve knowledge;

e Proof: inference validation engine. As there is no unanimously killer app in the field of
knowledge inference, some validation must be performed in order to validate outputs
from the Logic layer;

e Trust: mechanism providing the suitable level of security of the shared data by means
of cryptography with Digital Signatures.

To these layers, Berners-Lee added in [BLO6] a User Interface & Applications layer.
Figure 3.2 illustrates its SW architecture presented in 2006. It can be seen that the de-
velopment of SW standards such as OWL are now part of the overall architecture. The
Rule Interchange Format (RIF) [GHMPO06] aims at developing standard methodologies to
support existing rule-based methodology interoperability.

| User Interface & applications |

Proof
Unifying Logic

ontology: Rules:
Query: OowL RIF
SPARQL

Crypto

| RDF-S |

| Data interchange: RDF |

| XML |

URI Unicode

Figure 3.2 ¢ The adapted Semantic Web layered structure

3.3 Data structure

The lingua franca for data structure and storage in the SW is incontestably the RDF. Firstly,
a formal definition of an RDF graph will be proposed. Secondly, an overview of the stack
in which the RDF integrates itself will be introduced. Finally, the choice of this particular
model among the variety of existing ones will be vindicated.

3.3.1 Definitions

We have seen that RDF stands for Resource Description Framework. It was created as an
additional layer to XML in 1999 [Tau06] and is commonly defined as (based on [Tim01]):

RDF

Is a framework used for defining and sharing metadata by means of graphs. Such
semantic graphs enable information sharing between versatile sources.

More precisely, an RDF? graph can be defined according to [FHVB04, GHMO04] as:

5Specifications of the RDF and other useful material are available in [RDF04].

3.3 Data structure

RDF graph

e Is a set of triples, also called statements, of the form (subject predicate
object). The predicate is a directed arc going from the subject to the object.
It can be seen as a property linking the object to its subject.

o Letus define:
— U: an infinite set of RDF URI references
— B ={N; :i € N}: a set of RDF blank nodes
— L: aninfinite set of RDF literals (e.g. string, int, ...)

e Atriple
(s,p,0) € (UUB)xU x (UUBUL)

where s is a subject, p a predicate and o an object is called an RDF triple.

e A graph
GCUUB)xUx(UUBUL)

is an RDF graph.

e The universe of the graph G,
univ(Q)

is the set of elements of U,B and L which occur in the triples of G.
e The vocabulary of the graph G,

vocab(G) = univ(G) N (U U L)

is the universe of the graph where blank nodes are ignored.

An example of an RDF graph is presented in figure 3.3. The ontology used to build it is
the Friend Of A Friend (FOAF) ontology described in [BMO05].

"Intelligent agents"”

Predicate Object

Figure 3.3 ¢ Example of an RDF graph based on the FOAF ontology

foaf:topic_interest

Subject

urn:foaf.example.org#AH

foaf:name

More advanced considerations on RDF formal definition may be found in [ACK™01].
[AGGPEO5] underlines that strictly speaking, RDF graphs are to be considered as bipartite
graphs derived from 3-order hypergraphs as presented in [HG04]. Indeed, RDF graphs
cannot be considered as simple graphs given that an edge can also be a node.

The question of the RDF physical storage has not been addressed so far. The reason is
there is no killer app in that field and the choice of the tool depends much on the purpose
of the stored graph. However, what is important to know is that RDF graphs are stored in
triple stores (TS) whose implementations can vary widely. TS most popular tools will be
compared in section 7.3 while 3Store will be studied more carefully.

3 Semantic Web

3.3.2 RDF stack

The RDF integrates itself in a wider context as can be seen in figure 3.4, adapted from
[Gar]. It illustrates the levels of constraints and representations available to build RDF
graphs which will be discussed hereafter.

OWL
Constraints
RDFS
RDF Data model
RDF/XML Synt
N-Triples yntax

Figure 3.4 ¢ The RDF stack

This powerful combination composes the core of the SW as its enables knowledge man-
agement and representation.

OWL

OWL technical part has been treated at point 2.2.6 and will not be developed any longer.
Nevertheless, the choice of OWL as the SW standard deserves some considerations.

As previously mentioned, OWL relies on formerly defined technologies, which is shown in
figure 3.5. Consequently, OWL results from the gathering of both syntactical and semantic
models which enabled its creation.

OWL
Machine RDF DAMLOIL Machine
Interpretable T / \ Actionable
Syntax Semantics
XML DAML OoIL
HTML (DARPA) (EU IST)

Figure 3.5 ¢ OWLs historical evolution

Moreover, [Pol04] puts forward some interesting arguments promoting OWL as the most
challenging SW ontology definition standard. Table 3.1 summarizes the main ideas presented
in his work.

Besides those arguments, OWL has become a W3C recommendation since February 2004,
which reinforces its position as a web standard and its acceptance by industrialists®.

RDFS

As well as XML, RDF comes along with its own schema definition language named RDF
Schema (RDFS). Tt enables the definition of basic constructs such as classes, subclasses,
properties, subproperties, property domain and ranges, ...Simple inferences on data can
then be performed, e.g. derive transitive relations. To some extent, it can be considered as
a weaek ontology specification language compared to OWL.

6The OWL FAQ [Hen04] answers general questions about OWL which are worth consulting.

3.3 Data structure

Table 3.1 ¢ Summary of OWL properties

Property

Characteristic

Benefits

Semantics are
loosely coupled

Ontologies schema represen-
tations are independent of
application code and RDF
models.

Models are easily stored/ref-
erenced in loosely-coupled

Semantics support an evolu-
tionary network model for ex-
changing date meanings and
business rules.

Semantics may be easily fed-
erated.

repositories. Semantics may be loosely-
coupled to instance data.
Semantics Ontologies’ syntax (not Parsers, modellers, reasoners
are machine- graphical) is grounded in and transformers are avail-
actionable XML and RDF. able.

Ontologies wuse consistent,
standard schema semantics.
Ontologies support well-
scoped classes, properties,
instances and relationships.

DL guarantees decidability
and computational complete-
ness.

More expressive

A powerful set of properties
and class definition elements
are available.

Not just hierarchies or tax-
onomies can be represented
(—~ XML).

Multiple inheritance.

More closely models the real
world.

Axioms may be used to model
rules directly into the model.

More precise

Relationships are atomic and
unambiguous.

Attribute overriding is disal-
lowed.

DL enforces consistency.
Within o context, semantics
can be unambiguous.

Reasoners can accommodate
unknown data.

Both explicit and implicit
facts are available via queries.

RDF /XML, N-triples

If RDF enables the creation of graph-based structures, it needs some kind of syntax-
processable representation. The two most common forms are:

e RDF/XML: represents an RDF graph by means of a classical XML tree-like structure.
This technique has the main advantage that XML is widely spread and that parsers
are available in many programing languages.

e N-Triples: represents an RDF graph by its corresponding set of triples. This form
offers a less intuitive and readable representation but has the advantage of avoiding
the overload added by XML tags.

3.3.3 Vindication

Possibly the most obvious question at that point is: why the RDF in particular ? Indeed, we
have seen right above that RDF graphs can be expressed by means of XML. So why define a

3 Semantic Web

new data standard ? The main issue with XML is that the same content can be expressed in
several ways. Let us consider the example presented in [BL98| which is illustrated in figures
ranging from 3.6(a) to 3.6(c).

1 <author> " "
. . 1 <document href="page">
2 <uri>page</uri>
2 <author>Ora</author>
3 <name>QOra</name>
3 </document>
4 </author>

(a) (b)

<document>
<details>
<uri>href="page"</uri>
<author>
<name>Ora</name>
</author>
</details>
</document>

(c)

O~ U W

Figure 3.6 ¢ Meaning-equivalent XML examples

These examples are syntactically different though they are expressing the same thing, i.e.
they share common semantics. Some argue [WGAO5a, BL98] that the RDF aims at filling
the semantic weaknesses of XML. They claim that XML’s primary function is to describe
data whereas RDF’s primary function if to describe knowledge.

XML Schema design only enables the settlement of data structures. If altered, such
schema could prevent previously recorded data from being consistent with newly inserted
data. RDF comes with definitions of ontologies by means of RDFS and OWL. Their defini-
tions enable much more flexibility regarding structure extensions and evolutions.

Unlike namespaces used in XML, which aims at grouping related concepts’, URI de-
ployed in RDF graphs imply the retrievability of the associated ontology. This is a direct
consequence of the use of RDF as an SW standard. It enables the sharing of knowledge
which entails the free access to its content and above all to its structure. From this fun-
damental distinction arises the location issue. XML is limited to the enclosing document
whereas RDF is not concerned with the physical location of data. What makes this assertion
possible is the use of URI that releases the conditions of one closed single document. Any
element of an RDF document can thus be addressed from anywhere.

Besides making away location boundaries, URI highly facilitates graph merges. The
semantic specification of RDF graphs implies that no duplicate node can be inserted. This
entails that shared nodes will only be present once in the resulting graph and predicates
from both graphs will point to the same resources. Consequently, data integration from
various sources and queries on merged data is by far easier than if it had to be performed
on merged XML files. In other words, RDF can be considered as monotonic given that new
statements neither change nor negate the validity of previous assertions [WGAOba].

Figure 3.7, adapted from [Her07], summarizes well what RDF proposes, i.e. a storage-
independent data structure providing a high level representation of the knowledge being
described and shared. Some interesting technologies appearing in this figure deserve some

attention.
The SPARQL Protocol And RDF Query Language (SPARQL) is defined according to
[SPAO06] as:

7 Grouping related concepts must be regarded here as a way of assigning unique prefixes in order to identify
elements belonging to the same “concepts”.

3.3 Data structure

Applications

¢ Query, manipulate, ... — SPARQL, OWL inferences, ...
Data in abstract format

¢ Map, expose, ... — SQL/RDF, GRDDL, RDFsa, ...
Data in various formats

Figure 3.7 e lllustration of data handling primitives according to its representation levels

SPARGL

Is a query language for getting information from . .. RDF graphs. It provides facilities
to:

e extract information in the form of URIs, blank nodes and literals;

e extract RDF subgraphs;

e construct new RDF graphs based on information in the queried graphs.
As a data access language, it is suitable for both local and remote use.

Web pages contain a significant amount of structured data. However, they do not allow
automatic information extraction. The RDF in attribute (RDFa) described in [AB07] enables
it and is defined as:

RDFa

Is a syntax that expresses this structured data using a set of elements and attributes
that embed RDF in HTML. An important goal of RDFa is to achieve this RDF em-
bedding without repeating existing HTML content when that content is the struc-
tured data. RDFa is designed to work with different XML dialects, e.g. XHTML1,
SVG, etc., given proper schema additions. In addition, RDFa is defined so as to be
compatible with non-XML HTML.

Figure 3.8 shows a typical Web page while figure 3.9 illustrates the same page where
RDFa attributes have been added®.

Gleaning Resource Descriptions from Dialects of Languages (GRDDL) described in [GRDO07]
favours the spreading of RDF and is defined as:

GRDDL

Introduces markup based on existing standards for declaring that an XML docu-
ment includes data compatible with the Resource Description Framework (RDF)
and for linking to algorithms (typically represented in XSLT), for extracting this data
from the document.

In other words, GRDDL provides mechanisms to extract RDF from XML and XHTML
documents using transformations characteristically expressed in XSLT. Figure 3.10 shows
the content of an XHTML Web page containing RDFa tags while figure 3.11 illustrates
the RDF conversion obtained by the application of the transformation script defined in
RDFa2RDFXML.xs1”.

8This example was taken from [ABO7].

9This example was taken from http://www-sop.inria.fr/acacia/personnel/Fabien.Gandon/tmp/
grddl/rdfaprimer/PrimerRDFaSection.html. URLs have been cropped for readability. Please refer to the
original page for the unaltered version.

O~ O Uk W=

3 Semantic Web

<html>
<head><title>Jo’s Blog</title ></head>
<body>

<p>
I’'m giving a talk at the XTech Conference about web widgets,
on May 8th at 10am.

</p>

<p class="contactinfo">
My name is Jo Smith. |’'m a distinguished web engineer
at

Example . org

.

You can contact me

via email

.

</p>

</body>
</html>

Figure 3.8 ¢ HTML document before the introduction of RDFa fields

3.4 Discussion

The following observations are based on [BL06] which wisely analyzes the position of the
SW on the Internet, knowledge management systems and artificial intelligence. Advanced
concerns may be found by exploring further through the reference.

From the previous sections arises that the combination of agents and ontology creation

languages implies resorting to Al techniques. However, it does neither mean that SW is
AT nor AT is SW. The SW is a huge project whereas Al is a field of activity. Nevertheless,
the SW can be a great tool to give Al projects a wider dimension by providing them with
improved interoperability methods.

In his presentation Berners-Lee also underlines the following myths about the SW:

o the SW technology is DL:

No, OWL is an SW language based on DL. Other languages may be preferable to
OWL as they offer different expressiveness. However, they should guarantee as much
interoperability as possible.

the SW is just about public data:

No, the SW project promotes knowledge sharing which does not necessarily entail its
public exposure. SW techniques may also be valuable to some private and protected
usage.

the SW is metadata for classifying documents:
No, document classification is only a small subset of what the SW may be used for.

the SW is about hand-annotated web pages:
No, as well as for document classification, hand-annotated web pages are far from
being the mainstay of the SW.

3.4 Discussion

<html xmlns:cal="http://www.w3.0rg/2002/12/cal/ical#"
xmlns:contact="http: //www.w3.0rg/2001/vcard—rdf/3.0#">

1

2

3

4 <p class="cal:Vevent" about="#xtech_conference_talk">

5 I’'m giving

6

7 a talk at the XTech Conference about web widgets
8

,
9 on
10
11 May 8th at 10am
12 .
13 </p>
14 ...
15 <p class="contactinfo" about="http://example.org/staff/jo">
16 My name is
17
18 Jo Smith
19 </spans>.
20 I'm a
21
22 distinguished web engineer
23
24 at
25
26 Example . org
27 .
28 You can contact me
29
30 via email
31 .
32 </p>
33 ..

Figure 3.9 ¢ HTML document with embedded RDFa fields

o the SW is mainly about content extracted from text :
No, much work still needs to be performed in order to go from one to another. Basically,
the SW puts forward a language gathering relational data and logic concepts.

o the SW is about making one big ontology:
No, the SW relies on a collection of interconnected ontologies.

o the SW ontologies must all be consistent:
No, only the grouped ontologies working together must be consistent.

Another interesting view of the current state of the SW is presented in [SHBLO6]. The
remaining of this section will discuss the points underlined in the last part of this article!°
before outlining SW ethical related concerns.

Languages and standards have no value if not considered by the community of users, or
at least potential users. In other words, the uptake is the key stage to any project to reach
the acceptance phase and leave its embryonic state. However, a massive uptake is not always
conceivable especially because the SW project is very ambitious. A simple look at the lowest
level of the knowledge representation stack, i.e. the RDF shows that the support materials

10The first parts put forward current tools and applications used in the SW and investigate its current
status.

3 Semantic Web

<?xml version="1.0" encoding="UTF-8"?>

<html xmins="http://www.w3.0rg/1999/xhtml"
xml:base="http://www.dc...rdf_sem.html"
xmlins:rdf="http: //www.w3.0rg/1999/02/22 — rdf —syntax—ns#"
xmlins:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmins.com/foaf/0.1/" >

<head profile="http://www.w3.0rg/2003/g/data—view">
<link rel="transformation" href="http://.../RDFa2RDFXML. xs|" />

9 <title>Biblio description</title>

10 </head>

11 <body>

O~ Uk W=

12 <h1>Biblio description</h1>

13 <dl about="http://.../REC-rdf —-mt—20040210/">

14 <dt>Title</dt>

15 <dd property="dc:title">

16 RDF Semantics — W3C Recommendation 10 February 2004
17 </dd>

18 <dt>Author</dt>

19 <dd rel="dc:creator" href="#al1">

20

21 <link rel="rdf:type" href="[foaf:Person]" />

22 Patrick Hayes
23 see

24 homepage
25

26 </dd>

27 </dl>

28 </body>

29 </html>

Figure 3.10 ¢ XHTML document containing RDFa tags

are not present yet. The targeted concern here is the management of URI references present
in graphs. Indeed, what could be the interest of building such graphs if their core elements
were simply unavailable 7

Moreover, ontologies are, most probably, living structures. They are very likely to be
subjected to regular updates or more major upgrades. Such changes must not prevent them
from being consistent or usable. As a result, not every domain would be able to equally
benefit from the SW as maintenance and development cost could vary and results not be
worth the investments. In addition, the size of the community resorting to defined ontologies
harshly influences their actual benefits. A possible solution to this issue is to specify two
levels of ontologies, i.e. deep and shallow ontologies.

Deep ontologies intend to describe very complex sets of properties. The effort needed to
set them up may be significant but the data being described is really complex. This kind of
ontology is dedicated to fields like engineering, medicine or biology. Shallow ontologies spec-
ify somewhat unchanging terms that organize very large amounts of data, e.g. customers,
accounts, stocks, ... The development effort is based on much simpler sets of elements and
relations, which enhances their reusability.

Another kind of emerging ontology is folksonomy. It arose from community of users
willing to tag information in order to classify it. This can take the form of special tags
added to Web page contents. Applications exploiting that kind of tagging developed by
decentralized communities are sometimes called Web 2.0 or social software. However, strictly
speaking folksonomies do not have to be mixed up with ontologies. Ontologies are carefully
defined to avoid ambiguity, based on URIs and subject to logical inferences. Folksonomies

3.4 Discussion

1 <rdf:RDF xmilns:rdf="http://www.w3.0rg/1999/02/22 —rdf —syntax—ns#"
2 xmins:h="http://www.w3.0rg/1999/xhtml|">

3 <rdf:Description rdf:about="http://www.dc..rdf_sem.htm!|">

4 <transformation xmins="http://www.w3.0rg/1999/xhtml|"

5 rdf:resource="http://.../RDFa2RDFXML. xs|" />

6 </rdf:Description>

7 <rdf:Description rdf:about="http://.../REC-rdf —mt—20040210/">
8 <dc:title xmins:dc="http://purl.org/dc/elements/1.1/">

9 RDF Semantics — W3C Recommendation 10 February 2004

10 </dc:title>

11 </rdf:Description>

12 <rdf:Description rdf:about="http://.../REC-rdf—mt—20040210/">
13 <dc:creator xmilns:dc="http://purl.org/dc/elements/1.1/"

14 rdf:resource="http://www.dc...rdf_sem.html#al"/>

15 </rdf:Description>

16 <rdf:Description rdf:about="http://www.dc...rdf_sem.html#al">
17 <rdf:type rdf:resource="http://xmins.com/foaf/0.1/Person"/>
18 </rdf:Description>

19 <rdf:Description rdf:about="http://www.dc...rdf_sem.html#al">

20 <foaf:name xmins:foaf="http://xmins.com/foaf/0.1/">
21 Patrick Hayes
22 </foaf:name>

23 </rdf:Description>

24 <rdf:Description rdf:about="http://www.dc...rdf_sem.html#al">
25 <foaf:homepage xmlns:foaf="http://xmins.com/foaf/0.1/"

26 rdf:resource="http://...1D=42"/>

27 </rdf:Description>

28 </rdf:RDF>

Figure 3.11 ¢ RDF document obtained after GRDDL transformation

are loosely defined, based on words and classified by means of statistical techniques such as
clustering.

