
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Privacy rights management

Benats, Guillaume

Award date:
2011

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Sep. 2024

https://researchportal.unamur.be/en/studentTheses/02c81cef-2cd2-4190-b2b2-0708259ebdd2

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d’informatique.

Année Académique 2010 - 2011

Privacy Rights Management

Guillaume Benats

Submitted in partial fulfillment of the requirements for the degree of Master in Computer
Sciences

Abstract

The rapid growth in smartphone usage has driven a global demand for mobile applications.
This phenomenon has created new threats to the privacy of smartphone users because the
ability to install and run diverse sets of applications on the same device makes it harder for
users to understand how privacy configuration policies conflict with which other applica-
tions under different situations. Especially when privacy is concerned, detecting such con-
flicts is challenging because even end-users cannot always precisely describe their privacy
requirements under these contexts. To meet the needs of representing privacy requirements
and resolving potential conflicts in privacy policies, we propose to use an extension to the
P-RBAC model, which allows us to reason about plausible scenarios and weaknesses of
mobile systems.
Also, in the same goal of repesentation and in a goal of porting rights expression languages
to mobile applications, we will reason about ODRL, the rights expression language selected
by the Open Mobile Alliance as a standard for mobile environments. We will study how we
can express privacy requirements scenarios of mobile applications in such a language. This
work has been evaluated using the case studies we conducted on several Android mobile
applications.

La croissance rapide dans l’utilisation des téléphones intelligents, dits “Smartphone”,
a conduit une demande globale importante dans les applications mobiles. Ce phénomène
a créé de nouvelles menaces envers la vie privée des utilisateurs à cause de la capacité à
installer et exécuter divers ensembles d’applications sur le même appareil. Cette capacité
rend plus difficile la compréhension par les utilisateurs des conflits possibles des politiques
de configuration d’une application avec celle d’une autre à un certain moment donné, et
de l’impact de ces conflits sur la vie privée de ces utilisateurs. Particulièrement quand
la vie privée est concernée, détecter de tels conflits est un challenge en soi car même
les utilisateurs finaux ne peuvent pas toujours décrire leurs propres exigences en terme
de vie privée dans de tels contextes. Pour rencontrer les besoins de représentation de
ces exigences et résoudre les conflits potentiels qui pourraient émerger, nous proposons
d’utiliser une extension du modèle P-RBAC, qui nous permet de raisonner à propos de
scénarios et faiblesses plausibles de systèmes mobiles.
Aussi, dans ce même but de représentation et dans un autre but de porter les langages
d’expression de droits aux applications mobiles, nous raisonnerons sur ODRL, le langage
sélectionné par l’Open Mobile Alliance comme standard pour les environnements mobiles.
Nous étudierons comment nous pouvons exprimer les exigences de protection de la vie
privée dans un tel environement avec un tel langage, en se basant sur des scénarios concrets.
Ce travail a été évalué grâce à plusieurs études de cas que nous avons conduit sur plusieurs
applications mobiles Android.

2

Acknowledgements

This thesis is the result of a three-month internship at the Open University, in Milton
Keynes, United Kingdom where I was integrated in a research project: PriMMA - Privacy
Management for Mobile Applications. PriMMA has for goal to investigate privacy require-
ments across the general population for a specific set of ubiquitous computing technologies
and will produce a reusable framework with demonstrator applications. This internship
was supervised by Bashar Nuseibeh, Arosha K. Bandara and Yijun Yu.
The result of those three months was the publication of a paper for the conference IEEE
Policy’11: International Symposium on Policies for Distributed Systems and Networks1

which was accepted as a short paper research project which has been presented the 7th of
June in Pisa for the conference. The paper was titled: PrimAndroid: Privacy Modelling
and Analysis for Android applications.

I would like to thank some people for this opportunity. I would like to thank Jean-Noël
Colin, my supervisor in the faculty for the opportunity of the internship, his help all along
this same internship and the writing part that followed and also for the opportunity to
have been able to present our work at the IEEE Policy’11 conference.
I am also thankful to Arosha Bandara, Yijun Yu and Bashar Nuseibeh for the supervisation
of my internship, their sharing of experience, their supervisation and their help all along
this year.
As members of PriMMA or Securechange projects, I would also like to thank Thomas
Keerthi, Blaine Price, T. Tun and Lukasz Jedrzejczyk for their availibilty, help and sharing
of experience.

Finally, but not the least, I am thankful to my parents and my familly, for the chance
to have accomplished those studies, and for their patience all along.

1http://www.policy-workshop.org/

3

Contents

List of Figures 7

Glossary 8

1 INTRODUCTION 11
1.1 Problem Statement & Motivations . 11
1.2 Discussion . 12
1.3 Research Questions . 12
1.4 Thesis Limits . 13
1.5 Thesis Structure . 13

2 BACKGROUND DEFINITION 15
2.1 Definition and Laws about Privacy . 15

2.1.1 European Law . 15
2.2 Android System . 17

2.2.1 Android Global Architecture . 17
2.2.2 Android Privacy Study . 19
2.2.3 Comparison with iOS . 20

2.3 Rights Expression Languages . 22

3 STATE-OF-THE-ART 24
3.1 Privacy Management in Android . 24
3.2 Policy Conflicts . 26
3.3 Rights Expression Languages . 27

4 PRIVACY POLICY MODELLING AND ANALYSIS FOR ANDROID
APPLICATIONS 29
4.1 Gaps in the State-of-the-art . 29
4.2 Privacy aware role-based Access Control 30
4.3 Android Scenario . 31
4.4 Dependency Graphs . 32

4.4.1 Creation of dependency graphs . 33
4.4.2 Evolution of dependency graphs . 33

4.5 P-RBAC for Mobile Applications . 34
4.6 Dependency-aware Privacy Management 35
4.7 Policies Conflicts . 40

4.7.1 Scenarios of conflicts . 41
4.7.2 Detecting conflicts . 42

4

5 RIGHTS EXPRESSION LANGUAGES AND ANDROID 44
5.1 Contributions of rights expression language 44

5.1.1 Interoperability . 44
5.1.2 Privacy Change . 45
5.1.3 Community . 45

5.2 Open Digital Right Language (ODRL) . 45
5.2.1 Why ODRL? . 46
5.2.2 Correspondance between Android and ODRL 47
5.2.3 ODRL Core Model 2.0 . 48
5.2.4 ODRL Common Vocabulary . 49
5.2.5 Expressing Android Scenarios Using ODRL 57
5.2.6 Limits of ODRL . 61

6 VALIDATION 63
6.1 Prototype Functional Description . 63

6.1.1 Future functional requirement . 64
6.1.2 Use cases . 64

6.2 Prototype Non-Functional Description . 64
6.2.1 Robustness . 65
6.2.2 Security . 65
6.2.3 Performance . 65

6.3 Implementation Requirements . 65
6.4 Global Architecture . 66

6.4.1 System Architecture: Android Integration 66
6.5 Detailed Modifications . 67

6.5.1 Application Layer . 69
6.5.2 Framework Layer . 72

6.6 Validation of prototype . 76
6.6.1 P-RBAC Model Confrontation . 76
6.6.2 ODRL Model Confrontation . 77

6.7 Limits and Discussion . 77

7 CONCLUSION 79
7.1 What are privacy issues and what are the assets to protect when talking

about privacy management in mobile applications? 79
7.1.1 What are the limitations of current systems in terms of privacy? . . 79
7.1.2 How can we use tools are our disposal to override those problems? . 79

7.2 How can we use access controls models to reason about privacy issues in
mobile applications and how can we adapt those models to our purpose? . 79

7.3 What can rights expression languages offer to such models in terms of ex-
pressiveness, privacy evolution and usage of a standard? 80

5

7.4 How can we apply those adapted models to a specific environment like
Google’s Android system? How can we incorporate rights expression lan-
guages in such a system? . 80

7.5 Future Works . 80

References 82

A OECD Guidelines on the Protection of Privacy and Transborder Flows
of Personal Data 86
A.1 PART ONE: GENERAL DEFINITIONS 86

A.1.1 For the purposes of these Guidelines: 86
A.1.2 Scope of the Guidelines . 86

A.2 PART TWO: BASIC PRINCIPLES OF NATIONAL APPLICATION . . . 87
A.2.1 Collection Limitation Principle . 87
A.2.2 Data Quality Principle . 87
A.2.3 Purpose Specification Principle . 87
A.2.4 Use Limitation Principle . 87
A.2.5 Security Safeguards Principle . 87
A.2.6 Openness Principle . 88
A.2.7 Individual Participation Principle 88
A.2.8 Accountability Principle . 88

A.3 PART THREE: BASIC PRINCIPLES OF INTERNATIONAL APPLICA-
TION: FREE FLOW AND LEGITIMATE RESTRICTIONS 88

A.4 PART FOUR: NATIONAL IMPLEMENTATION 89
A.5 PART FIVE: INTERNATIONAL CO-OPERATION 89

B ODRL Java Parsers 90
B.1 ODRLReader.xml . 90
B.2 ODRLWriter.xml . 93

C Screenshots of PrimAndroid 96

6

List of Figures

1 Android Permissions and Resources . 18
2 Android Application Installation: Allowing Permissions 18
3 iOS: Notification Granting . 21
4 Apex Extension Framework: Installation 25
5 P-RBAC Components Overview ([33]) . 31
6 Relationships between Permissions and Applications 33
7 Dependencies between Applications . 34
8 Multi-groups Belonging - Case 1 . 37
9 Multi-groups Belonging - Case 2 . 38
10 Multi-groups Belonging - Case 3 . 39
11 Groups Hierarchy . 40
12 Privacy issue due to usage of another component 40
13 ODRL Core model ([22]) . 48
14 Use Case Diagram of PrimAndroid . 64
15 Integration of the framework into Android 68
16 PrimAndroid in the Android menu . 96
17 List of Groups of Applications . 96
18 Adding a Group . 97
19 Applications of a Group . 97
20 Constraints of a Group . 98
21 Selection of a Resource to Constraint for a Group 98
22 Adding a Constraint to a Resource . 99

List of Tables

1 ODRL Common Vocabulary: Policy Types 50
2 ODRL Common Vocabulary: Actions . 52
3 ODRL Common Vocabulary: Constraints 54
4 ODRL Common Vocabulary: Party . 56
5 ODRL Common Vocabulary: Role . 56

7

Glossary

The definitions from this glossary are mainly restated from [40], [39] and [14]. If any from
other sources, those will be explicitely cited as a footnote.

• Access control: A system which enables an authority to control access to areas and
resources in a given physical facility or computer-based information system.

• Algorithm: A set of mathematical instructions that must be followed in a fixed
order, and that, especially if given to a computer, will help to calculate an answer to
a mathematical problem.

• Android system: A software framework, from Google, for mobile devices that
includes an operating system, middleware and key applications.

• Application: A computer program or piece of software designed to perform a specific
task.

• Authentication: To prove that something is real, true, or what people say it is.

• Broadcast: A message to all entities of a system.

• Class (Java): Self-sufficient module.

• Component: Modular part of a system.

• Contacts list: List recensing information about contacts (full name, address, tel.,...).

• Context: Environment of an application in terms of constraints.

• Constraint: Condition that a problem must satisfy.

• Database: A large amount of information stored in a computer system in such a
way that it can be easily looked at or changed.

• Developer-centric: System where most of the management is delegated to the
developer.

• Directive: An official instruction.

• DRM: Digital Rights Management.

• Framework: A supporting structure around which something can be built.

• Functional requirements: What a system should be able to do 2.

• Geolocation: Identification of the real-world geographic location of an entity.

2http://dictionary.reference.com/browse/functional+requirements?r=66

8

• Graph: A mathematical structure used to model pairwise relations between objects
from a certain collection.

• Interoperability: Being able to exchange and make use of information.

• iOS: A software framework, from Apple, for mobile devices that includes an operating
system, middleware and key applications.

• Machine Learning: The ability of a machine to improve its performance based on
previous results.

• Method (Java): Name given in Java and other object-oriented languages to a
procedure or routine associated with one or more classes.

• Model: A description of observed or predicted behaviour of some system, simplified
by ignoring certain details.

• Non-deterministic: Multiple ways of processing the same input.

• Non-functional requirements: Criteria that can be used to judge the operation
of a system, rather than specific behaviors.

• ODRL: Open Digital Rights Language

• Ontology: Formal representation of knowledge as a set of concepts within a domain,
and the relationships between those concepts.

• P-RBAC: Privacy aware Role Based Access Control.

• Policy: Definite course or method of action to guide and determine present and
future decisions.

• Privacy: The state of being free from public attention.

• RBAC: Role Based Access Control.

• Requirements: A singular documented need for a system.

• Resource: Virtual entity of limited availability that needs to be consumed to obtain
a benefit from it.

• Rights Expression language: A machine-processable language used to express
rights.

• Specification: Documented detailed requirements with which a product or service
has to comply.

• SMS: Short Message Service.

9

• Tainting: A highlighting of certain security risks.

• UID: User Identification Number or Unique Identification Number.

• User-centric: System where most of the management is delegated to the user.a

10

1 INTRODUCTION

This Section places the context of this thesis. An introduction to the area is given and
the problem questions are stated. We then set the limits of this work before presenting the
structure of the whole thesis.

1.1 Problem Statement & Motivations

Nowadays, the notion of privacy is a central concern among ubiquitous computing and mo-
bile systems. User data has become worthy and a lot of this data is often used without user
agreement. The rapid growth of mobile systems does not simplify the problem. Moreover
privacy is often relayed as a second point and not included in software requirements.

Users privacy requirements can be challenging as it depends on the subject’s point of view
and on his understanding and caring about privacy. The representation and expression of
such requirements can also be challenging and that is where rights expression language are
stepping in. But the current diversity in those implies the lack of a standard and, this way,
privacy management tools generally use their own representation of user’s requirements
which can lead to interoperability issues.

Privacy can be an ambiguous word, it is why we have to clarify the idea beyond it. We
use a description restated from [13]:

“Privacy, in this context, shall no be understood the traditional way like an intimate
sphere to protect, containing a set of private or confidential information that we wish to
hide. It shall be understood as the faculty of selfdetermination, autonomy and capacity of
the self to execute life choices. This way, it is more precisely about informationnelle self-
determination, i.e. right of the individual to know what is it known about him, which datas
about him are kept, mastering flows of this data, and contrecarrer abusives usages. Thus
privacy does not resume to a confidentiality quest, it is the self-mastering of self-image.
Privacy management is an emanation of the right to the respect of privacy taken into the
dimension of right to self-determination which is linked to it. It is the right for anyone to
manage its own data.”

The unwanted usage of personal information has led, in the past years, to new laws and
guidelines such as UK Information Commissioner’s Fair Information Principles [25] or the
OECD guidelines on cross border information flows [17], both of which contains the notion
of informed consent. This requires that any collection of personal data is preceded by a
notification explaining what data is being collected, how long it will be held and for what
purpose. Plus, users must give their explicit consent for the data to be collected. This is
also the approach used by mobile applications, or in any case, by Google Android mobile
operating system where a user installing an application is shown a list of resources (i.e.:
data sources) required by the application and by choosing to proceed, grants permission

11

for the resource to be accessed by the application.

A mobile system like Google Android [20], whilst it does not have the market share of
Apple’s iPhone, has undoubtedly created a comparable community of developers which
implies having over 100K mobile applications available on the Android Marketplace. A
common feature of many of these applications is the ability to store, modify and share
users’ personal data in one way or another.
In fact, a study by Enck et al. [15] showed that Android applications often misuse those
data. Indeed, they demonstrated this by selecting 30 random popular Android applications
that use location, camera or microphone data and by monitoring how these applications
used this data using a custom-developed system called TaintDroid. They found that in
105 instances these applications transmitted data to third-party servers or external devices.
Out of these 105 instances, only 37 were clearly legitimate. TaintDroid also revealed that
15 out of the 30 applications reported users’ locations to advertising servers and 7 even
collected the phone number or device ID. Such findings confirm our view that mobile
applications raise issues of privacy and thus, trust, which need to be better understood.

1.2 Discussion

What are we trying to protect when we talk about privacy management on a mobile phone?

• User information (identity, phone number, home adress, email adress,...)

• User personal data (SMS, pictures, videos, contacts, agenda,...)

• Access to ressources (localisation, phone calls, SMS sending, Internet)

Among other assets probably, also depending whether or not a user considers a particular
asset as confidential or not. Some people will say that anybody can geolocate them but
some people may think that it is a privacy issue. So, a mobile phone must provide tools to
ensure that everybody, in every context, can find balance between privacy protection and
information disclosure. It is why a user-centric approach seems, for now, the best way to
catch users’ requirements and take their usage context into account.

1.3 Research Questions

Based on the above introduction and discussion, the purpose of this work is to adopt
a better view of how privacy can be better managed in mobile applications. Research
questions can thus be stated to serve this purpose and draw a thread for this study.

1. Question 1: What are privacy issues and what are the assets to protect when talking
about privacy management in mobile applications?

• What are the limitations of current systems in terms of privacy?

• How can we use tools are our disposal to override those problems?

12

2. Question 2: How can we use access controls models to reason about privacy issues in
mobile applications and how can we adapt those models to our purpose?

3. Question 3: What can rights expression languages offer to such models in terms of
expressiveness, privacy evolution and usage of a standard?

4. Question 4: How can we apply those adapted models to a specific environment like
Google’s Android system? How can we incorporate rights expression languages in
such a system?

1.4 Thesis Limits

The world of mobile applications is quite huge nowadays and there is a wide range of pri-
vacy issues associated to usage of mobile devices. Regarding this and the limited amount
of time we were able to spend on this research, this thesis is limited to studying privacy
issues of Android applications, giving propositions of solutions to solve some of them and
studying the expression of rights in Android via a known standard rights expression lan-
guage. Although, privacy issues and proposed solutions can easily be adapted to all mobile
systems (actual mobile systems though) and the approach taken is generic. Other mobile
systems are also mentionned. Plus, using a rights expression language as a standard for
mobile privacy can be quite useful for research on interoperability and expansion of user’s
control over privacy.
We also consider a user-centric way of privacy management improvement, to stay in An-
droid’s spirit but we admit the limitation that this might add overhead to the users, so
the prototype has to be intuitive and light. Also, we can consider that a user-centric way
for having a fine-grained control over privacy allows users who cares about their data to
manage it better, and those who do not, to simply ignore this user management and relay
on the base system security.

