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Abstract

The understanding of gene regulatory networks depends upon the solving of ques-

tions related to the interactions in those networks. This study shows how a promising

programming paradigm, constraint logic programming, can be used to design a support

tool for modelling biological networks, with the emphasis on gene regulatory networks.

We describe the most important elements of those complex regulatory networks, as well

as popular formal methods and tools designed for their modelling.

Then we introduce to the constraint logic programming paradigm and its advantages

for solving real world as biological problems. Our approach is to use this paradigm

to design a simple support tool with the aiming to help in modelling gene regulatory

networks. For instance we set the emphasis on the understanding of the nature of

interactions in those networks. To illustrate our approach, we designed BioNet, and

present its interesting capabilities. Finally, we illustrate some of its features with the

modelling of the regulation in the lac operon.

Keywords

Gene regulatory networks, biological networks, network inference, Prolog, constraint

logic programming.
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Chapter 1

Introduction

The GRNs (Gene regulatory networks) are at the heart of numerous processes vital

for all the living organisms. Their study is an essential step to understand the mecha-

nisms involved in the expression of particular genes and the production of specific gene

products in reaction to environmental stimuli. Those GRNs networks play an important

role in resistance to disease as well as the evolution of organisms, and their study has

become a field of active research.

To achieve the study of those networks, numerous formal methods and modelling

tools have been proposed in the last decades, with the emphasis on different dynamics

depending on the nature and complexity of the studied phenomenons. However, the

accurate modelling of such networks is difficult due to lacking data, and the many

unknowns in the understanding of the interactions, especially for large networks. Some

interesting qualitative modelling approaches have been developed to face the lack of data.

Examples are the Boolean networks developed by Kauffman [1, 2] as well as Thomas’

formalism [3–5]. They enable to reason on the dynamics of those networks with simple

modelling approaches, in addition those formalisms have been largely described and

improved until the present day, in the form of numerous model extensions with their

pros and cons. However, the understanding of the nature of interactions is still a long

and difficult process, and some questions are quite difficult to answer. In addition, the

modelling of a particular phenomenon and the interpreting of gene expression data often

requires intuition from the biologist researcher to identify the key interactions in GRNs.

In this thesis, we explore a promising technique to solve problems with many un-

knowns, with the aiming of using this technique to help the biologist researcher at his

work on regulatory networks. For that purpose, we explore the constraint logic pro-

gramming paradigm which is well suited to solve highly constrained problems. Interest

is focused on their ability to find answers to complex questions involving unknowns

1



Introduction 2

and uncertainty. Constraint solving techniques are studied, as well as their advantages

and the perspective of using them to answer recurrent questions in the context of gene

regulatory networks.

The first chapter is an introduction to genetics and its history, with the emphasis on

gene regulatory networks and its mechanisms. It illustrates the key components involved

in biological systems, from atoms to complex organisms, and explains notions such as

DNAs, RNAs, genes and proteins as well as the interactions between them. The key

processes of gene expression, gene regulation and gene regulatory networks are explained.

We explain some techniques used to measure the gene expression, then we illustrate some

gene regulatory networks and we give an example with the gene regulation in the lac

operon. Then we describe some databases used by biologist researchers to exchange

information on biological networks.

The second chapter focuses on the existing formal methods and tools used to achieve

a more precise description of the dynamics of GRNs, with the emphasis on the most

relevant formalisms covered in the literature from the 1960s. We give a general intro-

duction to the gene network modelling approaches, the main issues in this particular

context, such as the inherent noise in data, or the natural complexity of biological net-

works and their interactions. We present the modelling techniques used to achieve a

precise description of GRNs, as well as their features. We propose a classification of the

formalisms, regarding to their features, and we take the opportunity to propose a com-

parison of those formalisms with their extensions included. Numerous tools have been

developed, based on these formalisms, to work on the modelling of biological networks,

we present the most relevant ones, particularly the simulation and model-checking tools

used for the verification of models. At the end, we describe some relevant data exchange

formats used in those tools.

The third chapter introduces the constraint programming (CP) and constraint logic

programming (CLP) paradigm, and the techniques used for the solving of constraint

satisfaction problems (CSPs) in various fields, such as civil or mechanical engineering,

air traffic control and finance. We show how it can be used to bring satisfiable answers to

real world problems, as well as biological problems. We present its advantages compared

to other programming paradigms, especially for the modelling of particular classes of

problems. The main notions of CLP and the main techniques used by constraint solvers

are detailed. Additionally, those notions are illustrated with the solving of CSPs. Then

we present the Prolog programming language and some of its implementations dedicated

to constraint solving, for instance the SWI-Prolog and its CLP(FD) library, and we take

the opportunity to illustrate an example of CSP written in Prolog with the CLP(FD)

library. Finally, we explain the strengths of constraint logic programming languages
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in the context of the modelling of GRN, where their capabilities is a real advantage,

especially for solving problems with uncertain or unknown parameters, for instance the

study of the regulation phenomenons and interactions.

The last chapter presents BioNet, a support tool designed with the purpose of solving

issues related to the study and modelling of GRNs by using constraint solving techniques.

We describe the user requirements of a system with the aiming of helping the biologist

researcher at his work on GRNs. We present the model and user interface used in BioNet,

designed on the basis of the described user requirements. Its interesting features as well

as the possibilities offered by its parametrization are detailed. Similarly, the use of

BioNet is illustrated with the case of modelling the gene regulation in the lac operon,

where we take the opportunity to illustrate a particular scenario. As well, we criticize

the results obtained with this particular scenario. Then, the architecture of BioNet is

described, including the tools and technologies used for its building. Finally, we present

the limits of the tool and study some perspectives for the further improvements of

BioNet.

We refer the interested reader to some additional reviews on the existing formalisms,

such as [6, 7]. We also invite him to learn more about constraint logic programming, a

paradigm described by Jaffar and Lassez in [8, 9]. For instance, Kimbal Marriott gives

in [10] a good introduction to CP techniques used for the modelling of CSP. The most

popular logic programming language used to illustrate those notions is Prolog, which

has been used to design BioNet, via the SWI-Prolog implementation. In addition to

SWI-Prolog, there exist numerous implementations of the Prolog language, not covered

in this thesis, consequently we invite the interested reader to learn more about this

interesting language, and particularly the extensions with capabilities to solve CSPs.

Finally, the Prolog source code of BioNet is completely available in appendix A,

while additional parts of the implementation of server and user interface are shown to

illustrate some technologies used in the BioNet architecture.





Chapter 2

Genetics and Gene regulatory

networks

2.1 Introduction

Genetics is at its core the study of biological information with the emphasis set on

heredity, genes and genes variation in all living organisms, from bacteria to multicellular

animals and plants, which use large quantities of information in order to develop them-

selves, reproduce themselves and survive in their environments. Understanding how the

information of genes is inherited from a parent organism to his descendants, what are

the function and behaviour of genes as well as understanding how the organisms use this

information of genes during their lifetime has become a field of active research. This

chapter is an introduction to what is part of gene regulation networks, starting with

elucidation of basic elements of living organisms, describing then structure and function

of DNA, RNA and finally introducing mechanisms of gene expression and composition

of gene regulatory networks.

2.2 From atoms to complex organisms

As illustrated in Figure 2.1 page 7, life is organized from simple atoms to complex

organisms, where atoms are the most fundamental unit of matter which join together into

clusters called molecules. Larger molecules are called macromolecules or supermolecules,

and biology refers to macromolecules as the four types of molecules comprising any living

thing, for instance these four types are lipids, proteins, nucleic acids and carbohydrates.

Macromolecules are made of long chains of individual molecules linked together. In

5



Chapter 2. Genetics and Gene regulatory networks 6

the case of nucleic acids, these chained molecules are sort of building blocks of DNA,

commonly called nucleotides. In the case of proteins, these molecules are amino acids

(AAs for short).

Biological molecules in turn assemble into tiny structures called organelles, which

are specialized subunits having a specific function in a cell. The cell is the basic unit

of structure and function of living things, and some organisms are composed of a single

cell, like bacteria. Many cells play only a specific role in an organism. Examples are

blood cells or nerve cells. The living beings in turn are divided in two great families,

revealing the existence of two levels of cellular organization.

Prokaryotes prokaryotes are single-cell organisms characterized by the lack of a nu-

cleus and membrane-bound organelles. They are small and reproduce asexually,

by binary fission or budding, and are present in nearly all environments, even un-

der hard conditions such as extreme temperatures. Examples of prokaryotes are

bacteria and archaea.

Eukaryotes eukaryotes are usually multicellular organisms, with a true nucleus and

organelles within membranes. They are larger than prokaryotic cells. Cell division

in eukaryotes can be either sexual or asexual, and involve processes of meiosis or

mitosis. In meiosis, the produced cell is the result of the recombination of two

parental chromosomes. In mitosis, a cell divides to produce two identical cells.

In comparison, with prokaryotic cells who where the first to arise in the process

of biological evolution, eukaryotes are much larger and complex. Examples of

eukaryotes are animals, plants and fungi.

Cells in complex multicellular organisms are in turn organized in three levels : the

most basic level is that of tissues which are groups of similar cells that act as functional

units. Examples are muscle or root hair tissue. Tissues in turn join together into organs,

body structures composed of different tissues joined in a structural and functional unit

that plays a particular role. Examples are brain, skin, stomach and heart. The last level

is when two or more organs function together to form an organ system, alternatively

called biological system or body system. Examples are the digestive, immune, nervous

and reproductive systems.

Finally, organ systems assemble into organisms, which are continuous living systems.

An organism can also be comprised of only a single cell such as bacteria, and may be

either a prokaryote or an eukaryote. Examples of organisms are human, bacteria and

plant.
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Figure 2.1: Life organization from atoms to organisms - From Raven et al. [11][p. 2].

2.3 DNAs and RNAs

2.3.1 Role

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are nucleic acids made

of long chains of individual molecules linked together, which is also the case for other

macromolecules present in the organism. According to what Francis Crick suggested in

1956, the function of DNA is to store the genetic information (or genetic material) in its

sequence of nucleotide bases. Then the DNA pass it (during the transcription process) to

RNA which has the function of reading, decoding and use this information. This is done

via a translation process, in which the information from the sequence of nucleotides is

translated into a sequence of amino acids (AAs). Then these AAs are joined together to

make a full protein chain. This is also called protein synthesis and is commonly referred

to as the central dogma of molecular biology, as illustrated in Figure 2.2 page 8. In

addition to its previously described role, DNA is also involved in the replication process.

In this process, a copy of DNA is made during the cell-division cycle, a vital process

enabling cells of the organism, like hair, skin and blood cells, to be renewed. Concretely,

cells are renewed by division into new daughter cells, as previously described as meiosis

or mitosis in section 2.2 page 5. RNA plays an important role in protein synthesis. More

specifically, three different types of RNA are involved in cooperation to ribosomes. All

of them being described on page 10, we first detail the structure of RNA and DNA.



Chapter 2. Genetics and Gene regulatory networks 8

DNA RNA PROTEIN
Transcription

Replication

Translation

Figure 2.2: The central dogma in molecular biology

2.3.2 Structure

DNA and RNA are similar from the structural point of view. A DNA sequence is

made up of two strands which are complementary (see Figure 2.3 page 8) to one another

and assembled in a double helical structure, as stated by James D. Watson and Francis

Crick by 1953. At the opposite, a RNA sequence is single-stranded. Each single strand

of DNA is made of a linear sequence of – possibly hundreds of millions of – nucleotides.

Four different types of nucleotides are found in DNA. They are represented by simple

letters : adenine (A), thymine (T), guanine (G) and cytosine (C). RNA is also made of

four types of nucleotides where the thymine (T) is replaced by uracil (U). These symbols

(nucleotides and their letters) belong to a sort of alphabet which is called the genetic

code. The complementary property of the two nucleotide strands means that each A,

C, G, T in one strand is paired with a T, G, C or A respectively in the other strand, as

illustrated in Figure 2.4 page 8. From another point of view, if we know the sequence of

a strand, we can deduce the sequence of the other one. This complementary property

is crucial in the process of DNA synthesis. As a result, the pairing aspect introduces a

redundancy property and allows the cell to rebuild the entire genome, on the basis of a

single strand.

A strand of DNA : ...T-A-T-G-C-A-G . . .
Its complement : ...A-T-A-C-G-T-C . . .

Figure 2.3: Example of two complementary DNA strands

Figure 2.4: Single-stranded (left) and double stranded (right) sequences - From [12][p.
231].

The length of a DNA sequence (i.e. sequence of nucleotides) is measured in terms of

bases (b) in single stranded DNA and, in the case of double stranded DNAs, in terms

of pairs of nucleotides or base pairs (bp). 1,000 base pairs (1,000 bp or 1 Kb) equal
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a kilobase and 1,000 Kb compose a megabase (1,000,000 bp or 1 Mb). The sizes of

genomes of different organisms range from 580 Kb for the smallest bacterial genome to

megabases, and for instance the human genome is composed of about 3,000 Mb. The

large size of some genomes is not generally due to a great number of genes but especially

to a great amount of repetitive elements in the DNA. One estimates that only 5% of

the human genome is functional (codes for protein), while at least 50% is formed by

repetitive elements.

2.4 Proteins

Proteins can serve various roles related to the development and function of an or-

ganism : they allow building the structures and to perform the metabolic reactions

necessary for life. In addition, they participate in the regulation as transcription fac-

tors (see section 2.11.1 page20). As described in subsection 2.3.1 page 7, proteins are

macromolecules made by chaining together simpler molecules known as amino acids or

AAs. A typical protein contains 200-300 AAs but there exist proteins with less than

30-40 AAs as well as proteins having up to ten thousands AAs.

The function of the protein into a living cell or organism is determined by the exact

types and order of chained amino acids which compose it, and this order determines

also the three dimensional structure of the protein [13, p. 3]. Small errors in a amino

acid (AA) chain can result in different shape and alter protein performance while major

errors can annihilate its function. Only 20 distinct amino acids types are involved in the

composition of proteins, as shown in Table 2.1 page 10. As a consequence if a protein

is formed of 400 chained amino acids, 20400 different proteins can be made. This is

actually more than the number of existing proteins on the earth. Once an amino acid

sequence is known, it can be stored in shared sequence databases to help to learn more

information on the protein function or predict the protein 3D structure from the amino

acid sequence.

For example, a complete amino acid sequence shown in Figure 2.5 page 10 is that

of iron/manganese Superoxide dismutase from the organism Haemophilus influenzae. It

is a powerful antioxidant produced by the cells in the living organisms. Its function is

to destroy superoxide anion radicals which are created within the cells and are toxic for

the system. There exist 4 variants depending on the metal contained in the molecule :

iron, manganese, copper or zinc.

As described sooner in section 2.4 page 9, the amino acid sequence determines the

3D structure of the protein, and this structure plays an important role in the function of
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A Alanine L Leucine
R Arginine K Lysine
N Asparagine M Methionine
D Aspartic acid F Phenylalanine
C Cysteine P Proline
Q Glutamine S Serine
E Glutamic acid T Threonine
G Glycine W Tryptophan
H Histidine Y Tyrosine
I Isoleucine V Valine

Table 2.1: List of the 20 amino acids with their symbols

MSYTLPELGYAYNALEPHFDAQTMEIHHSKHHQAYVNNANAALEGLPAEL

VEMYPGHLISNLDKIPAEKRGALRNNAGGHTNHSLFWKSLKKGTTLQGAL

KDAIERDFGSVDAFKAEFEKAAATRFGSGWAWLVLTAEGKLAVVSTANQD

NPLMGKEVAGCEGFPLLGLDVWEHAYYLKFQNRRPDYIKEFWNVVNWDFV

AERFEQKTAHSNCAK

Figure 2.5: Example of sequence of 215 amino acids is that of iron/manganese Su-
peroxide dismutase. From http://www.uniprot.org/uniprot/P43725.

the protein. In Figure 2.6 page 10 is shown the 3D structure of the superoxide dismutase

whose the amino acid sequence has been given.

Figure 2.6: Superoxide dismutase 3D Structure - From http://swissmodel.expasy.

org/repository/smr.php?sptr_ac=P43725&csm=80FAC9F1C0D59D25

2.5 Ribosomes and the genetic code

The ribosomes are the cellular “machines” driving protein synthesis by taking a chain

of nucleotides (RNA) and translating it into a chain of amino acids (or polypeptide)

http://www.uniprot.org/uniprot/P43725
http://swissmodel.expasy.org/repository/smr.php?sptr_ac=P43725&csm=80FAC9F1C0D59D25
http://swissmodel.expasy.org/repository/smr.php?sptr_ac=P43725&csm=80FAC9F1C0D59D25
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which later folds into a protein. Since the ribosome cannot directly work from the

double stranded DNA sequence (found in chromosomes), the cell needs to create a copy

of the DNA with which the ribosome can work. This is called RNA. Different types

of RNA are involved : first the DNA encoding genes are transcribed by the cell into

messenger RNA (mRNA), before any protein is made. In turn the mRNA carries the

genetic information from DNA to the cell’s ribosomes which receives from the mRNA

molecule the instructions for protein synthesis. The mRNA sequence is a copy of the

DNA sequence, with one-to-one matching, except that RNA uses the nucleotide uracil

(U) in place of thymine (T) as seen in subsection 2.3.2 page 8. Last RNA types are

the transfer RNA (tRNA) that carry appropriate amino acids into the ribosome for

inclusion in the new protein, and ribosomal RNA (rRNA) which are the main molecules

composing the ribosomes. Figure 2.7 page 11 illustrates the relation of ribosome and

RNA from transcription to translation.

Figure 2.7: Roles of Ribosome and RNA as suggested by the central dogma - From
[14][chap. 1][p. 17].

This translation depends on a dictionary known as the genetic code which was

“cracked” in the 1960s by combined efforts of Marshall W. Nirenberg, Philip Leder

and Har Gobind Khorana. It is a conversion table which is essentially the same for

all living organisms, which describes how to translate a nucleotide sequence to AAs.

However, it is not possible to build a one-to-one mapping between nucleotide and AA

since RNA has only four distinct letter symbols (A C G U), while 20 different sorts of

AAs are used in protein synthesis. The genetic code as illustrated in Figure 2.8 page 12
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consists in a conversion table from codons (triplets of nucleotides) to the AAs within a

polypeptide sequence.

Figure 2.8: Genetic code - From [14]

Using the four different nucleotides, sets of 2 nucleotides could code 42 = 16 amino

acids, which is not sufficient to code all the AAs. Sets of 3 nucleotides could code 43 = 64

amino acids, which is more than enough. Since there are only 20 AAs, the genetic code is

redundant and as a consequence two distinct sets of three nucleotides can code the same

AA. For example, both AAG and AAA code the amino acid Lysine. Finally, three of

the codons are stop codons and mark the end of any particular amino acid chain. They

are, for instance, UAA, UAG and UGA as shown in Figure 2.8 page 12. Additionally,

Figure 2.9 page 13 states how sets of three nucleotides bases (also called triplets) are

translated to AAs.

2.6 Genome, chromosomes and genes

The genome of an organism comprises all chromosomes and DNA sequences present

in this organism. It is the provider of the complete hereditary information present in an

organism and its individual cells. Functionally the genome is divided into genes while

structurally it is divided into different DNA molecules or chromosomes. Chromosomes

in turn are large structures within living cells, made of a long stretch (segment) of DNA

that represents many genes which associate to DNA. They are responsible for storage,

duplication, expression and evolution of DNA. Different organisms have different number
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Figure 2.9: From nucleotides bases to amino acids [15]

of chromosomes and genes. For example it was discovered by 1956 that the human cells

contain 23 pairs of chromosomes, for a total of 46. Usually (there are exceptions),

the complexity of an organism is directly related to the number of chromosomes which

compose it. Each chromosome found in the genome may contain numerous genes, but the

number differs between eukaryotes and prokaryotes. Eukaryotes have usually more genes

spread across many chromosomes while prokaryotes have fewer genes, located on a single

chromosome. For example the genome of a type of bacteria such as the mycoplasma

contains about 500 genes while the human genome may contain up to 20,000 to 25,000

genes 1 and the genome for rice may contain as many as 50,000 to 60,000. Gene and

chromosome are illustrated in Figure 2.10 page 14.

1(20,000 - 30.000 according to [13, p. 3])
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Figure 2.10: Gene and chromosome - From http://smart-
therapeutics.com/Technology/RNAs-Role-in-Protein-Synthesi

2.7 Genes

In the 1860s Gregor Mendel, father of modern genetics, studied how traits are in-

herited between generations, and experimented from his studies on pea plants that

organisms inherit traits by a “factor” which later would be referred to as a gene. His

studies revealed the basic principles of inheritance, and have been later rediscovered in

the 1900s and integrated in other works, as those of Thomas Hunt Morgan on the role

of chromosomes in the inheritance mechanism.

A gene may be defined as a functional unit, structurally an individual segment of

DNA, which contains the instructions to produce a functional product. In most genes,

the functional product is a protein with a specific function, i.e., a polypeptide which is a

linear sequence of amino acids (AAs) that folds into units that constitute proteins.

Similarities exist between the genes of different living organisms. For instance, [13,

p. 5] reports that a gene with a specific role in an organism that would be placed in

the genome of another organism would function as normally as in the original organism,

even if these organisms were from different species.

Random changes that happen in genes are also known as “mutations” and may result

in the creation of new alleles and new traits. Traits are the distinct characteristics of an

organism which may have been inherited or determined by the environment. Examples

of physical traits in the human being are eye colour, hair, texture, height as well as

blood types or resistance to diseases and drugs. The information which may vary from

an organism to another resides in particular genes and different copies of a gene do not

necessarily give the same instructions (for coding proteins). Consequently, a gene may

have multiple/alternative forms. Each one is called an allele (or allel), a name shortening

the term allelomorph (“other form”).
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The study of genes and protein synthesis is at the heart of the study of gene regulation

networks. The purpose of their study is to understand and elucidate the processes

involved in the production of specific gene products in reaction to environmental stimuli,

since those processes are known to be regulated and play a major role in resistance to

disease as well as the evolution of organisms. Their understanding requires first a deep

understanding of the interactions between genes and proteins. The following section 2.8

page 15, introduces to the DNA sequencing, which is required to the study of genes

and proteins. Then, the focus will be set in the next sections on the gene expression

(section 2.9 page 16) and gene regulation processes (section 2.11 page 18), which are at

the heart of gene regulation networks.

2.8 DNA Sequencing

The discovery of the double helical structure of DNA in 1953 has paved the way

of the development of DNA sequencing techniques. Initial DNA sequencing methods

were published and developed in the 1970s. The first full DNA genome to be sequenced

is that of the bacteriophage φX174 in 1977. DNA sequencing has many uses, such

as determining the sequence of individual genes, operons, full chromosomes and entire

genomes. In addition, it can be used for other tasks such as :

• identifying new genes and associations with diseases and potential drug targets.

• studying what and how proteins are made.

• understanding how different organisms evolve and how they are related.

• identifying species present in a body, water, dirt, debris filtered from the air or

organisms.

• detecting the presence of known genes for medical purposes and parental/heredity

testing.

The frequent progress in the development of new DNA sequencing techniques as well

as the quick evolution of computers have had a huge impact on the understanding of

genetics. They have allowed scientists to exchange large amounts of information and

studies on genetics, which in turn has constantly increased the progress in this field. In

addition, the exchange of sequenced data has made possible synthesizing an exact copy

of all or a portion of a DNA molecule from another place in the world [chap. 1.2 13, p.

2]. An historical example is that of Human Genome Project (HGP), an international

scientific research project, publicly funded, which proceeded to completely sequence the

human genome and which is still known as the largest collaborative biological project

in the world. It started in the 1990s to achieve his quest by 2003 with the final se-

quencing mapping of the human genome. It contributed in addition to the sequencing
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of bacterium Escherichia coli (shortened E.coli) as well as different plants and animals.

It has been found that the human genome contains 20,000-30,000 genes. In compari-

son, other organisms contain about to 500 genes for bacteria Mycoplasma genitalium

and 14,000-19,000 for nematodes (roundworms) and fruit flies. [chap. 6.6 16, p. 122].

Examples of benefits due to the HGP include a better understanding of diseases in par-

ticular different forms of cancer and a better design of medications, in addition to a

deeper understanding of their effects. [13, p. 8] [17][p. 6] [18].

2.9 Gene expression

Remember the central dogma (see Figure 2.2 page 8). It states how the genetic in-

formation flows from DNA via RNA in order to synthesize proteins with precise role and

structure. However, the protein synthesis does not happen regularly in cells but occurs

only when genes are activated by some stimuli. It belongs to a more general multi-step

process called gene expression that proceeds from transcription to translation. It plays

a role in driving the activity of proteins, by controlling the level of genes transcription

or the number of mRNA transcripts available for translation. Gene expression may re-

sult in a product (also called a gene product), either RNA or a protein. This product

affects the characteristics of cells and organisms in addition to expression of other genes

[19]. Gene expression levels can be altered by cells in response to different conditions,

as the environmental stresses/stimuli. This is part of the gene regulation process (cov-

ered in section 2.11 page 18). Finally, details of gene expression mechanisms may vary

between prokaryotes and eukaryotes. For example eukaryotic genes can be divided in

nucleotide sequences called exons and introns (sometimes also referred to as intervening

sequences) at the opposite of prokaryotes. Exons are parts that are expressed through

transcription and translation, as RNA products. They are coding regions, i.e., they

specify (or “code”) for proteins. At the opposite introns are not expressed but rather

removed by RNA splicing before the final RNA product is made, and they are usually

not considered as non-coding regions since there be not evidence they code for proteins

or enzymes. Finally, exons are joined together as parts of the mature mRNA product

whereas introns are absent, as illustrated in Figure 2.11 page 17. The role of introns

is to separate coding regions (extrons) of the gene and allow different combinations of

extrons to be joined together. As a consequence, a gene can code more than one protein.

