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Abstract

Software Product Line Engineering is a software development

paradigm which is a combination of Software Engineering

and Product Line Engineering. During the last few years,

this paradigm has rapidly emerged because it allows realising

significant improvements in time-to-market, cost, productiv-

ity and quality.

To bring help to Software Product Lines management, many

tools have been developed by the industry and the research

community. A global observation is that, in a big size

industrial context, the management of Software Product

Lines is quite complex even with the presence of these tools.

In order to deal with this complexity, new researches have

been proposed for the integration of visualisation in Software

Product Line Engineering. The underlying idea of this

integration is to use the visual potential to manage these

Software Product Lines.

Motivated by this novel concept, the purpose of this thesis is

to provide a solution that could support visualisation in Soft-

ware Product Lines management tools. This solution could

help the engineer in order to manage these last ones in a sim-

ple and efficient manner.



Résumé

L’ingénierie des lignes de produits logiciels est un paradigme

de développement logiciel qui est à la jonction entre le génie

logiciel et l’ingénierie des lignes de produits. Ces dernières

années, ce paradigme a rapidement émergé car, de part sa

nature, il permet aux entreprises de réaliser des améliorations

significatives en termes de coûts, de productivité, de qualité

et de temps de réponse au marché.

Afin d’aider à la gestion d’une ligne de produits logiciels,

de nombreux outils ont été développés par l’industrie et le

monde de la recherche. Une observation générale est que,

dans un contexte industriel de grande taille, la gestion d’une

ligne de produits logiciels s’avère relativement complexe

même avec l’aide de ces outils. En vue de mâıtriser cette

complexité, de nouvelles recherches ont été proposées afin

d’intégrer la visualisation dans l’ingénierie des lignes de

produits logiciels. L’idée sous-jacente à cette intégration est

d’utiliser le potentiel visuel pour gérer ces lignes de produits

logiciels.

Motivé par cet innovant nouveau concept, le but de ce

mémoire est dès lors de fournir une solution qui pourrait

supporter la visualisation dans les outils de gestion de lignes

de produits logiciels et, par conséquent, aiderait l’ingénieur à

gérer ces dernières d’une manière simple et efficace.



Preface

Software Product Line Engineering and Visualisation are both active domains. Typically

some current researches are intending to use visualisation in Software Product Line

Engineering. The increasing interest in the combination of these two domains led to

the 1st International Workshop on Visualisation in Software Product Line Engineering

(VISPLE, 2007, Kyoto, Japan) [Home]. This workshop proposes a novel and challenging

research direction in Software Product Line Engineering by focusing on the idea of using

visualisation techniques to achieve the management of Software Product lines.

The upcoming section and paragraphs provide an overview of the context in which this

thesis is set and its main motivation. The preface concludes with a brief overview of the

main chapters of the thesis.

Software Product Line Engineering Context

During the last few years, Software Product Line Engineering has rapidly emerged as

a viable and important software development activity which results of the combination

between Software Engineering and Product Line Engineering. In this novel approach,

companies build different variants of their products using a Common Platform which

encompasses similarities and differences existing between them. Typically, a Software

Product Line is a ”set of software-intensive systems that share, a common, managed, set

of features satisfying the specific needs of a particular market segment or mission and

that are developed from a common set of core assets in a prescribed way” [PBvdL05].

For instance, we can consider the case of car security systems. These systems share

common features like frontal airbags control and ABS launching. However some sys-

tems can have differences such as lateral airbags control, Electronic Stability Program

(ESP), Acceleration Slip Regulation (ASR) or security switching-off button for sport

mode driving. In this case, the Software Product Line approach allows car companies to

develop all possible car security systems in order to reuse them in different car models.

Thereby, the car companies have not to develop a particular car security system for each

car models. This variety of products sets up the concept of Customisation which allows

companies to fit better with the customer’s needs

iii



Preface iv

By using a Common Platform to fit with the customer’s need, Software Product Line

Engineering intends to review the products development of companies in order to realise

significant improvements in time-to-market, cost, productivity and quality.

Motivations

To manage the Software Product Line Engineering activities, the Software Engineering

community has developed some tools. These activities consist, on the one hand, of

the creation and the maintenance of the Software Product Line (referred as Domain

Engineering) and, on the other hand, of the Software Product Line use to find a product

which fits at best with customer’s needs (referred as Application Engineering). Each

of these aspects requires tools with pertinent operations to facilitate these activities.

Following the VISPLE idea the thesis focuses mainly a research of how the visualisation

could address the problems encountered during the Software Product Line management.

Therefore, the main motivation of this thesis is to elaborate a solution to support visual-

isation in tools supporting the Software Product Line Engineering activities. However,

as VISPLE says, the size of Software Product Lines is usually large. This leads to make

tough the management of these ones and more particularly the Application Engineering

activities. Thereby, the solution evolves in the remainder of the thesis to mainly focus

on Application Engineering.

Overview

This work is divided into six chapters as follows.

Chapter one introduces the Software Product Line Engineering as a combination of

Software Engineering and Product Line Engineering. The purpose of this chapter is

to define the main concepts which are useful for the comprehension of the thesis and

intend to clarify the terminological differences within the Software Product Line Engi-

neering. Then the chapter introduces some visualisation concepts which are interesting

for Software Product Lines management tools.

Chapter two investigates Software Product Line Engineering (literature, tools, etc.)

in order to have knowledge about relevant functions for Software Product Lines man-

agement tools. This investigation is leading away to the achievement of an evaluation

framework for Software Product Lines management tools.

Chapter three focuses on Application Engineering, so called Product Derivation Pro-

cess. It analyses product derivation problems coming from our personal experience and

a case study outlining two industrial Software Product Lines. This problems analysis

conducts to the discovery of challenges for Software Product Lines management tools.

Chapter four achieves the main motivation of this work by proposing a solution which

uses visualisation to address challenges of the chapter three. This chapter focuses mainly
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on challenges which are not yet addressed by existing tool functions. Then this chapter

introduces a metamodel in order to develop the proposed solution into a tool.

Chapter five presents the implementation of a prototype in order to give a concrete

idea of the proposed solution in the chapter four. This chapter explains the architectural

design and the different functions of this prototype.

Chapter six reviews our approach and contributions during the thesis and proposes

some possible further works.
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Chapter 1

State Of The Art

The Merriam-Webster Dictionary [MW03] gives the following definition of a state of the

art: ”the level of development (as of a device, procedure, process, technique, or science)

reached at any particular time usually as a result of modern methods”. Therefore, the

purpose of a state of the art consists of realising a review of the current development in

a particular domain.

As we know, the purpose of this thesis is to provide a solution to support visualisation in

Software Product Line Engineering tools. It means to split the state of the art into two

distinct domains, i.e. the Software Product Line Engineering domain and the visualisa-

tion domain. However, knowledge of these two domains is quite large and is continually

growing [OBTR07]. Furthermore, terminology in Software Product Line Engineering

seems to vary among the practitioners. In this context, it would be unrealistic to build

a complete review for these two domains.

As consequences, the state of the art just gives the principal current practices and

notions of the two aforementioned disciplines in order to provide the reader a good

understanding of the different concepts addressed in this thesis and in order to provide

a global picture of the two disciplines for non-introduced people.

The remainder of this chapter is organised as follows: Section 1.1 introduces Software

Product Line Engineering and section 1.2 presents the most important concepts of the

visualisation theory and the visualisation in Software Product Line Engineering.

1.1 Software Product Line Engineering

Software Product Line Engineering is a new paradigm which is the result of the com-

bination between Software Engineering and Product Line Engineering and where the

focus is put on the concept of Reusability. The purpose of this section is to show this

1
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statement. It introduces first Software Engineering. Then it presents the Product Line

Engineering. Finally it shows that Software product Line Engineering is the combination

of the two former and it gives a global picture of the domain.

1.1.1 Software Engineering

The late 1940s, with the establishment of the Von Neumann machine, mark the birth

of software development [RH00, vN45, Mae05]. At the time, this activity is regarded

as handicrafts. It is assigned to reasonable size projects with manageable complexity

where the concepts of methodology and tool support are still non-existent. During this

decade, software development is consequently very tacit and reserved to experts which

are mainly focused on productivity [Gla97].

In the 1950s and 1960s, the software projects are beginning to be increasingly complex.

Often, they include hundreds, or even thousands, of people and the developed products

includes several million lines of code. The lack of methodology and quality interest for

software development leads this complexity to become unmanageable [Gla97, Str96].

Thereby, many problems appear in projects resulting, in 1969, to a phenomenon, still

existing today, called ”software crisis” [Gla97, Neu95]. These problems are categorised

in three main classes, i.e. ”Cost and Budget Overruns”, ”Property Damage”, and ”Life

and Death” [Neu95].

Cost and Budget Overruns: This class concerns the cost and budget overruns prob-

lems into software projects. A typical example of these problems is the development of

the OS/360 operating system. The project starts in the 1960s and is, with more than

thousand programmers, one of most complex systems at the time. Unfortunately, the

project takes several years of delay and explodes its budget [IBM72, FPB95].

Property Damage: This class concerns the problems that cause property damages. A

typical example of these problems is the intrusion, in 1996, by unidentified hackers into

the Rome Laboratory, the US Air Force’s main command and research facility. Using

trojan horse virii, hackers obtain unrestricted access to Rome’s networking systems and

remove traces of their activities. The intruders obtain classified files, such as air tasking

order systems data and furthermore penetrate connected networks of National Aero-

nautics and Space Administration’s Goddard Space Flight Center, Wright-Patterson

Air Force Base, some Defense contractors, and other private sector organizations, by

posing as a trusted Rome center user [oD96].

Life and Death: This class concerns the problems that lead to kill people. A typical

example of these problems is Therac 25 incident. Therac 25 is a radiotherapy machine

which includes embedded systems. These one fail so catastrophically that they admin-

ister lethal doses to patients [Lev95].
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Regarding the number of failing projects, software experts are starting to ask questions.

They note that, in order to deal with the complexity of software systems, there is a

strong need to have a well-defined approach, to lean on principles and methods and

finally to have a tool support. This observation leads to the birth of a new discipline:

Software Engineering [Str96].

The term ”Software Engineering” is popularised by F.L. Bauer during the NATO Soft-

ware Engineering Conference in 1968 [NR69]. The underlying idea of this denomination

is to establish and use engineering principles in order to develop software, in an economic

manner, which is reliable and run on real machines [Str96]. Now, both the software de-

velopment process and the product of software development are not only focused on

productivity but on quality as well.

Currently, Software Engineering becomes quite large. Indeed, the Software Body of

Knowledge (SWEBOK) defines the discipline as the application of a systematic, disci-

plined, quantifiable approach to the development, operation, and maintenance of soft-

ware [ABDM01]. Therefore, Software Engineering does not include only software devel-

opment but software operation and software maintenance [Def 1.1]. The profession is

trying to define its boundary and content. Since 2006, the SWEBOK is tabled as an

ISO standard for this purpose (ISO/IEC TR 19759).

Definition 1.1. Software Maintenance is the modification of a software product

after delivery to correct faults, to improve performance or other attributes, or to adapt

the product to a modified environment (ISO/IEC 14764).

1.1.2 Product Line Engineering

The early 1990s, with the Ford’s invention of Assembly Line [Def 1.2], marks the birth

of the Product Line concept [PBvdL05, Ban02, Bri03]. At the time, this invention is a

revolution for the industrial world. In fact, it allows a specialisation of workers in their

tasks that leads to be more productive. Therefore, it enables production for a mass

market much more cheaply than handiwork. Unfortunately, it reduces possibilities for

diversification [PBvdL05].

Definition 1.2. An Assembly Line is an arrangement of machines, equipment, and

workers in which work passes from operation to operation in direct line until the product

is assembled [Ban02].

Over time, industrials observe that there is a rising demand for individualised products.

For example, in the industry of cars, we notice that not all people want the same kind

of car for any purpose. In order to take into account the customer’s wishes, the concept

of Mass Customisation is introduced. The concept is first conceived by Stan Davis in
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”Future Perfect” and represents the large-scale production of goods tailored to individual

customers’ needs [PBvdL05, Dav96, Coo00].

Unfortunately, for companies, mass customisation implies lower profits margin due to

higher technological investments required for its application. To counter this problem,

many companies, especially in the car industry, starts to introduce Common Platforms

[Def 1.3]. This approach enables car manufacturers to offer a larger variety of products

and to reduce costs at the same time [PBvdL05]. The first generic platform to be shared

among a number of vehicles is the Ford Fox Platform in the 1970s [Homb].

Definition 1.3. A platform is any base of technologies on which other technologies or

processes are built.

As a result of applying this approach, the companies using the best platform strategy in-

creases sales by 35% within periods of three years measured from 1980 to 1991. Whereas,

during the same period, the companies starting from scratch for each new series of cars

have a sale loss of 7% [CK98].

The concept of product line that we know at the present time is the systematic combina-

tion of mass customisation and common platforms. Therefore, the purpose of Product

Line Engineering is to establish and use the engineering principles in order to develop

products tailored to individual customers’ needs by using a common base of technology.

The main motivations for Product Line Engineering are notably the reduction of costs,

the enhancement of quality and the reduction of time to market [PBvdL05].

1.1.3 Software Product Line Engineering

Software product line engineering (SPLE) is a combination of Software Engineering and

Product Line Engineering. It uses engineering principles to develop quality software

tailored to individual customer’s needs by using a common base of technology. In the

Software Product Line Engineering context, this common base of technology is called

Software Platform.

A Software Platform is a set of software subsystems and interfaces that form a com-

mon structure from which a set of derivative products can be efficiently developed and

produced. The subsystems belonging to a software platform encompass all Reusable

Artefacts such as requirements models, architectural models, software components, test

plans and test designs.

In practice, engineers tend to mix up the terms ”Reusable Artefact” and ”Feature”. We

conserve here the term ”Reusable Artefact” for a subsystem belonging to a software

platform. Like The Irish Software Engineering Research Centre (LERO), we view the
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terminology ”Feature” as a high level functionality of the Software Platform. Further-

more, practitioners mix up the terms ”Reusable Artefact” and ”Core Asset” as well. We

continue to do this crossover in the next of the thesis.

