
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Guiding Agile Methods Customization

the AMQuICk Framework

Ayed, Hajer

Award date:
2018

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/5e53be3c-dd80-40b9-8327-dd06ddede04a

Guiding Agile Methods Customization: the
AMQuICk Framework

Hajer Ayed

A dissertation submitted in fulfillment of the requirements of the
degree of Doctor of Sciences
Discipline: Computer Science

October, 2018

Graphisme de couverture : c©Presses universitaires de Namur

Mise en page: c©LATEX2ε, KOMA-Script & BibTEX.

c©Presses universitaires de Namur & Hajer AYED
Rempart de la Vierge, 13
B - 5000 Namur (Belgique)

Toute reproduction d’un extrait quelconque de ce livre, hors des limites
restrictives prévues par la loi,
par quelque procédé que ce soit, et notamment par photocopie ou scanner,
est strictement interdite pour tous pays.
Imprimé en Belgique
ISBN : 978-2-39029-023-0
Dépôt légal: D/2018/1881/28

Doctoral Committee

Prof. Monique Snoeck (External Reviewer)

Faculty of Economics and Business
KU Leuven

Prof. Geert Poels (External Reviewer)

Faculty of Economics and Business Administration
Ghent University

Prof. Ivan Jureta (Internal Reviewer)

Faculty of Economics, Social Sciences and Business Administration
University of Namur

Prof. Anthony Cleve (Internal Reviewer)

Faculty of Computer Science
University of Namur

Prof. Benoît Vanderose (Internal Reviewer)

Faculty of Computer Science
University of Namur

Prof. Naji Habra (Advisor)

Faculty of Computer Science
University of Namur

Prof. Vincent Englebert (Chair)

Faculty of Computer Science
University of Namur

iii

Abstract

In today’s dynamic market environments, producing high quality software
rapidly and efficiently is crucial. In order to allow fast and reliable develop-
ment processes, several agile methodologies emerged in the late 90’s and some
steadily received growing attention from software practitioners regarding
the number of positive experience reports and success stories. However,
their implementation is still challenging in several contexts. Therefore, the
companies willing to implement agility out of the “sweet-spot” context are
seeking for more structured and systematic guidance to situationally adapt
their agile practices.

Provided the aforementioned, we designed in this thesis the AMQuICk
framework which is intended to be used by experienced software development
teams, agile facilitators and/or consultants as a guide to contextualize their
development practices.

The framework is composed of a customization life-cycle built upon the
Quality Improvement Paradigm (QIP). Its core artifact consists of a meta-
model for authoring agile building blocks called AMQuICk Essence. This
metamodel incorporates the necessary elements for structuring an agile
repository of practices (a kind of an experience factory), a context model
and a customization knowledge base that can be represented in the form of
decisional matrices. Additional operational tools of the framework are facili-
tation tools (to be used by the facilitator and the agile team): the AMQuICk
Backlog and the AMQuICk Capitalization Workshop. The framework has
been built iteratively following the Design Science Research methodology.
Several case studies where necessary to evaluate its artifacts iteratively.

Key Words

Agile Software Development, Situational Method Engineering, Software
Process Improvement

v

Résumé

De part la dynamique actuelle du marché du logiciel, il est de nos jours
essentiel de produire des logiciels de haute qualité rapidement et efficacement.
Depuis la fin des années 90, plusieurs méthodologies de développement agile
ont émergé et certaines sont devenues de plus en plus populaires compte
tenu du nombre de retours d’expériences positifs des entreprises. Cependant,
la mise en oeuvre de ces méthodes reste difficile dans plusieurs contextes.
Par conséquent, les entreprises désireuses d’implémenter un processus de
développement plus agile dans un contexte “non propice” sont dans le besoin
d’approches plus structurées et systématiques pour adapter leurs pratiques.

Dans le cadre de cette thèse, nous proposons le framework AMQuICk comme
solution à la contextualisation des méthodes agiles. Celui-ci est destiné à être
utilisé par les équipes de développement, les facilitateurs et/ou consultants
Agile comme outil d’aide à l’adaptation (customization) des pratiques de
développement.

Le framework est composé d’un cycle de vie de customization basé sur le
paradigme QIP (Quality Improvement Paradigm) d’amélioration continue de
la qualité des processus organisationnels. Son principal artefact consiste en
un méta-modèle de description des pratiques et composants d’une méthode
agile nommé AMQuICk Essence. Ce méta-modèle intègre les éléments
nécessaires à la mise en place d’un référentiel de pratiques, un modèle
de contexte et une base de connaissances de customization pouvant être
représentée sous la forme de matrices de décision. Le framework propose
également des outils de facilitation (à utiliser par le facilitateur et l’équipe
agile): un backlog d’amélioration continue et un outil de capitalization. Le
framework a été construit de manière itérative en suivant la méthodologie
“Design Science Research”. Plusieurs études de cas ont été nécessaires pour
évaluer les artefacts développés de manière itérative.

Mots clés

Méthodes de Développement Agile, Ingénierie des Méthodes Situationnelles,
Amélioration des Processus de Développement

vii

Dedication

To the people I love the most,
my beloved parents,

my sisters,
my husband,

and all my family and friends,
without whom none of my success would be possible

ix

x

Acknowledgments

First and foremost, my praises and thanks goes to God who blessed me
with guidance, good health, a loving family and good friends who always
supported me and without whom none of my success would have been
possible.

