
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Model-based Mutation Operators for Timed Systems

Ortiz Vega, James Jerson; Perrouin, Gilles; Amrani, Moussa; Schobbens, Pierre-Yves

DOI:
10.1109/QRS.2018.00045

Publication date:
2018

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Ortiz Vega, JJ, Perrouin, G, Amrani, M & Schobbens, P-Y 2018, 'Model-based Mutation Operators for Timed
Systems: A Taxonomy and Research Agenda', Paper presented at 18th IEEE International Conference on
Quality, Reliability, and Security, Lisbon, Portugal, 16/07/18 - 20/07/18 pp. 325-332.
https://doi.org/10.1109/QRS.2018.00045

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2025

https://doi.org/10.1109/QRS.2018.00045
https://researchportal.unamur.be/en/publications/8bb472aa-72f0-43ed-b70a-aa90789697eb
https://doi.org/10.1109/QRS.2018.00045

Model-based Mutation Operators for Timed
Systems: A Taxonomy and Research Agenda

James Jerson Ortiz Vega, Gilles Perrouin, Moussa Amrani, Pierre-Yves Schobbens
PReCISE, Namur Digital Institute

Faculty of Computer Science, University of Namur, Belgium
Email: {James.OrtizVega, Gilles.Perrouin, Moussa.Amrani, Pierre-Yves.Schobbens}@unamur.be

Abstract—Mutation testing relies on the principle of artificially
injecting faults in systems to create mutants, in order to either
assess the sensitivity of existing test suites, or generate test
cases that are able to find real faults. Mutation testing has
been employed in a variety of application areas and at various
levels of abstraction (code and models). In this paper, we focus
on model-based mutation testing for timed systems. In order
to cartography the field, we provide a taxonomy of mutation
operators and discuss their usages on various formalisms, such
as timed automata or synchronous languages. We also delineate
a research agenda for the field addressing mutation costs,
the impact of delays in operators specification and mutation
equivalence.

Index Terms—Model-Based Testing; Mutation Testing; Timed
Automata; Real-Time Systems; Mutation Operators Taxonomy.

I. INTRODUCTION

Timed Systems are currently deployed into many safety-
critical and/or embedded applications, e.g. airplanes, satellites,
trains, automotive and nuclear systems. Such systems are
usually composed of deeply integrated hardware and software
components developed under severe resource limitations and
high quality requirements. When a failure occurs in such
a system, it may result in enormous costs, human injuries
and life losses. Consequently, a systematic verification &
validation approach for timed systems is a crucial issue for
those systems whose correctness not only depends on the
correct functioning, but also on meeting time constraints.

Formal verification techniques aim at exhaustively checking
the correct behaviour of timed systems against their require-
ments [1]. Though, those techniques suffer from scalability
issues and mathematical sophistication that directly hamper
their large-scale usage. Testing remains the de facto approach,
especially when timed systems under consideration are cyber-
physical: such systems are composed of interacting software
and hardware components. Model-Based Testing [2], [3] con-
sists in producing test specifications entirely or in part from
both the system requirements and a model describing selected
(non-)functional aspects of the system under test. The use of
models helps managing timed systems’ complexity by working
with abstractions focusing on the appropriate properties to be
validated.

Mutation Testing (MT) [4] is an established technique for
two usages: (i) evaluating the effectiveness of the test suites
[5], [6], [7]; and (ii) supporting test generation [8], [9], [6].
It works by injecting artificial defects, called mutations, into

the code or the model under test, yielding mutants. Test suites
may be evaluated against mutants by comparing outputs of the
original system against those of the mutant: when different,
the mutant is said to be killed (or distinguished) by test
cases. The effectiveness of test suites is then measured by
the mutation score, i.e. the ratio between killed mutants over
the total number of mutants. To obtain an effective test suite,
we expect to kill all the mutants. However, some mutants may
be equivalent, i.e. they exhibit the exact same behaviour as the
original system although syntactically mutated, and therefore
cannot be killed. As a consequence, appropriately detecting
equivalent mutants (known as the Equivalent Mutant Problem
within MT [10]) is an important challenge to improve the
overall testing framework efficiency.

MT can also be leveraged to generate specific test cases for
killing mutants, either at the code level, by exploiting dynamic
symbolic execution to generate test data for mutated paths [8],
or at the model level, by using specific techniques such as
input-output conformance (or ioco) [11] or model-checking of
a violated temporal property [12].

Model-Based Mutation Testing (MBMT) therefore combines
the strengths of both Model-Based Testing and Mutation
Testing, and has been largely used as a complementary tech-
nique to code-based mutation technique. Aichernig et al.[13]
report that model mutants lead to tests that are able to reveal
implementation faults that were neither found by manual tests,
nor by the actual operation of an industrial system. In addition,
model-based mutation’s premise is to identify defects related
to missing functionality and misinterpreted specifications [14].
This is desirable since code-based testing fails to identify these
kinds of defects [15], [16].

This paper aims at evaluating the relevance of Mutation
Testing for timed systems. We propose to survey the existing
literature contributions to retrieve the mutation operators used
for a large panel of timed systems, and organise them in a
comprehensive manner, for future evaluation, in a simple two-
level taxonomy. More specifically, this paper provides:

• A survey on Mutation Testing for Timed Systems;
• A two-level taxonomy of mutation operators spanning the

whole spectrum of Timed Systems;
• A provisional research agenda, covering notably the need

to further validate time-related operators and mutation
equivalence.

