Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Modeling the electrical properties of three-dimensional printed meshes with the theory
of resistor lattices

Melnikov, Alexander; Shuba, Mikhail; Lambin, Philippe

Published in:
Physical review. E

DOI:
10.1103/PhysRevE.97.043307

Publication date:
2018

Document Version _
Peer reviewed version

Link to publication

Citation for pulished version (HARVARD):

Melnikov, A, Shuba, M & Lambin, P 2018, 'Modeling the electrical properties of three-dimensional printed
meshes with the theory of resistor lattices', Physical review. E, vol. 97, no. 4, 043307, pp. 043307.
https://doi.org/10.1103/PhysRevE.97.043307

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Feb. 2025


https://doi.org/10.1103/PhysRevE.97.043307
https://researchportal.unamur.be/en/publications/d4284459-75eb-4fa1-9f42-41f8183e5f26
https://doi.org/10.1103/PhysRevE.97.043307

Modeling the electrical properties of 3D printed meshes with the theory of resistor
lattices

Alexander V. Melnikov!', Mikhail Shuba'?, and Philippe Lambin?
L Institute for Nuclear Problems, Belarus State University, Bobruiskaya 11, 220050 Minsk, Belarus
2 Tomsk State University, 36, Lenin Avenue, Tomsk, 634050, Russia and
3 Physics Department, Université de Namur, 61 Rue de Bruzelles, B-5000 Namur, Belgium

The electrical properties of conducting meshes are investigated numerically by solving the re-
lated Kirchhoff equations with Lanczos algorithm. The method is directly inspired by the recursion
technique widely used to study the electronic and vibrational spectra of solids. The method is
demonstrated to be very efficient and fast when applied to resistor networks. It is used to calcu-
late equivalent resistances between arbitrary pairs of nodes in simple resistive lattices. When the
resistance fluctuates statistically from bond to bond, the method makes it possible to evaluate the
fluctuations of the electrical properties of the network. It is also employed to assign an effective
bulk resistivity to a discrete conducting 3D mesh.



I. INTRODUCTION

3D printers make it possible to design unprecedented structures with a geometry specially designed to reach spe-
cific properties [1]. For example, the making of lightweight periodic cellular architectures by 3D printing has been
demonstrated [2]. Polymer filled with graphene nanoplatelets [3], multi-wall carbon nanotubes [4], or other forms of
sp? nanocarbons, may be used for 3D printing. Dispersing a few atomic percentage of these nanomaterials suffices
to reach a good electrical conductivity of the host material [5, 6]. Depending on the polymer matrix and the filler,
these composites may have different mechanical, electrical and thermal properties [5-7]. By feeding a 3D printer with
polymer conducting composites, light porous conducting media can be fabricated [2, 4, 8]. The final product may be
a periodic network of interconnected rods with mm-size length. Fig. 1 is an illustrative example. Cellular conductive
carbon foams with a structure similar to the considered 3D printed networks have significant electromagnetic shielding
efficiency [9]. Thus, we assume that 3D-printed meshes also may be effective in electromagnetic interference shielding
applications [10]. Other applications such as electrostatic discharge protection [11] can be foreseen for these artificial
periodic networks.

Theoretical modeling of conductive properties of periodic networks is an important issue for applications. It makes
it possible to choose materials and geometrical parameters of the lattice cells yielding the largest possible effective
conductance at a given mass density. It makes it possible to investigate theoretically the electrical properties of mesh
structures which are expected to have the best mechanical stiffness. Also, taking into account the fluctuations of the
electrical resistance of the lattice edges is important, because fluctuations of the printing parameters and composite
composition cannot be avoided in practice.

The conductive properties of 2D or 3D meshes resorts to the so-called theory of resistor networks that dates back to
the 1970’s [12-16]. These networks consist of resistors interconnected at point called nodes. This theory is applicable
here due to the similarity between printed meshes and resistor networks: the rods correspond to the resistors in a
resistor network and the crossing points between the rods correspond to the nodes.

The theory of resistor networks is a simple formulation of Ohm’s and Kirchhoff’s laws that leads to a set of linear
equations to be solved for the node potentials. Each equation in the system may be expressed in terms of the so-
called lattice Laplacian [15]. For square and simple-cubic lattices, the lattice Laplacian corresponds to second-order
finite-difference representations of the Laplace operator. Mathematically, the problem may be seen as a discretized
Poisson’s equation [17].

There are different interesting tasks related to the theory of resistor networks: i) the solution of the discrete
Poisson-like equation in presence of current sources can be applied, for example, for the calculation of the equivalent
resistance between two arbitrary nodes of the lattice [15, 16]; ii) the resolution of the problem with appropriate
boundary conditions for finite size systems (for instance, obtaining the electrical potential distribution in the network
when the electrical potential is set at predefined values at some boundaries of the model can be used to define an
effective conductivity of the lattice) [12, 14]; iii) combination of the previous tasks [17].

The equivalent resistance of a conductive mesh seen from a given pair of nodes allows one to characterize the system
from the electrical point of view. Analytical methods can be used to calculate the equivalent resistance between two
arbitrary nodes in a perfect resistor network. For simple lattices, this particular task can be solved in terms of lattice
Green’s functions [15]. Analytical formulas are available for triangular, honeycomb, square, rectangular, diamond,

FIG. 1. (a) Periodic network of rods (octagonal prisms) meeting at nodes located on a simple cubic lattice. (b) Detail of a rod
with its two ending sections €1 and €.



simple-cubic, body-centered cubic, face-centered cubic, and hyper-cubic (simple cubic in N dimensions) lattices [18—
22]. Also, Green’s function approach has been applied to uniform tiling of space with electrical resistors [23]. The
lattice Greens function formalism can be developed to address several types of defects, including a broken resistor and
an extra resistor between two initially non-connected nodes [24, 25]. The way defects can be dealt with is an iterative
process that can be extended to the simultaneous presence of several defects. However the number of defects is limited
by the computational complexity of the iterative process. By comparison, numerical methods have no limitations in
the concentration of defects, as long as the network remains of finite size. An accurate solution of the problem can be
obtained by numerical methods for networks containing up to several million resistors per processor core. Nowadays,
it is possible to solve linear problems with one trillion unknowns on supercomputers [26].