This principle is also known as alternative splicing. At the opposite prokaryotic genes

splice rarely and mainly non coding RNAs. Another difference is that of transcription

and translation processes which occur in the same cellular compartments in eukaryotes,

where transcription is often coupled with translation. At the opposite of prokaryotes

where transcription and translation occur respectively in the nucleus and the cytoplasm,
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as a consequence the transcription and translation in prokaryotes are separated. Other

differences exist but are not covered in this thesis. The interested reader can learn more

about them from [13][p. 272].

Figure 2.11: The process of protein synthesis - From
http://www.bbc.co.uk/education/guides/zgrccdm/revision/2

2.10 Data and analysis of Gene expression

A major step in measuring gene expression has been the introduction of DNA mi-

croarrays, also called DNA chips. They are formed of microscopic DNA spots and are

used to measure expression levels of mRNA transcripts, helping to determine which

genes are activated or repressed in different cells under specific conditions and at differ-

ent times. An example of microchip is illustrated in Figure 2.12 page 18.

The DNA microarrays are capable of measuring the difference in expression of large

number of genes, even the complete genome of an organism, at the same time. As a

consequence it is possible to achieve a better understanding with the comparison of mul-

tiple experiments, and by comparing differences between observations and predictions.

Analysing the expression levels help scientists to identify the relations between genes at

a functional level. For example genes having similar expression profiles often share com-

mon functions. Gene expression data are usually expressed by a matrix of continuous
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Figure 2.12: Schematic example of microchip - From Hartwell et al. [13][p. 9].

expression levels where rows are genes and columns are the different experiments ordered

chronologically starting from left. An example of gene expression matrix is illustrated

in Figure 2.2 page 18.

Exp1 Exp2 Exp3 . . . Expm
Gene1 0.2 0.3 0.42 . . . 0.6
Gene2 1.4 1.2 0.98 . . .
Gene3 -0.1 0.4 -1.0 . . .
...

...
...

...
. . .

Genen

Table 2.2: Example of gene expression matrix (Inspired by [7])

Gene expression data are used in several methods related to the identification of gene

networks [7], some examples are given in the Chapter 3, section 3.3 page 36.

2.11 Gene regulation

The gene regulation, also referred to as regulation of gene expression, is “the phe-

nomenon in which levels of gene expression can vary under certain conditions” [12, p.

G-7]. For instance the environment changes with regard to temperature and available

nutrients, an example being the control of insulin expression that regulates the levels of

glucose in blood. The phenomenon of gene regulation refers to control of some processes

at the cellular level. It is essential for viruses, eukaryotes and prokaryotes and ensures

the adaptability of an organism to its environment, as well as the cellular differentia-

tion, by which a cell can turn in a more specialized type and differentiate from the other

similar or parental cells. Examples of such processes are cell division, and production

of proteins in response to certain environmental stimuli/stresses. It also includes sev-

eral mechanisms used by cells to increase or decrease the production of gene products.
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The main part of gene regulation occurs during the DNA-RNA transcription steps re-

ferred as transcriptional regulation. Gene expression is also regulated in other stages as

post-transcriptional, translational and post-translational regulation. Among those most

well known and understood are transcriptional and translational regulation. They are

relatively slow processes that could take minutes or even hours to proceed, whereas

post-translational regulation takes only a few seconds to take effect. Regarding their

function, transcriptional regulation refers to the control of the rate of transcription. It

controls how many copies of RNA are transcribed and executes a temporal control over

the genes transcription so that it occurs only at proper times and in proper amounts.

Translational regulation refers to the control of the levels of protein synthesized from its

mRNA. Finally, post-translational regulation refers to the functional control of proteins

that are already present in the cell. The transcriptional regulation process is described

further in subsection 2.11.1 page 20.

Most of the cells in a multicellular organism contain the same genetic material but

may look different because of gene regulation. The genes expressed in one nerve cell for

instance are not expressed in the muscle cells, and vice versa. Genes can be classed in

different groups depending on whether they are regulated or not. Some examples are :

Constitutive genes Most of the genes are usually regulated but exceptions exist like

unregulated genes which are part of the class of constitutive genes – they encode

proteins which are permanently needed for the survival of the bacterium, and

consequently does not need regulation.

Facultative genes At the opposite of constitutive genes are facultative genes. They

are transcribed only when needed, which means they are regulated in response

to environmental stimuli/stresses so that the cells can synthesize only required

proteins, at proper times and in proper amounts. This is a key benefit of gene

regulation, since it avoids the waste of a valuable energy.

Housekeeping genes Housekeeping genes are constitutive genes that code for pro-

teins constantly required by the cell. As a consequence, they are essential and

transcribed at a constant level under any conditions. Example is Glyceraldehyde-

3-phosphate dehydrogenase (GAPDH).

Inducible genes Inducible genes are genes whose expression can be either dependent

on environmental stresses or time-dependent when it does not occur any time in

the complete cell cycle.

As with gene expression, differences can be observed between gene regulation in eu-

karyotes and prokaryotes even if in both cases cells need to adapt to changes in their
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environment, an example being the ability of humans to develop a tan in order to pro-

tect the cells of the skin against damages caused by UV rays. Finally, some genes are

expressed during the development stage while others are expressed when the organism

is ageing to adult [7][chap. 27.2].

The following sections detail first the process of transcriptional regulation which is

one of the most well known and understood regulation process, and then the function of

gene regulatory network (GRN) to study the machinery joining the elements involved

in gene regulation.

The following subsection 2.11.2 (page 20) and subsection 2.11.1 (page 21) introduce

the machinery joining the elements involved in gene regulation. This machinery is com-

monly referred to as gene regulatory networks or transcriptional regulation networks.

Finally, the subsection 2.11.3 (page 24) gives an example of regulation for the case of

the lac operon.

2.11.1 Transcriptional regulation

The transcription of genes depends on transcription factor (TFs) called either acti-

vators or repressors. They are regulatory proteins present in a gene, working alone or

in cooperation with other proteins, that exert on transcription process either positively

or negatively depending on the type of TF. Those positive or negative controls are also

referred to as respectively up-regulation and down-regulation. Down-regulation is the

process by which a cell decreases the amount of a cellular component, such as RNAs

or protein, in response to environmental stimuli. At the opposite up-regulation is the

process by which this quantity is increased by the cell. In order to exert their positive

or negative control, TFs bind to specific regions of DNA adjacent to the genes they

regulate. Examples of such regions are promoters or enhancers.

Promoter A promoter is a particular region of DNA that initiates transcription of a

particular gene.

Enhancer An enhancer is a particular DNA sequence that can be bound to activators

to increase the level of transcription of a gene or multiple genes by activating the

promoter region. It functions as a “turn on” switch of gene expression.

By binding to promoter, a repressor inhibits transcription while an activator increases

the rate of transcription, thereby having respectively a positive or negative impact on

the rate of protein synthesis. Only some of all genes act as activators or inhibitors. Their

identification is an important and complex task. Inhibitors are sort of biochemical signals
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which prevent the expression of a particular gene even in the presence of an appropriate

activator. The functions of regulatory proteins inhibitors and activators are controlled

by small effector modules that either cause the transcription to increase or decrease.

Examples are the inducer that increases transcription, inhibitor that prevents activator

from binding to DNA and corepressor that binds to a repressor protein. Both inhibitor

and corepressor decrease the rate of transcription. Other proteins which also participate

in gene regulation without binding to DNA are excluded from the class of transcription

factors. Example is the coactivator which is a protein that plays a role in the activation

of transcription.

Other notions are involved in gene regulation. Among those are the following :

Operon The operon (from the French opérer, which means to operate) is a functional

unit of DNA composed of two or more genes (also referred to as a cluster of genes)

and is under transcriptional control of a single promoter. All genes which form this

operon are either transcribed together or not at all. In subsection 2.11.3 page 24,

an example of operon is described.

Silencer At the opposite of the enhancer, the silencer functions as a “turn off” switch

that decreases the level of transcription.

Insulator The insulator is a segment of DNA that blocks the interaction between an

enhancer and a promoter, and consequently determines the set of genes on which

an enhancer has effect.

Operator A segment of DNA to which a transcription factor binds to regulate gene

expression. Usually, this transcription factor is a repressor that binds to the op-

erator to prevent transcription. An example of operator is described further in

subsection 2.11.3 page 24 with the example of regulation in the lac operon.

2.11.2 Gene regulatory networks

A gene regulatory network (GRN) is the machinery joining the elements involved in

gene regulation. It is made of the DNA segments which interact with each other and

control the gene expression levels of mRNA and proteins. The structure of GRN has

an effect on how an organism, even as simple as a bacterium, can adapt to a frequently

changing environment (varying temperature, nutrients, and other factors) anywhere on

the earth. The ability to control the response to environmental changes is the main

function of regulatory networks in a bacterium. But all living organisms have, as a key

property, the ability to grow by using sources of energy optimally. With the ability to
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influence how genes behave, GRNs enable complex and rapid changes in the process of

organisms evolution. An example of some change illustrated by Figure 2.13 page 22 is

the way the two-winged fly evolved from a four-winged ancestor, which was caused the

rewiring of the GRN.

Figure 2.13: Pictures of two-winged fly (left) and four-winged fly (right) - From [13][p.
7].

In appearance a GRN can be very complex and interactions can occur at different

levels. It includes that metabolites interactions, at the lowest level, the proteins in-

teractions at a higher level and finally genes interactions at highest level. In addition,

complexity is added with possible interactions between the different components of those

levels. The set of possible interactions between components is illustrated in Figure 2.14

page 22.

Figure 2.14: Examples of GRNs : Overall of interactions in gene regulatory networks
- From [7]
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A concrete example is illustrated in Figure 2.15 page 23 where protein-protein inter-

actions in yeast are shown.

Figure 2.15: Interactions in yeast (especially Saccharomyces cerevisiae) - From [20]

Finally, Figure 2.16 page 23 illustrates how relatively complex a complete network

can be, with the example of the interactions network of genes related to invasivity. There

exist even more complex networks.

Figure 2.16: Examples of GRNs : The nVasion-network [21]
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In addition to gene regulatory networks, biologists also actively study other biological

gene networks. They include the followings :

Protein−protein interaction networks a protein−protein interaction network (PPI)

comprises the physical interactions between two or more proteins as a result of bio-

chemical events and/or electrostatic forces. The PPIs are regulated by multiple

stimuli. Examples are the presence and/or concentration of other proteins and

nucleic acids.

Metabolic networks a metabolic network comprises the biochemical reactions in a

cell. They consist of metabolic pathways, and the regulation processes that con-

trol these reactions. Metabolic pathways include the chemical reactions that keep

the living system in homeostasis, i.e., in a stable state. The components of a

metabolic networks are the enzymes that catalyse (accelerate) the chemical reac-

tions and substrates, while the relations between those components are metabolic

interactions.

Cell signalling networks a cell signalling network is a relatively complex system gov-

erning the basic functions of the system, such as the development, immunity and

repair activities. Those networks consist in biochemical reactions in a cell, where

particular proteins known as receptors react to external stimuli, such as presence

of particular hormones in the organism. Practically, the cells increase or decrease

their sensitivity to particular hormones by increasing or decreasing the number of

receptors at the cell’s surface. At the opposite, hormones themselves can cause

the cell to down-regulate or up-regulate. The components of these networks are

the proteins.

2.11.3 Gene regulation in the lac operon

In the 1960s, François Jacob and Jacques Monod discovered the lac operon (lactose

operon) in E. coli bacterium. This bacterium inhabits the intestinal tracts of many

animals, including mammals. The diet of E. coli depends upon what the host animal is

eating. Even if its preferred food is glucose, other foods can be used, but glucose will

be preferred.

The lac operon is designed in E. coli for the digestion of lactose. Structurally, the

regulatory system of lac operon consists of a promoter, an operator (which has the

role to turn on or off the operon) in the regulatory region, a repressor lacI, and last

three different and adjacent structural genes, namely lacZ, lacY and lacA, which code

for the proteins involved in the digestion of disaccharide lactose. For instance, the
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lacZ encodes the β-galactosidase (LacZ), and the lacY gene encodes the β-galactoside

permease (LacY) which enables the entry of lactose from the medium into the cell. Both

are enzymes necessary for the uptake and utilization of lactose. Finally, the lacA gene

encodes the thiogalactoside (LacA), but its role is still uncertain.

The structure of the lac operon is illustrated in Figure 2.17 page 25.

Figure 2.17: Structure of the lac operon

In the details, the three structural genes of lac operon are transcribed as a single

mRNA in reaction to glucose/lactose ratio and this mRNA is translated into three

proteins, which are required to digest of disaccharide lactose.

Gene regulation in the lac operon was the first GRN completely understood. It

comprises numerous mechanisms, related to presence/absence of lactose and glucose.

First, we describe the mechanisms related to the lactose :

1. The structural genes of the lac operon are regulated by a repressor, the protein

LacI, when it is activated. The protein LacI is encoded by the regulatory gene

lacI.

2. In the absence of lactose, a by-product of the lactose metabolism, the allolactose,

binds to the lac repressor and activates it. In turn, the repressor inhibits the

action of the operon. Practically, the operator is switched to off by the repressor

which is physically fixed to it. Consequently, this binding stops the transcription

of genes into mRNA. It is an advantage since the cell avoids to waste energy in

the production of enzymes for the lactose metabolism.

3. At the opposite, in the presence of lactose, the repressor is inactivated, conse-

quently the operator is unblocked and the genes of the operon are able to code

again for enzymes.

This sort of regulation is referred to as inducible regulation, because the genes of operon

are turned off by a regulatory factor until it interacts with an environmental stimulus

that stops the repression.
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The second mechanism involved is related to the presence/absence of glucose. It can

be described as follows :

1. In the presence of glucose, even when both glucose and lactose are present, the

bacterium will preferably use glucose as the carbon source to produce energy.

Consequently, the presence of lactose is not sufficient for induction of the lac

operon and the use of lactose is prevented until the concentration of glucose is

very low.

2. In addition, the catabolite activator protein (CAP), which is regulated by cyclic

adenosine monophosphate, or cyclic AMP (cAMP), plays also an important role.

The concentration of cAMP decreases when glucose is used as carbon source.

But when glucose is not available, the concentration of cAMP increases, and this

change of concentration level serves as a signal for the bacterium that glucose is

absent. Consequently, the bacterium switches to lactose metabolism. It is done

by the action of binding of cAMP to CAP, which form a cAMP-CAP complex.

Then, when this cAMP-CAP complex binds the promoter region, it initiates the

transcription of the lac structural genes. Without the binding of the activator

CAP, the transcription will perform at a low level.

3. Finally, when glucose is present and cAMP concentration level is low in the cell,

it has the effect to turn off the lac operon.

The above description abstracts some details to simplify the understanding of reg-

ulation dynamics, but is sufficient to cover the global picture. A formal description of

this GRN, based on the above description, is proposed in Chapter 3 page 42.

2.12 Databases of biological information

Sequencing projects as the HGP have contributed to collect important quantities

of data and permitted to discover numerous genes and regulatory sites. The collected

data are usually shared through databases. Example is the KEGG Pathway database

(KEGG) database [22, 23] which contains information on structure and function of

about 15,346,261 genes and about 2000 species [24, 25]. There exist plenty of specialized

biological databases that help to share and collect the important quantities of data, from

microarrays database, interactions data to metabolic pathways as well as description of

genes and gene products. Examples are Stanford Microarray Database [26], EcoCyc

[27] (metabolic pathways, transcriptional regulation of E. coli bacterium), SGD [28],

YeastNet [29] (a probabilistic functional gene network for baker’s yeast), BioGRID [30]
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(protein-protein interactions), BIND [31] and DIP [32] (protein interactions), GO [33]

for a consistent definition of gene products and ERGO [34]. Some tools aggregate the

data of all these interaction databases, as for example ConsensusPathDB [35, 36] which

aggregates the data of 32 public resources, including binary and complex protein-protein,

genetic, metabolism, signaling, gene regulation and drug-target interaction in humans.

All those biological networks can be described via graph-theorical approaches or similar,

as those covered further in the Chapter 3 page 29. Finally, biologists benefit from many

tools to help them visualize data from those databases, as biological networks. Examples

of the well known tools Cytoscape [37], VisANT [38], Pathway Studio [39], GENeVis [40],

Patika [41] and Proviz [42] (dedicated to the visualization of protein–protein interaction

networks). We refer the reader to [43] or [44] for additional information.

2.13 Conclusion

The material in this chapter was an introduction to the field of genetics, with the

emphasis set on GRN and the processes known as gene expression and gene regulation.

However, it does not cover all the details and interesting concepts of genetics such as the

structures and behaviours of genes, DNAs, RNAs, the ribosomes machines, and more

generally all the interesting biochemical behaviours studied by scientists. A lot more

could have been said on the details of gene expression and gene regulation mechanisms

from the biologist point of view, but our interest in this thesis is focused on the general

mechanisms. The reader could have been interested by the details and we refer it to

[13, 16] for more information. In addition, the amount of information provided by the

literature is too large, often complex, and as a consequence a lot of information and

details have been omitted. For example, the introduction section for the DNAs and

RNAs at page 7 did not mention the RNA World hypothesis. This hypothesis suggests

that RNA was the first information processing molecule to appear, even before proteins

and DNA, as reported in [13][p. 4], and this hypothesis is believed by many biologists.

Also, more could be said about gene regulation which in details comprises numerous

mechanisms and interactions at different levels, and which are only covered from the

surface in this chapter. Nothing is said neither about the role of RNA Polymeraze, a

key enzyme that serves as initiator of the transcription in prokaryotes. As described

section 2.12 page 26, there exist many types of regulated biological networks, each one

covered with consequent literature, but since the current thesis has set the emphasis to

GRN, the details of other studied networks were not clarified. For the interested reader,

a summarized view of the history of genetics has been compiled in Table 2.3 page 28.
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Table 2.3: History of genetics

1868 · · · · · ·• Basic principles of inheritance are discovered by Gregor Mendel.

1910 · · · · · ·• Thomas Hunt Morgan shows that genes reside on chromosomes.

1923 · · · · · ·• Frederick Griffith discovered that DNA carries genes responsible
for pathogenicity..

1933 · · · · · ·• Jean Brachet is able to show that DNA is found in chromosomes
and that RNA is present in the cytoplasm of all cells.

1941 · · · · · ·• Edward Lawrie Tatum and George Wells Beadle show that genes
code for proteins; see the original central dogma of genetics.

1943 · · · · · ·• The Luria-Delbrück experiment demonstrated that mutation in
bacteria was random. .

1953 · · · · · ·• Discovery of the double helical structure of DNA by James D.
Watson and Francis Crick. .

1956 · · · · · ·• Joe Hin Tjio established the correct chromosome number in
humans to be 46.

1956 · · · · · ·• The central dogma of molecular biology is articulated for the first
time by Francis Crick..

1961-1967 · · · · · ·• The genetic code is cracked by combined efforts of Marshall W.
Nirenberg, Philip Leder and Har Gobind Khorana.

1972 · · · · · ·• The first sequence of a gene is determined, for instance the gene
for bacteriophage MS2.

1977 · · · · · ·•

DNA sequencing methods are developed independently by
Frederick Sanger, Allan Maxam and Walter Gilbert. The first full
DNA genome to be sequenced being that of the bacteriophage
φX174.

1980s · · · · · ·• Availability of complete genomes of small viruses, as the
Epstein-Barr virus in 1984.

1990 · · · · · ·• Starting of the Human Genome Project.

1998 · · · · · ·• First genome sequence for a multicellular eukaryote is released.

1995 · · · · · ·• Datum of first complete genome of a free living organism.

2003 · · · · · ·• Human Genome Project is completed : the human genome is
sequenced to a 99% accuracy.



Chapter 3

Formal methods for studying

gene regulatory networks

”All Models are wrong, but some are useful”. – George E. P. Box

3.1 Introduction

The study of a biological system is a complex task that requires a good understand-

ing of the system dynamics and the regulation processes. Biological networks usually

contain many components and interactions, and their descriptions evolve along with the

time. The existing knowledge on biological systems as well as the exchange of infor-

mation via biological databases, can help to build better descriptions of those systems.

However, it is crucial to have the ability to valid this complex knowledge by using

more precise descriptions, such as formal models. This chapter is an introduction to

modelling techniques and describes some existing formal models used in the study of

biological systems.

3.2 Gene networks modelling

The ultimate goal of the genomic revolution is the understanding the genetic

causes behind phenotypic characteristics of organisms. [...] The availability

of genome-wide gene expression technologies has made at least a part of

this goal closer, that of identifying the interactions between genes in a living

system, or gene networks [chap. 27 7, pp. 27-1]

29
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Interactions between genes, proteins and metabolites are usually described visually

with a graph of nodes connected by edges. These graphs carry various names as gene

networks (GNs) or gene regulatory networks (GRNs) in the literature.

These GNs are usually constructed by observing how genes, proteins and metabo-

lites interact with each other during particular experiments. The observed behaviours

are analysed and collected using Microarray technology to measure the values of gene

expressions, also named gene expression levels. From these measures, a network can be

inferred following a multi-step process depending on the model in which these microar-

ray data are used. GNs are helpful for various uses in modelling the different regulated

biological systems. From understanding which genes are involved in regulatory interac-

tions, how they are involved, how they cooperate and behave when facing to changes in

external environment. Their study is a challenge since large number of components are

involved in regulation and these components as well as the interactions between them

can be very complex. But it is crucial in the elucidation of the nature and organization

of interactions involved in biological organisms.

A path to achieve this elucidation is by experimenting and using formal methods and

by creating new models of the studied biological systems as well as improving the existing

ones. One usually starts by measuring the states (gene expression levels) through Mi-

croarray technology. Once the data are collected, one can observe or at least assume the

presence of genes interactions by using various analysis techniques applied to the data.

In addition to these interactions, the trajectory can be determined from the data. The

trajectory is the evolution of gene expression through a succession of states transitions,

i.e., the succession of observable states for a gene at different times of an experiment.

The last step is to infer a gene network model from these expression data, a process also

referred to as biological network inference. It consists in making predictions about the

network. An example is the inference of the network topology, with the goal to predict

the relations between the network components. This model inference is used to verify

some assumptions and check if the global picture of the GRN can be understood and

described accurately, which means using precise models based for example on mathemat-

ical formalisms. The achievement of description of biological networks through formal

methods is essentially complemented by the support of computer tools and simulation

techniques to study and answer various biological questions. All these techniques are

not yet perfect but the building of an accurate model can be achieved by starting with

an initial technique/model, complemented by repeated revising, and simulation of the

behaviour of biological systems. These simulations reveal the adequacy of the model

and help to guide to research in the right direction until a more accurate modelling of

GRNs is achieved [6, pp. 67, 70] [45][p. xiii,xiv].
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3.2.1 Techniques and limits

Modelling and simulation tools and techniques can be applied on inferred gene net-

work models to acquire better knowledge on the behaviour of biological systems. By

simply comparing differences between assumptions (predictions) and analysis results

(observations), it is possible to make simple predictions and infer some rules. In turn

methods from the field of statistics can help to acquire a deeper understanding on the

experiments results and a better knowledge of the biochemical processes including the

impact of drugs or diseases on human beings as diabetes and cancers. Identifying the

potential causes of those diseases can be started by analysing the variation in gene expres-

sion based on data from different cells, tissues, organisms of distinct patients. A deeper

understanding of those biochemical processes indirectly allows to address real medical

problems of people. But the production of disease-specific cures and health care solutions

requires also sufficient knowledge on regulatory networks involved in these biochemical

processes to develop efficient solutions [7, p. 27-5]. At the current time a number of

known gene regulatory networks GRNs have been detailed in miscellaneous databases

publicly available [7]. Examples are KEGG [22, 23] and EcoCyc[46–48]. Thanks to the

scientific contributions and publications at the international level, new gene expression

data of many experiments and organisms are made publicly available regularly, for reuse

to the research community. For instance, at this time, the KEGG database contains

information on the structure and function of about 15,346,261 genes and about 2000

species [24, 25] whereas ArrayExpress [49]1 contains almost 28 TB of data for more than

56,000 genomics experiments from various laboratories.

However, despite the benefits of having a large amount of data made available, it is

a challenge to choose a good model in which these data can fit since it usually depends

on the needs. In addition, all models have pros and cons, and may require different

parametrizations. An additional problem occurs when comparing the data of multiple

existing databases between them. Practically there are good chances that all these data

do not coincide at all between the different databases. This is an issue to have so many

differences in existing referential since it complicates the analysis of existing data and

building of accurate GRNs. But it can be explained, at least partially, by the defects

of techniques and tools used to collect and analyse all these data. A classical example

is the inherent problem of noise that microarray techniques are facing. The complex

mechanisms used to collect and process the data imply some perturbations at several

levels which may lead to erroneous conclusions for studies based on these data, and

these perturbations result in variations between data. Variations in microarrays can be

caused by several factors, alone or together :

1http://www.ebi.ac.uk/arrayexpress/
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Washing The microarray washing which is made between two experiments and can be

imperfect or at least not regular among the washed surface.