Including the concepts and the remarks mentioned before, Pohl et al. [PBvdL05] define

a Software Product Line (SPL) as follows.

Definition 1.4. A Software Product Line (SPL) is a set of software-intensive sys-

tems that share, a common, managed, set of features satisfying the specific needs of a

particular market segment or mission and that are developed from a common set of core

assets in a prescribed way”.

1.1.3.1 Variability

With the aim of satisfying the individual customer’s needs in a mass market, the

Reusable Artefacts used in different products of an SPL have to be sufficiently adapt-

able. It means that, for exploiting the full benefits of an SPL approach, we need to

define exactly the places where the products can differ so that they can have as much

in common as possible. This flexibility is commonly called Variability.

Concretely, Variability comes to define upfront the commonalities and variabilities in

products in terms of requirements, architecture, components, and test artefacts [CN01].

This definition specifies the scope of the SPL and generally depends on the business

strategy of the company selling these products.

Because of its importance and because of its crosscutting nature, variability management

is one of the central and most complex aspects of SPLE [BFG+02, LB07]. In order to

tackle the complexity of variability management, a number of supporting modelling

languages, such as Feature Diagrams, have been proposed.

1.1.3.2 SPLE Process

As we can see in Figure 1.1, taken from [PBvdL05], the SPLE community commonly

split the SPLE process into two distinct sub-processes, i.e. Domain Engineering and

Application Engineering. The differentiation is based on one proposed by Weiss and Lai

[WL99]. However, the terminology varies sometimes from one practitioner to another.

For instance, Clements et al. [CN01] use the terminology Core Asset Development and

Product Development for Domain Engineering and Application Engineering respectively.

We conserve the first terminology for the next of this thesis.

Domain Engineering

Pohl et al. [PBvdL05] define Domain Engineering as follows.



1.1 Software Product Line Engineering 6

Figure 1.1: Schema of the SPLE process [PBvdL05]

Definition 1.5. Domain Engineering is the process of SPLE in which the common-

ality and the variability of the product line are defined and realised.

Thus, the purpose of this process is to decide the scope of the product line according

to the company business strategy and, based on this scope, to define the commonalities

and differences of products in the SPL. This definition set up the overall architecture of

the SPL.

The commonalities, i.e. all properties or functionalities common to all products of

the SPL, are implemented in the form of Reusable Artefacts while differences, i.e. all

properties or functionalities that differ among products of the SPL, are defined in terms

of Variation Points (a property or a functionality of the product that can vary) with their

associated Variants (the different variations of this property or functionality) [CHW98].

For instance, a Variation Point could be the colour of the product and the variants the

yellow, red, and green colours.

Application Engineering

Pohl et al. [PBvdL05] define Application Engineering as follows.

Definition 1.6. Application Engineering is the process of SPLE in which the ap-

plications of the product line are built by reusing reusable artefacts and exploiting the

product line variability.

Indeed, as we said before, the variability of an SPL is defined in terms of Variations

Points with their associated Variants making the overall architecture of the SPL. The



1.2 Visualisation 7

purpose of this process is to derive a specific product of the SPL by instantiating this

overall architecture and by selecting a combination of appropriated Reusable Artefacts.

In practice, engineers name this process ”Product Derivation” as well.

The instantiation of the overall architecture is realised through the binding of each

Variation Points. This means that for each Variation Points one of its Variants is chosen.

Then, once all Variation Points are bound to Variants, an appropriate combination of

Reusable Artefacts corresponding to these Variants is selected in order to form what is

commonly called a Product Configuration.

In practice, the Product Derivation process is very disparate and encompasses many

ways of doing. This statement can be observed in [DSB05].

1.2 Visualisation

For several years, Computer Science deals with visualisation and its problems. As

MacKinlay [Mac86] said ”computer-based information plays a crucial role in our society.

As a result, an important responsibility of a user interface is to make intelligent use of

human visual abilities and output media whenever it presents information to the user”.

This is always real in today’s society because there are more and more information and

it can be difficult to make sense on a huge volume of information.

Intuitively, we can see visualisation as a method which presents and stores information

in an effective way. Indeed, there are many visual representations for each field (circuit

diagrams, structural plans, UML models, etc) which are used by experts because they

perceive quite lots of advantages. During the information system development we widely

admit the assumption that the graphical representation is very effective [Pet95] and we

are persuaded that slogans like ”a picture is worth a thousand words” are true. However

in the reality, most representations are a barrier to communicate effectively information

[Moo06b]. Indeed, a diagram can be complex for a non-expert who is not familiar with

these kinds of visualisation.

To counter this problem, the purpose of this section is to provide a global picture of

visualisation principles and techniques and then, according to the subject of this thesis,

to present the visualisation use in SPLE.

1.2.1 Visualisation Principles

For the question how can we define visualisation?, the National Science Foundation’s

1987 report, Visualization in Scientific Computing [MDB87], answers as follows.
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Definition 1.7. Visualisation is a method of computing. It transforms the symbolic

into the geometric, enabling researchers to observe their simulations and computations.

Visualisation offers a method for seeing the unseen. It enriches the process of scientific

discovery and is revolutionising the way scientists do science.

We can feel that visualisation is perceived as a method to produce images in order to help

the scientists to visualise their researches. Indeed this definition claims that visualisation

is a revolution in the science world because it enables to see what scientist’s could not

see until now. There are more other recent definitions which are more adapted to the

Computer Science.

Ware [War00] defines visualisation as ”a graphical representation of data or concepts,”

which is either an ”internal construct of the mind” or an ”external artifact supporting

decision making”. In this definition we feel more the computer science visualisation

when, for instance, we have to design a future information system. In this case, vi-

sualisation assists all system stakeholders by representing all data and concept of this

system visually: ”this assistance may be called cognitive support” [TM04]. To address

this assistance challenge, visualisation must use visual representations to amplify cogni-

tion [War00]. From these definitions we can conclude that the visualisation is considered

as a mental activity which distinguishes from tools and techniques.

1.2.1.1 Human Graphical Information Processing

Visual representation is known in cognitive science as an external representation and

it aims to enhance user cognition. As Ware [War00] says ”Most cognition is done as a

kind of interaction with cognitive tools, pencils and paper, calculators and increasingly,

computer based intellectual supports and information system...It occurs as a process in

systems containing many people and many cognitive tools”. All around us, we find visual

representations which use the external world to enhance cognition and allow converting

an internal memory task into an external visual search [CMS99].

Moody [Moo06b] introduces a model of the human graphical information processing

system which is represented in Figure 1.2. This model decomposes the human graphical

information processing into a series of processing stages:

• Perceptual discrimination extracts very fast low-level properties that are de-

tected serially and in parallel from the visual scene to parse it into separate ele-

ments. This first stage is at subconscious level and is largely independent of what

we choose to attend to [War00].

• Perceptual configuration groups the elements (from the Perceptual Discrimi-

nation) together by dividing the visual field into regions and patterns. During this
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Figure 1.2: Model of Graphical Information Processing [BFG+02]

stage we can make mistakes if incorrect information is unintentionally encoded

into the image [Moo06b].

• Working Memory (WM) brings the previously processed image for the active

processing under the conscious control of the viewer’s attention. WM is a tempo-

rary storage with very limited capacity and duration (e.g. cache memory) which

synchronises rapid perceptual processes with slower cognitive processes. This stage

can cause bottle-neck in graphical information processing [Moo06b].

• Long term memory (LTM) is quite contrary of WM. LTM is ”a permanent

storage area with unlimited capacity and duration”, but is relatively slow (e.g. hard

drive). Extracted and stored information in WM is integrated with knowledge from

LTM. There are two types of prior knowledge relevant to diagram understanding:

Domain Knowledge (knowledge about the represented domain) and Notational

Knowledge (knowledge about the diagramming notation) [Moo06b].

This model shows some benefits if we design properly a visual representation because the

perceptual processing time can decrease and so this representation will be more rapidly

load on working memory in order to start the interpretation process [SR96].

1.2.1.2 Human Factors

Previously, we conclude that visualisation is a cognitive processing support to amplify

cognition. We have seen that visualisation address this cognition amplification if we de-

sign properly with adapted visual representations. But a suitable design is not sufficient

because, during the visualisation using, human factors introduce subjectivity. Because

of visualisation is highly subjective, two different people could interpret the same visu-

alisation in different ways. Moreover, a user could find that a specific visualisation is a

great assistance to perform his job while another could find it unusable because it very

hard to use.

Melanie Tory and Torsten Möller [TM04] strengthen the importance of the subjectivity

in visualisation, saying ”how people perceive and interact with a visualization tool can

strongly influence their understanding of the data as well as the system’s usefulness.

Human factors therefore contribute significantly to the visualization process and should

play an important role in the design and evaluation of visualization tools”. Therefore,
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the visualisation effectiveness depends on perception, cognition, and the users’ specific

tasks and goals [TM04].

In conclusion, during a work in the visualisation area we have to be taken into consider-

ation the needs of the end users because they have a direct impact on the visualisation

effectiveness.

1.2.2 Visualisation Techniques

Visualisation is derived into visual techniques which are implemented on tools in order

to satisfy the end users needs. There are many visualisation techniques but we decide

to present two of them which seem interesting for SPLE, i.e. focus-context and graphs,

because most of current the Software Product Line Engineering tools (SPLE-tools) use

these techniques.

1.2.2.1 Focus + Context

The Focus-Context concept describes the problem to find details in a larger context

[War00]. We introduce some techniques which use this concept in order to address this

problem. Card et al. [CMS99] define Focus + Context as follows.

Definition 1.8. Focus+Context starts from three premises: First, the user needs both

overview (context) and detail information (focus) simultaneously. Second, information

needed in the overview may be different from that needed in detail. Third, these two

types of information can be combined within a single (dynamic) display, much as in

human vision.

A well-known focus-context technique is Pan and Zoom. With this technique, users can

use zooming and panning on any diagram to adjust it with the view scale [SZG+96].

However, the problem with this technique is ”when users are zoomed out for orientation,

there is not enough detail to do any real work. When they are zoomed in sufficiently to

see detail, context is lost” [SZG+96]. It is not a real focus-context technique but it is an

important component in any graphical system.

Another technique is the Map-View (or overview). This strategy uses a main view to

show the details of the map and uses a miniature view to display an overview of the

map with the user’s current position in the map [BI90]. Beard et al. [BI90] conclude

”map windows significantly improved user performance [in locating an item on a binary

tree]”.

The principle of Fisheye View (see Figure 1.3) is that ”in many contexts, humans often

represent their own ”neighbourhood” in great detail, yet only major landmarks further
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away” [Fur86]. People prefer to know local events than to have details on events in

further area (for instance, the New Yorker’s View of the United States [Fur86]). From

the formalising generalised fisheye views, Furnas [Fur86] give the following algorithm:

DOIfisheye(x |. = y) = API(x) − D(x, y)

”where DOIfisheye is, according to the fisheye model, the user’s Degree of Interest in

a point, x, given that the current point of focus is y, API(x) is the global A Priori

Importance of x and D(x,y) is the distance between x and the current point y” [Fur86].

Figure 1.3: Map of Washington D.C.

1.2.2.2 Graphs

Graphs are useful to show data’s or concepts where the relations are important. An

example of a graph is shown in Figure 1.4. Graphs make explicit the entities (nodes in

Figure 1.4) and their relationships (links in Figure 1.4). Moreover it is useful for both

comprehension and exploration of the data.

However, Herman et al. [HMM00] make a point by saying ”The size of the graph to view

is a key issue in graph visualization. Large graphs pose several difficult problems. If

the number of elements is large it can compromise performance or even reach the limits

of the viewing platform. Even if it is possible to layout and display all the elements,

the issue of viewability or usability arises, because it will become impossible to discern

between nodes and edges”.

By reason of that, many researches introduce new graph concepts (for more details see

[HMM00]) of which the shared goal is to maximise the used space by a graph. As we

can notice, a basic hierarchical tree layout which is a graph type (Figure 1.5) does not

use efficiently the space and so create an unusable graph.
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Figure 1.4: An Example of a graph

Figure 1.5: A tree layout for a moderately large graph [HMM00]

1.2.3 Visualisation in SPLE

Visualisation is still a non-explored area of SPLE. This is the main reason that we were

affected to this work in our thesis and that we have realised our internship at the LERO

which is a kind of pioneer in this area. The current performed researches are mainly

focused on the Product Derivation process (see section 1.1.3.2). This is why we present

exclusively the visualisation techniques that support this task.

To realise the Product Derivation process, we have to display the SPL to the users. But

”Industrial size product lines can easily incorporate thousands of variation points and

configuration parameters for product customization” [NOH+07]. So, it is important to

have an appropriate visualisation in order to display this big variability and therefore

to realise the product derivation tasks with a little effort.

Visualisation can be described as ”adjustable mappings from data to visual form” [CMS99].

Nestor et al. [NOH+07] present a visualisation reference model which illustrates these
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mappings for variability visualisation in the context of SPLs. This model is shown in

Figure 1.5 and shows a series of data transformation from raw data to human perceiver

(arrows from left to right). The under arrows indicates the adjustment of these trans-

formations by user-operated controls and the dashed arrows indicates that all tasks are

informed by the SPL scenarios (SPL scenarios are given in more details in [NOH+07]).

Firstly Data Transformations maps raw SPL Data (i.e., data about the SPL artefacts,

their variability, and the dependencies among them) into Data Tables in order to achieve

a set of relations that are more structured than the original data and thus easier to

map to visual forms. Then Visual Mapping (Note that Visual Mapping preserves the

data and that it can be perceived well by the human) transforms Data Tables into Vi-

sual Structures (combination between spatial substrates (e.g., nominal or ordinal axis),

marks (points, lines, areas, volumes), and graphical properties (e.g., colour, texture or

intensity)) in order to encode information. The last transformation, View Transforma-

tions, creates Views of the Visual Structures by specifying graphical parameters such

as position, scaling, and clipping in order to interactively modify and augment Visual

Structures to turn static presentations into visualisations. Finally, Human Interaction

enables for the user to control parameters of these transformations. [NOH+07]

Figure 1.6: Reference model for variability visualisation [NOH+07]

Nestor et al. [NOH+07] conclude that ”There are many varieties of visualisation that

could be applied in a software product line context. However, for hierarchical data (which

includes computer programs) various graphs have proven useful”.