1.5 Thesis Structure

In Section II, we will define the context and background information related to this thesis,
ending up with a study of Android’s privacy. In Section III, we will review the state-of-the
art of privacy management, rights expression languages and privacy in mobile applications.
We will see how Android is dealing with privacy and how its competitors are acting differ-
ently.

The Section IV will introduce our contribution by, first, identifying some gaps in the
literature presented in Section III. Then we will introduce privacy aware role-based access
control as a mean of expressing some scenarios of our mobile system. This will lead to the
introduction of a dependency-aware privacy management for Android applications.

The Section V has for goal to express the scenarios of the Section IV in a standard rights

13

expression language like ODRL and will thus allow the expression of any mobile scenario.
The last Section, before conclusion, will be the presentation of a prototype for the valida-
tion of our ideas. Conclusion will summarize the contribution, put forward limits of our
work and proposes some future works.

14

2 BACKGROUND DEFINITION

Now that the problem is stated and that the subject has been introduced along with the
motivations, we need to make a short background of the area of expertise beginning with a
small introduction to the law about privacy and going on with a presentation of Android
system which will be our main case study in this thesis. Finally, we will propose a rapid
preface of what a rights expression language is.

2.1 Definition and Laws about Privacy

The word privacy is often ambiguous, misused or misunderstood in a law point-of-view
and there are a lot of definitions depending on the context where the term is applicable. It
is why we should take a more abstract definition, to generalize the idea. We have chosen
Altman’s conceptualization of privacy :

“Privacy is the selective control of access to the self regulated as dialectic and dynamic
processes that include multimechanistic optimizing behaviors.”[24]

That definition of privacy contains quite a few interesting words:
We can interpret the “selective control” as a way to say that it is a case by case selection
of...“access to the self”, meaning a case by case choice of personal disclosure. In other
words, a way to select which part of ourselves we open, and which we do not.
This process is “dynamic” as it is changing through time and contexts. We do not have
the same intent of information disclosure with friends than with the cashier.
But this process is also “dialectic” as the interpretion of privacy of one person can be totaly
opposite to the interpretion of one other. It is determined by how people care about their
privacy and how their context is influencing their choices.

The “optimizing behavior” is due to the fact that if people care about privacy it is to
gain a personal satisfaction and a balance of what they whish to deliver and what they do
not. We thus can speak of privacy as a way to optimize personal behavior.

As conventional approaches to protecting users’ privacy have been based on guidelines
and the notion of informed consent (see [36]), it can be useful to make a rapid quote of
current laws in terms of privacy, at least in Europe. The point here is not to pretend to
be exhaustive but to have an idea of how law deals with privacy issues.

2.1.1 European Law

We will here only focus on European law as privacy regulations are quite different from
one country to one other and also strike multiple domains of activity.

In Europe, the law regarding the processing of personal data and the free movement of such

15

data is called: “Data Protection Directive” (DPD). It is the most important component of
privacy and human rights associated in EU.
Our continent is undoubdetly the most developed area of privacy laws. From [1], we re-
trieve: “Before the DPD, all the member of the European Union (EU) were signatories
of the European Convention on Human Rights (ECHR). Article 8 of the ECHR provides
a right to respect for one’s “private and family life, his home and his correspondence,”
subject to certain restrictions. The European Court of Human Rights has given this article
a very broad interpretation in its jurisprudence.

In 1980, in an effort to create a comprehensive data protection system throughout Europe,
the Organization for Economic Cooperation and Development (OECD) issued its “Recom-
mendations of the Council Concerning Guidelines Governing the Protection of Privacy and
Trans-Border Flows of Personal Data” [17]. The seven principles governing the OECD’s
recommendations for protection of personal data were:

• “Notice—data subjects should be given notice when their data is being collected.”

• “Purpose—data should only be used for the purpose stated and not for any other
purposes.”

• “Consent—data should not be disclosed without the data subject’s consent.”

• “Security—collected data should be kept secure from any potential abuses.”

• “Disclosure—data subjects should be informed as to who is collecting their data.”

• “Access—data subjects should be allowed to access their data and make corrections
to any inaccurate data.”

• “Accountability—data subjects should have a method available to them to hold data
collectors accountable for following the above principles.”

The OECD Guidelines, however, were nonbinding, and data privacy laws still varied
widely across Europe. The European Commission realised that diverging data protection
legislation amongst EU member states impeded the free flow of data within the EU and
accordingly proposed the Data Protection Directive.

The main lines of this directive are the following:
“Personal data should not be processed at all, except when certain conditions are met.
These conditions fall into three categories: transparency, legitimate purpose and propor-
tionality.”

Where:

16

• “Transparency is the data subject having the right to be informed when his personal
data is being processed. The controller must provide his name and address, the pur-
pose of processing, the recipients of the data and all other information required to
ensure the processing is fair. (art. 10 and 11).”

• “Legitimate purpose is the fact that personal data can only be processed for specified
explicit and legitimate purposes and may not be processed further in a way incompat-
ible with those purposes. (art. 6 b)”

• “Proportionality is the fact that personal data may be processed only insofar as it is
adequate, relevant and not excessive in relation to the purposes for which they are
collected and/or further processed.”

As said before in Section 1, the notion of informed consent primes in the EU law about
privacy. Indeed, in the first guidelines of the OECD is stated: “data subjects should be
given notice when their data is being collected” and “data should not be disclosed without
the data subject’s consent” which mean the subject has to be informed and has to give his
consent. In the Data Protection Directive, we retrieve: “Transparency is the data subject
having the right to be informed when his personal data is being processed.”, plus, the notion
of legitimation which imposes to use data only for the consented purpose.

The OECD guidelines have guided a lot of researchs on privacy management and on
data protection. It is why we find important to have a complete look over this directive,
which can thus be found in Appendix A in a summarize or yet on the OECD website [35].

2.2 Android System

As the main case study of this thesis is Android applications, we need to introduce this
mobile operating system, describe how it works globally and see how user’s data is handled
in such a system.

2.2.1 Android Global Architecture

“Google’s Android system is a comprehensive software framework for mobile devices (Smart-
phones, tablets, ...). Android includes an operating system, a middleware and a set of
applications rounding it.” [42]

Android is a multi-process system based on a linux kernel in which each application
runs with its own UID (user id). Applications are written in Java and compiled in a Dalvik
EXectuable which is a custom byte-code particular to Android. Each application is dis-
tributed under the form of a package, with “.apk” extension, which is similar to “.jar” files
in Java.
Android applications are a set of components. They do not declare a main method where

17

everything starts. Each single thing the user can do is handled by components named ac-
tivities, and each one of those can be called by another application if this last application
has the right permission to use it or if this activity does not ask for any permission.
Each application by default has no permission granted. Permissions allow applications to
perform specific operations on phone’s resources and invoke activities from other applica-
tions, see Figure 1.

Figure 1: Android Permissions and Resources

Figure 2: Android Application Installation: Allowing Permissions

The only way for an application to get a particular permission is to include it in the
file “AndroidManifest.xml”. This file is at the root of every application package and is
mandatory. All permissions included in this file are then presented to user when installing
the application. Either the user grants all of them or he refuses the installation (which is a

18

first limitation of Android in terms of access control policies). See Figure 2 for a screenshot
of the instalation validation.
There is about hundred permissions provided by Android system but each application can
declare its own set of permissions to prevent any other one from using any activity of this
application without user’s consent. In practice, very few applications declare such per-
missions. Example of Android permissions are: write sms, internet, call phone, which are
respectively used to grant access to the sending of SMS, to Internet and to calling features
of the mobile device.

The mechanism which forces each Android application to run with a different UID is know
as sandboxes. A particular UID is assigned when the application is installed and stays the
same for all the application’s life. So, two applications launched are running in two dif-
ferent processes. One application can not touch other applications. The only way for two
applications to share the same resources and eventually the same process is to share the
user ID thanks to a feature of the system named sharedUserIDFeature. This feature can
be declared in the manifest and allow two applications (or more) to share the same user id.
It could lead to security issues, but we’ll be back later on this. As each “.apk” package is
signed with developper’s private key, all the application packages willing to use shared id
feature must also bear the same digital signature. Otherwise, each “.apk” package would
be able to use UID of another application and thus access files and granted resources of
this one.

Along with resources like GPS and Internet connexion, permissions allow to use content
providers. Developer’s guide describes them as applications “storing and retrieving data
and making it accessible to all applications. They’re the only way to share data across
applications; there’s no common storage area that all Android packages can access.” [19].
There are several content providers on the base system, for pictures, videos, contacts and
so on. Each one can only be accessed if the requesting application has the permission to
access the resource delivered by the content provider. Example: An application can only
use contacts content provider if this application has the right to read the contacts list.

2.2.2 Android Privacy Study

As the TaintDroid [15] study revealed, Android suffers from privacy issues through the
wide community of developers surrounding the framework. Some developers are trustwor-
thy, some are not and some in-between.
We have identified several significant shortcomings in Android’s approach to privacy man-
agement that can cause those issues.

After having installed a particular application, users are never asked again for permission
to access resources. This ignores the fact that mobile applications are used in changing
contexts and users might want to change the access given to the application after installa-
tion.

19

Plus, a user can not choose, at the installation or after, to allow only a subset of asked
permissions to an application or to conditionally allow those. It is either granting all per-
missions, either refusing the installation.
As said before, applications are asking for permissions to access resources but it is never
explicitely explained why permissions asked are relevant. It can be clear for computer
scientists that a game like chess-game does not need permission to access GPS location
but it might not be that clear for anybody else.
As a last but major point, we have addressed the fact that two applications can share the
same user ID with the sharedUserID feature at developer’s disposal. The user does not
give any consent to this and it allows those applications to override the permission system.
If an application “a” has access to the contacts list and an application “b”, with same UID,
has access to SMS sending, then they can, while working together, send SMS to someone in
the contacts list. Thus two applications which seem harmless when executed alone, could
access to private resources and override permissions without user to be aware of it. This
will lead to dependency-aware privacy management later on.

2.2.3 Comparison with iOS

iOS from Apple is the major competitor of Android system. This platform is not as
easy to fix as using the Android platform due to non open-source licences. iOS has a
complete different policy in terms of applications allowed in the App Store (counterpart of
the Android Market for iOS) and an opposite global point of view. While Android’s spirit
is to be user-centric, iOS tends to be developer-centric. Indeed, applications submitted to
the App Store are checked by Apple for policy requirements fulfilments and then approved
to be delivered by App Store, or refused. Each application installed from this marketplace
is supposed trustworthy and there are only two cases where user is asked for permission:
notifications and location access. If a particular application wants to send notifications to
the user, user is asked to grant this permission at the installation, see Figure 3.
Also, when a particular application try to access geolocation, user is warned and asked
for validation. Beyond that, at no time the user has to valid permissions or grant access
to other resources. Apple believe in approving all applications that can be used on their
phones and do not put faith in consensus or the individual users. There are variant opinions
for this approach, some say it is for the good while others say that the Apple Store guidelines
are vivid and sometimes very confusingly implemented, which contributes in them shutting
their doors on the applications that have once gained the entrance pass for the App store.
While this could seems more secure as applications are tested for privacy and security
issues, it is not necessarily, as a study by Eric Smith [44] revealed.

In this study, we learn that devices running the iOS feature a software-readable serial
number, also called a “Unique Device Identifier”, or UDID. This kind of identifier was also
found on Intel Pentium 3 processors some years ago and was proven to be a privacy vi-
olation because of the fact that any application could read this identifier and send it to
third-party servers or applications. The article took a number of iPhone apps from the

20

Figure 3: iOS: Notification Granting

iStore in the “most popular” categorie. For these applications, they collected and analyzed
the data being transmitted between installed applications and remote servers using several
open source tools. The result is quite blatant, we retrieve here the conclusion of the study:
“68% of these applications were transmitting UDIDs to servers under the application ven-
dor’s control each time the application is launched. Furthermore, 18% of the applications
tested encrypted their communications such that it was not clear what type of data was
being shared. 14% of the tested applications appeared to be clean. The study also confirmed
that some applications are able to link the UDID to a real-world identity.” [44]
As UDIDs can be readily linked to personally-identifiable information, the “Big Brother”
concerns from the Pentium 3 era should be a concern for today’s iPhone users as well. The
checkup made by Apple on applications before being validated is thus not sufficient, as
everything cannot be tested and as privacy issues also depends of user’s interpretation of
privacy.

Recentlty, another interesting discovery was made by Alasdair Alan and Pete Warden
[6], stating that the iPad, is regularly recording the position of the device into a hidden
file. It means that the device has stored a long list of locations and time stamps since
user has ran it the first time. It seems to be clearly intentional from Apple. It has serious
security and privacy implications, indeed: “What makes this issue worse is that the file is
unencrypted and unprotected, and it’s on any machine you’ve synchronized with your iOS
device. It can also be easily accessed on the device itself if it falls into the wrong hands.
Anybody with access to this file knows where you’ve been over the last year, since iOS 4
was released.”

Even if this thesis takes Android as a case study, the conclusions and issues of privacy
discussed can be easily applied and found in other mobile operating systems like iOS. This
marks the need for a more intense privacy management for mobile applications and mobile

21

environments.

2.3 Rights Expression Languages

The second goal of this thesis is to include rights expression languages in mobile appli-
cations. We thus need to give a little background about those languages. We will not be
exhaustive here but just explain what such a language is and compare some of the most
used REL’s nowadays.

“A Rights Expression Language (REL) is a machine-readable language that declares rights
and permissions.”[5]

Each rights expression language can be based on different patterns, most common are:
rules-based rights expression language, ontology-based, OO-based,.... REL’s have often an
XML representation wich is the format (generally) used to store those expressions.
There is a lot of rights expression languages but we will only present here those wich have
a privacy aspect included or a privacy perspective.

The first one and the one we will use in our case study is the Open Digital Rights Language
(ODRL). This REL was adopted by the Open Mobile Alliance 3 as the REL used in their
DRM specifications and new mobile phone handsets. This makes this REL a good way to
study rights expression languages on mobile applications. The community behind ODRL
is also quite active and a working group is trying to improve the language for further ver-
sions. One of the draft of this working group is regarding expression of permissions and
privacy.

“ODRL is intended to provide flexible and interoperable mechanisms and they claim
a transparent and innovative support for use of digital resources in publishing, distribut-
ing and consuming of electronic publications, digital images, audio and movies, learning
objects, computer software and other creations in digital form. ODRL has no license re-
quirements and is available in the spirit of open source software.” [45]

ODRL is ontology-based and is composed of a formal expression language and a data
dictionary.

Another major REL is XrML or eXtensible Rights Markup Language (see [10]) which has
also been standardized as the REL for MPEG-21 digital rights management [27]. XrML is
also XML-based and describes rights, fees and conditions together with message integrity
and entity authentication information. XrML was one of the first of his kind and is more
dedicated to digital rights management than privacy or mobile applications.

3http://www.openmobilealliance.org/

22

XACML [2] is another rights expression language which is a new standard by OASIS (Or-
ganization for the Advancement of Structured Information Standards 4) and is focusing on
encoded data exchanges, with a simple, flexible way to express and enforce access control
policies in a variety of environments. The language is mainly targeting, as baseline, sup-
ply chains and federated networks to resolve trust issues: “How does automated enterprise
software know whether to trust requests for protected information, merchandise, or credit?”

If we focus on semantic web (i.e.: methods and tools to formalize World Wide Web),
the REL adressing privacy issues the most is APPEL (A P3P Preference Exchange Lan-
guage) [3]. It allows users to express privacy preferences via their browsers and this way
compare their privacy policies with the P3P policies of visited websites.
But this rights expression language is subject to controverse and poorly used. Indeed, P3P
is often described as an unnecessary complicated structure with a lack of formal specifica-
tion (as a lot of RELs though), and missing guidelines for user agents.
Plus, P3P does not ensure that the policy declared on a website is complete and compliant
to what the website actually do with user data. As a mainline conclusion for P3P, we
retrieve from [41]:

“There is, at this time, no mechanism by which users can easily verify the compliance
of a data collection with the collector’s poster privacy policy”.

4http://www.oasis-open.org/

23

3 STATE-OF-THE-ART

This Section reviews the literature related to objectives fixed for this thesis. We need first
to have a look at the existing in terms of privacy management in mobile applications and
especially existing privacy tools in Android. We also have to look at privacy conflicts, how
to handle them with existing methods. Finally, we will review all related works regarding
rights expression languages.

3.1 Privacy Management in Android

As users cannot explicitely say why a particular application asks for a particular permission
or what this application will do with their data, and thereby cannot decide what permis-
sions such application should run with, the need for a tool checking if an application really
uses resources the way they should and the way users trust it, is growing. One of those
tools is ScanDroid [18], for automatically reasoning about the trust issues of Android ap-
plications. This tool tracks data flows through and across components, while relying on an
underlying abstract semantics for Android applications. ScanDroid ’s analysis is modular
to allow incremental checking of applications as they are installed on an Android device. It
extracts security specifications from the “AndroidManifest.xml” that accompany such ap-
plications in the root of each ”.apk” package, and checks whether data flows through those
applications are consistent with those specifications. To work properly though, ScanDroid
does need source code embedded in applications packages which is not an assumption we
can make for most of the applications on the Android market. Indeed, packages are nearly
always just embedding compiled byte-code, resources and librairies.