In this work, Lanczos’ algorithm has been used to solve the discretized Poisson-like equation. This algorithm, also
known in physics as the recursion method [27], can be applied to this problem [28], because the Laplacian matrix,
being sparse and symmetric, can be efficiently reduced to a tridiagonal form. The tridiagonal form is then used to
express any diagonal element of the lattice Green’s function in a continued fraction [29]. Being order of N for a given
fixed number of recursion steps, with N the number of nodes, this method may reach high performances and requires
little memory storage. Moreover, it can be corrected to extrapolate the results to infinite networks. This method has
been used in the present work to calculate the equivalent resistance between two nodes in different kinds of infinite
lattices, with and without defects. Results for some simple infinite lattices are compared with available analytical
results.

The equivalent resistance that can be calculated in a resistor network is what would be obtained experimentally
with a two-probe measurement technique. In a continuous medium, the relevant quantity is the resistivity which is
best measured by a four-probe method. Calculations mimicking a four-probe experiment have also been carried out
for 3D resistor lattices to get an effective bulk resistivity. This quantity is an important ingredient if one wants to
compare the transport properties of a conducting mesh with that of a continuous medium. The effective resistivity
can be further used to calculate the skin depth and electromagnetic interference shielding effectiveness of the 3D
discrete network.

The paper is organized as follows. After a brief description of the equivalence between 3D meshes and resistor
networks, basic electrokinetic equations are derived in Sect. II. Then, the recursion algorithm used to solve these
equations is presented. Two ways of improving the accuracy of the numerical results for infinite networks are proposed
and discussed. In Sect. III, an effective conductivity is assigned to a discrete resistor network, the aim being to mimic
a conducting mesh by a continuous medium. Both global and local point of views are explored. Conclusions are
drawn in Sect. IV. Some computational properties of the method are described in the Appendix.

II. THEORY OF RESISTIVE LATTICES

We assume that a 3D printed mesh, such as the one illustrated in Fig. 1(a), is a periodic lattice of rods (called
edges or bonds) of length L, cross-section S, and conductivity op. The edges may have different lengths depending
on the lattice geometry. In a rectangular lattice, for instance, edges in one direction are shorter than the edges in the
perpendicular direction. Each edge in the network may be characterized by its resistance R = L/ (Sop). The edge
resistance may vary due to fluctuations of L, S and o of the rods produced by the 3D printer. In some situations, a
few bonds are broken. How to deal with some randomness of the resistors is described in subsection II C.

Each node of a resistive mesh dispatches the current it receives from an external source among the rods attached to
it. According to Kirchhoff’s law, the sum of the currents flowing to a node is zero. Whatever the exact distribution
of the current density 5 across a rod, like the octagonal prism shown in Fig. 1(b), the potential drop between its
two ending faces 27 and € is related to the total current I flowing through it by Ohm’s law AV = RI. Here,
AV = (1/8) [o, VdS—(1/S) o, V dS, with S the common area of Q; and Q. This result is obtained by integrating
—0V/9z = j,/oo in the volume of the rod, where z is a local axial coordinate. The bases Q1 and 25 of the rod are
two faces of the nodes interconnected by the rod (see Fig. 1(b)). We shall make the approximation that each node is
an equipotential volume that can therefore be characterized by a single potential. Then, AV becomes the potential
difference between the nodes interconnected by the rod. The equipotential hypothesis is valid if the nodes are made
of a highly conducting medium or if their linear dimensions are small compared to the length of the rods. The first
case supposes that nodes and rods of the mesh are made of two different materials, which is indeed possible to achieve
with a 3D printer. The second case is more realistic, especially if the nodes are truncated polyhedra, like the cubes
truncated at their corners by height triangular faces in Fig. 1(b), that occupy the smallest possible volume.

Under the hypothesis that a unique potential can be attributed to each node, a resistive mesh can be approximated



by a resistor network. Let us therefore apply Ohm’s and Kirchhoff’s laws to the nodes of the network:

> i (Vi =Vi)+ 1, =0, (1)
JEZ(3)

where Z(i) is the set of nodes j connected to the ith node through resistors, g;; is the conductance of the resistors
connecting node ¢ to node j, V; and V; are the electric potentials of nodes 7 and j, respectively, I; is the external
current injected into node i.

The set of equations (1) may be rewritten in a compact form by introducing the Laplacian matrix L:

> LyVi=-L, Li=g5 j#i, Li=- Y gy, (2)

J€{i, Z (i)} JEZ (i)
and transformed in a matrix equation:
LV =-I, (3)

where I is the vector of external current sources connected to the resistor network, V is the vector of the unknown
node potentials.
The Laplacian matrix in (3) is singular. To solve the system (3) we transform it as follows:

(yl-L)V =T, (4)

where 1 is the identity matrix and y is a real positive conductance. All the nodes are thereby grounded to an absolute
reference of potential set to zero. We shall take the limit y — 0+ afterward. The set of equations (4) can be solved
numerically for any finite-size lattice by application of some high-performance direct methods, like block methods [30],
and iterative methods, like as SOR [30] or conjugate-gradient [32] methods. The formulation of the problem (4) is
general and allows us to find the node potentials generated by a given distribution of external current sources. In the
absence of current sources, some node potentials can receive predefined values (Dirichlet boundary conditions), all the
terms involving imposed potentials are transferred to the right-hand side where they play the same role as the vector
I in eq. 4 [17]. This latter kind of problem with Dirichlet boundary conditions is involved in numerical calculation of
the equivalent bulk resistivity for 3D printed meshes, see Sect. I1I.
One way to solve equation (4) is via the resolvent matrix:

r(y) = (y1-L)"". (5)
The node potentials may thus be expressed from egs. 4 and 5 as follows:

V= y1_1>r51+ r(y)I. (6)
There are two particular tasks for which the vector I consists of a current source and a current sink: I, =
Iy(0k,i — Ok,j), namely the current I enters the network at node ¢ and leaves it at node j. The first task involves four
nodes if we assume that the voltage nodes m and n between which AV =V, —V,, is computed are distinct from the
current nodes ¢ and j. This setup is analogous to the four-probe method widely used for measuring the resistivity of
bulk materials [34]. The second task represents a two-probe setup yielding the equivalent resistance R(i,j) between
two arbitrary nodes ¢ and j of the resistor network. Here, the current and voltage electrodes coincide.
The potential difference in the four-probe setup is

Vin =V = (Tmi — Tmj — Tni + Tnj)IO y (7)

where 7,,; represents the limit of the (m,%) element of the resolvent matrix r(y) for a vanishingly small positive y.
The determination of R(7,j) follows from the four-probe case by setting m =i and n = j:

V-V,

RG.j) = S

= (7“”‘ — Ty — T+ ’I“jj) . (8)

R(i,j) can been obtained numerically for ideal simple lattices of finite size after the eigenvalues and eigenvectors of
the Laplacian matrix have been computed [16]. For ideal infinite resistor networks, the resolvent matrix in eq. 5 is the
lattice Green’s function G. When analytical expressions of G exist, R(7, j) can be calculated with high accuracy. The
lattice Green’s function is available for square, rectangular, triangular, simple cubic and some other lattices [18-23].