Hybridization The hybridization is the core process of microarrays. It is relatively

complex and not error prone.

Normalization The normalization processes that occurs after the measurement of ex-

pression level, to clean the inherent noise in data. This process may be performed

differently from a case to another and may consequently be destructive.

Outside the problem with microarray and measurements techniques, other differences

may appear. For instance, there may be differences related to the experiments. The

experiment conditions may vary at the time of analysis (compared to another similar

experiment and analysis) and multiple stimuli can interfere during a particular experi-

ment. In addition, differences may appear related to the nature of the experiment itself,

the studied behaviours and biochemical processes. However, the large amount of data

can balance this problem and enables to compare notable differences. For example,

differences between a damaged cell and a normal cell, as well as difference between a

tumour cell and a healthy cell. The analysis of differences among multiple patients is

useful in the case of studying how a specific disease impacts the system in different ways,

and how in turn is the GRN affected by this disease. In addition, these data permit

observing the common behaviours between different experiments to improve and infer

the various models of GRNs, as well as the knowledge on metabolic networks and cell

signalling pathways. Still, redundant or incomplete information in pathways databases

as KEGG can lead to false conclusions on a gene network topology. In [50], Ye and Doak

proposed MinPath as a potential solution to this problem. It is a pathway reconstruc-

tion approach that keeps only the required pathways in gene networks and minimizes

redundancy in information to reduce the gap between different pathway databases. An

example is shown in Figure 3.1 page 33 where the gap is shown between MinPath and

KEGG pathways or other naive pathway reconstruction methods. GRNs are large and

complex and are studied for a long time. Despite the great number of mathematical

formalisms developed since the 1960s, actual models are not sufficient to answer all

questions neither to ensure the identification of all true interactions between genes. As

reported in [6], even if some components involved in gene expression can be identified like

proteins or molecular mechanisms, less is known and understood about the interactions

between genes and other components in GRNs.
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Figure 3.1: Number of pathways between naive approaches and MinPath reconstruc-
tion method [50].

3.2.2 Exploring organisational aspects of gene networks

With more databases and knowledge becoming regularly available, modelling tech-

niques emerged and gained popularity. They helped to reach to a deeper understanding

of the behaviour of these networks [6, pp. 69] and a better identification of some of

their fundamental (biological) properties, increasing the efficiency of their modelling.

A key to understand the behaviour of a gene network is to study how its behaviour is

affected by external environment stimuli. Through experiments, it is possible to sim-

ulate the evolution of a large GRN in time in response to various perturbations and

environment signals. For example it can be made at the level of the network topology

by adding/removing nodes of the network (genes) or sections (modules, or clusters of

genes that share similar functions) of the network. Changes in the expression levels can

also reflect the changes in different contexts. For instance one can change the concen-

trations of proteins and other gene products in order to understand how it affects the

regulation of overall interactions for a specific module of a complete network. It can be

made by forcing either activation or inhibition of some gene, or by forcing the production

of some gene products, such as RNA or proteins. Finally it can also be performed by

altering the level (strength or weight) of the interactions that exist between the nodes
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of the network, for instance the interactions between genes and proteins. Many prop-

erties have been discovered and the number of those properties is still growing. More

recently it has been observed that the topology of GRNs is sparse, i.e., there are a few

edges per nodes, and they also tend to be scale-free [7, 51]. This property plays a key

role in the robustness of these networks against random topology changes. In addition,

these studies indicate that particular topologies choices can guarantee this robustness.

A clue is, in the evolution process, the natural convergence of these network structures

to scale-free design. GNs exhibit the behaviour of having highly central nodes (hubs)

responsible of the most of the overall regulation. Those hubs are directly connected to

other nodes, in the worst case they are connected via very short paths. As reported in

[7], the term of small-world network is also used to describe groups of nodes which are

essentially connected through the same hub. GNs tend to be organized into modules,

which is related to the capacity of organisms to evolve and adapt to their environment.

For instance the evolutionary process tend to favour less costly connections between the

nodes in networks. Connections across long paths are costly to maintain and tend to

disappear. As a consequence modules emerge under the form of highly connected nodes

formed of genes that share the same functions or are connected through very short paths.

For instance this property has been recently experimented via an evolutionary algorithm

where the evolution of network across many generations was simulated, as reported in

[52]. Also, it has been observed that some nodes are responsible for regulation of genes,

2− 4 in bacteria [53] and 5− 10 in eukaryotes [54].

3.2.3 From data to modelling

Several models could describe the qualities and behaviour of gene regulation, and

a considerable number of qualitative or quantitative models have emerged, with some

of them described in section 3.3 page 36. Once the emphasis is set on a modelling

approach, the next step of the modelling calls to data, either experimental or even faked

(generated), that serve to prove the correctness of the model. The experimental data

are usually collected by using Microarray technologies. The Microarray technologies

have, among the existing techniques, the advantage to be fast and cheap. Then all the

data, collected at different times or from different experiments, has to be organized into

clusters of genes with similar expression profiles. Patterns of expression profiles may

appear in a network. By comparing the large amounts of gene expression data taken

at different times in from experiments, collected from different patients and databases,

it is possible to identify common patterns. In turn these recurring patterns in gene

expression profiles lead to identify common rules and properties of a specific GRN. As

reported in [55], when differences are found in levels at which these genes are expressed
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for identical cells and environment, the gene expression levels can be observed to oscillate

at least around an average value. In the literature, the term of differentially expressed

genes (DEGs) is used to describe these differences in gene expression levels.

Measurements methods from the field of statistics, such as the Spearman and Pearson

correlation coefficients, may help to analyse these differentially expressed genes and

find similarities in various gene expression profiles. As reported in as reported in [56,

57], those correlation coefficients are used to measure the extent to which different

changes are correlated, as for example changes in values of variables. The Pearson

correlation evaluates the linear relationship between two continuous variables, whereas

the Spearman correlation evaluates the monolithic relationship between those variables,

which means that those variables can change together but possibly at different rates.

Examples of such methods are those developed by Rice et al. [58] or Zuo and Tadesse

[59]. Some probabilistic (or stochastic) models could be better suited to explain the

variation of gene expression values, but simple models could give a better global view of

a network behaviour and require less precise data.

There are various ways to model and simulate a GRN, usually by using the current

knowledge of existing biological systems. Often these models focus on a particular stud-

ied mechanism inspired by some initial assumptions. However, the choice of a model is

constrained by the study to achieve, and is related to the complexity of the studied phe-

nomenon. Even the simplest gene network is a complex system involving a consequent

number of parameters. Those parameters can require a great number of experiments

to fit them to the data in a process which is also referred to as network inference or

reverse engineering [7][p. 27-1], [60][p. 1]. The process of network inference consists in

identifying the interactions between the components of the network, in our case genes

and proteins, which can be observed from gene expression data (experimental data).

Identifying those interactions lead to identify possible gene networks consistent with

gene expression data, to achieve the modelling of the biological system. A recurrent

problem with network inference is when the amount of available data is not sufficient for

accurate identification of the model and its parameters. In addition, a wrong normal-

ization of those data as well as their misunderstanding can lead the observer to make

erroneous conclusions. Finally, the misconceptions on the studied behaviours can lead

to inconsistent models and unreliable visual representations of the studied system or

phenomenon. Whereas these modelling techniques are not perfect, they have at least

already proven their utility and are useful to illustrate and improve the knowledge on

aspects of the biological systems.
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3.3 Models overview

”What a model cannot do is often more important than what it can do.”. – [45]

Depending on the amount of available experimental data and the biological knowl-

edge, GRNs can be modelled at different levels [7, 61]. Indeed, the emphasis can be

set on different interactions depending on the chosen degree of abstraction as well as

the nature of goal to achieve. Examples are metabolic interactions, gene−gene inter-

actions, gene−protein and protein−protein interactions. All these interactions together

play a role in the overall regulation mechanism and consequently they should be part

of the same model. Practically, however, this is not always the case. Since that would

require a complex and costly simulation of all phenomenons and all their parameters,

as well as the inclusion and understanding of all the components in a same network.

In addition, the graph of GRNs including all their components can be rather large and

hard to interpret. As a consequence the scope is usually limited to capture the global

picture, some phenomenons are abstracted in formal models that range from discrete

logic to systems of equations, while the simulation or study is limited to parts of the

network, also referred to as modules. The paper [6, pp. 69] has given a (non exhaustive)

overview of already known and described mathematical formalisms, such as directed

graphs, Bayesian networks (Friedman et al. [62], Murphy et al. [63], Hartemink et al.

[64], Moler et al. [65]), Boolean networks (and their generalizations) and ordinary and

partial differential equations (ODEs) Mestl et al. [66]. In the section 3.3.1 page 36, some

of these formalisms are described. However the purpose is not to give an exhaustive set

of all known formalisms but rather a description of the most known ones, in addition to

some less known ones. The description also includes the goals these different formalisms

address as well as their different weaknesses or strengths and applicable domains. Fi-

nally, a comparative overview of all these formalisms is given at the end of this section,

including the main properties of these formalisms. It has been compiled in a comparative

table based on several studies and reports such as [6, 7, 45, 60, 67–69]. See Table 3.2

page 49.

3.3.1 Classification

Continuous vs discrete models Continuous models are well suited for a more ac-

curate description but require quantitative experimental data to first fit all the

model parameters. They can serve as quantitative simulations of the biological

systems. Discrete models set their interest on the relationships between entities

and tend to abstract the details to give a general description of the biological
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system phenomenons. Examples of continuous models are differential equations

while examples of discrete models are boolean networks [61] (see subsection 3.3.3

page 40).

Dynamic vs static approaches Dynamic models are usually more complete than

static ones. For example static models do not have time component in them,

but at the opposite dynamic models involve more parameters to fit. Examples of

dynamic models are Boolean networks and linearised differential equations, while

examples of static models are Bayesian networks and graph theoretical models (see

subsection 3.3.2 page 38).

Deterministic vs stochastic approaches In a deterministic model, the value of gene

expression is the same at different times for identical contextual parameters, while

in a stochastic model the value of gene expression depends on random variables

and probability distributions. Stochastic models are useful to describe complex

systems by handling random connectivity and functionality. In addition, they

are powerful to infer a gene network from expression data since they can better

handle the presence of noise in the data. Bayesian networks are an example of

stochastic model. At the opposite deterministic approaches like boolean models

are too deterministic to simulate the real behaviour of a biological system and this

determinism can lead to erroneous conclusions. This determinism is however an

advantage in tasks that does not require such level of accuracy or realism.

Qualitative vs quantitative approaches Qualitative approaches as the boolean for-

malism try to answer the questions on the global picture of a system. For exam-

ple by discretizing the real values of gene expression levels or by ignoring low

level behaviours of such systems. At the opposite quantitative approaches such as

equation-based models try to consider the details of these behaviours such as the

chemical reactions at low level. As a consequence they require more computational

time for the simulations since more parameters are involved. Both have proved

their utility in different cases and have their limitations : qualitative formalisms

are usually easier to use but are less accurate, whereas quantitative approaches

tend to require a large amount of data to infer their large number of parameters

before being useful. See also [70] and [61][p. 66-67] for considerations of qualitative

pros and cons over quantitative modelling of GRNs. Boolean networks as well as

GTMs belong to the qualitative approaches.

Synchronous vs asynchronous approaches The phenomenons that occur in a bi-

ological system such as transcription from DNA to mRNA and translation from

mRNA to can be modelled in different ways. For example phenomenons such

as time delays between biological events as well as their duration are modelled
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by using either synchronous or asynchronous events. In the synchronous model,

the gene expression levels of all genes are updated simultaneously (in consecutive

time points). This is computationally simpler for large networks however it is also

less accurate. At the opposite the asynchronous model is closer to the reality of

biological phenomenon, in which the transitions between gene expression levels are

made at different time points [68]. In this model, the time component is usually

discretized to the intervals between consecutive experiments time. As described in

[7], if these time intervals are small enough, the expression level of a gene i through

time can be approximated as follows :

xi(tj+1)− xi(tj)
tj+1 − tj

≈ fi(xi1(tj), xi2(tj), ...)

Whose the different components are defined as follows :

• xi on the left is the level of concentration of gene expression for gene i.

• tj and tj + 1 are the consecutive time-steps that link the expression of x at

different times.

• xij ’s describe the levels of concentration of molecules/transcription factor

that influence xi’s level of expression.

• fi(·) is the function specifying how the inputs influence xi.

In Garg et al. [68], a comparative study has been made between synchronous and

asynchronous in terms of computational efficiency. It reveals that asynchronous

approaches are computationally costly to perform, and as a consequence it is more

difficult to get decent execution time. At the opposite synchronous approaches can

handle modelling of the same networks, or even larger networks, in a few amounts

of time (one speaks of minutes). In [68] a more efficient method is also suggested,

combining the two formalisms, which has the advantage to reduce the gap in

execution time between synchronous and asynchronous modelling approaches.

3.3.2 Graph (theoretical) models

According to the notations of the graph theoretical paradigm, a GRN can be mod-

elled as a connected and directed interaction graph structure. It can be defined as

G(V,E) that describes a graph G composed of vertices V linked through edges E. With

the same notation applied to biological networks, nodes/vertices are genes, proteins tran-

scripts or metabolites defined as V = {1, 2, ..., n}. While edges between nodes represent

transcription factors or functional linkages/interactions between nodes. These interac-

tions can be labelled in the graph with the type of linkage (activation, inhibition). The

edges are usually defined as E = {(i, j)|i, j ∈ V } [5].
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The edges can be defined as tuples such as 〈a,b,s,. . . 〉 where s is either equal to +

to represent activation or − to represent inhibition of b by a. Each edge a→ b in G can

be labelled with either the function or type of the relationship. For instance with a sign

(Sab) which is either positive when a is an activator, or negative when a is an inhibitor

of b. An example is illustrated in Figure 3.2 page 39.

a b

c

d

+

+

+

-

-

Figure 3.2: A simple regulatory graph with 4 nodes and 5 interaction edges

This modelling method can describe biological systems and uses the power of graph

theoretical approach to make some computations and gain a better understanding on how

biological systems behave. Using biological data in a graph paradigm allows applying

ideas from the graph theoretical approach, including algorithms and techniques as well as

ideas and engineering from statistics, graph theory and computer science fields. Despite

these advantages a graph defined as G, in which the interactions between the components

are described with an edge connected to a pair of nodes, is way too simple to match

with real studied biological systems. It is needed to go further, for example by using a

hypergraph. It is a generalization of a simple graph in which an hyperedge connects any

number of vertices at once, as illustrated in Figure 3.3 page 40. Then it is possible to

represent more complex relationships such as cooperative regulations in which multiple

components intervene in the regulation of another one. In a hypergraph, edges are

defined as tuples 〈a,B,S〉 where B is equal to a list of genes regulated by a, while S is

the list of signs that indicate the type of regulation. In addition, edges can be associated

with a weight value that indicates the strength of the regulation. This weight value is

usually visible in the form of a labelled edge. As described in [7], edges can be also used

to describe temporal or causal relationships which exist only under certain conditions

[7, 27/9] [chap. 1 5, pp. 1] [6, pp. 70].

Once applied to graph models, inference techniques such as network inference can

help to identify important elements of the network such as edges parameters, co-expressed

nodes (gene or gene clusters), regulatory and causal relationships in which the network
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components are involved. Co-expression nodes are the nodes which have very similar,

or strongly correlated, expression profiles. As reported in [7, p. 27-9], co-expression net-

works are graphs that contain highly co-expressed nodes. Although these models allow

describing the relationships between genes, they do not express the dynamics of these

relationships, such as time component. As a consequence it is not possible to perform

all sort of simulations. However, these models permit answering a lot of biology-related

questions related to gene regulation and networks by using algorithms and methods on

the network graph. It permits accomplishing various tasks as identification of interacting

genes, comparing different gene networks to search for similarities between pathways,

finding hubs (central nodes highly connected to other nodes), detecting cycles and at-

tractors, and simply achieving a better understanding the network topology [6, 7, 61, 72].

To sump up, the main advantage of these models is to resolve the topology of the studied

networks but they suffer from a lack of features required in simulation experiments.

3.3.3 Boolean networks

Modelling techniques of gene regulatory networks based on boolean logic first emerged

in the 1970s. They have been introduced by Kauffman [1, 2], to face the frequent lack of

quantitative data. In these models a gene is considered as expressed (ON/up-regulated)

or not expressed (OFF/down-regulated), having its expression value equal to 1 (ex-

pressed) or 0 (not expressed). This expression obeys to simple logical rules such as

follows :

• If the expression of a gene depends on the effect of other genes, the rule can be

defined as

A← (B AND C).

Where the value of A is conditioned by the value of B and C.

• if just B or C is sufficient to express A, rule could be written as

A⇐ (B OR C)

Figure 3.3: Comparison between a hypergraph (left) and a simple interaction graph
(right) - From [71]
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where the value of A is conditioned by either B or C.

• If a gene A is expressed under the condition a gene B is OFF and a gene C is ON,

rule could be written as :

A⇐ (¬B AND C)

where the value of A is conditioned by the value of B or C.

In order to fit the boolean parameters of such model, the continuous values of the gene

expression levels (from −∞ to +∞) have to be converted into boolean ones (1 or 0). It

can be done by using simple translation rules such as

• IF (Expr(Gene) < 0.5, Gene is not expressed and is equal to 0 or false.

• Otherwise, Gene is expressed and is equal to 1 or true.

To a Boolean network are associated different states, each composed of the different

expression values of all genes at a specific time. The transition of a state to another

is sometimes called an experimental unit, or consecutive observations of genes expres-

sion (states). A state transition pair is composed of first the gene expression values

as measured before a perturbation (the input) and second the gene expression values

after the perturbation (the output). The perturbation is the result of interactions and

phenomenons that occur between genes, i.e., the effects of the activators and inhibitors

on other genes. There exist several possible visual representations of these gene interac-

tions and state transitions. The Figure 3.4 page 41 illustrates a simple interaction graph

where genes are represented as nodes and relationships between them are represented

by edges that have a different shape depending on the type of relationship (activation,

inhibition).

A B

C

Figure 3.4: A simple interaction graph

The corresponding truth table is shown in Table 3.1 page 42. It maps an initial

state (input) at T to the next state (output) at T + 1.

The state transition graph (STG) as illustrated in Figure 3.5 page 42 codes the

dynamics of the networks. These dynamics show the evolution of a state to another,

where the output of a state is the input of another state, and the value of a gene A at

time T + 1 is determined by a regulation function at time T .
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State Input (T ) Result (T + 1)

A B C A B C

1 0 0 0 0 0 1

2 0 0 1 0 0 1

3 0 1 0 1 0 1

4 0 1 1 1 0 1

5 1 0 0 0 0 0

6 1 0 1 0 1 0

7 1 1 0 1 0 0

8 1 1 1 1 1 0

Table 3.1: An example of truth table

001 001 011

000 010 101

100 110 111

Figure 3.5: A simple state transition graph (STG)

In the case of network inference, boolean networks have often been used for their

simplicity. They allow to easily capture the qualitative properties and the dynamics of

a biological system and in addition allow to test new approaches on large networks. The

simple inference algorithm for boolean networks consists in trying all possible boolean

functions on inputs on all combinations of genes and inputs [7]. However, Akutsu et al.

reports in Akutsu et al. [73] that a network can be generally determined with a few

expression patterns, for instance with Ø(log n) patterns in the case of boolean networks.

Finally the wiring diagram shows the connections between the different nodes. This

sort of diagram is usually used to check if some connections are missing. Here, it is

useful to check if all possible state transitions are taken into account. An example is

given in Figure 3.6 page 43 where the nodes A,B,C represent the values at time T and

nodes A′, B′, C ′ the values at time T + 1.

In [74], the Boolean formalism is used to describe the regulation of a previously

studied gene regulatory system, for instance the regulation in lac operon, detailed in

Chapter 2 section 2.11.3 page 24. To describe this GRN, they used to represent the

most important components involved in the regulation of the lac operon. Then they

illustrated those states through the four essential scenarios. Indeed, since the states of

the network are described by on and off in the Boolean model, four states are possible to
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A B C

A′ B′ C ′

Figure 3.6: A simple wiring graph defined as A′ = B, B′ = A and C, C ′ = not A

represent the different combinations of glucose/lactose. Via those four scenarios, they

simulated the states of the different nodes, and as a result they determined a set of

steady states, as illustrated in the Figure 3.7 page 43.

Figure 3.7: Steady states in the lac operon - From [74]

Note that the presence (resp. absence) of the glucose is noted Glc+ (resp. Glc−)

while the presence (resp. absence) of the lactose is noted Lac+ (resp. Lac−). The rows

in the Figure define the distinct elements involved in the regulation of the lac operon.

In this Figure, the LacI-bound represents the LacI repressor bound to the lac promoter,

and te lacZYA defines the three structural genes of the operon. For additional details,

we re refer the interested to [74].

3.3.4 General logical method

In 1973, René Thomas proposed in [3] a method that extends the Boolean network

with multivalued variables and allow asynchronous transitions between states. This

method focuses on the logic of genetic interactions and gives the ability to reason on the

dynamics of gene networks via a simple framework [5, 6, 61]. Thomas’ work has been

largely reviewed and various extensions of his method have been proposed to describe

number of biological systems. It can be used to infer information about the dynamic

properties of such system from the corresponding interaction graph. In addition, it
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allows to reason on the system dynamic properties even in the absence of information

on the value of network parameters. Finally, it enables the automatic determination

of the appropriate logical parameters of the network. The gene networks are usually

described by R. Thomas in terms of graphs similar to those of section 3.3.2 page 38.

Multiple notions are introduced relatively to states of the networks. For example,

since the number of states of a boolean network is finite (2N possible states) and since

a boolean network has a deterministic nature, a trajectory will soon or later visit a

previously observed state. This phenomenon is referred to as a cycle or attractor. In

[75], R. Thomas speaks of stable states to identify the cyclic behaviours in a system.

An example can be visualized in the case of state 2 in Table 3.1 page 42 where the

state 001 leads to state 001. The same cyclic behaviour can be observed in Figure 3.5

page 42 since it is another view of the same network. In [5] Thomas’ method has

been complemented by an approach using temporal logic and model checking techniques.

This method permits to constraint the logical parameters according to hypothetical or

observed properties, then it can generate the parametrizations compatible with those

properties and test their consistency. When no valid parametrization can be found, it

means that the initial observations are inconsistent. It is useful to test the validity of

observations or assumptions on a dynamical model. However, such a method also has

its limits and requires enumerating all parameters of a network, which can be a complex

task for large networks. Allowing the capture of the qualitative properties of biological

networks, and even if they proved their utility to answer realistic questions on biological

systems, Thomas’ formalism has limitations. For example, it ignores that genes can have

different levels of expression at different times and as a consequence the interactions are

viewed as synchronous while in real biological networks those interactions are usually

asynchronous. In addition, Thomas’ method considers the levels of expression values as

boolean values (1 or 0) while in reality the levels of expression are continuous values.

However, the general logical method can serve as a qualitative representation of a system

to capture its general picture, i.e., easily understand and analyse the global dynamics

until more experimental data become available for the concerned system, which would

then allow to use of a more accurate approach. Those models are not sufficiently accu-

rate to answer all the biological questions on GRNs. This simplicity is also a strength

especially at the modelling of very large networks. Indeed, quantitative formalisms of-

ten lack required experimental data, whereas qualitative formalisms are less demanding.

Thomas’ model has been extended to other approaches like probabilistic boolean net-

works (see section 3.3.5 page 45) which introduces stochasticity, asynchronous boolean

networks, kinetic logic models with multivalued variables/functions (see section 3.3.6

page 46), multiplexes to simplify description of interactions by reducing the number of
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network parameters [76] or piecewise linear differential equation systems [67][5, pp. 1],

[45][p. 21-22], [19, p. 2].

3.3.5 Probabilistic Boolean networks

The probabilistic boolean network (PBN) formalism was introduced in 2002 by

Shmulevich et al. in [77] as an extension of the boolean network model where the regu-

lation functions obey to a probabilities-based logic and several predictors functions are

associated to each target gene. A PBNs can thus be visualized with a graph represen-

tation, where stochastic edges describe probabilistic dependencies between nodes. This

probabilistic feature affects also the state transition table or graph of such networks,

since the existence of each transition is conditioned by a probability. This property is

illustrated in the STG in Figure 3.82 page 46.

PBNs were developed to express the randomness inherent to biological systems, to

be as close as possible from the real behaviour. They consist in modelling stochastic ex-

tensions of boolean networks in which genes are either repressed or activated at different

times, depending on the values of gene expression levels. PBNs are good at describing

randomness in biological networks at an abstract level. But despite this strength they

do not handle the context specific mechanisms involved in gene regulation. For example

some genes interact most often in particular context than in others, such as contexts re-

lated to a specific disease or patient type [78]. This is why this model is not sufficient and

has in turn been extended. Examples of extensions consist in context-sensitive boolean

models such as those described in [79] and [80]. Those models are sort of constrained

PBNs where the constraints are set on the usage conditions of probability. Finally, the

PBN formalism is not the first attempt to introduce randomness in boolean networks

formalism. For instance random boolean networks were already introduced in 1969 by

Kauffman in [1, 2]. There exist some tools in which stochastic behaviours can be simu-

lated. An example is that of SGNSim, a Stochastic Gene Networks Simulator which is

able to model GRNs. The interested reader can find more details on this tool in [81, 82].