Therefrom comes out that choosing the right level of ontology, if we consider folksonomy
as a loose subclass of ontology, is a tricky business. Moreover, the addressed population for
a given ontology must be chosen very carefully to avoid massive rejection. For the SW to be
widely accepted and used this linked information space must encourage availability, reuse,
adaptation and discovery of related knowledge.

Seductive though this approach may appear, it raises concerns about queries, mapping
between ontologies, efficient browsing, and trust and provenance!! of contents. The trust
we put in the published and retrieved information may be somewhat relative. The huge
scale of this project involves, for example, much more important consequences regarding
false information spreading. Note that it is outside the scope of current legislations [Sha06].

Besides being a challenging technical project the SW is also socially ambitious as it
involves the whole community of computer users. The following points list some of the
major issues related to its deployment and only intend to awake the reader’s awareness
about them.

o All traffic should be treated equally [RCOT]:
The SW is developing tools aiming at filtering the information content by means
of metadata. This could entail discriminations about the content produced on the
Internet.

o The SW should not damage public discourse [RCO7]:

1By provenance [SHBLO06] means the when, where and conditions under which data originated.

3 Semantic Web

The filters applied could prevent people from being heard, by means of forums for
instance, and reinforce people’s insularity.

o Machines should be programmed to categorize and assign values to information [RCOT]:
Privacy is a major concern in current information systems. The SW should prevent
private information from being as easily found and processed as reviews of commercial
contents.

o The informed consent should be a central aspect of the SW [Sha06]:
The very high level of interrelation between information could entail unexpected in-
formation from being retrieved. As a result, SW users must be fully aware of how
the information they provide could be used. Moreover, once information has been
provided, stopping its spreading is almost impossible. Such dangers must be present
in every user’s mind.

Those ethical concerns could also prevent the uptake of the SW. Achievements in tech-
nology, even if technically perfect, must fit in a political, legal and social environment and
have to pass this barrier to be fully accepted.

Agent System Engineering

Being busy does not always mean real work. The object of all work is production
or accomplishment and to either of these ends there must be forethought, system,
planning, intelligence, and honest purpose, as well as perspiration. Seeming to do
is not doing.

Thomas Alva Edison

OVERVIEW

The previous chapter describing the SW project put together on-
tologies and agents. However, it focused mainly on ontologies
as they are the basis of knowledge description. This chapter will
concentrate on the engineering of complex agent systems. In
the first place, a general classification of the three existing en-
gineering approaches will be presented. In the second place,
some of the most widely used methods will be discussed. We
will overview how these methodologies cover the development
process and at what kind of system they are targeted. The last
section will synthetize them and discuss the limitations of agent
system engineering.

4 Agent System Engineering

4.1 Classification

The introduction of agents in software systems entails notably more context awareness, mo-
bility, reactivity and distribution capabilities. High-quality engineering methods and tools
are required to have a new technology accepted by industrial software developers. Even
though CASE tools are the keystone to methodology acceptance, they do not help to un-
derstand them. Consequently, this chapter will mainly focus on engineering methodologies.
If we refer to [SS03], a methodology can be defined as:

Methodology

Is the entire set of guidelines and activities: a full lifecycle process; a comprehen-
sive set of concepts and models; a full set of techniques (rules, guidelines, heuris-
tics); a fully delineated set of deliverables; a modeling language; a set of metrics;
quality insurance; coding (and other) standards; reuse advice; guidelines for project
management.

Current agent-oriented methodologies are either:

1. knowledge-oriented: suitable for cases where huge ontologies are to be managed, like
in SW applications;

2. agent-oriented: suitable for cases where agent properties and aspects are to be precisely
set up;

3. object-oriented: extend and adapt OO techniques to the agent paradigm.

The following sections will detail some of the leading methodologies and pinpoint how
complete they are regarding the above proposed definition.

4.2 Knowledge-oriented approaches

Knowledge-Based Systems (KBS) development has always been a major concern in software
design. As the concept of agent is increasingly widespreading in modern applications, KBS
methodologies attempt at extending their scope to encompass agent system development.
We will introduce CommonKADS and one of its agent extensions MAS-CommonKADS.
Another common extension not being described is CoMoMAS [Gla96].

4.2.1 CommonKADS

CommonKADS can be considered as one of the most influential knowledge management
frameworks [LADO4]. It enables the representation of specifications in textual and graphic
forms. [SWAH'94] defines it as:

CommonKADS

Is a methodology dedicated to KBS projects development. It provides a set of
engineering models of problem solving behaviour in its concrete organization and
application context. This modeling concerns not only expert knowledge, but also
the various characteristics of how that knowledge is embedded and used in the
organizational environment.

4.2 Knowledge-oriented approaches

Organization Task Agent
Model Model Model Context
Knowledge Communication c
Model Model oncept
Design Artifact
Model rtifac

Figure 4.1 ¢ The CommonKADS components and layers

The CommonKADS architecture is divided into three layers, each composed of one or
more models. It only focuses on the analysis phase of the software engineering lifecycle.
Figure 4.1 depicts more precisely how these components are positioned in the architecture.

The context layer is composed of the:

e Organization model: describes the organizational context, including the stakeholders,
in which the KBS will be developed. More precisely, the stakeholders are:

— knowledge providers: the domain experts;
— knowledge users: the people needing the knowledge to work;
— knowledge decision makers: the people in charge of decision making. They influ-

ence knowledge users’ and providers’ work.

e Task model: describes the tasks intended to fulfill the organization’s goals. Each task
is described by inputs, outputs, goals, control, features, environmental constraints (e.g.
performance) and capabilities. Note that these properties are similar to the properties
of agents we gave in chapter 1;

e Agent model: describes the features of the agents executing the tasks, i.e. their name,
type (human, agent, software), subclass, position and group.

The concept layer is composed of the:

e Knowledge/Expertise model: describes the capabilities of agents. This model is divided
into:

— domain knowledge: the knowledge about the application domain;

— inference knowledge: the steps needed by the reasoning system to handle domain
knowledge;

— task knowledge: the knowledge used to manage goals and their subdivision into
subgoals and subtasks;

o Communication model: describes how the communication between agents works in
order to achieve transactions. Note that CommonKADS was initially dedicated to
human/computer interactions which entail no real support of complex interactions
between agents;

4 Agent System Engineering

The artifact layer is composed of the Design model which describes the software to be
built through a three-stage transformation process:

1. application design: functional and object-oriented decomposition and constraint defi-
nitions;

2. architectural design: architecture design and choice of the computational infrastructure
implementing it;

3. platform design: definition of knowledge representations and inference techniques that
will be implemented.

4.2.2 MAS-CommonKADS

MAS-CommonKADS [IGGV96] extends the CommonKADS components described above in
the following ways:

e Agent model: is extended with the following features:

service: special facilities offered to dedicated agents;

goals: agent’s objectives;

reasoning capabilities: mechanism enabling the achievements of the required
tasks;

general capabilities: skills (sensors, effectors, ...), agent (communication) lan-
guages, ...

constraints: norms, preferences, permissions, ...

e Coordination model: is a new model created to fulfill the weakness of the Communica-
tion model. Tt improves the request of service or information, the update of informa-

tion,

the choice of agent capabilities in transactions with other agents and it defines

efficient inter-agent protocols.

MAS-CommonKADS supports the conceptualization, analysis, design, coding, testing,
integration, operation and maintenance phases of the software engineering lifecycle.

4.3 Agent-oriented approaches

Approaches inherited from KBS and adapted to AOP bridge the gap between legacy methods
and new technologies. However, agent-specific methodologies are now available and gaining
importance in the software engineering world. Moreover, they enable the representation of
the high level entities that are agents without resorting to established OO techniques. One
of the most promising methodologies is Gaia which will be introduced in the next point.

4.3.1

Gaia

It is defined according to [WJKO00] as:

DEFINITION Gaia

Is a methodology for agent-oriented analysis and design. The Gaia methodology
is both general, in that it is applicable to a wide range of multi-agent systems, and
comprehensive, in that it deals with both the macro-level (societal) and the micro-
level (agent) aspects of systems. Gaia is founded on the view of a multi-agent
system as a computational organization consisting of various interacting roles.

4.3 Agent-oriented approaches

The Gaia methodology is dedicated to the development of large-scale applications where:
e agents are computational systems endowed with much computational resources;
e agents cooperate in order to primarily achieve system goals and not individual goals;

e agents are implemented in heterogeneous programming languages;

agent interactions are static. They do not change at run-time;

agent abilities and provided services are static. They do not change at run-time.

Figure 4.2 depicts the different layers and components of the Gaia methodology.

Requirements

Statement
Roles Interactions .
Analysis
Model Model
Agent Services Acquaintance .
Design
Model Model Model

Figure 4.2 ¢ The Gaia components and layers

The requirement phase aims at systematically capturing the requirements of the sys-
tem to be developed and should be detailed enough to enable their direct implementation.
However, they do not depend on the implementation framework employed in the following
phases.

The analysis phase intends to build a complete understanding of the system and its struc-
ture. The system organization being captured is a collection of roles, that stand in certain
relationships to one another, and that take part in systematic, institutionalized patterns of
interactions with other roles. Tts components are the:

e Roles model: describes the key roles in the system. The roles define abstract descrip-
tions of the expected functions of the entities. Permissions/rights and responsabilities
are associated with each role;

o Interactions model: describes the relations between the various roles. Dedicated pro-
tocols are associated with these interactions to model inter-role communication.

The design phase intends to transform the model produced during the analysis phase
into a low-level abstraction model which might be implemented by more traditional design
techniques such as OO. Note that the Gaia methodology does not specify how the agents
achieve their tasks. Its components are the:

e Agent model: describes the needed agent types and their run-time instances. There
can be a one-to-one relation between agent types and roles. However, several roles can
be grouped and assigned to an agent type;

4 Agent System Engineering

e Service model: describes the services associated to the agent roles and the properties
of those services. A service can be seen as a function associated to an agent;

o Acquaintance model: describes the communication links between the agent types.
They do not define the contents of messages or their sent time, they only define com-
munication paths. It is derived from the agent and interaction models.

Note that an extension of Gaia is the Role Oriented Analysis and Design for Multi-Agent
Programming (ROADMAP) methodology described in [JPS02]. It adds elements to deal
with requirement analysis and resorts to AUML to give more precise interaction definitions.

4.4 Object-oriented approaches

A convenient way to promote AOP as a valuable paradigm is to present it as an extension of
well established techniques such as O0O. We have seen however that agents are higher level
entities than objects. As a result, the direct application of OO techniques to agent systems
engineering is not suitable. The most common engineering methodologies extending them
are MaSE, MESSAGE, Prometheus and Tropos, which will be discussed hereafter. The last
point will shortly describe AUML which is not, strictly speaking, a methodology.

4.4.1 MaSE

In order to define the Multiagent Systems Engineering (MaSE) methodology [DeL99] refers
to the six challenges of MAS put forward by Sycara in [Syc98]:

1. how to decompose problems and allocate tasks to individual agents ¢

2. how to coordinate agent control and communications ¢

3. how to make multiple agents act in a coherent manner ?

4. how to make individual agents reason about other agents and the state of coordination ¢
5. how to reconcile conflicting goals between coordinating agents ?

6. how to engineer practical multiagent systems ?

MasE

Is a methodology whose goals are:

1. to engineer practical systems, and to provide a framework for solving the first
five challenges. It uses the abstraction provided by multiagent systems for
developing intelligent, distributed software systems;

2. to define a methodology specifically for formal agent system synthesis.

The first goal is achieved by creating two languages:

1. Agent Modelling Language: provides a graphical notation to represent agents in a
system and their interfaces to other agents;

2. Agent Definition Language: relies on the first order predicate logic and intends to
describe the internal behaviour of each individual agent.

4.4 Object-oriented approaches

To meet the second goal, a formal semantics will be defined for both languages.

Moreover, beside being implementation independent, MaSE offers the ability to track
changes made during every step of the development process. Figure 4.3 [WDO0O0] sketches
the layers and design components constituting the MaSE methodology. Note that it iterates
across all phases in order to add details to the models.

Goal
Hierarchy Capturing
Goals
Use
Cases
Analysis
Sequence
Diagrams Applying Use
Cases
Concurrent
Tasks Roles Refining
Roles
Agent
Classes Creating Agent
Classes
Conversations Constructing
Conversations Design
Agent
Architecture Assembling
Agent Classes
Deployment
Diagrams System
Design B

Figure 4.3 ¢ The MaSE components and layers

The aims of each of the phases are:

e Capturing goals: intends to define a goal hierarchy diagram from the initial system
specifications. Levels are determined by their importance degree, are functionally
related to their parents and same level goals are roughly equal in scope;

o Applying use cases: eases the transition from specifications and goals to agents. Typ-
ically, at least one sequence diagram is created for each use case;

4 Agent System Engineering

e Refining roles: enables the creation of role models. Roles synthesize what is expressed
in the goal hierarchy and sequence diagrams;

o Creating agent classes: identifies agent clagses from role models to create an agent
class diagram, which also contains conversations between them;

e Constructing conversations: defines the conversation protocols between pairs of agents.
Each conversation is defined by two communication class diagrams for the initiator and
responder;

o Assembling agent classes: creates the content of the agent classes. Content architec-
ture might be based on templates such as those defined at point 1.3!;

e System design: instantiates agent classes as actual agents. They are represented in a
deployment diagram in order to define the actual number, types and locations of the
agents within the system.

A tool called agentTool supporting the MaSE methodology is available at [Lab]. Note
that to simplify the research, MaSE puts some limitations:

e the system is closed and all external interfaces are encapsulated by an agent that
participates in the system communication protocol;

e the system is static, i.e. agents cannot be created, destroyed or moved at run-time;

e inter-agent communication is only one-to-one, i.e. there is no multicast.

4.4.2 MESSAGE

The Methodology for Engineering Systems of Software Agents (MESSAGE), also referred to
as MESSAGE/UML, is defined according to [CCG102] as:

MESSAGE

Is a methodology that covers MAS analysis and design and is intended for use
in mainstream software engineering departments. It extends UML by contributing
agent knowledge level concepts, and diagrams with notations for viewing them.

MESSAGE methodology is based on the combination of the best features taken from
AUML, Gaia, CommonKADS and goal-analysis techniques.

The micro level entities are modelled by means of UML. The combination of all these
models form the macro level model of the system. The entities being modelled are called
knowledge level entities and belong to one of those classes:

e concrete entities: include agents, organizations (groups of agents), roles (describe the
characteristics of an agent in a particular context) and resources (e.g. databases);

e activilies: are composed of tasks and interactions;
e mental state entities: define goals (associate an agent with a situation);

e information: describes objects containing chunks of information;

INote that in practice the constructing conversations and assembling agent classes are closely coupled.
MaSE recommends iterating between both phases and developing them as simultaneously as possible.

4.4 Object-oriented approaches

messages: are objects communicated between agents.

For reason of brevity, they will not be developed any further. More details are available
in [CCGT02].
The analysis model is based on five views or models representing the system to build:

organizational view: shows the concrete entities present in the system and their rela-
tionships;

goal/task view: shows the goals, tasks and situations. Situations take the form of
attributes of goals and tasks. They are used to represent logical dependencies to form
graphs representing goal decompositions, task achieving goals, ...;

agent/role view: shows agents and roles. Diagrams represent agents/roles and the
goals they are responsible for, resources they control, ...;

interaction view: shows interactions between agents/roles, i.e. initiators, information
passed, ...;

domain view: shows domain concepts and how they are interrelated.

Each of these models are successively refined in levels, each of them representing a more
detailed view of the system to be built.

4.4.3 Prometheus
The Prometheus methodology is defined according to [PW02] as:

DEFINITION Prometheus

Is a detailed and complete methodology covering all activities required in develop-
ing intelligent agent systems.

It claims to differ from competing methodologies in that it:

supports the development of intelligent agents whose architecture is based on goals,
belief, desires, plans and events;

provides a complete engineering lifecycle and a detailed process;

has been used by both industrial practitioners and undergraduate students;
allows design to be performed at multiple levels of abstraction;

uses an iterative process over the software engineering phases;

provides automatable cross checking of design artifacts.

The methodology follows a three-phase approach depicted in figure 4.4. The intent of
those iteratively run phases are the:

System specification: captures the system inputs and outputs. Inputs are called per-
cepts and environment effectors are called actions. Note that percepts are not events.
FEvents are significant occurrences for the agent system whereas percepts are raw data
available to the agent. System functionalities® describing what it should do and how
it processes inputs to provide outputs must also be described. As functionalities focus
on particular parts of the system, use cases are developed to offer more holistic views;

2Note that a functionality in the Prometheus methodology is referred to as a role in the other method-
ologies.

4 Agent System Engineering

L]
]

Actions and
percepts
System
Use | Functionality Specification
Cases descriptors
Agent
grouping
Interaction Agent Shared Architectural
)) Events X
diagrams acquaintance data Design
System Agent
Protocols e))
Overview — |[=--------------------- Descriptors
! Detailed
v + + + Design
Capability Event Data Plan
Overview Descriptors Descriptions Descriptors
B [} A }
final design artifact <e----= crosscheck

intermediate design tool — derives

Figure 4.4 ¢ The Prometheus components and layers

Architectural design: determines which agents should be built and how they will in-
teract. An agent encompasses one or more of the functionalities previously defined.
Functionality selection intends to maximize coherence and minimize coupling with
other agents. Acquaintance models are drawn to assess agent coupling. Once the
agents have been identified, agent descriptors can be established (number, lifetime,
I/0, ...). Events resulting from environment percept processing must be clearly iden-
tified. Data shared by agents has to be clarified and reduced as much as possible. The
system overview diagram can then be defined. Tt is the keystone of this development
stage as it gathers agents, events and shared data. Interaction diagrams are built to
present inter-agent communication and are extended by interaction protocol specifying
communication sequences;

Detailed design: focuses on the agents’ internal details (capabilities, internal events,
plans, data structures) and on their task achievements within the system. A platform
supporting AOP must be chosen to implement them (e.g. JACK). The result of this

4.4 Object-oriented approaches

detailed analysis are agent overview diagrams showing how these elements are linked
to each other. Capability descriptors are specified for events, data and plans. Note
that capabilities can be imbricated.