The perturbation of lattice Green’s function by defects in ideal networks has been considered [24, 25]. It allows one
to obtain R(i,7) in infinite networks containing a small number of defective resistors.

Analytical methods based on Green’s functions are restricted to simple lattices and limited by the number of
defective resistors in the network. Numerical methods for the basic system of equations (4) are free from these
limitations, but can be applied to finite-size systems only. Compared to an infinite lattice, numerical results obtained
on a finite network deviate from the values given by direct analytical methods based on eq. 6 and Green’s functions.
The error may be expressed as:

6R(7".]) = |R(Z7.7)n - R(i’j)a‘ ’ (9)

where R(%,j), is the equivalent resistance between two nodes calculated by direct analytical method, R(%, ), is the
same calculated by numerical methods.

The error dR(%, j) is due to the finite size of the system and the concomitant neglect of paths of the current across
resistors that are outside the boundaries of the network. If the linear size of the system increases to oo, then assuming
an error-free algorithm, one obtains R(i,j), — R(i,j), and 0R(i,j) — 0. In practice, the size of the system is limited
by the amount of computational operations and memory storage. However, there is another way to increase the
accuracy of the calculation by the inclusion of some corrections in the calculation procedure, see subsection IIB.

A. Recursion algorithm for numerical calculation of the equivalent resistance between two nodes of a
resistor network

For the calculation of, eg, the equivalent resistance R(%,j) between two nodes of an infinite network, we use the
recursion method initially designed for tight-binding Hamiltonian in solid-state physics [29]. To sketch how the method
works, we first rewrite eq. 8 in Dirac notations:

1) = 17)
N

|ui;j) is a normalized vector in the space sustained by the nodes of the network which has zero elements everywhere
except at the nodes i and j where it takes the values +1/4/2 and —1/v/2, respectively. It is worth mentioning here
that, unlike in Ref. 28, the equivalent resistance is obtained in one step as a diagonal element of the resolvent matrix
(eq. 10). There is no need to calculate separately diagonal elements r;; and off-diagonal ones r;;, as eq. 8 would
suggest, which improves the precision and saves computing time.

Starting from the state |0} = |u;;), the recursion method generates recursively a set of normalized states through
the relation

R(i,j) = 2y1_i{gl+<uz'j|r(y)|uz'j> with  [u;;) = (10)

bnt1m + 1) = (L + amy11)|m} — by |m — 1}, (11)

where the so-called recursion coefficients a,, and b,, are defined at each step of the recurrence in such a way that the
state |m} be orthogonal to all the states obtained that far. In the basis defined by these states, the Laplacian matrix
is transformed in a tridiagonal form, with coefficient —a,, as diagonal element in the mth row and coefficients b,, 1
and b,,, on both sides of a,, in the same row.

After [ steps, [ pairs of recursion coefficients are obtained from eq. 11. Using the definition of the resolvent matrix
and the recurrence relation (11), one obtains

1
Olr(y)|0} = )
S R (051711
{O[r(y)[0}
{Olr(y)|m} b
— m=1,2---.
Q=1 ~ (O 1)
{Ofr(y)|m}
Combining these two relations together with eq. 10 yields a continued-fraction expansion for the equivalent resistance
. 2
R(i,j) = 72 : (12)
R S
" i
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FIG. 2. Physical interpretation of the continued fraction (eq. 12) in the form of a transmission line. Each gray-shaded box
represents a resistor whose conductance is indicated along it.

TABLE I. The computational complexity of the recursion algorithm for the calculation of the equivalent resistance between
two nodes of a 2D square lattice and a 3D simple-cubic lattice is compared with some other algorithms that can be used for
solving Poisson’s equation in two and three dimensions.

Computational complexity

Algorithm 2D 3D

Recursion (this work) O(N?/?) O(N*/3)

Block [30] O(N3/?)

Star-mesh transformation [31] O(N?3/?)

Conjugate Gradient [32] O(N?/?) O(N*/3)

SOR [30, 33] O(N3/? .1og N) O(N*? -log N)
Jacobi, Gauss-Seidel [33] O(N?-log N) O(N®/3.1logN)

where s stands for all the terms that are not calculated when stopping the recurrence at step {. The Ith approximant of
the continued fraction corresponds to the limit s — oo. The set of approximants may converge slowly with increasing
l. In practice, however, the convergence can be accelerated by using a suitable, finite termination s. Interpreting aq,
b1, as -+ - by, and s as conductances, eq. 12 can be viewed as the input resistance of the transmission line illustrated in
Fig. 2. Physically, the load conductance s —b; should be positive. According to this criterion, a value of s greater than
b; must be used to terminate the continued fraction (12). Hereafter, we shall refer to the value s = b; as “minimal
termination parameter”.

For an infinite lattice, there is a relation between the size of the cluster used for the calculations and the number
[ of continued-fraction levels one may consider to calculate the equivalent resistance R(i,j) between nodes i and j.
In the case of periodic boundary conditions, artificial periodicity starts playing a role if the shortest percolation path
connecting site ¢ to the closest translational duplicate of site j comprises less than 2] bonds. For the case of free
boundary conditions, the surface starts to influence the results if there exists a path composed of less then 2] bonds
going from 4 to j while passing through a surface node. This rule is illustrated for small values of [ in Fig. 5 of
the Appendix: the computed value of the equivalent resistance between two first-neighbor nodes does not change by
increasing the linear size of the cluster as soon as the latter exceeds 21.

