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Abstract

Concept learning is a central task in artificial intelligence, with numerous applications in
a wide range of domains. The use of evolutionary algorithms (EAs) is a key factor in the
design of robust concept learning systems. Basically, EAs search for the target concept
applying a heuristic stragegy guided by one or more objectives that the concept has to
optimize.

This thesis suggests an upgrade of the existing single-objective Evolutionary Concept
Learner (ECL) system into the Multi-Objective ECL (MOECL) system, in order to make
it more suited for solving complex real-world learning problems. On the one hand,
objectives to be maximized are two performance metrics commonly used to evaluate
binary classifiers (the true positive rate and the true negative rate). On the other hand,
the chosen fitness assignment technique comes from SPEA2, a well known efficient multi-
objective EA. Experimental results show that the performance of the MOECL system is
comparable to that of the original ECL system and other state-of-the art single-objective
concept learning systems. Although no significant improvement over such traditional
systems was observed, supplementary experiments are necessary to pursue an in-depth
evaluation of the MOECL system.

Keywords

computer science, artificial intelligence, concept learning, inductive logic programming,
multi-objective global optimization, evolutionary computation, fitness function, ECL sys-
tem, MOECL system
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Résumé

L’apprentissage de concept est une tâche centrale en intelligence articifielle, avec
de nombreuses applications dans une large gamme de domaines. L’utilisation des algo-
rithmes évolutionnistes (AEs) constitue un facteur clé dans la conception de systèmes
d’apprentissage de concept robustes. Fondamentalement, les AEs recherchent le concept
cible en appliquant une stratégie heuristique guidée par un ou plusieurs objectif(s) devant
être optimisé(s) par le concept.

Ce mémoire suggère une nouvelle version du système mono-objectif Evolutionary
Concept Learner (ECL), le système multi-objectifs Multi-Objective ECL (MOECL), visant
à le rendre mieux adapté à la complexité des problèmes réels d’apprentissage. D’une part,
les objectifs à maximiser sont deux métriques de performance utilisées couramment pour
évaluer des classificateurs binaires (le taux de vrais positifs et le taux de vrais négatifs).
D’autre part, la technique choisie pour attribuer les valeurs de fitness provient de SPEA2,
un AE multi-objectifs connu et efficace. Les résultats expérimentaux montrent que la
performance du système MOECL est comparable à celle du système ECL original et à
celle d’autres systèmes d’apprentissage de concept mono-objectif faisant partie de l’état
de l’art. Bien qu’aucune amélioration significative n’ait été observée par rapport à ces
systèmes traditionnels, des expérimentations supplémentaires s’avèrent nécessaires pour
poursuivre une évaluation en profondeur du système MOECL.

Mots-clés

informatique, intelligence artificielle, apprentissage de concept, programmation logique
inductive, optimisation globale multi-objectifs, algorithme évolutionniste, fonction fitness,
système ECL, système MOECL
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Chapter 1

Introduction

This chapter outlines the present master thesis. References to the mentioned notions
and techniques are given in next chapters where they are explained in detail.

1.1 Context and objective of the thesis

Artificial intelligence is a fascinating research field claiming that the human intelligence
can be simulated by a machine. Among the very numerous subfields of artificial in-
telligence, an essential one is supervised machine learning and, more precisely, concept
learning. This type of learning aims at automatically generating a principle defining a
concept. A concept is a global idea that can represent, for instance, a car, a bird or a
disease. Learning is performed on the basis of a dataset containing positive and negative
examples of the concept (i.e. examples “belonging” or not to the concept). The learned
principle constitutes then knowledge that can be applied to unknown examples, i.e. not
yet treaten. Two main techniques of concept learning are Inductive Logic Programming
(ILP) and Evolutionary Algorithms (EAs).

In ILP, the concept to be learned is represented in the form of a logic program, i.e. a
computer program expressed by means of the First Order Logic (FOL). The concept is
thus composed of a sequence of logic rules, exploited thanks to an interpreter as Prolog.
FOL also serves as representation language for all the problem data: the examples and
the background knowledge, i.e. logic rules and facts giving additional information about
the examples. The goal of an ILP system is thus to induce a logic program confirming
all the positive examples and invalidating all the negative ones from the dataset.

EAs are a family of heuristic algorithms inspired from the Darwinian theory of the
natural evolution, guided by the survival of the fittest. They work iteratively to reach
an approximating solution of a problem, often of an optimization problem. The method
of EAs is to evolve a population that represents a set of (possibly partial) solutions, by
means of stochastic mechanisms creating successive generations of solutions, increasingly
better. The employed stochastic mechanisms are on the one hand, a selection operator
which elects in the current population a certain number of solutions that will reproduce
to give birth to the next generation and, on the other hand, variation operators which
modify effectively the elected solutions-parents to produce new solutions.

1



CHAPTER 1. INTRODUCTION

The “survival” and the probability that a solution will be used to reproduce and
create a new solution in the next generation is determined by a fitness value. This value
assesses the quality of the solution according to a certain number of objectives that the
solution has to optimize. If the problem being solved includes a unique objective, it is
termed “single-objective” and the optimal solution is the one with the best (maximal or
minimal) fitness value. In this case, the fitness value is computed by a single fitness func-
tion implementing the objective. Otherwise, if the problem includes several objectives,
it is qualified “multi-objective” and the EA is called “multi-objective EA (MOEA)”. A
MOEA has to deal with as many fitness functions as the number of objectives that it
has to optimize. This results into the fact that, rather than having one optimal solution,
the problem has a set of compromise optimal solutions, the so-called Pareto optimal set,
tending to be appromized by the MOEA.

The Evolutionary Concept Learner (ECL) system is a system that applies an EA to
ILP. It was developed in 2004 by Prof. Divina on the occasion of his Phd. thesis entitled
“Hybrid Genetic Relational Search for Inductive Learning”. Concretely, the ECL system
uses an EA to realize the induction of a logic program, the evolution process corres-
ponding to the learning process. The population contains logic rules, partial solutions
among which the best ones will be selected to form the final logic program. During
the evolution process, a fitness function computes the accuracy of the logic rules. This
performance metric, to be maximized, is defined as the proportion of examples (positive
and negative) correctly treaten by the rule, among all the examples of the dataset. As
the evaluation is based on this single function, the ECL system is single-objective.

The purpose of this thesis is to improve the ECL system by modifying the single-
objective evaluation of the solutions into a multi-objective evaluation, i.e. modifying its
internal EA into a MOEA. To that end, two steps will be necessary: defining the set
of objectives to optimize and defining a technique to manipulate these objectives. This
multi-objective strategy is expected to guide the search toward the optimal solution in
a more realistic way (indeed, a real-world problem includes in general a lot of aspects
to optimize). Thus, the transformed system should produce a better final result, i.e.
a more performant logic program. In other words, for a given problem, it should learn
a concept that englobes more positive examples and less negative examples than the
concept induced by the original ECL system, the examples being known or unknown.

1.2 Motivations

This section will develop the arguments that motivated the work reported in this thesis,
i.e. the transformation of the ECL system into a multi-objective ECL system.

1.2.1 Why the ECL system ?

Thanks to some important design features, the ECL system exposes the property of
effectiveness, which refers to quality of the output. It is illustrated in Figure 1.1 (page

Multi-objective ECL system - Céline Dandois 2/93



CHAPTER 1. INTRODUCTION

Figure 1.1: Aspects of effectiveness and efficiency in the ECL system (adapted from
[19]).

3). The four main features making the ECL system effective are (1) an encoding of the
solutions (close to the Prolog syntax) that makes their evaluation easier, (2) a selection
operator that promotes diversity of the solutions as well as a good treatment of the
positive examples, (3) user parameters associated with the variation operators that allow
to bias the search toward better solutions, and (4) an optimization phase inside the evo-
lution process (corresponding to repeated applications of the variation operators) that
refines the solutions and increases their fitness. All these points, which will be defined
in detail later in this thesis, give the ECL system a performance similar to or higher than
the performance of other state-of-the-art systems for concept learning.

While effectiveness is the main force of the ECL system, efficiency is its main
weakness. Indeed, in the ECL system, the complex variation operators as well as the
optimization phase increase the computational cost (in term of time) required by the
evolution process. However, as shown in Figure 1.1 (page 3), (5) a stochastic sampling
mechanism of the background knowledge was introduced to control the cost of fitness
evaluation, while it does not prevent the ECL system from finding satisfactory solutions.

Moreover, compared to effectiveness, computational effort is not the main concern for
the type of problems tackled by the ECL system. This is because they are not repetitive
problems, i.e. requiring to find a solution of satisfactory quality very often and rapidly
[24]. So, this lack of efficiency does not matter since it can be compensated for by fast
hardware. The primary goal of the ECL system is to provide an accurate result obtained
in return for a high computational time, rather than a less accurate result generated in
a small amount of time.

1.2.2 Real-world complex problems

Classical search methods, enumerative or deterministic, are able to solve a wide range of
problems [10, 30, 48]. However, they are often ineffective in solving real-world scientific
and engineering complex problems. These frequent problems are qualified irregular,
because they exhibit one or more of the following particularities: high-dimensional, dis-

Multi-objective ECL system - Céline Dandois 3/93



CHAPTER 1. INTRODUCTION

continuous, multi-modal, NP-complete [13].
Stochastic and mathematical optimization approaches, such as EAs [30, 42, 6], were

introduced as alternative techniques to deal with these irregular problems. Despite some
drawbacks as being quite computationally inefficient, MOEAs have many advantages.
The following ones can be cited as particularly important:

• MOEAs evolve simultaneously a set of potential solutions, that is, the population.
This parallelism allows to discover several members of the (approximated) Pareto
optimal set in a single “run” of the algorithm, while traditional mathematical
techniques have to perform multiple separate runs to reach the same result [15].

• MOEAs can assume huge search spaces of potential solutions as well as small and
enumerable ones [34]. They are capable of managing search spaces too vast to
search exhaustively in any reasonable amount of time. And extremely large search
space is frequent in ILP.

• MOEAs are a good means to deal with conflicting objectives, as it happens extre-
mely frequently in real-world problems. Globally, it can be said that they can
maximize benefits and, at the same time, minimize costs of the problem.

• MOEAs have the capacity of coping with complex fitness functions (i.e. disconti-
nuous, variable over time, with many local optima,...), which is a serious concern
for traditional mathematical techniques.

1.2.3 Choice of the objectives

As explained above, the ECL system uses accuracy to compute solutions’ fitness values.
But this metric is susceptible to class distribution of the examples. Therefore, accuracy
cannot always be considered reliable. Another metric, or set of metrics, could be more
profitable and bias the search towards more optimized results, by making the algorithm
more resistant to unbalanced sets of examples.

1.2.4 Evolutivity

Fitness assignment is inherently intricate, also in the ECL system. So, a multi-objective
approach would be an opportunity to create an independent module dedicated to the
management of a set of objectives. Consequently, it would become an easy task to
modify the currently used objectives of the problem, as well as to delete or to add some
ones, as soon as needed or simply desired.

Multi-objective ECL system - Céline Dandois 4/93



CHAPTER 1. INTRODUCTION

1.3 Overview of the thesis

The thesis is structured in the following way. In Chapter 2, basic notions of inductive
logic programming and evolutionary computation are introduced. This allows to see
the difference between single-objective and multi-objective systems. The chapter ends
by explaining how evolutionary computation can be applied to inductive logic program-
ming. All these notions are needed to understand the next chapters as well as to give a
theoretical basis to the transformation of the ECL system.

Chapter 3 presents the state of the art concerning this work. That is, it details first the
ECL system, an evolutionary system for inductive logic programming, highlighting all the
parts influenced by the fitness function. Then it focuses on nine other existing single-
objective concept learning systems that will be used for the experiments, some being
based on evolutionary computation while others are not. Finally, two multi-objective
approaches, able to serve as model to transform the ECL system, are exposed and
compared, in order to justify the chosen approach.

After having explicited the design choices made to conceive the Multi-Objective ECL
(MOECL) system, Chapter 4 gives its general algorithm, followed by a precise description
of the adaptations realized on different elements of the original ECL system. This leads
to distinguish two versions of the MOECL system, each of them implementing a distinct
manner of temporarily evaluating solutions.

A number of experiments on well known datasets are reported in Chapter 5. These
experiments assess the effectiveness of the two developed MOECL systems and aim at,
on the one hand, testing them and on the other hand, comparing their performance with
the original ECL system and with the systems presented in Chapter 3.

At last, Chapter 6 concludes the work of this thesis and proposes some possibilities
for further work.
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CHAPTER 1. INTRODUCTION

1.4 Notations

The principal notations used in this thesis are listed below. Also, all the acronyms used
in this thesis can be found in the index at the end of this document.

Symbol Signification
H the class of all possible hypotheses
h a hypothesis
E a set of examples
E+ a set of positive examples
E− a set of negative examples
e a single example
BK the background knowledge
P (.) the probability of an event
P (A|B) the probability of an event A conditioned to the occurrence of an other

event B
� the Pareto dominance relation (in a minimization problem)
P∗ the Pareto front
PF∗ the Pareto optimal set
|.| the cardinality of a set
N the maximum population size
M the number of objectives to optimize
T the maximum number of generations
t the generation counter
Pt the current population at the t-th generation
Pfinal the final population (in the ECL system)
Childrent the set of the children of the t-th generation (in the MOECL system)
i an individual from Pt, Pfinal or Childrent (representing a hypothesis,

possibly partial)
pi the number of positive examples covered by i
ni the number of negative examples covered by i
Cov(i) the coverage set of i
Cov(e) the covering set of e (in the ECL system)
ACC(i) the accuracy of i
TPR(i) the true positive rate of i
TNR(i) the true negative rate of i
f(i) the fitness value of i (in the ECL system)
S(i) the strength value of i (in SPEA2)
R(i) the raw fitness value of i (in SPEA2)
D(i) the density estimation value of i (in SPEA2)
F (i) the fitness value of i (in SPEA2)

Multi-objective ECL system - Céline Dandois 6/93



Chapter 2

Prerequisites

This chapter presents the different basic concepts underlying the development of this
thesis. Section 2.1 gives an introduction to machine learning (i.e. acquisition of know-
ledge from data) and in particular, to concept learning (where the knowledge is a model
of a certain concept), then to inductive logic programming which is concept learning in
first-order logic. At the end, performance metrics allowing to evaluate learned concepts
are defined and criticized. In Section 2.2, some theory about single-objective and multi-
objective optimization problems is described. It is followed by the description of a special
optimization technique, simulating the principle of natural evolution, called evolutionary
computation. This technique is detailed in both single-objective and multi-objective
cases. Finally, because concept learning (and thus inductive logic programming) can be
considered as an optimization problem, the way in which evolutionary computation can
be applied for solving inductive logic programming problems is discussed in Section 2.3.

2.1 Machine learning and Inductive Logic Pro-

gramming (ILP)

This section talks about the field of machine learning and about the subfield of concept
learning. The latter aims at extracting a target concept (being a binary classifier) from
examples of this concept. A particular case of concept learning is inductive logic pro-
gramming, using first-order logic as representation language for the problem data and
producing a logic program as hypothetized concept. Inductive logic programming is
one of the two mainstays of the ECL system. At the end, three performance evalu-
ation metrics of a binary classifier are exposed, with their advantages and drawbacks.
It is viewed how they can assess a learned concept regarding two desired properties,
completeness and consistency.

2.1.1 Machine learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) whose goal is to
develop methods allowing computers to simulate the human and animal ability to “learn”.
This important domain will be detailed on the basis of [49, 19]. Very broadly speaking,
a machine, called a learner, learns if it automatically improves itself through experience.

7
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More specifically, the artificial learning task depends on the automatic extraction of sen-
sible knowledge from data, based on input values or as an answer to external signals from
the environment. This knowledge, i.e. the information to be learned, is a computational
structure of a certain type, from a function, a logic program, a finite-state machine,
a grammar to a problem solving system [49]. The goal of all these structures is to
recognize a given input and possibly to map it to a desired target output in order to
express a relationship between the data.

Different learning techniques exist both for the synthesis of these structures and for
enhancing already existing structures. In the first case, techniques are termed inductive
learning and consist in producing from scratch a new general formal structure, disco-
vered out of a huge set of specific data. This structure can represent either a complete
model of the data, or a local pattern. In the second case, techniques are termed deduc-
tive learning and consist in analyzing an existing structure in order to improve it into
a form which would be easier, more efficient, refined or adapted to a new environment
of use.

A simple example of machine learning problem is medical diagnosis, where, given a
set of medical characteristics about potential patients and information indicating whether
those patients are actually ill or not, the machine has to learn to decide if a patient is
ill, based on his tests results. A machine learning system can also be used for biometric
authentication. In this case, the system has to acquire understanding of physiological
and behavioral characteristics and then to develop proper mapping from these characte-
ristics to living individuals. At last, robot control can also integrate learning capabilities
to facilitate the direct interaction with the real world and make the robot as autonomous
as possible.

In the remainder of this section, we will introduce the formal notions of machine
learning considering the learning of a function, for reasons of simplicity. All notions are
similar for the other learned structures, only the problem representation language is dif-
ferent (for example, functions use algebra while grammars use an alphabet and regular
expressions). Then the inductive logic programming approach will be refined in the next
subsection.

Assume that the function to be learned by the machine is f , from X to Y . The task
of the learner is to guess what f is and so, to formulate a hypothesis about it. Thus,
learning can be viewed as a search problem in the space of all possible hypotheses about
f that the learner may consider [43], i.e. the class H of functions from X to Y , implicitly
defined by the chosen representation language. This space is called the search space
or the hypothesis space. The result of the learning is thus one of these hypotheses
approximating f , or in other terms, a hypothesized function h. As h is an approximation
of f , it realizes a prediction of the value of f . The ideal result is of course the function
h such that ∀x ∈ X : h(x) = f(x).

Both f and h are functions of a vector-valued input ~x = [x1, x2, ..., xi, ..., xn]T 1

1T indicates the transposition of the column vector to the row vector. This transposed form of
a vector is a more convenient way to write equivalently its original form.
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with n components of three different types: real, discrete or categorical. The term
“categorical” refers to variables that are made up of distinct and separate, i.e. mutually
exclusive, units or categories, generally denoted by a keyword or an integer. gender is
an example of a categorical variable, with the two possible values male and female.
The vector-valued input is called input vector or feature vector. Other names for
the components xi are input variables, features and attributes. An input vector
serves to represent an entity of the problem domain and each of its components defines
a characteristic of this entity. Any hypothesis is written as a conjunction of constraints
on input vector attributes, which can be an equality with a specific attribute value, or
the acceptation, or the refusal, of any possible value.

Back to the medical diagnosis example, a patient could be represented thanks to
this categorical attribute: gender, to this discrete attribute: age, and to these real at-
tributes: size, weight and blood pressure. A particular patient would be associated,
for example, with this vector: [male, 43, 1.82, 88.9, 12.8]T .

The output of the two functions f and h can be a real or a categorical value, or a
vector with components of these types. This distinguishes two kinds of learning problems.

In the case of a real-valued output, h is called a function estimator, its output an
estimate and the learning problem refers to a regression problem. So, the learner
has to discover a continuous function illustrating an estimated relationship between two
or more variables, relationship which allows to explain the variables or to compute one
from the others. Examples of function estimators are neural networks [60] and kernel
methods [39]. An example of a regression problem is finding a function estimator which
could, from a vector containing math aptitude scores of a student, predict his grade in
statistics.

If the output is categorical, h is termed a classifier, a classification model or a
categorizer and its output a label. The learning problem is then a classification pro-
blem or categorization problem. A label is an identifying tag designating a class, or
category, i.e. a collection of similar things. All classes of a problem are ideally exclusive
and exhaustive. So, the learner has to discover a discontinuous function determining what
class a given instance belongs in, possibly among a given number of predefined classes.
A two-classes problem is called a binary classification. An example of a classifier is
decision tree [52]. An example of a classification problem is finding a classifier which
could, from a vector describing a patient (as seen above), establish if the patient suffers
from high blood pressure or not.

An important particular case concerns Booleans, when output values are either a dis-
crete number 1 or 0, or, equivalently, a categorical variable true or false. This defines
the concept learning, i.e. the inference of the general definition of a concept (for
example, a car, a bird, fraud in the use of credit card, the fact of suffering from a disease
or a traffic problem like an accident or a congestion). Boolean output indicates the
membership or the non-membership to the concept. Because Boolean values represent
two classes (the concept and the non-concept), concept learning is a binary classification
problem.

The learning, i.e. the construction of h, is performed on the basis of a training
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set, or learning set, denoted by E, containing representative observed examples, or
samples, instances, of input vectors with the associated desired output (real value
or label). In concept learning, a training example associated with the value 1 by f
is qualified positive example, while a training example having the value 0 is termed
negative example. The subset of E containing the positive examples is denoted by
E+ and its complementary by E−.

When the data have the form of pairs “(input,ouput)”, the learning is called super-
vised learning, since an external supervisor has already treaten the examples to give
the learner further information about the results of the target f (in concept learning,
this means that he has already classified the examples of the concept into positive and
negative ones). There also exists the unsupervised learning but it will not be described
in this work.