Author Title Published Ref.
Aichernig et al. Time for Mutants - Model-Based Mutation Testing with Timed Automata Tests& Proofs’13 [11]
Nilsson et al. Mutation-Based Testing Criteria for Timeliness COMPSAC’04 [17]
Hanh & Binh Mutation Operators for Simulink Models KSE’12 [18]
Du Bousquet & Delaunay Towards Mutation Analysis for Lustre Programs ENTCS’08 [19]

TABLE I
SELECTED CONTRIBUTIONS FOR MODEL-BASED MUTATION OF TIMED SYSTEMS

The remainder of this paper is organised as follows. Section
II briefly presents our selection protocol for retrieving the
literature contributions on mutation operators for timed sys-
tems; threats to validity are discussed later in Section VII.
Section III discusses the general principles that governs the
construction of our taxonomy. Section IV and V discusses
operators that works with explicit- (e.g. Timed Automata) and
implicit-time models (mainly, MathLab SimuLink and Esterel
Scade), respectively. Section VI describes our research agenda
for the field, and Section VIII wraps up with concluding
remarks and future work.

II. SURVEY ON TIMED MUTATION OPERATORS

To collect mutation operators, we surveyed the online
scientific literature in popular search engines (SpringerLink,
ScienceDirect, Google Scholar, Scopus, IEEE XPlore and
ACM Digital Library). We completed our initial set of conti-
butions by manually investigating papers based on the authors’
knowledge. We also operated a backward snowballing of the
bibliographical references [20].

We used an internal Github repository to collect the result-
ing contributions: the initial set was composed of 61 studies,
from which we explicitly excluded the ones that did not
describe mutation operators explicitly, or did not take time-
related mutations into account. For example, Aichernig et
al. [21] mutated hybrid systems by abstracting away both
physical, continuous aspects and discretising time, resulting
in non-timed labelled transitions systems. Furthermore, when
different contributions specified the same (sets of) operators,
we selected the most precise one. Our goal was not to focus on
the chronological developments of these operators, but rather
to classify them and evaluate their similarities. This additional
filtering step resulted in six distinct contributions, published
between 2004 and 2015, that formed the base material for our
taxonomy presented in the next section. As a matter of fact,
all the recent contributions (e.g., [22]) tend to reuse existing
operators rather than providing new ones. The studies we
retained for our taxonomy are presented in Table I.

III. TAXONOMY PRINCIPLES

Building a taxonomy of mutation operators was hindered
by the fact that many of the contributions we retrieved study
the matter in silos: they often position themselves only with
closely related work, in some cases only focusing on the
same formalism. To build a general taxonomy of mutation
operators, it becomes necessary to place the notion of time and

formalisms in a broader perspective. Furia et al. [23] proposed
an interesting classification on how time is represented and
manipulated in different programming paradigms and lan-
guages: when abstracted for being represented in computers,
time is interpreted over a specific domain, and manipulated
through a language that possesses specific features. These are
the characteristics that determine time-dependent reasoning.

The semantic domain is the mathematical numerical set
whose intrinsic mathematical properties influences both the
manipulation of time and the scope of properties available.
However, although most of real-time systems are based on
real time values, these values are often abstracted away
or discretised to simplify the programming. Since mutation
operators are pure syntactic changes in the real-time system
representation, this should represent a better classifier than
the mathematical domain for time. Among all formalisms’
features described by Furia et al., we identified two that are
largely represented in the contributions we retrieved. First, the
property type indicates how relevant events may occur in the
system. A quantitative constraint specifies a precise duration
(e.g., a car break should activate within 50 ms after the pedal
break is pushed); whereas a qualitative constraint only imposes
a (partial) order between them (e.g., the break should occur
only some time after). Second, the synchronicity of the for-
malism is important: synchronous systems impose changes in
modules to occur at the same time, or at times rigidly related;
whereas asynchronous systems allow independent progress of
each module.

Although not a general observation, we noticed that both
features are often related: asynchronous systems make use
of quantitative constraints; while synchronous systems relate
events/signals qualitatively. As a matter of fact, the way time
elapses in synchronous systems is beyond the language’s
syntactic domain: it belongs to the semantic domain, where
computations occur in cycles that may be aligned to precise
timing. These observations form the basis, as well as the top-
level criterion of our taxonomy: for asynchronous systems with
quantitative constraints, the notion of clock is explicitly part
of the underlying formalism; while for synchronous systems
with qualitative constraints, the notion of clock is only implicit.
Since the contributions we retrieved are largely clustered
according to specific formalism, we simply distinguish further
those formalisms.

Table II shows the mutation operators retrieved from the
considered contributions, sorted by formalisms in implicit- and
explicit-clock models.