Chapter 2

Framework for SPLE-Tools

Evaluation

SPLE is a new discipline of software engineering which becomes more and more impor-

tant in the industry because it permits to realise significant improvements in time-to-

market, cost, productivity, and system quality [NOH+07]. Thereby, SPLE-tools were

developed by the commercial and research areas to support tasks of this new domain.

These tasks include particularly construction of the Reusable Artefacts of the SPL, i.e.

Domain Engineering, and derivation of a specific SPL product,i.e. Application Engi-

neering (see section 1.1.3.2).

As we said in the introduction, our main motivation is to propose a possible solution

to support visualisation in SPLE-tools. The first step to realise this task is to collect

SPLE-tools functions. Accordingly, we need methods which could help us to collect

these functions. ”An organisation needs to have an instrument which would help to

analyse and compare the available tools. Such an instrument could be defined as an

evaluation framework which provides understanding of the artefact quality, its application

and guides through the evaluation process” [Mat05]. The purpose of this chapter is to

adopt a top-down approach by building an evaluation framework which may be use to

find a non-exhaustive functions list for SPLE-tools. This framework could be used to

compare the SPLE-tools to know how they should be improved.

The remainder of this chapter is organised as follows: Section 2.1 explains the steps

of the evaluation framework construction and shows the framework with its evalua-

tion system. Section 2.2 applies the framework on some commercial and research tools

i.e. Gears (BigLever) [Homc], pure::variants [Beu03, psGH], Feature Modeling Plug-in

(FMP) [AC04, iH], XFeature [Homf] and VISIT-FC (Lero tool) [BNP+07, Pre07] and we

gives statistics, strengths and weaknesses for each of them. Finally, Section 2.3 concludes

this chapter.

14
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2.1 Evaluation Framework

As says Matulevicius [Mat05]: ”There is a general belief that if the process is of high

quality it produces a high quality product. In this sense, it is also possible to make a

hypothesis, that if a high-quality tool evaluation process is maintained, its output - the

selected RE-tool1 - will help to prepare high-quality requirements specifications”. If we

apply this statement to the SPL context, the choice of the framework approach seems

to be a significant practice to reuse in order to choose an appropriate tool according the

users specific needs.

2.1.1 Guidelines for framework construction

To construct an evaluation framework, we proceed in two steps. First we create an

appropriate framework skeleton to organise the framework structure. Then we determine

how to fill the skeleton with functions which fit better with the evaluation context. In

order to explain these two steps, we will give some approaches and examples for the

skeleton construction and the skeleton filling.

2.1.1.1 Skeleton Construction

We have focused our attention on three relevant framework skeletons because these

skeleton are created by their authors for the same purpose as this chapter. Firstly Niki-

forova and Sukovskis [NS02] present a framework for evaluation of CASE modelling tools

which includes the following functions: usability (e.g., the usage of the tools is simple,

flexible printing, browser window), functionality (e.g., model relationship analysis, doc-

ument generation, and generation of comments), method and language support (e.g.,

object orientation support, and UML support), integration with other software (e.g.,

Web technology support, integration with MS Office, and integration with DBMS).

Secondly, Post and Kagan [PK00] present a market-based approach which categorises

their evaluation in five major criteria: graphics (e.g., ease of changing class relationships,

ability to search for diagrams that use a particular object, and ease of look ups for

existing definition), teamwork (e.g., version control, multi-user locking, revision history,

multi-user access and data dictionary), prototyping (e.g. ability to merge the modified

code with existing models, code generator, programming language support, ability to

generate code based on models, and inclusion of comments and description), general

features (e.g., vendor longevity, vendor stability, vendor support, quality of on-line help

facilities, and quality of documentation) and object oriented (e.g. support for class

1”Requirements engineering (RE) tools are software tools which provide automated assistance during
the RE process” [Mat05]. For more details about requirements engineering see [GHM08]
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hierarchies and inheritance, support for encapsulation, support for polymorphism, and

support for meta-classes) features.

Finally, Gallagher et al. [GHM08] present a qualitative framework for the assessment

of software architecture visualisation tools. This framework has seven key areas for

describing software architecture visualisation: Static Representation (e.g., source code,

test plans, data dictionaries, and other documentation.), Dynamic Representation (i.e.,

the architectural information that can be extracted during runtime. For instance, in-

heritance and polymorphism.), Views, Navigation and Interaction (e.g., for navigation:

panning, zooming, bookmarking, and rotating. For interaction: selection, deletion,

creation, modification), Task Support (i.e., the ability of the visualisation to support

stakeholders while they are developing and understanding the software architecture),

Implementation, and Representation Quality (i.e., capability of the visualisation to ad-

equately represent the software architecture).

2.1.1.2 Skeleton Filling

After defining each main framework sections, we have to define the specific functions

to fill these sections. We have conserved three approaches to determine functions for a

tool evaluation framework in a specific domain which allow filling the skeleton. First,

expert-based method elicits and gathers the tool functions for the framework close to

researchers and practitioners of the specific domain [NS02, HD97]. The second one

realises market studies in order to find via investigations the most common trends of

the specific domain [PK00]. The third approach is based on the researchers’ personal

experience [HKWB04]. Note that ”all the framework definition approaches are based

on the techniques used for the requirements elicitation. The major limitation of all of

them is availability of the stakeholders, willingness and interest in method or framework

definition”[Mat05].

2.1.1.3 GQM paradigm

The Goal/Metric/Question (GQM) paradigm [BCR94] is a combination of skeleton

construction and filling. The QGM paradigm is used by Gallagher et al. [GHM08] to

identify the tool functions and also the sections for the framework structure. Basili

et al. [BCR94] define three levels in the GQM paradigm: Conceptual level (GOAL)

where a goal is defined for an object, for a variety of reasons, with respect to various

models of quality, from various points of view, relative to a particular environment.

Operational level (QUESTION) where a set of questions is used to characterise the way

the assessment/achievement of a specific goal is going to be performed based on some

characterizing model. Questions try to characterize the object of measurement (product,

process, resource) with respect to a selected quality issue and to determine its quality
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from the selected viewpoint. Quantitative level (METRIC): A set of data is associated

with every question in order to answer it in a quantitative way.

Figure 2.1: Illustration of QGM paradigm [BCR94]

2.1.2 Framework Construction Steps

The framework construction is based on the previous guidelines:

• First step is to elaborate a structure for the framework, i.e. the skeleton.

• Second step is to elicit the functions in order to fill this skeleton.

SPLE is a difficult task due to the youthfulness of the discipline [DSB05]. Indeed, this

characteristic brings a lack of formal scoping in the domain and thus hardness to draw up

skeleton for the framework. In order to help us in the framework construction, we have

used the GQM paradigm to build the framework skeleton and to find the appropriate

functions.

During the first step, based on the SPLE literature, we have set up a list of general

goals. This list includes two sections, i.e. domain and application engineering. This

last one is implicitly split into two sub-sections, i.e. a derivation sub-section (it is

linked to the instantiation of the overall architecture; see section 1.1.3.2) and a product

construction sub-section (it is linked to the Reusable Artefacts selection to build the

product, see section 1.1.3.2). Then we have identified sub-goals which are common to

all main sections. This leads to define three categories inside sections (note that all

categories are not necessary present in every section because some of them don’t require

as much.):

• Interactivity means to perform an action in order to satisfy a purpose.

• Automatic management means that some SPL aspects like constraints that are

automatically managed by the SPLE-tools.

• Visual facilities means visual information in order to perform a further action.
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During the second step, we have found questions for each category thanks to inves-

tigation into commercial and research tools, to our personal experience which is based

on our readings and on an elicitation close to Lero’s researchers. These questions in-

vestigations conduct to identify two other main sections, i.e. common functions which

are tool functions present in all steps of domain and application engineering and quality

requirements (according to ISO 9126) especially pertinent for SPLE-tools. From these

questions we conclude a functions list to evaluate each category. Here is an example of

the application of GQM paradigm:

Goal (Sub-goal) Questions

Domain engineering (Interactivity) The tool allows adding feature?

The tool allows the parametrization of features?

The tool allows adding alternative choice?

The tool allows adding cardinality?

The tool allows adding require constraint?

The tool allows adding exclude constraint?

The tool allows adding mandatory constraint?

Table 2.1: GQM application to domain engineering interactivity

In order to reduce the framework size we have gathered questions into some themes.

In this example, the two first questions have been gathered in the Feature structure

function, the two next questions have been gathered in Alternative choices function and

the last three questions have been gathered in Constraints function.

2.1.3 Framework Presentation

In the remainder, we present the complete framework (Table 2.2) which respects the

skeleton built in the framework construction step. Each function is described in order

to understand their meaning.

2.1.4 Evaluation System

Following the GQM paradigm, we create a metric in order to answer to the questions

in a quantitative way. We have chosen a metric system as we can see in Gallagher et

al. [GHM08]. This metric (Table 2.3) is a quotation included between absent (0) and

excellent (5) feature.

Our weight system is based on a point calculus. On the top, a SPLE-tool can have 1000

points. These 1000 points are distributed among the five main sections as follow. The

domain and application engineering sections get respectively 300 points and 400 points

because these are large essential activities for SPLE-tools. Then the common functions

section gets 200 points because it contains some important functions for SPLE-tools.
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Section Categories Functions Descriptions

Domain En-
gineering

Interactivity Feature structure. Actions to manage a fea-
ture structure (add feature, parameterise feature,
etc.), feature cardinalities to clone features, fea-
ture attributes, etc.
Alternative choice. Actions to manage alter-
native choices (add alternative choice, etc.), al-
ternative choice cardinalities, etc.
Constraints. Actions to manage feature con-
straints (mandatory, optional, etc.), constraints
between features (require, exclude, etc.), etc.
Multiple feature models. Creation of multiple
feature models in the same workspace.
Product line hierarchy. Creation of hierarchy
to manage a set of products lines in a structural
way.
Save/Load a feature model. Get a feature
model that we have saved before.

Automatic
Management

Editor Generation. Generate an editor based
on a meta-model and a display-model to draw a
feature model.
Model Validation. Validate the current feature
model according to a meta-model.
Constraints cancellation. When a feature is
removed from a model, its linked constraints are
automatically cancelled.

Visual Facili-
ties

Commonalities. See the commonalities be-
tween different features.

Application
Engineering:
Derivation

Interactivity Actions on a feature. Set of actions to per-
form a derivation like feature selection, feature
elimination, feature attribute instantiation, etc.
Load/save a configuration. Get a product
configuration that we have saved before.
Interactive process. Process to conduct the
product derivation by reporting problems and au-
tomatic actions due to constraints.
Specific adaptation. Save the need of a specific
adaptation of a feature to prevent it later during
the implementation.
Chose a configuration. Get a product config-
uration within a set of pre-set configurations.

Automatic
Management

Constraints. Automatic check of all constraints
(requires, excludes, etc.) after all user actions
(feature selection, etc.).
Block selection. Block the selection of a non
selectable feature because for instance it is a pre-
set feature for all configurations.
XML file. Mechanisms to generate XML files in
order to be reuse further by other tools.
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Visual Facili-
ties

Visual mechanisms. Intuitive mechanisms to
see problems during the derivation process.
Configuration number. See the number of
possible remaining product configurations.
Auto-selected feature. See difference between
auto-selected feature and manually selected fea-
ture.

Application
Engineer-
ing: Product
Construc-
tion

Automatic
Management

Assembling. Different artefacts are put to-
gether automatically to build the final products
according to the product configuration.

Software assets. Automatic products manage-
ment if changes appear in software assets.
Adaptation. Automatic adaptations of the fea-
ture model based on the number of specific adap-
tations realised for features of this model.
Prevention. Automatic prevention of specific
adaptations of features in a product configura-
tion.

Common
Functions

Interactivity Feature Information. Manage information
about features (name, description, etc.).
Dependencies. Manage dependencies between
features and development artefacts.
Feature model views. Choose from different
views in order to display the feature model ac-
cording to the user needs.
Search. Mechanism to search features in the
model.
Software assets change. Know the impact of
a software assets change.
Undo & redo actions. Undo and redo actions
is possible.

Visual Facili-
ties

Graphical notation. Clear and complete
graphical notation which supports feature mod-
els.
Context. Visualisation mechanisms which do
not lose the context of a large feature model.
Big information quantity. Visualisation
mechanisms to display a big information quan-
tity in a very small space.
Feature information. See information about a
feature.

Quality re-
quirements

Interoperability The capability of the software to interact with
one or more specified systems.

Portability The capability of software to be transferred from
one environment to another.

Co-existence The capability of the software to co-exist with
other independent software in a common envi-
ronment sharing common resources.

Table 2.2: Framework for SPLE-tools evaluation
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Quotation Meaning

0 The function is absent or unknown

1 The function is present but very poor

2 The function is present but bad

3 The function is present but middling

4 The function is present and good

5 The function is present and excellent

Table 2.3: The metric and its meaning

Finally the quality requirements section gets 100 points because it is not really important

for the SPL management but it can be an extra-value for SPLE-tools. Each section

weight is assigned to their functions according to their weight in the SPL management.

Note that this weight system is totally subjective and may be changed according to the

evaluation team needs.

The metrics and the weight system enable to compute a value for each function of

SPLE-tools framework. The formula in Figure 2.4 calculates the value for each quoted

function where Valuefunction represents the global quote of the function for the tool,

Quotefunction represents the quote that user gives for the function and Weightfunction

represents the balancing of the function in the tool. The tool score is got by adding all

the function values.