We thus need to look at a tool which can help to detect privacy issues and trust issues
without any source code available.
We have already mentioned TaintDroid [15] as a monitoring tool studying flows of data
between applications. Many smartphone applications are not open source, therefore, static
source code analysis is infeasible. Even if source code is available, runtime events and con-
figuration often dictate information use; realtime monitoring accounts for these environ-
ment specific dependencies. The key beyond TaintDroid is the “taint tracking” principle.
Each data is tainted regarding its kind. This tracking is often performed at the instruc-
tion level. Finally, the impacted data is identified before it leaves the system at a taint
sink. Here the sink is usually the network interface as the study was mainly interested
in the number of applications sending data to third-party servers. TaintDroid has one
big advantage regarding pre-existing work, that is performance. Approaches that rely on
instruction-level taint analysis using whole system emulation [23] have a high impact on
performance. Instruction-level instrumentation incurs 2-20 times slowdown [23] in addition
to the slowdown introduced by emulation, which is not suitable for realtime analysis.
To assign labels, TaintDroid considers defined interfaces through which applications access
sensitive data, i.e.: resources. For example, all information retrieved from GPS hardware
is location-sensitive, and all information retrieved from a contact provider will be tainted

24

as contact-sensitive.

TaintDroid [15] is not the only study that revealed issues of privacy on this famous mobile
system. Indeed, in [12] Davi et al., are studying Android’s security robustness and a pos-
sible permission escalation attack overriding the security mechanisms.
By this way, they identified a severe security deficiency in Android’s application-oriented
mandatory access control mechanism (i.e.: the permission mechanism) that allows transi-
tive permission usage, which we will study later with the notion of dependencies between
applications. In their attack example, authors were able to “escalate privileges granted to
the application’s sandbox and to send a number of text messages (SMS) to a chosen number
without corresponding permissions.”

Apex [32] , by Khan, Nauman and Zhang, is a user-centric framework for privacy man-
agement in Android applications that extends the basic permission scheme of Android.
This framework allows users to specify detailed runtime constraints to restrict the use of
sensitive resources by applications. The user-specified constraints are checked by a spe-
cial version of the Android installer called Poly [31]. Extensions are incorporated in the
Android framework with minimal changes to the source of existing security architecture.
Apex uses an XML rights expression format to store constraints on applications. Although
the set of possible constraints a user can specify is currently limited, the authors of Apex
indicate that there is ongoing work to extend this. All access policies are stored with con-
straints associated in a policy repository embedded in the framework.

Figure 4, that we retrieve from [32], shows the modified installation of an android ap-
plication with Apex.

Figure 4: Apex Extension Framework: Installation

This framework is the closest to our idea of user-centric privacy management for An-

25

droid applications. Nevertheless, we will expose further some limits of this one and how
to imagine another framework of the same idea while including a notion of dependencies
between applications to override implied privacy issues (as showed the example in [12]).

Privacy is also depending on the context where applied. Context-aware privacy is thus
also a challenging part of privacy management. “Context” is an ambiguous word, we thus
retrieve the interpretation of Mancini, Keerthi et al. [29]:

“An experience of a particular event in the specific context within which that event took
place, or rather within what users subjectively perceive as constituting the context of that
experience. Because participants themselves chose the phrase that they associate to an
event, the phrase is capable of triggering a connection to the experience to which it was
associated and to bring participants back to that context.”.

There are several interesting works to look at when speaking of context-aware privacy:
In [8], Bai et al. are also studying the existing security mechanism on the Android platform
and focus on the great challenges implied by the mobility and openness of mobile comput-
ing environment. They then proposes a context-aware usage control mechanism to enhance
data protection and resource usage constraints on Android. Their model, ConUCON, is
able to take obligations, states and contexts into consideration at usage decisions. Their
framework enables the user to grant permissions in a fine-grained manner.
Always in a context-aware idea of privacy, Conti et al. [11] also present a system that is
able to enforce fine-grained policies, e.g. that vary while an application is running. “A
context can be defined by the status of some variables (e.g. location, time, temperature,
noise, and light), the presence of other devices, a particular interaction between the user
and the smartphone, or a combination of these”. Their framework allows policies to be
defined either by the user or by trusted third parties.

All those frameworks have an impact on privacy issues on Android applications and we
will see that, adding an idea of dependencies in such a system, will provide a high level
fine-grained privacy management for android applications.

3.2 Policy Conflicts

User-centric privacy policies are better addressing user’s subjective way of apprehending
privacy but have also some disadvantages. One of them and the one we will look at here,
in this Section, is conflicts of policies.
Indeed, as users are defining privacy rules themselves thanks to tools at their disposal,
they could define rules conflicting with each other or impossible rules. It is why we need
to look at literature to see how to handle such conflicts.

In [9], Bandara, Lupu et al. have shown how conflict detection in policies can be
achieved using event calculus (see [43]) and abductive reasoning techniques. They focused

26

on distributed systems management scenarios but can be extended to other policy-based
applications like mobile applications.

Ontologies are commonly used in the world of privacy as many RELs are ontology-based
and as the rights expression language we will use later on is ontology-based, we should
focus on howto resolve such conflicting ontologies. Lu and Zhang [46], focus on concept re-
striction conflicts. Their work is focusing on a detection and elimination approach through
ontology merging. They shown that two equivalent concepts in two different sources of
ontologies could have different values or different restrictions. They use Tableau algorithm
to detect those conflicts plus a formal reasoning to deal with them.
Tableau algorithm [7] is based on satisfiability problem which we will use in our work to
detect policy rules conflicts.

3.3 Rights Expression Languages

We have now to get familliar with works in rights expression languages litterature, but we
will just focus on works interesting us in the scope of this thesis as there are many subjects
and researchs on this particular domain. Ianella and Governatori, in [22], worked on formal
contract logic [21]. They expressed privacy issues and scenarios of social networking in a
modified formal logic and discussed the problems of privacy conflicts beyond those scenarios
by adding a superority relation in their formal expression of social networking scenarios.
This superiority relation allows to resolve conflicts between two rules representing privacy
policies defined by a user on a social network.
This work is using rights expression language, formal reasoning and user-centric privacy
(as rules over privacy on a social network are set by user), and is thus working on social
networks privacy, the same manner we want to work on mobile applications.
Although there are many and many RELs appearing with slighlty different purposes, main
languages (ODRL, XrML,...), have undoubtedly become complex in using and getting them
masterized. This is due to the fact that those RELs are trying to be scenario-exclusive,
meaning trying to be able to handle a wide variety of possible scenarios for DRM, access
control, privacy, permissions and so on. The result is that it is often difficult to cleanly
partition out only the pieces needed for a particular purpose. In [38], Pramod et al. propose
a higher layered system, subdivided in cores:

• “The core REL should only contain the rights model.”

• “The core REL should be stateless.”

• “The core REL should be language neutral.”

• “REL primitives, and DRM services in general, should refer generically to the services
they use.”

• “A DRM service should only know what it absolutely needs to know in order to com-
plete its task.”

27

This conclusion is interesting as our work needs only the privacy model of the particular
REL (ODRL) we are using and it is sometimes hard, as we will see by studying the ODRL
model later on, to choose a component to represent a particular scenario as the possibilities
are huge.

28

4 PRIVACY POLICY MODELLING AND ANALY-

SIS FOR ANDROID APPLICATIONS

This Section is centered on the first contribution of the thesis by beginning with the high-
lighting of gaps present in the state-of-the-art. Once gaps are identified, we introduce
privacy aware role-based access control from [33] which will be our staple model to reason
about permissions in Android system and privacy issues. This will lead to a dependency-
aware privacy management where we will be looking at how applications are dependent of
each other and what privacy issues it can raise. In such a system, with user-centric man-
agement, conflicts could arise and it is thus important to look at how we can deal with
such.

4.1 Gaps in the State-of-the-art

We have looked, in the previous sections, at the main concerns of privacy issues in Android
applications. We have seen that tools like Apex, TainDroid, ScanDroid,... are existing to
resolve or find some of those issues, but a tool like ScanDroid or TaintDroid is monitoring
applications and flows of data without solving those issues or without proposing an easy
policy management to the user. On the other side, Apex does propose a framework for pri-
vacy management but some issues are still present while using this framework. First, Apex
does not respect the fact that privacy is changing along with the context of usage. Some
people would like to change their privacy profile from time to time. Indeed, Apex proposes
only to users to add constraints on a rule or deny a permission to access a resource at the
installation. If the user wants to change it beyond that step, he cannot. A second limit of
Apex, in the scope of our work anyway, is the fact that dependencies between applications
are not taken into account. Also, we would like to introduce main rights expression lan-
guages as a standard for privacy policies representation in mobile applications, and Apex
is using its own XML-representation.
Both [11] and [8] frameworks are overriding the issue of static policies declaration by taking
into account usage context applications. But, by reading works such as TaintDroid [15]
or the work on escalation privileges attack [12], we can see that there is a need to take
dependencies between applications into account, to avoid scenarios where some privacy
issues can still appear. Plus, as Apex, most of the current frameworks are defining policies
in their own way, with a custom-created XML-based language, which, for interoperability
and privacy changes (or evolution) aspects, are kind of a limit. We will see how rights
expression languages, as ODRL [26], can help override those problems.

Before looking at possible solutions and what dependency between applications mean,
we need to introduce P-RBAC [33] which will be our model to reason about Android ap-
plications scenarios and find possible issues and possible solutions, while expressing those
in a more abstract way.

29

4.2 Privacy aware role-based Access Control

P-RBAC [33] is an extension of role-based access control model (RBAC) to support pri-
vacy policies. The model is using entities used in RBAC : Users, Roles, Permissions (which
are actions over objects) and Conditions and is extending those entities to support privacy
policies. There are two new entities: Obligations and Purposes. Obligations are actions
that must be performed if a particular permission is granted (e.g., audit logging, deleting
old data, etc.). The Purposes entity gives the reason for granting a particular permission.
The Objects entity of standard RBAC has become Data, meaning any information relating
to users, and finally, Conditions specify the constraints that must be satisfied in order for
a particular permission to be applicable.

As the purpose of PRBAC is to extend classical RBAC to support privacy, PRBAC is de-
fined as a family of conceptual models with different capabilities. Core P-RBAC, the base
model, is at bottom of the familly. This last model is the one we will fund our reasonning
on.
The design of Core P-RBAC should have “sufficient expressive power for representing pub-
lic privacy policies, privacy statements,..., and policies based on privacy related acts”[33],
such as DPD in Europe or HIPPA (HIPPA act concerns protection of medical records and
other health information in US).

The core P-RBAC components, as shown in Figure 5, contains all of the following compo-
nents, which we restate from [33]:

• A set U of users, a set R of roles, a set D of data, a set Pu of purposes, a set A of
actions, a set O of obligations, and a condition language, LC0.

• The set of Data Permissions, DP = {(a, d) | a ∈ A, d ∈ D}

• The set of Privacy-sensitive Data Permissions, PDP = {(dp, pu, c, o) | dp ∈ DP, pu ∈
Pu, c is an expression of LC0 , o ∈ P (O)}. P (O) is the power set of O.

• User-Role Assignment, UA ⊆ U × R, a many-to-many mapping user to role assign-
ment relation.

• Privacy-sensitive Data Permission Assignment, PDPA ⊆ R × PDP , a many-to-
many mapping privacy-sensitive data permission to role assignment relation.

In the next Section we propose a number of modifications to the P-RBAC model in
order to better support this permission model of Android mobile applications, thus allowing
permission policies to be checked for inconsistencies and potential privacy violations. We
will help ourselves with a simple scenario which will allows us to reason more easier through
this Section.

30

Figure 5: P-RBAC Components Overview ([33])

4.3 Android Scenario

This Section presents a concrete case study to express and deal with privacy issues men-
tioned in the previous sections.

Alice installs four applications on her Android phone:

• FBContacts handles Facebook accounts and synchronizes them with her phone’s con-
tacts list

• GPSFriends, is an application using Google Maps to locate friends who are using the
same application.

• FreeGame: A free game application that Alice installed by clicking an advertising
link.

• GPSWifi: An application to share free to access Wi-Fi locations with friends.

Each application requests and obtains the following permissions at install time:

• FBContacts: access to the phone’s contacts list

• GPSFriends and GPSWifi: access to location data and internet.

• FreeGame: access to the internet.

31

Although Alice is not aware of it, these applications are interrelated in the following
way:

• FreeGame and GPSFriends are sharing the same UID (with sharing id feature, as we
have mentioned in Section 2.2.1)

• FBContacts and GPSWifi both use GPSFriends to get the user’s location.

Alice uses the Apex tool (or similar) (see Section 3.1), to specify constraints that limit
the conditions under which each permission applies. These constraints are:

• FBContacts: can only access location data if time is between 4pm and 8pm.

• GPSFriends: can only access location data if location is in the UK and the time is
between 8am and 4pm.

• GPSWifi: can only access location data if the location is in London.

4.4 Dependency Graphs

We will use dependency graphs to be able to capture dependencies between applications.
Those graphs will be the base of each reasonment made about those dependencies and
are thus crucial. We will introduce this idea by using our scenario presented in the above
Section (see 4.3).
The dependency graph in Figure 6 shows the relationships between permissions (shown as
ovals) and applications (shown as boxes) for the FreeGame and GPSFriends applications.
An arrow from an application to a permission indicates those permissions that are specified
in the application’s manifest file and are thus granted by the user at install time. However,
in this example the existence of a path from FreeGame to Location indicates that this ap-
plication also has permission to access location data, despite not explicitly requesting this
permission from the user, by using another application. Figure 7 shows the dependencies
between the GPSFriends, FBContacts and GPSWifi applications.
Direct links are thus representing authorized access to resources, granted by users, to ap-
plications. Indirect links can thus be seen as applications overriding non-authorized access
using the dependencies between applications to access resources they should not normaly
access. In other words, indirect links represent privacy breaks in our scenarios.

This idea of dependency graphs was inspired by the work of Ferrante et al. [16] where
a new program representation, called the program dependence graph or PDG, has been
presented and shown to permit efficient and powerful program transformations. We have
to determine how those graphs are created in our Android system and how they evolve
along with the applications represented.

32

4.4.1 Creation of dependency graphs

We mentioned in Section 2.2 that Android permissions are assigned to applications at in-
stallation time, see Figure 1. Each application, when installed, gets all the permissions
asked when granted by users.
Our dependency graphs are thus created at installation time, when “AndroidManifest.xml”
file is parsed for permissions list and for other features like if shared UID is set or not. If
user refuses installation, graphs are thus not created.

Constraints on the branches (like “GPSWifi can only access location data if the location
is in London”) are also added at the installation but by the mean of Apex [32] (or a similar
tool, we took Apex as example) if user decides to add some constraints on the permissions
asked, displayed on the installation screen. We consider them being added by Apex here,
but a tool like our prototype, see Section 6.7 also allows to add such constraint and not
only at installation time but anytime during life of an application. If we consider such a
tool, those constraints on branches could be added anytime.

4.4.2 Evolution of dependency graphs

During system’s life, applications are installed, removed, updated,...Our graphs cannot
thus be static, i.e.: be defined once and then not follow concerned applications’ life.

If an application is removed, we need to update dependencies in all graphs where this
application plays a role. Elseif, we will have inconsistencies in our graphs and the applied
constraints would lead to incoherent rules and a wrong image of dependencies between
applications in the current system state.
If an application is updated, two cases are possible. Either new permissions are asked and
thus, presented to the user for validation (indeed, when applications are updated through
the marketplace of Android, new permissions are shown to the users and he is asked for
validation), and thus new graphs are created, or old ones are modified. Either permissions’
scheme is not modified and dependency graphs should not be updated.

Figure 6: Relationships between Permissions and Applications

33

Figure 7: Dependencies between Applications

The above scenario illustrates how information in the “AndroidManifest.xml” file is insuf-
ficient for a user to grant informed consent for an application to access personal data. This
is because the installation process does not expose how dependencies between applications
can affect the actual permissions available to the applications.
In order to address this issue, we propose extending the P-RBAC specification given above
to support automated reasoning about the actual permissions available to an application.
Our modifications make it possible to take into account both dependencies and user spec-
ified constraints when reasoning about Android permissions.

4.5 P-RBAC for Mobile Applications

The core of P-RBAC can easily be adapted to fulfill mobile permissions requirements, and
in our case, Android permissions requirements. This Section builds this adaptation step-
by-step.

Because Android devices are typically single user devices, there is only one role to con-
sider and therefore we can remove the concept of “role” from the model. This is a valid
assumption for each current mobile device. Although with growth of mobile technologies
and mobile demand, it may be subject to change in the future.
Additionally, we will not use here the P-RBAC concept of “purpose” since the purpose
description associated with Android permissions is a simple text label with no defined
semantic that can be used to analyse privacy policies. But we do not remove this entity
from the model as it could be useful at some point to express purposes of constraints over
permissions, or information related to the permission granted. We kept the “obligation”
entity even though it is not currently supported by the Android permissions system, be-
cause it could be useful for logging access to resources made by applications and in order
to give users feedback on potential privacy violations.
Indeed, logging can be used in many way’s to warn user about privacy issues: discreet
ways (notifications icons, logs,...) or more direct (sounds, popups,...).

The modified P-RBAC model thus contains the following components:

• A set A of applications, a set R of resources, a set X of actions, a set O of obligations

34

and a condition language LC0.

• The set of Resources Permissions, RP = {(x, r) | x ∈ X, r ∈ R}

• The set of Privacy-sensitive Resources Permission PRP = {(rp, c, o) | rp ∈ RP, o ∈
O, c is an expression of LC0 }.

• Privacy-sensitive Resources Permission Assignment, PRPA ⊆ A × PDP , a many-
to-many mapping privacy-sensitive resources permission to application assignment
relation.