Formalisms Mutation Operators

E
xp

lic
it

cl
oc

k
m

od
el

s Timed Automata

- Change action [11]
- Change target [11]
- Change source [11]
- Change guard [11]
- Negate guard [11]
- Change invariant [11]
- Sink location [11]
- Invert reset [11]

Timed Automata+

- Execution time [17]
- Inter-arrival time [17]
- Pattern offset [17]
- Lock time [17]
- Unlock time [17]
- Hold time shift [17]
- Precedence constraints [17]

Im
pl

ic
it

cl
oc

k
m

od
el

s Simulink

- Types replacement [18]
- Variable change [18]
- Variable negation [18]
- Statement change [18]
- Delay change [18]
- Relational replacement [18]
- Logical replacement [18]
- Aritmetic replacement [18]

Lustre/Scade

- Variable change [19]
- Arithmetic replacement [19]
- Logical replacement [19]
- Relational replacement [19]
- Unary insertion [19]
- Unary replacement [19]
- Temporal replacement [19]
- Subprogram replacement [19]

TABLE II
TAXONOMY OF THE MUTATION OPERATORS OF TIMED SYSTEMS

IV. EXPLICIT CLOCK MODELS

Timed Automata (TA) [24] are amongst the most studied
formalisms with explicit manipulation of time. TA are an
extension of Finite State Automata with a set of real-valued
clocks increasing at the same rate. Each transition has a
(possibly empty, i.e. true) guard, an action and a (possibly
empty) clock reset set. A guard defines a condition enabling
state change, and consists of an expression composed of a
conjunction of clock comparisons (i.e. of the form x ∼ c where
c is an integer, and ∼ is one of the symbols {<,≤,=,≥, >}).
Clock resets allow to measure time elapse between states,
which may contain invariants, also expressed with the same
kind of expressions. Figure 1 depicts an example of TA with
two states S1 and S2 and two transitions. The invariant x < 7
is defined over S1, while the transition from S1 to S2 operates
on action a, is guarded by x > 3 and resets the clock x.

Several extensions of TA have been also considered for mu-
tation analysis: TA with Inputs/Outputs (TAIO) [25] partition
the actions into two disjoint sets for inputs and outputs; and
TA have been combined with a task model (TAT) to capture
scheduling and execution of tasks [26]. TAIO and TAT appear
in the Timed Automata+ category.

A. Timed automata operators

Aichernig et al. [11] provided eight operators to mutate
TA defined in the Uppaal specification format. Four of them
are not time-related: change Action, change source/target and

S2S1

a, x > 3, x:= 0

x < 7 b, y = 9, x:= 0, y:=0

b, x < 10

Fig. 1. A timed automaton with two clocks x and y.

sink location. The first time-related operator, change guard
alters the inequality within the guard constraint (e.g., replacing
x > 3 by x ≥ 3). The negate guard operator replaces
a transition boolean guard by its logical negation. Another
operator applicable to transitions, invert reset, selects one
clock variable and either adds it to the list of clocks to be
reset during the transition if it is absent, or removes it from
the list if it is present. Finally, change invariant adds one time
unit (to mimic off-by-one errors) to the invariant constraint
(which represents an inequality between a clock value and
a positive real value) in an automaton state (e.g., x < 8 in
S1). While guard mutation operators can be thought of as
timed modifications of usual MBMT operators [27], change
invariant and invert reset are specific to timed automata,
as mentioned by the authors [11]. In addition to providing
mutation operators, the authors designed a test generation
framework based on the input-output extension of the ioco
conformance relation [28]. Tests are created from a mutant
only if the mutant violates the conformance relation. The
authors applied their framework on a car alarm system and
found that the operators working on automata structure (e.g.,
change target) yielded the highest mutation scores (94.7%). In
contrast, time-related operators yielded mutation scores lower
or equal to 60%. This is an indication that time-related mutants
are hard to kill.

B. Extended Time Automata Operators

Nilsson et al. [17] first extend the TA formalism with a task
model, as they focus on their timeliness, i.e. the ability for a
system to meet its deadlines. Tasks refer to locations of the
underlying TA and are organised in an execution queue. This
queue specifies for each task the time remaining for the task;
a set of system-wide resources (semaphores) and the interval
of time they can be locked by the task; as well as precedence
relations with other tasks. Generally, the proposed operators
affect time by shifting it with a certain amount ∆. Nilsson
et al. define specific task set operators: execution time affects
a task’s execution time; hold time shift and lock/unlock time
operators either shift the whole lock/unlock time interval for a
resource, or only one of its bounds; and precedence constraints
operators change precedence relations between pairs of tasks.
The authors also define automata operators that affect both
invariant and guard constraints either for a given location
(inter-arrival time), or for the initial location (pattern offset).

While the initial paper only illustrates the operators, a more
complete evaluation on a robot arm was conducted in [29].
The authors of this contribution found that randomly generated
test suites were unable to find any time-related fault. More
interestingly, the same was observed for manually created test
suites. This experiment is an indication that timing faults are
subtle and that manually creating effective test cases to find
timing faults is difficult.

V. IMPLICIT CLOCK MODELS

A number of formalisms have an implicit notion of clocks,
especially when they follow the synchronous hypothesis [30].
This hypothesis relies on a logical, abstract discrete time cor-
responding to cyclic execution instants: some inputs occur into
the system, triggering internal computations that propagate
data according to the formalisms’ control definitions, until
output data are computed for defining a new, global state. This
abstract logical time does not directly corresponds to the actual
physical time; all that matters is that all computations converge
and finish before the next instant occurs.