The training set aims, as indicated in its name, at “training” the learner to identify h
as the function that best fits the training examples (this assimilation of knowledge from
examples defines a memorization phase). But the training set also aims at making h
capable in the future to deal with new unknown examples, i.e. not present in the training
set but similar to the learned ones (this aspect is realized during a generalization phase).
The quality of a hypothesis depends then on how well it satisfies both memorization and
generalization parts. The supposed principle sub-jacent to the learning supplied with a
training set says that any hypothesis found to approximate the target function f well
over the training examples will also approximate f well over unseen examples.

After training, one commonly proceeds to a testing phase to evaluate the degree of
generalization of the learning result, i.e. h. This experiment is made on a separate set
of unseen examples associated with the corresponding function value. This set, indepen-
dent of the training set, is called test set, or control set.

Quantitative assessment of the application of h on the training set gives its level
of memorization (supposed being proportionaly linked with its level of generalization),
while on the test set, it gives directly an estimation of its predictive power. A common
quality measure is the total number of errors. Performance evaluation metrics for binary
classification will be especially defined in Section 2.1.3 (page 14).

In data-poor situations, it may not be feasible to divide the available examples into
distinct sets dedicated to training and test. Despite this fact, a good validation of the
learner can be obtained by working with resampling techniques, which use the same
examples for both training and test (although not at the same time).

A famous resampling technique is K-fold cross-validation. Suppose all available ex-
amples for the considered learning problem are contained in an initial sample S. This set
is first divided randomly in a partition of K disjoint subsets of examples Si, 1 ≤ i ≤ K
of the same size (in general, K = 10 and furthermore, it is bounded by the size of S).
Secondly, this process, called a fold, is repeated K times: every subset Si, 1 ≤ i ≤ K
is used exactly once as test set to evaluation the hypothesis h constructed thanks to the
remaining subset S \Si used as training set. Finally, the global evaluation of the learner
is estimated as the average of the K evaluations of its results on each fold. This method
is illustrated in Figure 2.1 (page 11).
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Figure 2.1: Illustration of the 10-fold cross-validation method.

In order to guide the search in H and make the learning useful in practice, the hy-
pothesis space has to be limited a priori to a portion of the set of hypotheses. The a
priori information used to perform this limitation reducing the complexity inherent to
machine learning is called a bias. There exist two kinds of learning bias:

• absolute: an absolute bias, also termed a restricted hypothesis-space bias
or language bias, serves to restrict the hypothesis space to a definite subset of
functions. It imposes a constraint on what kind of hypotheses can be represented
by the learner and the set of representable hypotheses form the search space. An
example could be the restriction to linear functions, i.e. first-degree polynomial
functions of one variable in the form of f : R→ R : f(x) = ax+ b, where a and
b are real constants.

• preference: a preference bias, or search bias, serves to determine how the
learner prefers one hypothesis over others, i.e. to define some ordering scheme in
the hypothesis space. An example could be a score attributed to each hypothesis
estimating its utility for the user.

In this section, all essential aspects for the learning of a function of input variables
whose representational form is algebraic expressions were explained. Now these aspects
can be applied in the particular case of inductive logic programming.

2.1.2 Inductive Logic Programming (ILP)

The Inductive Logic Programming (ILP) approach is a subspecialty of machine lear-
ning at the intersection with logic programming [44]. As in machine learning, the goal
of ILP is to induce hypotheses from observed examples and to create new knowledge
from experience. The induction is the basis mode of inference. For its part, logic pro-
gramming gives an elegant representational formalism as well as a semantical orientation
for problem data: computational logic. So, an ILP system learns inductively a logic
program, i.e. a computer program formed by a set of logic rules, which synthesizes a
relational pattern in the data. It is a simple universal representation that allows a wide
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expressivity and is easily manipulated by a machine learning algorithm. The remainder
of this section is based on [49, 19].

ILP has relevant applications in complex domains like engineering (e.g. detection of
traffic incidents and congestions [23]), natural language processing (e.g. text catego-
rization by content [70]), molecular computational biology (e.g. analysis of the three-
dimensional topology of protein structure [67]) and so on.

More precisely, the representation language used in ILP is First-Order Logic (FOL)
[47], whose complete definition can be found in [19, 64]. FOL provides a theoretical
framework for describing, reasoning about and establishing relations between objects
and/or their parts. So, a FOL language represents in a uniform way possible hypotheses
(logics programs) of H, training and test examples, and a domain-specific background
knowledge, i.e. logic rules and facts defining additional information about examples
that correspond to their characteristics, but not necessarily relevant to the learning task.

A logic program works on the basis of a query. When a query is posed to a logic
program, a resolution procedure is launched to check if the query is satisfied by the logic
program. If the query succeeds, the answer will be “yes” or “true”, otherwise the query
fails and the answer will be “no” or “false”. Some results are also possibly computed in
the form of bindings for logic variables contained in the query. The query is executed by
means of an invocation to a program interpreter (for example, Prolog).

Because a logic program produces a binary-valued output, it is a binary classifier (and
more precisely, the logic representation of a concept). It follows that ILP is a technique
applied in binary classification problems (hence, in concept learning problems), where
the set of examples is constituted from positive and negative examples. In this case, the
query can be viewed as the inquiry “Does the logic program entail the given example
?”. And the interpreter actually runs the program with background knowledge facts
appended to it. Then, the positive (resp. negative) examples are the ones for which the
logic program should return “true” (resp. “false”). Furthermore, an example is said co-
vered by a logic program if the latter returns “true” for the example, otherwise it is not.
The set of examples covered by a logic program or a logic rule is called the coverage set.

Figure 2.2 (page 13) presents an example of input data that can be taken by an ILP
system to learn the family relation concept of “father”. The first positive example states
that jack is the father of bill, while the first negative example indicates that jennifer
is not the father of bill. The background knowledge for this problem gives facts about
family relations (e.g. jack is a parent of bill) and other characteristics of people, like the
gender (e.g. jennifer is a woman). Some information of the background knowledge
is useless for the concept of “father”, such as the fact saying that erwan is married to
mylene. Given all these input data, the concept of “father” can be described by a single
logic rule of this form: father(X, Y )← parent(X, Y ),male(X).. This rule should be
the hypothesis outputed by the ILP system.

As ILP deals with learning problems, the induced logic program is expected to me-
morize well, but especially to generalize well if presented unknown examples for which
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Positive examples Negative examples Background knowledge
father(jack,bill). father(jennifer,bill). parent(jack,bill).
father(jack,jennifer). father(jennifer,clint). parent(jack,jennifer).
father(jason,lilly). father(matt,bill). parent(jennifer,bill).
father(matt,jane). father(matt,jennifer). parent(matt,clint).
father(matt,marvin). father(jane,matt). parent(matt,marvin).
father(erwan,ryan). father(jane,marvin). parent(jennifer,clint).
father(erwan,tyler). father(ryan,bill). parent(erwan,ryan).
father(andrew,harrisson). father(ryan,jennifer). parent(erwan,tyler).
father(andrew,dorothy). father(ryan,matt). married(erwan,mylene).
father(harrisson,walter). father(tyler,erwan). relative(jack,bill).
father(harrisson,kate). father(harrisson,andrew). female(jennifer).

father(walter,harrisson). female(kate).
father(kate,harrisson). male(tyler).
father(lilly,harrisson). male(jack).
father(jason,tyler). male(bill).

male(clint).
male(ryan).
male(erwan).

Figure 2.2: Example of input of an ILP system for the concept of “father”.

the needed background knowledge is available anyway. Several properties can be used
to specify a good hypothesis, and thus to define some preference bias: completeness,
consistency and simplicity.

A hypothesis h is said complete iff h covers all the positive examples. A hypothesis
h is said consistent iff h does not cover any negative examples. The examples submitted
to h can be obtained from a training set or from a test set. These concepts are illustrated
in Figure 2.3 (page 14). In summary, ILP could be intuitively defined as follows:

Definition 1
Given a set of positive examples E+, a set of negative ex-
amples E− and a background knowledge BK of the concept
to be learned, expressed in FOL, then the aim of ILP is to
find a logic program hypothesis h such that h is complete and
consistent.

However, both properties are difficult to satisfy in real-world problems. This can be
explained by real-world experimental conditions (for example, the training set can suffer
from missing or incorrect values). For this reason, these strong properties are often
weakened to the advantage of a hypothesis h that treats correctly almost all the positive
examples and incorrectly some fraction of the negative examples. Such a hypothesis,
that fits the data reasonably well, is allowed to be acceptable as a representation of the
learned concept. Some precise performance evaluation metrics of a binary classifier will
be detailed in Section 2.1.3 (page 14).

Simplicity is the third sought property characterizing a good hypothesis. This no-
tion is an adaptation of Occam’s razor principle [22], which says that the simplest
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Figure 2.3: Illustration of completeness and consistency (adapted from [49]).

hypothesis that fits the examples is preferable when multiple equivalent hypotheses are
competing, all other things being equal. A common instanciation of the simplicity cri-
terium is based on the length of logic rules: short rules are better choice than longer
ones. Similarly, logic programs with a small number of logic rules are better choice
than programs with many rules. Such a compact representation allows an easier under-
standing.

2.1.3 Performance evaluation metrics of a binary classifier

This part will present various common metrics used to evaluate the performance, i.e.
the correctness, of a classifier in the context of binary classification. The exposition in
this section is based on [26].

Suppose that the class of positive examples is labeled as p and the class of negative
examples as n. In order to differentiate the actual classes from the predicted ones
produced by the classifier, these latter are labeled as p′ and n′. For a given example, a
given classifier can generate four distinct prediction outputs:

• a True Positive (TP ): the example is classified as p′ and its actual value is also
p. It is synonym with hit.

• a False Positive (FP ): the example is classified as p′ but its actual value is n.
It is synonym with false alarm, type I error.

• a True Negative (TN): the example is classified as n′ and its actual value is also
n. It is synonym with correct rejection.

• a False Negative (FN): the example is classified as n′ but its actual value is p.
It is synonym with miss, type II error.
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Actual class
Row
total

p n

Predicted
class

p′
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Figure 2.4: Confusion matrix and evaluation metrics.

These notions can be illustrated with the medical diagnostic test (for a certain di-
sease), yet mentioned in Section 2.1.1 (page 7). A TP occurs when a person tests
positive and is really ill. At the contrary, a person tested positive while he is sane corres-
ponds to a FP . A TN is produced when a sane person tests negative. At last, a FN
is a negative test result while the person is ill.

In an experiment with P positive examples and N negative examples grouped toge-
ther in a certain set (training or test set), the four above outputs can be expressed
in a table of confusion, or 2X2 confusion matrix 2. This offers a synthesis of the
dispositions of the example set, as presented in Figure 2.4 (page 15).

The values along the major diagonal (from the upper left corner to the lower right
corner) represent the correct decisions made by the classifier, while the values of the
opposite diagonal represent the errors, that is, the confusion, made between the classes
and that have to be avoided as much as possible.

Some relations can directly be derived from the confusion matrix. On the one hand,
P = TP + FN and N = FP + TN and on the other hand, P ′ = TP + FN and
N ′ = TN + FN . Several other performance evaluation metrics can be extracted from
it:

• True Positive Rate (TPR), synonym with sensitivity:

TPR =
TP

P
=

TP

(TP + FN)

2A confusion matrix is a visualization tool typically used in machine learning. Each column
of the matrix corresponds to the set of examples in an actual class and each row corresponds to the
set of examples in a predicted class. The analysis of the relationship between the different values
offers a way to see if the system is confusing two classes, i.e. mislabeling one as another.
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The TPR computes the examples correctly predicted as positive among all positives
examples available during the experiment. It is the proportion of positive examples
classified as such by the classifier. It also can be viewed as the conditional proba-
bility to have a positive prediction if the example is positive in reality, denoted by

P (p′|p) 3. Indeed, P (p′|p) = P (p′∩p)
P (p)

=
TP

P+N
P

P+N

= TP
P

. Further probabilities can be

justified in the same way. The TPR values are included in the interval [0, 1] and a
sensitivity equal to 1 means that the classifier identified correctly all the submitted
positive examples (there are no false negatives). In other words, the classifier is
complete.

• True Negative Rate (TNR), synonym with specificity:

TNR =
TN

N
=

TN

(FP + TN)

The TNR computes the examples correctly predicted as negative among all nega-
tive examples available during the experiment. It is the proportion of negative
examples classified as such by the classifier. It also can be viewed as the condi-
tional probability to have a negative prediction if the example is negative in reality,
denoted by P (n′|n). The TNR values are included in the interval [0, 1] and a
specificity equal to 1 means that the classifier identified correctly all the submitted
negative examples (there are no false positives). In other words, the classifier is
consistent.

• Accuracy (ACC):

ACC =
(TP + TN)

(P +N)

The accuracy is the proportion of true results (both positive and negative) among
all the examples available during the experiment. It represents the degree of close-
ness of the prediction to the actual classification in the set of examples, i.e. how
well the classifier classifies the given examples. The accuracy values are included
in the interval [0, 1] and an accuracy equal to 1 means that the classifier identified
correctly all the positive and the negative examples submitted (there are neither
false negatives nor false positives). In other words, the classifier is, at the same
time, complete and consistent.

3In probability theory, the conditional probability of some event A, given the occur-
rence of some other event B (having a non-null probability), is denoted by P (A|B) and is
read the “probability of A, given B”. Formally, it is defined as the division of the “joint probability
of the events A and B”, that is, the probability of both events together, denoted by P (A ∩B), by
the “unconditional probability of the event B”, that is, the probability of B, regardless of whether
other events did or did not occur, denoted by P (B): P (A|B) = P (A∩B)

P (B) , with P (B) > 0. A

probability P (X) is estimated by number of possible items having the characteristic X
total number of items .
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Other metrics exists, such as the Positive Predictive Value (PPV) and the Nega-
tive Predictive Value (NPV), but they will not be detailed here.

Each of the presented metrics evaluates a certain aspect of the performance of the
classifier. However, they cannot be considered equivalent regarding to their properties.
Indeed, in contrast with accuracy, TPR and TNR are independent of class distribution,
i.e. the proportion of positive to negative examples within the set of examples, and they
are uninfluenced by a change in this class distribution.

This can be explained thanks to the confusion matrix, where the class distribution
is reflected by the relationship of the left column (actual positive class) to the right
column (actual negative class). Any metric that uses values from both columns, such as
accuracy, is inherently sensitive to class skews, i.e. positive or negative concentration of
the mass of the distribution. On the contrary, TPR and TNR are strict columnar ratios
and so, constitute fundamental performance measures.

For example, considering an unbalanced set including 900 examples in the positive
class (P = 900) and only 100 in the negative class (N = 100), the classifier can easily be
biased towards the positive class. Suppose that it classifies as positives the 900 positive
examples and 90 negative ones. It involves TP = 900, FP = 90, TN = 10, FN = 0.
Then, the accuracy will be (900+10)

1000
= 0.91. This value is high but not representative of

the true performance of the classifier, as the classifier has the best possible TPR, equal
to 900

900
= 1, but a TNR very low, equal to 10

100
= 0.1, which defines in total a rather

ineffective classifier.
This difference between the metrics is particularly important in this work. Indeed,

while the accuracy is the metric used inside the ECL system, as it will be seen in Section
3.1 (page 33), TPR and TNR will be integrated inside the MOECL system to replace
accuracy, as it will be seen in Chapter 4 (page 53).

2.2 Optimization problem and Evolutionary Com-

putation (EC)

This section gives the definition of an optimization problem, in both contexts of single-
objective and multi-objective optimization. While in the first case, the optimal solution
is unique, in the second case, the optimum is a set of trade-off solutions, called the
Pareto optimal set when found by means of a technique based on the Pareto dominance
relation. This first part is followed by the notions founding evolutionary computation,
an optimization method which tends to approximate well the Pareto optimal set of the
problem to solve. With inductive logic programming, evolutionary computation is the
second of the two mainstays of the ECL system. The key issues of multi-objective evo-
lutionary computation are finally addressed, since they will influence the transformation
of the ECL system into a multi-objective ECL system.

2.2.1 Optimization problem

The goal of an optimization problem is to find a mathematical object (for example, a
permutation, a vector, etc.) that is the best solution to a given problem. This particular
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object is called the global optimum 4.

An example of optimization problem is industrial machine allocation, aiming, given
machine capacities, startup cost and operating cost, at allocating the manufacturing of
a product to different industrial machines in order to meet a desired production quantity
at minimum cost. As a second example, airlines crew scheduling is meant to allocate
crews most effectively to flights, given a flight schedule, planes assignments and con-
straints on duty periods. A third well known problem is the traveling salesman problem,
which consists, given a set of cities and their pairwise distances (or costs), in finding the
shortest (or least-cost) route going through each city exactly once.

Some basic notions of optimization problems will be introduced formally on the basis
of [13]. Assume that a solution in the problem domain can be encoded by n real distinct
parameters, called decision variables (note that the parameters could be other than
real-valued but their type is fixed to make the explanation easier). They are denoted
by xi, i = 1, 2, ..., n and correspond to the numerical quantities for which values are
to be assigned by the optimization process. So each solution to the problem is mathe-
matically represented by a vector of n decision variables ~x = [x1, x2, ..., xn]T , where
∀i = 1, 2, ..., n : xi ∈ R.

To solve an optimization problem, it is necessary to know how “good” the solutions
are. Assume that a solution in the problem domain can be judged by means of m
criteria, called objectives. These objectives are translated as m computable functions
of the decision variables, called objective functions. They are denoted by fi(~x), i =
1, 2, ..,m. Although it is sometimes not the case in real-world problems, the objective
functions will be assumed simply measured in the same units. To be general, real numbers
will be used, as for decision variables. So, each solution to the problem is associated
with a vector function ~f(~x) = [f1(~x), f2(~x), ..., fm(~x)]T , where ∀i = 1, 2, ...,m : fi :
Rn → R.

The objective functions are then the means to map every point in the decision vari-
able space, representing a potential solution to the problem, to a point in the objective
function space (also called objective space or search space), determining the qua-
lity of the solution according to the values of the objective functions. The goal of the
problem is to optimize this quality. Figure 2.5 (page 19) shows an evaluation mapping
for the case n = 2 and m = 3.

The global optimization problem can then be formally defined as follows:

Definition 2
The global optimization problem is the problem of deter-
mining the vector ~x∗ = [x∗1, x

∗
2, ..., x

∗
n]T which optimizes the

vector function ~f(~x) = [f1(~x), f2(~x), ..., fm(~x)]T .

4The term global is used in contrast with the term local. A local optimum is a solution
better than all those in its neighborhood but is not the best solution of the problem.
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Figure 2.5: MOP evaluation mapping.

According to the problem being solved, the number of objectives can vary. If m = 1,
the problem is called single-objective optimization problem, if m ≥ 2, it is a multi-
objective optimization problem (MOP).

In single-objective optimization problems, as the objective function is unique, the
optimization is either a minimization or a maximization, and the result is easily obtained:
the optimal solution is unique and corresponds to the decision vector with the minimal
or maximal value of the objective function. Then, the global minimum 5 can be defined
this way:

Definition 3
Given an objective function f : Rn → R, for ~x ∈ Rn, the
value f ∗ = f(~x∗) > −∞ is a global minimum iff

∀~x ∈ Rn : f(~x∗) ≤ f(~x)

where ~x∗ is the global minimum solution (not necessarily
unique).

In MOPs, the optimization leads to three different situations. Indeed, the objective
functions are all to be either minimize or maximize, or some have to be minimized and
the others maximized. For simplicity reason, it will be considered that all the objectives
functions are converted in a minimization form.

The notion of “optimum” in a MOP is not so clear as the one in a single-objective
optimization problem. The best solution would be the decision vector ~x∗ such that:

∀i ∈ {1, 2, ...,m},∀~x ∈ Rn : fi(~x
∗) ≤ fi(~x)

An example of this ideal solution is presented in Figure 2.6 (page 20) in the case of
m = 2. But this situation, in which all the objective functions have a global minimum

5The definition for a maximum can be obtained by changing the sense of the inequalities or by
applying this relation of equivalence : min{f(x)} = −max{f(x)}.
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Figure 2.6: Ideal MOP solution in which the two functions have their minimum at
a common point (adapted from [13]).

in Rn at a common point ~x∗, is rare and utopical in real-world problems. In facts, the
multiple objectives to optimize almost always are dependent and conflicting (i.e. one
can only be improved at the expense of another), which results in a partial, rather than
total, ordering on the search space.

Thus, the resolution of a MOP consists in selecting, rather than a single best so-
lution, a set of “compromise” solutions which, when evaluated, produce vectors whose
components satisfy the objectives “as best as possible”. This means that some solutions
of this set are better on certain objectives and some others, on other objectives. All
these solutions are regarded as qualitatively equivalent.

The most adopted notion to define an optimal solution of a MOP is the Pareto opti-
mality which is associated with three other important concepts: the Pareto dominance,
the Pareto optimal set and the Pareto front.