V aluefunction =

(

Quotefunction

5

)

× Weightfunction

2.2 Tools evaluation

We have applied the framework to some commercial and research tools i.e. Gears

(BigLever) [Homc], pure::variants [Beu03, psGH], Feature Modeling Plug-in (FMP)

[AC04, iH], XFeature [Homf] and VISIT-FC (LERO tool) [BNP+07, Pre07]. We have

tried to evaluate all tools on the same equal footing. Yet some tools are not accessible

because they are not free of charge. So we have decided to use all available documen-

tations (white papers, tools demonstrations, etc.) because tools documentations are as

much important. The evaluation is totally subjective and could lead to opposite results

if it was realised by other evaluators. The detailed tools evaluation is available in the

Appendix A.3 where we have divided some functions into sub-functions in order to be

more accurate in the evaluation. Depending on their needs, any evaluation teams may

set their own sub-functions list for any functions of the SPLE-tools framework.

We present in the Appendix A.1 our detailed interpretation of the tools evaluation

results. In this appendix we find for each tool a strengths and weaknesses report and a

diagram looking the quota between missing and present functions for each main sections



2.3 Conclusion 22

of the SPLE-tools framework. To summarise the main results of the tools evaluation,

Figure 2.5 shows the score for each evaluated tool and therefore shows the tool podium

where the winner is pure::variants.

Figure 2.2: The tools score

2.3 Conclusion

In this chapter we have tried, through a top-down approach, to find required functions

of SPLE-tools in order to provide a good base in the construction of an abstract solution

that could encompass some of these functions. We have chosen to build an evaluation

framework which seemed to be an appropriate method to find most of functions. Our

evaluation framework is not proposed as the best method to find all SPLE-tools functions

and is not proposed as the best formal representation for SPLE-tools functions. But

this evaluation framework is necessary for discussion about these required functions. Of

course this framework is an open question and a subject of future research.

Subsequently, we have applied the framework in practice on five tools coming from the

commercial and research areas. Based on our tool investigation, a global observation is

that SPLE-tools are disparate and contain common functions as well as various. In this

context, it is not easy to characterise and to compare them.



Chapter 3

Challenges Identification

Over the past few years, most of the research efforts are focused on methodological

supports for Domain Engineering in order to facilitate the tasks of the product derivation

process. However, most of the approaches have not bear fruit and consequently there

is a lack of methodological supports for Application Engineering. This situation causes

troubles in organisations and these ones fail to exploit the full benefits of SPLs [DSB05].

Therefore, there is a strong need to bring support for Application Engineering. Thereby,

we leave Domain Engineering to only focus on the product derivation process in the

remainder of this thesis.

Based on our tool investigation, we have seen in chapter 2 that the SPLE-tools are

disparate and contain common functionalities as well as various. This tool investigation

was a good basis to know the main functions required by a SPLE-tool. However it is not

enough to fulfil our motivation of providing a solution to support visualisation in SPLE-

tools. Consequently, the purpose of this chapter is to find some tool challenges that will

be used to conduct our visual solution in the best way. These tool challenges coupled

with the principal tool functionalities investigated in chapter 2 will give us a complete

basis to realise our motivation. Naturally, as we said before, we are now focusing on the

product derivation process. Thus, the tool challenges and the future visual solution will

be focused on this process as well. Furthermore, only the functionalities investigated in

chapter 2 regarding this process will be considered.

Naturally, we have to consider the requirements of SPLE-tools users in order to provide a

useful and practicable solution. As a result, to find good tool challenges requires finding

challenges for the product derivation process. To realise this task, we adopt a bottom-

up approach by analysing product derivation problems, i.e. industry product derivation

problems and problems of our personal experience in the product derivation process.

Then we try to draw from that product derivation challenges. As says the SWEBOK

[ABDM01], it is widely acknowledged within the software industry that software engi-

neering projects are critically vulnerable when the requirements collecting activities are

23
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performed poorly. Thus, we think that this way of doing will help us to guide our visual

solution in the good direction.

For synthesizing concerns we outline the product derivation framework presented by

O’Leary et al. [OBTR07] which introduces a best practice approach for product deriva-

tion by mixing most of the current practices. For each task of the framework we present

the associated product derivation problems by putting them into the context of the

framework.

The remainder of this chapter is organised as follows: Section 3.1 outlines the product

derivation framework presented by O’Leary et al. [OBTR07]. Section 3.2 acquaints,

for each task of the framework, the associated product derivation problems putted into

the context of this framework. Section 3.3 gives, based on the section 3.2, the product

derivation challenges and the tool challenges required to realise these product derivation

challenges. Finally, Section 3.4 concludes the chapter.

3.1 Product Derivation Framework

This section presents the product derivation framework introduced by O’Leary et al.

[OBTR07]. This framework was realised in order to have a best practice approach for

product derivation and is based on the results of an extensive literature review, lengthy

discussions with SPL practitioners and researchers, and reviews of industrial product

derivation practices. Eventually, this framework is expected to assist organisations in

using a structured approach for product derivation activities. However, it is not in

the perspective of providing a best practice approach that we choose to introduce this

framework in this chapter but more for synthesising concerns. Indeed, as we have said

in chapter 1, the product derivation process is very disparate in practice and we think

that this framework is appropriated to have a synthetic view of the product derivation

process which may be used as basis to present the product derivation problems.

As we can see in Figure 3.1, the framework has four main tasks:

• Impact Analysis where the product specific requirements are derived based on

the customer requirements and negotiation with the platform team. This task is

called ”Impact Analysis” because it is crucial for the effectiveness of the product

derivation process that, during negotiation with the platform team, the impact of

implementing customer requirements which cannot be satisfied by a configuration

of the platform assets is well know.

• Reusability Analysis where a partial product configuration is created based on

the product specific requirements and by using the available platform assets. This

task is called ”Reusability Analysis” because it is crucial for the effectiveness of
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the product derivation process that the possibility of reusing an existing product

configuration or not is well know.

• Component Development and Adaptation where new components are de-

veloped (if required) and existing components are adapted to satisfy requirements

which could not be achieved through a configuration of the platform assets.

• Product Integration and Validation where the partial product configuration

is integrated with the developed and adapted components. The integrated configu-

ration is then validated through integration and system testing.

Figure 3.1: Product derivation framework overview [OBTR07]

3.1.1 Impact analysis

In this task (see Figure 3.2) the customer requirements are mapped to platform features.

The product team determines the list of the customer requirements which can be satisfied

by a configuration of the platform assets. Customer requirements, which cannot be

satisfied by existing assets, are negotiated with the customer and platform architect.
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Figure 3.2: Product derivation framework legend [OBTR07]

Customer negotiation is an important and critical aspect of product derivation. The

trade-off here is to meet ideally all of customer’s needs while retaining the profitability

of the platform assets for the whole product line. Time-to-market requirements can

cause the product team to make their own product-specific modifications to core assets.

The satisfied customer requirements and the negotiated requirements are merged to

form the product specific requirements. These product specific requirements are used

to create the product specific test cases. The product specific test cases are used during

system testing in Product Integration and Validation and assist the product team in the

verification of requirements. The product team uses the platform test cases artefacts as

a basis for the creation of the product specific test cases.

3.1.2 Reusability analysis

The main goal of the Reusability Analysis (see Figure 3.3) is to create a partial prod-

uct configuration that maximises the benefits of the platform artefacts and minimises

the amount of product specific development required. Based on the product specific

requirements, the platform team identifies if an old configuration can be reused.

This case is especially viable where a large system is developed for repeat customers, i.e.

customers who have purchased similar types of systems before. Typically, repeat cus-

tomers desire new functionality on top of the functionality they ordered for a previous

product. This way of doing is particularly interesting because it allows speed up the de-

velopment process by choosing a previously tested solution especially in instances when

two or more configurations can be used. In situations where no appropriate existing

configuration can be selected, the product team must derive a new configuration from a

subset of the overall platform architecture. Deriving a new configuration includes select-

ing components from the collection of platform components and setting the parameters

of these components as well.

In both situations, i.e. configuration selection and new configuration derivation, a base

configuration which represents a subset of platform components is produced. At this

stage, it is still possible that some requirements are not satisfied by the base config-

uration. As consequences the product team selects components from the collection of
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Figure 3.3: Impact analysis of the product derivation framework

platform components for, addition to or replacement of, components in the base product

configuration (like in the derivation of a new configuration that includes setting compo-

nent parameters as well). Components selection is particularly delicate because the fact

that a component fits in the configuration depends on the fact whether the component

correctly interacts with the other components in the configuration and no dependencies

or constraints are violated.

A partial configuration is now created and the product team identifies which product

specific requirements are satisfied by this partial configuration. It is possible again that

there are requirements that are not respected by the partial configuration. This means

that these requirements are not available in the platform assets and need to be developed

from scratch. The Product Team is responsible for the development of new components

and adaptation of existing components in order to conform to the new components.
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Figure 3.4: Reusability analysis of the product derivation framework

3.1.3 Component development and adaptation

In the Component Development and Adaptation task (see Figure 3.4) the product team

facilitates the achievement of requirements which could not be satisfied by the par-

tial product configuration by adapting existing and developing new components. The

decision of whether the required component development or adaptation will result in

product-specific code or in adaptation of the entire product line is determined through

a Change Control Board. The Change Control Board is usually constituted of members

of the product team and the platform team. Scoping new development is a difficult

task. Practical arguments such as time-to-market and short term cost frequently cause
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scoping solutions to be selected that are neither optimal for the product itself nor for

the product line as a whole. While platform development must provide a consistently

high-quality platform, product development must meet delivery dates and customer re-

quirements. So, with every software product line development you must decide whether

to integrate a given requirement into the platform or into an individual product only.

If the Change Control Board decides that the component development should occur at

the platform level then the platform team has to adapt or develop new shared artefacts

and release a new version of the platform. Based on the new platform, the product

team must repeat Reusability Analysis for the products under consideration. If the de-

velopment or adaptation is designated to be product-specific then it is the responsibility

of the product development team to implement the required component changes at the

product level.

When a component is built or adapted, initial or tailored versions of a component will

need to be tested rigorously through unit testing. Conventional unit test methods must

be utilised as no product line specific methods have been developed so far.

Figure 3.5: Component development and adaptation of product derivation framework
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3.1.4 Product integration and validation

In Product Integration and Validation (see Figure 3.5), a final integrated product is

created from the partial product configuration and the developed components. The

product is validated through integration and system testing.

During product integration, the newly developed/adapted components are integrated

with the partial product configuration. The Product Team integrates the develope-

d/adapted components and the partial product configuration by writing sufficient ”glue”

code to interface with the components.

The integrated product configuration must undergo product validation. Before product

validation can begin the product team must confirm that no changes in the customer

requirements have occurred. If the customer requirements have changed, the product

team must return to the Impact Analysis and perform a second iteration of the frame-

work to reflect the new requirements in the product. If the customer requirements are

consistent then the product team begins product validation. During product validation

the product is checked for the consistency and correctness of the component configura-

tion in integration testing and for compliance with the product specific requirements in

system testing.

Due to the variability defined in the platform assets, completely testing the platform

assets is impossible except for trivial cases. Integration testing validates the platform

assets for this particular configuration. The integration tests should reuse platform test

artefacts. This also ensures that no new errors appear due to the integration of core

assets with product specific assets.

After integration testing, system testing is performed. System testing verifies if a product

conforms to the product specific requirements. System test artefacts such as the product

specific test cases are already derived from the product specific requirements in the

Impact Analysis.

If the product fails integration testing or system testing then the current configuration

may not provide the required functionality, or some of the selected components simply

do not work together. In this case the product team should repeat either the Reusability

Analysis task or the Components Development and Adaptation task depending on the

required changes.

There are two main reasons why a product may fail integration or system testing. Firstly

the requirements set may change or expand during product derivation, for example, if

the organization uses a subset of the customer requirements to derive the initial configu-

ration, or if the customer has new wishes for the product. Secondly, if the configuration

may not completely provide the required functionality or some of the selected compo-

nents simply do not work together at all.
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If the product is validated through system and integration testing the process is com-

plete and the customer product has been derived.

Figure 3.6: Product integration and validation of product derivation framework

3.2 Product Derivation Problems

Now that we have a synthetic view of the product derivation process, we present the

main product derivation problems put in the context of the framework. The problems

presented in this section come from a combination of our personal experience in the

product process and of a review of the industry problems raised in a case study outlined

by Deelstra et al. [DSB05] (a synthetic view of these problems can be seen in [DSB04]

as well). This case study presents the problems of two societies, i.e. Robert Bosh GmbH

and Thales Nederland B.V., which are large and relatively mature organisations that
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develop complex software systems and face issues during product derivation that are

comparable to other companies. In this sense, we think that the issues of these societies

combined with our personal experience in the product derivation process will give a good

picture of the product derivation problems to guide our research of product derivation

challenges.

In the same vision of the product derivation framework presented before, we give a

synthetic view of the product derivation issues by putting the mixed problems, i.e. the

problems coming from our personal experience combined to the analysed industry prob-

lems of the case study, in the context of the framework. To present the contextualised

problems, we have followed the categorisation given by Deelstra et al. [DSB05, DSB04]

which seems the most logical to focus our attention on problem of particular SPLE con-

cepts. There are three problem categories, i.e. knowledge Externalisation, variability,

and scoping and Evolution.

• Knowledge Externalisation. ”The process of converting tacit knowledge to doc-

umented or formalized knowledge is referred to as externalization” [NT95]. The

problems of this category are associated with tacit knowledge and knowledge ex-

ternalization.

• Variability. This category presents the product derivation problems which come

from the variability of the SPL.

• Scoping and Evolution. There are several approaches in product derivation to

identify the platform assets that should be made reusable in order to deal with

the continuous evolution of a SPL, i.e. reactive product evolution and proactive

product evolution [CN01]. The problems of this category are related to the using

of these evolution approaches in product derivation.

Let us now describe the product derivation problems for each framework task (except for

the production integration and validation where we have decided to not present problems

because they are not linked to the product derivation process but more to the overall

Software Engineering) classified according to the three categories mentioned above.

3.2.1 Impact analysis problems

Knowledge externalization

[KE1]. During the mapping of customer requirements to platform features, it is pos-

sible that requirements are considered like mapped while there are incompatible. This

problem occurs when we choose incompatible requirements due to a bad documentation

and especially a bad documentation of the dependencies between requirements.
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Variability

[V1]. In industrial context, where there are hundreds or even thousands requirements,

it becomes often difficult to do the mapping between the customer requirements and the

platform features due to the very high cognitive complexity that is hard to manage for

the human brain for. That leads to situations where the product team does not know

what requirements are mapped or not. As consequences the product team must do much

verification which could be avoided and that are expensive and time-consuming.