We retain for our study the two main formalisms and
tools widespreadly used to model embedded critical systems:
MathLab SimuLink and Esterel SCADE. Both rely on graph-
ical representations that define a model as a collection of
subsystems consisting of functional blocks that are connected
through links/wires that transport data: the output of one
block is transmitted to the input of another one, each block
being defined from the tool’s library or basic blocks, a user-
defined combination of them, or even a full, hierarchical
subsystem. Figure 2 shows two simple examples of such
system definitions. Both SimuLink and SCADE have textual
representations that could be used for code-level mutations;
however, the correspondence between the graphical and textual
representations is not always guaranteed. While SCADE has a
well-defined semantics in terms of Lustre semantics, SimuLink
suffers from the lack of formal semantics, which results in
possible discrepancies between code generated by different
tools from the same SimuLink models. As a consequence,
mutations operated on textual representations of SimuLink
models may not straightforwardly trace back to their original
model.

A. MathLab SimuLink

Hanh et al. [18] provided one of the most compelling mu-
tation operators collection for SimuLink, aimed at validating a
test suite. Mutation operators are spread into five classes: type
mutations (TRO) switch variable/constant types with another,
compatible one; variable mutations (VCO/VNO) either change a
variable’s value (by adding, multiplying or setting the value),
or negating it (for numerical and boolean values); constant
mutations (CCO/CRO/DCO) either change constants’ values (by
incrementing, decrementing or resetting them) or replacing
them by a predefined value, or operate on the Delay SimuLink
operator to change its value; statement mutations (SCO/SSO)
operate on the Switch operator by either changing its thresh-
old value, or swapping the possible results; and expression

mutations (RORO/AORO/ASRO/LORO) operate by replacing
arithmetico-boolean operators with another compatible one
(e.g. a ‘+’ with a ‘-’). The approach is validated on a small
SimuLink example (a quadratic model). The authors have
improved their methodology by using Genetic Algorithms to
reduce the number of produced mutants [31] and automatically
generate test data [32], but both contributions are based on the
same set of mutation operators. Similarly, Yongfeng et al. [33]
rely on the same operators but combine them in different
ways to assess which combinations provide the best results;
however, how they validate their approach is by far not clear
in the paper.

Stephan and his colleagues [34], [35] used mutation opera-
tors for detecting three types of SimuLink models clones: exact
clones are models that differ only in their layout properties
(e.g., location or background colour of blocks); renamed
clones are models that are topologically identical up to the
blocks, wires, etc. names; and near-miss clones are models
that differ in particular structural aspects. From a behavioural
perspective, the mutation operators for the two former clone
types are irrelevant; we therefore focus on the four opera-
tors belonging to the latter: mADBD and mADBS adds/deletes
block as destination and source respectively, i.e. introduces or
removes a block as an output/input of a hierarchical block;
mCBT changes a block’s type without changing its name,
while respecting its input/output links constraints; and mCSCH
changes a subsystem’s clone hierarchy, i.e. factor out a portion
of a design into an independent block. The contributions
are validated on the classical Automotive Power Window
case study shipped with SimuLink and an open-source model
describing an Advanced Vehicle Simulator.

Zhan and Clark [36] used three types of mutation operators
to assess the quality of a test suite: add/multiply/assign modify
the value carried on a block input by/with a certain value
that is parameterisable by the user and that can be applied
in various locations. This simulates signal perturbations that
model initialisation, assignments, condition checks or func-
tions/subsystems faults. They automatically produce the cor-
responding mutants while preserving the model’s correctness.
The approach is validated using two small models extracted
from SimuLink library and an average-size model extracted
from industrial cases.

N. He and her colleagues [37], [38] targeted test case
generation for SimuLink models. In [37], although the mu-
tations seem to alter the graphical representation, SimuLink
models are actually translated into C, and it is not clear at
which level mutations are actually performed. The list of
mutation operators is given in [38]: RC alters a constant
by incrementing, decrementing or resetting its value; ABS
inserts an absolute value to numerical inputs; UOI inserts
negation operators (for boolean or arithmetic inputs); INC
adds a constant value to an input; RR and RL swap arithmetic
and boolean operators respectively. Their studies are validated
using a combination of library models from SimuLink and
industrial fragments from a case study of a steering anti-
catchup from Ford.

Fig. 2. Implicit-Clock model example: a SimuLink model on the left and a SCADE model on the right.

Araujo et al. [39] translated the guidewords of the Hazard
and Operability studies (HAZOP) into mutation operators and
provided a classified definition very similar to [18]: the clas-
sification admits the same categories (type; variable; constant;
block, which corresponds to statement; and expression) that
have small variations: they propose a variable replacement
operator (VRO) that swaps the connections between compatible
variables as inputs of a block, and a subsystem change operator
(SCO) that is similar, but acts on a higher granularity; the
block removal operator (BRO) which removes blocks from a
model. Their framework is validated on a small case study
representing an electronic temperature regulator.

Runge [40] proposed a slightly different classification over
general mutation operators extracted from [4] and SimuLink-
specific ones borrowed from [39], [18], [32], [38]: operators
are classified according to the model entities they alter, i.e. at
the Block/Component level; on the Control Flow; or on the
Data Flow. The mutation framework was implemented in a
tool and evaluated on industrial cases.