I would like to express my sincere gratitude to Prof. Naji Habra for providing
me the opportunity to work on an interesting research area. I thank him for
his patience, his motivation and his support and guidance over the years.
Throughout his supervision of my work, he did not act as an advisor only
but also as a mentor who encouraged me and continuously supported me
to address the encountered challenges in a more serene and positive state
of mind. I will never forget the lessons learned from such a fine negotiator:
Be calm, flexible and focus on the win-win. I will also never forget that
the student has surpassed the mentor when we participated to the ICSE
conference in Hyderabad.

I also want to thank Prof. Benoît Vanderose for the quality of our close
collaboration. I am more than thankful for his precious support and for his
continuous guidance and encouragement over the years. I consider myself
very fortunate to have been initiated to research by such a skillful and
passionate researcher. I would like to congratulate him, once again, for his
position as a Professor. I will never say it enough: You more than deserve
it!

I also would like to thank the members of my doctoral committee Prof.
Monique Snoeck, Prof. Geert Poels, Prof. Ivan Jureta, Prof. Anthony Cleve,
Prof. Benoît Vanderose and Prof. Vincent Englebert for their valuable
support. Their guidance and feedback were vital for the completion of this
work. It was an honor and a very enriching experience to discuss my research
with them.

During the course of this doctoral research, many people helped me evaluate
the relevance of the proposed framework to practitioners. I would like to
thank them all for their implication in this work. More precisely, I would
like to thank Virginie Mathieu, Caroline Detry, and Fabian Dermine for
their contribution. I would also like to thank Dr. Imran Ghani from the
University of Technology in Malaysia (UTM) for all his valuable comments

xi

and for putting me in contact with many practitioners from Malaysia and
Singapore. I also thank Rameeza Mustafa for her contribution as an agile
expert.

Besides, I want to thank all my master students for their contribution to
this research and especially Thomas Detaille for his contribution to the
framework tooling. I am very grateful to all of you.

During the past years, I was fortunate enough to work in a welcoming and
supportive work environment. I therefore want to thank all my colleagues
and friends who all contribute to make our faculty so special. I will never
forget the great moments shared with you.

On a more personal note, I would like to thank my family for the love,
support, and constant encouragement I have gotten over the years. In
particular, I thank my amazing sisters Hela, Amina et Imen. Your love,
craziness, laughter and positivity have kept me smiling and inspired. My
thanks also go to my beloved husband Ahmed. Thank you for your patience,
your constant support, your comprehensiveness and for loving me as I am. I
would also like to thank my greater family. Thank for being so wonderful.

Finally, I would like to thank and dedicate this thesis to my parents for
their love, endless support and encouragement. It was you who originally
stirred my curiosity and generated my love for science. You taught me all
the things that helped me get where I am today. This work would not have
been possible without you.

xii

xiii

Contents

Contents xx

List of Figures xxi

List of Tables xxv

List of definitions xxvii

1. Introduction 1
1.1. Contribution . 2
1.2. Outline . 3
1.3. Publications . 4

Problem Statement 7

2. Research Background 9
2.1. Disciplined Software Development 10

2.1.1. Defining Discipline . 10
2.1.2. Characteristics . 11
2.1.3. Approaches Overview 14
2.1.4. Software Quality Management 20
2.1.5. Software Process Improvement 21

2.2. Agile Software Development 28
2.2.1. Defining Agility . 28
2.2.2. Characteristics . 32
2.2.3. Approaches Overview 35
2.2.4. Software Quality Management 42
2.2.5. Software Process Improvement 43

2.3. Research Scope . 47
2.3.1. Customization . 49
2.3.2. Adoption . 50
2.3.3. Assessment . 51
2.3.4. Improvement . 52

2.4. Summary . 53

xv

Contents

3. Related Work and Research Questions 55
3.1. Maturity-based Approaches 56

3.1.1. Existing Research . 56
3.1.2. Limitations . 61

3.2. Contingency Factor Approaches 61
3.2.1. Existing Research . 62
3.2.2. Limitations . 65

3.3. Method Engineering Approaches 66
3.3.1. Existing Research . 68
3.3.2. Limitations . 72

3.4. Experience-based Approaches 73
3.4.1. Existing Research . 75
3.4.2. Limitations . 76

3.5. Discussion and Research Questions 76
3.5.1. SME Perspective . 78
3.5.2. Context Study Perspective 79
3.5.3. Customization and Capitalization Perspective 79

AMQuICk Framework 81

4. Framework Design 83
4.1. Review of Research Methodologies 83
4.2. Design Science Methodology for Building AMQuICk 87

4.2.1. Design Iterations . 88
4.2.2. Exploration and Evaluation 92

5. Framework Overview 95
5.1. Claim . 95
5.2. Founding Principles . 96

5.2.1. Flexible Customization 96
5.2.2. Growing Customization Knowledge 97
5.2.3. Shared Mental Model 98
5.2.4. Continuous, Bottom-up and Goal-driven Improvement 99