We can now express simple Android permissions together with constraints using this
model. For example, by taking the permissions and constraints defined by Alice in our
case study (4.3):

The following permissions on

FBContacts: “FBContacts can only access location between 4 p.m and 8 p.m”,
GPSFriends: “GPSFriends can only access location between 8 a.m and 4 p.m”

can be expressed as follows (ACCESS FINE LOCATION denotes the Android permission
needed to read the GPS sensor location):

permission(FBContacts, ((has, ACCESS FINE LOCATION), (time > 16 ∧ time < 20),

Log Access())

permission(GPSFriends, ((has, ACCESS FINE LOCATION), (time > 8∧time < 16), Log Access())

However, the above permissions expressions do not take into account the dependencies
that can arise between applications. To address this limitation we need to be able to
represent dependencies between applications and to this end we introduce a notion of
“dependency groups” to the P-RBAC model. The details of this are discussed in the
next Section.

4.6 Dependency-aware Privacy Management

As we explained above (see Section 2.2), Android assigns a unique user identifier (UID)
to each application on the mobile device but applications can request the use of sharing
UID feature. This far, we have been associating applications directly with privacy data
permissions. But we wish to introduce the notion of dependencies between applications in
our modified P-RBAC model.
We thus introduce a “dependency group” entity in between applications and privacy data
permissions. This makes a dependency group analogous to a “role” in the original RBAC
formulation.

35

This new “dependency group” entity is referring to environment of an application in terms
of usage dependencies. Each application that invokes operations on other applications (i.e.:
activities on Android), and applications sharing the same UID, should be assigned to the
same dependency group. Permissions and associated constraints are then granted to the
group. The user can thus constraints those permissions with conditions like before but
those conditions would apply to all applications associated with the concerned dependency
group.

Existing tools would assign same permissions on applications that are used together. If
two or more applications are defined to be dependent of each other, they belong to the
same group.

We can thus redefine our P-RBAC model as follows:

• A set A of applications, a set G of dependency groups, a set R of resources, a set X
of actions, a set O of obligations and a condition language LC0.

• The set of Resources Permissions RP = {(x, r)|x ∈ X, r ∈ R}

• The set of Privacy-sensitive Resources Permission PRP = {(rp, c, o)|rp ∈ RP, o ∈ O,
c is an expression of LC0}.

• Application Assignment AA ⊆ A × G, a many-to-many mapping application to
dependency group assignment relation.

• Privacy-sensitive Resources Permission Assignment PRPA ⊆ G×PRP , a many-to-
many mapping privacy-sensitive resource permission to dependency group assignment
relation.

Under this new formulation, Alice can now add conditions on the usage of location
on FreeGame, since both FreeGame and GPSFriends would be in the same dependency
group, sharing same privacy rules. This makes it easier to prevent unauthorized access to
Alice’s location information because FreeGame would be subject to the same constraint on
location as the other application, GPSFriends.

A potential complication of using dependency groups is in dealing with situations where
large number of applications are in the same group due to complicated dependencies be-
tween all of them. Alice’s scenario is an extreme case where there is a lot of relations
between applications but in a system with hundreds of applications, a lot of them would
run as standalone entities or be coupled with, at most, one or two other applications.
Therefore, we expect dependency groups to be of a manageable size. But, this dependency
group entity can raise several questions when looking at the analogous “role” entity in
RBAC :

36

• What about appartenance of an application to several dependency groups?

The question of multiple groups belonging can be quite challenging. Why? If an appli-
cation is included in several groups it means that it is dependent of one or more application
of each group. But as explained before, this dependency can either be a shared UID or a
component usage. We have thus three possible scenarios to study.

Figure 8: Multi-groups Belonging - Case 1

The first one, is shown in Figure 8. We have two groups of applications with no shared
UID, just dependencies due to usage of “external” components. This scenario is acceptable,
App B can belong to both Group A and Group B. Indeed, all applications of both groups are
using App B but those are not dependent of each other and can thus be in separated groups.

The second one, is shown in Figure 9. Same scenario as Figure 8, but here, we have
a shared-UID relationship between App B, and one application of Group B, App E which
means that if App B belongs to both groups, App E can override constraint of its group
and use the permissions granted to Group A and this way, our dependency group entity
becomes useless. It is thus a scenario we must prohibit!

The last one, could seem quite obvious regarding if we prohibit it or not but has to be
mentioned. We have the scenario of Figure 10. we have a shared-UID relationship between
App B, and one application of Group B, App E and also one application of Group A, App
A. Which means App A and App E can both override constraints of their respective group
and use the permissions granted to the other group. This scenario has also to be prohibited!

37

Figure 9: Multi-groups Belonging - Case 2

• What about groups hierarchy?

RBAC allows roles hierarchies and P-RBAC also defines a hierarchical component
which introduces roles hierarchies, data hierarchies and purposes hierarchies (see [33]).
Roles hierarchies come from RBAC and is often present in its extensions. But in our case,
does we really need groups hierarchies? What could be the advantages and disadvantages
of such hierarchies?

On Figure 11 we have three groups, A, B and C, with B and C being sons of A,
hierachicaly speaking. A is subject to privacy rules A, while B and C are respectively
subject to rules A ∧ B and A ∧ C. It would mean that B and C are subject to the same
permissions and constraints as A but could also have more permissions or more constraints
than A, as specialized groups. It would imply a lot of groups to be divided into several
subgroups and it would alter the main idea which was, groups of dependent applications
under same permissions and same constraints (same privacy rules). Plus, it would growth
in complexity for the end-user which would thus need to understand the concept of hierachy
and would probably not want to matter with that as he would probably not see the point
of such a construction. We could have an opposite discussion if this was supposed to be
developer-centric.

Now let’s have a look at another interesting scenario which is avoided with our depen-
dency groups entities (see Figure 12):

Imagine that Alice has added a new condition on the permission of GPSFriends to ac-
cess location, constraining access to location information when she is in London:

38

Figure 10: Multi-groups Belonging - Case 3

Permission1: (Group1, ((use, ACCESS FINE LOCATION), Location = London, Log Access()))

Alice also constraints GPSWifi to be granted access to location information only when
her location is in the UK:

Permission2: (Group1, ((use, ACCESS FINE LOCATION), Location = UK, Log Access()))

However, the problem that arises is that GPSWifi has not been given a direct permission
to use the GPS location data. Instead it accesses location data via GPSFriends, which
now has a constraint that limits its ability to access location information to those times
when Alice is in London. This means that any attempt by GPSWifi to access location
information when Alice is in the UK, but outside of London will fail, because GPSFriends

does not have the required permission in this situation.

There are two possible solutions to this problem, the first one being to grant GPSWifi a
direct permission to location data which can then be constrained to be applicable whenever
Alice is in the UK. Alternatively, we could define a dependency group and assign GPSWifi

and GPSFriends to it. This would allow Alice to define the conditions she wanted on
permissions for the whole group and not for each application separately as if they were
used in completely different groups.

In addition to dependency-aware permissions management, we also have to deal with
the issue of constraints conflicts that could arise when users are allowed to specify the
conditions under which particular permissions arise. Indeed, Alice can now define privacy
rules on a “dependency group” and, this way, constraints permissions of all applications
inside this group. However, if the constraints she defines inside a group conflict with

39

Figure 11: Groups Hierarchy

Figure 12: Privacy issue due to usage of another component

each other, all the applications belonging to the group could be prevented from accessing
required resources, or would be allowed access them under the wrong circumstances. We
deal with the issue of constraints conflicts in the next Section.

4.7 Policies Conflicts

We have now build a model based on P-RBAC able to represent mobile applications sce-
narios, more precisely in the scope of this thesis, Android applications scenarios, and reason
about those. We have introduced the notion of groups to be able to resolve some privacy
issues presented in Section 2.2.2.
But this model will be managed by users indirectly while choosing their privacy policies
and allocating applications to groups. This user-centric way of managing privacy has to be
taken into account because of the possible conflicts which can arise while user is defining
privacy rules.
In [34], Sadeh et al. are avoiding conflicts in users’ privacy rules of social networking by

40

allowing only rules that grant access to a resource rather than combinations of rules with
some granting access and others denying it. “For example, a person can specify ’Mary can
see my location between 9 AM and 5 PM’, but cannot specify rules like ‘Colleagues cannot
see my location on weekends’.”. But in our case, we have prohibitions and conditionnal
allows, we can thus not make an assumption of this kind. Indeed, we would like to allow
users to deny permissions to applications.

The set of possible conflicts that can arise in our particular model is as follows:

• Conflicting constraints: We will talk of conflicting constraints beyond two rules
if those cannot possibly coexist.

• Concurrent constraints: We will talk of concurrent constraints beyond two rules
if those are applied on the same resource and same constraints variables but the
intersection of both rules exists and does not generate conflicts.

• Incomparable constraints: We will talk of incomparable constraints if they have
incomparable rules, i.e. two disjoint value sets in two constraints on the same resource
[33].

4.7.1 Scenarios of conflicts

We can use our scenario with Alice to reason about possible conflicts. As FBContacts uses
GPSFriends to get information about location, they will end up in the same dependency
group, thus the two constraints added by Alice on each application would become:

Permission1: (Group1, ((use, ACCESS FINE LOCATION), time > 16∧time < 20, Log Access()))

Permission2: (Group1, ((use, ACCESS FINE LOCATION), time > 8∧time < 16, Log Access()))

This scenario will lead to conflicting constraints (i.e. conditions in our P-RBAC model)
in our dependency group since it is not possible to enforce both of these permissions to-
gether. This becomes apparent when we combine the permissions by taking the conjunction
of the conditions specified:

Permission1 ∧ Permission2: (Group1, ((use, ACCESS FINE LOCATION), time > 16 ∧
time < 20 ∧ time > 8 ∧ time < 16, Log Access()))

We have conditions conflicting due to conflicting constraints between both privacy rules.
Let’s imagine another scenario where Alice defines the following rules on location:

Permission1: (Group1, ((use, ACCESS FINE LOCATION), time > 10∧time < 20, Log Access()))

41

Permission2: (Group1, ((use, ACCESS FINE LOCATION), time > 8∧time < 16, Log Access()))

This could be seen at first as conflicting constraints, but it is not, as they can coexist
by reducing both to one unique with the strongest constraint of the two rules. It is what
we will call concurrent constraints. The resulting rule would be as follows:

Permission1 ∧ Permission2: (Group1, ((use, ACCESS FINE LOCATION), time > 10 ∧
time < 16, Log Access()))

A last scenario, would be incomparable constraints. Let’s state that Alice defines the
following rules:

Permission1: (Group1, ((use, ACCESS FINE LOCATION), country = “UnitedStates” ∧
time > 10 ∧ time < 20, Log Access()))

Permission2: (Group1, ((use, ACCESS FINE LOCATION), country = “Belgium”∧time >

8 ∧ time < 16, Log Access()))

The second members of both constraints are concurrent constraints but the first mem-
ber makes them apply to different countries. It means that the first is only valuable in
USA and the other one in Belgium, constraints are thus not conflicting, they are just in-
comparable.

4.7.2 Detecting conflicts

Constraints conflicts could be seen the same problem as concept equivalence detecting and
concept compatibility checking in ontologies merging [46]. The same pattern is used in
P-RBAC [33] as the one used in ontologies merging [46] to detect constraints conflicts in
permissions. The pattern is based on the satisfiability problem:

“Satisfiability is the problem of determining if the variables of a given Boolean formula
can be assigned in such a way as to make the formula evaluate to true or determining
whether no such assignments exist.” [4]

We consider that each statement in the constraints that could be defined by Alice is
a boolean, which means that there are only two possible outputs: true or false. This
allows us to treat the detection of conflicting constraints as a satisfiability problem.

Satisfiability problem is used in P-RBAC to detect conflicting conditions. Algorithm 4.7.2
is the algorithm used in P-RBAC, that we can use in our simplified model. The isConflict()
function in the algorithm is checking if values are conflicting for a particular condition.

42

Algorithm 1: Algorithm 1 - P-RBAC Conflict Detection ([33])

Input: var1,var2 : two set of conditions applied in two permission assignments
Output: True if conditions are conflicting, False otherwise

orderedVar1 ← Order conditions of var1 by name;
orderedVar2 ← Order conditions of var2 by name;

i ← 0;
j ← 0;
result ← false;
while i < var1.size do

while j < var2.size do
if orderedV ar1[i].name = orderedV ar2[j].name then

if isConflict(orderedV ar1[i].value, orderedV ar2[j].value) then
result← true;
return result ;

i + +;
j + +;

if orderedV ar1[i].name < orderedV ar2[j].name then
i + +;

return result ;

If we apply this algorithm to Alice’s scenario, the result would be true as she defined
two conflicting constraints inside the same dependency group.

43

5 RIGHTS EXPRESSION LANGUAGES AND AN-

DROID

This Section focuses on the second contribution of the thesis by introducting rights expres-
sion languages into mobile applications, especially here ODRL [22] language. The first
need is to explain how they can help in such a context. Once this done, we will have to
decompose ODRL to see wich contents are interesting in the scope of this work. We will
then see how ODRL can be useful to mobile applications by using our previous scenario
with Alice. This will allow us to express common scenarios of mobile applications using a
REL but also transform our modified P-RBAC model into a rights expression language.

5.1 Contributions of rights expression language

Before introducing ODRL core model, and expressing our P-RBAC model into such a rights
expression language, we have to raise the question of the utility of such a tool in mobile
applications. Indeed, rights expression languages are often quite complex and our goal is
not to complexify the environment we are working on, but more looking at how we can
improve current tools and tools to come using a standard followed by his community and
his capacity of expression.
We identify here three major contributions of rights expression languages, more can proba-
bly be stated. We also express the counterparts of using such a tool, by using some references
which focus on the limits of rights expression languages.

5.1.1 Interoperability

Interoperability is a key feature for rights expression languages. Most of the tools of An-
droid system (like Apex [32] or others [8]) are using their own XML-based reprensentation
of policies, which interoperability speaking, is quite closed. Such tools can thus not take
into account policies defined by another tool or a translation phase would be needed, and
thus an overhead for the mobile device. Plus, with different languages used by different
tools, a centralized policy database on a device is not possible.
A standard expression language would facilitate such a thing but as we will see, even in
the world of RELs, interoperability is not always taken for granted. Indeed, we restate
from [37]:

“Interoperability is a key for the real deployment of Digital Rights Management (DRM)
systems. A clear example is at the level of Rights Expression Languages (RELs), where
two of them are competing to have a place in the market. On the one hand, MPEG-21
REL is an ISO/IEC official standard, and on the other hand ODRL (Open Digital Rights
Language) is a public specification that is being used by the Open Mobile Alliance (OMA),
a relevant industrial forum in the area of mobile systems.”

44

Although authors are focusing on digital rights management system, the same things
applies with privacy management systems. The “competition” between RELs is quite a
challenge for the interoperabilty between systems where different RELs are in use. But,
studies on the subject profuse (see by example: [37],[30],[28]) and the interoperability
between two RELs, which are defined, studied, and are evolving version by version with
a community of users, has way less problems than two XML-based languages which are
defined for one framework only and restrained to the functions of this framework. Plus,
RELs have often several core components which are studied to be efficient for the domain
where they apply, whatever it is permissions, privacy or yet digital rights.
The acceptance of one unique standard REL for a particular domain would narrow down the
interoperabilty problems to nearly zero. ODRL [22] is seen by the Open Mobile Alliance as
the standard for mobile environment but it is without counting the proprietary languages,
software and devices which do prefer having their own language, and this way forcing users
to use a predefined set of their own tools.

5.1.2 Privacy Change

The second key feature of rights expression languages is the evolution aspect. Indeed,
applications and systems are being updated from time to time and new features can be
added, removed, modified,. . . . This evolution does not grow alone without impact on
privacy. Each time an application or a system evolves, it can have an impact on its own
privacy level or even privacy of other systems or applications. Without a rights expression
language, the evolution of a system in such a way would lead to either a privacy issue, either
a useless set of constraints in the application’s privacy policy. XML-based languages like
the one defined in Apex are not studied to support privacy evolution or rapid adaptation
to system changes. ODRL and other rights expression languages, on the other side, are
studied to be complete or nearly-complete and thus, each scenario is taken into account
which allows adaptation of policies to evolution of applications to be faster and easier.

5.1.3 Community

A last key of rights expression languages and mainly ODRL is the community of users
beyond it. Indeed, ODRL beneficiates of a wide community of users discussing of future
versions of the language and application of this language to new domains (like privacy or
mobile applications). Such a community allows the language to evolve and follows new
domain of applications while also allowing to put weaknesses frontward. Community wiki
and working groups can be found in 5.

5.2 Open Digital Right Language (ODRL)

We have already introduced rights expression languages in our background Section (2.3),
but we will now focus on ODRL [22] rights expression languages and see how it can fit in

5http://odrl.net/wiki/tiki-index.php

45

our foundation of a model for mobile applications permissions. As a preambule, we need
to explain why we have chosen ODRL over other rights expression languages discussed in
Section 2.3. We will then make some correspondance between ODRL and Android’s per-
mission system to be able to compare concepts of both models and explain how policies are
managed in such a system. It will lead us to the exploration of ODRL, into three parts.
The first one is the the ODRL version 2.0 core model specification. Then, we will review
the common vocabulary which provides basic vocabulary and its semantic for the policy ex-
pression language. While reviewing those components, we will basically build a meta-policy
XML file for our model. We will only focus here on parts of the language interesting in
terms of permissions, privacy and expression of such.

The semantic of the vocabulary for all the specifications is based on a request for com-
ments (RFC)6 which precognizes, to avoid ambiguities, the usage of key words for such a
specification. Those key words are: “MUST”,“MUST NOT”, “REQUIRED”, “SHALL”,
“SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”. Plus
UML Notation for the core model.

5.2.1 Why ODRL?

We have chosen ODRL for three reasons:

• The first one is due to the mobile environment we are working on, indeed ODRL has
been officially accepted by the Open Mobile Alliance (OMA) as the standard rights
expression language for all mobile content.

• The second reason is the open aspect which has lead to a community of developers
sharing their ideas online, and working on new drafts of the language accessible to
anyone. It allows to follow ideas, ask questions, discuss scenarios and so on.