Let us compare the efficiency of the recursion algorithm and other well-known algorithms that can be applied to
solve 2D and 3D discrete Poisson’s equation. In 2D (resp. 3D), the discrete Laplace operator obtained by five-point
(resp. seven-point) stencil finite-difference methods has the same form as the Laplacian matrix given by eq. 2 for a
square (resp. simple-cubic) resistor lattice. Solving eq. 4 for these particular resistor lattices is equivalent to solving
a discrete Poisson equation. Thus we can compare the computational complexity of the recursion algorithm applied
to the calculation of the equivalent resistance R(i, j) between two nodes of square and simple cubic networks with the
computational complexity of 2D and 3D discrete Poisson equation solvers, respectively. We consider square networks
with size (number of nodes) N = n - n and simple-cubic networks with size N =n-n-n.

As shown in the Appendix, the computational complexity of the recursion method for a three-dimensional lattice is
O(N*/3). In two dimensions, the computational complexity becomes O(N3/2) when the number of continued-fraction
levels [ is optimized to the linear size of the network, which scales with N like n = N'/¢_ with d the dimension of
space. As demonstrated by Table I for both 2D and 3D problems, the recursion algorithm can compete with direct
block methods [30], star-mesh transformation [31], conjugate gradient [32], and also iterative successive over-relaxation
(SOR) method [30, 33]. Moreover, the recursion method should run faster than iterative Jacobi and Gauss-Seidel
algorithms [33] according to their respective computational complexity. In addition to its relatively high speed, the
recursion algorithm can be corrected to improve the accuracy of the results in the case of infinite lattices, as we now
demonstrate.
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FIG. 3. Principles of the core-shell model. In (a), the conductivity of the boundary shell is higher than that of the core region
allowing keeping within the finite-size region as many current lines as in the case of the infinite medium shown in (b). The core
region in (a) has the same conductivity as the infinite medium shown in (b).

B. Improvement of accuracy for infinite resistor networks

Here, we present two ways of improving the accuracy of the recursion method applied to infinite resistor networks
while necessarily dealing with a finite system. (i) The first way is to adjust the continued-fraction termination
parameter s (eq. 12) in such a way that R(%, j), between two nearest-neighbor nodes ¢ and j reproduces the analytical
result R(i,7)q, when available [35]. The parameter s so obtained is used for all pairs i, j of nodes. It is called the
optimized termination (OT) parameter in the following. Its value depends on the lattice and the bond resistance, on
the size of the cluster, and on the number [ of continued-fraction levels. (ii) The second way consists in decreasing the
resistance of the resistors in some boundary region of finite-size medium (core-shell model), see Fig. 3. The thickness
of a boundary shell (BS) is taken to be equal to a number of resistors which connect the core region with the outer
part of the network. The higher conductivity of the boundary shell provides larger current in it that permits to replace
the current in the outer infinite network by the current in the shell. The resistance in the shell is chosen in such
a way that the computed equivalent resistance between two nearest-neighbor nodes possesses the exact value. For
perfect resistor networks in which each node is connected to Z equivalent bonds with resistance Ry, the equivalent
resistance between a pair of first-neighbor nodes is 2Ry/Z. The value of Z is referred to as the coordination number
of the lattice.

To illustrate these concepts, let us consider an ideal square lattice with bond resistance Ry set to 1. The equivalent
resistance R(%, j) is calculated on a 100 x 100 network between a node j with coordinates (m,n) and the node i located
at the geometrical center of the network where it receives the coordinates (0,0). Different sets of coordinates (n,m)
of the node j are considered. For comparison, the equivalent resistance has been computed analytically by Green’s
function. The accuracy of the recursion method is measured by the absolute error 0R(i,5) (eq. 9). Three types of
numerical calculations are presented: i) calculations with I = 60 continued-fraction levels using the minimum value of
termination parameter, s = by; ii) calculations still with / = 60 and the termination parameter s = 2.01426 adjusted
to get the correct value of the first-neighbor equivalent resistance (+OT); iii) calculations with the core-shell model,
now with [ = 200, the boundary shell having a thickness of 25 resistors and a bond resistance R; = 0.56351 (+BS).
In the latter calculations, s = b; is used, as in calculations (i).

As Table IT indicates, the recursion algorithm with the minimum termination parameter allows one to obtain R(i, j)
with an accuracy of 3 decimal figures. The correction based on the adjusted termination of the continued fraction
improves the accuracy by at least a factor of 10. It is worth noting that accuracy has improved for all the equivalent
resistances considered. The core-shell model requires more continued-fraction levels in order to better probe the shell
boundary zone. Meanwhile, it leads to improving the accuracy by at least a factor of 100 for all configurations of
nodes.

Let us now consider a square network of size 100 x 100 with a single broken bond between two nearest-neighbor
nodes. Analytical calculation of R(i,j), is provided using perturbation of the lattice Green’s function. Numerical
methods for the calculation of R(i, j),, are the same as for the ideal square network. In particular, the same termination



TABLE II. Analytical results for the equivalent resistance between two nodes R(i,j)q for the ideal square lattice and absolute
error 0 R(i,7) of numerical calculations based on recursion algorithm (see text).

(n,m)  R(j)a 6R(i,j)  6R(i,j) +OT 6R(,j) +BS
(1,0)  0.50000000 0.00002400  0.00000001  0.00000010

(2,0) 0.72676045 0.00011439 0.00001083  0.00000026
(4,0) 0.95398729  0.00044407 0.00003788  0.00000317
(1,1) 0.63661977 0.00005752 0.00001311  0.00000025
(2,2) 0.84882636  0.00022619 0.00002047  0.00000062
(4,4) 1.06709599 0.00086582 0.00006492  0.00000875

TABLE III. Analytical results for the equivalent resistance between two nodes R(%, j), for a square lattice with a single broken
bond between nodes (0,0) and (1,0). Absolute error §R(4, j) of numerical calculations is based on the recursion algorithm.

(n,m)  R(i,5)a O0R(i,7) 0R(i,5) +OT 6R(3,j) +BS

(1,0) 1.00000000 0.00035614 0.00000005  0.00000039
(2,0) 0.99085083  0.00065079 0.00002707  0.00000058
(4,0) 1.13006365 0.00178588 0.00007674  0.00000274
(0,1) 0.56602259 0.00010111 0.00000259  0.00000010
(0,2) 0.82960106 0.00036826 0.00001378  0.00000022
(0,3) 1.07364385 0.00137990 0.00005134  0.00000322
(1,1) 0.83926213 0.00032515 0.00002758  0.00000045
(2,2) 1.01447645 0.00091827 0.00002940  0.00000105
(4,4) 1.21246892 0.00302011 0.00008516  0.00000724

parameter s = 2.01426 is used for the (+OT) improved calculations.