5.3. The AMQuICk Framework 100
5.3.1. Context of Use . 101
5.3.2. Life-cycle . 102
5.3.3. Framework Artifacts 106

SME Perspective 111

xvi

Contents

6. Agile Method Engineering 113
6.1. Requirements for an Agile Method Engineering Approach . . 113

6.1.1. Method Engineer Role 114
6.1.2. Description of Method Components 114
6.1.3. Construction of Situational Methods 115
6.1.4. Summary . 118

6.2. Existing Method Engineering Approaches 118
6.2.1. OPF . 119
6.2.2. ISO/IEC 24744 . 121
6.2.3. SPEM . 122
6.2.4. Essence . 124
6.2.5. Comparison . 128

6.3. Proposal for the AMQuICk Metamodel 130

7. AMQuICk Essence Core 135
7.1. Specification . 136
7.2. Structure . 138
7.3. Foundation Package . 138

7.3.1. LanguageElement . 139
7.3.2. BasicElement . 140
7.3.3. ElementGroup . 141
7.3.4. Method . 142
7.3.5. Practice . 144
7.3.6. PracticeAssociation 145
7.3.7. PracticeRepository . 149
7.3.8. UserDefinedType . 150
7.3.9. Resource . 150
7.3.10. Tag . 151

7.4. Practice Content package . 152
7.4.1. Activity and ActivityAssociation 154
7.4.2. Competency and CompetencyLevel 155
7.4.3. Workproduct and LevelOfDetail 156
7.4.4. Criterion, CompletionCriterion and EntryCriterion . . 157
7.4.5. Role and RoleUse . 158
7.4.6. Measure . 158

7.5. Practice Authoring Examples 160
7.6. Illustration: Intel Shannon Case Study 167

7.6.1. XP Usage . 169
7.6.2. Scrum Usage . 172
7.6.3. Reflection on AMQuICk Essence Refinement 174

7.7. Summary . 175

xvii

Contents

8. AMQuICk Repository of Practices 177
8.1. CAME Tools and AMQuICk 177
8.2. DSM Tools and AMQuICk 180
8.3. Repository of Practices . 181

8.3.1. Objectives . 181
8.3.2. Overview . 181
8.3.3. Architecture . 182

8.4. Practice Modeler . 184
8.4.1. Objectives . 184
8.4.2. Overview . 184

8.5. Summary . 188

Context Study Perspective 191

9. SPW Case Study 193
9.1. Background . 193
9.2. Methodology . 195

9.2.1. Objectives . 196
9.2.2. Data Collection . 196
9.2.3. Data Analysis . 198

9.3. Results . 199
9.3.1. Organizational Context Study 199
9.3.2. Project’s Context Study 205

9.4. Discussion . 210
9.5. Lessons Learned . 216

10.E-Gov Case Study 219
10.1. Background . 220
10.2. Methodology . 221

10.2.1. Objectives . 222
10.2.2. Data Collection . 222
10.2.3. Data Analysis . 225

10.3. Results . 226
10.3.1. Internal Competences 226
10.3.2. Business Availability 228
10.3.3. Regulatory Compliance 230
10.3.4. Management and Political Support 232
10.3.5. User Involvement . 233
10.3.6. Hierarchal Structure 234
10.3.7. Innovation Management 235
10.3.8. Domain Complexity 237

10.4. Discussion . 237

xviii

Contents

10.5. Lessons Learned . 238

11.Culture Case Study 241
11.1. Background . 242
11.2. Methodology . 243

11.2.1. Objectives . 243
11.2.2. Data Collection . 244
11.2.3. Data Analysis . 247

11.3. Results . 251
11.3.1. Team commitment to Practices 252
11.3.2. Team Empowerment 253
11.3.3. Team Transparency and Cohesion 255
11.3.4. Team’s External Communication 256
11.3.5. Team Multidisciplinarity 256
11.3.6. Team Motivation . 257
11.3.7. Customer Involvement 258
11.3.8. Continuous Improvement 259

11.4. Discussion . 260
11.5. Lessons Learned . 263

Customization and Capitalization Perspective 265

12.AMQuICk Customization and Capitalization 267
12.1. Proposal . 267
12.2. Context Modeling . 270

12.2.1. Context Defined . 270
12.2.2. AMQuICk Essence Extension - Context Package . . . 272
12.2.3. Example . 274

12.3. Customization Modeling . 276
12.3.1. Customization Defined 276
12.3.2. AMQuICk Essence Extension - Customization Package276
12.3.3. Example . 279

12.4. Customization Matrices . 281
12.4.1. Format . 281
12.4.2. Interpretation . 283
12.4.3. Population . 286

12.5. Facilitation Tools . 287
12.5.1. Improvement Backlog 288
12.5.2. Capitalization Workshop 292

12.6. Summary . 294

xix

Contents

13.Illustrations 295
13.1. Intel Shannon Customization 295
13.2. SPW Customization . 301
13.3. Culture-based Customization 301
13.4. Agile Customization in a Master’s Capstone Course 307

13.4.1. Background . 308
13.4.2. Objectives and Data Collection 310
13.4.3. Implemented Method 311
13.4.4. Key Learnings and Recommendations 312