Definition 4
A vector ~u = [u1, u2, ..., um]T Pareto dominates a vector
~v = [v1, v2, ..., vm]T , denoted by ~u � ~v, iff ~u is partially less
than ~v:

(∀i ∈ {1, 2, ...,m} : ui ≤ vi) ∧ (∃i ∈ {1, 2, ...,m} : ui < vi)

The Pareto dominance relation is binary and states a comparison between solu-
tions. u dominates v iff u is better (i.e. lower) or equal to u for all its components and
strictly better for at least one.
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Definition 5
For a given vector objective function ~f : Rn → Rm, m ≥ 2, a
point ~x∗ ∈ Rn is Pareto optimal or efficient iff

∀~x ∈ Rn : ~f(~x∗) � ~f(~x)

In words, ~x∗ is Pareto optimal because there exists no other vector ~x which would
decrease some objective of ~x∗ without causing a simultaneous increase in at least one
other objective, or in other terms, which would be better for all objectives simultaneously.

Definition 6
For a given vector objective function ~f : Rn → Rm, m ≥ 2,
the Pareto optimal set, denoted by P∗, is:

P∗ := {~x ∈ Rn|@~x′ ∈ Rn : ~f(~x′) � ~f(~x)}

The elements of P∗ are termed Pareto optimal solutions
or also efficient solutions.

So, each element belonging to P∗ is Pareto optimal compared to each other element
of Rn.

Definition 7
For a given vector objective function ~f : Rn → Rm, m ≥ 2,
and a Pareto optimal set P∗, the Pareto front, denoted by
PF∗, is:

PF∗ := {~y = ~f = [f1(~x), ..., fm(~x)]T |~x ∈ P∗}

The elements of PF∗ are qualified non-dominated.

The vector objective functions of the Pareto optimal solutions are non-dominated
by all other vectors produced by evaluating every possible solution in Rn (because they
Pareto dominate them) and, more, they are mutually non-dominated. It is important
to note that there may be no apparent relationship between solutions belonging to
the Pareto optimal set. Their common characteristic is that their corresponding vector
objective function belong to the Pareto front. Pareto optimal solutions are thus identified
thanks to their evaluated functional values.

Graphically, the Pareto front is situated in the boundary of the region defined by the
objective functions in the objective space. Figure 2.7 (page 22) shows an example of
2-dimensional Pareto front.

Generally, to find directly an exact analytical expression of the line or the surface
containing the non-dominated points is computationally expensive or even impossible.
Instead, the Pareto front is commonly produced, or at least approximated, pragmatically,
by computing a sufficient number of points in Rn and their corresponding ~f(Rn), to be
able to determine the non-dominated points.
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CHAPTER 2. PREREQUISITES

Figure 2.7: Example of a minimization problem with two objective functions. The
Pareto front is marked with a bold line (adapted from [13]).

Consider for example a MOP with three objective functions f1, f2 and f3 and a set
of three feasible solutions ~x1, ~x2 and ~x3. Assume these solutions produce the following
corresponding vectors:
~f(~x1) = (4.90, 3.85, 0.02)
~f(~x2) = (2.53, 3.85, −5.66)
~f(~x3) = (7.12, 4.01, −1.29)

According to the previous definitions, the vector ~x2 is Pareto optimal, since ∀i ∈
{1, 2, 3} : fi(~x2) ≤ fi(~x1) ∧ fi(~x2) < fi(~x3) and f1(~x2) < f1(~x1). The Pareto optimal

set P∗ is then formed by ~x2 and the Pareto front FP∗ by ~f(~x2). Furthermore, ~f(~x1) and
~f(~x3) are mutually non-dominated, because 0.02 > −1.29 (~f(~x1) does not dominate
~f(~x3)) and 7.12 > 4.90 ∧ 4.01 > 3.85 (~f(~x3) does not dominate ~f(~x1)).

Thanks to the notion of Pareto optimality, the MOP global minimum can be
defined in this way:

Definition 8
Given a vector objective function ~f : Rn → Rm, m ≥ 2, for
~x ∈ Rn, the set PF∗ = ~f(~x∗) > (−∞, ...,−∞) is the global
minimum and the set P∗ is the global minimum solution
set.

Note that there is no universally recognized definition of the MOP’s global optimum.
However, the proposed definition is quite satisfactory since the Pareto optimal set P∗
determines the mathematically “best” available solutions (i.e. the best compromises
regarding the different objectives to optimize). This is justified because when evaluated,
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the resulting Pareto front PF∗ is fixed by the considered MOP (each performance im-
provement in one dimension of these vectors implies necessarily the unfavorable affecting
of another).

Finally, once the Pareto front of the problem has been found, P∗ may be uncoun-
table. For this reason, one or more point(s) among all possible identified solutions will
have to be chosen. The final solution(s) of a MOP come(s) thus from both optimization
and decision processes.

There exist many optimization techniques, each having its own advantages and draw-
backs. The next section will present one of these techniques: evolutionary computation.

2.2.2 Evolutionary Computation (EC)

As machine learning, Evolutionary Computation (EC) is a subfield of AI. The parti-
cularity of this technique is to tackle combinatorial optimization problems, the resolution
of which is arduous for traditional deterministic search methods. An algorithm based on
EC is called an evolutionary algorithm (EA) if solving a single-objective optimization
problem and a multi-objective evolutionary algorithm (MOEA) if solving a MOP.

EC is applied in a lot of domains [38, 55, 50], as image analysis and signal processing,
hardware optimization, bioinformatics, networks and connected systems, music and art,
stochastic and dynamic environments, chemistry, medical diagnosis and planning.

For clearness, EC basic concepts will be first developed for an EA, to allow, in second
place, to highlight the differences implied with a MOEA. The remainder of this section
is based on [73, 13, 19].

Evolutionary algorithm (EA)

An EA is an iterative stochastic method that simulates the process of natural evolu-
tion. Globally, an EA is made up of three main parts: a working memory, a selection
module and a variation module, as depicted in Figure 2.8 (page 24). In analogy with
nature, the memory is a set of living beings, selection corresponds to the competition for
reproduction and resources between living beings, and variation imitates the reproduction
among living beings. Each part will be presented separately, followed by a description of
the way in which these parts interact.

The memory consists in a set containing the currently considered feasible candidate
solutions to the optimization problem. This set is called a population and each solution
an individual (the population size can vary from a small number to several thousands
or even millions of individuals). Each individual embodies thus a possible solution (i.e.
a decision vector) by encoding it in an appropriate computational representation. The
chosen representation usually reflects something about the problem being solved and
creates a mapping mechanism between the problem and the algorithm domains. Histo-
rically, the individuals had the form of a binary string, or string of strings, where each bit
of the string(s) had a particular meaning. Other ways have then been imagined [19], like
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Figure 2.8: General components of an EA [73].

real-valued strings, tree structures, list structures, graph-form representation, high-level
encoding, etc.

The natural evolutionary process, according to the british scientist Darwin, is based
on the concept of natural selection, sometimes also termed survival of the fittest.
So, the definition of an EA requires a function assigning a real scalar fitness value to
each individual, called fitness function. This function, feature of the algorithm domain
(thus defined over the individual’s representation), is always problem dependent. It serves
to measure the quality of each particular solution and then, to establish if it is optimal or
not. In this sense, the fitness function corresponds to an objective function as specified
in Section 2.2.1 (page 17), such that it realizes an evaluation of the individual in the
objective space.

Theoretically, the intent of the EA is to maximize the fitness function since the higher
the fitness value, the more important and “desirable” the individual is among the popu-
lation. But the fitness function could also be minimized equivalently. Note that the
implementation and the evaluation of the fitness function is an important factor in speed
and efficiency of the EA because of its crucial role in the algorithm.

The selection module is subdivided into the mating selection and the environ-
mental selection. Mating selection, usually randomized, aims at electing individuals
from the population to fill a mating pool which will serve as input for variation. By
contrast, environmental selection, usually deterministic, operates after variation, to deter-
mine which ones of the current population members and of the varied individuals will be
kept further (this fractionment of the individuals is required because of limited time and
storage resources). The easiest method consists in taking the modified mating pool as
the new population, but other possibilities exist to combine both sets, as it will be seen
below.

Commonly, a selection operator chooses predominantly above-average individuals
by means of a semi-random technique with a weighting toward the current fitter indivi-
duals. The procedure is not completely deterministic (that is, selecting always the fittest
individual) because weak individuals may also present particular useful characteristics.
Nor completely random in order to cleverly guide the search in the search space. So, the
better the fitness of an individual, the higher is the probability of this individual to con-
tribute to the evolution of the population: the fitness value of an individual influences its
capacity to reproduce and to survive. Note that as mating and environmental selections
are independant phases, they can use different selection operators.
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Figure 2.9: Example of roulette wheel selection with unequal fitness values (adapted
from [13]).

In the scope of this thesis, two popular forms of selection operators will be explained:

• the roulette-wheel selection operator: this operator is inspired from the gam-
bling game of roulette. It associates each individual of the population with a
pocket of a virtual wheel. Contrary to the real game, the selection probability is
not equal for all the individuals but it is proportional to its fitness. Indeed, the
pocket sector size is proportional to the ratio of the individual’s fitness value and
the average fitness of the population. Formally, given an individual i with a fitness
value f(i), its probability of being selected is equal to P (i) = f(i)PN

j=1 f(j)
, where N is

the number of individuals in the population. The advantage of the roulette-wheel
selection is that, compared to other semi-random techniques, it offers the greatest
chance to weaker individuals to be selected. This operator is illustrated in Figure
2.9 (page 25).

• the tournament selection operator: the tournament metaphor refers to a com-
petition between several contestants. This operator chooses randomly a number
k of individuals from the population and selects the “best” as the winner, i.e. the
individual with the highest fitness value. The higher k, the smaller is the chance of
selecting weaker individuals. In practice, k is often equal to 2 and in this case, the
operator is called binary tournament selection operator. A tournament with
k = 1 is equivalent to random selection. Tournament selection has several bene-
fits like being efficient to code and having less stochastic noise than roulette-wheel
selection.

The goal of the third module, the variation module, is to transform the given indivi-
duals of the mating pool into potentially better ones, by applying systematic or random
representational modifications. In other words, one or more parent(s) give birth to one
or more child(ren), also called offspring. Two variation operators exist, namely the
recombination operator, or crossover operator, and the mutation operator. Be-
cause they do not directly involve the fitness value, they will not be discussed in detail
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ALGORITHM(EA)
1 Initialize the population
2 Evaluate the fitness of each individual in the population
3 While (termination conditions not satisfied) do
4 Select parent(s) to reproduce
5 Apply mutation and/or recombination operators to create an offspring
6 Evaluate the fitness of the offspring
7 Insert the offspring in the population
8 Extract a solution from the population

Figure 2.10: Generic EA.

here. Additional information can be found in [13, 19]. By creating new individuals, the
variation operators allow to move in the search space. Note however that due to random
effects, it is possible for a child to be simply a copy of an already found solution or even
of its parent if this was not affected by variation.

Now that the three basic components of an EA were described, their interaction can
be addressed. Mating selection, variation and environmental selection are consecutive
steps of the evolution of the population. One iteration of this cycle gives a new genera-
tion of individuals. The successive applications of selection and variation usually lead to
improve individual fitness values throughout generations and thus, the average fitness of
the population. In other terms, the population of individuals will get closer and closer,
i.e. converge, to the optimal solution of the given problem.

The general pseudo-code of an EA is presented in Figure 2.10 (page 26). The algo-
rithm begins with the initialization of the population, at random or with some predefined
strategies. The initialization is followed by the evaluation of each individual. Then starts
the evolution of the population in the “while” statement. It consists in the mating
selection of a number of individuals from the population, on which are applied mutation
and/or recombination operators. The fitness value of the created offspring is computed
and they are inserted in the population, thanks to environmental selection. The process
is repeated over a number of generations, until termination conditions are satisfied. The
final solution is extracted from the last version of the evolved population.

Most common termination conditions are one or a combination of these below:

• a maximum number of generations is reached

• an allocated budget, like computational time or money, is reached

• the highest possible fitness value is reached or the individuals’ fitness values have
reached a plateau such that more EA iterations will not provide better results

• an exterior supervisor makes a manual inspection and decides to terminate the
process

Note that unless in the third case, a satisfactory solution may or may not have been
found. Moreover, EAs cannot guarantee to find the optimal solution of the optimization
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Figure 2.11: Two different methods implementing elitism [73].

problem. Indeed, they have a poor exploitation power of previously found solutions,
which means that they are bad at finding fine-tuning solutions to (near) optimality [19].
This is notably caused by the stochastic nature of the variation operators. However,
EAs show a good exploration capacity of the search space, which means that they can
escape from local optima. And evolving a population gives them the strength to be able
to explore the search space in multiple directions at once. If one path does not seem
promising, EAs can easily remove it and direct back the evolution to fitter individuals. In
summary, even if their basic mechanisms are simple, EAs are robust and powerful [11].
They provide a valid approximation of the solution to the majority of treaten optimiza-
tion problems in a reasonable time [30, 35].

In the general process of constructing the next generation, as presented above, it is
possible that the best current individuals are lost due to random effects during selection
and variation phases. To allow them deterministically to survive several generations, a
special strategy is sometimes used: elitism. It consists in systematically duplicating a
certain number of the fittest individuals of the population, without them be altered by
variation operators. These prior individuals are viewed as the elites (and the best elite is
the one with the highest fitness value).

One elitist method is to make the union of the old population and the varied mating
pool, then to apply a deterministic environmental selection. An alternative method uses
a secondary population, called archive. Its goal is to receive, at each generation, the
best individuals, such that they are kept stored during the entire evolution, unless they
are replaced by a new better individual. The archive may only serve as an external
memory, without any link with the dynamics of the optimization, or it may be taken into
account in the EA by considering archive members in the mating selection procedure.
These two variants are illustrated in Figure 2.11 (page 27) (note that in the second
variant, environmental selection simply replaces the old population by the varied mating
pool).

Elitism ensures that the minimum fitness of the population can never reduce from
one generation to the next. This strategy usually improves the convergence of the popu-
lation, but not necessarily towards the optimal solution (when the degree of elitism is not
controled with meticulous care, some super individuals can emerge in the detriment of
other potential solutions). Moreover, research has shown that elitism can clearly speed
up the performance of EA [56, 72].
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All the notions concerning the definition of a single-objective EA will now be refined
in the case of a MOEA.

Multi-objective evolutionary algorithm (MOEA)

As the difference between an optimization problem and a MOP is the number of objec-
tives to optimize, a MOEA will have to manage several fitness functions rather than a
single one. Meanwhile an EA has to produce a unique global minimum, a MOEA aims
at generating the Pareto optimal set of the problem, which will be extracted from the
final population.

Note that the use of Pareto terminology concerning MOEAs can induce some con-
fusion. The population is a set of feasible solutions of the MOP, including some non-
dominated individuals. These belong to a “current” set of Pareto optimal solutions, with
respect to a certain moment of the MOEA execution, i.e. the current generation. This
set varies thus at each step of the evolution process and does not correspond to the true
Pareto optimal set of the MOP.

The main issue for a MOEA is thus to output the best approximation of the Pareto
optimal set. It is unfeasible to list precisely which criteria define a good approximation.
However, it can be fundamentally expected from a MOEA to guide the search for non-
dominated regions in the objective space and to maintain a sufficient spread of non-
dominated individuals in the population (ideally, in addition to be broad, the spread
has to be uniformly distributed). In other terms, the two goals of a MOEA consist in
minimizing the distance of the found solutions to the Pareto set, and in maximizing the
diversity and the uniformity among the found solutions. The first goal depends on the
mating selection and in particular, on the fitness evaluation, which has to judge accurately
the individuals. The second goal is related to selection in general, which has to prevent
the population from containing mostly identical individuals (with regard to the decision
space and the objective space), and then from converging prematurely to local optima.
Diversity preservation is usually performed thanks to density information, included in the
selection process. In this way, individuals with slightly crowded neighborhood will be
more often selected.

In the context of a MOEA, elitism relates to the problem of how to avoid current
non-dominated solutions from being deleted. The same techniques as for single-objective
EA can be implemented. The archive contains then the Pareto optimal set among all
individuals created so far. A slight difference is that all non-dominated individuals are
elites of equal importance.

Various fitness evaluation approaches have been proposed in the literature, that may
have a possibly significant impact on the algorithm and on its performance. This variety
reflects the considerable variety of the MOEA implementations.

The few structural differences between an EA and a MOEA are shown in the compa-
rison of their respective sequential task decomposition, illustrated in Figures 2.12 (page
29) and 2.13 (page 29). On the one hand, to evaluate the fitness of an individual (task
2), a MOEA optimizing M objectives (where M ≥ 2) computes M fitness functions,
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Figure 2.12: Generalized EA sequential task decomposition (adapted from [13]).

Figure 2.13: Generalized MOEA sequential task decomposition (adapted from [13]).

while a simple EA realizes one computation. On the other hand, as the selection can be
based on a single fitness value, a MOEA sometimes has to make additional processing
to convert the fitness vector of the solution into a real scalar (task 2a).

It is important to note that if a single fitness value is computed from the fitness
functions, the optimization of this value can be distinct from the optimization of the
objectives. In other words, the objectives (and then the M fitness functions) of the
considered MOP can have to be minimized, and the global fitness value to be maximized
inside the MOEA, and vice versa.

Three main techniques exist to evaluate individuals in a MOEA [73].
First, the objectives can be aggregated into a single parameterized fitness function,

which comes back to a single-objective optimization problem. This causes that only
one Pareto optimal solution can be found at a time. To counter this weakness, the
functional parameters have to be regularly adapted during the evolution process (but this
does not prevent that the Pareto optimal set cannot be entirely identified in all types of
problems). An instanciation of this technique is a weighted sum of the objectives, where
the weights are parameters [33, 36]. Even if simple and computationally efficient, this
method requires however a priori information about the problem to define the weights
according to the importance of each objective.

Another method is criterion-based, which means that potentially a different objective
is used as selection criterion at the successive mating selection phases. For example, the
mating pool can be filled in the same proportion for each objective [59], or a probability
to be the next selection criterion can be associated with each objective [40].
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Finally, some of the most common fitness assignment strategies exploit Pareto domi-
nance relation between individuals and the resulting partial order on the population. The
MOEA can use three measures in its calculation to determine the fitness of a certain
individual:

• the dominance rank: the number of individuals by which the individual is domi-
nated [27]

• the dominance count: the number of individuals that the individual dominates

• the dominance depth: after the population has been separated into several fronts,
the number of the front to which the individual belongs to [17, 65]

Such measures serve of course to favor non-dominated individuals. The disadvantage
of a Pareto-based technique appears in higher dimensional objective spaces, where the
number of non-dominated solutions rises fastly. This makes it harder to keep the desired
convergence properties to the Pareto optimal set as well as a satisfying distribution of
the solutions. Moreover, Pareto-based algorithms are rather inefficient. Indeed, the pro-
cess of checking for non-dominance in the population present a conventional polynomial
complexity of O(MN2), for each generation, where M is the number of objectives and
N the population size. Consequently, traditional Pareto-based algorithms suffer from
an important performance degradation, as M and N are increased. But this technique
remains one of the most appropriate for MOEAs, as it has been seen in Section 1.2.2
(page 3).

An essential theoretical issue of a MOEA is the choice of the number of fitness
functions, because there exist no rule to exactly determine the best number of such
functions for a given MOEA. Figure 2.14 (page 31) [13] shows the number of works
(up to early 2007) that employ a given number of fitness functions, using a sample of
papers from the EMOO repository [14]. In most cases, only two fitness functions are
implemented. Some systems use between three and nine, while a very few proportion of
algorithms integrates ten or more fitness functions. Currently, the highest known number
reaches 500 objectives to optimize within a unique MOEA for agent coordination [12].
However, some of these are conceptually identical, which means that, even if their
computation results in different values, they are not independent. The maximal amount
of conceptually distinct implemented fitness functions is equal to nine, in a linkage design
problem [58].

This issue raises some interesting questions. One might ask if it is possible to convert
all characteristics of a MOP into fitness functions, or what is the number of fitness
functions needed to properly capture essential characteristics. There exist several kinds
of limits to the number of possible objectives to optimize:

• practical: obviously, the computational time required to evaluate complex MOEA
fitness functions becomes quickly unmanageable as the number of objectives in-
creases.

• theoretical: each objective added to a MOP implies that a larger number of MOEA
solutions are Pareto optimal and consequently, the Pareto optimal set and the
Pareto front grow, to the detriment of the algorithm convergence, as seen above.
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Figure 2.14: MOEA citations by fitness function (up to early 2007) [13].

• human: it has been proved that the capacity of the human brain is naturally limited
for simultaneously discerning multiple pieces of information. For this reason, the
more the number of fitness functions will increase, particularly if they are inde-
pendent (and eventually in various unities), the more both the Pareto optimal and
the Pareto front set will become hard to visualize and their interrelationships will
become incomprehensible.

Contemporary scientific literature shows that the majority of real-world MOPs can
be effectively and satisfactorily solved using only two or three objectives. Consequently,
it can be said a good practice to apply MOEA to a given MOP by implementing (at
least) some main objectives that represent relevant problem characteristics and so, that
offer a good global problem domain comprehension [13].