In addition, stochastic mechanisms of gene regulation and their modelling are also stud-

ied in [55] where a semi-stochastic model is proposed to simulate the steady states of

biological and chemical systems. In this model, based on Monte-Carlo approximations

and Gillespie algorithms, biological and chemical systems, in which regulation is ruled

by stochastic mechanisms, are simulated from master chemical and stochastic equations.

Additional details on PBNs are available for the interested reader in [53, 73, 83][p. 250]

and [69][p. 2].

2http://adam.plantsimlab.org/userGuide.pl
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Figure 3.8: A probabilistic boolean network with predictor functions - from ADAM
website[84]

3.3.6 Kinetic logic models

The Kinetic logic model was introduced by Thomas in 1979 ([4]) and further re-

fined in the 1990s. It introduces asynchronous description and in addition increases the

accuracy of gene expression levels. For instance, to the state of each gene is associ-

ated a discrete value, such as “not expressed”, “expressed at low level”, “expressed at a

medium level” or “fully expressed”. By generalizing the boolean networks, the kinetic

logic models allow handling the transitions between states with more granularity and as

a consequence allow describing the values and rates of change with more accuracy. As

described in [67][p. 12-13, 20, 28] this model introduces variables, associated to gene

products, to code the absence or presence of particular gene products. Once the level of

concentration of a gene product has reached a certain level the gene product is marked as

present; otherwise the gene product is marked as absent. Other notions are introduced

to describe the various states and dynamics. Functions are introduced to represent the

gene expression levels. Time delays are introduced to code the delays between biological

processes as well as their duration. This is useful to take into account the delays/dura-

tions of biological processes such as transcription, translation, as well as the delays before

activation/inhibition of a gene once a certain quantity of gene product is accumulated.

Functions are used to represent the rate of synthesis, i.e., the evolution of the concentra-

tion levels of gene products and proteins through time. In [67], the notion of feedback

loop has been introduced to describe circular chains of interaction. Depending on the

number of inhibitory interactions in the loop, the loop is either positive (even number

of interactions) or negative (odd number of interactions). Those feedback loops were

introduced to describe systems having chains of cause-and-effect related to the presence

of circuits or loops, as described in [45][p. 22, 32-33] [67][p. 10]. The introduction of the

temporal dimension in kinetic logic model as well as positive and negative feedback loops

described in Thomas and D’Ari [67, 67], Remy et al. [85] enabled a more precise and
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also more complex description of biological systems. As a consequence this model has a

higher predictive value in comparison to boolean networks, and kinetic logic models are

obviously best suited for systems involving multiple feedback loops phenomenons.

3.3.7 Bayesian networks

Bayesian Networks (BNs) are a generalization of the boolean model. They have

become well suited for representing stochastic models in the uncertainty of artificial

intelligence. In addition, they have been largely used for modelling GRNs. The base of

this formalism is the Bayes Theorem, which establish a relationship between the current

probability of an event with prior probability. In its simple form, this theorem is stated

by the following equation :

P (A|B) =
P (B|A)P (A)

P (B)
.

• A and B are events, P (A) and P (B) are the independent probabilities of respec-

tively A and B.

• P (A|B) is the probability of A given B.

• P (B|A) is the probability of B given A.

Multiple reasons can explain the choice of the Bayes theorem to describe GRNs. First,

the gene interactions are complex and often inferred from noisy or incomplete data,

which favours models that can play with uncertainty. Second, genes regulate each other

and are not expressed independently, which favours models where causality between

phenomenons can be described.

Structurally, a BN is a specialized graph model that handles probabilities relation-

ships between variables and allows observations of some hypothesis or data. As described

in [69], the topology of a BN consists in an acyclic directed graph where nodes are random

variables with discrete or continuous values. The choice between discrete or continuous

values to represent genes expressions levels, while the edges describe dependencies be-

tween nodes. The choice between discrete or continuous representation depends only on

the type of data to deal with. BNs can model causal networks where an edge from B

to A states for B “causes” A, as described in [63]. There exist variants of BNs. Exam-

ples are Gaussian networks, module Networks, mixture Bayesian networks, state-space

models (SSMs) and dynamic Bayesian networks which are able to infer interactions from

time-series data [69, 83, p. 270]. Finally, an example of tool is given with Banjo[86]3

which help to learn the structure of static and dynamic Bayesian networks.

3http://www.cs.duke.edu/ amink/software/banjo/
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3.3.8 Differential-equations-based Models

Differential equations modelling is a major formalism in the mathematical biol-

ogy, favouring continuous, deterministic and more realistic approaches of discrete and

stochastic mechanisms. They translate the biological systems into a set of differen-

tial equations, which describe chemical and physical constraints, and a set of variables

which describe concentrations of gene products, for instance proteins or mRNAs. Mod-

elling methods making use of differential equations allow a better understanding the

mechanisms involved in GRNs since they allow a more detailed description of these

mechanisms. As described in [87], a basic differential equation model to compute gene

expression level can be defined as follows :

g1(t+ ∆t)− g1(t) = (w11g1(t) + ...+ w1ngn(t))∆t

· · ·

gn(t+ ∆t)− gn(t) = (wn1g1(t) + ...+ wnngn(t))∆t

• where gi(t+ ∆t)’ define the level of expression of gene i at time t+ ∆t.

• and wij defines the weight of influence of gene j on gene i where (i, j = 1...n)

In this system of equations, the expression level of genes at time t + ∆t depends on

all levels as expressed at time t. Optionally, for each gene, additional extra terms can

be added to indicate the influence of additional factors. Since the model uses a set of

equations to model biological mechanisms, it is comparatively less abstract than boolean

or Bayesian formalisms. But this quantitative approach also requires a large amount of

prior data and biological knowledge before the behaviours can be modelled in a system

of equations. They have been largely extended in the form of specialized frameworks to

address different needs. An example is Langevin’s approach which addresses the case of

non-deterministic systems where identical states can lead to different possible outputs.

Other forms and extensions of the equations-based models exist such as piecewise affine

differential equations (PADEs)[61][p. 54-55], non-linear differential equations, piecewise-

linear equations, qualitative linear equations, linear additive models, stochastic master

equations, partial differential equations and other spatially distributed models, as re-

ported in [7, 69]. The interested reader can also refer to [88] for more information on

those models and their extensions.

3.3.9 Comparison

Since the number of identified models in the literature is quite huge, the comparison

of models which is illustrated in Table 3.2 page 49 set the emphasis on the most models
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Graph theoretical models 3 3 3 3 3 3 3 3

Boolean networks 3 3 3 3 3[89] 3

Probabilistic Boolean networks 3 3 3 3 3 3 3 3 3

Bayesian networks 3 3 3 3 3 3 3 3

Kinetic logic models 3 3 3 3 3 3 3
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Differential-equations systems 3 3 3 3 3 3 3 3

Table 3.2: Synthesis table of formal models used in gene networks modelling

cited in the current thesis. As well, some models are considered with their extensions

included, since those extensions improve the initial model. This short-cut is made to

simplify the reading of the table and the comparison of model features. As a consequence,

the table is not exhaustive and should be interpreted with caution by the reader.

3.4 Existing modelling and simulation tools

3.4.1 Model checking tools

Determining if a model satisfies certain properties is a complex task since it requires

a lot of analysing and validating steps. Practically, this can be done with the support of

computer tools that automatize the verification of model properties by a systemic and

exhaustive exploration of the model, under the condition that those properties can be

clearly defined. Following this idea, several tools have been developed such as model-

checking tools or simulators to emulate the behaviour of large biological systems with a

great number of state transitions.

Model checking tools have emerged 30 years ago and help to achieve a better under-

standing of GRNs. Both model checking tools and simulators usually require data in a

certain form to fit their parameters. For example, quantitative tools require numerical
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values to fill their kinetic parameters, in addition the concentrations of molecular com-

ponents need to be specified as well. Some tools such as DBSolveOptimum4, Gepasi[90]5

and PLAS[91] (Power Law Analysis and Simulation) are used for simulations of biochem-

ical reaction networks by using differential equations systems [92]. This section proposes

a non exhaustive list of some existing model-checking and simulation tools commonly

cited in the literature. The interest reader can also refer to [44, 61, 93, 94] for more

details on model-checking tools. Finally, Chapter 4 page 68 introduces a programming

language which is perfectly suited to implement model-checking techniques.

NuSMV [95, 96] is a open-source symbolic model-checker for analysing synchronous

finite-state and infinite-state systems based on Binary Decision Diagram (BDD). It is

used by other bioinformatics tools such as BIOCHAM (see page 50 in this section).

NuSMV supports the verification of system properties against requirements written in

temporal logics, for instance the Linear Temporal Logic (LTL) and CTL formal spec-

ification languages, respectively invented in 1977 and 1981, whose the syntax is given

in the NuSMV user manual. NuSMV is well suited to determine if a biological model

satisfies a set of biological properties, which is particularly useful in the case of GRNs

which are systems with complex behaviours.

Biochemical Abstract machine (BIOCHAM)[97]6 is a modelling environment

for systems biology. It supports static analysis and inference of unknown model pa-

rameters from temporal logic and can be used for both qualitative and quantitative

models. The specifications are written in a simple rule based language and are then ver-

ified against the NuSMV model-checker. Users can directly encode biological properties

using CTL formulas into BIOCHAM [94].

Selection of Models of Biological Network (SMBioNet)[98]7 is based on the

multivalued logical formalism of René Thomas and CTL. It consists in a tool for mod-

elling of GRNs to help the biologist in the task of verifying the coherence of biological

models. This verification is performed against temporal properties extracted from logic

formulas. The tool can generate the valid parametrizations for a network and the match-

ing STG, starting from an input composed of a GRN and logic formulas that express

assumptions and other knowledge. The generated parametrizations are consistent with

the proposed input, since they are generated using the NuSMV model-checker [99][p.

111].

4http://insysbio.ru/en/software/db-solve-optimum
5http://www.gepasi.org/
6http://lifeware.inria.fr/biocham/
7http://www.i3s.unice.fr/ richard/smbionet/
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GINsim[100]8 is a Java software for modelling and simulating qualitative models of

GRNs which is based on a discrete logical formalism. It is able to analyse and perform

simulations of the qualitative behaviour, from inputs given by the user under the form

of asynchronous and multivalued logical functions. It uses logical regulatory graphs for

GRNs in addition to STGs to represent the dynamic behaviour. The graphs can be

exported in the GINML file format, which is a XML-based format that extends Graph

eXchange Language (GXL) and originally designed for GINsim to support the two types

of graphs.

Genetic Network Analyzer (GNA) developed by de Jong et al. [92] is a tool for

the modelling and simulation of GRNs. It is based on a qualitative simulation method

using piecewise-linear (PL) differential equation models. GNA parses a PL model given

as input, proceeds to the simulation of the system and outputs as a result a transition

graph with qualitative states and transitions between those states. It helps to assert the

correctness of a model built on assumptions. Specifications of biological properties are

encoded using a pattern system, or by using CTL/CTRL (Computational Tree Regular

Logic) formulas and then verified using model checkers such as NuSMV and CADP

[94][p. 3]. In [92], de Jong et al. demonstrated the utility of GNA on the regulation

of initiation of sporulation in Bacilus subtilis. GNA and CTL are also used in [101]

and [102] where Batt et al. proposes an approach based on combination of qualitative

simulation and model checking techniques.

3.4.2 Data exchange formats

XML-based formats have become popular for data management tools as well as in

existing simulation, modelling and visualization computer tools applied to the field of

biology. Many XML-based format have emerged in the last years, such as those cited

in the previous subsection 3.4.1 page 49. In addition, many other popular formats

have emerged, for instance some popular pathway file formats such as Systems Biology

Markup Language (SBML), CellML, BioPAX and SIF [103].

SBML The SBML format was first released by 2001. It is able to describe various

models related to computational biology, and to describe many classes of biologi-

cal phenomenons such as gene regulation, cell-signalling pathways and metabolic

pathways. It has become the standard for the description of computational models

in systems biology since it was first cited in publications and used in software in

this field. But the SBML language can be used to describe a larger set of processes.

In addition, SBML has the purpose of ensuring the survival of models regarding to

8http://ginsim.org/
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the lifetime of the software initially used to create them and allow the researchers

to work with different software environments without having to rewrite models. A

review of the advantages of popular SBML format has been studied in [104] and

[105].

CellML CellML is a popular format similar to SBML and neither limited to descrip-

tion of biochemistry models. For example, it can be used to store and exchange

computer-based mathematical models. It consists in the description of compo-

nents and the relationships between them. Each component can be abstract or

it can have some concrete interpretation. The reader can refer to [106] for more

information.

BioPAX The Biological Pathway Exchange (BioPAX) format is used to handle infor-

mation on biological pathways and topologies of biochemical reaction networks.

It can describe genetic interactions and GRNs. The reader can refer to [107] for

more information.

SIF The Simple Interaction Format (SIF) format was created by Cytoscape for visual-

izing molecular interaction networks. SIF can be used to build a graph from a list

of interactions and combine different sets of interaction into a larger network. At

the opposite of some other known formats, SIF do not handle layout information.

There exist many other XML-based formats such as PSI-MI for description and exchange

of protein-protein interactions or yet Systems Biology Graphical Notation (SBGN) that

is defined by its authors as “an effort to standardize the graphical notation used in maps

of biological processes”. Pathway data in those formats can be downloaded from various

online resources. Then pathway vizualisation tools such as Cytoscape[37] and others can

import and work with those files in various formats. Sometimes tools cannot handle the

input format, but there exist tools to convert a format to another. For instance, tools

such as KEGGTranslator[108]9 have the ability to convert pathways from the KGML

format into BioPAX, SBML, XGMML and SIF formats. KGML is a pathway file format,

also XML-based and used by the popular [22, 23] database. The interested reader can

refer to a review of standard tools and exchange formats is given in [44].

3.5 Conclusion

The current chapter introduced the study of biological processes and phenomenons

from the computer scientist point of view, with the emphasis set on the modelling of

9http://www.ra.cs.uni-tuebingen.de/software/KEGGtranslator/
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highly studied phenomenons known as GRNs. Their study include the use of various

analysing, inference and simulation techniques usually supported by the use of com-

puter tools and formal methods from the fields of mathematics and statistics. The

combined use of various techniques can often help in increasing the knowledge of stud-

ied phenomenons and increase the accuracy of the existing models for a particular GN.

However, those biological processes are often complex to study in the large and require a

large amount of data depending on the goal and the complexity of the phenomenon. In

addition, some GRN are known to be particularly large and their study is computation-

ally costly, since the complexity grows exponentially with the number of components

and interactions in those GNs. It was shown that a variety of models have been pro-

posed in the last decades, with their pros and cons, to elucidate the role of genes and

their interactions. Based on a set of formal methods and tools among the existing ones,

it was shown that no particular tool or formal method is practically applicable to the

modelling of all the known biochemical processes involved in a complete GRN. At the

opposite, the research is often limited to the study of particular phenomenons at a par-

ticular level of abstraction, using specific models to model specific behaviours. Then the

most common models have been covered and compared regarding to their main proper-

ties and a classification of those models has been proposed. Finally, it was shown that

many data exchange file formats have been created to describe the biological processes

and enabled the exchange of information related to this field. This chapter described a

few tools related to the modelling and simulation of biochemical processes. In addition,

it introduced the concept of model-checking which is used to check some properties of

the model of a GRN in order to eliminate inconsistencies in models. On the overall, the

study of those biological processes may require fitting complex model parameters with a

large amount of data and the exchange of these data between researchers is important.





Chapter 4

Constraint logic programming for

analyzing GRNs

4.1 Introduction

Many formal methods and models for describing the dynamics of GRNs have been

proposed in the literature. They address the modelling of complete biological systems,

or at least subsets. These formal methods have been improved and extended in many

ways. Although there are numerous, their efficiency is not as easy to prove. At least,

those models can be partially validated by using model-checkers. However, those model

checkers require a good understanding of the dynamics of a system. There are questions

related to the study of those system dynamics which involve issues such as an uncertain

or incomplete understanding of some phenomenons and interactions. This chapter is an

introduction to a promising technique for solving problems with uncertain or unknown

parameters : constraint programming and, in particular, constraint logic programming.

In addition, it will describe the advantages of using those techniques to solve real world

problems. Finally, it will give some examples and clues related to an efficient usage of

those techniques for solving problems related to the study of GRNs.

4.2 Problems solving approaches with constraint solvers

In Chapter 3 page 36, several formalisms were described, each one solving a particular

class of problem in the context of modelling GRNs. The studied qualitative and discrete

models allow reasoning on the regulation of biological systems from a theoretical point

of view. They permit reducing the distance between the description of a biological
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system and the reality, without the need to process a large quantity of data. Based on

experimental data, it was shown how some models could be inferred and checked by the

biologist researcher against experiment results. However, this process requires from the

biologist a lot of time to compare and verify their assumptions in one of these models.

The biologist research has usually to fit the model parameters with experimental data,

elucidate and the gene network topology and verify step-by-step the correctness of the

results through experiments. This process is repetitive, often costly in time since it

requires a lot of verifications, a good understanding of the formal models and dynamics

of the studied systems. A lot of time is usually wasted on choosing models, collect

appropriate data and make them fitting the parameters the global complexity. The cost

of those steps could be reduced with a tool that does the preliminary job of guiding the

researcher in the right direction. A clue could be to let him reason of the assumptions

about a biological system, rather than fitting this model with data and reasoning on its

correctness. Such a tool could lead the researcher propose some rules and assumptions,

and check their consistency visually fitting any model parameters with experimental

data.

Some interesting tools have already been described, such as the model-checkers in

Chapter 3 page 49. Model-checkers usually use formal specification languages such as

CTL to describe the model rules, or are even built upon engines that use tools dedicated

to logic reasoning and as a consequence perfectly suited to reason on model correctness.

Using a model-checker to verify a model supposes that the dynamics of the system are

well understood and can be described before being verified by the model checker. This

is not always possible, especially for systems where a large amount of parameters are

hidden or unknown. In such situations, it is more pertinent to start with studying a

smaller part of the system, such as modules as seen in Chapter 3 page 36. This is

equivalent to apply model-checking on specific regulation, at the opposite of the overall.

Even in this context, the goal is still to apply verification and logic reasoning on a

model. Model-checkers often use a specification language for specifying the rules and

perform logical reasoning to validate them. Those specifications are logically analysed

and checked against the model, which is a repetitive process. It requires from the model-

checker user the study of a specification language and a good understanding of the model

dynamics, before an existing model can be checked.

In addition to model-checkers which are very interesting for reasoning and verifying a

model, there exist in the field of computer science other powerful tools and programming

languages perfectly appropriate for logical reasoning, as well as reasoning on models

defined with rules. Usually, traditional approaches to solving logical problems are to

start an algorithm in a traditional programming language and start to translate the

domain knowledge and the problem parameters in an equivalent form accepted by the



Chapter 4. Constraint logic programming 57

programming language. In addition, the algorithm for solving the problem, i.e., the

resolution logic, has to be specifically programmed in a programming language starting

from zero. It can be done in most programming languages with a certain amount of

effort. Other approaches for solving a problem use existing tools, often very specific

to a domain. However, there exist more generic approaches to problem solving. An

example consists in reusing existing, generic, algorithms to solve problems. In this

category, constraints solvers are quite popular. They exist in many forms to address

different classes of problems and have already been implemented in various existing

programming languages. Some examples of constraint solvers implemented in different

programming languages are given in [109]. A constraint solver consists in a generic

mechanism which can help to find the satisfiable answer(s) of a problem expressed as a

system of constraints. These constraints, defined by the user, translate hypothesis about

the system and are parsed by the constraint solver which finds a way to a solution. The

user-defined constraints themselves guide the solver to eliminate unsatisfiable solutions

by reducing their search-. The next section 4.3 introduces a programming paradigm

dedicated to constraint solving.

4.3 Constraint logic programming

In the constraint programming (CP) paradigm, the relations between variables are

expressed with constraints. At the opposite of classic programming languages, no step-

by-step sequence to the right solution has to be expressed, but rather the properties and

qualities of the solution to be found.

Constraint logic programming (CLP) in turn is a specialized form of the CP paradigm,

first defined by Jaffar and Lassez in [8]. CLP merges the benefits of Horn clauses logic

programming and constraint solving in a flexible and expressive paradigm which is in

several cases more efficient than other existing ones. A logic program is composed of

rules written in the form of clauses. A typical logical clause is composed of a head and

a body, and expresses the notion that this head is true if its body is true. Otherwise,

the formula expressed by the head is false. Logic programming allows to reason on

atomic formulas and infer new satisfiable properties from an initial set of goals, i.e., con-

junctions of atoms, whereas constraint solving set the emphasis on finding appropriate

parameters’ inference regarding to a set of clauses. An example of logical clause can be

defined as follows:

man(X) :- human(X), age(X) >= 18.

Where the head is man(X) and the body is human(X), age(X) >= 18. It can be read as
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man(X) if human(X) and age(X) >= 18.

Namely, any x who is human an is 18 years old is a man.

In addition, a logical clause defined with an empty body can be considered as a fact.

As an example, this simpler logical clause

human(author).

expresses the fact that author is a human and could be a satisfiable valuation for X

in human(X). Those clauses, also known are Horn clauses, are quite simple and have

their extensions in order to represent various concepts, such as negation or conjunc-

tion of logic formulas. Constraint logic programming, which is derived from declarative

programming, includes constraint satisfaction. A constraint program consists in a de-

scription of the domain values and problem constraints which are properties to keep

satisfied for these domain values. Formally, a constraint satisfaction problem (CSP) can

be defined as a triple 〈X,D,C〉 whose different components are defined as follows :

• X = {X1, ..., Xn} describe a set of variables,

• D = {D1, ..., Dn} describe the domain of values,

• C = {C1(S1), ..., Cm(Sm)} describe a set of constraints where each Si is a set of

variables.

With the values of a variable Xi depends is upon the values of the non empty domain

Di.

The solution to a CSP is a valuation of domain values to S1...Sm that satisfies all

the constraints. A classical example of constraint satisfaction problem is that of the

map-colouring problem, which is illustrated in Figure 4.1 page 59. In this example, the

goal is to colour the map so that adjacent regions have different colours. A definition of

this problem is as follows :

Variables WA,NT,Q,NSW,V, SA, T represent the 7 regions on the map.

Domains Di = {red, green, blue} represent the domain of possible values, for instance

a set of three colours.

Constraints adjacent regions cannot have the same colour.

An example of a satisfiable valuation is

{WA = red,NT = green,QT = red,NSW = green, V = red, SA = blue, T = green}
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Figure 4.1: Constraint satisfaction - an example with the map-colouring problem -
From [110]

The same problem can be illustrated in the form of a constraint graph which makes

their understanding easier by visualizing the constraints and variables, where nodes of

the graph represent the variables and the edges represent the constraints. An example

is illustrated in Figure 4.2 page 59. Note that being an island, T is not constrained.

WA
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Figure 4.2: An example of constraint graph for the map colouring problem

At the opposite of other programming paradigms where step-by-step instructions

have to be specified for finding a solution, the purpose of CLP is to avoid the writing of

those instructions and let the user focus on the goals. Examples of goals could be to find

the satisfiable valuations for unknown variables or find an optimal, or the best solution,

to an optimisation problem. In this purpose, the user does not need to code the process

of solving a problem procedurally (= “HOW”), but only to declare the properties of

the final solution (= “WHAT”). Practically the problem is expressed in Horn clauses

extended in the syntax of CLP. Problem solving is then delegated to a constraint solver

that compiles it in its own internal representation. The constraint solver searches for
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a state of the universe in which as many constraints as possible can be satisfied, by

using solving strategies. Basically, the solver searches for values for all the variables. It

evaluates the user-constraints or user-defined rules until is has explored all the possible

paths or a satisfiable solution is found. A problem is said to be satisfiable if there exists a

solution according to it. Otherwise it is unsatisfiable. A solution is reached when there

exist a valuation of all variables that satisfies all constraints without exception. The

Figure 4.3 page 60 illustrates the global flow from the initial problem to the solution.

Figure 4.3: Constraint programming - flow from a problem to its solution

In addition to be well-suited for constraint satisfaction problems, constraint solvers

are also perfectly suited to reason on problems of combinatorial complexity which are

at the heart of many real applications, at the opposite of traditional programs for which

such task is rather difficult. Additionally, a traditional program is usually composed

of problem-specific instructions and algorithms and is by definition less easy to adapt

when the problem evolves. Constraint solvers usually require only changes in the de-

scription of the solution properties, i.e., the user-defined constraints, not in the solving

algorithms/strategies. Faced to a constraint solver, a programmer has only to code

those specific domain constraints in a programming language supported by the con-

straint solver. Since there are yet generic solving algorithms implemented internally

in the constraint solver himself, nothing more is usually required. As a consequence,

constraint logic programming can be considered as one of the purest programming lan-

guages, combining mathematical facets, traditional computer programming and artificial

intelligence, where only user-defined constraints need to be programmed to specify the

behaviour of a system, and the knowledge of a constraint logic programming can be

reused in the context of any other constraint programming language.
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4.3.1 Solving of constraint satisfaction problems

Solving of a constraint satisfaction problem requires a particular form of search.