B. Esterel Scade

Delaunay and his colleagues [41], [42], [19] study the possi-
bility of defining mutation operators on Lustre, the academic,
textual version of Esterel SCADE, in order to assess the validity
of test suites. The mutation operators they use are directly
inspired from operators defined for the Fortran language:
the authors recognise that some of them are simply not
directly applicable to Lustre (e.g. mutation operators for array
typically introduce mutants that do not compile properly), and
that more extensive research is needed to properly capture
Lustre-specific operators, especially for the time-manipulation
syntactic constructs (pre, followed-by, current and
when).

Papailiopoulou [43] proposed a set of six mutation operators
(classes) that are for the most of them very classical (e.g.,
switching relational and arithmetico-boolean operators), but
introduced two interesting variations: she proposed to switch
the pre operator with the not, as well as the and/or
operators with the followed-by; and to switch library
temporal operators (reflecting the classical temporal constructs
of Temporal Logics, e.g. always/globally) among each others.

VI. RESEARCH DIRECTIONS

We recalled in the introduction the main challenges MBMT
faces, and discussed the specificities of Timed Systems in

Section III. In this section, we revisit those challenges in light
of our taxonomy and draw potential research directions.

A. Mutation Testing Framework

1) Overview: Costs of generating mutants and running
tests on them have long been seen as major impediments
to the deployment of mutation testing in practice [10], [4].
For explicit clock models, challenges arise both from building
the testing infrastructure that sometimes needs to emulate the
actual system [11] or performing tests [29]. For implicit clock
models, this aspect is almost never discussed since time is
controlled externally. Nevertheless the analysis can be costly
in terms of computational resources [38].

2) Research Directions: Model-in-the-Loop approaches,
where the model is directly integrated in the timed systems
could be considered as helpful to support full automation of
mutation testing and reduce the simulation effort. However,
it may be dangerous to evaluate mutants on cyber-physical
systems (robot arms, etc.) due to the safety risks mutant
execution yield. As an ever increasing part of systems can
be generated and simulated (Simulink and Scade environment
target full code generation in some cases) the cost of building
simulation infrastructure should decrease. An additional im-
provement would be to adopt mutant schemata techniques to
speed up analysis [44], [45].

B. On Time-specific Mutation Operators

1) Overview: Mutation operators explicitly manipulating
time elements have a different nature depending on the clock
model. For explicit clock models, they simply reflect algebraic
manipulations targeted at clock elements: for TA, they treat
clock variables as normal variables, e.g. negated inside an
expression, or inverted inside the reset set [17]; while for
TA+, they are simply treated as arithmetic expressions that
can be altered (typically with an offset or reset) [29]. For
implicit models, since no direct access to time is explicit,
operators are applied on specific blocks (e.g., Delay or Switch
SimuLink blocks [18]; pre, followed-by and the like for
Scade/Lustre [19]). Since these mutation operators directly
alter the timeliness execution of the corresponding models,
they introduce subtle errors that are difficult to detect without
specific test cases. Nilsson and Offut [29] compared test cases
generated from mutation operators with randomly generated
ones, and observed a clear superiority of the former ones.
Similarly, Hanh et al. [18] and Araujo et al. [39] noticed that
mutation operators on specific, time-related SimuLink blocks

both produce fewer mutants that are also difficult to kill (notice
that the contributions on Scade have not evaluated the effect
of the time-specific operators explicitly).

2) Research Directions: As a consequence, using time-
specific mutant operators for explicit clock models seem to
reveal subtle errors and should be investigated further (specif-
ically on TA); whereas operators for implicit clock models
seem promising, but require further investigation for both
formalisms, because they are not fully exploited and no study
evaluated objectively their impact on test case coverage. Such
studies need to be conducted to further assess the relevance
of mutation testing for timed systems. Especially because
timed systems are often critical ones, (e.g., embedded systems)
strong empirical evidence must be given in order for mutation
testing to be considered as reliable test generation technique.

C. On Mutation Equivalence

1) Overview: The Equivalent Mutant Problem EMP is a
well-known issue in mutation analysis [10], [46], [47]. This is
particularly problematic with respect to both generation and
assessment of test suites: in the former case, resources are
spent on trying to kill non-killable mutants; while in the later
case, resources are spent on skewing the mutation score (a
100% mutation score is impossible to reach when there are
equivalent mutants). At the model level, the EMP can be ex-
pressed in terms of language equivalence between (non-timed)
automata, for which exact solutions and simulations exist [48].
For explicit clock models, timed bisimulation [49] and timed
trace equivalence [50] techniques can be used for reasoning
about behavioural equivalence between TA. However, while
the timed bisimulation problem is decidable in EXPTIME
[49], trace equivalence problems are undecidable [50]. How-
ever, timed bisimulation has not been widely used to detect
equivalent mutants, but this may be due to the so-called state
explosion problem [50] caused by both discrete and timing
properties. Siavashi et al. [51] use mutation operators for TA
to generate mutants and timed bisimulation for detecting and
eliminating equivalent mutants. In particular, their approach is
based on the verification of reachability and deadlock-freeness
properties in the Uppaal tool [52]. The change invariant
and invert reset operators systematically yielded equivalent
mutants: this shows the limits of the equivalence relation
offered for time-related mutants. Aichernig et al. use mutation
for test generation and did not report whether equivalent
mutant were produced by their operators [11]. The same can
be observed for extended timed automata [17], [29].