The same level of accuracy as for the perfect network is obtained when using the recursion algorithm with either
(+0T) or (+BS) corrections. By contrast, d R(4, j) with the minimal continued-fraction termination (the third column
of Table III) increases by a factor varying between 5 and 10. One may conclude that the recursion method remains
efficient for a network containing a local defect, if one applies the same corrections as for the ideal network.

To illustrate the accuracy of numerical calculations of R(i,j), for 3D infinite networks, we consider an ideal
simple cubic lattice. Direct analytical results have been calculated with Green’s functions. Numerical results have
been obtained with the recursion algorithm with and without adjusted termination. The size of the network is
N = 45 x 45 x 45, and the resistance of each resistor is set to 1. In both cases, calculations with [ = 20 continued-
fraction levels are provided. By setting s = 3.14605, the equivalent resistance between first-neighbor sites is correctly
reproduced.

Results presented in Table IV demonstrate that the level of accuracy is similar as for the 2D square lattice, although

TABLE IV. Analytical results for the equivalent resistance between two nodes R(i, j)q in the ideal simple cubic lattice. Absolute
error 0R(4,j) of numerical calculations is based on recursion algorithm with the minimum termination parameter s = b; (third
column) and with an adjusted value of s (fourth column).

(n,m,1) R(i,j)a  O6R(i,j) OR(i,j) +OT
(1,0,0) 0.33333333 0.00002374  0.00000000
(2,0,0) 0.41968339 0.00008600  0.00000306
(3,0,0) 0.45037176 0.00017940  0.00000594
(1,1,0)  0.39507915 0.00004352  0.00000250
(1,2,0)  0.43359881 0.00010764  0.00000133
(2,2,0) 0.44935167 0.00016347  0.00000719
(1,1,1)
(2,2,2)
(3,3,3)
(1,2,3)

0.41830531 0.00006334  0.00000338
0.46015929 0.00023483  0.00001176
0.47502340 0.00042933  0.00004596
0.46314670 0.00025823  0.00002058




TABLE V. Configurational average of equivalent resistance in the diamond lattice with a truncated Gaussian distribution of
the bond conductances (see text). The variance of the distribution is Ag = 0.1go, go being the average value. Each resistance
is given in units of go_l. Calculations are performed on a 30 x 30 x 30 supercell with the recursion algorithm. The number
of continued fraction levels is 25. We use the optimized termination parameter s = 2.0495/Rcq (see subsection IIB) for the
perfect diamond lattice with bond resistance Reg.

Sites 4,7 (R(4,5)) AR(i,7) = v/{([R(i,j) — (R(i, 5))]?) Effective medium

1st neighbor 0.502 0.026 0.5025
2nd neighbor 0.670 0.021 0.6700
3rd neighbor 0.715 0.019 0.7142
4th neighbor 0.747 0.019 0.7469
5th neighbor 0.749 0.019 0.7491
6th neighbor 0.778 0.019 0.7700

00 0.898 0.026 0.9009

the number of continued-fraction levels has been considerably reduced (20 against 60). Then, the equivalent resistance
R(i,j) can be obtained with three significant figures with the minimal termination s and with four significant figures
when using the adjusted termination.

C. Random distribution of the resistor values

In principle, the disorder in a conducting mesh produced by a 3D printer can be described by some probabilistic
distribution of the resistance p(R) or conductance p(g) of the bonds. It is possible to deal with such a disorder in the
spirit of the mean field theory [12, 13]. The theory is remarkably simple when the underlying lattice is infinite and
the unit cell contains one node where Z equivalent resistor bonds meet [12]. Then, the real system can be replaced
by an ideal, ordered one, with an effective bond conductance geg

> (Gett — 9) _
L 70 G g o= (13)

This equation states that, having selected one bond %, j of the ideal system and letting the conductance of that bond
vary according to the probability distribution p(g), then the average value of the equivalent resistance R(i,7) will be
that of the perfect lattice, 2/(Zgesr). Once gegr has been calculated, one is back to the theory of ideal resistor networks.
The equivalent resistance between any given pair of nodes ¢ and j of the ideal network with bond conductance geg
has the meaning of a configurational averaged value of R(i,j) for random resistor network [36]. It is worth noting
that the accuracy of this approach increases with increasing coordination number Z (see, e.g., Refs 14 and 36).

Determining the distribution function p(g) for the bond resistors of a realistic 3D mesh is not an easy task. For
simplicity, Gaussian distribution of the conductance of bond resistors can be assumed with mean value gg and standard
deviation Ag. The Gaussian distribution is truncated on its negative tail in order to avoid negative values of g: the tail
on the negative side is pushed upward and replaced by a Dirac delta peak at the origin whose weight compensates the
weight of the truncated tail. This delta peak physically represents the probability that a rod in the 3D printed mesh
be broken. Numerical simulations performed for the diamond lattice (Z = 4) are listed in Table V. The equivalent
resistance, computed from eq. 13 with the truncated Gaussian distribution for Ag/go = 0.1, is Reg = 1.005 g L The
data in Table V demonstrate that the relative dispersion AR(4,7)/(R(3,j)) of the equivalent resistance between any
two nodes, calculated for a sample with 7000 different but equivalent configurations of the resistors, is less than the
relative dispersion Ag/go = 0.1 of the resistors themselves.