2.3 EC applied to ILP

A learning problem can be seen as an instance of optimization problem. Indeed, globally,
the goal is to learn as best as possible a computational structure from data, and in the
particular case of ILP, a logic program representing the underlying data concept. In other
terms, ILP aims at optimizing the learned logic program, that is why EC can also be
applied to realize such a learning through its evolution process. This is the articulation
between the two mainstays of the ECL system. In the following, various aspects of EC
will be addressed when used for ILP, on the basis of [19].
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As a logical context is considered for the learning, the representation language of
data from the problem domain is FOL as seen in Section 2.1.2 (page 11). Then, the
represented data need to be encoded into individuals (which finally can be implemented
with various structures, as seen in Section 2.2.2, page 23). There exist two major ap-
proaches for the encoding:

• the Pittsburgh approach: each individual encodes a complete solution (i.e. a set
of logic rules, or logic program). This introduces a large redundancy of logic rules
that can make the management of an enormous population and/or with large-sized
individuals hard. If no limitation is applied (on the number or the size of the rules),
convergence to the optimal solutions can be jeopardized. However, at the end of
the evolution process, the best individual (the one with the highest fitness value)
corresponds to the solution of the problem, i.e. to the learned concept.

• the Michigan approach: each individual encodes only a part of the solution (i.e.
a single logic rule), which reduces redundancy. As learning supposes a search
through a space of rules and not of rulesets, this approach takes less computa-
tional resources than the Pittsburgh one. But the solution to the problem has to
be composed by means of some mechanisms extracting a subset of the population.

Fitness functions are used in EC to assess the quality of individuals. When individuals
encode logic rules, the fitness function has to measure the goodness of (possibly partial)
learned hypotheses. As seen in Section 2.1.1 (page 7), a good hypothesis is characterized
by completeness, consistency and simplicity. Almost all evolutionary inductive learning
systems incorporate completeness and consistency in the definition of the fitness function:
to be well evaluated, the found hypothesis has to perform well on the training examples
and to be estimated as performing well on unseen examples.

As a fitness function defines a preference order among hypotheses, it can be viewed
as a search bias (notion described in Section 2.1.1, page 7). Indeed, the fitness function
biases the EA towards fitter hypotheses and thus, it limits the size of the search space
to a certain portion, theoretically, the portion containing the unknown concept.

At last, evaluation of individuals is the most costly process in an EA for ILP. At the
outset, fitness calculation strongly influences the complexity of an EA, as explained in
Section 2.2.2 (page 23). And this influence is amplified in the case of ILP since fitness
calculation depends on establishing the coverage of hypotheses. This operation needs the
interpretation of FOL programs, which itself requires a particular computational effort.
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Chapter 3

State of the art

This chapter gives a suitable partial view of the state of the art concerning concept
learning and multi-objective evolutionary computation. First, Section 3.1 exposes the
Evolutionary Concept Learner (ECL) system. This system treats ILP problems thanks to
single-objective evolutionary computation. It is crucial since it was the starting point of
this thesis, proposing a multi-objective ECL system, expected to be an improvement of
the original one. Secondly, some work related to the context of this thesis is described
in Section 3.2. It consists in nine other single-objective concept learners, based or not
on evolutionary computation. At last, Section 3.3 addresses two recognized performant
multi-objective evolutionary algorithms, dealing with mathematical optimization pro-
blems (thus not planned for concept learning). After having been depicted and compared,
one of them is elected to be integrated in the upgrade of the ECL system.

3.1 Evolutionary Concept Learner (ECL) system

The Evolutionary Concept Learner (ECL) system is an evolutionary system for ILP,
developed by Prof. F. Divina in 2004 [19, 20, 21]. As a reminder, it was chosen for
the work of this thesis since it was considered promising to be transformed into a multi-
objective ECL system. Indeed, in summary, it is already quite effective and on the other
hand a multi-objective approach is theoretically more performant than a single-objective
one for real-world problems. This section explains first the general algorithm of the ECL
system and subsequently, it deepens the importance of the fitness in the algorithm, i.e.
how it is computed and where it is used. These detailed parts fed the reflexion for the
transformation of the ECL system.

3.1.1 General algorithm

Basically, the ECL system employs a restrained form of FOL, close to the Prolog syntax,
to describe formally the learning problem. Then a high-level representation allows to
translate this description, i.e. logic rules, in a computational form such that it can be
manipulated by the EA. Since the ECL system adopts the Michigan approach, each
individual of the EA encodes one logic rule, and is then a potential part of the logic
program solution.
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The fact of using a subset of FOL constitutes a language bias, as explained in Section
2.1.1 (page 7). Another language bias is present in the ECL system: a user parameter,
argument of the ECL system and denoted by the positive integer lr, explicitely limits
the maximum length of logic rules. In addition to these two biases, the ECL system also
uses two innovative search biases, which will be presented later in this section.

The pseudo-code of the ECL system algorithm is presented in Figure 3.1 (page 35).
The ECL system takes as input, in addition to a series of parameters (detailed along this
section), a set of positive examples E+, a set of negative examples E− and a background
knowledge BK.

The “repeat” statement, the main loop of the system, aims at constructing iteratively
the final population Pfinal as the union of at most max iter different populations of
individuals-rules. Each iteration corresponds to a run of the EA contained in the ECL
system. The “repeat” statement can also stop if all positive examples are covered by
the individuals in Pfinal (i.e. the set PosEx, containing the weighted positive examples
still not covered by Pfinal, is empty)).

The first step in each iteration is the selection of a part of the background knowledge
BK that will be used during the considered iteration. Then, the current population Pt

is created from scratch in the first “for” statement, where successive iterations corres-
pond to successive generations (marked by the generation counter t). To form a new
generation, K fit individuals-parents are selected in Pt, on the basis of the set PosEx.
If the selection of an individual is impossible because the desired one does not exist in
Pt (this case will be explained later), a new individual is created. Otherwise, mutation
and optimization (that is, a repeated application of mutation operators, which is a new
feature compared to classic EAs) modify the selected parents to create some offspring.
Each new individual is immediately evaluated and inserted in Pt. The selection, creation,
mutation, optimization and evaluation phases use the partial BK. Note that the ECL
system uses only mutation as variation operator and no recombination, because the
latter turned out not to be relevant for the system. The creation of Pt is finished when
a maximum number of generations T is reached. Pt is then added to Pfinal and the set
PosEx is updated to remove the positive examples covered by the individuals of the
new generation.

When Pfinal is entirely constructed, it is evaluated on the whole BK to compute the
real quality of each individual. This population, set of logic rules, normally contains the
learned concept. At last, a solution, i.e. a logic program, is extracted from the Pfinal

and outputed by the ECL system. This logic program represents the concept as binary
classifier and can directly be used with the interpreter Prolog.

Note that the values of max iter, T and K are three positive integers, user para-
meters of the ECL system.

Focus will now be put on the definition of the fitness function and the individual
fitness value, and on their use within the algorithm. A complete description of the other
aspects of the ECL system can be found in [19].
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ALGORITHM(ECL)
1 PosEx = E+

2 Repeat
3 P0 = ∅
4 Select partial BK
5 For t = 0 to (T − 1) do
6 Adjust weights of PosEx
7 For k = 0 to (K − 1) do
8 Select an individual i in Pt using PosEx
9 If i does not exist then construct i
10 Else mutate and optimize i
11 Evaluate i
12 Insert i in Pt

13 Store Pt in Pfinal

14 PosEx = PosEx− {positive examples covered by the individuals in Pt}
15 Until max iter is reached ∨ PosEx = ∅
16 Evaluate Pfinal using the whole BK
17 Extract a solution from Pfinal

Figure 3.1: Algorithm in high-level overview of the ECL system.

3.1.2 Importance of fitness

The ECL system realizes the evaluation of individuals by a single fitness function so that
it is single-objective. The objective to reach is the maximization of the accuracy of the
logic rule, as defined in Section 2.1.3 (page 14). As shown in the latter, the default
of the accuracy metric is to be susceptible to class distribution of the examples. Since
the ECL system is implemented in the context of a fitness function to be minimized,
this function is expressed as the inverse of the individual accuracy. So, the fitness value
associated with an individual i is defined as:

f(i) =
1

ACC(i)
=
|E+|+ |E−|

pi + (|E−| − ni)

where
|E+| is the number of positive examples,
|E−| is the number of negative examples,
pi is the number of positives examples from E+ covered by i (i.e. the true positives),
ni is the number of negative examples from E− covered by i (i.e. the false positives).

The calculation of the fitness function for the individual i requires that the coverage
set of i, i.e. the set of examples that i covers, is previously determined. Thus, before
the evaluation, the ECL system poses a query for each example of E to be tested to
the logic program composed by the union of the logic rule represented by the individual
and the partial BK in use. If the interpreter Prolog returns that the query relative to an
example is successful, then the example is covered by the individual (otherwise it is not).
It can be noted that the coverage set of an individual is fixed during its existence, for
given E+, E− and (partial) BK on which it was evaluated (in other words, individual
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coverage sets change as soon as E or BK changes). It is why the use of partial and
whole BK in the algorithm involves two different fitness evaluations.

In addition to the coverage sets, the ECL system integrates a special feature: each
example, positive or negative, is associated with a covering set, containing all the indi-
viduals in Pt covering the considered example. These covering sets are filled generation
after generation by the individual fitness evaluations and emptied once Pt is stored in
Pfinal.

As seen in Section 2.3 (page 31), evaluation of individuals (and more generally, of
logic programs) is a crucial concern in an EA for ILP. To deal with this concern, the
ECL system includes a particular search bias. This one consists in a stochastic sampling
mechanism that allows the user to specify the portion of the background knowledge
BK used by the algorithm (step 4). This portion is determined by a user parameter,
argument of the ECL system and denoted by pbk (real number in ]0; 1] because it defines
the probability of selecting an element of BK). This method improves the efficiency
of evaluation of individuals. Indeed, setting pbk to a low value reduces the computa-
tional cost (i.e. the required amount of time) of fitness evaluation and then of search,
compared to the case where all the elements of BK would be used for the evaluation
(when pbk = 1). The downside is the possible incapability to find the best rules. So,
an individual can be wrongly evaluated on the basis of partial BK because it wrongly
classifies examples, while these would be correctly covered using the whole BK.

Fitness function and fitness values are used by five major components of the ECL
system: the selection operator, the mutation operator, the logic rule construction proce-
dure, the evaluation of an individual and of the population procedures, and the insertion
in the population procedure.

Selection

The selection operator employed in the ECL system is the Exponentially Weighted
Universal Suffrage (EWUS) selection operator, developed in 2002 by F. Divina from
the existing Universal Suffrage (US) selection operator [28].

The EWUS operator uses the fitness value as follows. First, it assigns a weight
to each positive example from the set PosEx on the basis of its covering set. The
weight reflects the estimated difficulty of the example: harder the example to cover (i.e.
lower the size of its covering set), higher is its weight. Weights are adjourned at each
generation (step 6 in the ECL system algorithm). Then, in steps 7 and 8, the EWUS
operator selects K positive examples ei, 1 ≤ i ≤ K from PosEx, giving priority to
the difficult examples, that is, high weighted. For each ei, an individual is chosen by
means of a roulette wheel selection, performed among all the individuals belonging to the
covering set of ei. The dimension of the wheel sectors is proportionate to the fitness. If
ei is covered by no individual of the population (step 9), then a new individual covering
ei is created using the logic rule construction procedure, described below. At the end of
this process, K distinct individuals are selected.

The EWUS operator works in such a manner that, if many individuals cover the same
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subset of training examples, those individuals will be seldom selected for reproduction
because that region of the search space is already crowded. Instead, the EWUS operator
selects (or creates) individuals that occupy (or will occupy) less explored areas. So, in
addition to contribute to ensure a good coverage of the positive examples, the EWUS
operator favors exploration of the search space and thus diversity among individuals.
Formally, the probability of an individual i being selected is equal to:

P (i) =
∑

e∈Cov(i)

P (e).P (i|e) =
∑

e∈Cov(i)

we.
f(i)∑

j∈Cov(e) f(j)

where
Cov(i) is the coverage set of i,
Cov(e) is the covering set of e,
P (e) is the probability of the positive example e ∈ E+ being selected (equal to the
weight we of e),
P (i|e) is the probability of i being selected conditioned to the selection of the example
e in Cov(i).

Take for example a population formed by four individuals i, 1 ≤ i ≤ 4 and five
positive examples ej, 1 ≤ j ≤ 5. Suppose that the individuals 1 and 2 encode the same
logic rule, while the other two individuals encode different rules. Then suppose that the
coverage sets of the examples are the following:
Cov(e1) = {1, 2}
Cov(e2) = {1, 2, 3}
Cov(e3) = {3}
Cov(e4) = {3}
Cov(e5) = {4}

It results that 1 and 2 have less probability of being selected by the EWUS operator
compared to 3 and 4. Indeed, even if they cover two examples out of five, they cover
only “easy” examples. Furthermore, 3 is the individual with the highest chance of being
selected, since it covers many examples out of which two are considered as “difficult”
(e3 and e4).

Mutation and optimization

Four types of mutation operators are used in the ECL system but they will not be detailed
because they all proceed generally in the same way.

Unlike classical EA mutation operator, the ECL system mutation operators do not
work entirely at random, but take into account a certain number of mutation possibilities
and then apply the best one among these possibilities. This number of possibilities is
specified by the value of a user parameter, argument of the ECL system and denoted by
the positive integer mutj, 1 ≤ j ≤ 4 (each mutation operator is associated with one
of these parameters). Like pbk, this technique is an innovative stochastic search bias of
the ECL system, allowing to control the computational cost of search in the hypothesis
space. The lower the value, the less costly is the mutation.

The determination of the best mutation possibility is realized thanks to a gain func-
tion gain, defined from a couple “(individual i, mutation possibility τ)” to a real number.
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This function computes the difference between the fitness value of i before and after the
application of τ :

gain(i, τ) = f(i)− f(τ(i))

The mutation procedure works as follows. It receives as input an individual i to be
mutated, copy of the individual-parent selected by the EWUS selection operator (this
parent remains in Pt). After a mutation operator j, 1 ≤ j ≤ 4 is randomly selected,
mutj possible mutation modifications for i are then randomly chosen with uniform proba-
bility. For each τ of these chosen modifications, the gain of quality obtained thanks to
the considered modification is computed. Concretely, i is temporarily modified into τ(i)
and evaluated with the fitness function f (its coverage set is also temporarily computed
but, unlike in the classical fitness evaluation, the covering sets of the examples do not
change). The fitness value of τ(i) is then compared with the fitness value of the original
individual i, by means of the function gain. Finally, once all modifications are tested, the
one yielding to the highest gain is kept (ties are randomly broken) and thus, the fittest
mutated individual. This new individual is the one outputed by the mutation operator.

In the general algorithm of the ECL system, the mutation procedure is followed by
an optimization phase (step 10). This phase corresponds to the repeated application
of a mutation operator on the newly created individual, in order to improve it. The
repetition of the application ends when a maximum number of iterations is reached or
when the fitness value of i does not increase any more. In this manner, optimization
helps to guide the search of the EA towards regions of the search space containing fit
individuals. In other words, it participates to the exploitation of the search space, which
is an important characteristic since the ability of exploitation is commonly a weakness
of EAs.

Logic rule construction

The logic rule construction procedure is called by the EWUS selection operator when this
one selects a positive example e from PosEx that is not yet covered by any individual in
the current population Pt (step 9 in the ECL system algorithm). A new individual-rule i
covering e will then be constructed by the logic rule construction procedure. The process
takes place in two stages.

The example e and the partial BK serve as seed to elaborate a first version of i.
Secondly, an optimization phase is performed on i, as explained in the previous paragraph.
It is thus another occasion where fitness function is used.

Evaluation of an individual and of the population

After the mutation and optimization phases, or after the construction of a logic rule,
the new individual i is evaluated to be assigned a definitive coverage set and fitness
value, on the basis of the partial BK, before being inserted in the population. At the
same time, the covering sets of the examples are updated (i is added in if necessary).
This corresponds to step 11 of the ECL system algorithm. In step 16, after the final
population Pfinal is entirely formed, all final individuals need to be evaluated again, this
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time on the basis of the whole BK. Of course, the evaluation of the population calls
iteratively the procedure to evaluate one individual.

Insertion in the population

In step 12 of the ECL system algorithm, offsprings are inserted in Pt. The current
population grows in this manner until a maximum population size of N individuals has
been reached. The value of N (positive integer) is a user parameter of the ECL sys-
tem. In this case, each newly created individual takes the place of an individual of Pt

selected by means of a tournament mechanism of size 4, using the fitness values of the
competitors. In addition to be deleted, the loser (i.e. the competitor with the highest fit-
ness value) has to be extracted from the covering sets of the examples where it is present.

Hypothesis extraction

The extraction of a solution from Pfinal is performed in step 17 of the ECL system
algorithm. Of course, the extracted solution is expected to be the best possible. For
this purpose, a certain number of individuals among the fittest ones could be selected to
form the final logic program. However, it turns out [19] that other metrics can be used
to produce solutions of better quality for the ECL system. So, this algorithmic step does
not need any individual fitness value.

3.2 Related work

This section briefly presents nine other existing single-objective systems able to solve con-
cept learning problems. Some of them are evolutionary (GAssist, HIDER) and the others
not (IB1, C4.5, Naive Bayes, SMO, ICL, Progol, Tilde). All these systems will serve in
Chapter 5 (page 64) to be compared with the ECL system and the multi-objective ECL
system.

3.2.1 GAssist

GAssist [4, 5] was developed by J. Bacardit and J. M. Garrel in 2003. It is an evolutionary
machine learning system based on the Pittsburgh approach. Each individual is an ordered,
variable-length set of logic rules that represents a complete problem solution. The fitness
function takes into account the notion of simplicity by evaluating the length of logic
rules, as seen in Section 2.1.2 (page 11). Moreover, GAssist uses a special windowing
scheme, called “Incremental Learning With Alternating Strata“ (ILAS). This technique
performs a stratification of the training set into subsets of equal size and about uniform
class distribution. Each EA iteration employs a distinct stratum as basis for its fitness
evaluation. This method increases the level of generalization of the solutions outputed
by GAssist.
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3.2.2 Hierarchical Decision Rules (HIDER)

Hierarchical Decision Rules (HIDER) [1, 29] was developed by J. S. Aguilar-Ruiz et
al. in 2003. It is a sophisticated EA for machine learning, producing a hierarchical set of
rules. To classify a new example, this hierarchy is sequentially evaluated, such that if the
current rule does not cover the example, the next rule in the hierarchy order is evaluated.
This process ends when the example matches completely a rule. Then HIDER outputs
the class established by the last rule. This algorithm uses a particular encoding method
such that the length of individuals, and therefore the search space size, are considerably
reduced. Thanks to this important property, the algorithm executes quicker, without
weakening its prediction accuracy.

3.2.3 Instance-based learning algorithm (IB1)

Instance-based learning algorithm (IB1) [2] is an algorithm developed by D. Aha
et al. in 1991. IB1 is a nearest-neighbour classifier. When it is given a (test) example
to classify, it predicts the same class as the one of the closest training example, in the
sense of the normalized Euclidean distance measure. If several training examples have
the same (smallest) distance to the given example, the first one found is used. IB1 can
deal, among others, with missing class values and small training sets.

3.2.4 C4.5

C4.5 [53] is an algorithm developed by R. Quinlan in 1993. C4.5 builds recursively
a decision tree, which is a statistical classifier. The used examples are represented by
vectors, of which each component describes an attribute of the example. Each node of
the tree, starting from the root, is labeled by the attribute that most effectively splits
the training set into subsets, one for each value the attribute can assume. The selection
criterion is the information gain (computed thanks to a mathematical formula): the
attribute with the highest information gain is chosen to make the decision. For each
generated subset, a branch is added to the current node. If all the examples that actually
reach the current branch belong to the same class, a leaf is added, with a label equal to
the classification (i.e. saying to decide that class). Otherwise the process is repeated,
until covering all the training examples. At the end, each logic rule corresponds to a
path from the root to a certain leaf, and on that path, the tests of the attribute values
in the nodes are conditions associated with the considered rule.

3.2.5 Naive Bayes

Naive Bayes [37] was developed by G. John and P. Langley in 1995. This algorithm is
a simple probabilistic classifier. To predict the class of examples, it combines the Baye’s
theorem of conditional probabilities with strong (“naive“) independence assumptions
about data attributes. Indeed, the Naive Bayes classifier presumes that all attributes of
examples are conditionally independent, i.e. that the presence (or absence) of a particular
attribute of a class is uncorrelated to the presence (or absence) of any other attribute
of that class. Despite these apparently over-simplify assumptions, the system reveals
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good performance in many complex real-world applications. Furthermore, only a small
amount of examples is required to train this system to realize classification.