For implicit clock models, Hanh et al. adopted a differ-
ent notion of equivalence (named “test-equivalence”) that is
adding new tests until a mutant is killed or a certain limit
is reached (in this case, mutants are only “probably equiva-
lent” [48]). It is not obvious how this equivalence detection
approach was automated. He et al. [38] offered to use Formal
Concept Analysis to create concept lattices to group mutants
that are likely to be killed by the same test cases. The authors
provided an approximated method to identify mutant clusters
but unfortunately do not report on its efficiency regarding

equivalence in the experimentation section. Du Bousquet et
al. used a model-checker to assess whether Lustre mutants
satisfy the same properties as the original system [42], [41].
The authors did not detail the equivalent mutants found and
which operators generated them.

2) Research Directions: While there are promising attempts
to address the EMP for timed systems, we are not there yet.
The general problem is undecidable but there is room for
approximate techniques (such as simulations or bisimulations)
and operator-specific equivalent detection strategies. Approx-
imate computing was recently used at the code level to speed
up mutation analysis [53], [54]: we think such techniques
might be adapted to the EMP for timed systems as well. An
interesting track to explore is to use timed reduction techniques
with reachability algorithm and decision algorithms [55].

VII. THREATS TO VALIDITY

The main threat to validity in this research is the way
we elicited the source contributions on which our taxonomy
is based. We did not adopt a Systematic Literature Review
approach [56] aiming at a repeatable search protocol, but rather
targeted a lightweight protocol because mutation operators are
barely a first-class keyword in contributions’ titles. Instead,
they are part of a larger test assessment or test generation
framework, and are rarely discussed as such (some contri-
butions mention mutation operators without explicitly listing
them). Similarly, we did not perform a rigourous snowballing
as described by Wohlin [20]: we only performed a backward
snowballing starting from all the papers cited in this survey,
and marginally operated forward snowballing on the main
papers listed in Table I, using the same exclusion criteria as
the ones used for the search protocol. Snowballing may have
the silo effect of focusing all contributions retrieved to the
same formalisms. As a general observation however, all recent
contributions do not introduce newer, or different operators,
that the ones we listed here.

The taxonomy proposed in this paper operates at two
levels: first, the way clocks are manipulated; and second, the
formalism itself. We showed that mutation operators work with
the formalism’s topology as well as the expressions available
for the programmer, and that explicit-clock formalisms usually
manipulate clock-specific mutation operators similarly than
other expressions (e.g., a clock variable is simply a vari-
able, submitted to the same mutations than others). While
we believe these principles sound enough for capturing the
mutation operators classes for both explicit and implicit clock
formalisms, hybrid systems may represent a threat to the
validity of our classification, since operators manipulating
continuous variables (with derivatives or integration, among
others) may differ. However, these kinds of operators are
already integrated in implicit-clock formalisms (SimuLink and
Scade define them as library blocks), and can therefore be
manipulated with topological mutation operators.

VIII. CONCLUSION

In this paper, we provided a taxonomy of mutation operators
for timed systems. Our goal was to understand the main cate-
gories of time-related formalisms where model-based mutation
testing have been applied and how time affects mutation.
We found that, if there is a variety of operators proposed,
their evaluation and comparison in the large is still missing.
This may be explained by the lack of freely available models
or proprietary tools which are de facto standards for timed
systems. However, evaluations offered so far demonstrate that
time-related operators are mimicking subtle time faults that are
hard to find with manually created or randomly generated test
suites. This therefore motivates further research in this area.

Notably, we think that the equivalent mutant problem is still
insufficiently addressed, as time-specific detection strategies
are often missing. This forms the first item of our future
work. The second one concerns the creation of benchmarks
for time-related model-based mutation testing, in order to
provide strong empirical evidence that mutation testing is
relevant as a (Model-Based) Testing approach for embedded
and critical contexts. In particular, it would be interesting
to evaluate empirically whether Mutation-Based Testing may
discover subtler errors than traditional Modified Condition /
Decision Coverage (MC/DC), considered as a standard for
certification purposes.

ACKNOWLEDGMENT

Gilles Perrouin is a Research Associate at the FNRS (Fonds
National de la Recherche Scientifique). Moussa Amrani was
supported by the Walloon Region SkyWin Project D-DAMS
Number 7513.

REFERENCES

[1] F. Wang, “Formal verification of timed systems: a survey and perspec-
tive,” Proceedings of the IEEE, vol. 92, no. 8, pp. 1283–1305, 2004.

[2] J. Tretmans, Formal Methods and Testing – An Outcome of the
FORTEST Network (Revised Papers Selection). Springer-Verlag, 2008,
ch. Model Based Testing with Labelled Transition Systems, pp. 1–38.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1806209.1806210

[3] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-Based Testing
for Embedded Systems. CRC Press, 2017.

[4] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
Sep. 2011. [Online]. Available: http://dx.doi.org/10.1109/TSE.2010.62

[5] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria,” Software Engineering, IEEE Transactions on, vol. 32, no. 8,
pp. 608–624, 2006.

[6] J. Offutt, “A mutation carol: Past, present and future,” Information and
Software Technology, vol. 53, no. 10, pp. 1098–1107, Oct. 2011.

[7] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and
D. Marinov, “Comparing non-adequate test suites using coverage cri-
teria,” in ISSTA. ACM, 2013, pp. 302–313.