We have explored how the equivalent resistance fluctuates around its average value in a square lattice of resistors.
The conductance of the resistors was chosen according to the truncated Gaussian distribution with Ag/go = 0.2 and
1000 random configurations were generated. For each of them, the equivalent resistance R(i,j) between the node ¢
located at the center (0,0) of a 200x200 network and the node j at coordinates (d,0) was calculated for d = 1, 2
-++ 20. The configurational averaged value (R(%,j)) is represented versus the distance d between the nodes i and j
in Fig. 4. The gray-scale maps visualize the fluctuations of R(i,7), the horizontal blue bars represent the 5th and
95th percentiles. The 5-95 percentile interval keeps reasonably the same for all the distances d > 3. The results
of the perfect lattice with effective resistance R.g = 1.021 g, 1 are plotted in the same figure. They reproduce the
configurational averaged data very well. The effective medium corresponds therefore to an efficient averaging of R(i, )
and makes the theory useful to approximate a random resistor network by its equivalent ideal resistor network. The
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FIG. 4. Plot of the equivalent resistance R(i,7) between two nodes 7 and j in a disordered square lattice of resistors. The
nodes are along the [1,0] direction and are separated by d lattice parameters. The conductance of the resistors were taken
randomly according to a truncated Gaussian distribution (see text) with average value go and standard deviation Ag = 0.2go.
The vertical gray patterns represent the fluctuations of equivalent resistances computed for 1000 independent configurations.
The average values are shown by the horizontal red bars. The 5th and 95th percentiles of the fluctuations are shown by the
horizontal blue bars. The green spots represent the results obtained on the same square lattice with a uniform resistance Reg.
In all cases, a 200x200 lattice was used, the continued fraction (12) was truncated at its 75th approximant.

same effective-medium approach has also been applied to study the conductive properties of nanowire networks in two
dimensions [37]. Here, cross connections between randomly dispersed nanorods form an irregular conducting net to
which eq. 13 does not apply directly. Before, the nanowire network has been mapped onto a regular square lattice were
the bond resistances vary according to probability distributions of interwire junction resistances, intrawire resistances,
and infinite —non-electrically active wire segment— resistances. In spite of the regular network approximation used
and complex distribution functions of the resistances in a nanowire network, the effective-medium theory accurately
reproduces the numerical values of the equivalent resistance between two point electrodes similar to what is shown in
Fig. 4 for a disordered square lattice with a truncated Gaussian distribution of resistances.

It is interesting that the fluctuations of equivalent resistance between two nodes of the square lattice considered in
Fig. 4 does not vary significantly when d exceeds 3. A similar dependence of fluctuations of the equivalent resistance
versus distance has been observed in the aforementioned modeling of 2D nanowire networks’ topology [37]. In both
cases, the random distribution of the resistance between connected nodes is the source of fluctuations. However for the
case of nanowire networks, an additional source of fluctuations exists: the geometry of the network changes from one
arrangement of the nanowires to the other, whereas the geometry of our square lattice is kept the same for all resistor
configurations. Despite this difference, a close similarity is observed in the way the fluctuations of the equivalent
resistance depend on the distances between two nodes. In our case, we can imagine that the fluctuations come mainly
from the finite number of resistance configurations inside a small region around each node i and j. Outside these two
small regions, the network offers so many different paths for the current that a configurational averaging is almost
automatically performed. Then, the fluctuations of R(7,j) does not change with increasing the distance between the
nodes above a given small value. The same trends are revealed by the data of Table V for the diamond structure: the
standard deviation 0R(7, j) keeps constant as soon as j lies outside the third-coordination shell of i.

Irrespective of the type of distribution function, if p(g) is peaked around its mean value go with a small standard
deviation Ag, g is close to gg. Then, the value of g/ges has a small probability to deviate strongly from 1. Rewriting
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eq. 13 in the following form

N o

* (1 —g/gest) _
L 0 ot = 14)

and developing the integrand in power series of (1 — g/geg) limited to second order terms, one readily obtains

2
90 2 <Ag>
—=l+ - (—]) . 15
Geft 4 g0 ( )

When go and Ag are known, this equation can be used to calculate Reg = 1/gor. This result also shows that if
Ag/go = 10%, then g.s deviates from go by less than 1%.

III. EQUIVALENT BULK CONDUCTIVITY OF A RESISTOR NETWORKS

It is interesting for some applications to approximate a discrete resistor network by a continuous medium. For
example, the effective medium approximation for 3D printed mesh may be used to investigate the electromagnetic
properties of the mesh in the long-wavelength limit (wavelength greater than the linear size of the lattice unit cell).
In a different but close context, it has been shown that the electromagnetic properties of conductive cellular carbon
foams with a cell size of 0.5—1 mm are well described in a continuous medium approximation up to frequencies around
30 GHz (1 cm wavelength) [38]. Let us consider different ways for the modeling of 3D printed mesh as a continuous
medium.

A. Global definition of the effective conductivity

The effective conductivity tensor oeg of an arbitrary inhomogeneous medium is defined by [39—-41]

(7) = o (E) | (16)

where (...) denotes the average of a physical quantity (here, the current density j or the electric field E) over a
characteristic volume of the inhomogeneous medium. In general, g.g can be determined by solving the electrostatic
equation with appropriate boundary conditions for the electric potential ® [12, 40]:

—

V- [a(fﬁ@} ~0. (17)

Interestingly, this equation can be discretized using a finite-difference scheme to yield a set of equations similar to
those derived for a discrete resistor network (eq. 1 with I; = 0).

The effective conductivity oeg of a periodic resistor network can be addressed as follows. A slice of network,
delimited by two parallel planes of specific Miller indices and distant of L from each other, is contacted by two
parallel infinite plates. The nodes of the network in contact with one plate or the other are set to the potentials 0
or @y, respectively. These are Dirichlet boundary conditions [42, 43]. Due to the assumed geometrical periodicity of
the lattice, periodic boundary conditions can be imposed to the lattice in directions parallel to the electrodes. The
periodic boundary conditions make the sample essentially infinite in two dimensions [12]. They are widely applicable
to the modeling of regular or random resistor lattices [12, 14, 44].

An important advantage of the slab geometry of the problem is that the average electric field is known and only the

average current density <;> needs to be calculated. From the solution of eq. 1 with Dirichlet boundary conditions in

one direction and periodic boundary conditions in other directions, we can find the electric potential distribution on
the inner nodes of the network. Knowing these potentials, we can find the currents /;; flowing from node ¢ to node j
through the bond between them:

Lij = gij(Vi = Vj) . (18)

From there, the average current density can be obtained as follows. Let l_;»j be the vector in Cartesian space
connecting node 7 to node j. Let 2 be the volume of the network slab that is reproduced periodically in the directions

parallel to the electrodes. Then
()= a X (1) (1)
Q
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TABLE VI. The effective conductivity oes of resistor networks with cubic symmetry in units of 1/(Ra) where R is the bond
resistance and a is the length of the conventional cubic cell.

diamond sc bce fee
1 1 2 2

where the sum is over all the bonds contained in the volume 2. This relation provides us with the numerical value
of the average current density for the imposed averaged electric field <E> = ®.ii/L, where 7 is the unit vector

perpendicular to the plate electrodes. The calculations can be performed for electrode successively set normal to each
axis of the Cartesian coordinate system [41]. Using eq. 16, the 9 components of the tensor o.s can be obtained.