3.2.6 Sequential Minimal Optimization (SMO)

Sequential Minimal Optimization (SMO) [51] was developed by J. Platt in 1999.
This algorithm is a binary classifier, implemented by means of “Support Vector Machines“
(SVM). SVM is a powerful statistical learning technique. It performs binary classification
by finding a hyperplane in the decision variable space, such that this surface splits as
best as possible the positive examples from the negative ones. The chosen split has the
largest Euclidian distance from the hyperplane to the nearest of the positive and negative
examples. When a new example is going to be classified, SVM maps the input into the
decision variable space and predicts the class corresponding to the side of the hyperplane
where the point is situated. Intuitively, this technique makes the classification correct
for new examples that are near, but not identical to the training examples.

3.2.7 Inductive Constraint Logic (ICL)

Inductive Constraint Logic (ICL) [54] was developed by L. De Raedt in 1995. It learns
a concept represented by a set of FOL rules, from positive and negative examples. The
examples are viewed, not as true or false ground facts but as true or false interpretations
(i.e. models or non-models) of the target concept. And the goal of the learning is
to find a concept for which all positive examples are models (every one is true for all
of the rules of the concept, i.e. is covered by all the rules) and none of the negative
examples is a model (every one is false for at least one of the rules of the concept).
The representation of logic rules is formed by constraints on positive examples. For this
reason, ICL is mainly a covering approach inversing the role of positive and negative
examples both in the heuristics and in the algorithm. ICL produces comprehensible logic
rules and can cope with noisy data.

3.2.8 Progol

Progol [45, 46] is a well known ILP system developed by S. Muggleton in 1995. It
implements a sequential covering algorithm, that performs a top-down search through
the hypothesis space. Emerging hypotheses are progressively added to the BK until all
the positive examples are entailed. Progol was successful when applied to a number of
real life ILP problems.

3.2.9 Top-down Induction of Logical Decision Trees (Tilde)

Top-down Induction of Logical Decision Trees (Tilde) [9] is an ILP system deve-
loped by H. Blockeel and L. De Raedt in 1997. Tilde is an improved version of Quinlan’s
C4.5 for relational datamining (that is, the discovery and understanding of the way some
data stand in relation to one another). Combining a divide-and-conquer approach (using
decision trees) and a covering approach (using a rule induction system), the algorithm
induces hypotheses in the form of FOL decision trees, i.e. a FOL upgrade of the classical
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decision trees. Then, as for C4.5, each logic rule corresponds to a path from the root
to some leaf, but each test on that path is now a part of the rule written in FOL, and
not a condition on the values of some attribute. The generated trees can directly be
used for classification of unknown examples as well as for prediction of the value of a
certain attribute from other information in the database (thanks to relations between
examples). Such trees can also easily be translated into a logic program. In addition
of many features of C4.5, Tilde incorporates various techniques specific to ILP, as, for
example, a language bias. So, Tilde’s performance is experimentally at least as good as
that of C4.5, depending on the type of problem being resolved.

3.3 Possible multi-objective approaches: NSGA-II

and SPEA2

This section focuses on two famous multi-objective evolutionary algorithms, each of
them including a representative Pareto-based technique: Elitist Non-dominated Sorting
Genetic Algorithm (NSGA-II) and Strength Pareto Evolutionary Algorithm 2 (SPEA2).
Moreover, these algorithms are known to be simple and effective. For this reason, they
were considered to serve as a model to transform the single-objective ECL system in
a multi-objective ECL system. Both algorithms will be presented, then compared and
finally, the choice of the SPEA2 will be motivated. Note that these algorithms are
designed to solve mathematical optimization problems, but are not adapted for ILP.

3.3.1 Elitist Non-dominated Sorting Genetic Algorithm
(NSGA-II)

The Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) was developed
in 2000 by K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, and is the computationally
improved version of the Non-dominated Sorting Genetic Algorithm (NSGA), pro-
posed in 1994 by N. Srinivas and K. Deb [65]. The remainder of this section is based
on [17].

NSGA-II is based on two principles: division of the population into several non-
domination layers and the population’s density estimation. These principles are imple-
mented respectively by these two metrics, for a given individual i from the population:
the non-domination rank (irank) and the crowding distance (idistance). These indivi-
dual measures are used by a crowded comparison operator (≺n) which underlies all the
algorithm.

The different important modules of NSGA-II will be presented in detail, supposing a
population P of maximum size N and M objectives, i.e. fitness functions, to minimize. It
is also supposed that the values of the M fitness functions have already been calculated
for each individual of the population. A generation counter t will be used overall to
distinguish the progress of the evolution process (the current generation being the t-th
one).
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ALGORITHM(find nondominated front(Pt))
1 P ′t = {1}
2 For each i ∈ Pt ∧ i /∈ P ′t do
3 P ′t = P ′t ∪ {i}
4 For each j ∈ P ′t ∧ j 6= i do
5 If i � j then P ′t = P ′t \ {j}
6 Else if j � i then P ′t = P ′t \ {i}
7 Return P ′t

Figure 3.2: NSGA-II - Algorithm to compute the current non-dominated front of
the population.

Non-domination rank irank

The non-domination rank irank is attributed to each individual i in the population
thanks to a fast non-dominated sorting method. Based on the Pareto dominance depth
notion (defined in Section 2.2.2, page 23), the purpose of this approach is to sort the
population according to the level of non-domination, i.e. to find all the successive
non-dominated fronts, of the population members. The set of all these fronts forms a
partition of the population and is denoted by F = F1,F2, ... (with F1 the Pareto front).

The current non-dominated front of the population is computed this way. The first
individual from the population Pt is placed in a set P ′t . Then, each individual i in Pt

(excepted the first one) is compared with all members of the set P ′t one by one. Two
cases can occur: if the individual i is dominated by any member of P ′t , it is ignored, but
if i is not dominated by any member of P ′t , it is added in P ′. Moreover, all individuals
j of P ′t dominated by i are removed from P ′t . When all individuals from Pt are checked,
the set P ′t contains all non-dominated individuals of the population. The algorithm of
this method is presented in Figure 3.2 (page 43).

To find the next non-dominated set, individuals of the current front Fk, 1 ≤ k
are temporarily discarded from the population Pt and the above procedure is performed
again. This process is repeated until all non-dominated fronts of the population are iden-
tified, such that individuals of the first non-dominated front are stored in F1, individuals
of the second non-dominated front are stored in F2,... This is outlined in the algorithm
of the Figure 3.3 (page 44).

Each individual i receives then a non-domination rank irank equal to the number of
the front it belongs to. This means that an individual with a rank smaller than the rank
of an other individual, is better than this other individual because it dominates it. And
two individuals with the same rank cannot be preferentially decided because they are
mutually non-dominated (they are of the same quality). The non-domination rank is
the fitness value of NSGA-II. Thus the fitness value has to be minimized and provides
an equal reproductive and survival potential to all individuals belonging to the same
non-dominated front.

With the above approach, finding the first non-dominated front has a maximum
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ALGORITHM(fast nondominated sort(Pt))
1 k = 1
2 While Pt 6= ∅ do
3 Fk = find nondominated front(Pt)
4 Pt = Pt \ Fk

5 Ft = Ft ∪ {Fk}
6 k = k + 1
7 Return Ft

Figure 3.3: NSGA-II - Algorithm to compute all non-dominated fronts of the pop-
ulation.

complexity of O(MN2). Indeed, it can be deducted from the algorithm of Figure 3.2
(page 43) that the second population member is compared with only one individual of
P ′t , that is, the first member, the third individual with at most two individuals of P ′t ,
and so on. This requires a maximum of O(N2) domination checks (if all individuals in
Pt are mutually non-dominated, thus belong to the same front), each of them involving
M fitness function value comparisons. On the contrary, if only one individual Pareto
dominates all the others, the complexity is O(MN) (since P ′t contains at most one
individual).

Concerning the whole process to find Ft, the worst case, i.e. when each front is
made up of one individual, has a complexity of O(MN2) (the loop executes N times the
procedure find nondominated front(Pt) of complexity O(MN)). And in case that
the first non-dominated front is the only front of Pt, the complexity is also O(MN2)
(the loop executes once the procedure find nondominated front(Pt) of complexity
O(MN2)).

Crowding distance idistance

The second metric associated with each individual i from the population is the quantity
idistance, called the crowding distance, which plays the main role in the population di-
versity preservation. This value is an estimation of the density of individuals surrounding
i. This density metric is computed as, referring to the objective space, the average dis-
tance, along each of the objectives, of two points on either side of the point representing
the individual i (note that these two points are situated in the same Pareto front than i).
So, it corresponds graphically to the average side-length of the largest cuboid enclosing
the point i without including any other point in the population Pt. This is illustrated for
two objectives f1 and f2 in Figure 3.4 (page 45), where the front of the i-th individual
is highlighted in bold.

The crowding distance computation is performed independently for each non-domi-
nated front Fk, 1 ≤ k of individuals from the population (Fk ⊆ Ft), relatively to the
objective function space. Here is the procedure for a given front. For each fitness func-
tion, three steps are involved. First, all members of the non-dominated front are sorted
according to the ascending order of the fitness function values. Then, a positive infinite
distance value is assigned to the two (or more in case of equality) extreme individuals
resulting of the sorting, i.e. individuals with smallest and highest fitness function values.

Multi-objective ECL system - Céline Dandois 44/93
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Figure 3.4: NSGA-II - Crowding distance calculation [17].

ALGORITHM(crowding distance assignment(Fk))
1 l = |Fk|
2 For i = 1 to l do Fk[i]distance = 0
3 For each objective m do
4 Fk = sort(Fk,m)
5 Ft[1]distance = Fk[l]distance =∞
6 For i = 2 to (l − 1) do
7 Fk[i]distance = Fk[i]distance + (Fk[i+ 1].m−Fk[i− 1].m)

Figure 3.5: NSGA-II - Algorithm to compute the crowding distance within a non-
dominated front.

Thirdly, the other individuals of the front are attributed a distance value computed as the
absolute difference in the fitness function values of the two adjacent individuals. Finally,
when these steps are completed for all fitness functions, the M distinct distance values
of each individual i are summed to give the overall crowding distance value idistance. This
procedure is shown in the following algorithm in Figure 3.5 (page 45), where Ft[i].m
refers to the m-th fitness function value (1 ≤ m ≤M) of the i-th individual in the set Fk.

The meaning of this density metric is that the smaller for a certain individual, the
closer to other individuals the concerned individual is. So, in the comparison between
any two individuals, the one with the highest crowding distance is considered as less
similar to some other individuals in the population, or, in other words, more important
in the evolution process with regard to the diversity preservation.

The complexity of this algorithm is determined by the sorting procedure, which is
realized in at most O(NlogN) (when all population members are in the front F1). As M
independent sortings are performed, the total computational complexity of the algorithm
is O(MNlogN).
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Crowded comparison operator ≺n

Assume that every individual i in the population has the two measures: a non-domination
rank irank (that is, the fitness value) and a crowding distance idistance.

The crowded comparison operator, denoted by ≺n, is defined as:

∀i, j ∈ Pt, i ≺n j ⇔ (irank < jrank) ∨ [(irank = jrank) ∧ (idistance > jdistance)]

This operator determines a partial order in the population. In the comparison between
two individuals, the non-domination ranks are first taken into account and the individual
with the lower rank is preferred. If the two ranks do not differ (if both individuals belong
to the same front), the chosen individual is the one situated in a less crowded region.

Main loop

The main loop of NSGA-II manages the construction of the generations of individuals.
This process is simple and straightforward. To construct the (t+ 1)-th generation, first
the population Rt of size 2N is formed, resulting from the union of parent population
Pt and child population Qt of previous generation t. The procedure of classification
according to non-domination is then applied on Rt, such that the best non-dominated
front F1 includes now the best solutions from the combined population. The new
population Pt+1 will be generated adding all the solutions from the successive best
fronts in the order of their ranking, i.e. F1, F2,..., after having calculated their crowding
distances (because these quantities will be needed after the end of the loop). This
process is continued until an entire front cannot be added because the size of Pt+1

would be higher than the maximum N . This last front is then sorted using the crowded
comparison operator ≺n in the descending order and the best solutions are chosen to
become the remaining members of the population Pt+1. Finally, the new population
Pt+1 of size N serves as a basis for the binary tournament selection, recombination and
mutation operators to create the child population of the (t+ 1)-generation, Qt+1 of size
N . The algorithm of the creation of a generation is presented in Figure 3.6 (page 47).
And Figure 3.7 (page 47) shows graphically the same procedure.

In NSGA-II, the current population Pt can actually be considered as an archive (no-
tion explained in Section 2.2.2, page 23), since it results from the selection of the best
50% individuals in the combined set of the old archive and the previous offspring popu-
lation Pt−1 ∪Qt−1. This way ensures elitism. Note that because the archive has always
to be filled completely, it may contain more individuals than all the non-dominated ones,
as detailed in the procedure.

The crowded comparison operator is used to guide both mating and environmental
selection processes throughout the NSGA-II in order to guarantee the diversity among
mutually non-dominated individuals, important property for a MOEA. This operator is
applied during the population reduction stage from Rt to Pt+1 and then, in the binary
tournament selection involved in the generation of the new population Qt+1. So, the
selection criterion of the binary tournament operator is not yet only based on classical
comparison between individual fitness values but well on the crowded comparison ope-
rator, which includes, in addition to fitness, a crowding aspect.
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ALGORITHM(create new generation(Pt, Qt))
1 Rt = Pt ∪Qt

2 Ft = fast nondominated sort(Rt)
3 Pt+1 = ∅
4 k = 1
5 Until |Pt+1|+ |Fk| ≤ N do
6 crowding distance assignment(Fk)
7 Pt+1 = Pt+1 ∪ Fk

8 k = k + 1
9 sort(Fk,≺n)
10 Pt+1 = Pt+1 ∪ Fk[1 : (N − |Pt+1|)]
11 Qt+1 = make new population(Pt+1)
12 Return Qt+1

Figure 3.6: NSGA-II - Algorithm to compute a new generation.

Figure 3.7: NSGA-II - Graphical illustration of a sketch [17].
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ALGORITHM(NSGA-II)
1 P0 = generate initial population()
2 fast nondominated sort(P0)
3 Q0 = make new population(P0)
4 For t = 0 to (T − 1) do
5 Qt+1 = create new generation(Pt, Qt)
6 Pt = Qt ∧Qt = Qt+1

Figure 3.8: Algorithm of the NSGA-II system.

The basic operations of the previous algorithm, creating a generation of individuals,
and their respective complexity are:

• non-dominated sorting: O(M(2N)2)

• crowding distance assignment: O(M(2N) log(2N)

• sorting on ≺n: O((2N) log(2N))

So, this algorithm depends on the domination sorting and one iteration of the main
loop of the whole NSGA-II is run in O(MN2).

NSGA-II pseudo-code

The general pseudo-code of NSGA-II can be now presented, as detailed in Figure 3.8
(page 48). Input variables are N for the maximum population size and T for the maxi-
mum number of generations. The output is the set QT−1, the child population obtained
at the T -th generation.

NSGA-II begins with the random creation of an initial parent population P0 of size N .
Then, this population is sorted according to the non-domination which allows to assign
each individual a fitness value. Thereafter, a child population Q0 of size N is created
thanks to the binary tournament selection, recombination and mutation operators. From
P0 and Q0, successive generations will be produced until the T -th generation is reached.

The complexity of NSGA-II is equal to the complexity of the creation of a generation,
O(MN2), without considering the number T of iterations of the main loop (that is, of
generations).

3.3.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) was developed in 2001
by E. Zitzler, M. Laumanns and L. Thiele and is the computationally improved version
of the Strength Pareto Evolutionary Algorithm (SPEA), proposed in 1999 by E.
Zitzler and L. Thiele [66]. The remainder of this section is based on [74].

SPEA2 uses explicitely both a regular population and an archive as elitist strategy.
The archive is not only an external storage set but participates to the evolution process.
A member of the archive can only be suppressed if a new individual is created that
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dominates it, or if its maximum size is reached and the part of the front where the
archive member is situated is overcrowded.

SPEA2 benefits from two strengths: a fitness assignment method accounting, for
each individual, with the number of the other individuals it dominates and it is dominated
by, and a nearest neighbor density estimation technique making the search process more
accurate.

The four steps of the SPEA2 fitness assignment method will now be explained com-
pletely, for a population P of maximum size N , an archive P of maximum size N and
M objectives, i.e. fitness functions, to maximize. As for NSGA-II, it is supposed that
the values of the M fitness functions have already been calculated for each individual of
P . Again as for NSGA-II, a generation counter t will be used overall to distinguish the
progress of the evolution process (the current generation being the t-th one).

Fitness assignment

First, each individual i in the population Pt and in the archive P t is assigned a strength
value S(i) (positive integer), corresponding to the number of solutions that i Pareto-
dominates. This value refers to the notion of Pareto dominance count, defined in Section
2.2.2 (page 23). It follows that S(i) is best when maximum.

S(i) = |{j|j ∈ Pt + P t ∧ i � j}|

where |.| stands for the cardinality of a set and + denotes the multiset union 1.
The complexity of calculating the S values is O(MQ2), with Q = N +N .

In the second place, S(i) is used to calculate the raw fitness value R(i) (positive
integer), i.e. the total strength of the dominators of i from both the population and the
archive.

R(i) =
∑

j∈Pt+P t, j�i

S(j)

Following this formula, the higher R(i), the more individuals dominate i (and if R(i) = 0,
i is non-dominated). The Figure 3.9 (page 50) illustrates this principle. So, this value is
best when minimum.

The complexity of calculating the R values is identical to the one of S (O(MQ2)).

A density estimation value D(i) is then computed to discriminate between indivi-
duals with equal raw fitness values (which is the case when most individuals do not
dominate each other). It contributes to the preservation of diversity among individuals.
The density is estimated thanks to the inverse of the distance to the k-th nearest neighbor
of i.

D(i) =
1

σk
i + 2

where σk
i is the k-th element in the list (sorted in increasing order) containing all distances

(in the objective space) from the invidual i to all individuals j in the population and the

1In mathematics, a multiset, or bag, is a generalization of a set, which can contain multiple
instances of a member. The multiset union is a union respecting this plurality of membership.
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Figure 3.9: SPEA2 - Example of raw fitness values assignment [74].

archive. Commonly, k is assigned to be the square root of the sum of the current

population and archive sizes [62], i.e. k =
√
|Pt|+ |P t|. The value 2 is added in the

denominator to guarantee that (σk
i + 2) > 0 and that D(i) < 1. The density indicator

belongs then to ]0, 1[ and is best when minimum.
The complexity of calculating the D values is O(MQ2logQ).

Finally, the fitness value F (i) of the individual i (positive real) is obtained by
summing its raw fitness R(i) and its density D(i).

F (i) = R(i) +D(i)

The non-dominated individuals are which having a fitness lower than 1 (F (i) < 1), and
in general, lower the fitness value better is the individual.

The run-time of the fitness assignment procedure is governed by the density estima-
tion, such that its complexity is O(MQ2logQ), with Q = N +N .

SPEA2 pseudo-code

The general algorithm of SPEA2 is shown in Figure 3.10 (page 51). Input variables
are N for the maximum population size, N for the maximum archive size and T for the
maximum number of generations. The output of this algorithm is P t, the non-dominated
set computed after t generations.

SPEA2 starts with an initial population P0 and an empty archive P 0. Then, maxi-
mum T iterations are performed to construct successive generations of individuals. The
construction of a generation proceeds as follows. In a first time, fitness values are
calculated for members of the population and the archive. This allows to copy all non-
dominated individuals from the population (i.e. with F (i) < 1) to the archive. This
copy procedure makes sure that the dominated individuals or duplicates (regarding the
objective values) are deleted from the archive. If the size of the updated archive exceeds
the predefined limit N , a truncation operator deletes iteratively individuals from P t+1
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ALGORITHM(SPEA2)
1 Generate an initial population P0

2 P 0 = ∅
3 For t = 0 to (T − 1) ∨ another stopping criterion is satisfied do
4 Assign fitness to each individual in Pt and P t

5 Copy all non-dominated individuals in Pt and P t to P t+1

6 If (|P t+1| > N) then reduce P t+1 by means of the archive trun-
cation operator

7 Else if (|P t+1| < N) then fill P t+1 with dominated individuals in
Pt and P t

8 Perform binary tournament selection with replacement on P t+1 to
elect individuals for reproduction

9 Apply recombination and mutation operators to the elected indi-
viduals and set Pt+1 to the resulting population

10 Pt = Pt+1 ∧ P t = P t+1

Figure 3.10: Algorithm of the SPEA2 system (adapted from [13]).

until |P t+1| = N (the ones with minimum distance to another individual in P t+1 are
chosen first). This operator preserves the characteristics of the non-dominated front and
the boundary solutions. If, on the other hand, the updated archive is too small, the best
N − |P t+1| dominated individuals in Pt +P t (i.e. the individuals with the lowest fitness
values) are stored in P t+1 to complete it. The next step corresponds to the selection
of individuals from the archive for the reproduction, by means of binary tournaments.
Finally, the variation phase is performed where previously selected individuals are applied
recombination and mutation. The old population is replaced by the resulting offspring
population.