[V2]. A follow-up problem is that platform features are not really structured. This

increases the cognitive complexity of the mapping activity.

Scoping and evolution

[SE1]. It is important to know the effort that will be required to change the platform

assets in order to conform to the unmapped customer requirements while retaining the

profitability of the platform assets for the whole product line. Unfortunately there are

not industry mechanisms to do this activity. For time-to-market reasons, this causes,

like we suggest in the description of the impact analysis, the product team to make their

own product-specific modifications to core assets but sometimes in a none financially

beneficial manner.

3.2.2 Reusability analysis problems

Knowledge externalization

[KE2]. During the derivation of a new configuration and the selection of components

from the collection of platform components for, addition to or replacement of, compo-

nents in the base product configuration, we remark that the selected components are

often incompatibles. This is due to the fact that all compatibility aspects between these

components are not externalised. Generally, this problem is observed in the Product

Validation and Integration task and forces product engineers to return at the Reusabil-

ity task in order to select other components. Consequently, this problem leads to wasted

time.

[KE3]. Furthermore, we see that there are a large number of errors in component

parameter settings due to large amount of parameters with implicit dependencies that

are not externalised. In the same way of the previous one, this problem is generally

observed in the Product Validation and Integration task and forces product engineers

to return at the Reusability task in order to reset parameters leading to wasted time as

well.

[KE4]. Finally, due to the apparent lack of externalising important tacit knowledge,

we observe that there is an occurrence of the two previous problems [KE2 and KE3] in
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successive projects. However, it is also important not to have an over explicit documen-

tation because it decrease the traceability of information between successive projects.

Variability

[V3]. Similarly to the unmanageable number of requirements referred in the Impact

Analysis, one problem of deriving a new configuration is the complexity of the SPL

in terms of number of variation points and variants. This cognitive complexity causes

the process of binding each variation points (see 1.1.3.2) to become unmanageable by

individuals.

[V4]. Furthermore, another problem, which is already referred in the Impact Analysis

and is a cause of the previous problem, is the fact that neither SPLs explicitly organised

variation points. Thereby, product engineers have to deal with many variation points

that are not all relevant for the product which is currently being derived. This problem

increases the complexity of the binding activity.

Scoping and evolution

[SE2]. Generally, when changes in the platform artefacts are realised by a reactive

manner, new versions of components are added to the platform artefacts. This hampers

the components selection because product engineers have to find out which versions of

the components can be connected together leading to wasted time.

3.2.3 Component development and adaptation problems

As we have seen before, this task manages the development of components and adap-

tation of existing components. This task is generally realised through a reactive or a

proactive evolution. Thereby, even if it appears that the problems of this task are linked

to a Knowledge Externalisation or a Variability problem, the nature the problem of this

task are more linked to Scoping and Evolution problems. It is due to the fact that, in

this task, Knowledge Externalisation and Variability problems are the consequences of

Scoping and Evolution problems.

Scoping and evolution

[SE3]. As we said in the description of this task, the decision of whether the required

component development or adaptation will result in product-specific code or in adap-

tation of the entire product line is determined through a Change Control Board. This

decision is very hard to regulate in practice. Practical arguments such as time-to-market

and short term cost cause frequently to select solutions that were neither optimal for the

product itself nor for the product family as a whole from an engineering perspective.
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3.3 Challenges

In the previous section we have presented many product derivation problems. These

problems reflect the product engineer’s needs that could help to fully benefit from a SPL

approach. We have formalised these needs in the form of product derivation challenges.

Naturally these product derivation challenges need a support to be tackle. This support

can be made through tools. As consequences, the product derivation challenges will be

accompanied with tool challenges. These ones coupled with the principal tool function-

alities investigated in chapter 2 will give us a complete basis to realise our motivation.

We first describe the product derivation challenges and then the tool challenges.

3.3.1 Product derivation challenges

• Map the customer requirements with the platform features (e.g. the platform

requirements) in an efficient way, keeping in mind the maximisation of the platform

reusability and the customer satisfaction [KE1, V1, V2, and SE1].

• Select the platform components and set component parameters in an efficient way

in order to avoid inconsistencies in configurations and occurrences of identical

errors/developments in successive projects KE2, KE3, KE4, V3, V4, SE2, and

SE3].

• Have an acceptable quality to quantity ratio documentation in order to avoid the

traceability failure and the ambiguity of information [KE4].

• Have a structured and manageable set of platform features in order to reduce the

cognitive complexity of the SPL [V1, V2, V3, and V4].

• Have an efficient scoping process in order to optimise the quality of the SPL [SE1,

SE2, and SE3].

3.3.2 SPLE-Tool challenges

So as to tackle these industry challenges, the tool support must include:

• A relevant externalisation of the dependencies between all platform features in-

cluding dependencies between their parameters and dependencies between their

different available versions.

• A relevant externalisation of the platform feature information including informa-

tion of their parameters and information about their different available versions.

• A relevant externalisation of information to facilitate the scoping activity.
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• An interactive process for platform features selection (e.g. platform requirements),

including selection of their different available versions, that shows the consequences

of feature choices.

• A panel of relevant views in accordance with the relevance of the accomplished

tasks (e.g. view for the mapping of the customer requirements).

• View mechanisms which reduce the complexity of the SPL (e.g. packaging system

[PBvdL05]).

3.4 Conclusion

In order to fulfil our motivation of providing a solution to support visualisation in SPLE-

tools, we have adopted a bottom-up approach by analysing product derivation problems,

i.e. industry product derivation problems and problems of our personal experience in

the product derivation process and by trying to draw from that product derivation

challenges which represents the product engineers needs. Then, we have found tool

challenges which address these product derivation challenges. In accordance with the

SWEBOK [ABDM01] ideas, we have used this way of doing in order help us to guide

our visual solution in the good direction.

However, we can criticise our problems analysis in the sense that we could use more

case studies to support our product derivation challenges. It is principally for a lack of

time that we have not extended our analysis. This can be the purpose of a further work

in order to find many other problems that could help to refine or improve our product

derivation challenges and consequently the tool challenges.

The tool challenges coupled with the principal tool functionalities investigated in chapter

2 now give us a complete basis to realise our motivation. An overall observation is

that the SPLE-tools functions investigated in the previous chapter are already covering

the tool challenges of this chapter except for the complexity tool challenge, i.e. View

mechanisms which reduce the complexity of the SPL. Thereby, while trying respecting

all tool challenges, the visual solution, that will be outlined in chapter 4, will mainly

focused on the complexity problem.



Chapter 4

Addressing Of Challenges Using

Visualisation

Keeping in mind our main motivation, i.e. to propose a solution to support visualisa-

tion in SPLE-tools, we will try to find a solution that uses visualisation to address most

of SPL-tool challenges from chapter 3 and most of SPL-tool functions from chapter 2.

Among the tool challenges, we focus mainly on the complexity challenge (see Section

3.3) because ”an important issue in this area is to overcome the problem of commu-

nicating information effectively in a high information density environment. Extracting

information from representations of high variability structures can lead to information

overload” [NOH+07]. Furthermore, as we said in chapter 3, an overall observation is that

the SPLE-tools functions investigated in chapter 2 are already covering the SPLE-tool

challenges except the complexity challenge.

Nestor et al. [NOH+07] claim that hierarchical structures including, listings, outlines

and tree diagrams (e.g. [CMS99, HMM00]) can help to manage and visualise information

from a complex structure. But the big issue of the complexity in the visualisation is to

display an amount of information in a limited space. In this way Nestor et al. [NOH+07]

say that ”the presentation of hierarchical information can be improved even if the display

space is limited”. Indeed it exists some visualisation techniques that allow to improve

display space usage, e.g. Venn Diagrams and Tree-Maps [CMS99]. Furthermore, we can

use clustering and semantic zoom on hierarchical structures to reduce the amount of

information on display [NOH+07].

All of these techniques aim to resolve the visualisation problems of the complexity chal-

lenge. But, as seen in the chapter 3, the variability of some SPLs is so high that such

variability becomes hard to manage. Such visual techniques are not very appropriated to

resolve this problem because the complexity makes the visual techniques ineffective and

complex to use. This statement is verified in Figure 4.1. Indeed the variability of this

SPL is so high that it is not easy to manage and visualise it whereas Nestor et al. say

37
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that this visual technique (tree structure) is appropriated for SPL. This example reflects

exactly the map shock issue [Moo06a] and thus that becomes impossible to interact with

this visualisation.

Figure 4.1: An example of ineffective visual technique for a high SPL variability

Our solution does not try to resolve the current complexity with a new visual technique

or by applying an existing visual technique, e.g. fisheye view, in order to know the

effectiveness of this kind of visual techniques on SPLs. However our solution tries to

reduce the current complexity of SPL variability. If the complexity is reduced, we can

use visual techniques in a more effective way. We can find such an approach in Pohl

et al. [PBvdL05] with the packaging system and in the Dopler tool [Homa] with the

decision model. The purpose of this chapter is to provide an abstract visual solution

which gives a description of the new concepts introduced to reduce the complexity of

SPL variability.

The remainder of this chapter is organised as follows: Section 4.1 explains our abstract

visual solution explaining each of its concepts. Section 4.2 introduces a metamodel which

includes Decisions, Features and Components. Section 4.3 shows the adapted product

derivation framework of O’Leary et al. [OBTR07] presented in chapter 3 in order it fits

better with our solution. Section 4.4 gives the working of our solution in the shape of

use cases. Finally section 4.5 concludes this chapter criticising our solution.

4.1 Abstract Visual Solution

Our solution focuses on reducing the complexity of SPL variability. This variability can

incorporate many variation points and so it is hard to display all of them in a simple

and clear way to achieve a product derivation. To deal with this important visualisation

issue, i.e. the complexity challenge, we introduce a concept which will allow reducing

variability. Thanks to this reduced variability, we could achieve a product derivation

with current visual techniques more easily.

Our solution focuses mainly on the complexity challenge but tries to respect the other

challenges found in chapter 3, i.e. the dependencies challenge (see section 3.3). Further-

more it will try to contain the product derivation functions found in chapter 2 as well,
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i.e. automatic management of constraints or intuitive mechanisms to see problems in

the derivation process (see section 2.1.3).

4.1.1 Three abstraction levels

Our solution represents variability into three abstraction levels which are the decisions

i.e. the higher level of variability, the features , i.e. the middle level, and the compo-

nents , i.e. the lower level.

4.1.1.1 Decisions

The decision represents a choice in the higher level of variability. A decision gathers a

set of features and could be described by the following logic formula:

Dec ⇔ f1 ∧ f2 ∧ ... ∧ fn

This high level choice can be realised by customers or application engineers during the

derivation process. They have to traduce their requirements into decision to take on

the SPL. When they select a decision, a set of features is automatically selected as well.

Thanks to decisions, customers or application engineers can easily configure a particular

application of the SPL because a great part of the complexity in the variability is reduced.

The decisions visualisation could display the different possible decisions to take on the

SPL (these decisions have been created beforehand by the domain engineering). It en-

ables to select decisions to make a choice. It enables also to parameterise some decisions

and to show some information about decisions, e.g. name, description, state, dependen-

cies and constraints with others decisions, features and components. The display style

can be in the shape of a structured and hierarchical data list in order to classify and

gather decisions in theme, e.g. list of questions in a directory-style tree representation

(see Figure 4.2), and also in the shape of query-reply sequence where each sequence

represents a step of product configuration, e.g. you can find such sequences on the Mini

car website where you can customise your future Mini car [cH].

4.1.1.2 Features

The feature represents a choice in the middle level of variability. A feature gathers a set

of components and could be described by the following logic formula:

f ⇔ c1 ∧ c2 ∧ ... ∧ cn



4.1 Abstract Visual Solution 40

Figure 4.2: Directory-style tree example with Java

This middle level choice can be realised by application engineers during the derivation

process. When they select a feature, a set of components is automatically selected

as well. Thanks to the features, application engineers can improve easily the product

configuration by resolving the last dependencies conflicts between features or by selecting

some required features.

The features visualisation could display the different SPL features organised in hierarchy.

It enables to select features, to show some information about features, e.g. name, de-

scription, state, dependencies and constraints with decisions, features and components.

As seen in chapter 1, tree structures can be ”a useful visual metaphor for representing

hierarchical structures” [BNP+07].

4.1.1.3 Components

The component represents a choice in the lower level of variability. A set of components

materialise a feature. This low level choice can be realised by application engineers

during the derivation process. Thanks to the components, application engineers can

improve easily the product configuration by resolving the last dependencies conflicts

between components or by selecting some required components.

The components visualisation could display components which have to be used in order

to build the configured product. It classifies the components by Reusable Artefacts

(see section 1.1.3) types into a hierarchy. It enables to show some information about

components, e.g. name, description, versions, parameters, dependencies and constraints

with others decisions, features and components. The display style can be in the shape

of structured and hierarchical list.

4.1.2 Dependencies management

Our solution needs a dependencies management in order to help the customers and the

application engineers during the derivation process. This dependencies management al-

lows avoiding incompatible choices during the derivation of one particular application
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of the SPL. If this management is not achieve, the customers and the application en-

gineers could make incompatible choices during product derivation which could lead to

an invalid state.

Dependencies management includes the management of require and exclude dependen-

cies between decisions, between features and between components. Furthermore we need

a dependencies management between decisions - features and between features - com-

ponents in order to choose appropriated features for the chosen decisions and in order

to choose appropriated components for the chosen features. All of these dependencies

allow an automatic management which will help the users during the product deriva-

tion process. This automatic management will be necessary in order to have beneficial

user interactivity during the derivation process. Moreover it will be very interesting to

have a mechanism to visualise each dependencies. The dependencies visualisation can

be graphical as seen on Figure 4.3 (red line: exclude dependency, blue/green line: re-

quire dependencies) or textual with more information on the dependencies, e.g. name,

dependencies actors.