13.5. Summary . 327

Closing Comments 329

14.Discussion 331
14.1. Contribution . 331
14.2. Practitioners’ Feedback . 333

14.2.1. Feedback Collection 334
14.2.2. Feedback Discussion 336

14.3. Limitations . 342
14.4. Perspectives . 343

15.Conclusion 347

Appendices 351

A. Semi-structured Interview Guide 353

B. SPW case study - D443 IT department details 359
B.1. Structure . 359
B.2. Development Life-cycle . 360
B.3. Example Workflow . 360

Bibliography 363

xx

List of Figures

2.1 Tailoring the organization’s standard process [Zahran, 1998] . 13
2.2 The waterfall model . 15
2.3 The V-model of software development 16
2.4 The spiral model [Boehm, 1988] 17
2.5 The RUP Life-cycle . 19
2.6 The elements of a disciplined SPI framework 21
2.7 [ISO/IEC 33001, 2015] process capability levels 23
2.8 [CMMI, 2006] process maturity levels 24
2.9 IDEAL model [McFeeley, 1996] 26
2.10 QIP model [Basili and Caldiera, 1995] 27
2.11 The Goal-Question-Metric paradigm [Basili et al., 1994a] . . 28
2.12 The iterative and incremental development model 33
2.13 XP process . 36
2.14 Scrum process . 37
2.15 FDD process . 38
2.16 Agile Modeling process . 39
2.17 DevOps process . 40
2.18 An example of a kanban board 41
2.19 DSDM process . 42
2.20 Identified issues . 49

3.1 Maturity-based approach . 56
3.2 The Agile adoption framework 57
3.3 The Agile Maturity Model [Patel and Ramachandran, 2009] . 59
3.4 The Agility Adoption and Improvement Model [Qumer et al.,

2007] . 60
3.5 Contingency factor approach 62
3.6 [Boehm and Turner, 2003] approach 63
3.7 Crystal Family of agile methods [Cockburn, 2004b] 64
3.8 [Saleh, 2013] approach . 66
3.9 Method Engineering Approach [Brinkkemper, 1996] 67
3.10 The main components of the ASSF [Qumer and Henderson-

Sellers, 2008] . 69
3.11 Overview of the PAMAk Framework 71

xxi

List of Figures

3.12 Experience-Based Approach 74
3.13 Steps and information flows of the PIW [Pikkarainen et al.,

2005] . 75

4.1 Action Research Cycle proposed by [Susman and Evered, 1978] 85
4.2 Design Science Research Cycle as defined by [Hevner, 2007] . 87
4.3 Research Methodology . 91

5.1 AMQuICk Framework Contributions (An Overview Diagram) 100
5.2 AMQuICk Framework Life-cycle 103
5.3 AMQuICk Components . 106
5.4 AMQuICk Metamodeling levels 108

6.1 OPEN Process Framework (OPF) core elements 120
6.2 ISO/IEC 24744 core elements 121
6.3 ISO/IEC 24744 - Powertype pattern formed by the Task and

TaskKind classes . 122
6.4 SPEM core elements [Henderson-Sellers and Gonzalez-Perez,

2005a] . 123
6.5 SPEM - Key entities defined in the “MethodContent Package”

and “Process Package” . 124
6.6 SPEM - Key entities of the “MethodPlugin Package” 125
6.7 Essence core elements . 125
6.8 The essence kernel alphas . 126
6.9 Essence DSL Core Elements 127
6.10 Essence DSL - Conceptual overview 127
6.11 Essence DSL - Examples of alpha state cards 128
6.12 EssWork Practice Workbench. 129

7.1 The Meta-Object Facility (MOF) layers 136
7.2 AMQuICk Essence Levels . 137
7.3 Foundation package - Core elements 139
7.4 Foundation package - LanguageElement associations 139
7.5 Foundation package - ElementGroup and Basic Element as-

sociations . 141
7.6 Foundation package - Usage of time and universe attributes . 142
7.7 Foundation package - Practice associations 144
7.8 Foundation package - PracticeRepository associations 149
7.9 Foundation package - Example of resources 151
7.10 Foundation package - Example of tags 152
7.11 PracticeContent package - Elements overview 153
7.12 PracticeContent package - Activity view 155
7.13 PracticeContent package - Workproduct view 156

xxii

List of Figures

7.14 PracticeContent package - CompletionCriterion example . . . 157
7.15 PracticeContent package - Role View 159
7.16 PracticeContent package - Measurement View 159
7.17 Practice Authoring Example - User Story 163
7.18 Practice Authoring Example - Story Mapping 165
7.19 Practice Authoring Example - Relative Estimation 168
7.20 The use and configuration of XP at Intel Shannon (overview) 170
7.21 The use and configuration of Scrum at Intel Shannon (overview)173
7.22 Examples of reported relationships between adopted practices

and quality goals . 174

8.1 Agilia Repository . 183
8.2 Data Schema of AMQuIck default repository 186
8.3 AMQuICk practice modeler - Overview 189
8.4 AMQuICk practice modeler - An example of practice authoring190

9.1 Transition roadmap . 195
9.2 Organizational context according to [Boehm and Turner, 2003]200
9.3 SWOT Analysis . 204
9.4 Illustration of the 12 identified factors (adapted from [Boehm

and Turner, 2003]) . 215

11.1 US, BE, MY and SG Cultural Dimensions according to [Hof-
stede, 2011] . 251

12.1 Customization process levels 269
12.2 AMQuICk Essence - Context Package 272
12.3 Context Modeling Example 275
12.4 AMQuICk Essence - Customization Package 277
12.5 Customization Modeling Example 280
12.6 Customization Matrices Interpretation 286
12.7 AMQuICk Improvement Tool 290
12.8 Implementation Cycle - Plan Do Check Adapt (adapted

from [Deming and Edwards, 1982]) 291
12.9 Capitalization Workshop - Knowledge Elicitation Board . . . 293