To these elements, Prometheus adds a data dictionary which should be completed and
checked at every step of the development process.

4.4.4 'Tropos

Tropos intends to develop a real AOP methodology in that it does not only resort to adapt-
ing UML diagrams to agent modelling. It argues that agent applications are conceived at
knowledge level and the use of UML forces the translation of mentalistic notions into software
level notions (e.g. classes, methods, attributes, ...). As a result, agent specific notions must

be reintroduced in the programming phase. The Tropos methodology is defined according
to [BGGT04] as:

pI=ZINIeINY | Tropos

Is a methodology based on two key ideas:

1. the notion of agent and all related mentalistic notions (for instance goals and
plans) are used in all phases of software development, from early analysis
down to the actual implementation;

2. the very early phases of requirement analysis are thoroughly covered.

As it covers the whole software engineering lifecycle, Tropos aims at modelling the system
to build and its environment by incrementally improving the designed models. It follows
five development phases. The first one comes from the requirement engineering field and is
based on the i* model [Yu97] which is:

DEFINITION i

Is a framework developed for modelling and reasoning about organizational envi-
ronments and their information systems. It consists of two main modelling com-
ponents. The strategic dependency model is used to describe the dependency
relationships among various actors in an organizational context. The strategic ra-
tionale model is used to describe stakeholder interests and concerns, and how they
might be addressed by various configurations of systems and environments.

The last four phases are widely supported in the software engineering field.

o FEarly requirements: capture domain stakeholders and model them as social actors.
They depend on each other for goals to be achieved, plans to be performed and re-
sources to be provided. They aim at modelling the system’s why’s beside the how and
what;

o Late requirements: extend the conceptual models developed during the early require-
ment stage by including new actors representing the system and their relationships
with actors of the environment. All the functional and non-functional requirements of
the future system are expressed through the dependencies;

o Architectural design: specifies the system’s global architecture in terms of sub-systems
(actors) interconnected through data and control flows (inter-actor dependencies). Sys-
tem actors are also mapped to software agents which are characterized by specific
capabilities;

4 Agent System Engineering

e Detailed Design: defines agent capabilities and interactions. At this stage, an im-
plementation platform (e.g. JACK) should have been selected. The detailed design
developed with this framework has to map directly to the code to be produced;

e Implementation: implements the results of the previous design phases in a fully func-
tional system.

Modelling focuses on actors, dependency, goals, plan and capability. Actor and depen-
dency modelling is achieved through actor diagrams. Goals and plans are modelled by
means of goal diagrams following three reasoning techniques. Means-end analysis intends to
identify the plans, resources and softgoals which provide means for achieving goals. Coniri-
bution analysis precises how existing goals contribute, positively or negatively, to the goal
being analyzed. AND/OR decomposition decomposes a given goal into subgoals following an
AND/OR notation. Note that all the models produced so far rely on the i* framework. Ca-
pability modelling is performed by means of capability and plan diagrams using ¢* notations,
UML activity diagrams and AUML interaction diagrams.

4.4.5 AUML

Agent UML (AUML) aims at bridging the gap between current UML dedicated to OO
application design and AOP. It is defined according to [OPBO0] as:

AUML

Considers agents as an extension of active objects, exhibiting both dynamic au-
tonomy (the ability to initiate action without external invocation) and deterministic
autonomy (the ability to refuse or modify an external request). lts view of agents
as the next step beyond objects leads it to develop extensions to UML and idioms
within UML to accommodate the distinctive requirements of agents.

AUML proposes a three-layer approach to represent agent interaction protocols (AIPs),
which is:

pI=ZINIle]NE | Agent Interaction Protocol
Describes a communication pattern as an allowed sequence of messages between
agents and the constraints on the content of those messages.

Levels are respectively representing the:

1. owverall protocol: enables the modelling of the interaction protocol as a whole. This
entails easier pattern definition for future reuse in other systems. The most suitable
UML protocol definition techniques are:

e packages: conceptually group classes in order to form relatively independent sub-
systems. Interactions intra/inter packages can be modelled by means of sequence
diagrams. An example is sketched in figure 4.5;

e templates: enable package customization. They are represented as boxes super-
posed on the generic package. A template is divided into three categories which
are role parameters, constraints and communication acts (CA). An example is
shown in figure 4.6;

2. interactions among agents: focus on UML dynamic models and extend them in the
following ways:

4.4 Object-oriented approaches

Purchasing
Supplying

‘ Broker ‘ ‘ Retailer ‘ ‘Wholesaler‘

call-for-proposal .
e :
D request
L inform
propose T

Figure 4.5 ¢ Example of AIP modelling with packages

I Initiator, Participant
Deadli
FIPA Contract Net Protocol | ! cadine |

contract call-for-proposal, refuse”,
initiation not-understood*, propose, '
! reject-proposal*, accept-proposal*, |
| cancel*, inform*

| Initiator | | Participant |

T T
-

call-for-proposal

refuse
-
I not-understood o

accept-proposal

rejecl-;roéosa\

inform

cancel

Figure 4.6 ¢ Example of AIP modelling with templates

sequence diagrams: extend their members by naming them according to the pat-
tern agent_name/role:class. Competing thread modelization is also encour-
aged and method call arrows should be labelled with CA;

collaboration diagrams: are extended similarly to sequence diagrams. It is argued
that the view they propose, even if semantically similar, may sometimes be more
easily adapted;

activity diagrams: are promoted as they provide an explicit thread of control
which is very useful to model complex interaction protocols involving a lot of
competing processing;

statecharts: are primarily used to model constraints on the protocol as the view
presented is interaction-centred rather than agent-centred. Note that they are
not meant to be implemented as agents. Alternatively, they can be integrated in
roles which will be played by agents;

4 Agent System Engineering

3. internal agent processing: can be easily modelled by means of activity diagrams and
statecharts. They should both be coupled with sequence diagrams to specify the
behaviours associated to every CA.

A textual notation and a tool used for AIP design are proposed in [Win05]. Other ex-
tensions to UML such as agent role changes, agent mobility or the use of agents as interfaces
between components are also discussed in [OPB00]. Note that the AUML working group
activities have not evolved much since late 2004.

4.5 Synthesis

The above sections presented the three main classes of AOP methodologies. In order to
have a global view of these leading methodologies, we will synthesize the key concepts put
forward in each of them. Figure 4.7, adapted from [SBPL04], shows the software engineering
lifecycle phases they cover.

Requirements Analysis Design Implementation Testing
Tropos
Prometheus
MaSE
MESSAGE/UML
Gaia
AUML

MAS-CommonKADS

Figure 4.7 e Synthesis of the engineering lifecycle phases

Table 4.1, taken from [LADO04], summarizes what we addressed in the previous sections.
AUML is not part of it as we do not consider it as an actual methodology. Note that
some methodologies took some elements from agile methods and more particularly from the
Rational Unified Process (RUP) which is defined according to [ASRW02] as :

RUP

Is an iterative approach for OO systems, and it strongly embraces use cases for
modelling requirements and building the foundation for a system. It is inclined to-
wards OO development. It does not implicitly rule out other methods, although the
proposed modelling method, UML, is particulary suited for OO development.

4.6 Discussion

Table 4.1 ¢ Summary of agent system engineering methodologies

Approach Basis Application area Agency support
CommonKADS KM Knowledge centred ap- Organization tasks,
MAS-CommonKADS plications agents, knowledge,
interaction
Gaia AO Coarse-grained compu- Roles, agents, knowl-
tational systems edge, interaction, ser-
vices, acquaintance
MaSE 00 Heterogeneous MAS Goals, roles, interac-
and tion, agents
RUP
MESSAGE 00 Coarse-grained compu- Organizations, goals,
and tational systems tasks, agents, roles,
RUP knowledge, interaction
Prometheus 00 BDI agents Goals, belief, plans,
and events, agents, interac-
BDI tion, capabilities
Tropos 00 BDI agents Actor, goals, plan, re-
and source, capability, in-
BDI teraction

The interested reader should consult [DWO03] and [SS03] which propose detailed evalu-
ation frameworks for agent-oriented methodologies. They take MaSE, Prometheus, Tropos
and Gaia as case studies for their framework evaluation and present the obtained results.

4.6 Discussion

This section will attempt to attract system developers’ attention about some possible flaws
of AOP. Attractive though agent systems are, they must be well thought and carefully
designed. We will present here the work done in [JW99] which describes agent-oriented
software engineering principles as well as their pitfalls.

It might first be difficult to maintain a balance between the reactive and proactive ca-
pabilities of agents. They may indeed give priority to more immediate tasks and never be
able to achieve their objectives. On the opposite, they may only attempt to achieve their
goals without taking care of their environment evolution. Furthermore, these capabilities
could rapidly entail unpredictable behaviours, possibly amplified by the asynchronous na-
ture of the events being generated. Consequently, as an agent might depend on others to
achieve its tasks, their completion could be compromised. The last issue is the notion of
emergent behaviour resulting from the interaction and composition with other entities. A
group phenomenon could occur and direct individual entity behaviours, just like in human
communities.

In addition to those inherent threats, some common pitfalls require particular attention:

e you oversell agent solutions, or fail to understand where agents may usefully be applied;
e you get religious or dogmatic about agents;

e you don’t know why you want agents;

4 Agent System Engineering

e you want to build generic solutions to one-off problems;
e you believe that agents are a silver bullet;

e you forget you are developing software;

e you forget you are developing multi-threaded software;
o your design doesn’t exploit concurrency;

e you decide you want your own agent architecture;

e your agents use too much Al;

e you see agents everywhere;

e you have too few agents;

e you spend all your time implementing infrastructure;

e your agents interact too freely or in an unorganized way.

Nevertheless, these arguments should not discourage or prevent software developers from
resorting to agents. Agents as well as objects or any other paradigm have their dark sides.
Agents system engineering is neither more error-prone nor difficult than any other one. It
is simply newer and consequently less mature and tested.

Part |l

Sharing System

OVERVIEW

System Presention

Everything should be made as simple as possible — but no simpler.
Albert Einstein

So as to define the developed system, it is necessary to precise

its context as well as the functions it intends to take on. This
chapter will, in the first place, introduce the project framework

and the engineering methodology followed. In the second place,
the concepts needed to understand the system built will be un-
derlined. Finally, an abstract description of the system and its
position in the environment will be put forward as well as a char-
acteristic scenario.

5 System Presention

5.1 Introduction

The work presented here is partially supported by the European Commission under the
6th Framework Program through the Content Analysis and Retrieval Technologies to Apply
Knowledge Extraction to massive Recording (CARETAKER) project (Activity: Semantic-
based Knowledge and Content Systems, contract no.:FP6-027231). It aims at studying,
developing and assessing multimedia knowledge-based content analysis, knowledge extraction
components, and metadata management sub-systems in the context of automated situation
awareness, diagnosis and decision support'. It was also supported by the Multitel research
centre in Mons?.

The following points will introduce the system objectives and the selected development
methodology. Since several aspects of this project are interrelated, many cross-references
will be used throughout the following chapters to illustrate the coupling between both agents
and knowledge storage technologies.

5.1.1 Objectives

The addressed part of the CARETAKER project was defined as follows. The event recog-
nition subsystem will serve as a demonstrator applying the technology in a real-time system
of between 10 and 20 cameras and microphones®. The purpose of this small-scale, on-line,
prototype system is to demonstrate both the effectiveness of the technology, and how the im-
plementation can scale to the massive recording scenarios of real-scale monitoring systems.
To enable the results of WP4 and WP5 to be used in a real-scale environment with an abun-
dance of sensors, state-of-the-art open standards for distributed event driven processing will
be used.

In order to bridge the gap between end-user interfaces and stored knowledge, a Web
server will be coupled to the system. Note however that the system we built only offers an
interface to it by means of queries.

As this project aims at promoting new technologies, the design of an innovative system
was required. The adaptation of technologies used in the SW and AT came out as conspic-
uous. Consequently, AOP and SW data structures were the keystone of this part of the
CARETAKER project.

The system we built has been presented at the IS&T/SPIE 19*" annual symposium on
electronic imaging science and technology in [LHCT07].

5.1.2 Methodology

Chapter 4 put forward some of the most common agent system engineering methodologies.
The one followed during the development of this project is Prometheus. In order to justify
this choice, we will refer to section 4.5 which compared every of them.

Note that the intent of this project is not to stick to a particular methodology. It
aims more at taking advantage of the flexibility of the agent approach than at building a
perfect agent system. Consequently, the selection of the methodology was made to define
a general development framework rather than strict guidelines. Moreover, the following
chapters detailing the system will not strictly follow the Prometheus methodology. They
will simply underline to which parts they relate.

IFor further information about the CARETAKER project, please visit http://www.ist-caretaker.org/

2For further information, please consult http://www.multitel.be/.

3Note that no information about audio processing was available during development stages. This side of
the project has thus not been considered.

5.2 Definitions

Why Prometheus 7

A point not mentioned so far is that no clear requirements have been formulated. Moreover,
data specifications were neither settled before nor after the system development. As a
result the mandatory features were adaptability, flexibility, capability of evolution and fast
prototype creation.

As Prometheus focuses notably on the implementation and testing phases it is well suited
for concrete system conception. Furthermore, it enables the representation of agent specific
concepts such as plans, events, ...in a very intuitive way.

It is also supported by the JACK toolkit [Age06] which is:

JACK

Is an agent-oriented development environment built on top of and integrated with
the Java programming language. It includes all components of the Java devel-
opment environment as well as offering specific extensions to implement agent
behaviour.

It was of great help in every step of the design, implementation and debugging steps.
Moreover, the detailed design phase results were automatically converted into components
needed during the implementation phase, which sharply reduces coding efforts. The tracing
tool was additionally of great help during debugging phases.

Why not other methodologies 7

CommonKADS does not offer real implementation techniques and was thus not an accept-
able choice. Given the short available development time, well mastered techniques based
on OO were required to guarantee faster operability. Consequently, its extension MAS-
CommonKDAS has not been considered as an option.

Gaia is not much more adapted as it does not address implementation and testing issues.

Although Tropos covers most of the development lifecycle phases it attaches much im-
portance to the requirement analysis. As it was not a major concern in this case, this
methodology has been set aside.

MESSAGE does not seem, to our knowledge, to be supported by significant tools and
was not retained for this reason.

MaSE has not been chosen because it did not seem to be widely used. However, it is
supported by a rather advanced tool, agentTool, which could be worth some attention.

5.2 Definitions

In order to define the system, we first need to precise the way data will be transferred, stored
and their types. The following points will address those issues. However, more technical
definitions about used concepts will come in the following chapters.

5.2.1 Data transfer

Data will be transferred from one entity to another by means of a telecommunication net-
work. The possible sources emitting on the netwok are:

e sensors. They are typically video cameras, microphones, ...and transmit data over
an IP channel;

5 System Presention

o system. It transfers low/mid-level analysis and replies to queries by means of an RSS
flow;

e video content analysers. They produce two kinds of results based on low/mid-level
and high-level analysis, which will be defined right below. Analysers in charge of the
high-level analysis will also be able to perform queries on previous analysis results and
receive replies to them. Video analysis results as well as queries and replies will be
transported by means of an RSS flow;

e web servers. They can perform queries on analysis results and receive replies to them.
Queries and replies will be carried by means of an RSS flow.

The three commonly admitted levels used to divide image representations are the low,
mid and high-levels. They all intend to identify different elements of the pictures. These
representations can be defined as following:

Low-level representation
Is composed of atomic or primitive events that can be extracted directly from the

raw sensory signals. Usually, this representation aims at identifying primitive events
that can be localized both in time and (image-)space such as motion detection,
background subtraction, edge and texture based recognition of moving objects, . ..

Mid-level representation
Deals with the object tracking (and identification) task and activity characterization

over an extended time basis and/or over multiple sensors. Typical examples are
multi-object tracking and simple activity recognition (e.g. person standing, seated,
carrying luggage) in a single camera or over a network of camera.

High-level representation
Aims at recognizing more complex events, usually modelled by an expert of the

application domain (the user), and expressed through a set of rules. Among the
classical high-level events one can cite the "abandoned luggage detection”, "red
traffic light violation detection”, ...

The key point is to note the increasing degrees of abstraction provided by these levels.
Low-level analysis focuses on raw information present in pictures whereas high-level analysis
attempts to recognize patterns or scenarios. High-level analysis may thus require information
about previously recorded pictures while low-level analysis is based only on the current one.
Figures 5.1, 5.2 and 5.3, taken from [LHCT07], illustrate these concepts for an abandoned
luggage detection scenario.

5.2.2 Data storage

All data will be stored in a unique data warehouse (DW) which can be defined according
to [Inm02] as:

DEFINITION Data warehouse

Is a subject-oriented, integrated, nonvolatile, and time-variant collection of data in
support of management decisions.

5.2 Definitions

(a) Picture (b) Picture background (c) Picture foreground mask

Figure 5.1 e lllustration of low level features identification

A

o

(a) Blob features (b) Rough tracking results (¢) Final filtered tracks

Figure 5.2 e lllustration of mid-level features identification

Subject-oriented means in this case that the contained data provides relevant information
about a dedicated subject rather than about a company’s current operations. Integrated
comes from the fact that data from various sources is merged in a single coherent whole. It
is also nonvolatile as it is never deleted once saved. Consequently, the gathered information
always grows and gives a more relevant view of the business it relates to. Moreover, so
as to identify data filling the DW, it is marked with time tags. The intent of a DW is
principally to improve and facilitate the decision making in business processes. We will see
in the following chapters how we have adapted this concept to our particular needs®.

5.2.3 Data types

The data format used by sensors does not affect the system being developed and will thus
not be addressed.

Data transferred over the RSS flow will be analysis results, queries and replies. They
will all be formatted in XML in order to guarantee system consistency and compliance with
standards. These XML documents will be wrapped into RSS feeds as shown in figure 5.4.
Attention should be paid to the fact that XML documents contained in a feed have all the
same type, i.e. low/mid-level analysis results, high-level analysis results, queries or replies.

The type of the data internally handled by the system is the RDF.

4Besides [Inm02], the interested reader should consult [Wid95] which addresses research problems and
[ZGMHW95] which investigates view maintenance in DWs.

5 System Presention

(a) Mobile object appears (b) Immobile objects stem from (c) Immobile objects exceed
the mobile object maximum time and cause an
alarm raise

Figure 5.3 e lllustration of high-level features identification

RSS feed

XML file 1

XML file i

XML file n

Figure 5.4 ¢ XML documents wrapped in an RSS feed

5.3 Description

Firstly, a global scheme of the system and its surrounding environment will be presented.
Secondly, a more detailed view of the system will be depicted and its internal work will
be addressed. Finally, a characteristic scenario will be proposed to illustrate the system
in action. That is however not to be considered as a use case. It only intends to help
understanding the coming chapters.