The worse run-time complexity of SPEA2 is due to the truncation operator: O(MQ3),
where Q = N + N . However, the average complexity is lower, O(MQ2logQ), because
the sorting of the distances dominates the overall complexity, without considering the
number T of iterations of the main loop (that is, of generations).

3.3.3 Comparison and choice

In [74], NSGA-II and SPEA2 are compared on combinatorial and continuous problems,
including various numbers of examples, described by means of diverse multi-modal vari-
ables and evaluated by means of several objective functions. Both algorithms were also
confronted in [16] on different well known test problems.

The results expose that in general, NSGA-II and SPEA2 seem to have a very similar
behavior on the different optimization problems. NSGA-II suffers, in some cases, from
a lack of exploration of the search space, and thus, of population diversification. When
the algorithm discovers a particular non-dominated region in the search space, it spreads
quite rapidly and appropriately to investigate if promising individuals can be found there.
But in isolated regions, it tends to generate non-dominated individuals with difficulties
(and so, to cause convergence on more poor solutions). However, compared to SPEA2,
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NSGA-II obtains globally broader spread in the final set of solutions. On the other hand,
SPEA2 produces a better distribution of points, especially when the number of objectives
increases.

So, both NSGA-II and SPEA2 show a good overall performance with respect to
convergence and diversity. Although NSGA-II is faster considering the worst-case com-
plexity (O(MN2) vs. O(MQ3), Q = N + N) and the average complexity (O(MN2)
vs. O(MQ2logQ)), SPEA2 is apparently superior in higher dimensional objective spaces
(more objectives than two), which is a concern for Pareto-based techniques, as seen in
Section 2.2.2 (page 23).

NSGA-II and SPEA2 have thus their own advantages and drawbacks, according to
the context and the problem. However, given the structure of the algorithms, SPEA2
seems more interesting and adequate to be integrated in the ECL system.

Indeed, choosing NSGA-II would require to modify the entire system, possibly resul-
ting at the same time in a loss of its effectiveness. Concretely, NSGA-II is based on
the crowded comparison operator ≺n, which combines, in each selection phase, the two
characteristics of any individual i: the non-domination rank irank (i.e. its fitness value)
and the crowding distance idistance. In the ECL system, the fitness aspect is not only
used in the EWUS selection operator but also in the mutation operator and in the logic
rule creation procedure. Modifying these two major parts of the algorithm, such that
the best individuals would be identified following the NSGA-II principle, could turn out
to be hard and costly. Another possibility could be to simply replace the single fitness
value implemented in the ECL system by the fitness value of NSGA-II. But the latter is
not sufficient to mark a clear preference among individuals (all individuals belonging to
the same non-dominated front share the same fitness value). It cannot be used without
the crowding distance (and then without the crowded comparison operator) because
both notions of Pareto dominance and population’s density are fundamental in MOPs.
It can thus be asserted that the ECL system is quite incompatible with NSGA-II, unless
important adaptations.

At the contrary, SPEA2 adapts naturally to the ECL system, thanks to its unique in-
dividual fitness value, incorporating both dominance and density notions. This time, the
single-objective fitness function computation of the ECL system can easily be replaced by
the sophisticated fitness assignment procedure of SPEA2, without substantially modify-
ing the rest of the algorithm. Concerning the archive, the ECL system was not projected
to work with a supplementary set. Adding an archive would again require to change all
steps of the agorithm including manipulation of the population. It is undisputable that
the archive mechanism allows SPEA2 to retain the best individuals during the complete
evolution process. However, on the one hand, this mechanism is not present in all good
MOEAs (as a proof, NSGA-II does not integrate any explicit archive) and on the other
hand, it is independent of the fitness assignment procedure as such. Then, the choice
to omit the insertion of an archive in the ECL system (so, to strictly upgrade it by
means of the implementation of a multi-objective fitness function) remains valid. It can
be supposed not to have a significant impact on the results of the multi-objective ECL
system, thanks to the existing strengths of the basic ECL system.
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Multi-Objective ECL (MOECL)
system

This chapter details the Multi-Objective ECL (MOECL) system, result of the trans-
formation of the ECL system. In place of searching the global optimal solution to an ILP
problem with a single-objective strategy, it uses a multi-objective strategy, i.e. multiple
objectives are considered for guiding the search toward a hypothesis representing the
target concept as good as possible. Section 4.1 exposes the two main choices made
to design the MOECL system (related to the set of objectives to optimize and to the
technique coping with this set), as well as a global view of its algorithm. The two next
sections talk precisely about the adaptation of the ECL system. Section 4.2 presents the
procedures evaluating the fitness of the solutions, durably and temporarily. The MOECL
system is then particularized in two distinct versions (designated as the MOECL v1 and
the MOECL v2 systems), according to the method employed for the computation of
temporary fitness values. The last section, Section 4.3, explains two new features incor-
porated in the MOECL system.

4.1 General modelisation of the proposed system

This section highlights in a first place, the design choices of the MOECL system: the use
of the true positive rate and the true negative rate as objectives, and the use of SPEA2 as
fitness assignment technique. A particular attention is drawn to the difference between
the ECL system and the MOECL system concerning the impact of the computation of
fitness values on the current population. In a second place, the general algorithm of the
MOECL system is introduced globally. It will be refined in next sections.

4.1.1 Design choices

Designing a multi-objective search implies two main aspects: on the one hand, defining
the different objectives that each individual of the MOEA is expected to optimize and on
the other hand, defining a method to assess the individuals on the basis of their perfor-
mance with respect to each chosen objective (in other words, a method computing the
fitness values of the individuals). The decisions made to conceive the MOECL system
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will be exposed below.

Two objectives were chosen to replace the criterium of accuracy used in the single-
objective ECL system. This number of objectives seemed a good compromise according
to the literature about multi-objective optimization problems, as explained in Section
2.2.2 (page 23). The two objectives are the True Positive Rate (TPR) (or sensitivity)
and the True Negative Rate (TNR) (or specificity), presented in Section 2.1.3 (page 14).
They were favored because of their useful property: class distribution independency. Both
objectives have to be maximized (their maximum value is 1), which will influence the
Pareto dominance test between two individuals.

As a reminder, the TPR corresponds to the proportion of positive examples from E+

correctly classified by the classifier (in this case, by the individual-rule being evaluated)
and the TNR corresponds to the proportion of negative examples from E− correctly
classified by the classifier. Note that a negative example is correctly classified by an
individual if it is not covered by this one. Here are the formulae of both objectives for
an individual i created by the MOECL system:

• the true positive rate:

TPR(i) =
pi

|E+|

• the true negative rate:

TNR(i) =
(|E−| − ni)

|E−|

where
|E+| is the number of positive examples,
|E−| is the number of negative examples,
pi is the number of positives examples from E+ covered by i (i.e. the true positives),
ni is the number of negative examples from E− covered by i (i.e. the false positives).

In this context, an individual i Pareto dominates an individual j, denoted by i � j,
iff [TPR(i) ≥ TPR(j)] ∧ [TNR(i) ≥ TNR(j)] ∧ [[TPR(i) > TPR(j)] ∨ [TNR(i) >
TNR(j)]]. Of course, the computation of the values of the two objectives requires, as
in the ECL system for the accuracy, the previous computation of the coverage set of
i. Since the coverage set of i is fixed for given E and (partial) BK, as explained in
Section 3.1.2 (page 35), the objective values of i are fixed too in the same conditions
(and need thus to be computed again only when the partial BK is replaced by the whole
BK in the algorithm). Furthermore, if two individuals have the same objective values,
this means that they cover the same number of positive and negative examples (but not
necessarily the same examples). And if, on top of that, they cover the same examples,
they probably encode the same logic rule.

To deal with the chosen objectives, the multi-objective evolutionary approach SPEA2
(without its archive mechanism) was elected. The individual fitness value is then cal-
culated in the four same steps, with the exception that all individuals belong to the
principal current population Pt at the t-th generation (the archive P t does not exist).
The fitness value, as in the original ECL system, has to be minimized (and here, a fitness
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lower than 1 corresponds to a non-dominated individual). Then, the global complexity
of the fitness assignment procedure is O(MN2logN) (with M = 2).

Here are the formulae used for calculating the fitness value F (i) of an individual i
created by the MOECL system:

• the strength value:
S(i) = |{j|j ∈ Pt ∧ i � j}|

• the raw fitness value:
R(i) =

∑
j∈Pt, j�i

S(i)

• the density estimation value:

D(i) =
1

σk
i + 2

• the fitness value:
F (i) = R(i) +D(i)

where σk
i is obtained as follows: the Euclidian distances (in the objective space) from

the individual i to all other individuals j in the population are computed and stored in a
list; the resulting list is sorted in increasing order; σk

i is assigned to be the k-th element
of the sorted list (with the heuristics k =

√
|Pt| where |Pt| is the size of the current

population).
In the particular case where i is the first created individual of the population, S(i) = 0,

R(i) = 0, D(i) = 0.5 (because σk
i = 0) and thus F (i) = 0.5 (i is obviously non-

dominated). It can also be noted that if two individuals have the same objective values,
they will have the same fitness value (and are thus considered of same quality). Indeed,
since calculations are performed relative to the objective space, they will have the same
raw fitness value and density estimation value. The opposite is however not true. Two
individuals with the same fitness value do not necessarily have the same objective values.

It is very important to note the impact on the MOECL system of this new manner
of determining the fitness values. In the original ECL system, the single-objective fitness
value is unique to each individual. Indeed, the accuracy of an individual is computed
only from the individual’s coverage of the positive and negative examples. On the
contrary, the calculation of the multi-objective fitness value for one individual in the
MOECL system depends on the entire current population. This is explained because the
fitness value F (i) of the individual i takes into account the dominators of i among Pt

(in the raw fitness value R(i)) and the density of the neighborhood of i in Pt (in the
density estimation value D(i)). Fitness assessment of any individual of the population
requires thus the previous computation of both the objectives (for R(i) and D(i)) and
the strength values (for R(i)) of all individuals other than i.

Remark that the strength value S(i) does not directly participate to the calculation
of F (i). It is only needed by the other individuals of the population to calculate their own
fitness value. However, the computation of S(i) takes into account the individuals of Pt

dominated by i, which means that this operation also requires the previous computation
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of the objectives of all other individuals. From an other point of view, not only depends
F (i) on the objectives and the strength value of the other individuals, as seen above, but
these strength values depend, among others, on i itself. There is a reciprocal influence
between the individuals as soon as the fitness of one of them has to be evaluated.

Because of this strong interdependence in the computation of the four values charac-
terizing each individual, any change of the current population affects the quality of all the
individuals that it contains. Indeed, if an individual is added in (or suppressed from) Pt,
the crowding in its neighborhood is found modified, thus the density estimation values
of the nearest individuals and thus their respective fitness values. Secondly, it also leads
to a change in the Pareto-dominance relations between population members, such that
the strength value and the raw fitness value of all other individuals need to be updated.

4.1.2 General algorithm

Figure 4.1 (page 57) shows the pseudo-code of the MOECL system, adapted from the
pseudo-code of the original ECL system.

To synthetize, in the ECL system and thus in the MOECL system, the individuals’
fitness values are used by the EWUS selection operator, by the mutation operator (thus,
by the optimization procedure and by the logic rule construction procedure) and by the
procedure inserting a new individual in the current population. Furthermore, fitness
assignment is performed in two situations: by the procedure evaluating one individual
(which is itself used by the procedure evaluating the complete population, current or
final) and by the procedure evaluating temporarily an individual (which is used as soon
as the result of a potential modification of the individual needs to be evaluated, i.e. by
the mutation operator).

Because of the design choices exposed above, each part of the algorithm involving
the fitness has been modified to transform the original ECL system into the MOECL
system. Both computation of the fitness function and use of the fitness value are
adapted. Moreover, two new design features have been added to the system: a set
of children Childrent and temporary covering sets of examples. All these modifications
will be described in detail below, in parallel with the general algorithm.

4.2 Different versions of fitness assignment

In the MOECL system, as in the original ECL system, fitness values have to be com-
puted both durably and temporarily, according to the step of the algorithm. This section
exposes successively the way in which the fitness assignment procedure of SPEA2 was
integrated in the MOECL system, then its adjustment in the case of temporarily com-
putation. This adjustment brought to the development of two versions of the MOECL
system, termed the MOECL v1 system and the MOECL v2 system, each one with some
advantages and drawbacks.
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ALGORITHM(MOECL)
1 PosEx = E+

2 Repeat
3 P0 = ∅
4 Select partial BK
5 For t = 0 to (T − 1) do
6 Childrent = ∅
7 Adjust weights of PosEx
8 For k = 0 to (K − 1) do
9 Select an individual i in Pt using PosEx
10 If i does not exist then construct i
11 Else mutate and optimize i
12 Evaluate the coverage set and the objective values of i
13 Insert i in Childrent

14 Store Childrent in Pt

15 Evaluate Pt

16 Store Pt in Pfinal

17 PosEx = PosEx− {positive examples covered by the individuals in Pt}
18 Until max iter is reached ∨ PosEx = ∅
19 Evaluate Pfinal using the whole BK
20 Extract a solution from Pfinal

Figure 4.1: Algorithm in high-level overview of the MOECL system.

4.2.1 Fitness assignment

Since it is related to the other individuals of Pt, the computation of the fitness value
F (i) of the individual i cannot be straightforward and sequential in the MOECL system.
For this reason, it is performed being divided in three distinct parts:

• the computation of the two objectives, i.e. the values TPR(i) and TNR(i): these
values allow the comparison between i and the other individuals of Pt according to
the Pareto dominance relation. They are needed by i for the computation of F (i)
as well as by the other individuals for the computation of their own fitness value.
This computation requires as precondition that the coverage set of i was computed.

• the computation of the “personal part” of the fitness value, i.e. the strength
value S(i): this value depends on the entire population Pt or, more precisely, on
the objective values of the other individuals. This means that it can be computed
without requiring the “personal part” or the “shared part” of the fitness value of
any other individual be computed. Note that the “personal part” of the fitness
value of i is only necessary to compute the fitness value of the other individuals of
Pt. This computation requires as precondition that ∀j ∈ Pt, j 6= i, TPR(j) and
TNR(j) were computed.
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ALGORITHM(evaluate population(Pt))
1 For each i ∈ Pt do
2 evaluate personal part of fitness(i)
3 For each i ∈ Pt do
4 evaluate shared part of fitness(i)

Figure 4.2: MOECL system - Algorithm to evaluate the fitness values of all individ-
uals of the current population.

• the computation of the “shared part” of the fitness value, i.e. the raw fit-
ness value R(i), the density estimation value D(i) and the fitness value F (i)
itself: these values also depend on the entire population Pt, but this time, on the
“personal part” of the fitness value of the other individuals. Remark that D(i)
only requires the previous computation of the objectives values of the other indi-
viduals (and not of their strength values) but it was logically placed within the
“shared part” to respect the order of the calculation of F (i) (furthermore, this
does not have any influence on the sequence of the algorithm). Note that the
“shared part” of the fitness value of i is not necessary to compute the fitness
value of the other individuals of Pt. This computation requires as precondition
that ∀j ∈ Pt, j 6= i, TPR(j), TNR(j) and S(j) were computed.

In the ECL system, ∀i ∈ Pt : f(i) is guaranted to be computed and available for
use at the beginning of each iteration of the EA, creating a new generation (t + 1)
of individuals. To keep this coherence in the MOECL system, the precondition of an
iteration of the MOEA requires that ∀i ∈ Pt : F (i) is computed (thus indirectly, the
coverage sets, the objectives values, the “personal part” and the “shared part” of the
fitness value of all individuals in Pt). This precondition is, on the one hand, necessary
since all these values will be used in the considered iteration, and, on the other hand,
satisfied thanks to the progressive computation of the different values, explained below.

As the coverage set and the objective values of i are fixed for given E and (partial)
BK, and independent of the other individuals, they are successively computed just after
the birth of i (step 12 in the MOECL system algorithm).

In the MOECL system, the fitness values of the K new individuals created at the t-th
generation are not indispensable between the moment of their creation and the end of
the current generation. They are only used from the next (t+ 1)-th generation, because
of a particular management of the new individuals. This will be explained later in Section
4.3.1 (page 61). So, contrary to the ECL system, the fitness of a new individual is not
evaluated directly after its birth. This justifies the step 15 of the algorithm where a
global evaluation of the population is systematically realized at the end of each genera-
tion. This procedure combines successively the computation of the “personal part” and
the “shared part” of the fitness value of all individuals, as depicted in Figure 4.2 (page
58). This way to proceed allows to respect the interdependence between the individuals
regarding these parts of fitness assignment (i.e. it satisfies their preconditions).
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A particular case of fitness assignment occurs at the end of the maxiter runs of the
MOEA, for the evaluation of the final population Pfinal (step 19 of the MOECL system
algorithm). This evaluation, performed on the whole BK, requires that the coverage
sets and the objective values of all individuals in Pfinal are computed again, on the whole
BK. Then, the remaining of the procedure is similar to the evaluation of the population
described above (i.e. it calls the procedure evaluate population with Pfinal as input).

4.2.2 Temporary fitness assignment

As in the ECL system, temporary fitness assignment is needed by the mutation operator
(and consequently, by the optimization procedure and by the logic rule creation proce-
dure). For this purpose, the individual τ(i) being temporarily evaluated (as a reminder,
it corresponds to i after the application of the potential mutation modification τ) is first
tested on E to establish a temporary coverage set (at that moment, no modification of
the covering sets of the examples occurs). Then, to compare the different possible modi-
fications τ and choose the best one, a temporary fitness value has to be computed for
each modification. In the MOECL system, the calculation of F (τ(i)) takes into account
the whole population. But this value cannot be exact without, before its calculation, the
strength values of all the individuals of the population dominating τ(i) are updated (i.e.
increased by 1). This is impossible since τ(i) is temporary and cannot have any effect
on the current population.

Because the evaluation of individuals constitues the heart of an EA, a particular
importance was given to this issue. Two distinct solutions were implemented, both with
positive and negative aspects, resulting in two versions of the MOECL system (all pre-
conditions being satisfied):

• version 1 “simple temporary fitness (without insertion)”: τ(i) is evaluated
apart from the current population. This version is explicited in Figure 4.3 (page
60). The algorithm performs successively the temporary calculations of the objec-
tive values and of the “shared part” of the fitness value of i (input of the proce-
dure). The latter calculation uses of course, in addition to their objective values,
the strength values of the individuals in Pt. And these strength values are not up to
date relatively to the new individual i, since they were calculated while it was not
present in Pt (i.e. they were not influenced by i). The temporary F (i) returned
by the algorithm is thus not correct but gives an estimation of the quality of i in
the current state of the population. Moreover, this algorithm is faster than the
second one. Note that the procedure computing the “personal part” of the fitness
value of i is obviously not called, because the individuals of Pt do not need the
the strength value of the temporary individual (Pt is indeed not modified by the
temporary fitness assignment). The version of the MOECL system implementing
this algorithm will be called the MOECL v1 system.

• version 2 “temporary fitness with a copy of the population (with inser-
tion)”: τ(i) is evaluated after having been inserted in a copy of the current
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ALGORITHM(temporary evaluation v1(i))
1 evaluate objectives(i)
2 evaluate shared part of fitness(i)
3 Return F (i)

Figure 4.3: MOECL system - Algorithm to temporarily evaluate the fitness value of
an individual (version 1).

ALGORITHM(temporary evaluation v2(i))
1 evaluate objectives(i)
2 i′ = copy of i
3 P ′t = copy of Pt

4 P ′t = P ′t ∪ {i′}
5 evaluate population(P ′t)
6 Return F (i′)

Figure 4.4: MOECL system - Algorithm to temporarily evaluate the fitness value of
an individual (version 2).

population. This version is explicited in Figure 4.4 (page 60). After the temporary
calculation of the objective values of i (input of the algorithm), a copy of i is
constructed, denoted by i′. This individual owns both the same coverage set and
the same objective values than i. Then a copy P ′t of the current population Pt is
realized and i′ is inserted in P ′t . This insertion is made without checking if P ′t∪{i′}
reaches the maximum population size N , for reason of simplicity and in order not
to introduce a random part in case where a replacement would be necessary (in
this manner, in the MOECL system, all the new individuals of a certain generation
are evaluated relatively to an identical copy of the current population). As the
insertion of any individual in the population makes a new evaluation of all the
other individuals compulsory, the fitness values of the individuals in P ′t ∪ {i′} are
calculated according to the procedure evaluating the population explained above
(in Figure 4.2, page 58). Finally, only F (i′), corresponding to the temporary fitness
value of i, is kept. Compared to the previous version, the computational time is
increased (proportionaly to the population size |Pt|) because of the multiple copies
and fitness evaluations. But the obtained fitness value is more representative of
the true quality of i (at least, at that precise moment, since it will change as soon
as the next new individual will be created). The version of the MOECL system
implementing this algorithm, expected thus to produce more accurate results, will
be called the MOECL v2 system.