4.1.3 User interactivity

During the product derivation process customers and application engineers have to

choose among decisions, features and components in order to realise the product config-

uration. These choices are only possible if the tool has an interactive process to conduct

the user. Such an ”interaction is important to get the most out of a visualisation”

[BNP+07]. Therefore interaction includes:

• Actions on visualisation, e.g. selection or elimination of features.

• Intuitive mechanisms to locate easily problems during the derivation process,

e.g. features which are mandatory but not selected.

• An automatic management of constraints which clearly manages users actions

consequences, e.g. verify require and exclude constraints.

• A complete and clear information appropriated to guide the user across the

derivation process.

Thanks to the interactivity combined with the three abstraction levels, our solution can

then find out if the desired user requirements can be satisfy by the SPL. Indeed our

solution determines whether the desired requirements conform to the SPL. Moreover,

our solution guides customers and application engineers during the search of a valid

product configuration.

You can find an example of such an user interactivity (see Figure 4.3) where there are

different kinds of information which allow a quick overview of the product configuration
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state, e.g. colour information can be pre-attentively processed to have a faster interpre-

tation [BNP+07]. We reuse this interactive tree structure in our implementation (see

chapter 5).

Figure 4.3: VISIT-FC Configuration Viewer Showing Features of the RESCU Product
Line [BNP+07]

4.2 The DFC Metamodel

According to our abstract visual solution, we have designed a metamodel, called DFC

Metamodel, including the Decisions, Features, and Components concepts. It proposes

a tripled version of the Feature Metamodel presented by Cawley et al. (for more in-

formation about the Feature Metamodel see [NOH+07, CNP+08]) by adapting this one

for the decisions and the components. Therefore, as we can see in Figure 4.4, the DFC
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Metamodel contains an overall model which includes three sub-models, i.e. a Decision

Model, a Feature Model, and a Component Model.

As we have seen in the previous section, our abstract visual solution manages three

dynamical views where an action in one view has consequences on the two other views.

Thereby, in order to make possible this management, dependencies between the three

sub-models have been added (see Figure 4.4), i.e. ImplementedBy DF between the De-

cision and Feature Model, and ImplementedBy FC between the Feature and Component

Model. The dependencies between the Decision and Component Model are implicit by

following the ImplementedBy DF dependencies and then the ImplementedBy FC de-

pendencies.

Concretely, these inter-model dependencies are one-to-one. The ImplementedBy DF

dependencies materialise a feature implementing a decision. Therefore, if a decision is

implemented by many features, there will be as much ImplementedBy DF dependencies

as there are features implementing the decision. In the same way, the Implement-

edBy FC dependencies materialise a component implementing a feature. Thereby, if a

feature is implemented by many components, there will be as much ImplementedBy FC

dependencies as there are components implementing the feature.

The cardinalities of these dependencies can be criticised in the sense that they are not

optimal. Indeed, if a decision (respectively feature) is implemented by many features

(respectively components), we have to create as much ImplementedBy DF (respectively

ImplementedBy FC) dependencies as there are features (respectively components) im-

plementing the decision (respectively feature). This redundancy could be avoided by

using one-to-many cardinalities.

Furthermore, the metamodel does not contain any mechanisms that avoid inconsistencies

in the SPL. For instance, as we can see in Figure 4.5, it is possible to create a feature B

which implements a decision A and a feature D which implements a decision C while there

is a Requires dependency between the features B and D, and an Excludes dependency

between C and A. In this case, if we choose the decision A, the linked feature B will

be selected as well. Then, thanks to the Requires dependency, the feature B selects

the feature D and this last one selects the decision C which deselect the decision A.

Therefore, the decision A is deselected while it should be selected. This situation is

possible because there is a cycle in the dependencies. This should be avoided through

other constructions in the metamodel.

Unfortunately, these problems do not relieve of our responsibility. This is a choice of

the LERO (with whom we have collaborated to construct this metamodel) who did not

take into account these problems in order to make the meta-model as simple as possible.

The improvement of this metamodel could be the subject of a further work.
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Figure 4.4: DFC Metamodel Overview
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Figure 4.5: Example of inconsistency in the DFC Metamodel

4.3 Adapted Product Derivation Framework

In this part we present an adaptation of the product derivation framework presented in

the chapter 3 in order to fit to our abstract visual solution needs. We describe each step

of this adapted framework. For some steps, use cases also explain how it is possible to

use our visual solution following this framework. We have to be aware that this use cases

list is not exhaustive but it shows the most interesting use cases for the visualisation.

As we can see in Figure 4.6, the adapted framework has three main tasks:

• Impact Analysis where the product specific requirements are derived based on

the customer requirements and negotiation with the platform team.

• Reusability Using where a validated (tested and accepted by the customer)

partial or final product is created based on the platform artefacts.

• Iterative Construction and Testing where some components are adapted or

created from scratch in order to fit at best to the customer needs.

4.3.1 Impact analysis

This task maps the customer requirements with the SPL in order to find a configuration

that satisfies most of customer requirements. Either it already exists a configuration

which is closest with the customer requirements or we derive a new configuration from

the SPL. Then we analyse if all requirements are mapped with the previous configuration.

Otherwise we start the customer negotiation in order to come to a compromise between

the customer requirements and the needed changes on the SPL. Finally we form the

product specific requirements which are prioritised for the development.
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Figure 4.6: Adapted product derivation framework overview

4.3.1.1 Select closest matching configuration

Description: When the application engineer gets the customer requirements he realises

that an existing product configuration respects all or most of customer requirements.

Pre-condition:

• The application engineer knows the customer requirements.

• There is at least one existing product configuration corresponding to the customer

requirements.
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Figure 4.7: Impact analysis of the adapted product derivation framework
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• The tool runs.

Post-condition:

• The application engineer knows the customer requirements.

• There is at least one existing configuration corresponding to the customer require-

ments.

• The tool runs again and an existing configuration corresponding to the customer

requirements was opened.

Flow:

Application Engineer SPLE-Tool

1 Application engineer asks to reuse an
existing product configuration

2 Tool opens a list of all existing product
configurations

3 Application engineer can see informa-
tion about existing product configura-
tions and differences between them

4 Application engineer chooses an exist-
ing product configuration

5 Tool opens the existing product config-
uration into 3 visualisations: decisions,
features and Components

(End of UC)

Table 4.1: Use case - Select closest matching configuration

4.3.1.2 Derive new configuration

Description: When the application engineer gets the customer requirements he realises

that none existing configuration respects all or most of customer requirements. So he

decides to create a new product configuration.

Pre-condition:

• The application engineer knows the customer requirements.

• The tool runs.

Post-condition:

• The application engineer knows the customer requirements.
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• The tool runs again and a new product configuration was started.

Flow:

Application Engineer SPLE-Tool

1 Application engineer asks to create a
new product configuration

2 Tool opens a new product configura-
tion into 3 visualisations: decisions,
features and Components

(End of UC)

Table 4.2: Use case - Derive new configuration

4.3.1.3 Derive new configuration

Description: When the application engineer gets a base configuration (an existing

product configuration or a new product configuration1) he has to derive a product con-

figuration from this base configuration. Either he has to derive from scratch or he has

to continue the derivation of an existing product configuration. In the first case he has

to find a product configuration that respects the most of customer requirements. In the

second case he has to verify if the product configuration respects all of customer require-

ments and he has to continue the derivation if necessary in order to respect the most of

customer requirements. After this step we will know mapped customers requirements

and unmapped customers requirements.

Overall pre-condition:

• The application engineer knows the customer requirements.

• The tool runs and a base configuration is open.

Overall post-condition:

• The application engineer knows the customer requirements.

• The tool runs again and a base configuration is still open.

1 Normal case:

Name: Decision acceptance

Pre-condition: /

Post-condition:
1These two kinds of product configurations are the same except that an existing product configu-

ration has already pre-selected decisions, features and components while it is not the case for a new
configuration.
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• A decision is accepted.

Flow:

Application Engineer SPLE-Tool

1 Application engineer accepte a decision

2 Tool validates this decision

3 Tool manages automatically decisions,
features and components dependencies

(End of UC)

Table 4.3: Use case - Decision acceptance during the mapping of customer require-
ments

2 Alternative case 1:

Name: Decision non-acceptance

Pre-condition: /

Post-condition:

• A decision is not accepted.

Flow:

Application Engineer SPLE-Tool

1 Application engineer does not accept a
decision

2 Tool validates this decision

3 Tool manages automatically decisions,
features and components dependencies

(End of UC)

Table 4.4: Use case - Decision non-acceptance during the mapping of customer re-
quirements

3 Alternative case 2:

Name: Map customer requirement using a query-reply sequence

Description: In this case the application engineer derives with the customer by using

the query-reply sequence. He can switch or back to another step in order to satisfy the

customer requirements. Each step contains some decisions.

Pre-condition: /

Post-condition:

• A derivation step is done

Flow:
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Application Engineer SPLE-Tool

1 Application engineer chooses to do the
derivation in a query-reply sequence
mode

2 Tool opens a new window and proposes
several steps to do the derivation

3 Application engineer selects a step and
accepts (does not accept) decisions in
this step

4 Tool manages automatically decisions,
features and components dependencies

5 Application engineer go to the next
step

(End of UC)

Table 4.5: Use case - Map customer requirement using a query-reply sequence

4.3.1.4 Customer negotiation and modify configuration

In this step the application engineer tries to improve the product configuration with

the customer based on a feasibility study (evaluate the time and costs for changes in

the SPL in order to satisfy unmapped customer requirements). The customer has to

make choices and the application engineer changes the product configuration according

to customer choices and the feasibility study.

It is interesting to keep traces of such requirements because another customer can later

ask the same requirements. In this case the application engineer could take back the

feasibility studies to gain time in the derivation process. Moreover the domain engineer

could implement an unmapped requirement because it was often requested but not

accepted during the customer negotiation due to its impacts on the SPL (time consuming

and costs for the customer).

4.3.1.5 Form product specific requirements

The application engineer will have to open the base configuration in the 3 initial views to

see all taken decisions and all selected features in order to make, in parallel, his product

specific requirements document in an editing tool.

4.3.1.6 Create product specific test cases

The tool will already have automatically selected the specific test cases linked to each

validated decisions. For an unmapped requirement that was accepted during the cus-

tomer negotiation, the specific test cases for this requirement will have to be designed
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by the application engineer and will maybe be added later in the product line if the

domain engineering decides to integrate this requirements in the SPL.

4.3.1.7 Requirements allocated to certain iterations based on priority

In this step the customer and the application engineer prioritise all validated decisions

and the application engineer estimates the effort required to realise these ones. The end

dates of iterations are specified and decisions are allocated to specific iterations (in the

step 23 of the framework) based on their priority.

4.3.2 Reusability using

This task creates and tests the partial product with the platform artefacts. It wonders

if the customer is satisfied with this partial product. Then we consider if we need to

make adaptations of some platform artefacts in order to finalise the product.

4.3.2.1 Select subset of existing components

Description: In this step the application engineer chooses a subset of validated deci-

sions according to the prioritised validated decisions list (step 1.8) in order to create the

partial product.

Pre-condition:

• The tool runs and a base configuration is open.

Post-condition:

• The tool runs again and a base configuration is still open.

• A subset of existing components was chosen.

Flow:

4.3.2.2 Create partial product configuration

In this step the application engineer has to create the partial product that respects the

subset of chosen components in step 2.1. In this case the visual assistance aims to help

the application engineer to find easily the necessary components to realise the partial

product in order to gain time.
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Figure 4.8: Reusability using of the adapted product derivation framework
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Application Engineer SPLE-Tool

1 Application engineer selects all vali-
dated decisions to implement the par-
tial product

2 Tool selects automatically the compo-
nents linked to these decisions except
the ones which have to be adapted

(End of UC)

Table 4.6: Use case - Select subset of existing components

4.3.2.3 Partial product testing

In this step the application engineer has to test the partial product in order to verify if

it works correctly and respects the subset of chosen validated decisions.

4.3.2.4 Identify required component adaptation

In this step the application engineer selects a validated decision for which components

have to be adapted or developed from scratch according to the prioritised validated deci-

sions list. Thereby we obtain new components adaptations to realise or new components

to develop.

4.3.3 Iterative construction and testing

This task represents iterations for adaptations/constructions of artefacts. During these

iterations we achieve and test the artefact adaptations/constructions. Then we integrate

the artefacts adaptations/constructions in the partial product. When a test failure takes

place, it is possible to come back in the reusability using task in order to analyse and

resolve the problem. Finally when the customer requirements don’t fit with the artefacts

adaptations, we come back in the analysis impact in order to make a new elicitation of

customer requirements.

4.3.3.1 Components development

In this step the application engineer has to develop (adaptation or from scratch) one or

several component(s). This step requires special visualisation that is provided with some

tools, i.e. tool for design or for implementation. So we think that a product derivation

tool have not to support this step.
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Figure 4.9: Iterative construction and testing of the adapted product derivation
framework
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4.3.3.2 Components unit testing

In this step the application engineer has to test the developed or adapted components in

order to verify they work correctly. Thus this step does not require a special visualisation

because it is present in others tools that support the editing of such components.

4.3.3.3 Product integration

In this step the application engineer has to integrate the validated developed /adapted

components to the partial product. This step does not require a special visualisation

because it is present in others tools that support such process.

4.3.3.4 Integration and system testing

In this step the application engineer has to test the integrated product configuration

in order to verify if it works correctly and respects all implemented validated decisions.

Therefore this step does not require a special visualisation because it is present in others

tools that support such testing.

4.3.3.5 Request component adaptation/creation at platform level

It would be interesting that the application engineer saves the components adapta-

tions/creations that he made. Therefore the components adaptations/creations will be

integrated in the components visualisation for a future derivation. That means the new

or adapted components have to appear in the decisions and features visualisation. This

has to be achieved by the domain engineer. The application engineer job is limited

to draw up a report on adapted/created components and to add components in the

component view.

In a future derivation, if there are unmapped requirements, the application engineer will

have to look for a new or adapted existing component that does not still appear in the

decisions and features visualisation. This investigation will take place during the feasi-

bility study realised before the customer negotiation. Later the domain engineering will

make the choice to integrate or not the new added components based on the application

engineer report.