Obviously, a satisfaction problem can be solved by generating all possible valuations for

variables of the problem and then testing if a satisfiable solution exists. This is also

called generate and test. It can be applied without exceeding the computation time

when the domain values are very limited and the set of solutions is finite. However,

some problems have an infinite number of solutions. For instance, there is an infinite set

of satisfiable valuations for X > Y , where X and Y are numerical values. In addition,

enumeration techniques cannot be applied for a continuous domain of values real number

values since the enumeration would be infinite. Finally, this is not a very efficient way

to take an advantage of CP. For instance, the constraints are only used passively to

check the satisfiability of a solution after the valuation is performed. More efficient

techniques flavour the validation of solution along the valuation of variables and as

a consequence highly reduce the amount of performed valuations required to build a

satisfiable valuation. The most used solving techniques include backtracking, local search

and constraint propagation, described in the subsection 4.3.2.

4.3.2 Solving techniques

Backtracking The technique of backtracking ensures to find any existing solutions

that are consistent with the constraints. This algorithm starts with all variables

being unassigned. First a variable is chosen and the algorithm assigns all possible

valuations to this variable. Then for each consistent valuation obtained that is

consistent with the user defined constraints, a recursive call is made to the same

algorithm, except the variables are initialized with the previous valuation obtained,

consequently the previously assigned variables will not be reassigned again but at

the opposite another variable is chosen. The algorithm proceeds step-by-step, try-

ing all possible valuations until their exploration has been achieved, as illustrated

in Figure 4.4 page 62. If a consistent valuation has been found for all variables, this

solution is returned. In some cases the algorithm “backtracks”. It happens when

the valuation of a variable cannot be satisfied regarding to the previous performed

valuations. In this case, the algorithm cancels the current exploration, until it is

able to try another valuation not performed before. The algorithm stops when a

solution is found, or when it can’t go further, i.e., all possible consistent valuations

have been tried.

Local search Local search is an incomplete method, it may eventually find a solution

to a problem but it is not complete. At the opposite of backtracking, local search
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Figure 4.4: Constraint resolution techniques - An example with backtracking applied
to the map-colouring problem - From [110]

may stop without finding any solution, even if a solution exists. This algorithm

uses a state to represent the variables assignments. At each step, the algorithm

modifies the value of a variable to increase the number of total satisfied constraints

in the current state. This reassignment is done so that it violates the fewest

possible constraints. Since the algorithm tries to minimize the amount of violated

constraints, it uses a cost function that returns this amount. At each step, this

cost is evaluated along with the assignments. This algorithm is well suited for

particular classes of problems, such as the n-Queens problems.

Constraint propagation Constraint propagation is a form of inference, used to sim-

plify a constraint satisfaction problem and make it easier to solve. This is done

by transforming an existing constraint satisfaction problem formulation in a form

which is simpler but equivalent. Both formulations will have the same set of so-

lutions. The idea is to creating new variables, reinforcing existing constraints and

reducing domain of variables to converge easier to the solution. The propagation of

a constraint, i.e., the assignment of a value to a variable, reinforces the constraints

locally. For instance, in the map colouring problem, the assignment of a colour to a

region reduces the possible assignments for other regions, which can be illustrated

by Figure 4.5 page 63, where the assignments WA = red and Q = green propagate

constraints for assignment of other variables, for instance NT and SA (last line).

This technique can also be used to prove the satisfiability or unsatisfiability of a

problem. However, it is only applicable and efficient in certain cases and cannot

provide early detection of all constraint propagation failures.
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Figure 4.5: Constraint resolution techniques - An example with constraint propaga-
tion applied to the map-colouring problem - From [110]

These techniques are at the heart of constraint reasoning, and ones cannot speak

of constraint reasoning if they did not exist. They have been extended in the form of

variants that improve their behaviour for particular classes of problems. However, those

variants are out of the scope of this thesis.

4.3.3 Node and arc consistency

Finally, there exist various consistency techniques to reduce the search space, by

enforcing the consistency on variables and constraints. Some important properties of

consistent CSPs are known as node consistency and arc consistency. Their names refer to

their representations as nodes and arcs of a constraint graph. Such a graph is illustrated

previously in Figure 4.2 page 59.

Node consistency A CSP is node consistent if each primitive constraint in it is node

consistent. A primitive constraint c is node consistent with domain D if either

vars(c) = x or |vars(c)| 6= 1|. An algorithm enforcing consistency for a CSP can

achieve it for a constraint c of the problem by removing all values from D(x) that

falsify c.

Arc consistency A CSP is arc consistent if each primitive constraint in it is arc con-

sistent. A primitive constraint c between two variables x and y is arc consistent

with domain D if, either vars(c) = x, y or |vars(c) 6= 2|. An algorithm enforcing

consistency can achieve it for a CSP by removing all values from D(x) for which

there is no value in D(y) that satisfies x.

The following CSP is not node consistent (see Z):

Definition X < Y ∧ Y < Z ∧ Z <= 2

Domain values D(X) = D(Y ) = D(Z) = 1, 2, 3, 4
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While the following CSP is node consistent but not arc consistent:

Definition X < Y ∧ Y < Z ∧ Z <= 2

Domain values D(X) = D(Y ) = 1, 2, 3, 4, D(Z) = 1, 2

Finally, the following equivalent CSP is arc consistent:

Definition X < Y ∧ Y < Z ∧ Z <= 2

Domain values D(X) = D(Y ) = D(Z) = Ø

As well, the map colouring CSP is node consistent and arc consistent since the

constraints and domain values do not allow any inconsistency.

4.3.4 Syntax of a constraint programming language

The constraints and goals of a problem can be deduced from the user’s definition of

the problem. Once they have been extracted from the definition, they can be expressed

using a syntax supported by the constraint programming language. Basically, this lan-

guage supports variables (X,Y, Z, TA, U1, List, . . . ), function symbols (+,−,÷,×, . . . )
and relational symbols (=, <,≤, >,≥, 6=,∧,∨, . . . ). Those symbols are sufficient to de-

fine simple constraints. At the heart of a constraint satisfaction problem description, is

to construct a good definition of a problem so that the problem is as simple as possible

to be described in the form of constraints. The domain of the problem has certainly

an influence on the syntax of user-defined rules. Other criteria such as the choice of

variables, domain values, the rules’ syntax as well as the arguments of these rules need

to be defined by the user. However, the user can use primitive constraints, with a syn-

tax similar to Horn clauses, to build his own user constraints. For example a constraint

could contain a relational symbol such as 6= or + which requires two arguments of certain

types (integer values, real values, . . . ). Other primitive constraints can be deduced from

the available relational and function symbols previously described. Given a constraint

domain D, a primitive constraint is the simplest form of constraint.

Examples of primitive constraints are :

• X = 2Y

• X ≥ Y + 3

The most important operation in constraint reasoning is to find if a constraint is satis-

fiable. It is when there exist at least one possible valuation for which the constraint has
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a solution, while an unsatisfiable constraint does not have any solution (or the solution

is unknown).

Examples of satisfiable and unsatisfiable constraints :

• X ≤ 3 ∧ Y = X + 1 is satisfiable

• X ≤ 3 ∧ Y = X + 1 ∧ Y ≥ 6 is unsatisfiable

A satisfiable constraint is either true or false depending of the valuations of its variables.

For example, a constraint such as X = Y + 2 is either true or false depending on the

valuations for X and Y . For instance it is true for (X = 3 and Y = 1). Finally, two

different constraints can represent the same information : they are equivalent if they have

the same set of solutions. For example, X = 0 ∧ Y = 1 is equivalent to Y = 1 ∧X = 0.

By combining primitive constraints, complex constructions can be obtained such as

c1 ∧ ... ∧ ... ∧ cn Whose components are defined as follows:

• ∧ is equivalent to the logical and (his counterpart is ∨ for or)

• c1...cn are primitive constraints.

As for logical Horn clauses, the head of a rule is true if the body can be proven. Similarly,

the above constraint c1, ... ∧ ..., cn is true when all primitive constraints c1...cn are true.

In turn those more elaborated constraints can be assembled into complex conjunctions

of constraints as C1 ∧ C2, which are head of rules having their body defined as follows:

Assume C1 is defined as c1 ∧ ... ∧ ... ∧ cn
And C2 is defined as c′i ∧ ... ∧ ... ∧ c′m
Then C1 ∧ C2 is defined as c1 ∧ ... ∧ ... ∧ cn ∧ c′i ∧ ... ∧ ... ∧ c′m.

4.3.5 Simplification and optimization

Those rules are used to describe and evaluate the user goals to solve. However,

before evaluating the user goals, constraint solvers proceed to translate a problem in

an equivalent and simplified form. Indeed, two equivalent constraints can represent the

same information and can be written in many forms. An important kind of simplification

consists in the elimination of redundant and useless information. For example, the simple

constraint 0 ≤ 3 can be simplified to true. Constraint solvers use different techniques to

translate the initial problem in a simpler form, until only primitive constraints are left.

Certain class of CSPs do not focus on finding a solution to the initial problem

but focus on finding the best solution. Some of these problems belong to the class of
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optimization problems, since they desire an optimal solution. Constraint implement

algorithms such as the simplex to find optimal solutions. An optimization problem

(C, f) consists in a constraint and an objective function f , where the search of an

optimal solution for constraint C is guided by the goal to maximize of minimize the

function f . Some optimization problems may have more than a single optimal solution.

Similarly, an optimization problem may not have an optimal solution at all.

This class of problem is in turn divided into two categories depending on the type

of the variables, for instance discrete or continuous. The basic goal in optimization

problem is to maximize or minimize the value of particular functions, depending on

the specific problem to solve. Implementations of CP languages offer generally some

built-in functions such as maximize or minimize which are well-suited to address those

generic optimization problems. Those functions take a set of arguments (G,E) where G

is the goal and E defines the expression to maximize (respectively minimize depending

on the need) and return the best solution for G. As well, many other generic functions

are usually available in CPs implementations and those represent a great advantage in

solving constraint problems since the user benefits from the existing generic constraint

solving algorithms which are at the heart of constraint solvers, as well as the available

built-in functions.

4.3.6 Usages and benefits

CP is recognized as one of the more exciting developments in the programming lan-

guages of the last decades and is becoming a method of choice for optimization problems

[10]. It has been described by the ACM as a strategic direction in the field of computer

search. Its utility has been proved in a large panel of real-world applications and prob-

lems. For instance, it is used in various fields such as civil or mechanical engineering, air

traffic control, finance and others, with implementations dedicated to various different

problems. Those classes of problems range from constraints satisfaction, planning/rout-

ing, computer-aided decision and verification tools, security analysis, consistency check-

ing, diagnosis and configuration. Moreover, the role of CP has been illustrated in the

field of biology for several use-cases such as network inconsistency detection, metabolic

network analysis and analysis of the dynamics of biological system models, as reported

in [111]. Reasons are directly related to the advantages of using CP. For example, devel-

oping prototypes is easy, and it is fast to build reduced versions of a final program. CP

improves flexibility, maintainability and modifiability of a program with a reduced cost,

due to the way constraints are encoded. Finally, the constraint solvers use efficient al-

gorithms from mathematics, artificial intelligence and operations research, consequently

the programs developed with CP have usually good performances.
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As shown previously, the problems addressed by CP are in the class of CSPs (con-

straint satisfaction problems) and solving such class of problems often requires using

a constraint solver, a program specialized in resolution of constraints. Known classes

of solvers are Boolean Satisfiability solvers (SAT) or constraint satisfaction problem

solvers. An example of a constraint solver dedicated to resolution of biological prob-

lems is BioASP[112], which implements methods for analysing metabolic, signalling and

GRNs.

Two classes of target problems for CP can be listed, addressing the modelling of

either discrete or continuous dynamics. As seen in Chapter 3, modelling of continuous

dynamics can be challenging, especially when lacking precise quantitative knowledge.

Modelling of discrete dynamics implies that some simplifications are made, for example

the use of a finite domain of values, a finite number of states and reactions, etc. See [113]

and [111] for examples. CLP is perfectly suited to address problems of finite domain

values and yet largely used to modelling problems in finite-domain. The programmer

can more easily model a constraint’s problem when the set of possible assignable values

is limited, at the opposite of problems involving continuous domain values. In addition

to being an advantage for the programmer, real problems are also simpler to solve when

the decisions they involve can be replaced by the tasks of choosing the value to assign

among a limited range of integers.

4.3.7 Complexity

The complexity of constraint problem solving is correlated with the number of vari-

ables and possible values, i.e., the amount of possible states for the problem representa-

tion. Reducing this amount also simplify the writing of rules, and consequently reduces

the amount of work performed by the constraint solver. There exist similarities between

CLP and other programming paradigms. First, CP requires enough practice from the

programmer, since this is a different programming paradigm. Second, there are vari-

ous ways to model the same problem and some strategies are required for an efficient

modelling. Choices made by the programmer, such as the set of user-defined constraints

and the set of variables, have a direct impact on the program efficiency. With enough

practice, CLP has a clear advantage for solving optimization problems or other prob-

lems of combinatorial complexity. Finally, the reader interested in CLP and solving of

CSPs can also refer to [9] and [114][chap. 5]. In addition, [10] is a good introduction

to CP techniques used for the modelling of CSP and makes and interesting comparison

between procedural and constraint programming paradigms for the modelling of similar

problems.
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4.4 Prolog

Prolog is a logic programming language developed in 1972, commonly used in field of

artificial intelligence and computational linguistics. It was one of the first logic program-

ming languages, along with Lisp (1958). It is used today for a large class of applications,

such as expert systems and theorem proving, but it was first intended to be used for

natural language processing. There exist other programming languages inspired at least

partially by Prolog, such as Logtalk[115]1 (1998) or Mercury[116]2. Since its creation,

Prolog remains the most popular among all the logic programming languages. There

exist multiple implementations of Prolog. Examples of major implementations are SWI-

Prolog3 (created in 1987), B-Prolog4 (1994), ECLiPSe5 (1992), GNU Prolog6 (1999) or

SICStus Prolog[117] (1988). Among those, some implementations provide a constraint

solver with the support of CLP, for instance B-Prolog and SWI-Prolog. B-Prolog and

SWI-Prolog have been considered in the context of developing BioNet in Chapter 5.

They are free and they both provide a good support for CLP over finite domains. Some

past benchmarks[118] report an advantage in performance for CLP B-Prolog while SWI-

Prolog is often referenced for its maturity (it has been developed in 1987), popularity

and user-friendliness (thanks to its graphical user interface). In addition to its support

for CLP, SWI-Prolog supports also many other libraries and has additional capabilities

such as the support of web programming. Both SWI-Prolog and B-Prolog seem to offer

interesting features for developing solutions to CSPs. However, for the development of

BioNet in 5, SWI-Prolog has been chosen for its maturity, its natural ability to support

of rule-based logic programming through its library clp(fd) dedicated to the CLP over

finite domains.

4.4.1 Usages

The literature refer to several usages of Prolog for analysing GRNs. Examples are

[119] in the context of analysing the HIV-Host protein interaction network, with a mo-

tif detection algorithm implemented in Prolog and used to search for network motifs.

Another example is given in [120] that describes an algorithm for determining the struc-

ture and parameters of Bayesian networks inferred from experimental data. It used the

PRISM framework [121], a probabilistic logical framework based on B-prolog that in turn

is a high-performance implementation of the Prolog language. In this work, the graph

1http://logtalk.org/
2http://mercurylang.org/
3http://www.swi-prolog.org/
4http://www.picat-lang.org/bprolog/index.html
5http://eclipseclp.org/
6http://www.gprolog.org/
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visualization software GraphViz7 was also used to display the networks reconstructed

from real data.

4.4.2 CLP(FD)

The constraint logic programming over finite domains (CLP(FD))[122] is an exten-

sion of Prolog, also proposed as a library in SWI-Prolog. Often used to model and solve

combinatorial problems such as routing, planning, scheduling and allocation tasks. It

is only one of the constraint solvers available in SWI-Prolog. Others are clp(qr), clp(b)

for handling respectively rational/real numbers and booleans. To activate the usage

of CLP(FD) in a Prolog program compatible with the SWI-Prolog implementation, one

needs simply to invoke the following command before editing/consulting a program with

constraints :

1 use_module(library(clpfd)).

With respect to the CLP paradigm, and the Prolog syntax, CLP(FD) allow constrain-

ing variables to a finite domain, by using essentially arithmetic and logical operators.

Introduction and examples for using this library can be found in [123, 124], as well as

advanced topics related to CLP(FD).

Due to its CLP capabilities, CLP(FD) brings a lot of features compared to Prolog.

Compared to Prolog, CLP(FD) is able to find solutions with a smaller amount of searches

and effort for constrained problems. Additionally, it is able to find solutions for problems

that Prolog cannot resolve. For example, faced to a problem such as : X − 3 = Y + 5,

Prolog is simply stuck :

1 ?- X - 3 = Y + 5.

2 false.

Prolog answers with false (no solution), while CLP(FD) answers with a solution :

1 ?- X - 3 #= Y + 5.

2 8+Y #= X.

For instance, CLP(FD) determines that X = 8 + Y .

7http://www.graphviz.org/
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4.5 From problem description to the solution

Remember the previous example of map-colouring problem of section 4.3 page 57.

The goal was to find an optimal assignment of colours to regions, with a finite set of

possible colours as well as a finite set of possible regions. It is very similar to the goal

of a CSP with finite-domain values, except that the goal is here to find an optimal

assignment for a finite set of variables, with a finite set of possible values. In CLP, the

process of solving a problem requires first capturing and modelling an idealised view

of this problem. This simplification approach is also used for other classes of problems

addressed by CLP. The task of constraint solving for finite-domain values is usually

performed by a labelling process. It is a built-in function of a constraint solver which

takes finite-domain variables as arguments and uses constraint solving techniques to

find a valuation for all these variables, resulting eventually in one or more satisfiable

solution(s).

At the opposite of traditional programs, where assignments of all variables are man-

aged by the programmer, those assignments are performed themselves by the constraint

solver. This make part of the high level nature of CLP languages. As a consequence,

modelling a simple constraint problem requires from the programmer to adapt himself

to this class of problem modelling which highly differs from the classical ones. The pro-

grammer has to translate the high-level problem description to high-level user-defined

constraints constructed from primitives constraints. In addition, he programmer will

have to determine the proper set of variables and values to keep the modelling as sim-

ple as possible, along with the goal to reduce as much as possible the amount of those

variables. Those variables can represent known or unknown elements of the problem, in

the second case variables imply an assignment is expected from the constraint solver.

4.5.1 Modelling with constraints

The first step of the modelling with constraints is to define the domain of values

as well as the variables that will contain the values of the problem and its solution.

Those variables can be defined independently or as a list of values. In the case of the

map-colouring problem, the list will be composed of the distinct regions to colour.

We could end with the following definition :

Constraints WA 6= NT ∧ WA 6= SA ∧ NT 6= SA ∧ NT 6= Q ∧ SA 6= Q ∧ SA 6=
NSW ∧ SA 6= V ∧Q 6= NSW ∧NSW 6= V
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Domain of values D(WA) = D(NT ) = D(SA) = D(Q) = D(NSW ) = D(V ) =

D(V ) = D(T ) = red, yellow, blue.

Those regions will be valued with integers since the problem will be modelled for

the finite domain, having each region mapped with a distinct integer. To implement

this CSP definition in the equivalent CLP(FD) program, one needs to proceed to a

translation. A CLP(FD) program is usually made of three parts, referred to as variable

generation, constraint generation and labelling, described as follows :

Variable generation This first part generates the variables and specifies their domain

values.

Constraint generation The second part generates the constraints over the variables.

Labelling This last part instantiates the variables by enumerating the values.

4.5.2 Translation and resolution in Prolog

The following Prolog program specifies the map-colouring problem, based on the

previous definition :

1 solve(Regions) :-

2 % variable generation

3 Regions = [WA, NT, SA, Q, NSW, V, T],

4 Regions ins 1..3,

5

6 % constraint generation

7 WA #\= NT, WA #\= SA,

8 NT #\= SA, NT #\= Q,

9 SA #\= Q, SA #\= NSW, SA #\= V,

10 Q #\= NSW,

11 NSW #\= V,

12

13 % labelling

14 label(Regions).

Then the call to the “solve” predicate results as follows :

1 ?- solve([WA, NT, SA, Q, NSW, V, T]).

2 WA = 1,
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3 NT = 2,

4 SA = 3,

5 Q = 1,

6 NSW = 2,

7 V = T, T = 1.

Where the integers can be mapped to the distinct colours.

4.6 Application to modelling gene regulatory networks

As CLP is used to solve many real world problems, it applies as well to solving

questions related to understanding of GRN dynamics. The most complex tasks related to

the modelling of GRN are the reconstruction of the network itself and the elucidation of

its dynamics, for instance, the identification of genes as well as their interactions. Other

recurring tasks are the validation of a model, as seen previously with the introduction

the model-checkers. Those tasks could be described as CSPs for finite domains. For

example, the problem of identifying the genes and interactions is similar to the problem

of identifying the values of unknown variables, where variables can represent arcs and

nodes in a network. Additionally, the tasks performed by model-checkers are similar to

finding a solution to a constraint solving problem : a model can be considered as valid

when all the constraints are satisfied.

Once these problems are modelled in the form of CSPs, many questions could be

implicitly solved. For instance, the wrong model parametrizations could be identified

and thus avoided. Similarly, the invalid network constructions can be eliminated to keep

only those which satisfy the inputs of the problem. Since the biology researcher can have

some knowledge or intuitions on the dynamics of a biological system, ones can imagine

those hypotheses to be modelled in the form of user-defined constraints. Depending on

the problem to solve and the studied biological system, the number of parameters of

the CSP could vary, as well as the hypotheses. However, the solving strategies are not

different. The task is usually the reconstruction of a GRN from a problem definition.

This definition can take into account the experimental data extracted from Microarray

analysis.

However, solving a CSP efficiently require the ability to constraint as much as possible

the search space of solutions. If this search space is not reduced, we end with a problem

known as the problem state explosion, faced by model-checkers when the amount of

variables in the system keeps growing. For instance, this state explosion problem can be

avoided in CLP approaches, by defining user-constraints on the gene expression levels,
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the strengths (weights) of interactions, or by defining hypotheses on supposed existing

nodes and interactions. As seen in the constraint propagation technique, existing con-

straints help to reduce the search space of solutions for other constraints. Remember

Thomas’ formalism described in Chapter 3 page 43, where a discrete model is used to

describe a biological system. In this context, as well as in the context of other discrete

models, CP can be useful. For instance, questions related to the understanding of reg-

ulation processes can be addressed using constraint solving techniques. Constraints can

define the regulation dynamics, in a way they would help to find a valuation for the rate

of synthesis of gene products as well as identifying the nature of interactions between two

components of the networks. In addition, constraint solving techniques as those studied

in this chapter can help to elucidate questions related to protein synthesis, gene/protein

interactions or find the right parametrizations of a biological system model regarding

the problem inputs.

In the literature, advanced uses cases involving the use of CP for studying GRN can

be found. In [125] Corblin et al. suggests an interesting method for analysing discrete

GRNs with model-checking, which can be also applied with CP. First, it consists in

finding the initial constraints for a model. Second, once these constraints have been

tested on a model, some other rules can be deduced. Then, if no model can be proved to

be consistent with those constraints, a few ones are relaxed, until the overall consistency

can be proven. As a consequence, a valid model is generated. When a model is eligible,

the next step is finding (infer) predictable properties of the model. If a property is

found to be true for many models, it is tested in experiments and then retained as a new

constraint for further selection of valid models. The last proposed step of this method

implies a restart of the model analysis. First, some constraints are removed from the

set of the previous analysis. Second, is performed a new analysis with this reduced set

of constraints which help to see which properties are conserved among various subsets

and/or models. If some properties are lost, some constraints can then be restored.

Another proposed improvement is to find which properties are conserved among those

various subsets and/or models and add them as new constraints.

A way to elucidate questions related to a biological can be to use CLPs to develop

tool with more user friendliness for the biology researcher. Since the constraints solving

techniques are generic and already implemented, they can be used even if the user is not

an expert in CP. Rather than limiting their scope to model checking or elucidations of

parameters, such a tool can be useful for suggesting a valid network construction, with

the purpose to allow the user to visualize it immediately. The GRN could be displayed

as a graph, such as those studied in previous chapters. In this context, the user would

be able to interact with the model-checker until the network and the models would seem

right. Based on the graph, the user could confirm or reject his initial assumptions on the
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model and its parameters and the tool could even help to find new candidate parameters

and user-defined constraints to apply to the current model for further experiments. In

the Chapter 5 page 75, those ideas are used as a base for the design of a new support

tool for GRNs.

An issue with solving CSPs is that a problem can have more than one solution.

Indeed, if a problem is under-constrained, multiple valuations can satisfy the initial

constraints. But it is also a clue that some additional constraints are required in order

to restrain the amount of solutions. Depending on the need of choosing between multiple

alternatives, the possibility of having multiple proposed solutions can be advantageous.