5.3.1 System framework

The system framework is presented in figure 5.5. Its constituting entities are the:

e sensors. They are responsible for information retrieval about the physical environment;

signal handling systems. They are responsible for data conversion from sensors to
WP4 understandable formats;

WPJ. Tt is responsible for low/mid-level analysis from data coming from sensors;

WP5. Tt is responsible for high-level analysis from data coming from WP4 ;

demonstrator. 1t is the system built. It is responsible for:

— handling analysis results;

— handling queries and replies;

Web server. It is responsible for:

5.3 Description

Figure 5.5 ¢ System framework

5 System Presention

— performing queries on the demonstrator. They are made by users by means of
their Web interfaces;

— handling replies and updating users’ current Web page.

The number of queries/replies occurring during high-level analysis or web server accesses
is undetermined. The flow coming from sensors, entailing video analysis, passing through
WP4, the demonstrator and WP5 must always be run in an atomic way. In other words,
every sensed event triggers a thorough analysis of the system.

5.3.2 System architecture

The system abstract architecture is presented in figure 5.6. The sketched “persons” are
representing agents. They will be responsible for the data flow management inside the
system.

RSS
Handler;

Data Query
Handle Handler;

Figure 5.6 e System abstract architecture

The system architecture mostly shows data conversion. For low/mid/high-level video
analysis, there comes:
RSS — XML — RDF

Whereas for low/mid-level video analysis there also comes:

XML — RSS

5.3 Description

This is due to the fact that low/mid-level analysis results need to be sent to WP5 for
high-level analysis.

Data is stored as RDF graphs in the data warehouse. In order to perform queries on
RDF graphs some conversions of XML queries and RDF replies are also required:

RSS - XML — SPARQL — RDF — XML — RSS

Note that more than one SPARQL query can be issued for a single XML query.

5.3.3 Characteristic scenario

With the intention of ensuring full system comprehension, a typical scenario will be pre-
sented. Its content is for illustration purpose only and may slightly differ from reality. The
numbers presented in figure 5.5 will be used to identify the current process part. The same
numbers are present in figure 5.6 and show how external events influence the system. Note
that reactions are seen as a complete sequence of actions of one single physical observation.
It will be repeated as many times as observations are available. If the video sensors work
on a 15 frame per second (FPS) basis, it will be repeated 15 times a second. Furthermore,
in order to come to the analysis conclusion, more than a single observation will be needed.
Context

Let us assume:

e aroom containing some restricted access equipment. Only a limited set of people have
been granted access to it;

e a video camera pointing at the door. We assume here it is the single entry point;

e a voice recognition device unlocking the door for authorized people only.

Event

An unauthorized person enters the room. The voice recognition device will not report an
allowed entry while pictures coming from the camera will show someone entering the room.

Reactions

1. Data coming from both sensors are handled and sent in a WP4-understandable format
o;

2. WP4 performs a low/mid-level analysis on received data and identifies notably the
open door, no access authorization from the voice recognition device and someone in
the room;

WP4 exports its analysis results in XML;
WP4 wraps the XML in an RSS feed and sends it to the demonstrator @;
The demonstrator extracts the XML from the RSS feed;

The demonstrator converts the XML into RDF and saves it in the DW;

I S o

The demonstrator wraps the received XML in an RSS feed and sends it to WP5 for
high-level analysis ©;

8
9

10.
11.
12.
13.
14.

15.
16.

17.
18.
19.
20.
21.
22

23

5 System Presention

. WP5 extracts the XML from the RSS feed;

. WP5 performs a high-level analysis on received data. This can require information
about previously saved data. In this case:

(a) WP5 emits a query to the demonstrator in XML format and wraps it in an RSS
feed;

(b) The demonstrator extracts the XML from the RSS feed,;

The demonstrator retrieves the replies from the DW;

(d) The demonstrator converts the RDF replies into XML and wraps them in an RSS
feed;

(e) The demonstrator sends the results to WP5;
(f) WP5 extracts the XML replies from the RSS feed @;

(g) WP5 carries on its analysis and performs other queries if needed;

—
o
~—

WP5 ends its analysis and identifies the event as an unauthorized_entry;
WP5 exports its results to XML;

WP5 wraps the XML in an RSS feed and sends it to the demonstrator @;
The demonstrator extracts the XML from the RSS feed;

The demonstrator analyses the XML, extracts new information and saves it as RDF
in the DW;

A security guard consults its Web interface and asks for unauthorized_entry events;

The web server emits a query in XML format to the demonstrator and wraps it in an
RSS feed;

The demonstrator extracts the XML from the RSS feed;

The demonstrator retrieves the replies from the DW;

The demonstrator converts the RDF replies into XML and wraps them in an RSS feed;
The demonstrator sends the replies to the web server

The web server extracts the XML results from the RSS feed @;

The web server updates the security agent’s interface @;

. The security agent notices the intrusion and apprehends the intruder®.

5Note that a happy end has been retained to underline the relevance and interest of the system. Current
video analysis technologies still fail to guarantee fully reliable analysis results.

System Design

Architecture is one part science, one part craft and two parts art.

David Rutten

OVERVIEW

The previous chapter briefly introduced the system to build and
its context. This mandatory part being achieved, we can now
focus on the system design and on the specification of its inter-
nal components. The environment will be described in order to
have a precise specification of the messages handled and their
influence on the system. Then, the system architecture will be
detailed. Agent functionalities will finally be addressed.

6 System Design

6.1 Environment

In order to establish a correct analysis of the system, its surrounding environment must be
precised. Firstly, the RSS flow used to interface the system with its environment will be
described. Secondly, the format of the exchanged data will be addressed.

6.1.1 RSS flow

The communication with the environment will only be achieved by means of an RSS flow.
The RSS! technology has been selected because it:

e enables the easy transfer of data having a textual form;

e allows the content identification of transferred data;

e avoids the redefinition of a new data encapsulation language;
e does not impose any transport protocol.

The protocols used will be defined hereafter as well as interfaces between the agent system
and the outside world. Note that the specification of the RSS elements used is described in
section A.1.

Concepts

The RSS is a data format supported by Harvard. Several versions gave it different acronyms
which are:

e RSS 0.9, RSS 1.0: RDF Site Summary;
e RSS 0.9% RSS 1.0: Rich Site Summary;
e RSS 2.0: Really Simple Syndication.

Tts 2.0 version, which is the one we have used, is defined according to [RSS] as:

RSS

RSS is a Web content syndication format. RSS is a dialect of XML. All RSS files
must conform to the XML 1.0 specification, as published on the World Wide Web
Consortium website.

Before introducing the interface between the RSS flow and the agent managing it, it
is necessary to express the chosen perspective. The classical use of RSS, as depicted in
figure 6.1(a), does not seem to fit the system needs. Indeed, the resource monopolization
due to server polling for new events is intolerable. Even though it does not harm usual Web
applications, this does not prove to be the most suitable choice for performance demanding
systems.

The selected approach, depicted in figure 6.1(b), is of the type publisher/subscriber?.
It appears less resource consuming as much from the machine point of view as from the
networking one.

In our case, the used protocol will be brought back to its simpler expression directly
above the TCP/IP layers. High-level protocols such as http, ftp, ... will not be considered.

INote that RSS is currently challenged by Atom [ATO06], which is another format supported by the
Internet Engineering Task Force (IETF).

2The interested reader should consult [PT.J05] that describes an advanced graph-based subscription mech-
anism.

6.1 Environment

News reader 1 News reader 1
777777777 New event
News reader n

RSS feeder

—— Poll —— Subscribe (only once)
,,,,, = News _ - - > News (automatically sent for each new event)
(a) Classical (b) Adapted

Figure 6.1 ¢« Comparison of different RSS protocols

Interfaces

The RSS flow is the only entry point in the system for external data. In order to switch
from objects to agents, a Java thread per connection has been set up. It is the direct
interface between agents and the outside world. The interaction sequences will be presented
in point 6.2.1.

6.1.2 Data schema

We saw in chapter 5 that data specification had not been defined yet. This entails strong
adaptability and flexibility conditions. In order to meet these criteria, the choice performed
was to pass as parameters, at system boot, the data schemas of received data®. The language
used to express them is the REqular LAnguage for XML Next Generation (Relax NG,
abbreviated RNG) which is defined according to [RNGO3] as:

DEFINITION Relax NG

Is a schema language for XML. The key features of RELAX NG are that it:
e is simple;
e s easy to learn;
e has both an XML syntax and a compact non-XML syntax;
e does not change the information set of an XML document;
e supports XML namespaces
e treats attributes uniformly with elements so far as possible;
e has unrestricted support for unordered content;
e has unrestricted support for mixed content;
e has a solid theoretical basis;

e can partner with a separate datatyping language (such as W3C XML Schema
Datatypes);

Even if the XML Schema Definition (XSD) appears as the lingua franca of schema spec-
ification languages in the industrial world, it turns out that the users’ community tends to
prefer Relax NG. They appreciate its better readability and the various degrees of simplifi-
cation performed in its grammar.

3We will see in section 7.1.1 how they are actually used

6 System Design

From the above proposed definition comes out that Relax NG is not an ontology defini-
tion language. An important thing to keep in mind is that the developed system is only in
charge of storing analysis results and making them available. Consequently, it is not at this
level that ontology specification comes into play. The two fields possibly needing ontology
definitions are the AIP and video analysis. As we are using JACK, the AIP ontology is
specified by the FIPA. The video analysis ontology was unfortunately not available at the
time of development. Even if it did not really influence the implementation, its absence
prevented any possible optimization regarding graph structures*. Note that some video
analysis approaches, such as those presented in [DMK™T05, DPM104, HWS05], also intro-
duce ontologies in low and mid-level analysis processes but barely investigate higher-level
analysis.

6.2 Design

This section aims at presenting the interactions, i.e. the external and internal events trig-
gering system processes. External interaction protocols will be depicted while internal in-
teractions will be developed in the system architecture part. Agent and event descriptions
will also be detailed. The data warehouse specification will be addressed in chapter 7.

6.2.1 External interactions

The external events, coming from the RSS flow, which are processed by the system and
wrapped are:

1. low/mid-level video analysis results formatted in XML;

2. high-level video analysis results formatted in XML;

3. queries formatted in XML coming from the high-level video analyzer®;

4. queries formatted in XML coming from the web server.

The external events, emitted on the RSS flow, which are generated by the system are:

1. low/mid-level video analysis results formatted in XML triggering high-level video anal-
ysis;

2. replies formatted in XML sent to high-level video analysis queries;
3. replies formatted in XML sent to web server queries.

The following interaction diagram, promoted by Prometheus, intends to model the in-
teractions depicted hereabove. In order to reflect the agent approach, only asynchronous
messages were used to avoid losing the autonomy and dynamism characterizing agents. The
use of stereotypes «plany and «eventy, taken from the Prometheus terminology, has been
created to avoid OO-like method calls and message passing representations.

The sequence diagram presented in figure 6.2 illustrates how the RSS input flow interfaces
with the agents. It shows how an RSS feed containing an XML document is generated by an
external entity, sent over the network, handled by a specific RSS feed reader and managed by
the RSSFlowHandler. The OQutside world corresponds to the simulator implemented during

4Not to mention the frustration it entailed from the curious developer.
5For query format specifications, please refer to section A.2.

6.2 Design

AN
One thread per connection
«thread»
PacketReader : Object ‘ Qbject
7 7
| !
| |

XMLD: Generator EeedWriter : Object

‘ RSSFlowHandler : Agent

«thread»
: Object
T
1
1

|
XML_DOC !

D pushFeed ' 1
! | | | |
b notifyAll] ! ! !
\‘; ! ! !
| i | | |
i 1 i

i | |

: T
i] |
| I

|
T

loop (1, NUMBER_OF_FEEDS) J
1
|

popFeed

- ___RSS_Feed
i

| |
I I

| | |

RSS_Feed ! ' I
1 | |

1 1 I

| |

I

: !
i
|
1
D getDescriptionsFromFeed

h
T

loop (0, NQMBERﬁOFiDESCRIPTIONS)/
1 |
| XML_DOC

Outside world

System

Figure 6.2 ¢ Sequence diagram depicting the interactions between outside world and system

test phases. In order to offer a flexible and scalable system, one thread per connection is
established. A FeedReader object is used to centralize and extract XML contents from RSS
feeds. The contents of the descriptions are then passed to the RSSFlowHandler.

The sequence diagram presented in figure 6.3 illustrates how agents interface with the
RSS output flow. It shows how the RSS feeds to publish are made available by the
RSSFlowHandler. They are then sent over the network by threads assigned to each con-
nection. In other words, only the thread associated to a given connection can access and
transfer data originating from it. Ounce a feed is read and removed from the RSS feeds
pending list, it is sent to the specified receiver.

6.2.2 Architecture

Figure 6.4 sketches the agent system and the communicated events. The following points
will respectively address them. Note that events are not to be considered as agent-level
events. If their contents are always semantically similar, their formats and representations
within and outside the system differ. The intent here is to show the process flows triggered
by external events.

Figure 6.5 presents the agent overview diagram. It was modelled with JACK according
to the Prometheus recommendations. It shows the actual events passed among the agents.
They implement the abstract events flows described below.

6 System Design

One thread per connection
thread» dhready
RSSFlowHandler : Agent <
owHander- Aden PacketSender : Object PacketReader : Object

«plan» XML2RSS

> pushFeed

notifyAll

loop (1, NUMBER,OF,FEEDS)/

popFeed

h
I

~---____RSS_Feed

-
SS_Feed

System Outside world

Figure 6.3 ¢ Sequence diagram depicting the interactions between system and outside world

Agents

Before detailing agent functionalities it is interesting to discuss them with the definition
proposed in point 1.2.2. In order to sense the environment and perform required operations
the agents are able to fetch events. These events entail an interpretation and the execution of
a specific action. As the flow of events is neither a priori known nor limited, agent lifetime
must but infinite. Consequently, they are not simple processes run once and killed after
task completion. Moreover, the results of the event processing also produce output events
affecting the agents’ environment. The concept of goal has intentionally been avoided so
far. We are working in a real-time constrained environment which implies as simple and fast
processes as possible. All agent goals are thus implicit: directly run the plan in charge of
the event received. A goal taxonomy implying the choice of the most appropriate subgoal
to fulfill was unadapted and consequently ruled out.

Another very specific kind of agent used for data handling will be introduced in chapter 7.

e RSSFlowHandler:

handles the data flow coming from the RSS publishers;

— transmits the XML extracted from the feeds to the corresponding agents accord-
ing to their types;

wraps and transmits XML replies to queries to their emitters;

— wraps and transmits XML low /mid-level analysis to the high-level analyser.
e DataHandler:

— transmits low /mid-level analysis to the RSSFlowHandler to obtain high-level anal-
ysis results;

— identifies, from high-level analysis results, semantic links with the information
already saved;

c
=

0

o]
(m)
N
©

asnoyase/ ereq
a19jep
JiRETES
/erepdn
HWwos Aidey™4ay pasul
% saljdey % Kisnd
7 wﬁmuﬁ%ai 7 7
19|puBHSE3SNoYaeMERRQ 19|pueHasnoyatemereq 19|pueHereq 13)pueHAIBND
7 SIpung—4ay 7 7 SOLRUIS 7
pazAfeuy
Saweld sawel4 saldoy Kiand
sowreld SOLIRUSIS
13|pueHMO|4SSY W
woIsAs
EE 1 7 e Kiand
S B T R -~ sawely
U P _=~ SOLBUIS
Jajsuen eep [eusll] -———
1gjsuen elep [eua)Xy ——e———

Mol4 SSH

uone|al 8dUspUOdSaNDD) <= - - - -

Figure 6.4 ¢ System architecture overview

6 System Design

Reply tramt % RSSFlowHandler

s
seids
haptlles
Request HMLToAnalyse ¥MLContentReceived
handles es handles
serfds
serjds
% QueryHandler % DataHandler % DataWarehouseHandler % DataWarehouseTripleStoreHandler
3 serds
hangles

DWReply DWRequest HighLevelEvents CleanCacheHead Commit

Figure 6.5 e Agent overview diagram

— transmits to the DataWarehouseHandler the semantic links to addS.
e DataWarehouseHandler:

— saves data in cache;
— transmits commit requests to the DataWarehouse3SHandler;
— removes committed data from cache after commit if necessary;

— run queries from the QueryHandler and returns results.
o DataWarehouse3SHandler:

— asynchronously saves data on a non-volatile support;

— confirms commit completion to the DataWarehouseHandler.

e QueryHandler:

handles query execution of data coming from the RSSFlowHander;

— adds queries to the pending query queue;

transmits requests to the DataWWarehouseHandler;
— retrieves replies from the DataWarehouseHandler;
— removes executed queries from the pending query queue;

— transmits results to the RSSFlowHandler.

6Note that these last two functionalities were not fully implemented by lack of information about high-
level analysis results.

6.2 Design

Events

e Scenarios: contain the results of the high-level analysis, i.e. identified scenarios, for
some given Frames. There can be more than one frame included in one XML result
file for performance reasons;

e Frames: contain the results of the low/mid-level analysis, i.e. basic features directly
identifiable in the picture. There can be more than one frame involved in one XML
result file for performance reasons;

e Query: contains the query to perform. The sender’s identity does not influence the
query process;

e Replies: contain the replies to a given Query. There can be more than one reply to
a query;

e Analyzed scenarios: contain the representation of the new information to be inserted
in the DW;

e RDF_Bundle: contains a bundle of RDF subgraphs to asynchronously commit on a non
volatile support;

e commit: contains a commit order if a certain threshold is reached. See point 6.2.3 for
more details;

e updateCache: contains an update cache order. It implicitly means that the bundle
previously sent has been committed;

e insert: contains an insert in DW (in cache more precisely) order;
e update: contains an update DW (in cache more precisely) order;

e select: contains a select from DW order. There can be more than one select for
one Querys;

e delete: contains a delete from cache order. It pops a certain number of AA from the
cache if needed. See point 7.1.3 for more information about cache size;

e RDF_Reply: contains a single RDF reply corresponding to a given query.

6.2.3 Internal interactions

The next three points will depict, by means of sequence diagrams, how agents interact
with each other. Note that XML_DOC and XML_x* have the same content. The renaming was
performed for readability reasons.

Knowledge query

The sequence diagram of knowledge query is depicted in figure 6.6. The same sequence is
used for queries coming from both the high-level analyzer and the web server. The intent is
to ensure simplicity and flexibility. It shows how queries coming from the RSSFlowHandler
are put in a queue before being handled by the DataWarehouseHandler. Once the replies
have been sent back, the query is removed from the queue and the replies are converted into
XML before being wrapped in an RSS feed by the RSSFlowHandler.