4.4 Conclusion

This abstract visual solution intends to prove that a potential exists for the visual

techniques by attempting to reduce what made them ineffective: the complexity presents
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in SPL variability. To address this challenge we introduce three abstraction levels to

represent the variability: decisions, features and components.

Decisions give a hand to application engineer to support an important step forward

through the derivation process. Then application engineer can refine the derivation

thanks to features and components. Even if these two last abstraction levels may be still

complex we will not have to achieve all the derivation in these two levels but only some

refinement choices. Furthermore if the features and components abstraction levels have

a visualisation where we can see intuitively problems (see Figure 4.3), that facilitates

the derivation tasks from a visual point of view.

Our solution is not proposed as the best to address all SPLE-tools challenges. However

this solution intends to address some challenges and that is necessary for discussion

about solutions which want to address SPLE-tools challenges. Of course this solution is

an open question and a subject of future researches.
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Proof Of Concept

In order to illustrate our abstract visual solution, we have developed our own tool. This

tool does not pretend to have a commercial or research value. It is just a prototype used

as support for our thesis. As we are mainly focused on the realisation of a configuration

during product derivation, we have decided to call this tool VISIT-DFC for VISual

and Interactive Tool for Decisions, Features and Components configuration.

VISIT-DFC is based on the metamodel described in chapter 4 and attempts to respect

our abstract visual solution. However, due to the lake of time for implementing the

totality of this solution, we are just focusing on some parts on this one. Consequently,

we describe first the scope of our implementation in relation to the abstract solution and

the visualisation techniques used in our tool. Then we describe the design architecture of

the tool in order to give a global picture of the implementation for further developments

and we give the main VISIT-DFC functions. Finally we conclude by giving a critic of

VISIT-DFC and further developments to realise.

The remainder of this chapter is organised as follows: Section 5.1 gives the scope of the

implementation. Section 5.2 describes the tool architectural design. Section 5.3 presents

the functions of VISIT-DFC. Finally section 5.4 concludes by giving a critic of the tool

and the further developments to realise.

5.1 Implementation Scope

Our tool implements the three visualisations which were introduced in the chapter 4,

i.e. decisions, features and components. Each visualisation has its own view in the

tool. Based on the Lero’s request, we reuse the visual techniques of the VISIT-FC tool

to implement the features and components views. We understand the Lero’s request

because these visual techniques have friendly user interactivity (see Figure 4.3). For the

decisions view, we implement it ourselves in the form of questions and possible answers
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(see Figure 5.1). As our solution asks to display maximum information about decisions,

features and components, we implement a fourth view, called information view, whose

the goal is to display information about a pre-selected element.

Figure 5.1: Decisions view of the VISIT-DFC tool

In order to respect the dependencies management, we implement an automatic man-

agement of all dependencies presented in the metamodel of chapter 4. Thanks to this

automatic management, all actions performed on one of the three views, for instance

the decisions view, generate other automatic actions on the two others views, features

and components views. The display of these automatic actions will be implemented in

a different colour to differentiate them from the user actions. Moreover we implement

a dependencies display mechanism: firstly a textual visualisation which is displayed in

the information view. Secondly a graphical visualisation which is already implemented

in the VISIT-FC visualisation and which is displayed in the features and components

views.

Regarding the user interactivity of our tool, it is already present with the VISIT-FC

visualisation in the features and component views. Indeed this visualisation gathers all

qualities for user interactivity as seen in chapter 4. The decisions view does not require

such user interactivity because the user will only have to answer to some questions.

Problems appear mainly in the features and components views after that the customer

have given his own decisions. Indeed the application engineer needs an interactivity

which allows easily locating problems.

Our tool mainly manages the first task of the adapted product derivation framework

presented in the chapter 4. Indeed our tool with its mechanisms allows mainly identifying

the right product configuration based on the customer requirements. The other tasks of

the adapted framework are not implemented in our tool because of a lack of time.
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5.2 Tool Architectural Design

As we said before, due to the lake of time for implementing the totality of our abstract

visual solution, we are just focusing on some parts of this one. As a result, we have to

choose an architectural design that allows a further completion of the tool user interface

according to the non-implemented parts of our abstract visual solution or according to

new visual needs of SPLE. The best architectural design addressing this requirement is

the layered architecture (for more details on the different types of architectural design,

see [LPR97]).

Indeed, in a layered architecture, a modification in a layer just affects the bottom layer

and the top layer, not the entire architecture. This characteristic makes easier the

maintainability of an implementation. In our case, as we can see in Figure 5.2, the

visualisation part supposed to be extended in the future is situated at the top of the

architecture. It is an advantage in the sense that the visualisation layer has not a top

layer and thus, only the bottom layer, i.e. the visual mapping, will have to be adapted.

Furthermore, a layered architecture increases the readability and the elegance of an

implementation. It allows incremental development and benefit of the object oriented

paradigm mechanisms as well. In this optic, we make easier the work of people who will

have to extend the tool by making the implementation understandable and practicable.

Finally, it is important to note that the architecture respects the reference model for

variability visualisation which follows a series of data transformations from raw data to

human perceiver (see Section 1.2.3).

In the next of this section we describe the different layers of the tool architecture as

represented in Figure 5.2. There are five layers, i.e. the Metamodel layer, the Parsing

layer, the Datagraph layer, the Visual Mapping layer, and finally the Visualisation layer.

5.2.1 Metamodel layer

This layer is our tool basis. It is based on the metamodel described in chapter 4 and

is implemented using the Eclipse Modeling Framework (EMF) [BBM03]. Its main role

is to provide the tool a data model representing a SPL and the operations required to

manipulate this data model. In this intention, EMF provides an editor to define its own

metamodel using the file extension ecore. This editor is not user friendly but a graphical

editor, called Topcased [Homd], with an interactive process to construct the metamodel

is available.

Once the metamodel is constructed, EMF generates the java classes representing the

objects of this metamodel and two java classes allowing manipulating these object types,
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Figure 5.2: The layered tool architectural design

i.e. EPackage and EFactory. The manipulation on these object types consists mainly

on methods for object types creation and access.

Finally EMF allows creating instances of the metamodel which represent models of

particular SPLs. The objects of these instances have the types of the metamodel objects.

Thereby the two classes EPackage and EFactory allow manipulating them. In the

remainder we call the instances of a metamodel SPL models. These one are conserved

under the XML format [Homg] and are used for the loading and saving of SPL data’s

for our tool.

As we can see in Figure 5.3, our implementation uses two SPL models, i.e. the initial

SPL model and the configuration SPL model. The first one represents the base model

of the product line which will be never changed. The second one represents a copy of

the initial SPL model that will be changed through the configuration of the SPL and

will conserve the modifications.

5.2.2 Parsing layer

The parsing layer is responsible of data transfer, i.e. loading and saving, between the

configuration SPL model contained in the metamodel layer and the objects contained

in the datagraph layer (see Figure 5.3). To realise this task, the parsing layer uses the

methods offered by the two classes EPackage and EFactory. Furthermore, this layer is

responsible to create the configuration SPL model by copying the initial SPL model.
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Figure 5.3: Global tool mechanism

5.2.3 Datagraph layer

The datagraph layer is another data representation of the configuration SPL model

loaded in the memory cache by the parsing layer in the form of a graph. It is responsible

to manage the consequences of the user interactivity transmitted by the visual mapping

layer on the datagraph (see Figure 5.3). The datagraph layer has two main advantages.

First its data representation is loaded in the cache memory. This property allows being

more high-performance in terms of tool speed execution. In opposition to permanent

calls to the parsing layer which have to access to the configuration SPL model situated

on the hard drive, this way of doing interacts just two times with the parsing layer, one

time for the loading and one time for the saving, and so interacts just two times to the

hard drive which is slower than the cache memory.

Then its data representation is totally independent of any visualisation techniques. That

allows completing the maintainability objective of the tool by giving a basis that could be

reused for further visual developments and, in our case, to develop the non-implemented

parts of the abstract visual solution in an easy way.

5.2.4 Visual mapping layer

The visual mapping layer has two main roles. First the transformation of the datagraph

objects into visual objects for the visualisation layer. Then ensuring the communication

of the user interactions applied on the visualisation layer to the datagraph layer and to

reflect the consequences of the datagraph management to the visualisation. This layer

can be seen as a mapping layer between the datagraph layer and the visualisation layer

(see Figure 5.3).
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5.2.5 Visualisation layer

The visualisation layer is the tool user interface (see Section 5.1). It displays visually the

datagraph objects and communicates the user interactions performed on the interface to

the datagraph layer through the visual mapping. When the datagraph layer receives user

interaction messages through the visual mapping, it manages the datagraph and reflects

the consequences of the management to the visualisation through the visual mapping

again (see Figure 5.3).

5.3 Tool functions

In this section we present most of the VISIT-DFC functions. We describe each view and

all actions which can be made on these views. To describe the VISIT-DFC functions,

we reuse the instantiation of the metamodel presented in [BNP+07]: Restraint System

Control Unit (RESCU) product line. The RESCU model includes decisions, features

and components of an automotive restraint system. The VISIT-DFC tool interface is

represented in Figure 5.4. We can see the four views, i.e. the decisions view (5.3.1),

the features and components views (5.3.2) and the information view (5.3.3). Of

course this presentation focuses mainly on view functions and does not explain anymore

what we find in these views. See the tool demonstration on the enclosed CD for more

information about tool functions.

Figure 5.4: VISIT-DFC interface
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5.3.1 Decisions view

In this view user has to answer to some questions. He has two possible responses: yes

(green) or no (red). Each action on the decisions view has an impact, i.e. selection

or elimination on the features and components views. This impact is well-visualised

thanks to a highlighting mechanism implemented in the features and components views

(see 5.3.2). Furthermore User can see information about a decision by a right double

click on the desired decision. Decision information will be displayed in the information

view. We can see an example of the decisions view in Figure 5.1.

5.3.2 Features and components views

In these views user has to select or eliminate features/components and there are many

information styles as follows.

• Colour coding to indicate features and components state:

– Green: selected

– Grey: eliminated

– Orange: optional

– Red: mandatory but not selected

• Graphical symbols (cross or tick) with colours to indicate if features and compo-

nents were selected or eliminated by the customer or automatically based on a

dependency:

– Green tick: selected by the customer

– Black tick: selected automatically based on a dependency

– Red cross: eliminated by the customer

– Black cross: eliminated automatically based on a dependency.

• Shaded boxes to indicate that features and components have been pre-configured

at an earlier stage of configuration and are no longer changeable.

In conclusion information can be pre-attentively processed and allow a faster interpreta-

tion. For instance, as seen in Figure 5.5, node 1 is an automatically selected node (black

tick) but this node is a variation point with a mandatory (1..1) choice (red colour).Node

2 is a pre-configured node (shaded boxes) but this node is a variation point with an op-

tional (1..2) choice (orange colour). Node 3 is a pre-configured node (shaded boxes)

but this node is a variation point with a mandatory (1..1) choice (red colour). These
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Figure 5.5: Faster interpretation example

colour codes allow a quick overview of the features/components views to show its cur-

rent states, for instance to see where there are problems within the configuration (red

colour).

Moreover these views include following mechanisms in order to improve the user inter-

activity:

• Highlighting allows visualising rapidly all user actions impacts in the features

and components views (see Figure 5.6).

Figure 5.6: Highlighting example

• Dependencies display allows visualising rapidly dependencies of a feature or a

component. Mutual exclusion is red and requires dependency is green/blue (the

green side shows the feature which requires the other feature) (see Figure 5.7).

• Group cardinalities display allows visualising rapidly the group cardinality by

pointing the mouse on the group (see Figure 5.8).
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Figure 5.7: Dependencies display example

Figure 5.8: Group cardinalities display example

5.3.3 Information view

This view allows visualising all information about decisions, features and components

(in our implementation, information about decisions are only implemented). Textual

information like name, description, dependencies is displayed.

5.4 Conclusion

We have implemented a tool which is a proof of concept of our abstract visual solution.

This tool is not yet complete and is not supposed to be used as basis for a commercial

purpose. It just gives a good overview of what can be done to make easier the work of

the product derivation engineers. We have seen that this fact passes through the using

of friendly visualisation techniques and a good interactive process with the user.

However, VISIT-DFC covers only one task of the adapted product derivation framework

outlined in chapter 4 and the automatic management of dependencies is yet partial.

Therefore, further visual developments have to be done. This is the reason we have

choose a layered architectural design in order to make easier these visual developments.

We keep in mind that the layered architectural design is not the best because a change

in the metamodel could have reflects on the whole architecture but in the sense that
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this metamodel was designed to be the largest as possible, we hope that such change

will not happen in a near future. Thus, the chosen architectural design is a good deal

for the moment.



Chapter 6

Conclusion and Discussion

This chapter aims to conclude this thesis. Its remainder is organised as follows: Section

6.1 reports our overall thesis approach and its linked pros and cons. Section 6.2 presents

our personal contributions in the thesis. Finally, section 6.3 concludes the chapter and

the thesis by giving the possible further works to realise.

6.1 Our Approach

It would be very interesting to report our feedback on the approach used along this

thesis. We have adopted a dual approach which mixes a top-down approach and a

bottom-up approach. For each of them we have registered the pros and the cons as

follows.

6.1.1 Top-down approach

It requires a theoretical analysis of the Software Product Line Engineering domain in

order to find main theories, properties, etc. for the SPLs management. Thereafter,

these elements are changed into SPLE-tools functions which have to be implemented in

order to manage SPLs in a relevant way. By giving significant functions, this approach

aims to address most of developments which have to create effective SPLE-tools. Indeed

this approach allows developers to find most of important and mandatory functions in

order to manage SPLs in a relevant way. However these functions do not maybe address

the user’s needs because this approach does not elicit the requirements close to them.

Moreover this approach does not take into account SPLs problems because it does not

survey existing SPLs management to find their problems.
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6.1.2 Bottom-up approach

It requires a survey on existing SPLs in order to find problems in their management. This

approach allows investigators to discover more specific problems or goals during the SPLs

management. These problems or goals are changed into requirements that SPLE-tools

have to respect to satisfy user’s needs. Thanks to this approach the developed functions

in the tools are more relevant for user’s needs. However the developed solution which

addresses the found problems or goals during the survey could be too specific. Therefore,

this solution would not be reusable for another SPL.