13.1 Burndown chart example - Scope change during the sprint
(T11) . 320

13.2 Burndown chart example - Time tracking of tasks (T9) . . . 320
13.3 Burndown chart example - Scope change during the sprint (T8)321
13.4 Jira Extension to encode identified practice improvements . . 327

14.1 Feedback of Agile Experts (8 participants) 337

xxiii

List of Figures

B.1 D443 Structure . 359
B.2 Overview of the D443 Development Life-cycle before the in-

troduction of agile methods 361
B.3 Overall view of the architecture unit process 362
B.4 High-level analysis workflow (architecture unit) 362

xxiv

List of Tables

2.1 The values and principles of the Agile Alliance 29
2.2 The principles of Lean Software Development 31
2.3 Overview of Agile quality assurance practices (adapted from [Am-

bler, 2005]) . 44
2.4 Disciplined vs. Agile SPI (adapted from [Salo and Abrahams-

son, 2007]) . 46
2.5 Discipline vs Agility (adapted from [Nerur et al., 2005]) . . . 47

3.1 Review of situational agile implementation approaches 77

4.1 Design science research checklist 89
4.1 Design science research checklist (continued) 90

5.1 Mapping between AMQuICk and QIP steps 104

6.1 Comparison of situational method engineering languages . . 131
6.1 Comparison of situational method engineering languages (con-

tinued) . 132

7.1 Directional associations owned by a LanguageElement con-
struct type . 140

7.2 Attributes characterizing a Basic Element construct type . . 140
7.3 Attributes characterizing a Method construct type 143
7.4 Attributes characterizing a Practice construct type 146
7.5 Attributes characterizing a Resource construct type 151
7.6 Attributes characterizing a Tag construct type 152
7.7 Attributes characterizing a Measure construct type (adapted

from [Vanderose et al., 2012]) 160

8.1 Overview of some stored practices 185
8.2 Graphical Syntax of core AMQuICk Essence Element 188

9.1 Questionnaire 1 (Q1) : Current process analysis 201
9.1 Questionnaire 1 (Q1) : Current process analysis (continued) . 202
9.2 Questionnaire 2 (Q2) : Context analysis 203

xxv

List of Tables

9.3 Identified context factors . 210
9.4 Retrospective - Challenges transcription 211
9.4 Retrospective - Challenges transcription (continued) 212
9.4 Retrospective - Challenges transcription (continued) 213
9.4 Retrospective - Challenges transcription (continued) 214

10.1 Focus Groups Participants . 223
10.2 Focus groups transcription template 225
10.3 1st focus group transcription (synthesized) 227
10.4 2nd focus group transcription (synthesized) 228
10.5 3rd focus group transcription (synthesized) 229
10.6 Identified correlations between E-Gov Context Factors and

Agility Goals . 236

11.1 Interviewees profiles . 245
11.2 Teams Overview . 246
11.3 Models of National Culture 248
11.4 Comparison of challenges . 252
11.5 Overview of practices adoption level 254
11.6 Hypothetical correlation between Agile challenges and cultural

factors . 261

12.1 Customization Matrix Format 282

13.1 Intel Shannon Customization Matrix 296
13.2 SPW Customization Matrix 302
13.3 An example of cultural customization matrix 303
13.4 MDL Course Schedule for P1, P2 and P3 313
13.5 MDL customization matrix 314
13.6 Practices Appreciation (2015-2016), N= 23 318
13.7 Reported Story Points via Jira (committed vs. completed per

sprint) . 319

14.1 Interview Steps and Questions 335
14.2 Interviewees profiles . 336
14.3 Improvements and Suggestions for the AMQuICk framework 340

xxvi

List of definitions

2.1 Disciplined Software Development 11
2.2 Agile Software Development 31

7.1 Language Element . 139
7.2 Basic Element . 140
7.3 Element Group . 141
7.4 Method . 142
7.5 Practice . 144
7.6 PracticeAssociation . 145
7.7 Practice Repository . 149
7.8 UserDefinedType . 150
7.9 Resource . 150
7.10 Tag . 151
7.11 Activity . 154
7.12 ActivityAssociation . 154
7.13 Competency . 155
7.14 CompetencyLevel . 155
7.15 Workproduct . 156
7.16 Criterion, CompletionCriterion and EntryCriterion 157
7.17 Role . 158
7.18 RoleUse . 158
7.19 Measure . 159

12.1 Situational Context . 270
12.2 Agile Methods Customization 276

xxvii

Chapter 1

Introduction

A decades-long goal has been to systematize software development in a
repeatable and predictable way in order to improve the likelihood of delivering
projects within a predefined timeframe. However, as a response to today’s
competitive market, the process of developing software systems has evolved
considerably. More precisely, the inability of the conventional development
paradigm to meet the new challenges of fast software delivery and quick
change management, gave birth to a more modern envisioning of software
development which emphasizes flexibility, leanness and human-focus.