[8] M. Papadakis and N. Malevris, “Automatic mutation test case generation
via dynamic symbolic execution,” in ISSRE. IEEE, 2010, pp. 121–130.

[9] G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation
of whole test suites,” Empirical Software Engineering, pp. 1–30, 2014.

[10] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Mutation testing advances: An analysis and survey,” Advances in
Computers, vol. 112, 2018.

[11] B. K. Aichernig, F. Lorber, and D. Nickovic, “Time for mutants - model-
based mutation testing with timed automata,” in Tests and Proofs - 7th
International Conference, TAP 2013, Budapest, Hungary, June 16-20,
2013. Proceedings, ser. Lecture Notes in Computer Science, M. Veanes
and L. Viganò, Eds., vol. 7942. Springer, 2013, pp. 20–38.

[12] G. Fraser and F. Wotawa, “Using model-checkers for mutation-based
test-case generation, coverage analysis and specification analysis,” in
Software Engineering Advances, International Conference on, Oct 2006,
pp. 16–16.

[13] B. K. Aichernig, J. Auer, E. Jöbstl, R. Korosec, W. Krenn, R. Schlick,
and B. V. Schmidt, “Model-based mutation testing of an industrial
measurement device,” in Tests and Proofs, ser. LNCS, vol. 8570.
Springer, 2014, pp. 1–19.

[14] T. A. Budd and A. S. Gopal, “Program testing by specification mutation,”
Computer Languages, vol. 10, no. 1, pp. 63–73, Jan. 1985.

[15] W. E. Howden, “Reliability of the path analysis testing strategy.” IEEE
Transactions on Software Engineering, vol. 2, no. 3, pp. 208–215, 1976.

[16] J. M. Voas and G. McGraw, Software Fault Injection: Inoculating
Programs Against Errors. John Wiley & Sons, Inc., 1997.

[17] R. Nilsson, J. Offutt, and S. F. Andler, “Mutation-based testing
criteria for timeliness,” in Proceedings of the 28th Annual
International Computer Software and Applications Conference
- Volume 01, ser. COMPSAC ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 306–311. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1025117.1025515

[18] L. T. M. Hanh and N. T. Binh, “Mutation operators for simulink models,”
in Knowledge and Systems Engineering (KSE), 2012.

[19] L. Du Bousquet and M. Delaunay, “Towards mutation analysis for lustre
programs,” Electronic Notes in Theoretical Computer Science, vol. 203,
no. 4, pp. 35–48, 2008.

[20] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering (EASE), 2014, pp. 38:1–38:10.

[21] B. K. Aichernig, H. Brandl, E. Jöbstl, and W. Krenn, “Model-based Mu-
tation Testing of Hybrid Systems,” in Formal Methods for Components
and Objects - 8th International Symposium, FMCO 2009, Eindhoven,
The Netherlands, November 4-6, 2009. Revised Selected Papers, ser.
Lecture Notes in Computer Science, F. S. de Boer, M. M. Bonsangue,
S. Hallerstede, and M. Leuschel, Eds., vol. 6286. Springer-Verlag,
2010, pp. 228–249.

[22] K. G. Larsen, F. Lorber, B. Nielsen, and U. M. Nyman, “Mutation-based
test-case generation with ecdar,” in 2017 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
March 2017, pp. 319–328.

[23] C. Furia, D. Mandrioli, A. Morzenti, and M. Rossi, Modeling Time In
Computing. Springer-Verlag, 2012.

[24] R. Alur and D. L. Dill, “A theory of timed automata,” Theor.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994. [Online]. Available:
https://doi.org/10.1016/0304-3975(94)90010-8

[25] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski,
“Timed i/o automata: A complete specification theory for real-time
systems,” in Proceedings of the 13th ACM International Conference
on Hybrid Systems: Computation and Control, ser. HSCC ’10. New
York, NY, USA: ACM, 2010, pp. 91–100. [Online]. Available:
http://doi.acm.org/10.1145/1755952.1755967

[26] C. Norström and A. Wall, “Timed automata as task models
for event-driven systems,” in In proceedings of RTCSA99.
IEEE Computer Society, December 1999. [Online]. Available:
http://www.es.mdh.se/publications/69-

[27] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C.
Masiero, “Mutation testing applied to validate specifications based on
statecharts,” in Proceedings of the 10th International Symposium on
Software Reliability Engineering, ser. ISSRE ’99. Washington, DC,
USA: IEEE Computer Society, 1999, pp. 210–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=851020.856195

[28] J. Tretmans, “Test generation with inputs, outputs and repetitive quies-
cence,” Software-concepts and tools, vol. 17, no. 3, pp. 103–120, 1996.

[29] R. Nilsson and J. Offutt, “Automated testing of timeliness: A
case study,” in Proceedings of the Second International Workshop
on Automation of Software Test, ser. AST ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 11–. [Online]. Available:
http://dx.doi.org/10.1109/AST.2007.5

[30] R. de Simone, J.-P. Talpin, and D. Potop-Butucaru, Embedded Systems
Handbook. CRC Press, 2005, audiocd The Synchronous Hypothesis
and Synchronous Languages.

[31] N. T. H. Quyen, K. T. Tung, L. T. M. Hanh, and N. Thanh Binh,
“Improving mutant generation for simulink models using genetic algo-
rithm,” in Conference on Electronics, Information, and Communications
(EICC), 2016.