• The third reason is the large vocabulary proposed by ODRL, which allows to adapt
this language to a new environement like mobile phones.

We could have chosen XACML [2] or XrML [10] for other reasons, but a choice has to
be made and the major goal was to study one particular REL to see how it can be adapted
to fulfill privacy requirements of mobile applications in a concrete scenario. XACML would
also be interesting as a case study in a future work because of the access control aspect
and the business-oriented idea beyond it.

6ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt

46

5.2.2 Correspondance between Android and ODRL

If we look back at our Figure 1, restating the major idea beyond Android’s permission
system, we have 4 concepts: Permissions which are Operations over Resources, and Ap-
plications. By example, a permission would be Internet Access and this permission would
be assigned to an application. We have discussed the need for the add of constraints (and
groups, but we focus on policies here). In this basic system, no constraints can be added
on the permissions. One contribution of this work is to allow users to add constraints over
permissions granted to applications. So we need to add a brick to this system, and this
brick, which is allowing declaration of constraints and more advanded policies, is brought
by ODRL.
When we look at major concepts of ODRL, we have: Permissions/Prohibitions, Con-
straints, Asset,.... We can thus use this expressiveness to complete the permission system
of Android applications and allow the add of constraints or the expression of more ad-
vanced policies.

We are talking a lot about policies, we should develop more how they are managed and
by who.

Policy Management Policies of the basic system are created when an application is
installed. Android waits for the confirmation of installation by user, which is by the same
way granting all permissions asked by the application he wish to install. A policy file is
held by Android and each time this particular application is launched, the information
from “AndroidManifest.xml” of this application is checked to verify compliance between
permissions granted and permissions asked.
When a user removes the application, all information about granted permissions to this
application is removed.

With a tool like Apex (or our prototype, see Section 6.7), policies are more complex,
allowing constraints and more expressiveness, mainly if we use a rights expression language.
Thus those policies are stored in a different database than the basic file of the system. If
we use Apex, those policies are created at the installation where user can add constraints
over permissions or deny permissions with a modified installer furnished with Apex. After
that, policies stay the same for the whole application’s life and the only way to modify it,
is to re-install the application.
With a tool like our prototype, those complex policies are not created at the installation.
Indeed, it is the choice of user to bother with the add of constraints on permissions granted
to applications (groups of applications in our case) or not. If he wants to, then he can use
the policy manager, to add those constraints or to modify permissions or remove them.
The management of policy is thus user-centric in this kind of framework, and we plan to
use ODRL in this idea, where policies created by users will be generated in ODRL to allow
high expressiveness.

47

Figure 13: ODRL Core model ([22])

5.2.3 ODRL Core Model 2.0

“The ODRL Core Model is designed to be independent from implementation mechanisms
and is focused on the optimal model and semantics to represent policy-based information.”
[22]

Figure 13 that we restate from [22] is the UML representation of the core model 2.0 of
ODRL. We will describe it broadly here while staying oriented to mobile systems.

This diagram shows a Policy entity which will be the root of every XML-based ODRL
policy file. A policy is inherited from an Asset which has a particular unique ID which
will thus also be the ID referencing all policies of a particular asset. Each policy has a type
(see common vocabulary in Section 5.2.4) which caracterize the domain where the policy
is applied which is thus required. Other fields are optionnal and will not be discussed here.
A policy contains zero or more Permissions and zero or more Prohibitions. Each one

48

of those entities being associated with at least one asset. Indeed, a prohibition by example
can only prohibit a particular operation on a particular asset.
The Duty entity indicates a requirement that should be fulfilled in return for being enti-
tled to the referring permission entity. In a way, a duty is similar to a permission in that
it is an action that can be undertaken. If a permission refers to several duty entities, all of
them have to be fulfilled for the permission to become valid. If several permission entities
refer to one duty, then the duty only has to be fulfilled once for all the permission entities
to become valid. Each duty as its own unique ID which is used to refer a duty to multiple
permissions.
An Action entity is a composition of permissions and prohibitions and a set of duties.
Each action has a name which will also be explained in the common vocabulary Section
(see Section 5.2.4). One ore more Contraints entities can be set over a policy restraining
one or more permissions or one or more prohibition with possible duties to be fullfilled
when constraint are not or not respected. Each constraint has 4 attributes: a name, an
operator, a right operand and a status. Those will be also explained in Section 5.2.4.
Of course, permissions, prohibitions and duties are all associated with a Party entity which
is identifying a person, group of people, organization or in our case a particular application.
The party MUST identify a (legal) entity that can participate in policy transactions. Each
parrty has also a unique identifier, which will be UID of applications in Android system.
We have two association class left: Relation entity which can be used to link to an as-
set from either a permission, a duty or a prohibition, indicating how the asset should be
utilised in respect to the entity that links to it and a Role entity which can bes used to
link to a party from either permission, duty or prohibition, indicating which role the party
takes with respect to the entity that links to it.

After this short presentation of the ODRL core model, we can outline a first root in
our XML file of ODRL policies for mobile applications 7:

1 <o:policy xmlns:o="http :// odrl.net /2.0" uid="POLICY ID">

2 <o:permission />

3 <o:prohibition />

4 </o:policy >

5.2.4 ODRL Common Vocabulary

The common vocabulary specifies the terms used by the core model (see Section 5.2.3) for
policy expression needs. This vocabulary-based model try to fulfill requirements of current
state-of-the-art of domains where rights expression languages apply (or could apply).
Those domains are quite varied: access controls management, privacy management, social
networking management, publishment, digital rights management and so on. The major

7Full XSD Schema is defined here: http://odrl.net/2.0/schema.xsd

49

idea behind the vocabulary model is to define a wide range of terms for expressing types,
permissions, prohibitions, constraints, and duties over assets. Each term has this way
an identifier. This one is a unique method to refer to the semantics in specific encoding
schemes (eg XML, RDF etc) [22].

Policy Types The first set of terms defined by the model is the type of policies which
allows to caracterize the domain where the policy apply. We will only restate here terms
that matches permissions and privacy. We restate those from [22], current draft of common
vocabulary.

agreement Policy expressions that are
formal contracts (or li-
censes) stipulating all the
terms of usage and all the
parties involved.

Must contain at least the Party
entity with Assigner role and a
Party with Assignee role. The
latter being granted the terms of
the Agreement from the former.

offer Policy expressions that pro-
pose terms of usage from an
Asset owner.

Must contain a Party entity with
Assigner role. The Offer may con-
tain a Party entity with Assignee
role, but does not grant any priv-
ileges to that Party.

privacy Policy expressions that stip-
ulate the terms of usage
over personal information.

Must contain at least the Party
entity with Assigner role and a
Party with Assignee role. Must
also contain a duty on the as-
signee related to obligations to-
wards managing the assigner’s
Asset containing personal infor-
mation. The Assignee is being
granted the terms of the Privacy
policy from the Assigner.

Table 1: ODRL Common Vocabulary: Policy Types

We have thus three main interesting types: agreement, offer and privacy.

In our mobile applications domain, the notion of Offer does not seems adequate as the
Assignee role is not predominant and all the offer is focused on the Assigner offering terms
of usage for a particular resource. In our context of application, the role of Assigner is not
important as it generally refers to the user or the system itself (again, for the user) and as
user is generally unique. On the other side, Assignees are played by applications (groups

50

of applications in our modified model), and this role is thus particularly important.
Remains two notions: Agreement and Privacy. Agreement, that is, a term expressing a
contract between an Assignee and one Assigner, which grant terms to the first one. Privacy
is a term focusing on privacy policies defined by the Assigner for an Assignee, but declares
a Duty which is mandatory and is expressing obligations of the Assignee due to the privacy
policy.
Those notions are thus quite close but as this is explicit in the definition, we will choose
the term of Privacy for the type of our ODRL policies. Which, by referring to the core
model (see Section 5.2.3) and the present notion of Privacy type gives us our XML basic
structure of privacy policy for mobile applications:

1 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

2 <o:permission >

3 <o:asset id="urn:resource" />

4 <o:role function="o:assigner" />

5 <o:role function="o:assignee" />

6 <o:duty />

7 </o:permission >

8 <o:prohibition >

9 <o:asset id="urn:resource" />

10 <o:role function="o:assigner" />

11 <o:role function="o:assignee" />

12 <o:duty />

13 </o:prohibition >

14 </o:policy >

This basic structure contains one permission and one prohibition (of course, it could
contains only permissions or only prohibitions or more of both). Each one of them is ruling
a particular asset which has an ID, identifying the asset which is constrained. This asset is
identified by a URN/URI (Uniform Resource Name/Identifier). Permissions and prohibitions
both have two roles: an assignee and an assigner (even if in our case the assigner is not a
useful information, as this is system or user). A possible duty is also allowed, to enforce
a particular action whenever the constraints are respected by the assignee to access the
asset.

Actions Actions, that is, the particular operation concerned by the privacy rule. In our
model, it can be seen as the set of operations over the resources.
ODRL defines more than 50 terms for actions and thus, sometimes, it is difficult to choose
the most appropriate term or to understand the main meaning of a particular term which
can lead to ambiguities.

51

append The act of appending to the
asset

For example, the ability to add
record to a database (the asset).

copy reproduce The act of making an exact repro-
duction of the asset.

delete The act of permanently re-
moving the asset

When used as a Duty means all
copies removed.

display present The act of making a tran-
sient visible rendering of the
asset

For example: displaying an image
on a screen..

execute present The act of executing the as-
set

For example: machine executable
code or Java such as a game or
application.

inform The act of informing a party
of uses of the asset

Typically used as a Duty.

install The act of loading the asset
onto storage device ready
for operation

obtainConsent The act of requiring explicit
consent from a party to per-
form the action on the asset

Typically used as a Duty for the
asset owners to decide on a case-
by-case basis.

pay The act of paying a financial
amount to a party for use of
the asset

Must link to an Asset which rep-
resents the amount of the pay-
ment. The payer is the Assignee
and the Payee is the Assigner of
the policy.

play present The act of rendering the as-
set into audio and/or video
form

For example; playing a movie file.

preview The act of providing a short
preview of the asset

For example; the first 5 minutes
of a movie.

print The act of rendering the as-
set onto paper or hard copy
form

For example: creating a perma-
nent, fixed (static), and directly
perceivable representation of the
asset.

read The act of reading the asset. For example, the ability to read
a record from a database (the as-
set).

uninstall The act of unloading the as-
set from storage device

The asset is not longer accessible.

write The act of writing to the as-
set

For example, the ability to write
a record to a database (the asset).

Table 2: ODRL Common Vocabulary: Actions

52

We will here consider only main actions and we will see that our model requires only
one of them for Android applications, but the heterogeneity of actions in ODRL allows
to add more granularity in another system where the permissions system or the privacy
management is defined in terms of different operations applicable to different resources
and not only the fact of accessing resources which is nearly always the case with android
permissions system.

The table 2 is just a subset of all available defined actions but this subset is sufficient
for mobile environments, and even maybe too complex. This action entity allows to define
precise granular policy rules for a particular resource.
By example, preview can be used to allow a particular application to load a preview of
10 seconds of a particular video (which is the resource here). Or yet, textToSpeech can be
used to allow a particular application to render a particular text into speech. Beside those
and some other actions, there is a lot of casual actions: write, read, uninstall, install, sell,
pay, play-present, display-present,...

Android applications and our modified model especially are defined to be rules like:
“this application can access this resource”. Those rules do not specify any kind of oper-
ations but in another system or in a future version or tool for Android applications, this
could be the case. Thus, those fine-grained actions could be useful to declare precise policy
rules for actions over resource.

So in Android, the only pertinent action is execute-present, because each asset is exe-
cuted by the system when an application ask for it and has the right to ask it. We can
update our current XML-based representation:

1 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

2 <o:permission >

3 <o:asset uid="urn:resource" />

4 <o:action name="o:present"/>

5 <o:role function="o:assigner" />

6 <o:role function="o:assignee" />

7 <o:duty />

8 </o:permission >

9 <o:prohibition >

10 <o:asset id="urn:resource" />

11 <o:action name="o:present"/>

12 <o:role function="o:assigner" />

13 <o:role function="o:assignee" />

14 <o:duty />

15 </o:prohibition >

16 </o:policy >

53

Constraints We have now to define constraints over permissions and prohibitions to
“present” one particular asset. This entity has 3 particular attributes: a name, a right
operand and an operator. Right operand is constitued of standard simple data types like
String, Boolean,...while name refer to the variable being constrained by the operator and
the right operand, same way of “where” clause in SQL DDL code.

Most useful names are:

count The numeric count indicat-
ing the number of times the
corresponding entity may
be exercised

Should be a positive integer.

dateTime The date (and optional time
and timezone) representing
a point in time or period

Date and Time value must
conform to [ISO-8601] as
represented in the XSD
schema.

elapsedTime A period of time in which
the policy action can be ex-
ercised

The start of the period is
when the action is first ex-
ercised.

purpose Specification of a defined
purpose applicable to the
asset usage

For example, educational
use.

spatial A code representing a
geospatial area

The code value and code
source must be represented.
For example, the ISO3166
Country Codes and the
Getty Thesaurus of Geo-
graphic Names.

timeInterval Recurring period of time in
which the usage may be ex-
ercised

Interval value must conform
to ISO8601 as represented
in the XSD schema.

system device An identifiable computing
system

For example, identifiable
via the CPU or unique hard-
ware address.

virtualLocation Specification of a digital lo-
cale

For example, an Internet
domain or IP address range.

Table 3: ODRL Common Vocabulary: Constraints

54

Most part of those constraints will be added to our prototype, but some constraints
are impossible to check due to performances concerns or possibilities of the device. By
example, a timer for “elapsedTime” would be too lousy in terms of battery usage and is
thus not adequate for mobile environment (at least, nowadays).

Those constraints variables are constrained by different type of operators which are:
eq, gt, gteq, lt, lteq, neq,...and some more not interesting in our privacy management for
mobile applications goal. Those are respectively meaning: equals, greater than, greater
than equals, less than, less than equals, not equals.
If we update our XML-based representation of privacy policy now, we have:

1

2 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

3 <o:permission >

4 <o:asset uid="urn:resource" />

5 <o:action name="o:present"/>

6 <o:role function="o:assigner" />

7 <o:role function="o:assignee" />

8 <o:constraint name="" rightOperand="" operator="" />

9 <o:duty />

10 </o:permission >

11 <o:prohibition >

12 <o:asset id="urn:resource" />

13 <o:action name="o:present"/>

14 <o:role function="o:assigner" />

15 <o:role function="o:assignee" />

16 <o:constraint name="" rightOperand="" operator="" />

17 <o:duty />

18 </o:prohibition >

19 </o:policy >

Party and Role The role entity which is representing targets of the policy rules has two
attributes: a function and a scope.
The below table shows terms that may be used as the attribute “function” of the entity.
We keep only the two most relevant terms for our domain of application:

In Android, the assigner function will always be the system entity (even by means of
user authorizing system to grant permission to an application). But we will let the concept

55

assigner The Party is the issuer of the policy statement
assignee The Party is the recipient of the policy statement

Table 4: ODRL Common Vocabulary: Party

of assigner for other mobile systems.

The scope attribute indicates how to interpret the identified party. For example, if
a party is identified as a member of one group of application and is the assignee, it will
be represented with “group” scope. Vocabulary terms in the below table may be used
as the attribute “scope” of the role entity, or at least the only two interesting for mobile
environments. Indeed, either it is an application which is the assignee, either it is a group
of applications, nothing else.

individual The Party is a single individual.
group The Party represents a defined group with multiple individual

members.

Table 5: ODRL Common Vocabulary: Role

Asset and Relation For the asset entity, the relation attribute can be used to specify
the relationship of the asset and the policy. But in our case, the only accepted relation is
the default one:
target: The asset is the primary object of the policy.

The final XML-based representation of a skeleton of ODRL policy thus looks like:

1 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

2 <o:permission >

3 <o:asset uid="urn:resource"/>

4 <o:action name="o:present"/>

5 <o:constraint name="" operator="" rightOperand=""/>

6 <o:role uid="APPLICATION NAME" function="o:assignee

"/>

7 <o:duty />

8 </o:permission >

9 <o:prohibition >

56

10 <o:asset uid="urn:resource"/>

11 <o:action name="o:present"/>

12 <o:constraint name="" operator="" rightOperand=""/>

13 <o:role uid="APPLICATION NAME" function="o:assignee

"/>

14 <o:duty />

15 </o:prohibition >

16 </o:policy >

The duty entity can also be subdivided but for generic purpose, is not mandatory.
It will only be when a particular action with zero or more constraints is needed when a
particular permission/prohibition is associated with an asset.

5.2.5 Expressing Android Scenarios Using ODRL

We have decomposed ODRL through a review of the core model and the common vocabulary
and have tried to show the XML base representation of our policies for mobile applications.
We will now have to apply this to some scenarios, to have a better look at how it can be used
in a particular context. We also have then, to meet our dependency-aware model with this
ODRL decomposition we made, to finally be able to express privacy policies over groups of
applications.

Expressing Alice’s scenario using ODRL We will, in this subsection, review the first
scenario of Alice and we will see how we can express it using our meta-policy file from last
Section.
Let’s first remind the constraints added by Alice on the applications she installed. The
complete scenario can be found in Section 4.3.

• FBContacts: can only access location data if time is between 4pm and 8pm.

• GPSFriends: can only access location data if location is in the UK and the time is
between 8am and 4pm.

• GPSWifi: can only access location data if the location is in London.

Using our XML-based ODRL policy structure, we would thus have three different pri-
vacy rules. One over FBContacts with a constraint on location restraining geolocation
between 4pm and 8pm. One over GPSFriends with two contraints on location: restraining
geolocation between 8am and 4pm and location inside UK. And one last rule over location
for GPSWifi restraining geolocation to the area of London.
We have thus to declare three policies, one for each application, which is also an overhead
comparing to our groups of application, on which we will apply those policies later on.