4.7 Conclusion

This chapter described how CP techniques can be used for solving real world prob-

lems as well as biological problems. CLP has a real advantage compared to other pro-

gramming paradigms since it solves problems without the need to write specific step-

by-step instructions for solving a problem. This is the reason why this programming

paradigm is used in various fields such as civil or mechanical engineering, air traffic

control, finance as well as many others. Targets for using CLP and constraint solving

techniques are often optimization problems and consistency checking. Examples are con-

straints satisfaction, scheduling/routing, configuration optimization as well as computer-

aided decision tools such as guided problem diagnosis. Many real worlds problems can

be modelled as CSPs. In this chapter the emphasis was set on resolution of CSPs for

finite domains. However, there exist other use cases of CLPs which are not covered in

this thesis. For instance the usage of CLPs for domains of boolean or continuous val-

ues. It has been shown that CLP is well-suited to address problems involving inference

of parameters. Examples are the map-colouring problem and the reconstruction of a

GRN where the elucidation of the best solution implies defining user-constraints, deal-

ing with unknown parameters and electing the best assignment options. In the context

of modelling the dynamics of GRNs which can be complex to model, CLP can be very

beneficial. It combines the advantages of logical reasoning and the ability to deal with

the uncertainty and constraints of complex problems. However, it requires learning a

new programming paradigm and new way of solving problems, which can be a good

investment given the advantages, but may be dissuading in the community of biology

researchers.



Chapter 5

Design of a support tool for gene

regulatory networks

5.1 Introduction

This chapter presents a new tool, BioNet, developed along with the writing of this

thesis. This is essentially a prototype aiming of helping the biologist researcher at his

work on regulatory networks. It uses CLP over finite domains for the solving of the

dynamics of a GRN. Starting from a set of user requirements, we describe the model

and user interface of BioNet, as well as the process used for the modelling of a gene

regulatory system in BioNet. At the same time, we describe the designed features. To

illustrate the features, we proceed to the modelling of gene regulation in the lac operon.

Then, we explain the tools and technologies chosen for building BioNet and we describe

its implementation. Finally, the chapter describes the advantages of BioNet, and some

clues are proposed for its further improvement.

5.2 User requirements

The goal of BioNet is to expect the least technical knowledge from the end-user, and

let him use the application via a simple user interface. The tool should produce results,

such as an inferred network, based on a specification provided by the user. The user

requirements of a such tool can be described as follows :

1. Since BioNet has the aiming of helping the biologist researcher to reconstruct a

GRN, the tool should at least help the user to verify the results. A way to achieve

75
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that goal is to let the user visualize the network topology as well as the interactions

between components.

2. Based on the user inputs and the provided experimental data, the tool can simulate

additional experiments and generate experimental data. Then, the user should be

able to visualize those experimental data, and correct his inputs consequently.

3. A biologist researcher has often to deal with uncertain and incomplete information

over the regulatory interactions, i.e., the nature of interactions between compo-

nents of the network. The tool should let the user to encode verified information

as well as unverified information. The verified information consists of real experi-

mental data and definition of regulatory interactions, while unverified information

consists of hypotheses on those interactions. The tool can produce results from all

these informations, then the obtained results should help the user adapt his inputs

consequently for next simulations.

4. The specification of user inputs should be a process as simple as possible, so that

they can be modified easily and the user could easier verify new assumptions.

5. The modifications of user input should be taken into account as soon as possible,

so that the user can quicker verify new assumptions.

6. Finally, the tool must help the user to adapt his inputs by proposing him some

clues and by inferring some properties from the results. For example, the tool

could propose to add some facts or hypothesis in the user inputs, based on the

previous obtained results.

5.2.1 Model

From a problem description, the tool must proceed to the reconstruction of the

network and the inference of unknown parameters, with respect to the user inputs.

Based on the user requirements, we can infer the need of the following inputs to model

a problem :

Gene expression data The complete set of gene expression levels measured through

experiments (via Microarray technologies). These data can be used for the recon-

struction of the network and consequently they should be as reliable and precise as

possible. Typically, the gene expression level of a gene can be defined as a triplet.

It consists of the gene identifier, the experiment identifier, and the expression

value.

Regulation rules Some rules over the regulation dynamics can be specified by the

user. For example a particular rule can define that when two specific genes a and
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b are expressed, a certain gene c should be inhibited/activated. As well, the rate

of inhibition/activation for this regulation dynamic can be specified.

User hypotheses Some hypotheses can be specified over the importance (weight) of

some interactions (relationships). For example, if we suppose the gene a has some

influence on gene b, we can define this as a hypothesis, and we can specify the

supposed importance of this influence. Then the tool can use this information

to compute the potential weights and deduce the expression values that could be

expected in future experiments.

Configuration Some additional parameters can be specified to constrain the solution,

such as the minimum/maximum weights of interactions, the minimum/maximum

node expression levels, the default rate of inhibition of some genes in the regulation

processes as well as any useful parameter that can differ from a modelling to

another.

An example of encoded user input is illustrated in Figure 5.1 page 78.

5.2.2 User interface

We propose in BioNet a user interface quite simple, and even minimalist, based on

the user requirements described in section 5.2 page 75 and the user inputs described

in section 5.2.1 page 76. It consists in a webpage letting the user entering a problem

description, visualize the inferred GRN and the generated gene expression data. In

addition, some rules proposed by the tool may appear in the main page.

A advanced editor is proposed to let the user enter a problem description in addition

to experimental data, or adapt the BioNet configuration :

The Network visualizer displays the network inferred from the user inputs and con-

figuration. An example is illustrated in Figure 5.2 page 79.

Finally, the gene expression levels computed by BioNet are displayed in a chart. It

shows the values of gene expression levels through the known experiments. An example

is illustrated in Figure 5.3 page 80.

5.3 Modelling process in BioNet

The following subsections describe in details how the user inputs described in sec-

tion 5.2 are modelled in BioNet.
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Figure 5.1: BioNet - User inputs and configuration

5.3.1 Gene expression data

BioNet infers a network from the given expression data provided by the user. Since

CLP(FD) works with integers, the values of gene expression levels need to be in the form

of integer values. However, most of the time, the gene expression datasets available in

the literature and existing databases provide values in the domain of continuous values.

As a consequence, those data need to be normalized before being used in BioNet or

any other tool that works only with integer values. This issue can be solved by using

various existing techniques from the fields of statistics, as seen in the previous chapter 3.

There exist numerous techniques with arbitrary parametrizations and different results,

especially for the elimination of inherent noise. It is also complex to determine what is

the best technique to apply. Consequently, rather than normalizing the gene expression

data with a specific technique, BioNet lets the user choosing his normalization tool

and performing by his side. As a consequence, no such technique is applied in BioNet

on the inputs. Those data should be normalized and given to BioNet in the form of

integer values. Fortunately, BioNet let the user specifying the minimum and maximum
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Figure 5.2: BioNet - Visualization of a reconstructed network

bounds of values in the BioNet’ parameters, which leaves for the user a certain room for

manoeuvre to constrain the number of different possible accepted input values.

In BioNet, the expression level of a gene xi ∈ X at time j ∈ T , also described as

vi(tj), can be described as exp(xi, j, vi(tj)) or, in Prolog syntax :

1 exp(1,2,3)

It describes that the expression level of gene 1 at time 2 is equal to 3. Here, the node is

identified by a number since CLP(FD) work with integers.

While the expression levels bounds are some independent parameters and can be

specified as the following :

1 param(minvalue, 0)

2 param(maxvalue, 1000)

The full set of supported parameters is described in subsection 5.3.5 page 82.
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Figure 5.3: BioNet - Visualization of inferred gene expression data

5.3.2 User hypotheses

As described previously, the user has the ability to specify some hypotheses over the

importance/weight of the relationships between nodes. For example, we can define that

a node a has an influence on a node b and that this influence has a weight supposed

between 2 and 4. This hypothesis can be defined as edge(a, b, 2, 4), a, b ∈ X, while it can

be defined in Prolog syntax as follows :

1 edge(1,3,2,4)

Where the numbers 1 and 3 serve to identify the nodes by their numerical identifier.

5.3.3 Regulation rules

The user has the ability to enforce some rules in BioNet. Those rules describe

dynamics that could not be described by simple hypotheses. Those rules can be defined

in Prolog syntax as follows :

1 activate([1,2],[3],1)
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This rule defines that if both nodes 1 and 2 are expressed (node expression level > 0) in

an experiment at time t, it will increase the expression level of the node 3 in the next

experiment at time t + 1. In other words, the expression level of node xi is defined by

vi(tj+1) >= vi(tj) + k, j ∈ T, xi ∈ X where k denotes the rate of activation.

The same logic can apply for the following rule, whereas the simultaneous expression

of nodes 1 and 3 in expression values measured at time t decreases the level of targeted

node 2 in the expression values measured at time t+ 1.

1 inhibate([1,3],[2],2)

In other words, the expression level of node xi is defined by vi(tj+1) <= vi(tj)− k, j ∈
T, xi ∈ X where k denotes the rate of inhibition.

Finally, the following rules defines that a node xi can activate himself in the current

experiment when its expression value is equal to 0 in the previous experiment.

1 autoactivate([1],[1],4)

5.3.4 Resolution with CLP(FD)

First, the user inputs and the BioNet configuration are encoded by the user, and

then they are read and checked by BioNet before the resolution process. Then, BioNet

initiates to the resolution itself. During this process, BioNet attempts to identify first the

suspected relationships (the existing edges between nodes). Then, he identifies the types

(activation, inhibition) and the importance (weight) of any of those relationships. Third,

BioNet computes the possible gene expression data of future experiments. BioNet is able

to generate gene expression data for as many experiments as asked by the user. Finally,

BioNet identifies some additional rules that could be interesting for future experiments.

Practically, BioNet proposes a rule only if this rule can explain a recurrent phenomenon

that can be observed in the given or generated gene expression data. For example, if a

gene seems to be inhibited as soon as two other genes are expressed, and if this property

can be verified by BioNet among multiple experiments, BioNet may propose a rule as

follows :

1 inhibate([1,3],[2],2)

Where 1 and 3 identify the inhibitors, and 2 identifies the inhibited gene.

The resolution ends as soon as BioNet has found a satisfiable solution for those

parameters. At the end, the content of this resolution consists of :
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Inferred network The reconstructed GRN as proposed by BioNet. It consists in the

set of relationships (edges) between the nodes and the properties of those rela-

tionships. An edge, which defines a relationship between two nodes, is associated

with a weight and the nature of the relationship (activation, inhibition, auto-

activation). Some relationships can be suggested by BioNet, while other relation-

ships are simply taken from the hypotheses of relationships as encoded by the user

in the problem input.

Gene expression data The combination of the initial expression data and the gener-

ated expression data if asked by the user. It consists in a set of experiments, and

in turn each experiment consists in a set of expression levels for distinct genes.

The values of those expression levels are comprised between the intervals specified

by the user in the BioNet configuration (see subsection 5.3.5 page 82).

Suggested rules It consists in a set of rules proposed to the user by BioNet. Those

rules define some properties which have been verified a certain amount of times in

the experiments.

The full resolution process is performed by SWI-Prolog by using the CLP(FD) li-

brary. As a consequence, the resolution process can be called from the SWI-Prolog

command-line or even from the SWI-Prolog user interface. As well, the user inputs and

the result of a resolution are in the syntax of Prolog. Examples of such inputs and

outputs can be shown in appendix A section A.1 page 105.

5.3.5 Configuration

The values of BioNet configuration can be specified along with the user inputs.

This configuration has a significant impact on the network reconstruction, the form of

generated expression data as well as the set of possible values for the inferred weights

of relationships. The following list defines the set of parameters taken into account by

BioNet :

maxtime defines the number of experiments which need to be used or even generated.

BioNet is able to generate the missing experiment values if needed, based on the

provided expression values, the user hypotheses and the user rules. BioNet is able

to generate as many expression data as allowed by this parameter. So, if the user

provides the expression values for 5 experiments, but needs a simulation of the

expression values of five more experiments, it can set this parameter to 10. In

BioNet, an experiment can be defined as the set of all expression values measured

at a specific time t ∈ T .
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minweight the minimum possible value allowed for the weight of a relationship. It

also defines the minimum value that can be used for the inference of unknown

relationship weights.

maxweight the maximum possible value allowed for the weight of a relationship. It

also defines the maximum value that can be used for the inference of unknown

relationship weights.

minvalue the minimum possible value allowed for the expression level of a node at

any time. It also defines the minimum value that can be used for the inference of

unknown expression levels.

maxvalue the maximum possible value allowed for the expression level of a node at

any time. It also defines the maximum value that can be used for the inference of

unknown expression levels.

minrequiredweight the minimum possible value taken into account for the weight of

relationship in BioNet. The lowest values will be ignored during the process of

network inference as well as for computing gene expression levels.

minactivatorweight this parameter defines the minimum required weight of a rela-

tionship to be taken into account.

minrequiredexpressionlevel This parameter defines the minimum required expres-

sion level for a node to be considered as expressed.

minoccur this parameter is used by BioNet to suggest only rules that could be verified

as true at least n times where n is the parameter value.

weightsfromrules This parameter, when activated, forces BioNet to infer weights on

relationships from the set of user-defined rules. Indeed, an user-defined rule spec-

ifies also a weight, which is this context can be used. It is useful when no weight

hypothesis is defined by the user, and when the amount of provided experimental

data is not sufficient for BioNet to infer weights on relationships. Allowed values

are : {0, 1}.

defaultinhibitionrate if asked, the gene expression level of a node can naturally de-

crease each time the node is not activated by other nodes. This parameter defines

the rate of this natural inhibition.

defaultactivationrate if asked, the gene expression level of a node can naturally in-

crease each time the node is activated by other nodes. This parameter defines the

rate of this natural inhibition.
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The configuration of BioNet must be encoded by the user in the syntax of the Prolog

language. An example of configuration in Prolog syntax can be found in appendix A

section A.3 page 107.

5.4 Modelling of the lac operon in BioNet

To illustrate some capabilities of the current tool, we proceed to the modelling of gene

regulation in the lac operon, already described in Chapter 2 subsection 2.11.3 page 24.

The modelling is inspired by [74] where Franke et al. proceeded to the modelling of GRN

by using Thomas’ formalism.

A necessary step of the modelling is to proceed to identify the important components

and their relationships. The important elements in this regulatory system are described

below:

1. lacZYA mRNA : the rate of transcription of the three structural genes to mRNA.

2. lacI : expression level of the lac repressor lacI.

3. lacY, lacZ : the concentration of lacY and lacZ products (the enzymes).

4. lactoseInt : lactose present in the cell.

5. lactoseExt : lactose present in the medium of the cell.

6. allolactose : allolactose present in the cell.

7. cAMP : the activity of cAMP complex.

8. lac operon : considered as active when lacZ and lacY are activated.

9. lacZYA : represents the state of the genes lacZ, lacY and lacA.

Then, the most important interactions are summarized as follows :

1. The translation of lacZYA to mRNA and then to proteins results in the production

of three enzymes : LacY permease, LacZ β-galactosidase and LacA thiogalactoside.

2. the lacZYA mRNA is only produced under the condition when LacI is inactive,

not bound to the lac operator lacO, the three structural genes of lac operon are

present and CAP binds.

3. when cAMP is bound to CAP, they form the CAP-cAMP complex, which is able

to initiates the transcription of genes to mRNA.

4. The LacY permease enables the entry of the lactose from the medium into the cell.

5. Allolactose is produced as a by-product of lactose metabolism if lactose is present

in the cell and if β-galactosidase LacZ is expressed.

6. The repressor LacI is activated when allolactose is present and bound to it.
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The important elements and relationships of the GRN will be specified in the user

inputs of BioNet, with respect to the syntax presented in section 5.3 page 77. In order

to simulate the dynamics of the digest of lactose, our scenario consider the lactose as

present in the medium of the cell from the beginning. Similarly, the three structural

genes of the lac operon as well as the cAMP are considered as active and expressed from

the start. At the opposite, the other components will be unexpressed from the start.

Regarding the dynamics of the network, we can expect the concentration of lactose in

the medium of the cell to decrease while the enzyme produced by the gene lacY is present.

We did not provided any additional data to BioNet, only the initial expression levels

are encoded. They represent the expression levels at time t = 1. For our scenario, we

ask BioNet to compute the data of 15 experiments. BioNet is able to compute the gene

expression levels of experiments 2−15 based on the experimental data, the relationships,

the weights of those relationships as well as the rules and other parameters encoded by

the user. To keep the lac operon active during those experiments, we artificially ask

BioNet to increase the concentration of lactose after a while, for instance around the

10th experiment, as specified in the user inputs.

Finally, some arbitrary parameters have been determined for the current scenario.

They are be illustrated in Figure 5.4 page 86. In addition, the code of those parameters

is available in appendix A, section A.5 page 119.

Based on the provided parameters, BioNet infers the network shown in Figure 5.5

page 87.

BioNet displays a chart of the node expression levels through the successive experi-

ments. Since only some experimental data are provided at the beginning (for instance,

at t = 1), BioNet inferred the rest of experimental data. The result is illustrated in

Figure 5.6 page 87. As expected, since the enzyme produced by the gene LacY is active,

it enables the entry of lactose from the medium into the cell. Consequently, the concen-

tration of lactose in the cell increases while the concentration of lactose in the medium

of the cell decreases. After a while, the concentration of lactose in the medium of the

cell go back to its maximum level of expression, as specified in the user inputs.

Finally, based on the observations inferred from experimental data, BioNet may

suggest some rules. For instance, a rule is suggested as seen in Figure 5.7 page 88.

This example permits observing some capabilities of BioNet, for instance in the con-

text of modelling the lac operon in Escherichia coli. From a small dataset, BioNet has

proceeded to the simulation of a small regulation system for a particular scenario. As

expected, the rate of lactose in the cell has increased. However, this is a simple sce-

nario. The modifiability of BioNet parameters offers many modelling and simulations
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Figure 5.4: BioNet - Parameters for the modelling of the lac operon

possibilities, for various scenarios. Indeed, there exist numerous parameters combina-

tions, and the user is free to adapt them as much as he wishes, depending on the goals.

Consequently, the results of a modelling must be taken with caution.

5.5 Architecture

As described in section 5.2 page 75, the goal was to expect the least technical knowl-

edge from the end-user, to let him use the application, interact with it through a simple

user interface, and access to the application via a web browser. So, the emphasis has

been to let the end-user interact with the application without installing anything on his

computer excepted a browser and without being aware of the existence of the technical

details. The technologies and tools retained allow to achieve the construction of BioNet

with respect to the user requirements. The result is the architecture shown in Figure

5.8 page 88, and its components are described below.
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Figure 5.5: BioNet - Inferred network for the Lac operon

Figure 5.6: BioNet - experimental data measured

5.5.1 Prolog

The kernel of SWI-Prolog is used to support execution of the models written in

Prolog and in addition provides the capacity of constraint solving to resolve user queries

on the model. The SWI-Prolog kernel plays a central position in this architecture, since

all the user inputs have to be translated into Prolog syntax language, in the form of

logical constraints and predicates. Those constraints and predicates will be internally
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Figure 5.7: BioNet - Based on the generated experimental data, a rule is suggested.

Figure 5.8: Global architecture of BioNet

instantiated and processed in the core SWI-Prolog. Once processed, all possible solutions

will be returned in a higher level form and returned to the caller. In this context,

the caller will be the server/controller, executed by the Java virtual machine (JVM)

(JVM). Since Prolog and Java are different technologies that are not intended to interface

each other naturally, a prerequisite is to have a mediator able to let both technologies

communicate. The JPL (Java-calls-Prolog API ) [126] hides the low level aspects and

provides a bridge between Java and Prolog via a high level Application programming

interface (API). Consequently, it is possible from Java to use advanced SWI-Prolog

modules as the module for constraint logic programming.

5.5.2 Java

The choice of Java technology for the server part has been made regarding to its

portability, popularity and maturity. Java can easily handle various sort of tasks and an

Java implementation can be easily adapted to the situations as from the processing of

large amounts of user queries quickly or interfacing with another language and support
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changes. In addition, a lot of bridges to another technologies have been developed for

Java, and even several Prolog engines provide Java bridges, including B-Prolog and

SWI-Prolog engines. Some Prolog implementations have even been written entirely in

Java, as tuProlog1. Regarding the current architecture, the Java controller plays mainly

the role of carrying user queries from the user interface to the model checkers written

in Prolog, in the SWI-Prolog engine, thankfully to JPL. Additionally, since the engine

written in Prolog is separated from the Java part, and since the Java part is only used for

the server layer, it is possible to implement a user interface independent from the Java

technology. In the large, it could be possible to evolve a specific layer of the architecture

without this change would even affect the others. The Java code used to interact with

SWI-Prolog via JPL is partially shown in appendix A section A.6.2 page 123

5.5.3 Server

The server part is written in Java and is deployed on a local Apache Tomcat server.

It serves first as a request handler for any incoming query from the user interface to

the server, and from the architecture perspective, the server part is composed of a

service layer and a controller. The controller is the part that check syntax and semantic

of those user queries before they are processed. It also ensures the result to return

the expected queries results to the effective caller (user interface, or simply user). The

service layer is responsible for exposing a language-independent interface to interact with

the system, under the form of a REST API. Representational State Transfer (REST) is

an architectural style that has gained popularity as an alternative to existing services

protocols based on SOAP and WSDL. It is a set of guidelines and recommendations

for designing and creating web services. REST APIs, applied to a service layer, are

essentially based on standard HTTP methods like GET, PUT, POST and DELETE to

respectively execute retrieve, update, create or delete operations on the server. Resources

in a REST API are usually defined and acceded with standard URIs used in combination

with a specific HTTP method. For example

GET http://www.website.com/rest/bio/

where GET specify the request type, will ask the server to simply return the content at

this URI, since the GET method has been used.

Out of these technical details, a REST architecture must support a set of properties

and constraints. These properties include code and data portability, reliability of the

system, modifiability of the components to support changing needs, and simplicity of

1http://tuprolog.alice.unibo.it/
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exposed interfaces. Additionally, a REST architecture must follow a set of constraints,

including the following :

Client-Server The client and server parts are separated and their communication with

each other should involve a common interface. This separation of concerns improve

the portability of the client and the modifiability of the overall system, since each

part could be potentially modified internally without affect the other. The server

is not concerned by the user interface, and neither is the user interface concerned

with data storage. Since the interface is the only common part between these two

layers, it is also the only part where changes would affect both client and server

sides of the system.

Stateless The stateless constraint means that no client context or session is saved on

the server between requests. Each request from the user interface needs to be self

sufficient, i.e., it should be informative enough to be processed in any conditions,

independently from the server state. It also means that any request could be

persisted somewhere, for example in an external database, for later reuse, since

a request is context-independent. As a consequence, the client is responsible to

handle a bit of application state to be able to send valid requests to the server, with

valid context embedded in the request. The client has to handle the logic of state

transitions between the requests, which means it has to save the context related

to the user session and has to choose when to make a change in this context, as

well as initiate state transitions and knowing when to make new requests. It can

be argued as if no context was managed at client side, the client would endlessly

send the same request with the same inputs and context to the server, and in

consequence would obtain the same results from the server, since nothing would

have changed in the context between two requests on server side. However, it is

only a minor burden for the client while the number of distinct states does not

increase too much, and since it offers a lot of advantages.

Cacheable Optionally, the client could save the response received from the server,

under the condition that those responses are defined as cacheable. If enabled, it

can be useful to reuse a previous response to a request, but it can be disabled

to prevent reuse of obsolete response and to force the client to always use up-to-

date data. When enabled, each request to the server is returned with a response

containing a mention of the last time that resource was updated, and in turn the

client can request the server to return an up-to-date response. When fully handled,

the caching can reduce or even eliminate the amount of needed requests.

Layered System In the case of a multiserver architecture, the client should not know

if it is connected to an end server or an intermediary server. With several servers
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involved, the system scalability would be improved. Several servers could share

common resources caches and ensure failover according to each other, consequently

if one server would fail or become overloaded, another would be ready to answer,

without requiring any change from the client side.

These constraints should not be considered as a burden. Regarding the current ar-

chitecture, these constraints have helped to develop a more robust, modifiable system

in addition to increase its portability. The architecture allows any client application

developed in another technology to interact with the current system through the pub-

lic interface, and indirectly invoke the Prolog engine. The stateless aspect reduce the

costs of handling context on the server, as well as the overall complexity of the server.

However, since no context is saved on server-side, the system requires from the client

to provide enough information within each request, at the cost that each request is a

little heavier compared to a classical client-server architecture where all this context

information is already persisted on server-side and does not have to be provided each

time. It is only a problem regarding the costs related to network bandwidth, and only

if it represents an expensive resource for the system supporting this architecture.

The cacheable constraint is not fully supported by the current architecture since it

is optional and offers no particular value in this case, since the users will essentially

work with updated resources and update existing ones. However, the caching has been

implemented somewhere else on server-side, in order to reduce at least a bit the time

needed to load some Prolog programs. Each time an instance of a Prolog program (or

database) is required, it is also saved in cache for further reuse.

Finally, having a layered system is a great advantage when the resources are sufficient

to support a multi server architecture with failover and load balancing techniques. The

current system does not handle this scenario but this could be an improvement.

The Java code of a REST provider of BioNet is shown in appendix A section A.6.1

page 120. It is used to serve BioNet configuration files from the server to the client via

the REST API.