As said before, the two developed versions of the MOECL system are respectively
the MOECL v1 and v2 systems. In the rest of this thesis, for more clarity, the simple
term “MOECL system” will continue to be employed in case the idea being explained is
valid for both versions.
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4.3 New features

This section describes two special features implemented in the MOECL system that were
not present in the original ECL system, consequences of the impact of the computation
of fitness values on the current population. In both cases, it is a new set of individuals
created for temporary needs. In place of being inserted directly after their birth in the
current population and in the covering sets of the examples that they cover, the new
individuals of the current generation are respectively stored in a children set and in
temporary covering sets, until the end of the generation where the “classical” sets are
updated thanks to the members of their “temporary” counterpart.

4.3.1 Children set

In the ECL system, each new individual is inserted in the current population right after
its creation and its evaluation. In the MOECL system, the insertion of an individual in
the population implies that the fitness values of all other individuals have to be computed
again. These observations lead to two possibilities after the creation of a new individual i:

• to insert i in Pt directly after it is created (as in the ECL system), and update
immediately the fitness values of all members of the population, including of i.

In this way, a complete generation requires K calls to the procedure evaluating the
population, presented above (supposing that the coverage sets and the objectives
of all individuals, including i, are already computed). Note that the size of Pt

grows at each insertion which influences the computational time of the evaluation
procedure.

• to postpone the insertion of i after the creation of all other children of the current
generation such that the state of the current population does not change until all
the children, including i, are inserted at one time in Pt.

Here, Pt, including the K new individuals, is evaluated only one time, at the end
of the t-th generation (with the same supposition as for the previous point).

The second possibility was chosen to avoid too frequent computations of the fitness
function, since fitness assignment is the most costly issue in EAs (as seen in Section
2.2.2, page 23). To implement this solution, a new set of individuals was created in the
MOECL system (in addition to the current population Pt and to the final population
Pfinal): the children set Childrent. This set aims at containing all the new individuals
created during the current generation t. Childrent is initialized as an empty set at the
beginning of each generation (step 6 in the MOECL system algorithm). During a gene-
ration t, when a new individual is created, this one is temporarily inserted in Childrent,
rather than being inserted in Pt (step 13). As soon as the t-th generation stops, the
K new individuals stored in Childrent are inserted in Pt (step 14). This sequence of
instructions ends with the evaluation of the current population Pt (step 15).
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Note that unlike the ECL system, where a just created individual can be selected for
reproduction in the next iteration, the mating pool of the MOECL system is independent
of the new individuals of the current generation. As new individuals tend to have a
better fitness value than older ones, the chosen alternative could probably slow down the
convergence to the Pareto optimal set (but not deteriorate the convergence itself). So,
this effect on effectiveness is the price, quite limited, to pay to avoid a really inefficient
implementation.

4.3.2 Temporary covering set

In the ECL system, each calculation of the coverage set of an individual (before the
evaluation of its fitness value) updates the covering sets of the examples from E. The
covering sets are used, among others, by the EWUS selection operator to select those
individuals-parents that are covering examples hard to cover (i.e. with few members in
their covering set). Furthermore, when a new individual is inserted in Pt, an older one
can have to be deleted from Pt (if the maximum size N is reached), and thus, from
all the covering sets in which it appears. So, a new individual added in the covering
sets of the examples after its birth can play a role in the algorithm during the rest of
the current generation (and of course, after this one). Indeed, it influences the EWUS
selection operator by its coverage of the examples (more, it could itself become parent)
as well as the insertion procedure if it is selected to be replaced by a subsequent new
individual.

Now, in the MOECL system, the new individuals created during the the t-th gene-
ration are stored separately in the set Childrent, until the generation ends. Only then,
they are inserted definitively in Pt. As they are not present in the population during
the current generation, they cannot be considered as covering some examples. In other
words, even if their coverage set is computed after their birth for more convenience (as
a reminder, the coverage sets are proper to each individual and invariable until the cons-
truction of the final population is terminated), they cannot be added at the same time in
the appropriate covering sets of the examples. Indeed, if this part of the ECL system was
not modified, the mating selection would be erroneous (the used covering sets would not
correspond to the current population). Concerning the insertion procedure, no problem
would occur since Pt does not include the new individuals, which cannot thus be selected
to be deleted.

In order to prevent such situations, the computation of the individuals’ coverage sets
and the update of the covering sets of the examples have thus been dissociated in the
MOECL system. To realize this, a second new type of set of individuals was created:
the temporary covering set. Each example, positive or negative, is hence associated
with one covering set and one temporary covering set. The latter aims at containing the
children of the current generation covering the considered example. It is filled in parallel
with the calculation of the coverage set of each new individual (step 12 in the MOECL
system algorithm). And the update of the classical covering sets is postponed, as for
the insertion of the new individuals in Pt, at the end of the current generation. At this
moment, each temporary covering set is emptied and its members are definitively added
in the covering set of the corresponding example. For reason of clarity, these operations
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were not incorporated in the figure of the algorithm.
Note that the update of the covering sets is performed before the new individuals of

Childrent are inserted in Pt (step 14). This sequence is important, since, as seen above,
the insertion procedure can modify the covering sets of the examples by extracting deleted
individuals. It can happen that a deleted individual is a child i of the same generation
than the subsequent child j replacing it. In this case, although already inserted in Pt

(since it was able to be deleted), i has also to be already inserted in the covering sets of
the examples that it covers in order to be able to be extracted from them (according to
the insertion procedure). In order not to change this procedure, it was decided that the
update of the covering sets would be done before. In this manner, the covering sets of
the examples become progressively in adequacy to the current population through the
K successive insertions in Pt of the members of Childrent. And when the insertion
procedure ends, the covering sets are ready to be used during the creation of the next
generation.
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Experiments

This chapter states an experimental evaluation of the two versions of the MOECL sys-
tem. The goal of these experiments is to compare, on different well known datasets,
both these new systems with the original ECL system as well as with the other seen
state-of-the-art systems. Furthermore, a particular experiment based on unbalanced
datasets aims specifically at verifying the supposed resistance of the MOECL system
to unbalanced class distribution. So, Section 5.1 gives the experimental settings used
during this evaluation. Then, the results of the different experiments and their analysis
are reported in Section 5.2. Finally, Section 5.3 draws a conclusion about the undertaken
experiments.

5.1 Test plan

This section displays the test plan of the experiments. First, it describes briefly the eight
datasets on which the experiments were run. Secondly, it lists the parameters values
chosen for the MOECL system. Two types of values were used: the same values as the
best ones found for the ECL system (for each dataset), and values optimized for the
MOECL v1 system (for each dataset except the unbalanced ones). Thirdly, it discusses
the way in which the quality of the results of the MOECL system was evaluated in
comparison with the results of the other systems. The accuracy metric served to this
aim. Its average and its standard deviation were computed for each dataset thanks to
the 10-fold cross-validation method.

5.1.1 Datasets

All datasets are well known benchmarks, taken from the UCI Machine Learning reposi-
tory [3, 69]. Each of them regards a real-life binary classification problem (more details
can be found in the corresponding relevant paper):

• Echocardiogram (1988) [57]: predicting if a patient will survive for at least one
year after a heart attack, from some data (the age when occurred the heart attack
and other medical cardiac measures).
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• Glass Identification 2 (1987, simplified version in 1994) [25]: determining whether
the glass (from building and vehicle windows) is a type of “float” glass or not. The
different descriptive attributes are the refractive index and the weight percent of
eight chemical elements compounding the glass such as Sodium, Magnesium, etc.
(obtained by scanning electron microscope). Criminological investigation moti-
vated the study of glass classification. Indeed, the glass found on the scene of the
crime can serve as evidence if it is correctly identified.

• Ionosphere (1989) [61]: classifying radar returns from the ionosphere. The radar
examples were collected by a system of high-frequency antennas in Goose Bay,
Labrador (Canada). Radar returns are considered as “good” if they show evidence
of some kind of free electrons structure in the ionosphere. “Bad” returns are those
whose the electromagnetic signals pass through the ionosphere without detecting
anything. The BK describes the radar pulse numbers over the time.

• Mutagenesis (1991) [18]: predicting whether a given chemical will be mutagenic
(closely connected to carcinogenic). The chemicals are detailed in terms of the
atoms and bonds between the atoms in the molecules forming the chemicals.

• Pima-Indians Diabetes (1988) [63]: forecasting the onset of diabetes in a high
risk population of american Pima Indians within a five-year period (i.e. discrimi-
nating each submitted test case to determine if he will develop diabetes within
five years). The examples come from female patients at least 21 years old of
Pima Indian heritage. The attributes contain the number of times the patient was
pregnant, the blood pressure, the body mass index, the age and other medical
measures.

• Sonar (1988) [32]: determining if a located object is a rock (i.e. a rough cylin-
der RC) or a mine (i.e. a metal cylinder MC), from bouncing sonar signals. The
dataset incorporates patterns of signals obtained from various angles, spanning 180
degrees for the RC and 90 degrees for the MC. These patterns are identified by
means of a set of attributes representing the energy within a particular frequency
band, integrated over a certain period of time.

This sample of datasets gives an idea of the large application domain of machine
learning and of concept learning. Table 5.1 (page 66) presents a synthesis of the diffe-
rent characteristics of the above datasets.

Note that the type of the Mutagenesis dataset is not the same than the type of the
other ones. Indeed, Mutagenesis is a relational dataset (i.e. using a relational represen-
tation, based on a FOL structure describing relations between objects), while each other
dataset is a propositional dataset (i.e. using a propositional representation, based
on valued attributes) [41]. Among the state-of-the-art systems, some are specialized
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````````````Dataset
Characteristic

Nb. of examples (+,-) Nb. of attributes Missing values

Echocardiogram 74 (24, 50) 6 (5 continuous, 1 categorical) yes
Glass Identification 2 163 (87, 76) 9 (continuous) no

Ionosphere 351 (225, 126) 34 (continuous) no
Mutagenesis 188 (125, 63) 10 (6 continuous, 4 categorical) no

Pima-Indians Diabetes 768 (268, 500) 8 (continuous) no
Sonar 208 (97, 111) 60 (continuous) no

Table 5.1: Characteristics of the datasets used in the experiments.

for relational datasets (called relational learner), while others are propositional (called
propositional learner). Consequently, Mutagenesis was run on ICL, Tilde and Progol ;
the rest of the datasets was run on C4.5, IB1, HIDER, GAssist, Naive Bayes and SMO.
Note that the ECL system, and thus the MOECL system, are basically relational but
integrate a special feature to handle with numerical attributes such that they can work
on both types of datasets.

In addition to the general performance of the MOECL system, a particular aspect
deserved to be tested: class distribution independency, supposed reached thanks to
the chosen objectives (TPR and TNR). For this purpose, two other datasets were
constructed from the Pima-Indians Diabetes dataset (because it contains the highest
total number of examples). The first, called “PID Pos.”, is concentrated on positive
examples (in a proportion of 91% - 9%, which corresponds to 268 positive and 26 nega-
tive examples). The second, called “PID Neg.” is concentrated on negative examples
(in the same proportion, which corresponds to 50 positive and 500 negative examples).
The other characteristics of these unbalanced datasets remain of course equivalent to
the characteristic of the Pima-Indians Diabetes one, written in Table 5.1 (page 66). On
both skewed datasets, the MOECL system will only be compared to the original ECL
system.

In all the experiments, the method of the 10-fold cross-validation is used, to create
distinct training and test sets from the same set of available examples. This method was
described in Section 2.1.1 (page 7). The systems are tested one time on each dataset
(and thus run ten times to realize cross-validation).

5.1.2 Parameters

In the ECL system, and thus in the MOECL system, several parameters are used, and
must be tuned, for controlling various aspects of the evolutionary process. Here is a
summary of these different parameters:

• N : the maximum population size

• T : the number of generations performed by the EA to construct the current
population Pt
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• K: the number of individuals selected per generation

• max iter: the maximum number of iterations (i.e. executions of the EA) per-
formed to construct the final population Pfinal

• muti, i ∈ {1, 2, 3, 4}: the number of mutation possibilities associated with each
of the four mutation operators

• lr: the maximum length of a logic rule

• pbk: the probability of selecting a BK fact

Table 5.2 (page 68) shows the settings of these different parameters, used to perform
the experiments. Normal font means that the values are the same for both the ECL
and the MOECL systems. Italic font means that these values led to a performance
improvement of the MOECL system. The parameter values used for the unbalanced
datasets are the same as the ones of their original dataset, Pima-Indians Diabetes.
Furthermore, all the experiments were realized using the same random seed, equal to 2.

Note that each dataset has its own parameter values. Indeed, the values cannot be
fixed once and for all, because an EA reacts differently on each dataset. This can be
explained by lots of reasons as the type of the dataset, the characteristics of the available
examples, the algorithm and the implementation of the learner itself and some hazard
effects. It implies that the system has to receive adapted values for each experiment,
that can be very different from a dataset to another. And it is possible that a learner is
very effective on a certain dataset and is very bad, and will always be bad, on another one
(whatever the parameter values), without this is rationally understandable nor explicable.
A learner cannot perform well on all the existing datasets.

Furthermore, it is important to know that there exists no rule to determine with
precision which are the best parameter values for an EA, i.e. those ones that lead to
the best result. To find a good setting of the parameters, many preliminary runs on
examples have to be executed with varied values of the parameters. This operation is
a combinatorial, time consuming as well as haphazard optimization problem. Besides,
it is not ensured that in this way, the optimal setting of parameters is found. And no
self-tuning method for the automatic tuning of some of these parameters was developed
in parallel of the ECL system.

So, the experiments were first realized with the same parameter values as the best
ones of the ECL system, which will be called later the “basic” parameter values (those
in normal font). These values are given in [19]. They were chosen because they led to
a logic program with the best classification result.

In a second time, parameter values of the MOECL v1 system (not those of the
second version) were pragmatically modified (increased and decreased) to try to reach a
performance improvement. These modifications were tested on all the datasets except
the unbalanced ones. The values in italic font are the best found ones (if no value
is written for a dataset, it means that none of the tested modifications improved the
system). Note that, because of limited time, at most five different values were tested
for only these four parameters: N , K, max iter and pbk. Moreover, the modifications
were not combined but tested separately for each parameter.
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````````````Dataset
Parameter

N T K max iter muti lr pbk

Echocardiogram 40 8 10 10 (4,4,4,4) 4 0.7 [0.9 ]
Glass Identification 2 150 15 20 3 (2,8,2,9) 5 0.8 [0.7 ]

Ionosphere 50 10 15 6 (4,8,4,8) 6 0.2
Mutagenesis 50 [100 ] 10 15 2 (4,8,2,8) 3 0.8

Pima-Indians Diabetes 60 10 7 5 (2,5,3,5) 4 0.2
Sonar 80 [150 ] 10 15 1 (4,8,4,8) 5 1.0

PID Pos. 60 10 7 5 (2,5,3,5) 4 0.2
PID Neg. 60 10 7 5 (2,5,3,5) 4 0.2

Table 5.2: Parameters settings used in the experiments. Normal font means that the
values are the same for both the ECL and the MOECL systems. Italic font means
that these values led to a performance improvement of the MOECL system.

5.1.3 Performance evaluation metric

To compare the outcomes of MOEAs, quality measures of Pareto optimal set appro-
ximations are necessary. Graphical plots of the produced sets have been often used
[68] but obviously, this method is not precise nor practical. In a quantitative way, the
easiest comparison technique is to check if an output set completely Pareto dominates
another. Unary quality measures (i.e. measures assigning each Pareto set approximation
a value assessing a particular quality aspect), or a combination of them, are most usual
[68, 17, 66]. They are principally based on the two main goals of a MOEA, exposed
in Section 2.2.2 (page 23): minimizing the distance of the resulting non-dominated set
to the true Pareto optimal set, and maximizing the diversity and the uniformity among
the found non-dominated individuals. However, theoretical limitations of such kind of
measures was proved [75]: a (finite) set of distinct criteria, like distance, diversity and
uniformity, is generally not sufficient to represent entirely the quality of a Pareto optimal
set approximation. Binary quality measures were also developed but they turn out to be
not appropriate in all cases [73].

In concept learning, an alternative to the evaluation of the quality of the Pareto
optimal set approximation is the evaluation of the quality of the hypothetized concept,
i.e. in the case of the MOECL system, the produced Prolog program. A common measure
used in the literature to test learned binary classifiers on a test set is the accuracy,
measure described in Section 2.1.3 (page 14). Classifiers have to be as accurate as
possible. Because 10-fold cross-validation is applied, the final quality value for each
dataset is computed as the average of the accuracy of ten different Prolog programs.
These programs are thus constructed by running the MOECL system on ten different
training sets obtained from the dataset, and then evaluated on a different test set each
time (the complementary one to the corresponding training set). Note that it is a single-
objective evaluation of the logic programs, contrary to the multi-objective evaluation
implemented inside the MOECL system.

The known default of accuracy is to be susceptible to skewed class distribution (in
that case, it does not reflect the true quality of the classifier). However, whatever the
dataset (balanced or not), the average accuracies will serve, in these experiments, not
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to estimate the quality of the result of the MOECL system as such, but to compare the
results of the different systems to each other. Using accuracy is thus valid to serve as
basis to assert that a system is better than another, supposing the same experimental
conditions.

To complete this metric, the standard deviation σ is also computed. It measures
the variability, or dispersion, of a set of reals {x1, x2, ..., xN} (in this work, the ten
accuracies of the 10-fold cross-validation), according to this formula:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2

where µ is the arithmetic mean of the data, equal to 1
N

∑N
i=1 xi. Standard deviation is

then a positive real value, potentially infinite. A low standard deviation expresses that
the data are very close to the mean, while high standard deviation indicates that the
data are deployed over a wide range of values.

Concerning accuracy, included in the interval [0, 1], the minimal standard deviation
is 0 (when all the ten tested logic programs have the same accuracy) and the maximal
standard deviation is 0.5 (when the dispersion is maximal, i.e. half programs have an
accuracy of 0 and the other half of 1). Then, a low standard deviation is better than
a high one because it corresponds to a learner that produces regular results (good or
bad), and not results of a very unstable quality. It follows that best learners have a high
accuracy (at best equal to 1) and a low standard deviation (at best equal to 0).

Of course, compared to the original ECL system, an increase of effectiveness is
expected, and not an increase of efficiency. More, poor efficiency of the ECL system
risks to be amplified in the MOECL system because of the additional computational time
needed for the multi-objective fitness evaluation (especially in the MOECL v2 system).
But this is secondary because, as explained in Section 1.2 (page 2), effectiveness is the
main concern. Anyway, computational time could not be taken into account during the
experiments since the latter were not realized on a dedicated server.

5.2 Results and analysis

This section begins with an illustration of the functioning of the MOECL system on
a given dataset and with given parameter values. It is shown the evolution of the
population regarding the individual objective values (thus, the found Pareto front), the
best and average fitness values, and the percentage of covered examples. Then, the
results of the experiments are summarized in a table and analyzed according to three
different views: the balanced datasets, the unbalanced datasets and the two versions of
the MOECL system.
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5.2.1 Illustration of the functioning of the MOECL system

To illustrate the functioning of the MOECL system, version 1 was run on the Pima-
Indians Diabetes dataset with the parameter values presented above in Table 5.2 (page
68), except that the number of iterations of the MOEA (max iter) was reduced to 1.
This allowed to restrain the evolution of the population to only ten successive genera-
tions. The 10-fold cross-validation method was not necessary (since the system was run
only one time on the dataset) and the MOECL system was thus given in input the entire
set of examples E.

Figure 5.1 (page 73) shows the objective values TPR and TNR of the individuals in
the current population Pt for each of the ten generations. On each graph, t indicates the
number of the current generation and |Pt| indicates the size of the current population
at the end of this generation. The individuals are plotted by means of an identifier
representing the order in which they were created. Note that for more readability, the
scale of the x-axis has been limited to [0; 0.5] and the scale of the y-axis has been limited
to [0.5; 1] (because TPR values were not higher than 0.5 and TNR values were not
lower than 0.5, which reflects some lack of diversity in the objective space). Of course,
the objective values of an individual remain equal during the entire evolution process
since they are fixed for the given used E and partial BK, as seen in Section 4.1.1 (page
53). The population reached its maximum size (N = 60) during the ninth generation.
This caused that new individuals replaced older ones. For example, from t = 8 to t = 9,
the individuals 30 and 52 were deleted.

These graphs allow to visualize the successive Pareto fronts of Pt. Exact objective
values of the first fourteen individuals (i.e. the ones plotted on the two first graphs) are
reproduced in Table 5.4 (page 74). For t = 0, the Pareto optimal set P∗ is {0, 3, 4, 6}
(the individual 1 is Pareto-dominated by the individual 6; 2 and 5 are dominated by 0
and 4). For t = 1, P∗ = {0, 4, 6, 7, 9, 11, 12, 13} (1 is dominated by 6; 2 and 5 are
dominated by 0 and 4; 3 is dominated by 13; 8 and 10 are dominated by 11). The indi-
vidual 3 has thus left P∗ from one generation to the next one because of the creation
of the individual 13. The respective Pareto fronts are of course formed by the couples
“(TPR(i), TNR(i))” associated with the individuals in P∗. The table shows clearly
that some individuals have the same objective values (0 and 4; 2 and 5), which means
that they have the same fitness value, as explained in Section 4.1.1 (page 53).
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To be continued . . .
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Continuation

To be continued . . .
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Continuation

Figure 5.1: Graphs relative to objectives for ten generations of the MOECL v1
system on the Pima-Indians Diabetes dataset. Each graph shows the objective
values TPR and TNR of the individuals (plotted thanks to their identifier) in the
current population Pt at the t-th generation. Objectives values are maximized.