57

FBContacts would be ruled by:

1 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

2 <o:permission >

3 <o:asset uid="ACCESS_FINE_LOCATION"/>

4 <o:action name="o:present"/>

5 <o:constraint name="o:dateTime" operator="o:lteq"

rightOperand="20:00"/>

6 <o:constraint name="o:dateTime" operator="o:gteq"

rightOperand="16:00"/>

7 <o:role uid="com.android.FBContacts" function="o:

assignee"/>

8 <o:duty />

9 </o:permission >

10 </o:policy >

GPSFriends would be ruled by:

1 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

2 <o:permission >

3 <o:asset uid="ACCESS_FINE_LOCATION"/>

4 <o:action name="o:present"/>

5 <o:constraint name="o:dateTime" operator="o:lteq"

rightOperand="16:00"/>

6 <o:constraint name="o:dateTime" operator="o:gteq"

rightOperand="8:00"/>

7 <o:constraint name="o:spatial" operator="o:eq"

rightOperand="United Kingdom">

8 <o:role uid="com.android.GPSFriends" function="o:

assignee"/>

9 <o:duty />

10 </o:permission >

11 </o:policy >

58

Finally, GPSWiFi would be ruled by:

1 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

2 <o:permission >

3 <o:asset uid="ACCESS_FINE_LOCATION"/>

4 <o:action name="o:present"/>

5 <o:constraint name="o:spatial" operator="o:eq"

rightOperand="London">

6 <o:role uid="com.android.GPSWifi" function="o:

assignee"/>

7 <o:duty />

8 </o:permission >

9 </o:policy >

Those scenarios are representing permissions for applications to access location, with
some constraints and eventually some duty. We could also represent prohibitions as we
want a user being able to deny a permission to an application. Let’s say Alice refuses to
let FBContacts access her location, under any constraint. It would be represented by a
prohibition rule:

1 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

2 <o:prohibition >

3 <o:asset uid="ACCESS_FINE_LOCATION"/>

4 <o:action name="o:present"/>

5 <o:constraint />

6 <o:role uid="com.android.FBContacts" function="o:

assignee"/>

7 <o:duty />

8 </o:prohibition >

9 </o:policy >

Expressing our dependency-aware model using ODRL Now that we have pre-
sented our dependency-aware model based on P-RBAC and have expressed Alice’s mobile
applications scenario with an ODRL expression language, we have to take benefits from
both sections and try to express our model using ODRL and this way having policy rules

59

over groups of applications and no more over applications one by one.

As said before, another advantage of groups-based policies is that there is only one
policy file for each application of one group and not one file for each application separatly.
Alice’s scenario contains conflicts, so all constraints cannot be grouped without modifying
those. We have discussed this in Section 4.7. Our conflicts detection algorithm can detect
all of those conflicts but cannot fix all of them. So, it would simply prevent the user that
the last constraint he tried to add was refused because of conflicts.
We will thus reason here about somewhat different constraints, to avoid falling back into
the same discussion:
Let’s thus state that Alice has choosen three constraints to add on the group she just
created: GROUP INTERNET containing: GPSWifi, GPSFriends, FBContacts:

• On location: those application cannot access location between 8 a.m and 8 p.m

• On internet: those applications cannot access Internet outside United Kingdom

• On phone calls: those applications cannot access phone calls

1 <o:policy xmlns:o="http :// odrl.net /2.0" type="o:privacy"

uid="POLICY ID">

2 <o:permission >

3 <o:asset uid="INTERNET"/>

4 <o:action name="o:present"/>

5 <o:constraint name="o:spatial" operator="o:eq"

rightOperand="United Kingdom">

6 <o:role uid="GROUP_INTERNET" function="o:assignee"

/>

7 <o:duty />

8 </ o:permission >

9 <o:permission >

10 <o:asset uid="ACCESS_FINE_LOCATION"/>

11 <o:action name="o:present"/>

12 <o:constraint name="o:dateTime" operator="o:lteq"

rightOperand="20:00">

13 <o:constraint name="o:dateTime" operator="o:gteq"

rightOperand="08:00">

14 <o:role uid="GROUP_INTERNET" function="o:assignee"

/>

15 <o:duty />

16 </ o:permission >

17 <o:prohibition >

60

18 <o:asset uid="PHONE_STATE"/>

19 <o:action name="o:present"/>

20 <o:constraint />

21 <o:role uid="GROUP_INTERNET" function="o:assignee"

/>

22 <o:duty />

23 </o:prohibition >

24 </o:policy >

Each new application on the group would then be under the same rules. We do not
have to add a rule for a new application each time one is added. Of course, only if the rule
we want to add is already existing for one of the application, otherwise, we have to add it
to group’s policy rules, which will implies that each application of the group will also be
constrained by this new rule.

5.2.6 Limits of ODRL

We have highlighted advantages of applying ODRL to mobile applications and how to ap-
ply it to such scenarios. But there are also limitations on the usage of rights expression
languages which are common to all systems. It is why we find it important to mention and
discuss them in this subsection.

The central problem mentionned in the litterature (in [38] by example) is the com-
plexity of current RELs like ODRL. Plus, those languages do not offer any abstraction
mechanism to deal with this complexity. This growing complexity implies a difficulty of
reuse. In particular, because the extensions in current RELs are content-based, rather than
functionality-based, reuse is difficult. It means that each extensions added to core model
or common vocabulary are based on content of a particular domain of application rather
than a functionality adaptable to several ones. In [38], authors are justifying this by stating:

“This is because in these languages DRM functions such as trust management, authen-
tication, encryption, or negotiation services are not completely separable from the language,
as we believe they should be”. The entities provided by ODRL, i.e., the core schema and the
common vocabulary, are too coarse and cut across too many areas of functionality. “Reuse
becomes more natural if it is based on smaller units of functionality such as authentication
or encryption, rather than the end-to-end functionality described in a large use case”. For
instance, not all mobile systems will requires the same functionalities in terms of privacy
protection in order to ensure it. This makes it difficult to design a single content-based
extension that can satisfy the needs of all systems in this market. On the other hand, this
specificity allows an easier integration to potentially different mobile systems into their
existing architecture.

61

This content-oriented aspect in place of a functional-based aspect is due to a design by
use cases which are useful to represent functional requirements of a system or a domain
of application but they are not able to deal with non-functional requirements such as
reusability, portability and interchangeability which are thus not of central concerns in
evolutions of rights expression languages like ODRL.

62

6 VALIDATION

We have divided this work through two axes, in the first one we were studying privacy
issues of mobile applications and we have established a model of the access control policies
of Android applications based on P-RBAC, while taking dependencies between those same
applications into account. In the second one, we have introduced benefits of rights expression
languages for expressing privacy in mobile applications and we have tried to express our
previous model into ODRL language. The point of the next Section is thus to append
both axes into a prototype where the goal is not to have a complete ready-to-be-published
application but more to have an insight about how we can integrate those axes into a real
system and what they are bringing in terms of functionalities. The system chosen, as the
previous case study, is Android system. Our prototype is named PrimAndroid for Privacy
Management for Android Applications.

6.1 Prototype Functional Description

The prototype needs several functionalities to fulfill our idea of privacy management for
Android applications.

User must be able to:

• Create/delete groups of applications with a particular name consistent for him

• Add/remove installed applications to/from those groups

• Add/Modify/remove constraints over the permissions granted to all applications of
one particular group. Constraints are ruling resources such as Internet, geolocation,
contacts, storage, messages,...

System must be able to:

• Record constraints added by user under ODRL format

• Add/remove dependent applications to/from the group where a particular application
is added/removed, if any

• Check constraints added on groups when an application is running and asks access
for a particular resource

– Deny permission if constraints are violated

– Warn user about the deny

– Check possible conflicts between constraints

Note: Applications which are refused the access to a particular permission, throws a
SecurityException which is sometimes handled by those, sometimes not. It is the role of
developers to make sure such things are managed, in a principle of robustness.

63

6.1.1 Future functional requirement

We will limit ourselves to the implementation of the given needs but one more functionality
could be interesting to look at, in a future version: Policy sharing. Indeed, we could
allow users to exchange policies made over groups of applications. It would allow some
users to make predefined groups of casual applications, with coressponding policies and
other users would be able to apply this policy directly if they have the same usage habits
with the applications in those groups.

6.1.2 Use cases

We restate here the functional description by the meaning of use cases. See Figure 14

Figure 14: Use Case Diagram of PrimAndroid

6.2 Prototype Non-Functional Description

Beside functional requirements, we have to look at some non-functional ones, as a mobile
phone is subject to constraints of security, performance and robustness. And the need for
those constraints to be fulfilled is growing with evolution of what we can do nowadays with
such a system. Our prototype does need to avoid adding weaknesses to the base system in
those terms.

64

6.2.1 Robustness

As mentionned earlier, see Section 6.1, each time an application is refused the access to a
particular resource, system throws a SecurityException. Most of the time, applications
are catching this exception and are redirecting the flow of events according to where the
exception occured. But sometimes, developers are not preventive enough and do not catch
this kind of exception when getting access to a resource of the phone. This can result in
an application failure and a warning displayed for the user, which can be annoying. Our
prototype is working the same way, applications which are refused the access to a resource,
get a SecurityException, but a notification is send to the user saying that the permission
was refused, in case of an application without management of such exception. It is the role
of the developer to ensure that applications written for Android system are taking every
scenario into account, especially when accessing resources.

6.2.2 Security

Security speaking, we will just mention the fact that we have kept the idea of the base
system. Each application can get information about permissions granted to other applica-
tions, but cannot modify or write such permissions. In our prototype, the policy database
can only be accessed by Activities, and such activities can just access reading methods, not
writing ones, exception made of the PrimAndroid application.

6.2.3 Performance

In a performance point-of-view, we would like to mention the policy database of our Pri-
mAndroid applications. Indeed, each group is associated with a file containing all policy
rules of this same group. There is thus one file for one group, for complexity, and thus
performances reasons. Indeed, if all policy rules where in a unique file, checks for one
group would imply to parse a file containing all policies of all existing groups. Instead, our
system allows to parse only rules of the concerned group. As performance is an important
asset in battery-embedded devices, it can be a gain of processing. Plus, if the first check of
Android basic permissions fails, we do not check our policy databse, and deny the access
immediately. It avoids to unnecessarily read our policy database.

6.3 Implementation Requirements

The changes needed for an implementation of our prototype on Android system implied
the need of modifying classes in lower level than the application layer. We thus needed to
make our own read-only memory version (ROM), from scratch from the android sources
which are free and accessible to anyone.

Here are some characteristics for the development:

65

• Android sources version: Android Froyo 2.2

• JDK version: 1.5 (mandatory for compliance with Android SDK)

• Development IDE: Eclipse EE + Android SDK

• Main languages used: JAVA,XML

6.4 Global Architecture

We have catched the global requirements of our system in terms of functionalities, we need
to describe the architecture and its impact on Android’s base architecture. In this goal,
we will first give a global view of how we integrated our framework into Android system.
Then, we will validate our prototype by confronting it to our model. Screenshots can be
found in appendix, see Appendix C.

6.4.1 System Architecture: Android Integration

The Figure 15 is broadly summarizing the modifications made to Android architecture to
include our framework. Each Android class used is not mentionned here, we only restate
the main components and the main modifications made to the system.

Our framework front-end is an application, installed as an application package in the
highest level of Android system: application layer. This is the layer where users are
installing applications. This way, users who want to manage their privacy can use the
application by launching it from the menu of Android, and users who do not care, are not
bothered with it.
This application, named PrimAndroid, allows thus users to create groups of applications,
manage those groups and add privacy rules to constrain applications belonging to those
same groups. The application also manages conflicts between added constraints and de-
pendencies (shared uid type) between those same applications. If an application is added
to a particular group, and this application shares UID with another application, then this
last one is also added to this group. If an application is removed, dependent applications
are also removed from the concerned group.

Constraints created by users are generated in ODRL format using ODRL parsers, see
Appendix B. Those privacy policies are then stored in a policy database which is the
reserved memory of the PrimAndroid application.

Into the layer below, the framework layer, we have added a policy manager: PPolicy-
Manager, which has for role to edit and read the policy database of the upper layer, to
centralize the access to this database and avoid multiple concurrent accesses.
As said before, in Section 2.2, all components of Android applications having interraction
with users or files are Activities. The main class, parent of all activites, is in the framework

66

layer and was thus also modified with head-functions of the PPolicyManager. This allows
all activities to access this policy database by calling their parent which is using PPolicy-
Manager. Of course, only PrimAndroid has the right to edit the privacy rules, but each
application can read those rules if needed.

Another important class of the Android framework we have modified is ContextImpl
which is the common implementation of Context API, which provides the base context
object for each activity and other application components. Context, that is, an interface
to global information about an application environment.
When a particular application access a particular resource, two methods are called in this
class:

• public int checkPermission(String permission, int pid, int uid);

• public int checkCallingPermission(String permission);

Both methods are called to check wheter or not a particular application has the right
to access a particular resource. Those methods then return an integer with the result of
the check. The difference between those two methods does not matter here, but we had to
modify both of them to add the checking of our policy database after the checking of the
classics Android permissions.
Plus, when a notification is not granted to an application or if an application violates a
constraint of the group where it belongs (if in any group), we need to launch a notification
to warn user about the issue, and the fact that the permission was not granted. The noti-
fication system is managed by NotificationManager which was not modified and is called
for notifications launching.

The checking of PrimAndroid permissions is not made in ContextImpl to avoid being
messy and unclear. The check is devoted to a class: PermissionChecker created from
scratch. This class is directly communicating with PPolicyManager to be able to check
permissions gaven to applications. This class is only called from the two methods men-
tionned up here, and its only goal is the checking of permissions and the return of a boolean
saying wheter or not the permission asked is granted.

6.5 Detailed Modifications

We will now enter the details of the modifications made to the Android sources, and explain
each modification made in the architecture as explained in the last subsection. We will begin
by describing the application PrimAndroid which was developed from scratch as an android
application package. Then, we will develop the modifications we made to the framework
layer of Android sources.

67

Figure 15: Integration of the framework into Android

68

6.5.1 Application Layer

As explained in the previous Section, our prototype contains one “classic” android ap-
plication package. This package is thus an “.apk” and is installed by default in our
read-only memory version of Android (ROM), in the package folder: “path-to-android-
sources”/packages/apps/PrimAndroid. In this package we have several classes and activi-
ties. We will here details for each class: an overview of the purpose of this same class and
a list of methods with specifications (non-exhaustive). Let’s remind here that when we
are talking about “activity”, we mean a Java class with user interraction (as specified by
Android developers guide 8). All activities extend the super class: android.app.Activity,
visible in the figure 15.

com.android.PrimAndroid.java Overview: Activity displaying all existing groups as
a list with menu options for adding/deleting group(s). This is the main activity (The first
user will see).

1 /**

2 * Fill ListView with all groups names

3 */

4 private void computeGroupsName (){}

This method gets all the groups from the policy database and fulfill the group list.

com.android.AddGroupActivity.java Overview: Activity allowing the add of a new
group of applications.

1 /**

2 * @param group: the name of the group to check

3 * @return true if group does not exists , false otherwise

4 */

5 private boolean checkUnique(String group){}

This method takes the name of the group choosed by user as argument and returns
true if and only if this group name does not already exists, false otherwise.

com.android.AddConsActivity.java overview: Activity handling the add of constraints
inside the selected group and check for potential conflicts. This activity is mainly com-
posed of listeners, except for the conflict detection algorithm.

1 /**

2 * @param a: list of actual constraints of the group

8http://developer.android.com/guide/index.html

69

3 * @param toAdd: constraint to add

4 * @return true iff constraint is conflicting , false

otherwise

5 *

6 */

7 private boolean checkInnerConflicts(ArrayList <Constraint > a

, Constraint toAdd){}

This method checks conflicts, before adding constraints, with existing constraints of
the same group. Only conflicts for location and internet constraints could arise, because
these are the only resources where we allow the add of a constraint of time or a constraint
of date or yet a constraint of localisation. The algorithm used is derived from the conflict
detection algorithm in Section 4.7.2. Each constraint added is checked for compliance on
time, date or localisation with existing constraints. If at one moment, one association of
two constraints is conflicting, the add is canceled and the user is warned. It returns false
if and only if no conflicts arise, true otherwise.

com.android.AddAppActivity.java overview: Activity allowing the add of an appli-
cation to the selected group.

1 /**

2 * @param appName: name of the application

3 * @param appList: list of all applications in all the

groups

4 * @param indexGroup: number of the group

5 */

6 private void checkSharedUIDs(String appName , ArrayList <

Group > appList , int indexGroup){}

This method checks if a particular application is sharing UID with another application
of another group than selected. If some applications sharing UID are found, they are also
added in the group as dependent applications, the user is then warned.

1 /**

2 * @param group: group selected

3 * @param app: app. package name unicity

4 * @return true iff app. name does not exists yet in the

group

5 * false otherwise

6 */

7 public boolean checkUnique(String group , String app){}

70

This method checks that the application package added by user does not already exists
in the selected group, return false if and only if this is the case, true otherwise.

1 /**

2 * @param appList: list of all applications inside all

groups

3 * @param targetGroup: group where the application has to

be added

4 * @param appName: name of the application

5 * @return false iff application can be added

6 */

7 private boolean isInAnotherGroup(ArrayList <Group > appList ,

String targetGroup , String appName){}

This method checks that the application does not already belongs to another group
than selected. If true, and no shared UID feature is found within this other group and this
application, application is added, else, if true and a shared UID is found, it is refused. If
false, application is added.

com.android.DelAppActivity.java Overview: Activity allowing deletion of applica-
tions inside a group.

1 /**

2 * @param appName: the application name

3 * @param appList: the application list

4 * @param indexGroup: the group index in the applist

5 */

6 public void checkSharedUIDs(String appName , ArrayList <Group

> appList , int indexGroup){}

This method checks if an application use the shared UID feature to delete dependent
applications from the group too.