Let us consider the particular case where the lattice is ideal, periodic and geometrically simple. We imagine a unit
cell in the form of a rectangular parallelepiped with resistors along its edges. The lengths of the edges are denoted as
a1, az and ag, and the corresponding resistances are R;, Ro, and R3. The unit vectors €, €5, and €3 of the Cartesian
coordinates are taken parallel to the edges of the unit cell. We take the plate electrodes to be normal to €7, and the
network slab have a thickness L = Nja;. The smallest volume 2 that can be reproduced periodically along €5 and
€3 contains N7 X 1 x 1 unit cells. Due to the simple shape of the network, all nodes that belong to a same plane
parallel to the basis planes have the same electric potential. The current flows only along the direction €; through
linear and parallel chains composed of Ny resistances R;. Its value is Iy = @1, /(N1 R1). Egs. 16 and 19 readily yield
011 = a1/(agazRy). The other diagonal elements of oo can be obtained in the same way. The same reasoning is easily
applied to lattices with cubic symmetry: diamond, simple cubic (sc), body-centered cubic (bcc) and face-centered
cubic (fee) lattices. Table VI gives the obtained values of the effective conductance, which is diagonal and isotropic.

If the structure of the resistor network is perturbed by defects or by geometrical distortions, the method described
above can still be applied by considering a supercell to be reproduced periodically in the lateral directions. Therefore,
the computation of o can quite generally be applied to networks with different kinds of inhomogeneities: i) lattices
with non-random spatial distribution of defects [45], ii) lattices with fluctuations of the orientation and length of the
bonds, iii) lattices with bond resistances varying in a correlated way.

The very same methodology can be used in practice to characterize 3D-printed meshes. The nodes located on
two parallel faces of a mesh are contacted to two electrodes, and the resistance of the whole structure is measured
across the electrodes. An effective conductivity is obtained from this measurement. If the lattice is simple like in
Table VI, the bond resistance can be deduced. When the lattice has a complex geometric structure and contains
different resistors, the same task can be performed, but it may need several measurements on slabs cut along different
directions.

B. Local definition of the effective conductivity

Let us investigate the effective bulk conductivity of a discrete network using a more local point of view. The idea
here is to resort to a four-probe like setup where the current I is injected at node i and is collected at node j, while
the potential drop is measured between two other nodes m and n. Eq. 7 allows us to obtain the apparent resistance
R, = (Vi, — Vi)/Ip in a form tractable by the recursion algorithm:

Ro = lim ((ulr()fu) = (0l (20)
where
= L=l b =)
i) = 1) = Im) +In)

2

Eq. 20 demands computing two diagonal elements of the resolvent operators r(y), that is easy to do by the recursion
algorithm.
The apparent resistance obtained with the very same setup in a continuous and homogeneous 3D medium is

p [ 1 1 1 1
. = —— _—— ), 21
R 47 (dml dm,j dni + dn,j ( )
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TABLE VII. Application of eq. 20 to a simple cubic lattice in the Wenner configuration along the [100] direction, the distance
between two successive probes being [ times the lattice parameter a. The results are given in units of the bond resistance R.
The last row lists the value of p in units of Ra and calculated by eq. 22 from the values of R, contained in the row above.

l 1 2 3 4 5 6
R, 0.0863 0.0452 0.0283 0.0205 0.0160 0.0132
p 1.084 1.136 1.067 1.030 1.005 0.995

TABLE VIII. Local bulk resistivity calculated by eqgs. 22 and 20 for the Wenner configuration in the bce lattice along the [111]
and [100] directions. The distance between two successive probes is | multiplied by the first-neighbor distance v/3a/2 for [111]
direction and ! multiplied by the lattice parameter a for [100] direction, respectively. The resistivity p is given in units of Ra,
R is the bond resistance, and a is the cubic lattice parameter.
Direction [ 1 2 3 4 5
[111]  p 0.550 0.535 0.513 0.505 0.501
[100] p 0.428 0.476 0.488 0.491 0.492

where d,,; is the distance between nodes m and ¢ etc and p is the bulk resistivity. In the so-called Wenner
configuration [34], the four probes are put along a straight line in the sequence i,m,n,j and are equidistant:
dijm = dmn = dn,j = d. Eq. 21 simplifies and yields

p=1/c =4nR.d. (22)

If one injects in this relation the apparent resistance computed by eq. 20 for a resistor network, using four aligned and
equidistant nodes, one obtains a local value of the effective resistivity (or the effective conductivity). By definition, it
represents the characteristics that a continuous and homogeneous medium should have to produce the same apparent
resistance when the measuring electrodes are placed at exactly the same positions as in the discrete network.

In a simple cubic network, let us take the four probes along the [100] direction with inter-distance d = la, 1 = 1,2-- -,
where a is the bond length equal here to the lattice parameter. The results of the computation are given in Table VII,
assuming R = 1 and a = 1. Here, 20 levels of continued fraction were used in a 53 x 45 x 45 supercell. The continued
fraction was terminated with the same optimized parameter s = 3.14605 as used for the equivalent resistances between
two nodes. One can deduce from these calculations that the effective resistivity is not a constant, but it converges
to the value listed in Table VI when the distance between the electrodes increases. For small values of [, there is
deviation of p from the value of 1/o4g given by the global approach. This is due to the radial asymmetry of the current
injected into the network at node i. It can flow only along 6 equivalent directions in a simple cubic lattice. In a bulk
material, the current density is distributed uniformly in all directions. The radial asymmetry of the current flow,
which is related to the non-homogeneous geometry of network, decreases with increasing distance between the current
probes ¢ and j and the voltage probes m and n. When the distance exceeds several bond lengths, the application of
an effective bulk conductivity to a discrete 3D network is justified.