After the ten generations are completed, the current population Pt is stored in the
final population Pfinal. Figure 5.2 (page 74) shows on the one hand, the objective values
of the individuals in Pfinal after the latter has been evaluated on the whole BK and on
the other hand, the objective values of the individuals belonging to the final extracted
solution.

It can be seen that, unlike when the partial BK was used, the objective values have
a better spreading, from 0 to 1 (the scales of both axes have been modified accordingly),
but no individual reaches the maximum (1, 1). Moreover, the distribution is relatively
uniform. Only three individuals were kept to form the final solution of the MOECL sys-
tem. It can be noted that the individuals in Pfinal with objective values equal to (1, 0)
or (0, 1) were systematically deleted, despite they belong to the Pareto optimal set of
Pfinal. Many other individuals Pareto optimal were deleted too. In the final solution,
P∗ = {0, 37, 43}. All the individuals are thus Pareto optimal, as it can be seen on the
graph or more precisely in Table 5.5 (page 74). Note that during the experiments, the
final solution of the MOECL system included sometimes Pareto-dominated individuals.
In addition to the objective values, the table shows the number of positive and negative
examples that the final individuals cover (as a reminder, |E+| = 268 and |E−| = 500),
and their fitness value. All the fitness values are lower than 1, which confirms that the
individuals are non-dominated. As an information, the accuracy of this found solution
(computed on the whole E and BK) is 0.751302, which means that the logic program
classifies correctly 75% of the examples in E (considering both positives and negatives).

At last, Figure 5.3 (page 76) shows the evolution along the generations of the average
and best fitness values of the individuals in Pt (with a zoom on the series of the best
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````````````Individual
Objective

TPR(i) TNR(i)

0 0.00446429 1
1 0.0178571 0.986
2 0.00446429 0.996
3 0.160714 0.844
4 0.00446429 1
5 0.00446429 0.996
6 0.0178571 0.994
7 0.267857 0.77
8 0.03125 0.976
9 0.129464 0.894
10 0.0401786 0.976
11 0.0446429 0.976
12 0.116071 0.904
13 0.209821 0.888

Table 5.4: Objective values of the 14 first individuals. P∗ = {0, 4, 6, 7, 9, 11, 12, 13}.

Figure 5.2: Graphs relative to objectives of the final population after ten generations
of the MOECL v1 system on the Pima-Indians Diabetes dataset. The left graph
shows the objective values TPR and TNR of the individuals (plotted thanks to
their identifier) in the final population Pfinal after its evaluation on the whole BK.
The right graph concerns the individuals kept in the final solution. Objectives values
are maximized.

Individual pi ni TPR(i) TNR(i) F (i)
0 14 9 0.0597015 0.982 0.485721
37 28 28 0.104478 0.944 0.472754
43 110 38 0.410448 0.924 0.449334

Table 5.5: Number of covered positive and negative examples, objectives values
and fitness values of the individuals belonging to the final solution outputed by the
MOECL system. P∗ = {0, 37, 43}.
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fitness values), and Figure 5.4 (page 77) shows the evolution of the percentage of covered
positive and negative examples by Pt. Note that these data come from evaluations of
the individuals on E with a partial BK.

While the average fitness value grows rapidly, the best fitness value remains between
0.450 and 0.490, deterioring a little progressively. Here is the suite of the individuals
having the best fitness value at each generation: 3, 7, 7, 7, 33, 33, 46, 46, 46, 43. It can
be observed in Figure 5.1 (page 73) that they are situated in few crowded regions of the
objective space (density was thus well taken into account in fitness assignment). Fur-
thermore, it can be noted that 43 was selected in the final solution. In the experiments,
however, the solution produced by the MOECL system did not contain necessarily the
last fittest individual.

Concerning the percentages of covered examples, they are quite low at the first
generation but grow above 50% from the second one onwards. The rapid growth slows
down along the generations. The gap between both percentages widens little by little and
stabilizes at more or less 20%, in the advantage of the positive examples. The proportion
of covered positive examples even reaches almost 100% at the ninth generation but
decreases of some unities at the last one. This gap can be explained thanks to the
EWUS selection operator, promoting the coverage of the positive examples, as detailed
in Section 3.1.2 (page 35).

5.2.2 Results

The results of all the experiments are grouped together in Table 5.6 (page 5.6). Standard
deviation is put between parentheses, where (x) stands for (0.0x). Bold font corresponds
to the best result among all the systems. Italic font means that the result of the relative
MOECL system is at least equal to the result of the ECL system on the same dataset.

5.2.3 Analysis

The analysis of the results of the experiments will be made successively for the balanced
datasets and the unbalanced datasets for the MOECL in general, then by focusing on
the comparison between the two versions of the MOECL system.

Balanced datasets

Among the propositional datasets, the ECL system is the best, or one of the bests,
compared to the six other systems for two datasets out of five: the Glass Identification
2 dataset and the Pima-Indians Diabetes dataset. With the basic parameter values, the
MOECL v1 system reached results of equal average accuracy only on Glass Identification
2 (and with a tenfold standard deviation). This average rose in one hundredth thanks
to a little decrease of pbk, from 0.8 to 0.7 (the standard deviation did not change).
With this improvement, the MOECL v1 system becomes better than the ECL system,
but it is not sufficient to makes it better than the other state-of-the-art systems. For
Pima-Indians Diabetes, no particular result can be signaled with the MOECL system.

Concerning Echocardiogram, Ionosphere and Sonar, where the ECL system does not
surpass the other systems, only the MOECL v2 system obtains the same average accu-
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Figure 5.3: Graphs relative to fitness for ten generations of the MOECL v1 system
on the Pima-Indians Diabetes dataset. The first graph shows the best and average
fitness values by generation and the second graph shows a zoom on the best fitness
value by generation. Fitness is minimized.
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Figure 5.4: Graph relative to coverage for ten generations of the MOECL v1 system
on the Pima-Indians Diabetes dataset. It shows the percentage of covered positive
and negative examples by generation. Coverage is best when maximized.
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racy as the ECL system for the dataset Sonar, with the basic parameter values. This
same average quality is also achieved by the MOECL v1 system, once optimized the value
of the parameter N (from 80 individuals, it becomes 150 individuals). An improvement
of the MOECL v1 system can also be observed for the Echocardiogram dataset after
having increased the parameter pbk, from 0.7 to 0.9. The reached average accuracy is
once again the same as the one of the ECL system (but with a much higher standard
deviation). So, for these three datasets, it can be said that the MOECL system is at
best as good as the ECL system.

About the Mutagenesis dataset, the ECL system is the best compared to the three
other state-of-the-art systems. With the basic parameter values, only the MOECL v1
system performed as well as the ECL system (however with a standard deviation six
times higher). Increasing the maximum population size until 100 individuals provoked a
great improvement, in fact, the best improvement obtained during all the experiments!
The average accuracy passes from 0.90 to 0.94, the standard deviation remaining quite
high. This means that the MOECL v1 system classified correctly on average 94% of this
dataset. Only for Mutagenesis, this positive result was verified also for the MOECL v2
system, by giving directly the same value to N , as indicated between brackets in the
result table. No more experiments were realized with the MOECL v2 system but another
parameter value (of N or even of another parameter) could maybe have been led to still
better results on this dataset.

Unbalanced datasets

With regard to the unbalanced datasets, performance evaluation gives the same results
for the ECL system and for the MOECL system, except in one case. Compared to the
ECL system, the MOECL v2 system produces programs that treat properly on average
1% of the examples of PID Neg. more, with the basic parameter values. As said
above, no optimization of the parameter values was undertaken for these unbalanced
datasets. It can also be noted that, like the ECL system, the MOECL system seems to
perform better on datasets biased towards positives than towards negatives. Finally, the
MOECL system presents its lowest standard deviations among all the experiments on
the unbalanced datasets. And its standard deviations are in the same order of the ones
of the ECL system.

The two versions of the MOECL system

As a reminder, the two versions of the MOECL system differ on the manner in which they
compute a temporary individual fitness value. This was explained in Section 4.2.2 (page
59). The MOECL v2 system, more complex, is expected to be also more effective than
the MOECL v1 system (the latter normally benefits from being faster, i.e. more efficient).

During all the undertaken experiments, the average accuracies of the MOECL v2
system were better than the ones of the MOECL v1 system, with the basic parameter
values, on three datasets (Pima-Indians Diabetes, Sonar and PID Neg.); equal on two
datasets (Ionosphere and PID Pos.); and strictly worse on four datasets (Echocardio-
gram, Glass Identification 2, PID Neg. and Mutagenesis). These results are less good
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than expected.

After having modified the parameter values, both the MOECL v1 and MOECL v2
systems achieve the same level of quality on Mutagenesis. Because the parameters of
the MOECL v2 system were modified only on this dataset, nothing can be said about the
other ones. However, its improvement of 6% (against 4% for the MOECL v1 system)
allows to suppose that adapting the parameters can result in a substantial performance
increase. It can be noted that, without considering the improvement of the MOECL
v2 system on Mutagenesis, this system is never better than the other state-of-the-art
systems used as comparators in the experiments.

Concerning the standard deviations, they vary from 0.02 (on PID Neg.) to 0.13 (on
Sonar) for both the MOECL v1 and v2 systems. In general, they are quite high and
similar on a given dataset for both systems. One system cannot be considered the best.

5.3 Conclusion of the experiments

The above analysis shows in general that the results of the MOECL system are compara-
ble to the results of the original ECL system (even with the best found parameter values
for the MOECL v1 system). At least, it can be said that they are not worse, failing being
significantly and systematically better. Although hard to generalize, the result obtained
on Mutagenesis shows that improvement may be possible compared to the ECL system.

The ECL system is better for three datasets out of six (and strictly better for two)
compared to the other state-of-the-art systems, and without taking into account the
unbalanced datasets. For its part, the MOECL v1 system is only strictly better for two
datasets out of six (the same two that the best ones of the ECL system). In both cases,
with the best found parameter values, the MOECL v1 system has a better average
accuracy than the ECL system. This could be interpreted as a reinforcement of the
strengths of the ECL system: on datasets for which the ECL system seems particularly
adapted, the MOECL system could bring a still more effective solution to these learning
problems.

The standard deviations of the MOECL system are rather high, except for the unba-
lanced datasets, compared to the ones of the ECL system and of the other state-of-the-art
systems. But this can be relativized since these values are never higher than 0.15 (while
the maximum standard deviation in this context is 0.5, as viewed above. The quality of
the learned logic programs is thus quite homogeneous.

About the two versions of the MOECL system, too few experiments were undertaken
to be able to come to a general conclusion. Optimized as much as possible parameter
values should be sought for both systems and only then, their performance could be
compared objectively on the datasets.

As said before, the performance of the MOECL system did not reach the level that
was expected in view of its design choices. Some conjectures can be advanced to justify it:
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• The best parameter values were not found for the MOECL v1 system (and obvi-
ously, nor for the MOECL v2 system).

Supplementary experiments could be done to find better parameter values (even-
tually, combining the modifications of these values) such that the MOECL system
would output more optimized learned logic programs, and could be proved more
effective than the ECL system. Moreover, these experiments would allow to rank
the two versions of the MOECL system, according to their respective performance
evaluation.

• Unfortunately, the chosen datasets are not particularly well-suited to be handled
by the MOECL system.

More experiments could be realized to test the MOECL system on a larger range
of datasets. If the datasets chosen in this thesis were not adapted for the MOECL
system, other ones could be much more well treaten.

• The transformation of the single-objective ECL system into a multi-objective ECL
system, even if promising theoretically, does really not give an improved system in
practice. This hypothesis could only be validated in case of fail of the additional
experiments proposed above.
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Conclusion

The purpose of this thesis was to attempt to improve the effectiveness of the ECL system
by transforming its single-objective strategy into a multi-objective one. To achieve this,
the Multi-Objective ECL (MOECL) system was developed, on the basis of well-proven
theories. First, two performance metrics independent of example class distribution, the
true positive rate (TPR) and the true negative rate (TNR), were chosen as objectives
to maximize, in order to evaluate the FOL solutions during the search of the Pareto
optimal set. Secondly, the Pareto-based fitness assignment of SPEA2 (second version of
the Strength Pareto Evolutionary Algorithm) provided a simple technique to compute the
fitness value of each solution. This technique takes into account the two objectives and
the density of the solutions, thus their diversity, which is a key issue in multi-objective
optimization problems. The adaptations brought about to the ECL system led to create
two distinct versions of the MOECL system, the MOECL v1 and v2 systems, according
to the implementation of the temporary fitness evaluation.

In general, the MOECL system was thus expected to be resistent to unbalanced
datasets and in particular, to produce more accurate logic programs than the ECL system
and than other state-of-the-art systems. Concerning its two versions, the MOECL v1
system was expected to be more computationally efficient, while the MOECL v2 system
to output better results.

Experiments showed that, for all tested datasets (balanced or not), both versions of
the MOECL system are at least as good as the ECL system, although not substantially
superior. The observed improvements (with the MOECL v1 system) occurred on datasets
on which the ECL system already performs particularly well (i.e. better than other
state-of-the-art systems). In this case, it seems that the MOECL system could produce
still more effective results with optimized parameter values. Furthermore, the conducted
experiments were not sufficient to discriminate between the two versions of the MOECL
system (note that only the quality, and not the running time, was considered). However,
the results obtained with the MOECL v2 system give hope that it could be made really
more performant than the first version with optimized parameter values.
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6.1 Further work

The current work has shown that the MOECL system can deal quite well with concept
learning problems (even if it is not the best existing system at the moment). Further
work can be imagined to continue in this way of research.

On the one hand, future experiments could be done to investigate in a more detailed
way whether the MOECL system can significantly improve the effectiveness of the ECL
system, and to objectively distinguish the two versions of the MOECL system:

• Optimal parameter values should be sought for both versions of the MOECL sys-
tem. This search can be done manually, guided by human expertise and feeling, or
automatized by an external script or other method, but this consists in a combi-
natorial “blind” process. Additional experiments should involve a wider choice of
datasets, to consolidate the comparison between the different systems.

• In the current experiments, the MOECL system was compared with existing single-
objective concept learning systems. This only constitutes a first step in the eva-
luation of the MOECL system. In a next step, in-depth experiments should be
planned, with multi-objective concept learning systems [7]. Two existing ones will
be briefly described, each of them being a MOEA for ILP.

The Multi-Objective Learning Classifier System (MOLeCS) [8] was deve-
loped by E. Bernardó-Mansilla and J. M. Garrell in 2001. As the ECL system, it is
in Michigan style. MOLeCS maximizes simultaneously two objectives at the rule
level: accuracy and generalization. So, a given individual i is evaluated against
the available examples in the training set, thanks to these formulae:

accuracy(i) =
number of correctly classified examples(i)

number of covered examples(i)

generalization(i) =
number of covered examples(i)
total number of examples

And the multi-objective strategy assigning a fitness value to each individual is
based on lexicographic ordering. Concretely, the population is first sorted accor-
ding to the accuracy objective, and subsequently, to the generalization objective
(in the case of equally accurate individuals). Fitness is then defined following the
ranking. The interpretation of such a strategy is searching for accurate individuals
being as general as possible.

The Multi-Objective Learning System - Genetic Algorithm (MOLS-GA)
[71] was developed by X. Llorà, D. Goldberg, I. Traus and E. Bernardó-Mansilla
in 2002. It is in Pittsburgh style. MOLS-GA aims at minimizing two objectives
at the ruleset level: missclassification error and size of the individual. For fitness
assignment, as in NSGA-II, the population is classified in successive non-dominated
fronts Fk (F1 being the Pareto front). Then, all the individuals belonging to the
same front Fk receive the same constant value (K − k)δ, where K is the total

Multi-objective ECL system - Céline Dandois 83/93
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number of fronts and δ is a constant. The fitness value of a given individual i of
a front Fk is given by:

fitness(i) =
(K − k)δ∑
j∈Pt

φ(i, j)

where φ(i, j) is a sharing function [31] computed using the Euclidian distance
between i and j in the objective space. The goal of this function is to spread
the population along the Pareto front. Fitness values have to be maximized since
better the front, higher is the fitness value.

On the other hand, if the proposed MOECL system finally turns out not to be as
effective as hoped for, future developments could be made to try to improve it:

• Some experiments testing SPEA2 against other systems indicated that it seemed
particularly effective in high dimensional objective space. So, it could be of certain
concern to see the impact of increasing the number of objectives in the MOECL
system. For example, in addition to the current ones (TPR and TNR), the
length of the logic rules could be integrated in the optimization process to be
minimized (keeping or not the maximum length given as a parameter). Indeed,
this is a criterium of simplicity, one of the qualities required for a good binary
classifier, as seen in Section 2.1.2 (page 11). The other parameters of the ECL
system cannot be considered as objectives since they are not characteristics of the
individuals-solutions, but of the global algorithm, such that they are needed by the
optimization process. More generally, some metric evaluating the quality of the
found Pareto optimal set approximations could be optimized. This type of metrics
was evoked in Section 5.1.3 (page 68). A last possibility could be to define new
objectives specific to the learning problem, thus with the help of an expert in the
problem domain. These objectives would incorporate the expert’s preferences, in
terms of subjective and contextual utility of the concept.

• In order to benefit more from the advantages offered by a system such as SPEA2,
an elitist strategy could be added in the MOECL system, for example by means of
an archive preserving the best individuals until the end of the evolution process.

• The computation of the different objectives could be parallelized, which would not
only reduce the computational time of the MOECL system, but may also result
in better approximation of the Pareto optimal set computed in a same amount
of time. Another way to profit from this gained time could be to “complexify”
the system in order that it resolves optimization problems more effectively (for
instance, by implementing an archive as proposed above).

The mentioned points offer some interesting starting ideas for future research. One
could also try, for example, to discard the set of children from the MOECL system (and
then, as in the ECL system, to insert the new individuals in the current population just
after their birth, such that they can be selected as parent in the same generation). The
effect of this modification may cause some decrease of the efficiency of the MOECL
system, but may achieve a quicker convergence (in term of number of generations) to
the true Pareto optimal set.
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[6] Thomas Bäck. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, 1996.
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BIBLIOGRAPHY

[37] George H. John and Pat Langley. Estimating continuous distributions in Bayesian
classifiers. In Proc. 11th Conference on Uncertainty in Artificial Intelligence, pages
338–345. Morgan Kaufmann, 1995.

[38] R.L. Johnston, H.M. Cartwright, B. Hartke, K.D.M. Harris, S. Habershon, S.M.
Woodley, V.J. Gillet, and R. Unger. Applications of Evolutionary Computation in
Chemistry, volume 110 of Structure and Bonding. Springer, 2004.

[39] Jyrki Kivinen, Alexander J. Smola, and Robert C. Williamson. Online learning with
kernels, 2003.

[40] Frank Kursawe. A variant of evolution strategies for vector optimization. In PPSN
I : Parallel Problem Solving from Nature, 1st Workshop, volume 496 of Lecture
Notes in Computer Science, pages 193–197. Springer-Verlag, 1991.

[41] Wim Van Laer and Luc De Raedt. How to upgrade propositional learners to first or-
der logic: A case study. Machine Learning and Its Applications: Advanced lectures,
2049:102–126, 2001.

[42] Zbigniew Michalewicz. Genetic algorithms + data structures = evolution programs
(3rd ed.). Springer-Verlag, 1996.

[43] Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226,
1982.

[44] Stephen Muggleton. Inductive logic programming. New Generation Computing,
8(4):295–318, 1991.

[45] Stephen Muggleton. Inverse entailment and progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[46] Stephen Muggleton. Learning from positive data. In Proceedings of the 6th Inter-
national Workshop on Inductive Logic Programming, volume 1314 of Lecture Notes
in Artificial Intelligence, pages 358–376. Springer-Verlag, 1996.

[47] Stephen Muggleton and Luc de Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19:629–679, 1994.

[48] Richard E. Neapolitan and Kumarss Naimipour. Foundations of algorithms. D. C.
Heath and Company, 1996.

[49] Nils J. Nilsson. Introduction to machine learning: An early draft of a proposed
textbook. http://robotics.stanford.edu/people/nilsson/mlbook.html, 1996.

[50] Carlos Andrés Peña-Reyes and Moshe Sipper. Evolutionary computation in
medicine: An overview. Artificial Intelligence In Medicine, 19(1):1–23, 2000.

[51] John Platt. Fast training of support vector machines using sequential minimal
optimization. In Advances in Kernel Methods — Support Vector Learning, pages
185–208. MIT Press, 1999.

Multi-objective ECL system - Céline Dandois 91/93
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