1 /*

2 * @param group: the group containing the application to

delete

3 * (because application could belong to several group)

4 * @param toDel: the application to delete

5 */

6 private void removeFromList(String group ,String toDel){}

This method removes the selected application from selected group by calling checkSharedUIDs

method.

71

com.android.GroupView.java Overview: One of the two tabs of GroupActivity gui,
showing list of applications inside selected group.

com.android.DelConsActivity.java Overview: Activity allowing the deletion of con-
straints from the selected group.

com.android.DelGroupActivity.java Overview: Activity allowing the deletion of a
group of applications, even if not empty. In this case, all constraints applied to this group
and thus, to those applications, are freed.

com.android.ConstraintsView.java Overview: The other tab of GroupActivity gui,
showing list of constraints inside the selected group.

com.android.GroupActivity.java Overview: Activity displaying two tabs after select-
ing a group: Applications and Constraints: GroupView and ConstraintsView.

6.5.2 Framework Layer

The classes modified in the layer below the application layer contain important Android
system classes, and our modifications are mandatory in order to have PrimAndroid running.
It is why we had to make our own version of Android from the sources (ROM) and not just
a sample application package. We will restate here those modifications and detail them.

Activity Overview: As said before, in the last Section, this class is the parent of all
activities of the application layer. “An activity is a single, focused thing that the user can
do. Almost all activities interact with the user, so the Activity class takes care of creating a
window for you in which you can place your UI with. To start another activity, all activity
classes must have a corresponding declaration in their package’s AndroidManifest.xml. The
Activity class is an important part of an application’s overall lifecycle and the way activities
are launched and put together is a fundamental part of the platform’s application model” 9

Here are the methods added for the purpose of PrimAndroid:

1 /**

2 * @param context: context of calling application

3 */

4 public List <String > getGroupsName(Context context){}

This method returns a list of all the groups’ names from the policy database.

9For a detailed perspective on the structure of Android applications and lifecycles, please read
http://developer.android.com/guide/index.html

72

1 /**

2 * @param group: name of the group

3 * @param context: context of calling application

4 */

5 public Group getApplicationsByGroup(String group , Context

context){}

This method returns a Group object from a group name from the policy database.

1 /**

2 * @param context: context of calling application

3 */

4 public static List <Group > getAllApplications(Context

context){}

This method returns a list of all the groups from the policy database.

1 /**

2 * @param group: name of the group

3 * @param context: context of calling application

4 */

5 public static List <Constraint > getConstraints(String group ,

Context context){}

This method returns a list of all the constraints of all the groups from the policy
database.

1 /**

2 * @param list list of all groups

3 * @param context: context of calling application

4 */

5 public void setGroupFile(List <Group > list , Context context)

{}

This method sets the groups list objects in the policy database.

1 /**

2 * @param list: list of all accesses logs

3 */

4 public void setAccessFile(List <Access > list){}

73

This method sets the access logs list in the access database. One access is added for a
group, when this group accesses a particular resource constrained by a maximum number
of accesses for all applications of this group.

1 /**

2 * @param groupName: name of the group

3 * @param list: list of all constraints of all groups

4 * @param context: context of calling application

5 */

6 public void setConstraints(String groupName , List <

Constraint > list , Context context){}

This method sets the constraints of all the groups in the policy database.

ContextImpl Overview: “Common implementation of Context API, which provides the
base context object for Activity and other application components”. It is this class that
is called for the checking of permissions when an application asks access to a particular
resource. We have thus modified this class to add the check of PrimAndroid permissions,
via our policy database.

1 /**

2 * @param permission: the resource which is targeted

3 * @param pid: the PID of the application targetting this

resource

4 * @param uid: the UID of the application targetting the

resource

5 *

6 * @return PackageManager.PERMISSION_GRANTED if permission

is granted , PackageManager.PERMISSION_DENIED , if

permission

7 * is not granted and PackageManager.CONSTRAINTS_VIOLATED

if constraints from PrimAndroid’s policy database are

8 * violated

9 */

10 public int checkPermission(String permission , int pid , int

uid) {}

11 public int checkCallingPermission(String permission) {}

This method checks whether or not an application has the right to access a particular
resource. Two checks are made: One for the permissions allowed by users at the installa-
tion, one for the constraints of the policy database of PrimAndroid application.
The second method is basically the same as the first one, exception made that it is only

74

used for checking if the calling process of an Inter-Process Communication (IPC) 10 we are
handling has been granted a particular permission. In the non-modified system, this allows
to avoid any application to call any other application to use permissions granted to this last
one. Exception made of applications sharing UID as explained before and also constraints
over permissions. Indeed, if an application A has the same permission has an application
B but with different constraints set (with Apex by example) on those permissions, con-
straints are not taken into account by this mechanism, so this method would end with a
permission granted, see figure 12 for example. But, as we added the check of PrimAndroid
policy database constraints, this is avoided. Both permissions and constraints are checked
over IPC mechanism.

PPolicyManager Overview: This class is used as a proxy to access the policy database.
Each method of this class is the same as the Activity class above, but in this last class
those are just transparent methods to call this PPolicyManager class. We will not restate
the methods here, as they have already be explained in the Activity class and as PPoli-
cyManager is used only by system, and at no moment has to be called by an application
package. If an application wants to access the policy database, it should use the Activity
class.

PermissionChecker Overview: This class is used by ContextImpl.class above to check
permissions related to the policy database of PrimAndroid and to verify constraints setted
on those policies (time,date,localization,accesses,prohibition). To connect with the policy
database, this class also uses the PPolicyManager.class from above. This class can be
used by any other application to check constraints, permissions or prohibition, as it is a
read-only access to this information.

1 /**

2 * @param app: the application URN (ex: com.android.browser

)

3 * @parem resource: the resource targetted by the

application

4 */

5 private void checkPermission(String app , String resource){}

This method checks whether or not the application has the permission (PrimAndroid
point-of-view) to access this resource. All constraints are thus checked for the group con-
taining the application. Those check are not made by the method but are called in the
body: checkProhibitions, checkAccess, checkDay, checkCountry, checkTime. Below find
the header of those functions.

10http://developer.android.com/guide/developing/tools/aidl.html#PassingObjects

75

1 private void checkProhibitions(ArrayList <Constraint >

constraints , String app , String resource){}

2 private void checkAccess(ArrayList <Constraint > constraints ,

String app , String resource){}

3 private void checkDay(ArrayList <Constraint > constraints ,

String app , String resource){}

4 private void checkCountry(ArrayList <Constraint > constraints

, String app , String resource){}

5 private void checkTime(ArrayList <Constraint > constraints ,

String app , String resource){}

6.6 Validation of prototype

6.6.1 P-RBAC Model Confrontation

Now that PrimAndroid has been presented, how can we state that it validate our P-RBAC-
based model?

Let’s restate our model:

• A set A of applications, a set G of dependency groups, a set R of resources, a set X
of actions, a set O of obligations and a condition language LC0.

• The set of Resources Permissions RP = {(x, r)|x ∈ X, r ∈ R}

• The set of Privacy-sensitive Resources Permission PRP = {(rp, c, o)|rp ∈ RP, o ∈ O,
c is an expression of LC0}.

• Application Assignment AA ⊆ A × G, a many-to-many mapping application to
dependency group assignment relation.

• Privacy-sensitive Resources Permission Assignment PRPA ⊆ G×PRP , a many-to-
many mapping privacy-sensitive resource permission to dependency group assignment
relation.

Our prototype proposes a set of resources permissions retrieved from the system’s per-
missions. On each one of those permissions, user can add one or more constraints of a
predefined set proposed by our framework. Those constraints allow users to manage their
privacies with more granularity. Thus, we have privacy-sensitive resources permission as a
permission constrained by user under some privacy rules. The obligation is here considered
as logging. Indeed, each deny or grant of permission is currently logged by the system.
Our framework proposes to users to add applications to groups of similar applications,
with automated dependences add. It is the equivalent of the application assignement in
our model. Finally, as each privacy-sensitive resource permission added by user, has a

76

group of applications as target, it means that we also have respected the many-to-many
mapping of privacy-sensitive resource permission to dependency group assignement rela-
tion.

Our prototype does validate our modified P-RBAC model.

6.6.2 ODRL Model Confrontation

We also have to validate the usage of rights expression languages, and especially ODRL.

Each constraint or prohibition added by user over a group of applications is generated
in ODRL, such as discussed in 5.2.5. Each group is associated with a file containing all
policy rules of this same group. The file is named “NAME-OF-THE-GROUP”.xml. Each
group as its own file for complexity, and thus performances reasons. Indeed, if all policy
rules where in a file, checks for one group would imply to parse a file containing all policies
of all existing groups. Instead, our system allows to parse only rules of the concerned group.

The policies are generated, read, and modified via two parsers: ODRLWriter.java and
ODRLReader.java, both using SAX 11 as API for parsing XML files. Those parsers can be
found in appendix, see Appendix B.

Our prototype does validate our ODRL model.

6.7 Limits and Discussion

Although we have shown that our model was implementable on a real system and that all
constraints added by users could be expressed using ODRL, there are also some limits to
our prototype, as the point was not to be exclusive but to validate our model and ideas
presented in this work. We will discuss them here.

• Overhead for user: The fact that user has to manage groups (partially, UID de-
pendent applications are automaticly added) and add constraints over those groups
manually can be an overhead to users. But we started from the following assumption,
which seems the best approach in our opinion, but may not be for others:
A certain part of users do not care about privacy issues. It means that for such user,
forcing to add constraints over resources would be an overhead, it is why our frame-
work is based on a top-level application, which allows users to use it if they want to,
and to completely avoid it if they don’t want to or if they do not understand what is
the goal of such application. For users who do care a bit but do not know that they
are subject to those issues, our prototype can be a limit. It is why we think that it
is important to have both user-centric framework and machine-based framework for

11SAX API: http://download.oracle.com/javase/1.4.2/docs/api/org/xml/sax/package-summary.html

77

a highly complete privacy management system. Indeed, this way users have in all
cases, a good base that manages there privacy from machine-learned techniques, and
for users who are not satisfied with such, they can use our application to add more
personnalized rules and manage dependencies between applications.
Thus, as privacy is subjective, varying from one person to another, the only way, al-
ways in our opinion, to be complete is to have both user-centric and machine-centric
techniques.

• Dynamic Dependencies: As said before, our prototype is able to automaticaly
add applications to a group which are sharing UID with an application just added in
this same group. But the other form of dependency, dynamic dependency, cannot be
managed using a user-centric framework. Indeed, in Android system, each application
using another application without sharing the same UID, launches a broadcast with
a particular message. Each target applications which has a filter for this broadcast
message will respond. This system is thus non-deterministic, as zero, one or more
applications can respond. It is what we call dynamic dependencies. The only way
to catch those is to add a machine-learning tool which captures those messages, and
name of reacting applications. But as many applications can answers, we cannot be
sure of which one is really used.

• Limited set of constraints: This last limit is more part of a future work. The
set of constraints available is quite restricted for now, focusing on the main resources
generally causing privacy issues. But with users studies and time, this set could be
easily expanded to include more granular constraints.

78

7 CONCLUSION

In this Section we will present the main findings and conclusions based on research con-
ducted in this thesis. The purpose of this conclusion is to see if we have answered the
research questions stated in Section 1.3. Each one of the research questions will be dis-
cussed in separate subsections. Finally future research work is discussed.

7.1 What are privacy issues and what are the assets to protect
when talking about privacy management in mobile applica-
tions?

We have began this work by explaining what are privacy issues and especially how can we
talk of privacy issues in a mobile environement and what are the assets and resources to
manage to avoid such issues. We have also looked at the evolution of law in terms of privacy
protection, as many researchs are based on european guidelines like OECD directives.

7.1.1 What are the limitations of current systems in terms of privacy?

We have presented a non-exhaustive state-of-the-art of existing tools (like Apex [32], Taint-
Droid [15],...) and we have analyzed their limits in terms of privacy management but also
their contributions to the domain.

7.1.2 How can we use tools are our disposal to override those problems?

Along with the study of existing tools in terms of privacy management, we have studied
P-RBAC which is a tool we used to override the problem of the modelisation of privacy is-
sues scenarios in mobile applications. We, then, extended this model to take dependencies
of applications into account.
Beside P-RBAC, we have reasonned all along with the current permission system of An-
droid applications.
The second tool we used, is ODRL as a rights expression language.

7.2 How can we use access controls models to reason about pri-
vacy issues in mobile applications and how can we adapt
those models to our purpose?

As we explained in the last question, we have adapted a model, P-RBAC, designed for
taking privacy into account in role-based access control models and we have extended this
model to mobile applications, especially in Android system. We have shown how to express
scenarios of this system in such a model and how to reason about privacy issues using this
same model.

79

7.3 What can rights expression languages offer to such models
in terms of expressiveness, privacy evolution and usage of a
standard?

After having introduced rights expression languages in the background Section 2.3, we have
discussed their possible contributions in terms of expressiveness, privacy change and usage
of a standard. We also have shown limits of such languages. We have finally introduced
ODRL as the best-fitted REL for mobile applications.

7.4 How can we apply those adapted models to a specific envi-
ronment like Google’s Android system? How can we incor-
porate rights expression languages in such a system?

Using ODRL, we have tried to express android scenarios to focus only on a subpart of the
language. This has lead to the expression of our modified P-RBAC model using such an
expression language.
In the prototype, PrimAndroid, we have included a policy database where policies are
written in ODRL and are parsed by the system for the completude of the base Android
permissions system.

7.5 Future Works

We have exposed our work through this thesis with the goal of improving privacy rights
management on mobile applications, especially Android applications and reason about con-
crete scenarios of privacy issues. We have seen how we could modelize such scenarios and
how we could express them using a rights expression language, which was ODRL for us.
Although, there is still a lot of interesting future works to do, to go on with research on
privacy in mobile applications which, with the constant growth of mobile phones, will be
more and more a key asset and a need for users. We identify here some major points
which could be the going on of this work, but there are probably many others which could
be discussed.

• Privacy change: One of the biggest interest of porting rights expression languages
to mobile applications was the evolution of privacy through the evolution of appli-
cation. Indeed, as such languages are quite complete, with a lot of possibilities, the
policies could possibly be adapted by the system whenever an application evolves.
This is an active topic of research and a lot of teams are working on this privacy
change idea. It could allow to end-up with automated updated policies when applica-
tions are updated. On Android applications, by example, we could see if permissions
of the “AndroidManifest.xml” file have been modified, if so we could automate the
repercussion on the policy database. But it would also be interesting to generate
constraints for the user by taking the works on context-aware privacy into account
where constraints could be modified whenever we are in a reunion or in our car by

80

example. The evolution of technology (bluetooth, accelerometer, GPS,...) will allow
more precisely to detect such changes of context, but they also will open smartphones
to more privacy issues, which is thus a paradox to take into account.

• User privacy requirements studies: As we said before, privacy is highly sub-
jective. One particular user may attach importance to one particular asset, another
user may not. It means that constraints proposed by a tool like Apex or our pro-
totype, or even tools proposed by operating systems, could end-up with unsatisfied
users privacy-speaking. User studies would allow to have a comprehensible set of
constraints with a lot of granularity and easily adjustable to any user.

• Machine-based and User-centric techniques: As we discussed in the validation
Section, see Section 6.7, we think that the best framework for privacy management
would contains both machine-based (like [18]) and user-centric (like our prototype)
techniques to have a maximum granularity.

• Study of other mobile systems: Finally, we have focused here on Android appli-
cations, but we have seen that other systems such as iOS have also known issues. It
would thus be interesting to study the validity of our model and its application to
such systems and probably extend this model in function.

81

References

[1] “the organisation for economic co-operation and development, guidelines on
the protection of privacy and transborder flows of personal data”, 1999.
http://www.oecd.org/.

[2] Xacml: A new standard protects content in enterprise data exchange, 2003.
http://java.sun.com/developer/technicalArticles/Security/xacml/xacml.html.

[3] “platform for privacy preferences (p3p) project”, 2007. http://www.w3.org/P3P/.

[4] Boolean satisfiability problem. World Wide Web electronic publication, 2010.

[5] “INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ISO/IEC
JTC 1/SC 29/WG 11”. Coding of moving pictures and audio. 2005.
http://mpeg.chiariglione.org/technologies/mpeg-21/mp21-rel/index.htm.

[6] Alasdair Allan and Pete Warden. Got an iphone
or 3g ipad? apple is recording your moves, 2011.
http://radar.oreilly.com/2011/04/apple-location-tracking.html.

[7] F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5–40, 2001.

[8] Guangdong Bai, Liang Gu, Tao Feng, Yao Guo, and Xiangqun Chen. Context-aware
usage control for android. In Security and Privacy in Communication Networks, vol-
ume 50 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 326–343. Springer Berlin Heidelberg, 2010.

[9] Charalambides, Flegkas, Pavlou, Bandara, Lupu, Russo, Dulay, Sloman, and Rubio-
Loyola. Policy conflict analysis for quality of service management. IEEE, 2006.

[10] “ContentGuard”. “the digital rights language for trusted content and services”.
http://www.xrml.org/.

[11] Mauro Conti, Vu Nguyen, and Bruno Crispo. Crepe: Context-related policy enforce-
ment for android. In Mike Burmester, Gene Tsudik, Spyros Magliveras, and Ivana
Ilic, editors, Information Security, volume 6531 of Lecture Notes in Computer Science,
pages 331–345. Springer Berlin / Heidelberg, 2011.

[12] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. Priv-
ilege escalation attacks on android. In Mike Burmester, Gene Tsudik, Spyros Magliv-
eras, and Ivana Ilic, editors, Information Security, volume 6531 of Lecture Notes in
Computer Science, pages 346–360. Springer Berlin / Heidelberg, 2011.

[13] Cécile de Terwangne and Jean-Noël Colin. Défis pour la vie privée et la protection
des données posés par la technologie. 2011.