The agile software development paradigm [Beck et al., 2001] was formalized in
this context and became mainstream in the software development community.
Several methods such as Extreme Programming (XP) [Beck and Andres,
2004], Scrum [Schwaber, 1995], Feature Driven Development (FDD) [Palmer
and Felsing, 2001], OpenUP [Kroll and MacIsaac, 2006], DevOps [Httermann,
2012] and others appeared and are steadily gaining worldwide popularity.

However, even though the benefits of agile methods have been proved by
successful implementations and experience reports, and despite the abun-
dance of agile methods to choose from, organizations aspiring for agility are
commonly confronted to several context-related challenges: no upper manage-
ment sponsorship, lack of customer involvement, lack of team empowerment,
a traditional organization in silos, resistance to change, etc.

Therefore, an increasing number of practitioners argue for a contextual
approach to agile methods implementation: practices, deliverables, activities
and any other process aspect should be properly adjusted to better accom-
modate the team’s specific context and needs [Hoda et al., 2010]. This idea
may well be established since the 90’s with Situational Method Engineering
(SME) [Henderson-Sellers and Ralyté, 2010], but when it comes to practice,
organizations aspiring for agile methods customization are thrown in their
track because of the lack of guidance approaches and decision-making tools.
The newly released frameworks for scaling agility such as the Disciplined
Agile Delivery (DAD) [Ambler and Lines, 2012], the Scaled Agile Framework

1

1. Introduction

(SAFe) [Leffingwell, 2013], the Large-Scale Scrum (LeSS) [Larman, 2008]
and the Spotify scaling model [Kniberg and Ivarsson, 2012] demonstrate a
shift to a more context aware implementation of agile methods but still do
not provide the necessary systematic guidance for practitioners since they
rely on the expertise of coaches and facilitators.

The agile literature, as explained by [Dybå and Dingsøyr, 2008], provide
a broad picture of adaptation experiences reported by agile community
practitioners and researchers but most of them are hardly reusable since
they lack of structure and because they are often based on the experts
intuitive reasoning or on the teams’ intrinsic non-quantified knowledge,
i.e., the adaptation decisions are neither documented nor structured nor
automated.

Regarding the aforementioned discussion, this research work aims at de-
signing a practical guidance approach for practitioners going through agile
methods implementation in challenging contexts.

1.1 Contribution

Taking all the above into consideration, the main contribution of this research
work is:

The design of a framework that provides the systematic and
pragmatic guidance to organizations and teams for implementing
context-specific agile methods.

The Agile Methods Quality Integrated Customization framework (AMQuICk)
relies on techniques inherited from various fields of software engineering
such as Software Process Improvement and Situational Method Engineer-
ing [Henderson-Sellers and Ralyté, 2010].

More precisely, it is composed of a customization life-cycle built upon
the Quality Improvement Paradigm (QIP) cycle [Basili, 1985]. Its core
artifact consists of a metamodel for authoring agile building blocks called
AMQuICk Essence. This metamodel incorporates the necessary elements
for structuring an agile repository of practices (a kind of an experience
factory), a context model and a customization knowledge base (see Figure 5.1).
Additional operational tools are the AMQuICk Backlog and the Capitalization
Workshop.

AMQuICk is intended to be used by experienced agile facilitators or consul-
tants as a guide for implementing situation-specific agile methods, especially

2

1.2. Outline

in the context of small and medium-sized enterprises transitioning to agile
software development or that still have to mature their agile implementa-
tion.

1.2 Outline

The dissertation is organized as follows.

Part I addresses the general background of our research work. It encompasses
the following chapters:

• Chapter 2: The chapter discusses the differences between disciplined
and agile methods for software development and argues the need to
provide practitioners with a more structured guidance when agile
methods are to be implemented situationally.

• Chapter 3: The chapter presents and classifies the existing guiding
approaches into four categories: maturity-based, contingency factor,
method engineering and experience-based approaches. The chapter
concludes this part of the dissertation with the identification of three
research perspectives: Situational Method Engineering, Context Study,
Customization and Capitalization and formulates the research questions
that we are going to investigate in this research work.

Part II details the research methodology that was used to build the approach
and provides an overview on the proposed approach. It encompasses the
following chapters:

• Chapter 4: The chapter presents a review of the potential research
methodologies that could have been used to conduct our research
and presents the final constructive methodology that we applied to
progressively design our approach.

• Chapter 5: The chapter provides an overview on the approach in-
cluding its theoretical foundations, life-cycle and main artifacts.

Part III investigates the first research perspective of this dissertation which
is aimed at exploring the design of an agile Situational Method Engineering
(SME) approach. It encompasses the following chapters:

• Chapter 6: The chapter discusses the issues underlying the imple-
mentation of a SME methodology in an agile context, explores and
compares the existing SME languages and formulates our proposal for
the AMQuICk framework core.

3

1. Introduction

• Chapter 7: The chapter discusses the design of AMQuICk Essence,
the cornerstone metamodel of the AMQuICk framework.

Part IV discusses the contextual challenges that agile practitioners may face
through a number of exploratory case studies. It encompasses the following
chapters:

• Chapter 9: The chapter studies a transformation experience in an
IT department of the Public Walloon Service (SPW) in Belgium.