5.5.4 User interface

: Separated from the Java and Prolog engines, the user interface is responsible for

providing a visual representation of the model the user is working on. It allows the user

to enter some queries (see Figure 5.4 page 86), forwards those queries to the server and

handle the server response. For instance, it renders the network as well as a chart with

the generated experimental data.
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When the user submits a query, and once the server response has been treated,

the network is automatically refreshed. The tools used to render the interface include

JavaScript libraries and simple HTML pages. For instance, the display of the GRN is

performed by a JavaScript library, Vis.js2, well suited for interacting with networks. The

choice of this library has been made after a comparison with many ones, such as D3.js3,

Sigma js4, JoinJS5 Cytoscape js6 and linkurious.js7. The goal was to offer a modern

tool for graph visualization in a web browser. Vis.js was retained for its qualities, since

it provides the essential required features of BioNet and it is quite simple to configure.

Currently, the user interface of BioNet can only be acceded via browser based tech-

nologies but this is an advantage since it allows the user to interact without requiring

from him more than a web browser. Vis.js lets the user interact in real-time with the

graph, which was one of my expectations. At the opposite, numerous graph rendering

tools deny any real-time modification from the user. In BioNet, we consider the inter-

face as a playground for the user and wanted him to be able to interact as much as

possible and give him as much control as possible on the model. Vis.js allows real-time

modification of a graph and has other capabilities. However, Vis.js is not used to its full

potential, indeed the initial goal was to let the user interact modify the model by simply

manipulating the nodes, relationships and weights with his mouse. Hopefully, the code

of the user interface is quite simple and easy to extend. The JavaScript code used to

start the network visualizer is partially shown in appendix A section A.8.2 page 128.

In addition, the Ace8 JavaScript editor is used to let the user encode user inputs

in BioNet. The JavaScript code used to start the code editor is partially shown in

appendix A section A.8.1 page 127.

Finally, the Highcharts9 JavaScript library is used for the rendering of gene expressed

data. Highcharts provides a lot of advanced features for charts visualization and was

retained for its simplicity as well as its good documentation.

5.5.5 Messages

: The communication between the server-side and the client-side parts is essentially

made using asynchronous requests from the user interface to the server. Those requests

2http://visjs.org/
3http://d3js.org/
4http://sigmajs.org/
5http://www.jointjs.com/
6http://js.cytoscape.org/
7https://github.com/Linkurious/linkurious.js
8http://ace.c9.io/#nav=about
9http://www.highcharts.com/

http://ace.c9.io/#nav=about
http://www.highcharts.com/
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serve to transmit the user queries between the different layers, i.e., from the frontend

layer (client) implemented in JavaScript to the server layer implemented in Java. For

this purpose, a common message description language is required to facilitate this com-

munication and describe the messages. The JavaScript Object Notation (JSON) format

has been retained among other existing solutions like XML. It is an open standard for-

mat, derived from the JavaScript notation and consists in human readable text and

which is language-independent.

An example of JSON data is shown below :

1 {"network":[{

2 "name": "Lac Operon",

3 "nodes":[{

4 "label":"’lacZYA mRNA’", "type":"node","value": 0

5 }, {

6 "label":"’LacI’", "type":"node", "value": 0

7 }, {

8 "label":"’lac operon’", "type":"node", "value": 0

9 },{

10 "label":"lacZYA", "type":"node", "value": 0

11 }],

12 "edges":[{

13 "from": {"label":"lacZYA", "type": "regulator", "value": 0},

14 "to": {"label":"’lacZYA mRNA’", "type": "regulated", "value": 0},

15 "label": "+",

16 "weight": 1

17 }],

18 "rules":[

19 "activate([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1, 2, 3, 4, 5, 7, 9])"

20 ],

21 "measures":[{

22 "experimentId":"1",

23 "name":"’lacZYA mRNA’",

24 "level":0

25 }]

26 }]}
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For instance, this example is a small part of a real message exchanged in BioNet

between the server and the user interface (web-browser). It describes, partially, the

model of the regulation in the lac operon as modelled in section 5.4 page 84.

JSON is already natively supported by some languages, and in other cases numerous

languages are able to deal with JSON encoding/decoding since extensions and libraries

have been developed to support this format. Even recent web browsers have included

native support of encoding/decoding JSON. In the current model, each user query can

be described as a message in the JSON format. This format is not new and is already

used in many cases, for example in Ajax techniques for cases where new data need to

be displayed in a web page after this page has already been loaded and displayed (at

least in part). JSON being lighter than XML, it has spread in many cases involving web

technologies.

5.6 Implementation

5.6.1 Prolog Implementation

The complete BioNet Prolog source code is shown in appendix A section A.4 page 108.

The main Prolog predicate is shown below, while its definition can be found in ap-

pendix A section A.2 page 105, as well as examples of input and output of the resolution.

1 solve(WeightMatrix, Relationships, Predictions, SuggestedRules).

5.6.2 Server and user interface

Parts of the source code of server and user interface are shown in the appendix. For

instance, some examples of the Java source code are shown in appendix A section A.6

page 120. In addition, some examples of the JavaScript source code are shown in ap-

pendix A section A.8 page 127.

5.6.3 Dependencies

BioNet has been developed and tested on Windows 7, with Eclipse IDE. The devel-

opment environment of BioNet depends on the following tools :

1. Java SE Development Kit (JDK)10

10http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
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2. SWI-Prolog11 : a complete Prolog environment for Windows, Linux and Unix.

3. JPL12, embedded as a library (jpl.jar) in the SWI-Prolog installation directory.

4. Eclipse IDE with Java development tools 13.

5. Gradle14 : A build automation with dependency management capability. It is used

as a builder and dependency management tool for BioNet. The plugins for Eclipse

IDE may also be useful. They can be found in 15.

6. Apache Tomcat (optional)16 : an open source Servlet Container.

7. Misc. Java libraries : Once installed and configured, Gradle automatically col-

lects the remaining Java dependencies, such as specific Java libraries required for

BioNet.

The assembly of BioNet is automated by Gradle, which allows defining Java depen-

dencies in a configuration file, as shown in appendix A section A.7 page 126. Gradle

is configured to build BioNet as a web archive (.war) and then deployed on a Servlet

Container such as Apache Tomcat.

5.7 Limits and perspectives

BioNet benefits from an advanced but quite simple architecture, a specific user in-

terface addressing the user requirements, and proposes simple but configurable features

for the modelling of GRNs. However, this tool is still a prototype with limited features,

that have been tested for particular scenarios. Some features initially intended have

not been developed for the current release and some limits may appear. This section

describes some of those intended features as well as possible perspectives for the further

improvement of BioNet.

Interface The encoding of user inputs as well as the configuration could be made easier.

At this time, the modifications of inputs and configuration are performed via a

Prolog editor embedded into BioNet as seen in Figure 5.1 page 78. The initial scope

of BioNet was to provide an advanced user interface allowing the user to retrieve

datasets from external databases and encode user rules and hypotheses via an

advanced editor. For example, the gene expression data as well as an existing

problem definition could be retrieved from BioNet. However, the development of

those features would require additional work and time. In addition, the first goal

11http://www.swi-prolog.org/
12http://www.swi-prolog.org/packages/jpl/
13https://eclipse.org/downloads/
14https://gradle.org/
15https://docs.gradle.org/current/userguide/eclipse_plugin.html
16http://tomcat.apache.org/

http://www.swi-prolog.org/
http://www.swi-prolog.org/packages/jpl/
https://eclipse.org/downloads/
https://gradle.org/
https://docs.gradle.org/current/userguide/eclipse_plugin.html
http://tomcat.apache.org/
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of BioNet, which is a prototype, is providing a tool for inferring network topology

and parameters from inputs, and it has been achieved. Hopefully, BioNet is a

flexible tool and can still be improved if needed.

Configuration of regulation dynamics The simplicity of BioNet is an advantage,

since it is perfectly suited for the qualitative modelling of simple GRNs. How-

ever, in its current configuration, BioNet only handles some regulatory interac-

tions, such as single/cooperative activation, inhibition, as well as self-inhibition

and auto-activation. Similarly, due to its deterministic nature, it cannot be used

to model asynchronous interactions or probabilistic/stochastic dynamics studied

in the Chapter 3. However, the dynamics of the regulation in a real biological

system are more complicated, as described in Chapters 2 (page 5) 3 (page 29) and

still not well understood. The modelling proposed by BioNet is simple and remains

not sufficient to replace or complete the existing formal tools and simulation tools

available for the modelling of biological systems. Hopefully, new regulation dy-

namics could be modelled in BioNet in addition to new configuration possibilities,

with a bit of additional effort. In any case, it is essential to provide a large set

of configurable parameters, regarding to the constant improvement in the under-

standing of gene regulatory networks and the need of adapted features to obtain

accurate results.

Architecture In order to have a fully compliant REST architecture, some constraints

could be better supported. For example load balancing and failover, or a better

caching system. Those improvements involve choices and little transformations

of the current architecture. For the caching system, it could imply to manage

multiple access to cached Prolog databases, which involves a better interfacing

with the SWI-Prolog engine. However, the JPL interface could fail in some cases

at handling concurrent access to the same Prolog resources and multiple open

queries at the same times. With more investigations on this part, the caching

system could be improved and the application could be able to support a greater

volume of requests to the same resources in shorter delays.

Data normalization and noise cleansing As seen in Chapter 3 page 31, the inher-

ent noise in the gene expression data is a recurrent problem related to the limits of

the techniques used to collect those data. It results in observable inconsistencies

and contradictions when multiple datasets from different databases are compared

each other. It is a problem when, for or a same experiment, a gene is shown as

expressed (respectively repressed) in a dataset and unexpressed in another one.

Multiple factors are responsible for this noise, and generally particular data anal-

ysis methods are required to clean this noise, with varying results in the quality
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perspective. The current implementation does not provide such noise-cleaning fea-

ture, and consequently we consider the data as already normalized before being

used in BioNet.

APIs The architecture was initially intended to support interactions with external APIs

but it was not a fundamental prerequisite of a fully functional system and can be

more considered as an extra comfort. However, with additional development, inter-

faces to external API could be an interesting investment of effort, as some external

biological databases could be queried to provide some real data and provide a base

to work with. As an example, pathways could be retrieved from KEGG 17 or

datasets of expression levels could be retrieved from GEO18.

5.8 Conclusion

This chapter presented a support tool with aiming of solving questions related to

the study of GRNs. We started with a list of user requirements for this tool, then we

inferred the model and user interface from the requirements. We presented BioNet, a

tool designed to help biologist researchers at their work on GRN, and we described its

main features, as well as the process of modelling in this tool. This tool was intended to

be easy to use for the user and its user interface benefits from a simple but user friendly

interface built upon advanced JavaScript libraries. The current version enables him to

interact with the user interface of BioNet via a web browser. From a problem description

encoded in BioNet via his web browser, the user has the possibility to visualize the

inferred network and the nature of the interactions involved in that network. In addition,

BioNet proceeds to the simulation of the gene experimental data and gives some clues to

the user to adapt his problem description regarding to the observed experimental data.

To illustrate the features of BioNet, we studied the modelling of the gene regulation

in the particular case of the lactose metabolism, for instance the digest of the lactose

in the lac operon. We observed from this simple example that BioNet can be used

to simulate interesting behaviours and improve user models. Then, we described the

architecture used for the building of BioNet, including the key tools and technologies

involved. For instance, we showed how Java interacts with the Prolog part of BioNet via

SWI-Prolog and its CLP(FD) library, that provides the constraint solving capabilities

of BioNet. Finally, we exposed the advantages and limits of BioNet, and we proposed

some perspectives for further improvements.

17http://www.genome.jp/kegg/
18http://www.ncbi.nlm.nih.gov/geo/





Chapter 6

Conclusion

In this thesis, interest was focused on the study and modelling of gene regulatory

networks (GRN). Many tools have been developed to model the complex mechanisms

involved in the regulation of gene expression. However, the study of GRN is still complex.

In this thesis, we propose a new approach to answer the complex biological questions,

by using a promising programming technique. Then we present a prototype, BioNet,

that we designed as a support tool with aiming of helping the biological researcher at

his work on GRNs.

In the first chapters, we explored the main aspects of the study of biological systems,

with the emphasis on GRNs. We defined the most important mechanisms involved in

regulation of gene expression in living organisms and then we described the issues faced

by the biologist researchers to understand those phenomenons. We showed that the main

issues are related to the complexity and the nature of the studied mechanisms, especially

when lacking consistent or quantitative data and knowledge on the studied phenomenons.

To address those issues, numerous formalisms and tools have been proposed in the

last decades. However, those modelling and simulation tools are limited and address

only partially those issues. For instance, the modelling and study of GRNs remains a

challenge, even with large amount of data available. Many questions are very difficult

to answer without clues or the sufficient knowledge, and the elucidation of the nature of

interactions in GRNs often requires intuition from the biologist researcher.

In this thesis, we presented the advantages of constraint logic programming (CLP),

a promising programming paradigm well suited for the solving of complex problems

with many unknowns. CLP is already used in various fields to solve various real world

problems. Interest was focused on the ability of CLP to solve biological problems, with

the emphasis on GRNs. We described the essence of constraint logic programming

techniques and illustrated the modelling of a problem in the syntax of a constraint

99
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programming language, on the basis of the problem description. Finally, we used those

programming techniques for the design and the building of BioNet, a prototype of a

support tool, with interesting capabilities. We presented its model and user interface,

as well as the highly configurable features provided to the user for the modelling of

GRNs. We illustrated the ability of BioNet to model the regulation mechanism with

the example of the lac operon and a particular scenario related to the mechanism of the

digest of the lactose in bacterium Escherichia coli.

From that point, we have taken the opportunity to criticize the results. Based on the

simulation of experimental data performed by BioNet, we observed that BioNet is able to

model and simulate simple regulation mechanisms. However, the results should be taken

with caution. BioNet is still limited to a qualitative modelling of GRNs and does not

cover all the features of other modelling tools. For instance, it does not support modelling

of stochastic or asynchronous interactions. Hopefully, Bionet is highly configurable,

and its advantageous architecture allows possible extensions. Since BioNet is still a

prototype with a reduced set of features, we have taken the opportunity to propose

some improvements, with the expectations that the missing features can be developed

to enable the use of BioNet in the modelling of very complex scenarios.
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Appendix A

Implementation description

A.1 Sample user input

BioNet requires the user input to be in the form of predicates expressed in the syntax

of Prolog. An example of user input can be defined as follows :

1 def(1, ’Gene01’).

2 def(2, ’Gene02’).

3 def(3, ’GeneY’).

4 def(4, ’FactorX’).

5 experiences([exp(1,1,2),exp(2,1,3),exp(3,1,3)]).

6 weightHypothesis([edge(1,2,6,6,’+’),edge(2,3,4,4,’+’),edge(3,1,6,6,’+’)]).

7 rules([inhibate([1,3],[2],2)]).

A.2 Execution of BioNet in SWI-Prolog

The main predicate of BioNet is described below. It infers the results of the resolution

in his parameters, with respect to the user inputs and BioNet configuration provided by

the user.

1 solve(WeightMatrix, Relationships, Predictions, SuggestedRules).

WeightMatrix a list of lists, which can be described as a matrix. The matrix contains

a row for each regulator, and a column for each target. The values are the weights

of relationships.
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Relationships a list of edges. An edge is defined by two related nodes, the min/max

weights and a regulation sign such as ’+” or ’-’ respectively for activation or

inhibition

Predictions a list of lists, which can be described as a matrix. The matrix contains a

row for each experiment, and a column for each node. The values in the matrix

are the node expression levels.

Rules a list of rules proposed by BioNet, regarding to properties observed a certain

amount of times (this amount is related to the value of minoccur parameter in the

BioNet configuration).

A preliminary step to the invocation of the above predicate is to load the module

for CLP(FD), with the following command :

1 use_module(library(clpfd)).

Then, the bionet engine as well as the user inputs can be loaded as follows, under

the condition that bionet.pl and userinputs.pl are well defined Prolog files available in

the working directory of SWI-Prolog :

1 load_files([bionet, userinputs]).

An example of user input file content is shown in section A.1. Additionally, the

BioNet configuration must be loaded, in the user input file or in another file. An example

of BioNet configuration file content is shown in section A.3.

The result of the resolution of BioNet for the of the previously described input in

SWI-Prolog is shown below :

1 Rules list :

2 inhibate([1,3],[2],2)

3 Weight Matrix for nodes relationships (a line for each gene, a column

for each target) :↪→

4 [0,6,0]

5 [0,0,4]

6 [6,0,0]

7 List of edges and their weights :

8 edge(1,2,6,6)

9 edge(2,3,4,4)
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10 edge(3,1,6,6)

11 Predicted expression Values (a line for each measured time, a column for

each gene) :↪→

12 [2,3,3]

13 [3,1,4]

14 [4,0,5]

15 [5,0,3]

16 [6,0,1]

17 [7,0,0]

18 [5,1,0]

19 [3,2,1]

20 [4,0,2]

21 [5,0,0]

22 [3,1,0]

23 [1,2,1]

24 [2,0,2]

25 [3,0,0]

26 [1,1,0]

27 Suggested properties:

28 activate([1],[2])

29 activate([1,2,3],[1,3])

30 activate([1,3],[1])

31 autoactivate([2],[2])

32 inhibate([1],[3])

33 inhibate([1,2,3],[2])

34 inhibate([1,3],[2,3])

35 true.

A.3 Configuration

1 param(minlength, 1).

2 param(maxtime, 15).

3 param(minweight, 0).

4 param(minrequiredweight, 3).

5 param(minactivatorweight, 1).

6 param(maxweight, 1000).

7 param(minoccur, 3).

8 param(weightsfromrules, 1).
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9 param(minvalue, 0).

10 param(maxvalue, 1000).

11 param(defaultinhibitionrate, 2).

12 param(defaultactivationrate, 1).

13 param(minrequiredexpressionlevel, 1).

A.4 BioNet Prolog source code

1 /** Please invoke the following first **/

2 %use_module(library(clpfd)).

3

4 % at first execute use_module(library(clpfd)).

5

6 /** START HERE */

7 % - solve(WeightMatrix, Relationships, WeightInteractions,

PredictedExpressionValue).↪→

8

9 solve(WeightMatrix, Relationships, Predictions, SuggestedRules) :-

10 % get initial experiments list

11 experiences(Exps),

12 rules(Rules),

13 weightHypothesis(HypothesisRelationships),

14 ((param(weightsfromrules, 1),

15 rules2relationships(Rules, RulesRelationships),

16 append(HypothesisRelationships, RulesRelationships,

WeightHypothesis))↪→

17 ;append(HypothesisRelationships, [], WeightHypothesis)

18 ),

19 param(minlength, MinLength),

20 param(minoccur, MinOccur),

21

22 % sort experiments, remove duplicates

23 findall(A, member(exp(A,_,_),Exps), As),

24 sort(As, Ss),

25 length(Ss, MaxLength),

26 MaxLength >= MinLength,

27
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28 % generate eligible relationships (nodes) with weight

29 make_graph(Exps, MaxLength, WeightMatrix, Relationships,

WeightHypothesis),↪→

30 % generate eligible expression values for nodes until MaxTime

31 make_predictions(Exps, WeightMatrix, Relationships, Rules,

Predictions, MaxLength),↪→

32

33 % labelling

34 labelRows(WeightMatrix),

35 labelRows(Predictions),

36

37 !, % stop after first succesful labeling/inference

38 writeln(’User rules :’),

39 maplist(writeln, Rules),

40 writeln(’Inferred weight matrix for nodes relationships (a line

for each gene, a column for each target) :’),↪→

41 maplist(writeln, WeightMatrix),

42 writeln(’List of inferred edges with their relationship

weights/signs :’),↪→

43 maplist(writeln, Relationships),

44 writeln(’Inferred expression levels (a line for each experiment,

a column for each node) :’),↪→

45 maplist(writeln, Predictions),

46 suggestRules(Predictions, MinOccur, SuggestedRules),

47 writeln(’Suggested rules:’),

48 maplist(writeln,SuggestedRules)

49 .

50

51 suggestRules(Rows, MinPropOccurence, SortedRules) :-

52 param(minrequiredexpressionlevel, MinRequiredExpressionLevel),

53 findall(inhibate(Inhibitors, Inhibited),(

54 nth1(ExpId, Rows, Exp),

55 findall(Key, (nth1(Key, Exp, Value), Value >=

MinRequiredExpressionLevel), Inhibitors),↪→

56 ExpId2 is ExpId + 1, nth1(ExpId2, Rows, Exp2),

57 findall(Key, (nth1(Key, Exp2, V2),V2 < MinRequiredExpressionLevel),

Inhibited),↪→

58 length(Inhibitors, CountInhibitors), length(Inhibited,

CountInhibited), CountInhibitors>0, CountInhibited>0)↪→



Appendix A.1 Implementation description 110

59 , SuggestIRules),

60

61 findall(activate(Activators, Activated),(

62 nth1(ExpId, Rows, Exp),

63 ExpId2 is ExpId + 1, nth1(ExpId2, Rows, Exp2),

64 findall(Key, (nth1(Key, Exp, Value), Value >=

MinRequiredExpressionLevel), Activators),↪→

65 findall(Key, ((nth1(Key, Exp2, V2)), nth1(Key, Exp, V1), V1<V2),

Activated),↪→

66 length(Activators, CountActivators),

length(Activated,CountActivated), CountActivators>0,

CountActivated>0)

↪→

↪→

67 , SuggestARules),

68

69 findall(autoactivate(Activators, Activators),(

70 nth1(ExpId, Rows, Exp),

71 ExpId2 is ExpId + 1, nth1(ExpId2, Rows, Exp2),

72 findall(Key, (nth1(Key, Exp, Value), Value <

MinRequiredExpressionLevel, nth1(Key, Exp2,

V2),V2>=MinRequiredExpressionLevel), Activators),

↪→

↪→

73 length(Activators, CountActivators), CountActivators>0)

74 , SuggestAutoRules),

75

76 append(SuggestAutoRules,SuggestARules, ActivationRules),

77 append(SuggestIRules,ActivationRules,SuggestRules),

78

79 findall(Rule, (member(Rule, SuggestRules),

80 count([Rule], SuggestRules, Count),

Count>=MinPropOccurence),FilteredRules),↪→

81 sort(FilteredRules, SortedRules).

82

83 count(Elem, List, Count) :-

84 subtract(List, Elem, Deleted), length(List,Before),length(Deleted,

After),Count is Before - After.↪→

85

86 labelRows([]).

87 labelRows([Row|Rows]) :- label(Row), labelRows(Rows).

88

89 length_list(Length, List) :- length(List, Length).
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90

91 make_graph(Exps, MaxLength, WeightMatrix, Nodes, WeightHypothesis) :-

92 param(minweight,MinWeight),param(maxweight,MaxWeight),

93 length(WeightMatrix, MaxLength),

94 maplist(length_list(MaxLength), WeightMatrix),

95 append(WeightMatrix, Vs), Vs ins MinWeight..MaxWeight,

96 from(1, Exps, WeightMatrix, MaxLength, MinWeight, MaxWeight, Nodes,

WeightHypothesis).↪→

97

98 rules2relationships(Rules, Relationships) :-

99 findall(edge(From, To, Weight, Weight, ’+’), (

100 member(activate(Activator, Target, Weight), Rules),

101 member(From, Activator),

102 member(To, Target)),

103 Activators),

104 findall(edge(From, To, Weight, Weight, ’-’), (

105 member(inhibate(Inhibitor, Target, Weight), Rules),

106 member(From, Inhibitor),

107 member(To, Target)),

108 Inhibitors),

109 append(Activators, Inhibitors, Edges),

110 merge_edges(Edges, [], Relationships).

111

112 get_edges(Graph, GeneFrom, GeneTo, Edges) :- findall(edge(GeneFrom,

GeneTo, B, C, Label), member(edge(GeneFrom, GeneTo, B, C, Label),

Graph), Edges).

↪→

↪→

113

114 merge_edges(Edges, Acc, Merged) :-

115 nth1(1, Edges, edge(From,To,_,_,_)),

116 get_edges(Edges, From, To, TreatedEdges),

117 gen_interval(TreatedEdges, BestInterval),

118 subtract(Edges, TreatedEdges, RemainedEdges),

119 append([BestInterval], Acc, TempMerged),

120 merge_edges(RemainedEdges, TempMerged, Merged), !.

121 merge_edges([], N, N).

122

123 gen_interval([edge(From, To, WeightMin, WeightMax, Label)|T], edge(From,

To, BestMin, BestMax, StrongestLabel)) :-↪→

124 gen_interval(T, edge(From, To, SubMin, SubMax, SubLabel)),
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125 min_value(WeightMin, SubMin, BestMin),

126 max_value(WeightMax, SubMax, BestMax),

127 (BestMax is WeightMax, StrongestLabel = Label; StrongestLabel =

SubLabel).↪→

128

129 gen_interval([edge(From,To,Min,Max, Label)], edge(From,To,Min,Max,

Label)).↪→

130 gen_interval([], _) :- fail.

131 min_value(A, B, A) :- A =< B, !.

132 min_value(B, A, A) :- A =< B, !.

133 max_value(A, B, A) :- A >= B, !.

134 max_value(B, A, A) :- A >= B, !.