6 System Design

FeedReader : Objec RSSFlowHandler : Agent QueryHandler : Agent DataWarehouseHandler : Agent

XML_DOC |
- N
|

:
;
D «plan» targetSelection
!
!
!
!

«event» XML_QUERY

«event» XML_QUERY

'
:
D «plany pushQuery
‘
'
' !
] 1
;
> «plan» getReplies
.
I
)
)

«event» RDF_REPLIES

|
~
i

!
D «plan» popQuery
b
!

«event» XML_REPLIES

|
|

i

D «plan» XML2RSS
!

1

D pushFeed

.

k

|

|

Figure 6.6 ¢ Sequence diagram depicting the query process

Knowledge handling

The sequence diagram of the received low/mid-level analysis results is presented in figure 6.7.
It shows how the low/mid-level analysis results are addressed to the corresponding agents.
The DataHandler saves in a temporary memory the AA corresponding to the received
document and sends a copy of the XML to the RSSFlowHandler. This copy is transmitted
by the RSSFlowHandler to the high-level analyzer. The DataWarehouseHandler converts
the XML into RDF before saving it in the DW. More precisely, it stores it in cache and
triggers a data commit if a certain threshold is reached. This case will be discussed in
point 6.2.3.

The sequence diagram of the received high-level analysis results is presented in figure 6.8.
It shows how the high-level analysis result is analyzed by the DataHandler before being
sent to the DataWarehouseHandler, which saves it in the DW. It is then removed from the
DataHandler’s low/mid-level results list.

Knowledge storing

The sequence diagram of the knowledge committing in 3store and the cache update is pre-
sented in figure 6.9. It shows the sequence of actions performed when a given threshold has
been reached. It is the number of files that is not directly saved on a non volatile support.
Besides saving data in an asynchronous way, we noticed that storing large files in the TS
improves system performances. However, beyond a certain size, performances decreased.
Consequently, this threshold must be chosen and studied very carefully. During our tests, a
threshold of 25 files offered satisfying performances.

6.2 Design

DataHandler : Agent D Agent

FeedReader : Object ‘ RSSFlowHandler : Agent

XML_DOC

«plany targetSelection

v}

«event» XML_LOW_MID_LEVEL |

~
«event» XML_LOW_MID_LEVEL
L

T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
|
«plan» pushLowMidLevel !
I
L

«event» XML_LOW_MID_LEVEL «plan» convert2RDF

T
i
i
i
i
;
i
i
i |
i
«plan» XML2RSS ! > «plan» saveRDF
i
i
i
i
i
i
i
i
i
i
i
i
i

Y

—mpmpmmmmmmmmmm e

VY

|

|

pushFeed |
|

|
|
|
|
|
i

Figure 6.7 ¢ Sequence diagram depicting the low/mid-level analysis result process

FeedReader : Object RSSFlowHandler : Agent DataHandler : Agent DataWarehouseHandler : Agent

J

XML_DOC

«plan» targetSelection

XML_HIGH_LEVEL

> «plan» convert2RDF
> «plan» analyseRDF

RDF_HIGH_LEVEL

> «plan» popLowMidLevel > «plan» saveRDF

Figure 6.8 ¢ Sequence diagram depicting the high-level analysis result process

D : Agent D: : Agent

«event» commitRDFs

«event» updateCache

:
!
|
|
|
|
I
|
|
|
|
|
|
|
\
;
;
;
> «plan» updateCache
B
!
|
|
|
|

.
'
|
|
|
|
:
D «plan» commitRDFs
b
|
|
!
!
|
|
|
|
|
|
|
|
|
|

Figure 6.9 ¢ Sequence diagram depicting the commit process

6 System Design

74 Knowledge Handling

The next best thing to knowing something is knowing where to find it.
Samuel Johnson

OVERVIEW

Now that a clear overview of the system architecture has been
put forward, some attention can be given to the storage and han-
dling of the knowledge produced by the video analysis. The com-
position of the DW will first be addressed. Then, the knowledge
structure of the RDF graph, i.e. its schema, will be discussed as
well as the way it is managed. Finally, the available TS will be
screened and the 3Store selection will be vindicated.

7 Knowledge Handling

7.1 Architecture

The overview of the DW architecture is presented in figure 7.1. An important thing to
notice is that queries are performed on both cache and 3Store. Particular synchronization
mechanisms, delineated in point 7.2.2, were set up to ensure results soundness and com-
pleteness. Moreover, so as to respect the nonvolatile data warehouse property, knowledge
is permanently stored in 3Store by means of the commit operation which was presented in
point 6.2.2. Note that if we refer to the Prometheus methodology, the DW is the only shared
data among agents in the system.

Agents Data Warehouse

commit

% DataWarehouse3SHandler Q reify
select
% DataWarehouseHandler iy
rell
delete/ t*’
update/ - cache
insert

% DataHandler

Data-oriented agents

create
Autotroph Agents | g

Figure 7.1 ¢ Data warehouse architecture overview

The following points will detail the components sketched in figure 7.1.

7.1.1 Autotroph agents

The Autotroph Agents (AAs)! form a set of data-oriented agents incarnating raw XML docu-
ments. However, they do not have to be assimilated to simple XML document “translations”.
In the first place the origin of this unexpected name and the properties characterizing them
will be put forward. In the second place, the questionable status of agent attributed to AA
will be discussed.

If one refers to biology, autotrophs are organisms able to create organic compound, from
inorganic compounds. As a result, they are always the basis of any food chain. Autotrophic
replicators are thus able to reproduce themselves by building their own resources from sub-
stances whose nature is not equivalent to the ones constituting them. As we will see, the
data-oriented agents we use are close to these organisms.

Beforehand, the reification term recurrently coming over in the remainder of this docu-
ment calls for some clarification. It is defined in the field of knowledge as:

Reification (Knowledge)
Representation of facts enabling manipulations such as comparison of logical as-

sertions.

INote that AAs were implemented in pure Java and not with JACK for evident performance reasons.

7.1 Architecture

whereas in computer science it is

pI=ZINIIeINE | Reification (Computer science)
Conversion of an abstract model into a more concrete and handable one in order
to perform specific processing

We consider AAs as data-oriented agents rather than as simple objects for the following
reasons. They are more evolved than simple data containers endowed with basic accessors
such as getters and setters. Indeed, each of them is capable of:

e self-replication, i.e. to replicate its own structure and content;

self-reification, i.e. to retrieve the knowledge stored in the DW and to instantiate its
skeleton with it;

e self-exportation to XML;

e self-exportation to RDF/XML and N-Triples and optimization of the graph produced
in order to minimise reification time and the required space;

e updating its components;

e modifying its skeleton from new data;

e merging with other AAs of possibly different types;
e applying a mask on the exported dataZ.

The skeleton here is considered as the uninstantiated structure of the AA. Actually, a
skeleton is generated for every RNG document passed at system initialization. Once con-
structed, a skeleton is replicated to create a new AA which can then be instantiated. This
way of handling input data guarantees the needed flexibility and adaptability. Moreover,
given the A A is the smallest unit handled by agent processes, this dynamic and self-managing
structure really sped up and eased implementation. The internal, multiply chained, struc-
ture of an AA is depicted in figure 7.2%. Each element of the structure can be seen as
a directly addressable sub-agent capable of the operations described above, which enables
an excellent handling flexibility. One can notice the mapping between the XML and the
AA tree structure. Furthermore, element and attribute types were added to reflect the
similarity with the transformed XML document.

Figure 7.3(a) illustrates how the AA skeletons are created at system initialization. They
are stored and accessible to an AA instantiator method which is called everytime a new XML
document arrives. The type of the received XML document is analyzed and the matching
skeleton is replicated. The newly created AA is then instantiated, which is depicted in
figure 7.3(b).

So as to evaluate the status of the AA, we will refer to the agent definition presented
in point 1.2.2. Regarding environment perception and event handling, we cannot strictly
speak about real consciousness. Indeed, AAs are dormant entities not actually aware of
their environment evolutions. The events they handle take the form of Java method calls
that cannot, rightly to our opinion, be considered as agent-level events. Nevertheless, they
do not stop running after the execution of a specific action. They are also goal driven and

2For full specifications of masks, please refer to section A.3.
3Tmplementation-specific variables were omitted to avoid overloading the figure with secondary informa-
tion.

7 Knowledge Handling

SubEIl

NuLL | At
[root]

Parent | Root

Att SubEl !
Name ° J
[element]

Parent | Root

Att SugEI l Name Al,[SubEIl J
| [etement] A

Name
[attribute]

Parent | Root Parent | Root

¥ 1 7 v

Figure 7.2 e Internal structure of an autotroph agent

Low/Mid-level High-level New XML document
RNG document RNG document l
‘ AA instantiator Instantiated AA
[L/M-L AA (Skeleton)] [H-L AA (Skeleton) } *

[L/M—LAA(SkeIeton)} [H—LAA(SkeIeton)]

(a) The skeletons are created at system (b) The matching skeleton is replicated and instantiated
initialization

Figure 7.3 e Skeleton creation and use

interact much with their environment, notably during the reification phase. What highly
differentiates them from classic structures such as vectors is that they are aware of their own
structure and can completely modify and update it.

Even though AAs cannot be considered as pure agents, we showed they represent much
more independent and smart structures than traditional object approaches. Furthermore
they are very similar entities to those addressed by the KidSim and IBM agents defined in
point 1.2.1. Consequently, even if disputable, we classified them as data-oriented agents.

7.1.2 3Store

3Store is the knowledge base (KB) which contains all the analysis results retrieved from sen-
sors. The AA storage will happen asynchronously for performance reasons. Consequently,
a system failure might result in data loss. Details regarding the KB selection will be thor-
oughly addressed in section 7.3.

7.2 Knowledge structure management

7.1.3 Cache

The cache memory intends to speed up queries. Aware of the huge amount of disk access
to perform, keeping as much information as possible in main memory was of the utmost
importance.

The cache memory was implemented by means of a red/black tree guaranteeing a query,
insertion and deletion time of O(log n) [CLRS02]. Each node in the tree is an AA whose
access, comparison and deletion key is its unique id determined by a 64-bit integer.

Given the size and incoming rate of data, the cache size has to be limited to avoid
excessive swapping and main memory overflow. In order to meet the imposed real time
constraints, the size must be determined by the needs of the high-level analysis. The cache
size has thus to be as close as possible to the maximum interval between the latest received
file, triggering a high-level analysis, and the oldest previously received file used by the
triggered analysis. So, if we assume that the oldest file used is 5 minutes old and that
the system receives 25 files per second, the number of agents to keep in cache would be
5 x 60 x 25 = 7500, i.e. a 7500-node red/black tree.

7.2 Knowledge structure management

This section addresses the core of the DW we developed, i.e. the knowledge structure. In the
first place the schema of the used RDF graph and the way XML documents are converted
into RDF will be presented. In the second place the handling of queries and reification will
be described.

7.2.1 RDF graph schema

In order to reduce the amount of stored knowledge and to guarantee a minimal system
response time, the graph structure must be flatten to its minimum. Consequently, the
possibly deep hierarchies present in XML documents must be crushed. We mentioned in
point 7.1.1 that AA skeletons were defined by means of RNG documents. As a result, both
low/mid and high-level results are specified by means of RNG documents only known at run-
time, consequently ruling out any a priori optimization. Moreover the stored knowledge only
has to be accessed locally. As a result, URLs used to identify resources can be specifically
adapted to our needs.

1 <CARETAKER>

2 <Results>

3 <Frame>

4 <Tracked_target>

5 <Object object_id=1>
6 "Luggage"

7 </ Object>

8 <Object object_id=2>
9 "Vending machine"
10 </ Object>

11 </Tracked_target>

12 </Frame>

13 </Results>

14 </CARETAKER>

Figure 7.4 ¢ Source XML document

7 Knowledge Handling

The conversion of XML results into RDF is defined as follows. The enclosed examples
are based on the XML document* presented in figure 7.4.

1. Create a node having for urn the type of low/mid-level analysis, let us say Object-
Recognition, and append the id of the received file. A particular instance of this
resource would look like:

<urn:ObjectRecognition#11666>

This node is the document instance node. It is linked to the RNG type node looking
like:

<urn:ist-caretaker.org/#0bjectRecognition>

2. Create nodes corresponding to the instantiated fields of the XML files. The urn of a
given field will be composed of the full path going from the root to the specified field.
In order to guarantee resource uniqueness, the id of the instance will be appended.
Numbers will also be added between fields along the path to avoid duplicated field
name conflicts. A particular field resource would look like:

<urn:CARETAKER/0/Results/0/Frame/Tracked_target/0/#id11666_1_Object>

3. Associate the value node to the field node. Two cases can occur:

(a) the value belongs to the field. In this case the predicate will have a generic label,
for instance:

<urn:xml2rdf/edge/#content>

(b) the value belongs to an attribute of the field. In this case the predicate will be
named by the attribute, for instance:

<urn:ist-caretaker.org/#object_id>

4. Add a type node to every field node. A particular instance of this resource would look
like:

<urn:xml2rdf/type/#Object>

We will see in point 7.2.2 what they are used for.

As a result, the depth obtained for any XML input remains constant. A generic RDFS
document corresponding to this transformation is defined in figure 7.5.
A subgraph will typically have for triples:

(1 x) <relaxNG_Type> <haslnstance> <instance_ID>

(N x) <instance_ID> <instContent> <field_ID>
<field_type> <typelnstance> <field_ID>
<field_ID> <hasContent> ’’content’’

QU W N =

with a constant depth of four, which sharply reduces possible graph depth. Figure 7.6
illustrates the result of the above delineated conversion process.

41t is a very reduced sample of a typical low/mid level analysis result.

7.2 Knowledge structure management

A more relevant example of a video analysis result is available in the accompanying CD
under the XML2RDF directory. Two RDF documents corresponding to this sample XML are
also present. The first one is the result of a naive conversion from the XML while the second
has been obtained with our conversion algorihm. The RDF graphs generated by the W3C
validator® have also been included for illustration purpose. Please refer to the synopsis.txt

<rdf:RDF

xmlns:rdf ="http://www.w3.0rg/1999/02/22 — rdf —syntax—ns#"
xmins:rdfs="http: //www.w3.0rg/2000/01/rdf—schema#"
xmins="urn:xml2rdf/#"

xml:base="urn:xml2rdf/#">

<|— CLASS definitions —>

<rdfs:Class rdf:ID="relaxNG_Type_Class"/>
<rdfs:Class rdf:ID="instance_ID_Class"/>
<rdfs:Class rdf:ID="field_ID_Class"/>
<rdfs:Class rdf:ID="field_type_Class"/>

<!— PROPERTY definitions —>

<rdf:Property rdf:ID="haslnstance" >
<rdfs:domain rdf:resource="#relaxNG_Type_Class"/>
<rdfs:range rdf:resource="#instance_ID_Class"/>
</rdf:Property>
<rdf:Property rdf:ID="instContent" >
<rdfs:domain rdf:resource="#instance_ID_Class"/>
<rdfs:range rdf:resource="#field_ID_Class"/>
</rdf:Property>
<rdf:Property rdf:ID="hasContent" >
<rdfs:domain rdf:resource="#field_ID_Class"/>
<rdfs:range rdf:resource="rdfs:Literal"/>
</rdf:Property>
<rdf:Property rdf:ID="typelnstance" >
<rdfs:domain rdf:resource="#field_type_Class"/>
<rdfs:range rdf:resource="#field_ID_Class"/>
</rdf:Property>

</rdf:RDF>

Figure 7.5 ¢ Generic RDFS for stored knowledge

file for more information about file names and contents.

7.2.2 RDF graph handling

Reification

Reification was the main reason for which optimizations were required. Besides being space
consuming, deep hierarchies entail much SPARQL queries and recursive browsing. Thanks
to the graph schema defined in point 7.2.1, the reification of an AA can be performed with

a single SPARQL query:

1

2 WHERE {

Ttk W

SELECT ?fieldID ?hasContent ?content

<instance_ID> <instContent> ?fieldID
?fieldID ?hasContent ?content

5For further information about the W3C validator please visit http://wuw.w3.org/RDF/Validator/

7 Knowledge Handling

1 «<urn:ist—caretaker.org/#ObjectRecognition>

2 <urn:xml2rdf/edge/#haslnstance>

3 <urn:ObjectRecognition#11666>

4 <urn:ObjectRecognition#11666>

5 <urn:xml2rdf/edge/#instContent>

6 <urn:CARETAKER/0/Results /0/Frame/ Tracked_target/0/#id11666_0_Object>
7 <urn:ObjectRecognition#11666>

8 <urn:xml2rdf/edge/#instContent>

9 <urn:CARETAKER/0/Results /0/Frame/ Tracked_target/0/#id11666_1_Object>
10 <urn:xml2rdf/type/#0Object>

11 <urn:xml2rdf/edge/#typelnstance>

12 <urn:CARETAKER/0/Results /0/Frame/ Tracked_target/0/#id11666_0_Object>
13 <urn:xml2rdf/type/#Object>

14 <urn:xml2rdf/edge/#typelnstance>

15 <urn:CARETAKER/0/Results /0/Frame/ Tracked_target/0/#id11666_1_Object>
16 <urn:CARETAKER/O/Results/0/Frame/ Tracked_target/0/#id11666_0_Object>
17 <urn:ist—caretaker.org/#object_id>

18 "

19 <urn:CARETAKER/0/Results/0/Frame/ Tracked_target/0/#id11666_0_Object>
20 <urn:xml2rdf/edge/#content>
21 "Luggage"
22 <urn:CARETAKER/0/Results/0/Frame/ Tracked_target/0/#id11666_1_Object>
23 <urn:ist—caretaker.org/#object_id>
24 "2
25 <urn:CARETAKER/0/Results/0/Frame/ Tracked_target/0/#id11666_1_Object>
26 <urn:xml2rdf/edge/#content>
27 "Vending machine"

Figure 7.6 ¢« XML source converted into RDF triples
Query

As figure 7.1 shows, select operations are both performed on cache and 3Store. Let us
precise how they are combined to ensure that every matching reply is retrieved:

1.

2.

6.

convert the XML query into an AA;

apply it as a mask on every AA present in cache. If the masked AA still shows
instantiated elements, it is accepted. Ids of matching AAs are stored in a list [.;

convert the XML query into several SPARQL queries;

run queries and consider only results whose ids are not in [.. Ids of 3Store matchings
AAs are stored in a list l3g;

AAs from I35 are reified, the query is applied as a mask to them and they are exported
into XML;

AAs from [, are retrieved from cache and they are exported into XML.

Note that no cache has been implemented for high-level events. As a result, only the
SPARQL related part must be considered.