• Chapter 10: The chapter investigates the contextual challenges that
practitioners face when developing e-government services using an agile
software development method.

• Chapter 11: The chapter investigates how the European and Asian
cultural backgrounds may impact agile methods implementation.

Part V generalizes the learnings of the exploratory studies and proposes
an extension to the AMQuICk framework accordingly. It encompasses the
following chapters:

• Chapter 12: The chapter describes the theoretical process to be
followed by practitioners to instantiate a suitable agile method and
presents the AMQuICk customization matrix, a core AMQuICk artifact
used to represent the practitioners expertise. It also presents some
facilitation tools proposed as a guidance to help practitioners easily
capitalize their customization knwoledge at an organizational level.

• Chapter 13: The chapter discusses the usability of the proposed
AMQuICk artifacts based on illustrative examples and on a complete
case study.

Finally, Part VI summarizes the research outcomes and discusses the frame-
work limitations and future research perspectives and concludes this research
work.

1.3 Publications

Most of the contributions presented in this thesis were published as peer-
reviewed publications:

• Hajer Ayed, Benoit Vanderose, and Naji Habra. “A metamodel-based
approach for customizing and assessing agile methods.” In the Pro-
ceedings of the Eighth International Conference on the Quality of

4

1.3. Publications

Information and Communications Technology (QUATIC’12), pp. 66-
74. IEEE, 2012.

• Hajer Ayed, Naji Habra, and Benoit Vanderose. “AMQuICk: A
measurement-based framework for agile methods customisation.” In
the Proceedings of the Eighth International Conference on Software
Process and Product Measurement (IWSM-MENSURA’13), pp. 71-80.
IEEE, 2013.

• Hajer Ayed, Benoit Vanderose, and Naji Habra. “Supported approach
for agile methods adaptation: An adoption study.” In the Proceedings
of the 1st International Workshop on Rapid Continuous Software En-
gineering (RCoSE ’14), the 36th International Conference on Software
Engineering (ICSE’14), pp. 36-41. ACM, 2014.

• Benoit Vanderose, Hajer Ayed, and Naji Habra. “Implementing a
model-driven and iterative quality assessment life-cycle: a case study.”
Electronic Communications of the EASST, 2014.

• Benoit Vanderose and Hajer Ayed. “Software Quality in an Increasingly
Agile World”. ERCIM News, Software Quality Issue, 2014.

• Hajer Ayed, Benoit Vanderose, and Naji Habra. “A Context-Driven
Approach for Guiding Agile Adoption: The AMQuICk Framework.”
In the Proceedings of the Tenth International Conference on Software
Engineering Advances (ICSEA’15). IARIA, 2015.

• Hajer Ayed, Benoit Vanderose, and Naji Habra. “Agile cultural chal-
lenges in Europe and Asia: insights from practitioners.” In the Pro-
ceedings of the 39th International Conference of Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP’17). IEEE/ACM,
2017.

• Anthony Simonofski, Hajer Ayed, Benoit Vanderose, and Monique
Snoeck. “From Traditional to Agile E-Government Service Develop-
ment: Starting from Practitioners’ Challenges.” In the Proceedings of
the Americas Conference on Information Systems (AMCIS’18). Asso-
ciation for Information Systems (AIS), 2018.

5

Part I.

Problem Statement

In this part of the dissertation, we address the general background of
the doctoral research. More precisely, chapter 2 discusses the differences
between disciplined and agile methods for software development and argues
the need to provide practitioners with a more structured guidance when
agile methods are to be implemented situationally.

Chapter 3 presents and classifies the existing guiding approaches into four
categories: maturity-based, contingency factor, method engineering and
experience-based approaches. Then, regarding the benefits and limitations
of these approaches, the main research problem is decomposed into more
specific research questions.

7

Chapter 2

Research Background

Disciplined Vs. Agile Software Development

In this chapter, we discuss the differences between disciplined and agile
methods for software development and argue the need to provide practitioners
with more structured guidance when agile methods are to be implemented
situationally.

First of all, Section 2.1 recalls that forty years ago, the software crisis paved
the way for disciplined development methods which recommend repeatability,
stability and high assurance. Up-front planning, extensive documentation and
predefined verification and validation strategies support these goals. Process
improvement also focuses on predictability and stability by increasing process
capability through standardization, measurement and control. Formal models
and standards are used to define, tailor, assess and improve processes. These
include reference process maturity models such as the [CMMI, 2006] and
the [ISO/IEC 33001, 2015] and a number of organizational continuous
improvement frameworks such as the QIP [Basili and Caldiera, 1995].

However, another crisis still occurred in the nineties, enlightening the need
for a more flexible and lightweight development which should be more human-
centric. Several methods appeared forming a new paradigm called the Agile
Software Development. They advocate simplicity and responsiveness to
change. Iterative and incremental development, focus on business value,
close customer involvement, effective collaboration, and light-weight planning
and documentation support these goals. Within this context, we explore
in Section 2.2 what agility means and present the most influential agile
methods. We then examine the elements and success factors of software
process improvement in an Agile environment and discuss whether the
reference process improvement models and frameworks are applicable for
agile software development projects.