82

[14] Microsoft Corporation Encarta, World English Dictionary. Encarta encyclopedia,
2009. http://encarta.msn.com/.

[15] William Enck, Peter Gilbert, and Byung-Gon Chun. Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones. 2010.

[16] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9:319–349, July
1987.

[17] “Organisation for Economic Co-operation and Development (OECD)”. “report on the
cross-border enforcement of privacy laws”, 2006.

[18] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. “scandroid : Automated
security certification of android applications”.

[19] Google. Content providers. 2010. http://developer.android.com/guide/topics/providers/content-providers.html.

[20] Google. Security and permissions. 2010. http://developer.android.com/guide/topics/security/.

[21] Governatori and Milosevic. A formal analysis of a business contract language. In-
ternational Journal of Cooperative Information Systems, vol. 15, no. 4, pp. 659–685,
2006.

[22] Guido Governatori and Renato Iannella. Modelling and reasoning languages for social
networks policies. 2009 IEEE International Enterprise Distributed Object Computing
Conference, 2009.

[23] Yin H., Song D., Egele M., Kruegel C., kirda, and E. Panorama. Capturing system-
wide information flowfor malware detection and analysis. In Proceedings of ACM
Computer and Communications Security, 2007.

[24] Altman I. Privacy Regulation: Culturally Universal or Culturally Specific? 1977.

[25] “Information Commissioner’s Office (ICO)”. “the guide to data protection”, 1998.

[26] ODRL initiative. Open digital rights language, 2010. http://odrl.net.

[27] “ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC”. “cod-
ing of moving pictures and audio, mpeg-21 overview v.5”, 2002.

[28] Silvia Llorente, Jaime Delgado, Rubén Barrio, and Xavier Maroñas. Translation be-
tween xml-based rights expressions using uml and relational models. 2006.

[29] Clara Mancini, Keerthi Thomas, Yvonne Rogers, Blaine A. Price, Lukasz Jedrzejczyk,
Arosha K. Bandara, Adam N. Joinson, and Bashar Nuseibeh. From spaces to places:
Emerging contexts in mobile privacy. UbiComp 2009, September 2009.

83

[30] Xavier Maroñas, Eva Rodŕıguez, and Jaime Delgado. An architecture for the interop-
erability between rights expression languages based on xacm.

[31] Nauman. Android security, a survey. so far so good. World Wide Web electronic
publication, 2010.

[32] Nauman, Khan, and Zhang. “apex : Extending android permission model and en-
forcement with user-defined runtime constraints”. April 2010.

[33] Q. Ni, A. Trompette, E. Bertino, and J. Lobo. Privacy-aware role based access control.
ACM Press, June 2007.

[34] Sadeh Norman, Hong Jason, Cranor Lorrie, Fette Ian, Kelley Patrick, Prabaker
Madhu, and Rao Jinghai. “understanding and capturing people’s privacy policies
in a mobile social networking application”. 2008.

[35] Council of the OECD. “oecd guidelines on the protec-
tion of privacy and transborder flows of personal data”, 1980.
http://www.oecd.org/document/18/0,3343,en 2649 34255 1815186 1 1 1 1,00.html.

[36] L. Palen and P. Dourish. Unpacking “privacy” for a networked world. Proceedings of
the conference on Human factors in computing systems - CHI ’03, page 129, 2003.

[37] Jose Prados, Eva Rodr?guez, and Jaime Delgado. Interoperability between different
rights expression languages and protection mechanisms. Automated Production of
Cross Media Content for Multi-Channel Distribution, International Conference on,
0:145–152, 2005.

[38] Jamkhedkar Pramod, Heileman Gregory, and Mart́ınez-Ortiz Ivan. “the problem with
rights expression languages”. 2006.

[39] Cambridge University Press. Cambridge dictionaries, 2011.
http://dictionary.cambridge.org/dictionary/british/algorithm.

[40] Oxford University Press. Oxford dictionaries, 2011.
http://www.oxforddictionaries.com.

[41] Ian Reay, Scott Dick, and James Miller. “a large-scale empirical study of p3p privacy
policies”. ACM Transactions on The Web, Vol. , No. 2, Article 6, 2009.

[42] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, and Shlomi Dolev. Google
android: A state-of-the-art review of security mechanisms, 2008.

[43] Murray Shanahan. The event calculus explained.

[44] Eric Smith. “iphone applications and privacy issues: An analysis of application trans-
mission of iphone unique device identifiers (udids)”. 2010. www.pskl.us.

84

[45] W3C. http://www.w3.org/TR/odrl/.

[46] Lu Yao and Zhang Guoyi. A dl-based approach for eliminating concept restriction
conflicts in ontology merging. 2008 IFIP International Conference on Network and
Parallel Computing, 2008.

85

A OECD Guidelines on the Protection of Privacy and

Transborder Flows of Personal Data

A.1 PART ONE: GENERAL DEFINITIONS

A.1.1 For the purposes of these Guidelines:

• “data controller” means a party who, according to domestic law, is competent to
decide about the contents and use of personal data regardless of whether or not such
data are collected, stored, processed or disseminated by that party or by an agent on
its behalf;

• “personal data” means any information relating to an identified or identifiable indi-
vidual (data subject);

• “transborder flows of personal data” means movements of personal data across na-
tional borders.

A.1.2 Scope of the Guidelines

These Guidelines apply to personal data, whether in the public or private sectors, which,
because of the manner in which they are processed, or because of their nature or the con-
text in which they are used, pose a danger to privacy and individual liberties.

These Guidelines should not be interpreted as preventing:

• the application, to different categories of personal data, of different protective mea-
sures depending upon their nature and the context in which they are collected, stored,
processed or disseminated;

• the exclusion from the application of the Guidelines of personal data which obviously
do not contain any risk to privacy and individual liberties; or

• the application of the Guidelines only to automatic processing of personal data.

Exceptions to the Principles contained in Parts Two and Three of these Guidelines,
including those relating to national sovereignty, national security and public policy (“ordre
public”), should be:

• as few as possible, and

• made known to the public.

86

In the particular case of Federal countries the observance of these Guidelines may be
affected by the division of powers in the Federation.

These Guidelines should be regarded as minimum standards which are capable of being
supplemented by additional measures for the protection of privacy and individual liberties.

A.2 PART TWO: BASIC PRINCIPLES OF NATIONAL AP-
PLICATION

A.2.1 Collection Limitation Principle

There should be limits to the collection of personal data and any such data should be
obtained by lawful and fair means and, where appropriate, with the knowledge or consent
of the data subject.

A.2.2 Data Quality Principle

Personal data should be relevant to the purposes for which they are to be used, and, to the
extent necessary for those purposes, should be accurate, complete and kept up-to-date.

A.2.3 Purpose Specification Principle

The purposes for which personal data are collected should be specified not later than at the
time of data collection and the subsequent use limited to the fulfilment of those purposes
or such others as are not incompatible with those purposes and as are specified on each
occasion of change of purpose.

A.2.4 Use Limitation Principle

Personal data should not be disclosed, made available or otherwise used for purposes other
than those specified in accordance with Paragraph A.2.3 except:

• with the consent of the data subject; or

• by the authority of law.

A.2.5 Security Safeguards Principle

Personal data should be protected by reasonable security safeguards against such risks as
loss or unauthorised access, destruction, use, modification or disclosure of data.

87

A.2.6 Openness Principle

There should be a general policy of openness about developments, practices and policies
with respect to personal data. Means should be readily available of establishing the ex-
istence and nature of personal data, and the main purposes of their use, as well as the
identity and usual residence of the data controller.

A.2.7 Individual Participation Principle

An individual should have the right:

• to obtain from a data controller, or otherwise, confirmation of whether or not the
data controller has data relating to him;

• to have communicated to him, data relating to him within a reasonable time; at a
charge, if any, that is not excessive; in a reasonable manner; and in a form that is
readily intelligible to him;

• to be given reasons if a request made under subparagraphs(a) and (b) is denied, and
to be able to challenge such denial; and

• to challenge data relating to him and, if the challenge is successful to have the data
erased, rectified, completed or amended.

A.2.8 Accountability Principle

A data controller should be accountable for complying with measures which give effect to
the principles stated above.

A.3 PART THREE: BASIC PRINCIPLES OF INTERNATIONAL
APPLICATION: FREE FLOW AND LEGITIMATE RE-
STRICTIONS

Member countries should take into consideration the implications for other Member coun-
tries of domestic processing and re-export of personal data.

Member countries should take all reasonable and appropriate steps to ensure that trans-
border flows of personal data, including transit through a Member country, are uninter-
rupted and secure.

A Member country should refrain from restricting transborder flows of personal data
between itself and another Member country except where the latter does not yet substan-
tially observe these Guidelines or where the re-export of such data would circumvent its
domestic privacy legislation. A Member country may also impose restrictions in respect

88

of certain categories of personal data for which its domestic privacy legislation includes
specific regulations in view of the nature of those data and for which the other Member
country provides no equivalent protection.

Member countries should avoid developing laws, policies and practices in the name of
the protection of privacy and individual liberties, which would create obstacles to trans-
border flows of personal data that would exceed requirements for such protection.

A.4 PART FOUR: NATIONAL IMPLEMENTATION

In implementing domestically the principles set forth in Parts Two and Three, Member
countries should establish legal, administrative or other procedures or institutions for the
protection of privacy and individual liberties in respect of personal data. Member countries
should in particular endeavour to:

• adopt appropriate domestic legislation;

• encourage and support self-regulation, whether in the form of codes of conduct or
otherwise;

• provide for reasonable means for individuals to exercise their rights;

• provide for adequate sanctions and remedies in case of failures to comply with mea-
sures which implement the principles set forth in Parts Two and Three; and

• ensure that there is no unfair discrimination against data subjects.

A.5 PART FIVE: INTERNATIONAL CO-OPERATION

Member countries should, where requested, make known to other Member countries details
of the observance of the principles set forth in these Guidelines. Member countries should
also ensure that procedures for transborder flows of personal data and for the protection
of privacy and individual liberties are simple and compatible with those of other Member
countries which comply with these Guidelines.

Member countries should establish procedures to facilitate:

• Information exchange related to these Guidelines, and mutual assistance in the pro-
cedural and investigative matters involved.

• Member countries should work towards the development of principles, domestic and
international, to govern the applicable law in the case of transborder flows of personal
data.

89

B ODRL Java Parsers

Here, we restate the code of the parser we created for ODRL XML reading, modifying and
writing of policies.

B.1 ODRLReader.xml

1 package android.app.parsers;

2

3 import java.io.BufferedReader;

4 import java.io.FileInputStream;

5 import java.io.IOException;

6 import java.io.InputStreamReader;

7 import java.io.StringReader;

8 import java.util.ArrayList;

9

10 import org.xmlpull.v1.XmlPullParser;

11 import org.xmlpull.v1.XmlPullParserException;

12 import org.xmlpull.v1.XmlPullParserFactory;

13

14 import android.app.objects.Constraint;

15

16

17 import android.util.Log;

18

19

20 public class ODRLReader {

21

22 /**

23 *

24 * Read Constraints over a group in XML file

25 *

26 * @param fIn: fileInputStream to read

27 * @return Group List

28 */

29 public ArrayList <Constraint > readXML(FileInputStream fIn)

{

30

31 //Bind the new file with a FileOutputStream

32 InputStreamReader file = null;

33 file = new InputStreamReader(fIn);

34 BufferedReader f = new BufferedReader(file);

90

35 ArrayList <Constraint > constraints = new ArrayList <

Constraint >();

36

37 XmlPullParserFactory factory = null;

38 try {

39

40 factory = XmlPullParserFactory.newInstance ();

41 factory.setNamespaceAware(true);

42 XmlPullParser parser = null;

43 parser = factory.newPullParser ();

44 parser.setInput ((new StringReader(f.readLine ())));

45 int eventType = parser.getEventType ();

46

47

48 boolean prohibition = false;

49 Constraint c = new Constraint ();

50

51 while (eventType != XmlPullParser.END_DOCUMENT){

52

53 if(eventType == XmlPullParser.START_TAG){

54 //Start group/app Tag

55 if(! prohibition){

56 if(parser.getName ().equals("asset")){

57 c = new Constraint ();

58 c.setResource(parser.getAttributeValue (0));

59 } else if (parser.getName ().equals("constraint"

)){

60 c.setType(parser.getAttributeValue (0).

substring(

61 parser.getAttributeValue (0).indexOf("/")

+1,parser.getAttributeValue (0).length

()));

62 c.setOperator(parser.getAttributeValue (1).

substring(

63 parser.getAttributeValue (1).indexOf("/")

+1,parser.getAttributeValue (1).length

()));

64 c.setRightOperand(parser.getAttributeValue (2)

);

65 } else if (parser.getName ().equals("prohibition

")){

66 prohibition = true;

67 c = new Constraint ();

91

68 }

69 }else{

70 if(parser.getName ().equals("asset")){

71 c.setResource(parser.getAttributeValue (0));

72 c.setType("prohibition");

73 c.setOperator("");

74 c.setRightOperand("");

75 } else if (parser.getName ().equals("constraint"

)){

76 c.setType("prohibition");

77 c.setOperator("");

78 c.setRightOperand("");

79 }

80 }

81 }

82 if(eventType == XmlPullParser.END_TAG){

83 //End perm Tag

84 if(parser.getName ().equals("permission")){

85 constraints.add(c);

86 }else{

87 if(parser.getName ().equals("prohibition")){

88 constraints.add(c);

89 prohibition=false;

90 }

91 }

92 }

93 eventType = parser.next();

94 }

95

96 file.close();

97

98 } catch (XmlPullParserException e) {

99 Log.i("com.android.PrimAndroid.GroupReader", "Null

Parser");

100 } catch (IOException e){

101 Log.i("com.android.PrimAndroid.GroupReader", "IO

Exception");

102 }

103

104 return constraints;

105 }

106 }

92

B.2 ODRLWriter.xml

1 package android.app.parsers;

2

3 import java.io.FileOutputStream;

4 import java.io.IOException;

5 import java.util.ArrayList;

6

7 import org.xmlpull.v1.XmlSerializer;

8

9 import android.app.objects.Constraint;

10

11 import android.util.Log;

12 import android.util.Xml;

13

14

15 public class ODRLWriter {

16

17 /**

18 *

19 * Write ODRL permission in XML file

20 *

21 * @param groupList: list of groups

22 * @param file: FileOutputStream to write

23 */

24 public void writeXML(ArrayList <Constraint > c,

FileOutputStream file ,String groupName) {

25

26 //we create a XmlSerializer in order to write xml data

27 XmlSerializer serializer = Xml.newSerializer ();

28 try {

29 serializer.setOutput(file ,"UTF -8");

30 serializer.startDocument("UTF -8", true);

31 serializer.startTag("o", "policy");

32 serializer.attribute("xmnls","o","http :// odrl.net /2.0

");

33 serializer.attribute("type","","o:privacy");

34 serializer.attribute("uid","","urn:policy:"+groupName

);

35

36 for(int i=0; i<c.size(); i++){

37

38 if(!c.get(i).getType ().equals("prohibition")){

93

39

40 //Start a permission

41 serializer.startTag("o", "permission");

42 serializer.startTag("o", "asset");

43 serializer.attribute("","uid",c.get(i).

getResourceName ());

44 serializer.endTag("o", "asset");

45 serializer.startTag("o", "action");

46 serializer.attribute("o","ressource", "action/

present");

47 serializer.endTag("o", "action");

48 serializer.startTag("o", "constraint");

49

50 if(c.get(i).getType ().equals("count")){

51

52 serializer.attribute("","name","o:constraint/

count");

53 serializer.attribute("", "operator", "o:

operator/lteq");

54 }else{

55 if(c.get(i).getType ().equals("timeInterval")){

56 //To change

57 serializer.attribute("","name","o:constraint/

timeInterval");

58 serializer.attribute("", "operator", "o:

operator/"+c.get(i).getOperator ());

59 }else{

60 if(c.get(i).getType ().equals("dateTime")){

61 serializer.attribute("","name","o:

constraint/dateTime");

62 serializer.attribute("", "operator", "o:

operator/neq");

63 }else{

64 //Location

65 if(c.get(i).getType ().equals("spatial")){

66 serializer.attribute("","name","o:

constraint/spatial");

67 serializer.attribute("", "operator", "o:

operator/eq");

68 }

69 }

70 }

71 }

94

72 serializer.attribute("", "rightOperand", c.get(i)

.getRightOperand ());

73 //End a group

74 serializer.endTag("o", "constraint");

75 serializer.endTag("o", "permission");

76 }else{

77 //Start a prohibition

78 serializer.startTag("o", "prohibition");

79 serializer.startTag("o", "asset");

80 serializer.attribute("","uid",c.get(i).

getResourceName ());

81 serializer.endTag("o", "asset");

82 serializer.startTag("o", "action");

83 serializer.attribute("o","ressource", "action/

present");

84 serializer.endTag("o", "action");

85 serializer.endTag("o", "prohibition");

86 }

87 }

88 serializer.endTag("o", "policy");

89 serializer.endDocument ();

90 file.close();

91 } catch (IllegalArgumentException e) {

92 Log.i("com.android.PrimAndroid.GroupWriter","Illegal

Argument Exception");

93 } catch (IllegalStateException e) {

94 Log.i("com.android.PrimAndroid.GroupWriter","Illegal

State Exception");

95 } catch (IOException e) {

96 Log.i("com.android.PrimAndroid.GroupWriter","IO

Exception");

97 }

98 }

99 }

95

C Screenshots of PrimAndroid

This last appendix just restates some screenshots of our application prototype.

Figure 16: PrimAndroid in the Android menu

Figure 17: List of Groups of Applications

96

Figure 18: Adding a Group

Figure 19: Applications of a Group

97

Figure 20: Constraints of a Group

Figure 21: Selection of a Resource to Constraint for a Group

98

Figure 22: Adding a Constraint to a Resource

99