Nevertheless the combination between the top-down and the bottom-up approaches

intends to find a collection of functions, problems and user’s needs for SPLs management.

6.2 Contributions

Firstly we have built a framework for SPLE-tools evaluation. This framework has re-

sulted in a non-exhaustive list of SPLE-tools functions via an investigation of the SPLE

domain. By dint of this investigation we were aware of some current functions of SPLE-

tools and of the lack of quality in some functions. Thanks to this top-down approach,

we have made a step forward in the problem discovering which could be addressed using

visualisation.

With the bottom-up approach we have studied some SPLs problems which complete

the problems found in the top-down approach. Thanks to this case study we have been

aware that most of problems take place during the product derivation process. As a

result we are coming to find some SPLE-tools challenges for this process.

From these challenges we have introduced an abstract solution which addresses the

SPLE-tools challenges. We have focused mainly on a challenge which was not yet ad-

dressed by the existing tool functions: the Complexity challenge. We have noticed that

some visual techniques intended to address this complexity challenge but they were not

really helpful for the user during the product derivation process on an industrial size

SPL.

Our solution introduces three abstractions levels, i.e. decisions, features and compo-

nents, which enable to reduce the cognitive complexity during a product derivation on

a large SPL. Indeed, thanks to the decisions, we realise a forward step in the derivation

process. Then we can refine the product configuration thanks to features and compo-

nents. For this solution, we have updated the feature metamodel of the LERO in order

to fit with these three abstraction levels.

Finally we have developed a prototype which implements the three abstraction levels

and some SPLE-tools functions. This prototype does not claim to be usable but it
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illustrates in concrete terms our solution in order to know if it addresses actually some

challenges.

6.3 Future Work

This section presents the possible further works to achieve on our thesis.

6.3.1 Evaluation Framework

In order to find more SPLE-tools functions and improve the evaluation framework, we

could perform more investigations in the SPLE domain. Furthermore, to realise a more

relevant tool evaluation, we could use more concrete SPLE-tools. The classification

matrix could be improved basing the ranking on the quality and price of the tools as

well.

6.3.2 Challenges

In order to find more problems and user’s needs, we could analyse more existing case

studies. Of course we could realise our personal case study even if that would be a very

heavy task. From these case studies and the SPLE domain theory, we could try to build

a framework for product derivation process evaluation.

6.3.3 Solution using visualisation to address challenges

We could consider a different approach to address challenges. For instance, we could

find a new visual technique or improve an existing visual technique to address some

challenges. In the remainder of our solution, we could try to find how this solution

would be usable in the domain engineering. For instance, how can we add decisions on

an existing SPL?

Furthermore, the DFC Metamodel should be improved to avoid product derivation prob-

lems induced by inconsistencies created during the construction of the SPL. This meta-

model could be improved to avoid redundancy as well. For instance, it should be nec-

essary to avoid creating as much dependencies as there are features implementing a

decision.



6.3 Future Work 71

6.3.4 Prototype

We could complete the DFC-tool prototype based on the missing parts of the abstract

visual solution that are not yet implemented. Furthermore, it would be necessary to

improve the interface of this prototype because we are not java interface experts.



Appendix A

Detailled Tools Evaluation

A.1 Results Interpretation

Here is the strengths and weaknesses of each tool evaluated with the framework. Each

tool score gets a graph where we can see the proportion between absent (purple side)

and present functions (blue side).

A.1.1 VISIT-FC strengths and weaknesses

Strengths

• Derivation process:

– A good interactive process to conduct the product derivation with colour

coding and automatic management of constraints.

– A very good intuitive mechanism to see problems in the derivation process.

Indeed we can see:

∗ Automatically selected features after to have to choose a feature.

∗ Mandatory non-selected feature (red colour).

∗ Hidden sub-feature problems of a feature (red colour).

• In general, Visit-FC have a clear and complete graphical notation during the

derivation and there are some visualisation mechanisms to display a big quantity

of information in a very small space (zooming, panning, drag drop, collapsing).

• Finally, the tool has a good autonomy (do not use Eclipse for instance) and a good

portability (jar file can be use on many operating systems).

Weaknesses
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Figure A.1: VISIT-FC score

• Do not manage the domain engineering and the product construction.

• Do not manage information about features.

• View choice is poor: only tree matrix view (the last one does not bring much

value).

• Effective search of a feature in the model is bad because it is based on the strict

syntax of feature names (i.e. we must respect capital letter).

• There are no visualisation mechanisms that allow to not losing sight of the domain

context. When zooming is switching on, the domain context is completely lost.

Conclusion

It is a good tool to make configurations based on a small model. For the rest it is very

poor.

A.1.2 Gears strengths and weaknesses

Strengths

• An automatic building of the software products after the product derivation.

• A management of changes in software assets by applying them to every product

of the product line.

• Perfect automatic management of constraints due to the effectiveness of the formal

language of the tool.

• Possibility to create software product line hierarchy.

• The autonomy of the tool is good because it does not require specific software’s to

run.
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Figure A.2: Gears score

Weaknesses

• A very bad software product line construction process by using a formal language

specific to the tool.

• A very bad product derivation by using variable instantiations into the formal

language of the tool.

• Visual poverty of the product line management.

• Bad interoperability of the tool because it produces file formats specific to the tool

and so, these can not be reused by other tools.

Conclusion

This tool has a good management of the product construction but is above all an expert

tool and thus hasn’t good visualisation mechanisms for domain engineering and product

derivation.

A.1.3 Pure::variants strengths and weaknesses

Strengths

• Good management of feature information’s by using tabs in the Eclipse environ-

ment.

• Good management of domain engineering and product derivation with a lot of

views to facilitate these tasks.

• Special view to compare commonalities between configurations.

• Very good automatic management of constraints during the product derivation.

• Possibility to manage linkage between the feature model and the implementation.
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• Explicit mechanisms to find problems in the product derivation very quickly.

• Possibility to do undo and redo actions.

• Possibility to call functionalities of other programs, i.e. code generation and com-

pilation.

• Good portability because it runs with Eclipse.

Figure A.3: Pure::variants score

Weaknesses

• No possibility to choose the metal-model which will be used by the tool.

• Only a linkage between the feature model and the implementation but not with

other types of software artefacts (requirements, design, tests, ).

• View mechanisms which become unsuitable in a software product line of industry

size.

Conclusion

With its good management of domain engineering and product derivation, this tool

seems to be very good. However there are still some improvements to do for software

product line management in complex systems and for product construction.

A.1.4 Feature Modeling Plug-in (FMP) strengths and weaknesses

Strengths

• Good interactivity during the domain and application engineering. Especially with

its wizard-based configuration that is a very good interactive process to conduct

the product derivation.

• A complete automatic management during the derivation.
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• A good management of the information about feature.

• A good graphical notation except for the constraints between features (see weak-

nesses).

• The choice of different feature model views is not bad because there some additional

view of Eclipse (properties, console, Outline, Navigator,) but the main repository

view of the feature model is very bad.

• There are some visualisation mechanisms to display a big quantity of information

in a very small space (additional view of Eclipse).

• The portability of the tool is good because it runs with Eclipse and the interoper-

ability of the tool is good thanks to the creation of XML file that can be reuse by

another tool.

Figure A.4: Feature Modeling Plug-In score

Weaknesses

• Automatic management in domain engineering is absent (or unknown in the doc-

umentation).

• Poor intuitive mechanisms during the derivation process to see problems.

• Do not manage the product construction.

• The display of the constraints is very bad. It is not easy to see the constraints

between features and it is very hard to see the different types of constraints.

• There are no visualisation mechanisms that allow to not losing sight of the domain

context.

Conclusion

This tool has a good average in its functionality. It allows managing the domain engi-

neering and the derivation process but with a poor visualisation.
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A.1.5 XFeature strengths and weaknesses

Strengths

• Nearly perfect management of domain engineering.

• The choice of different feature model views is not bad because there are some

additional views of Eclipse (properties, console, Outline, Navigator,) but there are

no choices for the main feature model view.

• A good graphical notation except for the constraints between features (see weak-

nesses).

• There are some good visualisation mechanisms that allow to not losing sight of the

domain context as graphical outline view.

• There are some visualisation mechanisms to display a big quantity of information

in a very small space (additional view of Eclipse).

• The portability of the tool is good because it runs with Eclipse and the interoper-

ability of the tool is good thanks to the creation of XML file that can be reuse by

another tool.

Figure A.5: XFeature score

Weaknesses

• Very poor derivation because we must create a new model (the application model)

to do a derivation. Then we must validate it with the family model that we created

before based on a meta-model. After the validation, you must correct the errors

on the application model and then to validate it again. It’s a too long process and

moreover the visual facilities are totally absent during this process.

• Do not manage product construction.
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• The display of the constraints is very bad. It is not easy to see the different types of

constraints and it is very hard to see the constraints between features. Moreover,

it is impossible to see constraints during the derivation process. So if there are

constraints problems, we could see them after the application model validation

(see to first weakness).

Conclusion

This tool is perfect to manage the domain engineering but when we want to make

a derivation, it is very long in its process and is very poor in its interactivity and

visualisation facilities.

A.2 Tools Classification Grid

As a result of this tools evaluation, we have created a grid for tools classification (Figure

6) that could be used by other evaluators to classify their evaluated tool in order to

select the best tool for their company. This grid ranks the tools horizontally based on

functions number that tools do not own and vertically based on the functions quality

that the tools contain.

Figure A.6: Tools classification grid

A.3 Tools Quotation
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Features 

VISIT-

FC Gears

Pure:: 

variants FMP Xfeature

Domain Engineering         

Interactivity         

Feature structure         

Add feature 0 2 4 4 5

Delete feature 0 2 4 4 5

Feature parametrization 0 0 0 0 0

Add feature cardinalities to support cloning 0 2 4 5 5

Delete feature cardinalities to support cloning 0 2 4 5 5

Update feature cardinalities to support cloning 0 2 4 5 5

Add attribute 0 2 0 4 5

Delete attribute 0 2 0 4 5

Update attribute 0 2 0 4 5

Alternative choices     

Add alternative choice 0 2 4 4 5

Delete alternative choice 0 2 4 4 5

Add cardinality 0 2 4 5 5

Delete cardinality 0 2 4 5 5

Update cardinality 0 2 4 5 5

Constraints     

Add require constraint 0 2 4 4 5

Add exclude constraint 0 2 4 4 5

Add mandatory constraint 0 2 4 4 5

Add optional constraint 0 2 4 4 5

Delete require constraint 0 2 4 4 5

Delete exclude constraint 0 2 4 4 5

Delete mandatory constraint 0 2 4 4 5

Delete optional constraint 0 2 4 4 5

Multiple feature models 0 5 5 4 4

Product line hierarchy 0 5 0 0 0

Save/Load a feature model 1 5 5 5 5

Automatic Management     

Editor Generation 0 0 0 0 5

Model Validation 0 5 5 0 5

Constraints cancellation 0 0 0 0 0

Visual Facilities         

Commonalities 0 0 5 0 0

Application Engineering: 

Derivation         

Interactivity         

Actions on a feature         

Select feature 5 1 4 4 0

Deselect feature 5 1 4 4 0

Instantiate attributes of a feature 0 1 0 5 0

Update instantiated attributes 0 1 0 5 0

Figure A.7: Tools Quotation - Part 1
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Load/save a configuration 5 5 5 5 5

Interactive process 4 2 3 5 1

specific adaptation 0 0 0 0 0

Chose a configuration 3 0 5 3 3

Automatic Management         

Constraints         

Verify require constraint 5 5 5 5 3

Verify exclude constraint 5 5 5 5 3

Verify mandatory constraint 5 5 5 5 3

Verify optional constraint 5 5 5 5 3

Verify alternative choice cardinality 4 5 5 5 3

Verify clone cardinality 0 5 5 5 3

Verify instantiated attribute type 0 5 5 5 0

Block selection 5 2 5 5 0

XML file 0 0 0 5 5

Visual Facilities         

Visual mechanisms         

See automatically selected features after to 

have to choose a feature 5 2 5 4 0

See mandatory non-selected feature 5 2 5 0 0

See hidden sub-feature problems of a feature 5 0 0 0 0

Configuration number 0 0 0 5 0

Auto-selected feature 5 0 5 4 0

Application Engineering:  

Product Construction         

Automatic Management         

Assembling 0 5 3 0 0

Software assets 0 5 0 0 0

Adaptation 0 0 0 0 0

Prevention 0 0 0 0 0

Common functions         

Interactivity         

Feature information         

Feature description 0 2 4 5 5

Feature priority 0 0 0 5 0

Occurrence number of a feature 0 0 0 5 0

Specific adaptation number 0 0 0 0 0

Project information 0 0 0 3 3

Dependencies     

Add artefact dependency 0 5 4 1 1

Delete artefact dependency 0 5 4 1 1

Update artefact dependency 0 5 4 1 1

feature model views 1 2 3 3 3

Search 2 2 4 0 0

Software assets change 0 5 0 0 0

Undo & redo actions 0 0 5 0 5

Visual Facilities         

Graphical Notation         

Figure A.8: Tools Quotation - Part 2
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Distinct a feature from a sub-feature 5 2 5 5 5

Distinct a feature group 4 2 5 5 5

See constraints between features 4 2 3 3 1

Distinct constraint types between features 4 2 3 1 1

See name of a feature 5 2 5 5 5

Context 1 0 3 1 3

Big information quantity     

Drag & drop feature 5 0 0 0 5

Collapse feature 5 3 3 5 5

Panning 5 0 0 0 0

Zooming 5 0 0 0 5

Animation 2 0 0 1 1

Degree of user interests 0 1 5 5 5

3D view mechanism 0 0 0 0 0

Feature information 0 3 5 4 4

Tool quality requirements     

Interoperability 1 0 4 5 5

Portability 4 3 4 5 5

Co-existence 0 0 0 0 0

Figure A.9: Tools Quotation - Part 3
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