[32] L. T. M. Hanh, K. T. Tung, and N. T. Binh, “Mutation-based test data
generation for simulink models using genetic algorithm and simulated
annealing,” Journal of Computer and Information Technology, vol. 3,
no. 4, pp. 763–771, 2014.

[33] Y. Yong Feng, Z. Yi Bin, and W. Yan Rong, “Research and improve-
ments on mutation operators for simulink models,” Applied Mechanics
and Materials, vol. 687-691, pp. 1389–1393, 2014.

[34] M. Stephan, M. Alalfi, and J. Cordy, “Towards a taxonomy for simulink
model mutations,” in Workshops of the International Conference on
Software Testing, Verification and Validation (ICSTW), 2014.

[35] M. Stephan, “Model clone detector evaluation using mutation analysis,”
in Conference on Software Maintenance and Evolution, 2014.

[36] Y. Zhan and J. Clark, “Search-based mutation testing for simulink
models,” in Conference on Genetic and Evolutionary Computation
(GeCCO), 2005.

[37] A. Brillout, N. He, M. Mazzucchi, D. Kröning, M. Purandare,
P. Rümmer, and G. Weissenbacher, “Mutation-based test case generation
for simulink models,” in Formal Methods for Components and Objects,
2010, pp. 208–227.

[38] N. He, P. Rümmer, and D. Kröning, “Test-case generation for embedded
simulink via formal concept analysis,” in Design Automation Confer-
ence, 2011, pp. 224–229.

[39] R. F. Araujo, J. C. Maldonado, M. E. Delamaro, A. M. R. Vincenzi,
and F. Delebecque, “Devising mutant operators for dynamic systems
models by applying the hazop,” in International Conference on Software
Engineering Advances, 2011.

[40] H. Runge, “A mutation analysis framework for simulink models,”
Master’s thesis, Mälardalens Högskola, 2018.

[41] H. V. Do, C. Robach, and M. Delaunay, “Mutation analysis for reactive
system environment properties,” in Workshop on Mutation Analysis,
2006.

[42] L. Du Bousquet and M. Delaunay, “Using mutation analysis to evaluate
test generation strategies in a synchronous context,” in International
Conference on Software Engineering Advances (ICSEA), 2007.

[43] V. Papailiopoulou, “Automatic testing of lustre/scade programs. (test
automatique de programmes lustre/scade),” Ph.D. dissertation, Joseph
Fourier University, Grenoble, France, 2010. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-00454409

[44] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using
mutant schemata,” in ISSTA, 1993, pp. 139–148.

[45] X. Devroey, G. Perrouin, M. Papadakis, P.-Y. Schobbens, and P. Hey-
mans, “Featured Model-based Mutation Analysis,” in International

Conference on Software Engineering, ICSE. Austin, TX, USA: ACM,
2016.

[46] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.

[47] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple fast and effective
equivalent mutant detection technique,” in International Conference on
Software Engineering, ICSE. IEEE, 2015, pp. 936–946.

[48] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P.-Y.
Schobbens, and P. Heymans, “Model-based mutant equivalence
detection using automata language equivalence and simulations,”
Journal of Systems and Software, pp. –, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121218300475

[49] K. Cerāns, “Decidability of bisimulation equivalences for parallel timer
processes,” in Proceedings of the 4th International Workshop on Com-
puter Aided Verification (CAV’92), ser. Lecture Notes in Computer
Science, G. von Bochmann and D. K. Probst, Eds., vol. 663. Springer-
Verlag, 1993, pp. 302–315.

[50] R. Alur, C. Courcoubetis, and T. A. Henzinger, “The observational
power of clocks,” in Proceedings of the 5th International Conference
on Concurrency Theory (CONCUR’94), ser. Lecture Notes in Computer
Science, B. Jonsson and J. Parrow, Eds., vol. 836. Springer-Verlag,
Aug. 1994, pp. 162–177.

[51] F. Siavashi, J. Iqbal, D. Truscan, and J. Vain, Testing Web Services with
Model-Based Mutation. Springer, 2017, vol. 743, p. 45–67.

[52] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in
Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004, ser. LNCS, M. Bernardo and
F. Corradini, Eds., no. 3185. Springer–Verlag, September 2004, pp.
200–236.

[53] M. Gligoric, S. Khurshid, S. Misailovic, and A. Shi, “Mutation testing
meets approximate computing,” in International Conference on Software
Engineering, NIER, 2017, pp. 3–6.

[54] F. Hariri, A. Shi, O. Legunsen, M. Gligoric, S. Khurshid, and S. Mis-
ailovic, “Approximate Transformations as Mutation Operators,” in 11th
IEEE Conference on Software Testing, Validation, and Verification, 2018.

[55] J. J. Ortiz, M. Amrani, and P. Schobbens, “Multi-timed bisimulation
for distributed timed automata,” in NASA Formal Methods - 9th
International Symposium, NFM 2017, Moffett Field, CA, USA, May
16-18, 2017, Proceedings, ser. Lecture Notes in Computer Science,
C. Barrett, M. Davies, and T. Kahsai, Eds., vol. 10227, 2017, pp.
52–67. [Online]. Available: https://doi.org/10.1007/978-3-319-57288-8

[56] D. Budgen and P. Brereton, “Performing systematic literature reviews
in software engineering,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 1051–1052.