135

136 make_predictions(Exps, WeightMatrix, Relationships, Rules, Predictions,

MaxLength) :-↪→

137 param(maxtime,MaxTime),

138 length(Predictions, MaxTime),

139 length(WeightMatrix, MaxLength),

140 maplist(length_list(MaxLength), Predictions),

141 predict_at(1, Exps, WeightMatrix, Relationships, Rules, [],

Predictions, MaxLength).↪→

142

143 matrix_at(Matrix, RowIdx, ColIdx, Value) :- nth1(RowIdx, Matrix, Row),

nth1(ColIdx, Row, Value).↪→

144

145 max_list_clpfd(List, Max) :-

146 findall(Inf, (member(M, List),fd_inf(M,Inf)),R), findall(Sup,

(member(M,List),fd_sup(M,Sup)),RSup), max_list(R, Maax), Max #>=

Maax, max_list(RSup, Maax2), Max #=< Maax2.

↪→

↪→

147

148 max_influencors(Target, WeightMatrix, Influencors, Max) :-

149 findall(Origin-Value, (

150 nth1(Origin, WeightMatrix, Targets),

151 nth1(Target, Targets, Value)), Vs),

152 pairs_keys_values(Vs, Keys, Vvv),

153 max_list_clpfd(Vvv, Max),

154 findall(Key, (member(Key,Keys), nth1(Key,Vvv,MaxKey),

fd_inf(MaxKey,Inf), Inf #= max(Max, Inf)), Influencors).↪→

155
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156 predict_at(_, _, _, _, _, _, [], _).

157 predict_at(FromTime, Exps, WeightMatrix, Relationships, Rules,

PreviousPrediction, [CurrentPredictions|RestPredictions], MaxLength)

:-

↪→

↪→

158 param(maxvalue,MaxValue),param(minvalue,MinValue),

159 CurrentPredictions ins MinValue..MaxValue,

160 NextTime is FromTime + 1,

161 predict_at_for(FromTime, 1, Exps, WeightMatrix, Relationships,

Rules, PreviousPrediction, CurrentPredictions, MaxLength),↪→

162 predict_at(NextTime, Exps, WeightMatrix, Relationships, Rules,

CurrentPredictions, RestPredictions, MaxLength).↪→

163

164 get_active_influencors(CurrentTime, CurrentId, Exps,

PreviousPredictions, WeightMatrix, ActiveInfluencors, Weight) :-↪→

165 param(minrequiredexpressionlevel,MinRequiredExpressionLevel),

166 param(minactivatorweight, MinActivatorWeight),

167 max_influencors(CurrentId, WeightMatrix, Influencors, Weight),

168 Weight #>= MinActivatorWeight,

169 PreviousTime is CurrentTime - 1,

170 findall(Influencor, (

171 member(Influencor, Influencors),

172 ( member(exp(Influencor, PreviousTime, InfluencorValue), Exps)

173 ;(nth1(Influencor, PreviousPredictions, V), fd_inf(V,

InfluencorValue))↪→

174 ),

175 InfluencorValue >= MinRequiredExpressionLevel

176 ),

177 ActiveInfluencors).

178

179 get_expressed_nodes(Expressions, Sorted, MinExpr, MaxExpr) :-

180 findall(K, (nth1(K, Expressions, V), V #>= MinExpr, V #=< MaxExpr),

Expressed),↪→

181 sort(Expressed, Sorted).

182

183 activatorRules(NodeId, Rules, SelectedRules) :-

184 findall(Rule, (Rule=activate(_, To, _), member(Rule,Rules),

subset([NodeId], To)), SelectedRules).↪→

185 inhibitorRules(NodeId, Rules, SelectedRules) :-



Appendix A.1 Implementation description 114

186 findall(Rule, (Rule=inhibate(_, To, _), member(Rule,Rules),

subset([NodeId], To)), SelectedRules).↪→

187

188 predict_at_for(_, _, _, _, _, _, _, [], _).

189 predict_at_for(CurrentTime, CurrentId, Exps, WeightMatrix,

Relationships, Rules, PreviousPredictions, [Prediction|Predictions],

MaxLength) :- (

↪→

↪→

190 param(maxtime, MaxTime),

param(maxvalue,MaxValue),param(minvalue,MinValue),↪→

191 ( CurrentTime =< MaxTime,

192 CurrentId =< MaxLength,

193 NextId is CurrentId + 1,

194 (

195 % retrieve the previous experiments values as current predictions

196 member(exp(CurrentId, CurrentTime, Value),Exps),

197 nth1(1, [Prediction|Predictions], Value)

198 ;predict_value_at_for_laws(CurrentTime, CurrentId, Exps, Rules,

PreviousPredictions, Prediction)↪→

199 ;predict_value_at_for_weights(CurrentTime, CurrentId, Exps,

Relationships, WeightMatrix, PreviousPredictions, Prediction)↪→

200 ), !,

201 predict_at_for(CurrentTime, NextId, Exps, WeightMatrix,

Relationships, Rules, PreviousPredictions, Predictions,

MaxLength))

↪→

↪→

202 ); true.

203

204 predict_value_at_for_laws(CurrentTime, CurrentId, Exps, Rules,

PreviousPredictions, Prediction) :-↪→

205 param(maxvalue,MaxValue),param(minvalue,MinValue),

206 param(minrequiredexpressionlevel,MinRequiredExpressionLevel),

207 PreviousTime is CurrentTime - 1,

208 ( member(exp(CurrentId, PreviousTime, PreviousExpr), Exps)

209 ;nth1(CurrentId, PreviousPredictions, PreviousExpr)

210 ),(

211 (get_expressed_nodes(PreviousPredictions, Influencors,

MinRequiredExpressionLevel, MaxValue),↪→

212 activatorRules(CurrentId, Rules, SelectedRules),

213 member(activate(From, To, Strength), SelectedRules),

214 subset(From, Influencors),
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215 Prediction #= PreviousExpr + Strength

216 )

217 ;(get_expressed_nodes(PreviousPredictions, Influencors,

MinRequiredExpressionLevel, MaxValue),↪→

218 inhibitorRules(CurrentId, Rules, SelectedRules),

219 member(inhibate(From, To, Strength), SelectedRules),

220 subset(From, Influencors),

221 (fd_sup(PreviousExpr, Sup), (Sup - Strength >= MinValue), Prediction

#= PreviousExpr - Strength;Prediction #= MinValue)↪→

222 )

223 ;(MaxNotExpressedLevelValue is MinRequiredExpressionLevel -1,

224 get_expressed_nodes(PreviousPredictions, Influencors, MinValue,

MaxNotExpressedLevelValue),↪→

225 findall(Rule, (Rule=autoactivate(_, To, _), member(Rule,Rules),

subset([CurrentId], To)), SelectedRules),↪→

226 member(autoactivate(From, To, Strength), SelectedRules),

subset(From, Influencors),↪→

227 (fd_sup(PreviousExpr, MaxNotExpressedLevelValue), Prediction #=

PreviousExpr + Strength)↪→

228 )

229 ).

230

231 predict_value_at_for_weights(CurrentTime, CurrentId, Exps,

Relationships, WeightMatrix, PreviousPredictions, Prediction) :-↪→

232 param(maxvalue,MaxValue),param(minvalue,MinValue),

233 PreviousTime is CurrentTime - 1,

234 (member(exp(CurrentId, PreviousTime, PreviousExpr), Exps)

235 ;nth1(CurrentId, PreviousPredictions, PreviousExpr),

236

237 (% Change expression value regarding to relationships

(activators/inhibitors, weight ...)↪→

238 (get_active_influencors(CurrentTime, CurrentId, Exps,

PreviousPredictions, WeightMatrix, ActiveInfluencors, Weight),↪→

239 length(ActiveInfluencors, CountActiveInfluencors),

CountActiveInfluencors > 0,↪→

240 (param(minactivatorweight,

MinActivatorWeight),Weight#>=MinActivatorWeight,↪→

241 param(defaultactivationrate, Activation),
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242 (member(InfluencorId, ActiveInfluencors),member(edge(InfluencorId,

CurrentId, MinInfluenceRate, _, Sign),Relationships)),↪→

243 ((Sign == ’+’, (fd_sup(PreviousExpr,Sup), Sup + Activation =<

MaxValue, Prediction #= PreviousExpr + Activation; Prediction

#= MaxValue))

↪→

↪→

244 ; Sign == ’-’, (fd_sup(PreviousExpr,Sup), Sup > MinValue,

param(defaultinhibitionrate, Inhibition), Prediction #=

PreviousExpr - Inhibition; Prediction #= MinValue)))

↪→

↪→

245 )

246 ;% no influencor -> Value decreases naturally.

247 (fd_sup(PreviousExpr,Sup), Sup > MinValue,

param(defaultinhibitionrate, Inhibition),↪→

248 Prediction #= PreviousExpr - Inhibition; Prediction #= MinValue)

249 ).

250

251 from(_, _, [], _, _, _, [], _).

252 from(FromId, Exps, [CurrentTargets|RestTargets], MaxLength, MinWeight,

MaxWeight, Nodes, WeightHypothesis) :-↪→

253 CurrentTargets ins MinWeight..MaxWeight,

254 NextFromId is FromId + 1,

255 from_to(FromId, 1, Exps, CurrentTargets, MaxLength, TargetNodes,

WeightHypothesis),↪→

256 from(NextFromId, Exps, RestTargets, MaxLength, MinWeight, MaxWeight,

Ns, WeightHypothesis),↪→

257 append(TargetNodes, Ns, Nodes).

258

259 from_exp_to(_,_,_,[],_).

260 from_exp_to(FromId, TargetId, Exps, [Target|Targets], Relationships) :-

261 nth1(TargetId, [Target|Targets], Weight),

262 check_in(edge(FromId, TargetId, Weight, Weight, Label), Exps, _),

263 append([edge(FromId, TargetId, Weight, Weight, Label)], [],

Relationships).↪→

264

265 from_hyp_to(FromId, TargetId, [Target|Targets], Relationships,

WeightHypothesis) :-↪→

266 member(edge(FromId, TargetId, MinWeight, MaxWeight, Label),

WeightHypothesis),↪→

267 param(minrequiredweight, MinRequiredWeight), MinWeight >=

MinRequiredWeight,↪→
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268 nth1(TargetId, [Target|Targets], Weight),

269 (Weight in MinWeight..MaxWeight),

270 append([edge(FromId, TargetId, MinWeight, MaxWeight, Label)], [],

Relationships).↪→

271

272 from_to(_,_,_,[],_, [], _).

273 from_to(FromId, TargetId, Exps, [Target|Targets], MaxLength, Nodes,

WeightHypothesis) :- (↪→

274 TargetId =< MaxLength, FromId =< MaxLength,

275 (from_hyp_to(FromId, TargetId, [Target|Targets], CurrentNodes,

WeightHypothesis)↪→

276 ;from_exp_to(FromId, TargetId, Exps, [Target|Targets],

CurrentNodes)↪→

277 ;true

278 ), !,

279 NextTargetId is TargetId + 1,

280 from_to(FromId, NextTargetId, Exps, [Target|Targets], MaxLength, Ns,

WeightHypothesis),↪→

281 append(CurrentNodes, Ns, Nodes)

282 );true.

283

284 check_in(edge(A,B, Weight, Weight, Label), Exps,

285 [exp(A,Step1,ValueA1),

286 exp(B,Step1,ValueB1),

287 exp(A,Step2,ValueA2),

288 exp(B,Step2,ValueB2)]) :-

289 member(exp(A,Step1,ValueA1), Exps),

290 member(exp(B,Step1,ValueB1), Exps),

291 Step2 is Step1 + 1,

292 A \== B,

293 member(exp(A,Step2,ValueA2), Exps),

294 member(exp(B,Step2,ValueB2), Exps),

295 ValueA2 \== ValueA1,

296 ValueB2 \== ValueB1,

297 Diff1 is ValueA2 - ValueA1,

298 Diff2 is ValueB2 - ValueB1,

299 Diff2 \== Diff1,

300 abs(Diff1,Diff1Abs), abs(Diff2,Diff2Abs),

301 Diff1Abs < Diff2Abs,
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302 computeWeight(Diff1, Diff2, ComputedWeight, Label),

303 Weight #= ComputedWeight.

304

305 computeWeight(Diff1, Diff2, WeightAbs,Label) :-

306 Diff2 \== Diff1, Diff2 \== 0, Diff1 \==0,

307 abs(Diff1,Diff1Abs), abs(Diff2,Diff2Abs),

308 Diff1Abs < Diff2Abs,

309 ( ( Diff1 > 0, Diff2 < 0, Label = ’-’);

310 ( Diff1 > 0, Diff2 > 0, Label = ’+’);

311 ( Diff1 < 0, Diff2 < 0, Label = ’+’);

312 ( Diff1 < 0, Diff2 > 0, Label = ’-’)), !,

313 Weight is (Diff2 - Diff1), abs(Weight, WeightAbs).



Appendix A.1 Implementation description 119

A.5 Lac Operon parameters

1 def(1, ’lacZYA mRNA’). def(2, ’LacI’). def(3, ’LacZ’).

2 def(4, ’LacY’). def(5, ’lactoseInt’). def(6, ’lactoseExt’).

3 def(7, ’allolactose’). def(8, ’cAMP’). def(9, ’lac operon’).

4 def(10, ’lacZYA’).

5 experiences([

6 exp(1,1,0), % lacZYA mRNA

7 exp(2,1,0), % lacI

8 exp(3,1,0), % lacZ

9 exp(4,1,0), % lacY

10 exp(5,1,0), % lactoseInt

11 exp(6,1,20), % lactoseExt,

12 exp(6,10,20), % lactoseExt

13 exp(7,1,0), % allolactose

14 exp(8,1,15), % cAMP,

15 exp(8,10,15), % cAMP

16 exp(9,1,0), % lac operon

17 exp(10,1,15) % lacZYA

18 ]).

19 weightHypothesis([]).

20 rules([

21 activate([1], [3,4], 1), % lacZYA mRNA -> ++ lacZ, lacY

22 inhibate([2], [1], 3), % lacI -> -- lacZYA mRNA

23 activate([8,10],[1], 1), % cAMP, lacZYA -> ++ lacZYA mRNA

24 activate([6,4], [5], 1), % lactoseExt, lacY -> ++ lactoseInt

(simplified view)↪→

25 inhibate([6,4], [6], 1), % lactoseExt, lacY -> -- lactoseInt

(simplified view)↪→

26 activate([5,3], [7], 1), % lactoseInt, lacZ -> ++ allolactose

27 activate([7], [2], 1), % allolactose -> ++ lacI,

28 activate([3,4], [9], 1) % lacZ, lacY -> ++ lac operon

29 ]).

30

31 param(minlength,1).

32 param(maxtime, 15).

33 param(minweight,0).

34 param(minrequiredweight,1).



Appendix A.1 Implementation description 120

35 param(minactivatorweight,1).

36 param(maxweight,4).

37 param(minoccur, 3).

38 param(weightsfromrules, 1).

39 param(minvalue, 0).

40 param(maxvalue, 20).

41 param(defaultinhibitionrate,0).

42 param(defaultactivationrate,1).

43 param(minrequiredexpressionlevel,1).

A.6 BioNet - Java source code

A.6.1 REST Provider to serve BioNet configuration files

Part of the code used to serve BioNet configuration files to the client via the REST

API, in the JSON format.

1 package be.unamur.bionets.rest.provider;

2

3 import javax.annotation.security.PermitAll;

4 import javax.ws.rs.Consumes;

5 import javax.ws.rs.GET;

6 import javax.ws.rs.POST;

7 import javax.ws.rs.Path;

8 import javax.ws.rs.PathParam;

9 import javax.ws.rs.Produces;

10 import javax.ws.rs.core.MediaType;

11

12 import org.apache.commons.lang3.StringEscapeUtils;

13 import org.slf4j.Logger;

14 import org.slf4j.LoggerFactory;

15

16 import be.unamur.bionets.quizz.BioNetsException;

17 import be.unamur.bionets.rest.Response;

18 import be.unamur.bionets.rest.model.Query;

19 import be.unamur.bionets.swipl.SwiplFacade;
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20

21 /**

22 * @author Morgan Wattiez

23 */

24 @Path("/prolog")

25 @PermitAll

26 @Consumes(MediaType.APPLICATION_JSON)

27 @Produces(MediaType.APPLICATION_JSON)

28 public class Prolog {

29

30 private static final Logger LOG =

LoggerFactory.getLogger(Prolog.class);↪→

31 @GET

32 @Path("file/{program}")

33 public Response getJobConfigurations(@PathParam("program") final

String program) throws BioNetsException {↪→

34 final String message = "received request to access Prolog program

%s";↪→

35 LOG.info(String.format(message, program));

36 final String programContent =

SwiplFacade.getSwipl().getProgram(program);↪→

37 return new Response(programContent);

38 }

39

40 @POST

41 @Path("save/{program}")

42 public Response saveProgram(@PathParam("program") final String

program, final String source) throws BioNetsException {↪→

43 final String message = "received request to save Prolog program %s

with source %s";↪→

44 final String formattedSource =

StringEscapeUtils.escapeJson(source);↪→

45

46 LOG.info(String.format(message, program, formattedSource));

47 final String programContent =

SwiplFacade.getSwipl().saveCode(program,

formatProgramSource(source.replaceAll("\\n",

System.getProperty("line.separator"))));

↪→

↪→

↪→
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48 final String revertFormatProgram =

revertSourceFormat(programContent);↪→

49 return new Response(revertFormatProgram);

50 }

51

52 // ... some utility methods

53

54 @POST

55 @Path("exec/{program}")

56 public Response execProgram(@PathParam("program") final String

program, final Query query) throws BioNetsException {↪→

57 final String message = "received request to exec Prolog program %s

with query %s";↪→

58 LOG.info(String.format(message, program, query));

59 final String solution =

SwiplFacade.getSwipl().executeQuery(program,

query.getCommand(), query.getKeys().toArray(new String[0]));

↪→

↪→

60 return new Response(solution);

61 }

62 }
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A.6.2 SWI-Prolog initializer

Part of the code used to invoke SWI-Prolog via JPL.

1 /**

2 * @author Morgan Wattiez

3 */

4 public class Swipl {

5

6 private static final Logger LOG =

LoggerFactory.getLogger(Swipl.class);↪→

7

8 static Map<String, Query> queries = new HashMap<>();

9 static Query cachedQuery = null;

10 static Query bionet = null;

11 static boolean enableCache = true;

12 static String cachedQueryName = null;

13 static volatile Integer runningQueries = 0;

14 Swipl() {}

15

16 private Query programQuery(String program, final String mode, final

boolean cache) throws BioNetsException {↪→

17 Query query = null;

18 LOG.debug(String.format("[%d] Received %s query for file %s, with

cache mode = %s", Thread.currentThread().getId(), program,

mode, Boolean.toString(cache)));

↪→

↪→

19 if (mode.equals("unload_file") || cache && cachedQueryName != null

&& !cachedQueryName.equals(program)) {↪→

20 clearCachedQuery();

21 }

22 if (bionet == null) {

23 loadBionet();

24 }

25 if (!isCached(program)) {

26 final URI path = getProgramPath(program);

27 if (Files.exists(Paths.get(path))) {

28 LOG.debug(String.format("[%d] Searching file %s at %s",

Thread.currentThread().getId(), program, path));↪→
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29 query = consultQuery(mode, path);

30 query.oneSolution();

31 if (!cache) query.close();

32 if (cache) cacheQuery(program, query);

33 LOG.debug(String.format("program %s loaded from file %s",

program, path));↪→

34 } else {

35 throw new BioNetsException(String.format("program %s has not

been found", program));↪→

36 }

37 } else if (cache) {

38 LOG.debug(String.format("retrieved query %s from cache",

program));↪→

39 query = queries.get(program);

40 }

41 return query;

42 }

43

44 private void loadBionet() throws BioNetsException {

45 final Query queryClpFD = new Query("use_module(library(clpfd)).");

46 queryClpFD.oneSolution();

47 queryClpFD.close();

48 final URI bionetEnginePath = getProgramPath("bionet.pl");

49 if (Files.exists(Paths.get(bionetEnginePath))) {

50 LOG.debug(String.format("[%d] Loading BioNet Prolog file %s at

%s", Thread.currentThread().getId(), "bionet.pl",

bionetEnginePath));

↪→

↪→

51 final Query bionetloadingQuery = consultQuery("consult",

bionetEnginePath);↪→

52 bionetloadingQuery.oneSolution();

53 bionetloadingQuery.close();

54 bionet = bionetloadingQuery;

55 } else {

56 throw new BioNetsException(String.format("program %s has not

been found", "bionet.pl"));↪→

57 }

58 }

59

60 private Query consultQuery(final String mode, final URI path) {
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61 Query query;

62 final Term[] arg = {

63 /**

64 * Please be careful with the choice of Apache Tomcat installation

path↪→

65 * : The following statements will fail if the deployment path

contains↪→

66 * any white space or unattended character

67 */

68 new Atom(new File(path).toString())

69 };

70 query = new Query(mode, arg);

71 return query;

72 }

73

74 public synchronized String getProgram(final String program) throws

BioNetsException {↪→

75 LOG.debug(String.format("[%d] entering getProgram with parameter

program=%s", Thread.currentThread().getId(), program));↪→

76 if (StringUtils.isBlank(program)) {

77 LOG.error(String.format("Invalid program’s name ’%s’",

program));↪→

78 return "";

79 }

80 final URI path = getProgramPath(program);

81 try {

82 if (Files.exists(Paths.get(path))) {

83 return FileUtils.readFileToString(new File(path));

84 } else {

85 throw new BioNetsException(String.format("program %s has not

been found", program));↪→

86 }

87 } catch (final IOException ex) {

88 LOG.error(String.format("Unable to load program %s at %s",

program, path), ex);↪→

89 throw new BioNetsException(String.format("Unable to load

program %s", program));↪→

90 }

91 }



Appendix A.1 Implementation description 126

92 // ...

93 }

A.7 BioNet - Java dependencies

The Java dependencies for BioNet Eclipse project are automatically collected by the

build automation Gradle. Below, the gradle configuration file used in BioNet to collect

the Java libraries required in the classpath.

1 apply plugin: ’java’

2 apply plugin: ’eclipse’

3 apply plugin: ’war’

4

5 sourceCompatibility = 1.7

6 version = ’1.0’

7 jar {

8 manifest {

9 attributes ’Implementation-Title’: ’Gradle Quickstart’,

’Implementation-Version’: version↪→

10 }

11 }

12 repositories {

13 flatDir {

14 dirs ’libs’

15 }

16 }

17 repositories { mavenCentral() }

18 dependencies {

19 testCompile ’org.testng:testng:6.8.8’

20 testCompile ’org.jbehave:jbehave-core:3.9.2’

21 compile ’com.google.code.gson:gson:2.2.4’

22 compile

’org.glassfish.jersey.containers:jersey-container-servlet-core:2.8’↪→

23 compile ’javax.servlet:javax.servlet-api:3.0.1’

24 testCompile(’org.glassfish.jersey.test-framework.providers:

jersey-test-framework-provider-external:2.9.1’) {↪→
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25 exclude module: ’javax.servlet-api’

26 }

27 compile ’commons-io:commons-io:2.4’

28 compile ’org.apache.commons:commons-lang3:3.3.2’

29 compile ’log4j:log4j:1.2.17’

30 compile ’org.slf4j:slf4j-api:1.7.7’

31 compile ’org.slf4j:slf4j-log4j12:1.7.7’

32 compile fileTree(dir: ’libs’, include: ’*.jar’)

33 }

34 test { useTestNG() }

35 buildscript {

36 repositories {

37 mavenCentral()

38 maven { url ’http://dl.bintray.com/robfletcher/gradle-plugins’ }

39 }

40 dependencies {

41 classpath ’org.gradle.plugins:gradle-compass:1.0.7’

42 }

43 }

A.8 BioNet - JavaScript source code

A.8.1 Configuration editor

Part of the JavaScript code used to instantiate the BioNet configuration editor :

1 var initEditor = function(programName) {

2 ace.require("ace/ext/language_tools");

3 var editor = ace.edit("editor");

4 editor.setTheme("ace/theme/cobalt");

5 editor.getSession().setMode("ace/mode/prolog");

6 editor.setOptions({

7 enableBasicAutocompletion: true,

8 wrap: 140

9 });

10 $.ajax({
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11 url: ’/BioNets/rest/prolog/file/’ + programName,

12 cache: false,

13 dataType: ’json’

14 }).success(function(data){

15 editor.setValue(data.message);

16 }).error(function(jqXHR, status, err) {

17 alert(’unable to find program ’ + programName);

18 });

19 }

A.8.2 Network visualizer

Part of the JavaScript code used to instantiate the BioNet network visualizer :

1 function refreshNetwork(configuration) {

2 destroyNetwork();

3 for (nodeKey in configuration.nodes) {

4 var node = configuration.nodes[nodeKey];

5 nodes.push({

6 id: node.label,

7 label: node.label,

8 value: node.value

9 });

10 }

11 for (edgeKey in configuration.edges) {

12 var edge = configuration.edges[edgeKey];

13 edges.push({

14 from: edge.from.label,

15 to: edge.to.label,

16 value: edge.weight,

17 label: ’+’ === edge.label? ’activates (+’ + edge.weight + ’)’ :

’inhibits (-’ + edge.weight + ’)’,↪→

18 labelAlignment:’line-center’,

19 style: ’arrow’,

20 color: ’+’ === edge.label? ’red’ : ’blue’,

21 length: 220,

22 width: 1,
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23 title: edge.from.label + ’ ’ + (’+’ === edge.label?

’activates’:’inhibits’) + ’ ’+ edge.to.label↪→

24 });

25 }

26 }
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