An important thing to note is that to every <field_ID> a type node is associated to
optimize query results. Indeed, common values such as 1 or 2 abundantly come over in
analysis results. As the field <subject> cannot be precised because neither its instance id nor
path position is a priori known, type nodes were used to restrict query results. Consequently,
a field query will typically look like:

7.3 Triple store selection

1 SELECT ?fieldID

2 WHERE {

3 <field_type> <typelnstance> ?fieldlD
4 ?fieldID <hasContent> "1"

5 }

In the typical subgraph structure presented hereabove it may seem unnatural to present
the triple as:

1 <field_type> <typelnstance> <field_ID>

rather than as:

1 <field_ID> <hasType> <field_type>

The reason is that, at reification time, the performed query will additionally return the types
of matching data. As a result, the returned amount of data may be doubled, which reduces
search performances.

7.3 Triple store selection

The RDF physical storage is a burning question in the world of Knowledge Base Management
Systems (KBMS). It is profusely addressed in the literature and notably in [Owe05, HGO03,
TCKO05, LH05, DWSK03, BHS03]. Graphs may be stored in an object-oriented database,
in a relational database or even in text files. Some use RDFS and/or OWL to define table
schemas where others use a single table containing triples. The main issues to solve are
query performances, storage space, set up and maintenace costs, robustness, inference and
reasoning mechanism specifications, and data structure conversions. These concerns will not
be discussed here as they are out of the scope of this document. Nevertheless, in order to
vindicate our choice, we present in table 7.1 an overview of the possibly expected features of
a KBMS. The remaining of this section will focus on 3Store and present it more thouroughly.

Table 7.1 ¢ Overview of the main RDF-capable KBMS available

KBMS Volume Performance RDFS OWL
3Store[HGO03, GH] v v v

Jena|JEN, CDD 03] v v
Kowari[KOW, WGAO05b] v v v
Redland[Bec01, RED] v U

Sesame[SES] v v v
YARS[YAR] v v U U

v': function available ; U: unknown availability

The selection of 3Store [HG03| as the KBMS of our system was made for the following
reasons:

e the amount of storable triples is very important (several millions);

e the use of MySQL allows to benefit from the optimizations brought along by the
relational engine;

e the triples storage is mainly based on two tables:

7 Knowledge Handling

— triples: this table contains the set of RDF triples, which are stored as hashed
values;

— symbols: this table notably contains the mappings from triples to the hashed
values used in the triples table;

The amount of joints is thus sorely reduced, which guarantees a good response time.
Moreover, the use of hash instead of textual elements improves query performances as
it is working with numbers rather than arbitrary strings;

e the triples stored in the triples table are actually stored as quadruples®. Consequently,
it is possible to take graph models, also called contexts, into account.

e the inference mechanisms proposed are presented in table 7.2 and are reduced to a very
limited set. The non-use of OWL inference capabilities improves system performances.
Furthermore, we have seen that the inference performed on low, mid and high-level
knowledge is handled by external entities. It would thus be useless to start new analysis
based on ontologies within the system. The chosen perspective is thus the distributed

reasoning;
Table 7.2 ¢ 3Store inference rules

Label Rule Implication
direct class xxx rdfs:subClassOf yyy xxx direct:subClassOf yyy
direct property xxx rdfs:subPropertyOf yyy xxx direct:subPropertyOf yyy
rdfs2 aaa rdfs:domain xxx

uuu aaa yyy uuu rdf:type xxx
rdfs3 aaa rdfs:range xxx

uuu aaa vvv vvv rdf:type xxx
rdfs8 uuu rdf:type rdfs:Class uuu rdfs:subClassOf rdfs:Resource

e the supported query languages are SPARQL and RDQL7;

e unlike other KBMS, the data access protocol stack is very light. This offers the possi-
bility to tune the low-level access mechanisms for the application domain.

Note that the RDFS will not be explicitly exploited in the TS. We preferred to leave the
inference and optimization manipulations to the AAs.

63Store is, as opposed to what one could think, a quad store rather than a TS as stated in [LQS].
"The RDF Data Query Language (RDQL) [RDQ] is another RDF query language. Tt has not been
discussed because it is now being superseded by SPARQL.

Part |l

Synthesis

System Evaluation

Evaluate what you want — because what gets measured, gets produced.
James A. Belasco

OVERVIEW

This short chapter will evaluate the agent system which has been
developed. In the first place, the system performances will be
assessed. In the second place, the system questionable points
will be addressed. Finally, perspectives of evolution will be put
forward.

8 System Evaluation

8.1 Performance

Tests were performed with sample XML files retrieved from video sequences and are sum-
marized in table 8.1. Simulators were used to send low/mid/high-level analysis and queries.
The table lists the results of some of the most recurring operations. The XML test file used
here compriges 53 instantiated values. The 3Store knowledge base contained more than
4 000 000 triples, corresponding to approximately 13 minutes of recording at 25 files per
second!.

Table 8.1 e System performance evaluation

Operation Average time (ms)
Reification (from cache) 0
Reification (from 3store) 40

Query (from cache) 3
Query (from 3store) 50
Agent replication 0
Agent initialization 5
Agent — XML 5
Agent — RDF 5
Insertion (in cache) 0
Insertion (in 3store) 70

Unfortunately, real-scale data sets were not available when performing these evaluations.
Consequently, and much to our regret, these measures must only be regarded as indicative.
Note that with the transformation performed from the initial XML schema directly converted
into RDF we obtained a reification time from 3Store of about 1600 ms, i.e. 40 times slower
than with our optimization.

8.2 Discussion

This section will pinpoint some of the system disputable aspects. Improvements to some of
them will be presented in section &8.3.

Firstly, and maybe unexpectedly, why did we use agents 7 Indeed, the system seems
closed, the autonomy of agents appears somewhat limited and the proactive behaviours look
missing. Remember we said at point 5.1.2 that the designed system was not expected to
exploit every possibility of AOP. Moreover, the system complexity and the high degree of
concurrency would have been very difficult to manage with a multi-threaded OO approach.
The interaction and coordination mechanisms offered by the FIPA highly simplified the de-
velopment regarding these issues. Furthermore, the agent intrinsic high-level view proposed
during the design process eases the component identification and role descriptions. Conse-
quently, given the high degree of coherence and low level of coupling among the entities,
resorting to AOP was, in our opinion, the most appropriate choice.

Secondly, the RSSFlowHandler agent can be seen as a bottleneck preventing the system
from running as fast as it could. The agents interacting with it could be addressed directly.
Let us attempt to justify our choice. In the first place, the performed tests showed that the
system suffers no slow down due to the centralization of the external data flow handling.

INote that we took here an extreme case as usual low/mid-level analysis results are closer to 10 files per
second.

8.3 Perspectives

One must not forget that agents run plans, each plan achieving a particular task. The
RSSFlowHandler must thus be regarded as a dispatcher rather than as flow converter. Its
task is to start the plan in charge of some given input. It is the plan that is responsible
to handle and address it correctly. Moreover, given that each plan is an independent Java
thread, which may be duplicated in case of overload, the system flexibility and reactivity
does not suffer from this centralization. In the second place, the use of a single agent
interacting with the outside world guarantees more consistency and highly facilitates agent
management.

Thirdly, why resorting to RDF while traditional relational databases show excellent
performances in handling huge amounts of data 7 Exactly, they handle data. The metadata
produced by the video analysis is much closer to knowledge than raw data. Furthermore,
their complex and undefined structure prevented any « priori table schema definition from
being built.

Fourthly, the goal, and consequently the use, of the DataHandler agent could appear
questionable. A valuable answer to this question is actually tricky to formulate. Originally,
the goal of this agent was mainly, as presented in previous chapters, to extract additional
knowledge from high-level analysis and only merge it with the RDF graph stored in the
DW. Once again, the data schema was very loosely defined and prevented thus any real
reflexion about their integration. As a result, the DataHandler potential is currently highly
under-exploited.

Finally, the number of needed conversions is way too high. A query is for example
converted six times between sending and reception. The interaction with heterogeneous
systems unfortunately conditioned them.

8.3 Perspectives

Figure 8.1 shows a streamlined view of the original system presented in figure 5.5. Figure 8.2
illustrates how the proposed evolutions impact on the original design presented in figure 5.6.
The advantages of this approach will be discussed hereafter. They will be followed by some
thoughts about the feasibility of such a novel design.

Firstly, far fewer conversions are needed and consequently less work needs to be per-
formed at the demonstrator’s level. As a result, data consistency is guaranteed.

Secondly, a much better and complete use of the RDF technology is put forward. As
figure 8.3 shows, the different levels of video analysis results could easily fit into the RDF
stack. Besides being technically more adapted, it is, in our opinion, closer to what these
results intend to model, i.e. knowledge acquired about the perceived environment. Note
that we did not transform the XML query directly into SPARQL for two reasons. Initially
because the query mechanism offered in our XML queries is more powerful than in an
SPARQL query. More than one SPARQL query would thus be needed to retrieve the same
results, which increases transmission and thus response time. In the second place, as there
is no widely accepted RDF query standard, it appeared wiser to avoid losing generality by
imposing a particular language. Alternatively, RDF specific queries could be wrapped in a
single RDF document, which will then be analyzed to retrieve and run them.

Thirdly, agents can be used more efficiently. They are indeed more widely distributed in
this open environment. They could possibly be endowed with more autonomy and proac-
tivity and thus reflect the agent paradigm more reliably.

Fourthly, the global architecture appears less compartmentalized and heterogeneous than
in previous versions.

Finally, the possible introduction of Video Content Analysis (VCA) capable agents in the

8 System Evaluation

Jojelisu

m..._wn

Figure 8.1 e System framework evolution

8.3 Perspectives

- ROF L RDF

Anaysis Reply

1
Data
Handler]

‘RDF L RDF

Figure 8.2 ¢ System abstract architecture evolution

High-level ontology: OWL

Constraints
Low/Mid-level schema: RDFS

Low/Mid/High-level data storage: RDF Data model

Low/Mid/High-level data transfer: RDF/XML Syntax

Figure 8.3 e Video analysis adapted RDF stack

system will be greatly facilitated as no new specific protocol would be needed. For instance
every sensor could be coupled with its VCA agent directly communicating with the system.

Nevertheless, current practices in the domain still prevent this evolution from being
possible. The definition of data standards in current video analysis trends is more focused
on the content and on the possible information to include in it rather than on the way it
will be stored or presented. In other words, the concerns are rather focused on processing
than on possible a posteriori usage. There are also minor concerns about their use in the
SW, but we can definitely not blame them for this.

Furthermore, the enclosure of VCA capable agents directly in the sensors may not always
be possible as proprietary material is mostly used. Agents would also prevent the reuse of
this component in totally different environments. The standardization of VCA agents is still
far from conceivable, which is a major barrier to their uptake.

However, such agents could be of great help in Closed Circuit Tele Vision (CCTV) where
data synchronization is still a major issue. The physical distribution of sensors and their
increase make tough data handling from a human perspective. Consequently, the smart and
automatic handling of this amount of distributed information assumes a crucial character.
Moreover, the current reliability of video analysis algorithms allows one to focus mainly on
high-level concerns in a distributed environment.

8 System Evaluation

In order to develop such a distributed video analysis system, several environment ele-
ments need to be specified. An ontology has to be defined, scenarios identifiable during
the high-level analysis have to be precised and the synchronization and centralization of the
results have to be assured. Note that unlike current trends, the proposed approach intends
to offer a generic video analysis technology.

The application would include two parameters, a domain ontology and a set of scenarios.
The ontology has to be described to identify domain specific features. Higher level processing
such as complex event recognition will be achieved by means of automata, each specifying
a scenario. The settlement of these parameters would enable the inference engine to de-
termine from received low/mid-level information, currently activated automata states and
the ontology the next accepting states. Current states could then be updated accordingly.
If new scenarios are identified, they are integrated into the system. Besides determining
new states, probabilities could be associated to transitions according to machine learning
models such as hidden Markov models. Such an architecture offers an incremental evolution
of the system’s analysis status. Any a posteriori analysis, too consumming in real-time
environments, is consequently avoided.

The integration of sub-results into the global system will then be needed. In order to
minimize the data to transmit, optimizations should be performed on automata to cut down
their size. This would lighten the result transmissions and ease their aggregation. So as
to handle this flow, specialized agents could be deployed. A centralized system would be
responsible to store the produced knowledge and present it to the end users.

This system is thus independent from video analysis algorithms and its behaviour is
guided by the domain ontology and the pre-defined automata.

Conclusion

This is not the end. It is not even the beginning of the end. But it is, perhaps, the
end of the beginning.

Sir Winston Churchill

OVERVIEW

With a view to depict how our work contributed to the video anal-
ysis sharing area, our vision of both programming and data man-
agement techniques will first be put forward. Future work regard-
ing system uses and extensions will then be addressed.

9 Conclusion

9.1 Our vision

Michelangelo di Lodovico Buonarroti Simoni (1475-1564) was one of the most talented archi-
tects, sculptors and painters of the Italian Renaissance. He painted world known frescos on
the ceiling of the Sistine Chapel among which The Creation of Adam. The striking element
of this master piece is with no contest the Hand of God giving life to Adam or more precisely
the slight distance separating God’s from Adam’s finger. This fresco portrays the intent of
the present work.

Agents, the RDF, the SW and system engineering are concepts originating from differ-
ent domains. Agents, and by extension agent system engineering, could belong to a class
regrouping programming techniques. The RDF, and by extension ontology specification
languages, could belong to a class regrouping data management techniques. Arguably these
two coarse-grained classes are not strictly distinct. Nevertheless they formerly tended to
share far fewer elements.

The key point to notice throughout the previous chapters was the increasing convergence
between both domains. Agents are entities endowed with reasoning capabilities, mentalistic
aspects and knowledge about their environment. This combination makes them very useful
in concurrent, distributed and highly-reactive structures. The definition of evolutive ontolo-
gies, strongly supported by the SW, promotes knowledge development and sharing. What
differentiates the SW approach from any other is the machine-processable dimension. Tt
enables the introduction of knowledge in almost every possible unit formerly handling well
formated data such as XML. Moreover, the axiomatization of knowledge structure by means
of formal languages implicitly integrates processing into knowledge.

Obviously, these two classes put forward share many things. Nevertheless, a tiny gap
between active entities carrying knowledge and processable knowledge still exists. But does
this slight distance need to be filled 7 Modern science shows a highly specialized and com-
partmentalized trend in research efforts. Knowledge engineering and software engineering do
not depart from this rule. However, recent concerns attempt to break these barriers. The SW
is a striking example of this move. The e-science grid, discussed notably in [Hen05, DRHO04],
is a vivid illustration of this new progress toward more integration. Integration intends to
offer a less segmented view of science and to promote open interactions. It does not aim at
regrouping sciences into one but to enhance interactions and consistency among them.

The proposed video analysis sharing system is also a patent example of this convergence.
Highly specialized algorithms used in video analysis are coupled to software agents to form
a complex reasoning system. As complexity grows, the knowledge to handle increases as
well. Consequently, highly capable frameworks are to be put in place in order to meet the
required flexibility and availability.

9.2 Contributions

These illustrations of conceptual distances between research concerns, however, show in-
dubitable relations among them. There is no need of explicit links between them as they
arise naturally as specific interactions become mandatory. In the system we developed this
key role is played by AAs, defined in point 7.1.1. They are the units connecting intelligent
agents to knowledge. The toughness we faced when defining them was intrinsic to their
position in the system. They belong to both and neither of these two categories. Linking
heterogeneous domains can only be achieved by means of such hybrid constructs. They
are the success factors in the creation and maintenance of evolutive systems. Moreover,
they foster reusability. Even though being higher-level abstractions, agents and RDF are

9.3 Future work

as handable as objects and tables. As abstraction increases, lower-level components can be
changed or reused without any noticeable alteration of high-level elements. However, from
the implementation point of view, major changes on both sides might be required. In our
case, AAs can be seen as mid-level abstraction entities. If changes are to be made on the
storage engine for instance, only the AAs will have to be modified and the agents handling
them will not have to be altered.

This system naming also turns out to be a tricky business. Knowledge Management
System would be too restrictive as it does not reflect the complexity of the knowledge
independent processes. Complex Event Management System focuses more on the algorithmic
complexity of the work to achieve than on its memorization. Smart system appears to be
a good tradeoff. It encompasses both intelligence and knowledge management concepts.
Furthermore, the connotation brought by the smart notion illustrates the link with the
mentalistic notions it derives from or entails.

We demonstrated too that the combination of autonomous and data-oriented agents to
SW technologies proved extremely powerful in a real-time environment. The natural ability
of agents to interact with each other in an asynchronous way entails a highly dynamic
behaviour and the flexibility of the knowledge structure proposed by the SW greatly eased
the design of an adaptable and flexible system. The association of these components made
possible the design of a generic, context-independent and scalable knowledge sharing system
particularly suited for video analysis sharing.

9.3 Future work

The processing of video analysis results can be considered here as a simple framework for
knowledge providing. In other words, any application producing computation results in XML
and requiring an efficient knowledge retrieval mechanism could resort to our system without
any architectural modification. Moreover, given its scalability capabilities, multiple low /mid-
level, high-level analyzers and web servers can be connected to it without any transformation.
Minor changes to the implementation could enable the synchronization among low/mid and
high-level analyzers. Possibly candidate domains could be grid computing, stock exchange
speculation computing, future selling estimations from buying behaviours, possible path
selection from GPS coordinates, ...

The interactions with the Web server could be improved by offering a higher level view of
the knowledge. This could be achieved by means of the design of a specific RNG document
only gathering information relevant to the users. Information from both low/mid and high-
level RNGs should consequently be merged and cleaned from inessential parts. Furthermore
agents responsible for the notification of particular high-level events to the Web server should
be developed to improve the system reactivity and pro-activity.

In order to face the storage space issue, automatic deletion mechanisms could be set up.
One can reasonably assume that very low-level elements will be useless after some minutes
or hours of recording. A special agent continuously monitoring and wiping out the DW
could then be created.

We did also show in point 8.3 how our approach can be extended to meet distributed
video analysis specific needs. The intent of this extension is to promote AI, agents and SW
technologies as a framework for high-level knowledge handling and sharing.

9 Conclusion

Part |V

Appendix

Specifications

It is the mark of an educated mind to rest satisfied with the degree of precision
which the nature of the subject admits and not to seek exactness where only an
approximation is possible

Aristotle

OVERVIEW

In this chapter, the syntax and the semantics of the exchanged
data, queries and masks will be presented.

A Specifications

A.1 RSS

A.1.1 Required fields

The elements of the RSS 2.0 specification presented in table A.1 are the only tolerated ones.
The values they must contain are defined in point A.1.2.