The effective bulk resistivity calculated exactly as for the simple cubic lattice is given in Table VIII for the body-
centered cubic structure. 30 levels of continued fraction were used in a 50 x 50 x 50 supercell with the optimized
termination parameter s = 4.177 (see subsection I1B). Here, two directions are considered to illustrate the anisotropy
of the discrete resistor network. The equivalent resistivity seems to converge toward 0.5 (see Table VIII) faster along
the [111] than [100] direction.

Obviously, the simple electrokinetic equation 17 needs to be corrected if one wants to reproduce the variations of
the apparent bulk resistivity of a discrete conducting mesh. Unlike a homogeneous medium, the mesh has an intrinsic
length unit, i.e., bond length. Having realized that, a conducting mesh could still be approached by a continuous
medium, provided one uses a non-local Ohm’s law. The formulation of the non-local response of the network has to
be designed so as to mimic as best as possible the variations of its apparent local resistivity. This question is under
investigation.

IV. CONCLUSIONS

The recursion algorithm initially developed for the quantum mechanical problems has been applied to tasks related
to the theory of resistor networks. The recursion method has been demonstrated to be very efficient and accurate
for the characterization of the electrical properties of a 2D and 3D finite-size conducting meshes. For accurate
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consideration of infinite networks by numerical modeling, one needs to use a cluster model with minimized finite-
size effect. For this, we propose the core-shell design of the cluster, where the conductance of the resistors in the
boundary shell of the cluster is supposed to be increased. Another way to minimize finite-size effects is by adjusting
the termination of the continued fraction in the recursion algorithm in order to reproduce the equivalent resistance
between two first neighboring nodes. The efficiency of these two approaches has been investigated by the comparison
of numerical data and exact analytical results obtained for infinite square and simple cubic networks. The effective-
medium theory allows one to model a random resistor network by an ideal resistor networks with effective bond
conductance. Numerical calculations, in particular, provided by the recursion method, make it possible to go much
beyond this mean-field approach and give access to statistical data. It allows one to analyze the fluctuations of the
resistance between two nodes for any particular configuration of current probes. For specific configurations of current
probes, it has been shown that the relative dispersion of the equivalent resistance between two nodes is less than
the relative dispersion of the resistors themselves. Finally, the question on how to assign a bulk resistivity or bulk
conductivity to a 3D conducting mesh has been addressed. The general definition of the effective conductivity has
been applied to 3D conducting meshes. For a slice of the mesh lattice between two planar electrodes, an effective bulk
conductivity has been defined unambiguously. It reproduces the conductivity of a continuous medium which should
have to transport the same average current density from one electrode to another like discrete network. Following
this consideration, the effective conductivity of different resistor networks with cubic symmetry has been calculated.
Locally, an apparent resistivity of a conducting mesh is defined in the same way as with a four-probe measurement
technique. The apparent resistivity has been calculated for simple cubic and body-centered cubic lattices. The results
depend on the crystallographic direction along which the pin electrodes are aligned and on the distance between these
electrodes. When the distance between the electrodes exceeds several times the bond length, the apparent resistivity
reproduces the resistivity defined globally in a slab, at least for simple lattices.
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Appendix: Convergence, computational complexity and accuracy of the recursion algorithm

In this section, the convergence of the recusion algorithm wversus number of continued fraction levels [ is examined
in the case of a simple cubic lattice of finite size. The first point of interest is how to obtain the equivalent resistance
bewteen two first-neighbor sites ¢ and j with a given accuracy. The underlying problem is the solution of the 3D
discrete Poisson’s equation (eq. 3) in the presence of a pair of current source and sink.

The results obtained with the minimal termination parameter s are presented in Fig. 5 versus [. Three lattices,
composed of N = 10 x 10 x 10, 20 x 20 x 20, and 50 x 50 x 50 nodes, were considered. For each of them, Fig. 5 allows
us to find the number I(n) of continued fraction levels that produces the resistance R(%, j) with a relative error 10~ ".
When n < 4, I(n) does not depend on the lattice size N. For n > 6, [(n) increases approximately like the linear size
&N of the network.

The number of multiplication operations required by the recursion algorithm is I(z 4+ 6)N with z the coordination
number of the lattice (z = 6 for simple cubic). Then, when the equivalent resistance has to be obtained with more than
six exact figures, the number of multiplication operations scales with N like N*/3. In other words, the computational
complexity of the recursion algorithm is O(N*/3).

The second point of interest is linked to the accuracy of the recursion method. The question is how precisely the
equivalent resistance R(i,j) between two nodes i and j can be obtained depending on the distance between them.
We have addressed that question in an infinite cubic lattice of identical resistors, represented by a cluster of size IV,
either equal to 40 x 40 x 40 or 80 x 80 x 80. The number of continued-fraction levels [ for both cases was half the
linear size of the cluster, namely 20 and 40, respectively. The relative positions of the nodes 7 and j were taken along
three crystallographic directions, either as (m,0,0), (m, m,0) and (m, m,m), with m = 1,2---10. The termination
parameter s of the continued fraction (12) was adjusted to reproduce the exact value of the equivalent resistance
between two nearest-neighbor nodes ((1,0,0) case). Setting the bond resistance Ry to 1, the terminations parameters
used were s = 3.14605 for [ = 20 and s = 3.07640 for [ = 40. The absolute error §R(i, j) is plotted in Fig. 6 against
m for the three sets of pairs of nodes and for the two cluster sizes. The error increases approximately like m? for each
crystallographic direction. For a given m, the error increases on going from (m,0,0) to (m,m,0) and from (m,m,0)



15

20
1 o [0) A
16 o o A
o o A
i o o A
o o A
12 o o A
o o A
E u] 0 A
= o ) A
8 o o A
o o A
. o o N o N=10x10x10
4 o °° o N=20x20x20
AA A N =50x50x50
N
0 T T T T T 1
50 100 150

FIG. 5. Relative accuracy of the equivalent resistance R(i,j) between two first-neighbor nodes obtained with a given number
[ of continued-fraction levels in a simple-cubic lattice of size N = 10 x 10 x 10, 20 x 20 x 20, and 50 x 50 x 50. The relative
accuracy is defined by n = —log |0R(%, j)|/Ro (see eq. 9) with Ry the bond resistance.

to (m,m,m). Overall, one can say that JR(i,j) increases with the square of the geometrical distance between the
nodes ¢ and j. For all m, the error decreases approximatel by a factor of 8 by doubling the linear size of the cluster.
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