Table A.1 e RSS feeds specification

XML tag Value Cardinality
<rss version="2.0"> 1-1
<channel> 1-1
<title> title 1-1
<link> link 1-1
<description> description 1-1
<category> category 1-1
<item> 0-*
<title> id 0-1
<description> itemContent 1-1
<enclosure> encl 1-1

A.1.2 Syntax

00O~ O Ui W

e}

10
11
12
13
14
15
16

<string > = [AZ|la—z][AZ|a—z|0—-9|_]x

<URL> = # go to the URL BNF specification page
<long> = [0-9]|[1—9][0—-9]«

<sep> = "_"

<project> = "CARETAKER"

<xmlFile > = # go to the XML BNF specification page
<title > = <sourceName> <sep> <numberOfltems>
<sourceName> = <string >

<numberOfltems> = <long>

<itemID > = <long>

<link > = <URL>

<id> = # see corresponding type
<description> = # see corresponding type

<category > = # see corresponding type
<itemContent> = <xmlFile>

<encl> = # see corresponding type

A.1.3 Semantics

Semantic definitions:

<long> : 64-bit unsigned integer;

<title> : the title of the produced RSS feed;
<sourceName> : the source id;

<number0fItems> : the number of included items;
<1ink> : the link to the feed sender;

<description> : the description of the RSS feed’s contents;

A.1 RSS

<category> : the feed category;

e <id> : the id of the feed that triggers the high-level analysis (the same id must be
used in the “reply” of the high-level analysis);

e <itemContent> : the XML file. Its schema must have been previously defined with
the Relax NG simplified grammar. This can be a query, a reply or data coming from
low/mid/high-level analysis;

e <encl> : the id of the schema used to create the contents.

A.1.4 Field specifications

Below are specified the field values according to their types. Note that each feed is uniquely
typed, i.e. every included <item> has the same type.

Frame
1 <frame> = "Frame"
2 <type> = "ObjectRecognition"
3 <id> = <project> <sep> <itemID>
4 <description> = <project> <sep> <frame>
5 <category> = <frame>
6 <encl> = <type>
Query
1 <query> = "Query"
2 <type> = "ObjectEvent" | "ObjectRecognition"
3 <description> = <project> <sep> <query>
4 <category> = <query>
5 <encl> = <type>
Reply
1 <reply> = "QueryReply"
2 <type> = "ObjectEvent" | "ObjectRecognition"
3 <description> = <project> <sep> <reply>
4 <category> = <reply>
5 <encl> = <type>
Scenario
1 <scenario> = "Scenario"
2 <type> = "ObjectEvent"
3 <id> = <project> <sep> <itemID>
4 <description> = <project> <sep> <scenario>
5 <category> = <scenario>
6 <encl> = <type>

A.1.5 Implementation details

Besides data format, an implementation-specific requirement must be fulfilled. Every new
feed sent must be preceded by 8 bytes containing a 64-bit unsigned integer representing
the length of the file transferred.

A Specifications

A.2 Queries

A.2.1 Format

As above-mentioned, XML queries are wrapped in RSS feeds. The RNG schema used for
the query depends on the type of the queried element. If elements corresponding to schema
S must be queried, the schema used to build the query will be S.

The query’s reply will contain every field present in the query. In other words, a mask
will be applied so that only the specified fields will appear in the reply (see point A.3).

In order to filter the replies’ contents, conditions can be added to elements and attributes.

More precisely, if the content of element e with father d and grand-father c¢ is of no
matter but we still want to know its value, the query will simply contain:

1 <c>

2 <d>

3 <e>
4 </e>
5 </d>

6 </c>

or.

1 <c>

2 <d>

3 <e/>
4 </d>

5 </c>

Similarly, if the content of the attribute a is of no matter, the query will simply contain:

1 <c>

2 <d>

3 <e a="">
4 </e>

5 </d>

6 </c>

On the other hand, if a condition is to be applied, we would use:

1 <c>

2 <d>

3 <e>

4 " condition "
5 </e>

6 </d>

7 </c>

or

1 <c>

2 <d>

3 <e a="condition">
4 </e>

5 </d>

6 </c>

if we follow the conventions outlined above. Note that there cannot be more than one
element for a given name and a given father. So the following patterns are not valid:

1 <c>
2 <d>

3 <e/>
4 <e/>
5 </d>

6 </c>

A.2 Queries

A.2.

2 Syntax

The syntax of the condition statement is the following;:

1

2
3
4
5
6
7
8
9

<value> = # Java STRING
<condition > = "=" <value>
">=" <value>
"<=" <value>

|

|

| ">" <value>

| "<" <value>

| <condition> "AND" <condition>
| <condition> "OR" <condition>
|

"(" <condition> ")"

A.2.3 Semantics

The semantics of the condition statement is the following:

<value>: the value to analyse. It can be a number, a date or a string depending on
the value type.

<AND>: the logical A.
<0OR>: the logical V.

<()>: the condition inside the brackets is evaluated independently from the rest of the
condition statement. It should be used to guarantee the correct evaluation of <AND>
and <0R>.

A.2.4 Implementation details

To use < and > in XML files, replace them respectively with &1t; and > to avoid
parsing troubles.

To perform queries on dates, the type defined in the RNG schema must be the xsd
type dateTime. Note that dates are converted into long before being inserted in the
KB. When they are reified, they are converted into dateTime back. Consequently,
AAs contain only dateTime formatted elements.

To perform queries on numbers, the type defined in the RNG schema must be one of
the xsd type :

— float

— double

— int

— long

To perform queries on strings, the type defined in the RNG schema does not have to
be one of the types stated above.

A Specifications

A.3 Masks

A.3.1 Format

Masks have exactly the same syntax and semantics as queries. Actually, a query’s reply is
the corresponding AA on which the query’s mask, converted into an AA, has been applied.
The goal of masks is to filter the data output when performing XML and RDF exports.

A.3.2 Implementation details

The masking function has not been extensively tested and its definition has not been clearly
established. This could result in unexpected behaviours. The requirements of the function
should thus be clearly identified before any further development. The issue here is the
definition of accepted patterns. We have taken the convention that if at least one child of
the current element has an invalid condition, the element and all its children are masked.
The element is accepted only if at least one of its children verifies the element present in the
mask.

The unmasking function is automatically called by the masking function before applying
the mask in order to ensure results consistency. Be careful when using an AA on which a
mask has been applied. The unmasking function should be used after the needed process
ends.

Index

AA/ 80, 86, 98, 107, 108
Autotroph Agent, 80
Agent, 4, 7, 98
AIMA, 5
Architecture, 8
Autotroph, see AA

FIPA, 14

IBM Agent, 5
Kidsim, 5

Language, see AOPL
Maes, b

Taxonomy, 7

Wooldridge & Jennings, 6
Agent Interaction Protocol, see AIP
Agent UML, see AUML
Agent-Oriented Programming, see AOP
Agent0, 13
AIP, 50

Agent Interaction Protocol, 50
AOP, 12, 58

Agent-Oriented Programming, 12
AOPL, 12

AOP Language, 12
Atom, 68
AUML, 44, 46, 50

Agent UML, 50

B

B2B, 26

Business-To-Business, 26
BDI, 9

Belief Desire Intention, 9
Belief Desire Intention, see BDI
BI, 17

Business Intelligence, 17
Business Intelligence, see BI
Business-To-Business, see B2B

CCTV, 95

Closed Circuit TeleVision, 95
Closed Circuit TeleVision, see CCTV
CNP, 11

Contract Net Protocol, 11
CommonKADS, 40, 46, 52
CoMoMAS, 40
Conceptualization, 16
Concurrent MetateM, 13
Concurrent Object Languages, 13
Connection problem, 11
Contract Net Protocol, see CNP

CycL, 18
DAML, 18

DARPA Agent Markup Language, 18
DAML+OIL, 18
DARPA Agent Markup Language, see DAML
Data, 17
Data Warehouse, see DW
Deliberative architecture, 9
Description Logic, see DL
Distributed architecture, 11
DL, 21, 34
Description Logic, 21
DW, 60, 76, 93, 99
Data Warehouse, 60

eXtensible Markup Language, see XML

FBL, 19
Frame-Based Language, 19
FIPA, 14
Foundation for Intelligent Physical Agents,
14

Index

FOAF, 29 m
Friend Of A Friend, 29

Folksonomy, 36

Foundation for Intelligent Physical Agents, see MAS, 4, 1.1’ 14, 44
FIPA Multi-Agent Systems, 4

FPS, 65 MAS-CommonKADS, 42, 52
Frames Per Seconde, 65 MaSE, 443 52 . .
Frame-Based Language, see FBL Multiagent Systems Engineering, 44
MESSAGE, 44, 46, 52
Frames Per Seconde, see FPS Vo D

Friend Of A Friend, see FOAF MESSAGE/UML, 46
Methodology for Engineering Systems of Soft-

ware Agents, 46
E Methodology, 40

Methodology for Engineering Systems of Soft-
ware Agents, see MESSAGE

Multi-Agent Systems, see MAS

Multiagent Systems Engineering, see MaSE

Gaia, 42, 46, 52
Gleaning Resource Descriptions from Dialects of
Languages, see GRDDL

GRDDL, 33
Gleaning Resource Descriptions from Dialects m
of Languages, 33
N-Triples, 31

Hybrid architecture, 11
Object-Oriented, see OO

OIL, 18
u Ontology Inference Layer, 18
Ontolingua, 19
Information, 18 Ontology, 7, 16
i, 49, 50 Criteria, 16
Deep, 36
Shallow, 36
Ontology Inference Layer, see OIL
00, 13, 40
JACK, 59, 71 Object-Oriented, 13
Jena, 87 OWL, 19, 28, 30
1.1, 21
DL, 21
m Full, 21
Lite, 20
KB, 82 Web Ontology Language, 19
Knowledge Base, 82
KBMS, 87 E
Knowledge Base Management Systems, 87
KBS, 40, 42 PLACA, 13
Knowledge-Based Systems, 40 Procedural Reasoning System, see PRS
KIF, 17, 19

Prometheus, 44, 47, 52
Knowledge Interchange Format, 19 PRS. 9
)

Knowledge, 18, 30

Knowledge Base, see KB
Knowledge Base Management Systems, 87
Knowledge-Based Systems, see KBS m
Kowari, 87

Procedural Reasoning System, 9

Index

Rational Unified Process, see RUP
RDF, 18, 28, 31, 61, 79, 87, 98
Graph, 28
Triple, 28
Universe, 28
Vocabulary, 28
Resource Description Framework, 18
Triple, 28
RDF Data Query Language, 88
RDF in attribute, see RDFa
RDF Schema, see RDFS
RDF /XML, 31
RDFa, 33
RDF in attribute, 33
RDFS, 30
RDF Schema, 30
RDQL, 88
RDF Data Query Language, 88
Reactive architecture, 10
Really Simple Syndication, see RSS
Redland, 87
REgular LAnguage for XML Next Generation,
see Relax NG
Reification, 80
Relax NG, see RNG
Resource Description Framework, see RDF
RIF, 28
Rule Interchange Format, 28
RNG, 69, 81, 83, 106
Relax NG, 69
ROADMAP, 44
RSS, 59, 61, 68, 70, 104
Really Simple Syndication, 68
Rule Interchange Format, see RIF
RUP, 52
Rational Unified Process, 52

Semantic Web, 19, see SW
Sesame, 87
SHOE, 19
Simple HTML Ontology Extensions, 19
Simple HTML Ontology Extensions, see SHOE
Simple Object Access Protocol, see SOAP
Situated automata, 10
SOAP, 26
Simple Object Access Protocol, 26
SPARQL, 32, 85, 86, 88
SPARQL Protocol And RDF Query Lan-
guage, 32
SPARQL Protocol And RDF Query Language,
see SPARQL

Subsumption architecture, 10
SW, 25, 27, 58, 98
Semantic Web, 25

Telescript, 13
TouringMachines, 11
Triple store, see TS
3Store, 82, 87
3Store, 79
Tropos, 44, 49, 52
TS, 29, 79

Triple store, 29

UML, 50, 52
Unified Modeling Language, 50
Unified Modeling Language, see UML

VCA, 93
Video Content Analysis, 93
Video analysis, 60
High-level representation, 60
Low-level representation, 60
Mid-level representation, 60
Video Content Analysis, see VCA

Web Ontology Language, see OWL

XML, 18, 31, 61, 70, 98

eXtensible Markup Language, 18
XML Schema Definition, see XSD
XSD, 69

XML Schema Definition, 69

YARS, 87

Index

Bibliography

[ABO7]

[ACK*01]

[Age06]

[AGGPEO3]

[ASRW02]

[ATO06]
[BCT06]

[Bec01]

[BGG04]

[BHS03]

[BIP91]

[BLOS]

Ben Adida and Mark Birbeck. RDFa Primer 1.0. Working Draft
http://www.w3.org/ TR /xhtml-rdfa-primer/, W3C, March 2007.

Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plex-
ousakis, and Karsten Tolle. The ics-FORTH RDFSuite: Managing voluminous
RDF description bases. In Sem Web, 2001.

Agent Oriented Software Pty. Ltd. JACK Intelligent Agents: Agent Manual,
2006.

Renzo Angles, Claudio Gutierrez, Asuncion Gomez-Perez, and Jerome Eu-
zenat. Querying RDF data from a graph database perspective. The Semantic
Web: Research and Applications, 3532/2005:346-360, 2005.

P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software devel-
opment, methods - review and analysis. Technical Report 478, VI'T PUBLI-
CATIONS, 2002.

Atom Publishing Format and Protocol (atompub). Technical report, IETF,
http:/ /www.ietf.org/html.charters/atompub-charter.html, 2006.

Fabio Bellifemine, Giovanni Caire, Tiziana Trucco, Giovanni Rimassa, and
Roland Mungenast. JADE administrator’s guide. Tilab, 2006.

David Beckett. The design and implementation of the redland rdf application
framework. In WWW °01: Proceedings of the 10th international conference
on World Wide Web, pages 449-456, New York, NY, USA, 2001. ACM Press.

P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents
and Multi-Agent Systems, 8(3):203-236, May 2004.

Valerie Bonstrom, Annika Hinze, and Heinz Schweppe. Storing rdf as a graph.
In LA-WEB °03: Proceedings of the First Conference on Latin American Web
Congress, page 27, Washington, DC, USA, 2003. IEEE Computer Society.

Michael E. Bratman, David Israel, and Martha Pollack. Plans and resource-
bounded practical reasoning. In Robert Cummins and John L. Pollock, edi-
tors, Philosophy and AI: Essays at the Interface, pages 1-22. The MIT Press,
Cambridge, Massachusetts, 1991.

Tim Berners-Lee. Why RDF model is different from the XML model.
http://www.w3.org/Designlssues/RDF-XML.html, October 1998.

[BLOO]
[BLOG]
[BLHLO1]
[BLMO2]
[BMOS5]

[Bro85]

[CCGH02]

[CDD*03]

[CFJT04]

[CGOO]
[CLRS02]
[CNvBO0O]
[CYC]

[DAMa]
[DAMD]

[DAMCc]

[DeL99)

Bibliography

Tim Berners-Lee. Semantic Web. In XML 2000 Conference,
http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html, 2000. Slides.

Tim Berners-Lee. Artificial Intelligence and the Semantic Web. In AAAI-06
Keynote. AAAI, July 2006. Slides.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Sci-
entific American, May 2001.

Tim Berners-Lee and Eric Miller. The Semantic Web lifts off. EFRCIM News,
51, October 2002.

Dan Brickley and Libby Miller. FOAF Vocabulary Specification . Technical
report, FOAF Project, 2005.

Rodney A. Brooks. A Robust Layered Control System For a Mobile Robot.
Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1985.

Giovanni Caire, Wim Coulier, Francisco J. Garijo, Jorge Gomez, Juan Pavon,
Francisco Leal, Paulo Chainho, Paul E. Kearney, Jamie Stark, Richard Evans,
and Philippe Massonet. Agent Oriented Analysis Using Message/UML. In
AOSE °01: Revised Papers and Invited Contributions from the Second Inter-
national Workshop on Agent-Oriented Software Engineering II, pages 119-135,
London, UK, 2002. Springer-Verlag.

J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkin-
son. Jena: Implementing the semantic web recommendations, 2003.

Harry Chen, Tim Finin, Anupam Joshi, Lalana Kagal, Filip Perich, and Di-
panjan Chakraborty. Intelligent agents meet the semantic web in smart spaces.
IEEF Internet Computing, 8(6):69-79, 2004.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput. Sci.,
240(1):177-213, 2000.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction a
l’agorithmique. Dunod, second edition, 2002.

Jaron Collis, Divine Ndumu, and Christopher van Buskirk.
The Zeus Technical = Manual. Technical report, BT,
http://labs.bt.com/projects/agents,/zeus/techmanual /TOC.html, 2000.

What is Cyc? http://www.cyc.com/cyc/technology /whatiscyc.
About the DAML Language. http://www.daml.org/about.html.

DAML+OIL (March 2001). http://www.daml.org/2001/03/daml+-oil-
index.html.

DAML+OIL (March 2001) Reference Description.
http:/ /www.w3.org/TR/daml+-oil-reference.

S. DeLoach. Multiagent Systems Engineering: A Methodology and Language
for Designing Agent Systems. In Agent Oriented Information Systems, Seattle,
OR, 1999.

Bibliography

[DMK*05]

[DP00)]

[DPM+04]

[DRHO4]

[DWO03]

[DWSKO03]

[Eli34]

[Fer92]

[FGO6]

[FHVB04|

[FIPO5]

[Fis94]

[FvHH*01]

[Gar]

[GBC]

S. Dasiopoulou, Vasileios Mezaris, Toannis Kompatsiaris, V.-K. Papastathis,
and M. G. Strintzis. Knowledge-Assisted Semantic Video Object Detection.
IEEFE Transactions on circuits and systems for video technology, 15:1210-1224,
2005.

T. Davenport and L. Prusak. Working knowledge: How organizations manage
what they know. Ubiquity, 2000.

S. Dasiopoulou, V. K. Papastathis, V. Mezaris, I. Kompatsiaris, and M. G.
Strintzis. An Ontology Framework For Knowledge-Assisted Semantic Video
Analysis and Annotation. In 4th International Workshop on Knowledge
Markup and Semantic Annotation (SemAnnot 2004) at the 3rd International
Semantic Web Conference (ISWC 2004), 2004.

David De Roure and James A. Hendler. E-science: The grid and the semantic
web. IEEFE Intelligent Systems, pages 6571, January/February 2004.

K. Dam and M. Winikoff. Comparing Agent-Oriented Methodologies.
In Agent-Oriented Information Systems, volume 3030/2004, pages 78-93.
Springer Berlin / Heidelberg, 2003.

L. Ding, K. Wilkinson, C. Sayers, and H. Kuno. Application-specific schema
design for storing large RDF datasets, 2003.

T.S. Eliot. The Rock. Faber & Faber, 1934.

1. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational,
Mobile Agents. PhD thesis, Cambridge, UK, 1992.

S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for
autonomous agents. In Intelligent Agents III. Agent Theories, Architectures
and Languages (ATAL’96), volume 1193, Berlin, Germany, 1996. Springer-
Verlag.

Flavius Frasincar, Geert-Jan Houben, Richard Vdovjak, and Peter Barna.
RAL: An Algebra for Querying RDF. World Wide Web, 7(1):83-109, 2004.

FIPA specifications. Technical report, FIPA,
http://www fipa.org/specifications/index.html, 2005.

Michael Fisher. A Survey of Concurrent METATEM - the Language and its
Applications. In ICTL ’94: Proceedings of the First International Conference
on Temporal Logic, pages 480-505, London, UK, 1994. Springer-Verlag.

D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. Patel-
Schneider. OIL: An ontology infrastructure for the semantic web. IEEE
Intelligent Systems, 16(2), 2001.

L. M. Garshol Living with topic maps and RDF.
http://www.ontopia.net /topicmaps/materials/tmrdf - html. ontopia.

B. C. Grau, S. Bechhofer, D. Calvanese, G. De Giacomo, 1. Horrocks, C. Lutz,
B. Motik, B. Parsia, U. Sattler, and P. F. Patel-Schneider. OWL 1.1 Web
Ontology Language. Technical report, http://owll 1.cs.manchester.ac.uk/.

[GH]
[GHMO04|

[GHMPOG6]

[GHSO03]

[GL8T]

[Gla96]

[GRDO7]

[Gru93]

[HBLMO02]

[Hen99|

[HenO1]

[Hen04]

[Hen05]

[Her07]

[Hew?77]

Bibliography

N Gibbins and S. Harris. 3store. http://www.aktors.org/technologies/3store/.

Claudio Gutierrez, Carlos Hurtado, and Alberto O. Mendelzon. Foundations
of semantic web databases. In PODS ’04: Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 95-106, New York, NY, USA, 2004. ACM Press.

Allen Ginsberg, David Hirtle, Frank McCabe, and Paula-Lavinia Pa-
tranjan. Rif use cases and requirements. Technical report, W3C,
http://www.w3.org/TR/rif-ucr/, 2006.

Nicholas Gibbins, Stephen Harris, and Nigel Shadbolt. Agent-based semantic
web services. In WWW ’03: Proceedings of the 12th international conference
on World Wide Web, pages 710-717, New York, NY, USA, 2003. ACM Press.

Michael P. Georgeff and Amy L. Lansky. Reactive reasoning and planning. In
AAAI pages 677682, 1987.

N. Glaser. Contribution Knowledge Modelling in a Multi-Agent Framework
(the CoMoMAS Approach). PhD thesis, Universite Henri Pointcare, Nancy I,
1996.

Gleaning Resource Descriptions from Dialects of Languages (GRDDL). Work-
ing draft, W3C, http://www.w3.org/TR/grddl/, March 2007.

T. R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Con-
ceptual Analysis and Knowledge Representation, Deventer, The Netherlands,
1993. Kluwer Academic Publishers.

James Hendler, Tim Berners-Lee, and Eric Miller. Integrating Applications
on the Semantic Web. Institute of Electrical Engineers of Japan, 122(10):676—
680, October 2002.

James Hendler. Is there an intelligent agent in your future ? Nature, March
1999.

J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, (2),
2001.

Jim Hendler. Frequently Asked Questions on W3C’s Web Ontology Language
(OWL). Technical report, W3C, http://www.w3.0org/2003/08/owlfaq, 2004.

J. Hendler. Science and the Semantic Web.
http://www.cs.umd.edu/ hendler/presentations/Harvard-IIC-05.pdf, De-
cember 2005. Slides.

Ivan Herman. Introduction to the Semantic Web. In International Conference
on Semantic Web & Digital Libraries, Bangalore, India., February 2007. W3C.
Slides.

Carl Hewitt. Viewing Control Structures as Patterns of Passing Messages.
Artif. Intell., 8(3):323-364, 1977.

Bibliography

[Hey04]

[HGO3]

[HG04|

[HHL99]

[HPS04a)

[HPS04b]

[HPSvHO2]

[HWS05]

IGGV96|

[IMPO5]
[Inm02]
[JEN]

[JPS02]

[TW99]

[KG99]

[KOW]
[Lab]

Jonathan Hey. The Data, Information, Knowledge, Wisdom Chain: The
Metaphorical link, December 2004.

S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage, 2003.

Jonathan Hayes and Claudio Gutierrez. Bipartite Graphs as Intermediate
Model for RDF. Technical Report TR/DCC-2004-2, Universidad de Chile,
2004.

Jeff Heflin, James Hendler, and Sean Luke. Shoe: A knowledge representation
language for internet applications. Technical report, 1999.

1. Horrocks and P. Patel-Schneider. A proposal for an OWL rules language,
2004.

Tan Horrocks and Peter F Patel-Schneider. Reducing OWL Entailment to
Description Logic Satisfiability. Journal of Web Semantics, 1(4), 2004.

Tan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. Reviewing
the design of DAML+OIL: an ontology language for the semantic web. In
FEighteenth national conference on Artificial intelligence, pages 792-797, Menlo
Park, CA, USA, 2002. American Association for Artificial Intelligence.

L. Hollink, M. Worring, and A.Th. Schreiber. Building a visual ontology for
video retrieval. In Proceedings of ACM Multimedia, Singapore, 2005.

C. Iglesias, M. Garijo, J. Gonzalez, and J. Velasco. A methodological proposal
for multiagent systems development extending CommonKADS. In Proceed-
ings of 10 th KAW, Banoe, Canada, 1996.

Impact implementation overview. Technical report, University Of Maryland,
2005.

W. H. Inmon. Building the Data Warehouse. Wiley Computer Publishing,
third edition edition, 2002.

Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/.

T. Juan, A. Pearce, and L. Sterling. ROADMAP: Extending the Gaia Method-
ology for Complex Open Systems. In Autonomous Agents and Multi-Agent
Systems, 2002.

N. R. Jennings and M. Wooldridge. Agent-oriented software engineering. In
Francisco J. Garijo and Magnus Boman, editors, Proceedings of the 9th Eu-
ropean Workshop on Modelling Autonomous Agents in a Multi-Agent World
: Multi-Agent System Engineering (MAAMAW-99), volume 1647, pages 1-7.
Springer-Verlag: Heidelberg, Germany, 30- 2 1999.

David Kotz and Robert S. Gray. Mobile agents and the future of the internet.
Operating Systems Review, 33(3):7-13, 1999.

Kowari. http://www.kowari.org/.

Multiagent & Cooperative Robotics Lab. The agentTool Project.
http://macr.cis.ksu.edu/projects/agentTool /agentool.htm.

[LADO4]

[Lam)]

[LDBDO6]

[LHO5]

[LHCT07]

[LQS]
[Mae95]

[MRM02]

[MSZ01]

[NRST*06]

[OIL]
[Ont]
[OPBOO]
[Ope]

[Owe05]
[OWL04a]

[OWL04b]

Bibliography

Michael Luck, Ronald Ashri, and Mark D’Inverno. Agent-Based software de-
velopment. Artech House Publishers, 2004.

Patrick Lambrix. Desciption Logics. http://www.ida.liu.se/labs/iislab/ peo-
ple/patla/DL/index.html.

B. Lienard, X. Desurmont, B. Barrie, and J.-F. Delaigle. Real-time high-
level video understanding using data warehouse. In N. Kehtarnavaz and P. A.
Laplante, editors, Real-Time Image Processing (SPIE 2006), volume 6063,
pages 40-53, 2006.

B. Liu and B. Hu. An Evaluation of RDF Storage Systems for Large Data
Applications. In 2005 International Conference on Semantics, Knowledge
and Grid (SKG), page 59, Beijing, China, November 2005. IEEE Computer
Society.

B. Lienard, A. Hubaux, C. Carincotte, X. Desurmont, and B. Barrie. On the
use of real-time agents in distributed video analysis systems. In IS&T/SPIFE
19th Annual Symposium on Real-Time Image Processing 2007, San Jose, Cal-
ifornia, USA, February 2007.

Large Quad Stores. http://esw.w3.org/topic/LargeQuadStores.

Pattie Maes. Artificial life meets entertainment: lifelike autonomous agents.
Commun. ACM, 38(11):108-114, 1995.

Luis Menezes, Geber Ramalho, and Hermano Moura. Modular definition of
agent-oriented languages using action semantics. In AAMAS ’02: Proceedings
of the first international joint conference on Autonomous agents and multia-
gent systems, pages 948-949, New York, NY, USA, 2002. ACM Press.

Sheila A. Mcllraith, Tran Cao Son, and Honglei Zeng. Semantic Web Services.
IEEE Intelligent Systems, pages 46-53, March/April 2001.

Milind Naphade, John R. Smith, Jelena Tesic, Shih-Fu Chang, Winston Hsu,
Lyndon Kennedy, Alexander Hauptmann, and Jon Curtis. Large-scale concept
ontology for multimedia. IEEE Multimedia Magazine, 13(3), July-September
2006.

Description of OIL. http://www.ontoknowledge.org/oil/.
Ontolingua. http://www.ksl.stanford.edu/software/ ontolingua,.
J. Odell, H. Parunak, and B. Bauer. Extending UML for Agents, 2000.

OpenCyec, http://www.cyc.com/doc/handbook/oe/oe-handbook-toc-
opencyc.html. Ontological Engineer’s Handbook.

Alisdair Owens. Semantic Storage: Overview and Assessment, 2005.

OWL Web Ontology Language Overview. Technical report, W3C,
http://www.w3.org/TR/owl-features/, 2004.

OWL Web Ontology Language Reference. Technical report, W3C,
http://www.w3.org/TR/owl-ref/, 2004.

Bibliography

[PLJ05]

[Pol04]

[PSGO6]

[PW02]

[RCO7]

[RDF04]

[RDQ]

[RED]
[RKS6]

[RN95|

[RNGO3|

[RSS]

[SBPLO04]

[SCS94]

[SDWWOL1]

[SES]

Milenko Petrovic, Haifeng Liu, and Hans-Arno Jacobsen. G-topss: fast filter-
ing of graph-based metadata. In WWW ’05: Proceedings of the 14th interna-
tional conference on World Wide Web, pages 539-547, New York, NY, USA,
2005. ACM Press.

Jeff Pollock. Semantic Technologies Seminar: Using the W3C Standard OWL
for Semantic Interoperability. Network Inference, April 2004. Slides.

P.F. Patel-Schneider and B. C. Grau. OWL 1.1
Web Ontology Language Overview. Technical report,
http://owll_1.cs.manchester.ac.uk/overview.html, 2006.

L. Padgham and M. Winikoff. Prometheus: A methodology for developing
intelligent agents, 2002.

Mary Rundle and Chris Conley. Ethical Implications of Emerging Technolo-
gies: A Survey. IFAP, Communication and Information Sector, UNESCO,
2007.

Resource Description Framework (RDF). Technical report, W3C,
http://www.w3.org/RDF/, 2004.

RDQL - A Query Language for RDF.
http://www.w3.org/Submission /RDQL/.

Redland. http://librdf.org,/.

S Rosenschein and L Kaelbling. The synthesis of digital machines with prov-
able epistemic properties. In Proceedings of the 1986 Conference on Theo-
retical aspects of reasoning about knowledge, pages 83-98, San Francisco, CA,
USA, 1986. Morgan Kaufmann Publishers Inc.

Stuart Russel and Peter Norvig. Artificial Intelligence: o Modern Approac.
Prentice Hall; 1st edition, 1995. p.33.

RELAX NG home page. Technical report, Oasis, http://relaxng.org/, Septem-
ber 2003.

RSS specifications: everything you need to know about rss. http://www.rss-
specifications.com/.

J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf. Evaluation of
Agent-Oriented Software Methodologies - Examination of the Gap Between
Modeling and Platform. In P. Giorgini, J. P. Muller, and J. Odell, editors,
Agent-Oriented Software Engineering V, Fifth International Workshop AOSE,
pages 126-141, 2004.

David Canfield Smith, Allen Cypher, and Jim Spohrer. Kidsim: programming
agents without a programming language. Commun. ACM, 37(7):54-67, 1994.

A. Th. (Guus) Schreiber, Barbara Dubbeldam, Jan Wielemaker, and Bob
Wielinga. Ontology-based photo annotation. IEEE Intelligent Systems,
16(3):66-74, 2001.

Sesame. http://www.openrdf.org/.

[Sha06]

[SHBLOG6]

[SHL+05]

[Sho93]

[Smi80]

[Smi03al]

[Smi03b]

[SOA03]

[SPAOG]

$S03]

[Staal

[Stab]

[SWdH*94]

[Syc9g§]

[Syc02]

[Tau06]
[TCKO05]

Bibliography

Paul Shabajee. Informed Consent on the Semantic Web - Issues for Interaction
and Interface Designers. In SWUI 2006, The 3rd International Semantic Web
User Interaction Workshop, Athens, Georgia, USA, November 2006.

Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The Semantic Web Re-
visited. IEEE Intelligent Systems, pages 96-101, May/June 2006.

Chiao-Fe Shu, A. Hampapur, M. Lu, L. Brown, J. Connell, A. Senior, and
Yingli Tian. IBM smart surveillance system (S3): a open and extensible
framework for event based surveillance. In IEEE Conference on Advanced
Video and Signal Based Surveillance, pages 318-323, 2005.

Yoav Shoham. Agent-oriented programming. Artif. Intell., 60(1):51-92, 1993.

Reid G. Smith. The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver. IEEE Trans. Computers,
29(12):1104-1113, 1980.

Barry Smith. Blackwell Guide to the Philosophy of Computing and Informa-
tion, chapter Ontology, pages 155-166. Oxford, 2003.

Michael K. Smith. Web ontology issue status. Technical report, W3C,
http://www.w3.org/2001 /sw/WebOnt /webont-issues.html, 2003.

SOAP. Technical report, W3C XML Protocol Working Group,
http://www.w3.org/TR/soap/, 2003.

SPARQL Query Language for RDF. Working draft, W3C,
http:/ /www.w3.org/ TR /rdf-sparql-query/, October 2006.

A. Sturm and O. Shehory. A framework for evaluating agent-oriented method-
ologies, 2003.

Stanford KSL Network Services, http://www-ksl-
sve.stanford.edu:5915/doc/frame-editor/guided-tour /index.html. A Guided
Tour to Developing Ontologies Using Ontolingua.

Stanford Logic Group, http://logic.stanford.edu/kif/kif. html. Knowledge In-
terchange Format (KIF).

Guus Schreiber, Bob Wielinga, Robert de Hoog, Hans Akkermans, and Wal-
ter Van de Velde. CommonKADS: A Comprehensive Methodology for KBS
Development. [EEE Expert: Intelligent Systems and Their Applications,
09(6):28-37, 1994.

K. Sycara. Multiagent systems. Al magazine, 19(2):79-92, Summer 1998.

Katia Sycara. RESTINA AFC - Developer’s Guide. Technical report, Intelli-
gent Software Agents Lab, 2002.

J. Tauberer. What is RDF. zml.com, July 2006. Updated and republished.

Yannis Theoharis, Vassilis Christophides, and Gregory Karvounarakis. Bench-
marking database representations of rdf/s stores. In International Semantic
Web Conference, pages 685701, 2005.

Bibliography

[Tho93]

[Tim01]
[Tur50]

[Vot04]

[W3C05]

[WDOO]

[Wei66]

[WFCFSS)|

[WGAO05a]

[WGAO5b]

[Wid95]

[Win05]

[WJ95a]

[WJI95b]

[WJIKOO]

[WZGP04]

Sarah Rebecca Thomas. PLACA, an agent oriented programming language.
PhD thesis, Stanford, CA, USA, 1993.

Bray Tim. What is RDF. zml.com, January 2001.

Alan M. Turing. Computing machinery and intelligence. MIND, 49:433-460,
1950.

Danna Voth. Biotracking gives back to nature. IEEFE Intelligent Systems,
pages 6-7, January/Ferbruary 2004.

W3C. How people with disabilities use the web.
http:/ /www.w3.org/WAI/EO /Drafts/PWD-Use-Web /Overview.html, May
2005.

Mark F. Wood and Scott Del.oach. An Overview of the Multiagent Systems
Engineering Methodology. In AOSE, pages 207-222, 2000.

Joseph Weizenbaum. Eliza: A computer program for the study of natural
language communication between man and machine. Communciations of the
ACM, 9(1), 1966.

M. T. Weaver, R. K. France, Q. Chen, and E. A. Fox. A frame-based language
in information retrieval. Technical report, Blacksburg, VA, USA, 1988.

Xiaoshu Wang, Robert Gorlitsky, and Jonas Almeida. From XML to RDF:
how semantic web technologies will change the design of ’omic’ standards.
Nature biotechnology, 23(9):1099-1103, September 2005.

David Wood, Paul Gearon, and Tom Adams. Kowari: A platform for semantic
web storage and analysis. In Proceedings of xtech, 2005.

Jennifer Widom. Research problems in data warehousing. In IKM ’95: Pro-
ceedings of the fourth international conference on Information and knowledge
management, pages 25-30, New York, NY, USA, November 1995. ACM Press.

M. Winikoff. Towards Making Agent UML Practical: A Textual Notation and
a Tool. In QSIC ’05: Proceedings of the Fifth International Conference on
Quality Software, pages 401-412, Washington, DC, USA, 2005. IEEE Com-
puter Society.

Michael Wooldridge and Nicholas R. Jennings. Agent theories, architectures,
and languages: a survey. In FCAI-94: Proceedings of the workshop on agent
theories, architectures, and languages on Intelligent agents, pages 1-39, New
York, NY, USA, 1995. Springer-Verlag New York, Inc.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2):115-152, 1995.

Michfael Wooldridge, Nicholas R. Jennings, and David Kinny. The Gaia
Methodology for Agent-Oriented Analysis and Design. Autonomous Agents
and Multi- Agent Systems, 3(3):285-312, 2000.

Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology
Based Context Modeling and Reasoning using OWL, 2004.

[XML]|

[YAR]
[Yu97]

[ZGMHWO5]

Bibliography

Extensible Markup Language (XML). Technical report, W3C,
http://www.w3.org/XML/.

YARS. http://sw.deri.org/2004/06/yars/.

Eric S. K. Yu. Towards modeling and reasoning support for early-phase re-
quirements engineering. In RFE ’97: Proceedings of the 3rd IEEE Interna-
tional Symposium on Requirements Engineering (RE’97), page 226, Washing-
ton, DC, USA, 1997. IEEE Computer Society.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance
in a warehousing environment. pages 316-327, 1995.