9

2. Research Background

Section 2.3 then summarizes the contrast between disciplined and agile
software development and explores the existence of hybrid approaches. It
also discusses the need for specific process improvement models dedicated to
agile software development which would help teams to achieve an adapted
or customized agile method.

2.1 Disciplined Software Development

2.1.1 Defining Discipline

In most professions (e.g., art, sport, engineering, etc.), discipline is the
foundation of any successful endeavor. The term “discipline” refers to the
establishment of a system of rules of conduct or a code of behavior and to
the practice of training people to obey these rules1. Accordingly, in software
engineering, “a process is disciplined when it specifies the set of rules that
would result in behavior consistent with those rules” [Zahran, 1998]. This set
of rules corresponds to all established development practices and discipline
refers to the degree to which these are effectively applied.

[Humphrey, 2006] defines software process discipline as the “fidelity with
which a defined development process is followed” and from the perspective of
the team specifies that “highly disciplined teams thoroughly plan their work,
rigorously follow their processes and consistently gather and analyze their
data. Undisciplined teams, however, will be less thorough in some or all
these areas [...]. (They) generally also ignore their data and continue making
intuitive decisions.”. Thus, process discipline means common compliance
with established processes and team self-control.

For a process to be effective, the definition of a set of rules to follow is not
sufficient. People must be informed about it and if necessary trained to
it. Process knowledge must be disseminated to those who are supposed
to perform and participate in its activities [Zahran, 1998]. A disciplined
process is a mature process that is defined, trained, enforced and followed.
[Humphrey, 2006] adds another attribute, that a disciplined process is
continuously improving.

Historically disciplined software development appeared with the rise of
the complex aerospace systems and system engineering [Schlager, 1956].
A series of standards such as the military standards [MIL-STD-1521A,
1976] and [DOD-STD-2167A, 1988] were introduced to guide the software

1Oxford dictionary of English online

10

2.1. Disciplined Software Development

development endeavor. This continued in the 90’s with standards such as
the [ISO/IEC 12207, 1995] and the Capability Maturity Model [CMM, 1993]
which emphasize process standardization. At the organization level, a set
of processes, activities, and tasks are adopted from a specific standard and
declared as a condition of efficiency. At the project level, a team tailors the
standard process in accordance with contractually established criteria and
guidelines.

Based on the aforementioned discussion, we propose the following definition:

Definition 2.1 (Disciplined Software Development). The systematic and
formal engineering approach to software development that conforms to estab-
lished processes in moving software through a plan-driven set of work-specific
phases from requirements to finished code (adapted from [Boehm and Turner,
2003]).

2.1.2 Characteristics

Based on concepts drawn from system engineering [Schlager, 1956], disci-
plined methods of software development promote a systematic engineering
approach which, according to [Boehm and Turner, 2003], is characterized by
the following features:

• Repeatability and Predictability;

• Thorough planning;

• Upfront and extensive documentation;

• Well-defined and standardized process management.

The meaning of each of these characteristics is detailed in the following
sections.

2.1.2.1 Repeatability and Predictability

Repeatability means “doing the same thing in the same way to produce
the same results” [Highsmith, 2009]. Predictability means “obtaining the
same expected results”. Repeatable processes reduce variability through
measurement and constant process control and correction with the objective
of achieving predictable results.

The term of repeatability originated from the manufacturing vocabulary,
where results of processes are well defined, i.e., all the characteristics and

11

2. Research Background

information about the product are known in advance. “When a process
had consistent inputs, then defined outputs would be produced. Repeatable
means that the conversion of inputs to outputs can be replicated with little
variation.” [Highsmith, 2009].

Implementing repeatable processes to achieve predictability has been the goal
of many software-intensive organizations which follow disciplined software
development. Repeatability ensure comparability between projects and
rationalizes the management decisions. It provides the basis for objective
measurement of performances and makes it easier to verify that the project
process can deliver what was specified in the beginning.

2.1.2.2 Thorough planning

As explained in the previous section, disciplined methods promote pre-
dictability. A good mean of achieving this quality is to fix the constraints of
the project, i.e., the scope, time and cost and to plan thoroughly the work
to be done. Planning is done as a prelude to the entire project and at a
detailed level: the work is broken down into phases and tasks which may be
sequential or overlapping, each task is broken into its composite activities,
estimates are done and finally concurrencies and dependencies are identified
to provide schedules and delivery times. The plan predicts not only the
schedule and budget for construction but also the task delegation for the
development team.

To achieve this target, the original tendency of disciplined methodologies
was to view the development cycle as sequential steps. Linear models such
as the waterfall model and the V-model were followed (see Section 2.1.3.1).
More recently, incremental and evolutionary models have been adopted but
still with thorough and heavy documentation. These include the incremental
and the spiral model (see Section 2.1.3.1).

2.1.2.3 Upfront and extensive documentation

A main activity in the disciplined approach to software development is the big
design upfront process which is common in industry and other engineering
disciplines. However, documenting the software product upfront presupposes
that it is possible to gather all requirements prior to writing any code. This
strategy of documenting the software has the advantage of bringing more
predictability which is very important in some contexts such as life critical
systems.

12

2.1. Disciplined Software Development

The documentation of disciplined methods is also characterized by complete-
ness. Several design documents are produced targeting to thoroughly detail
the customer expectations, in order to avoid as much ambiguity as possible.
This also ensures a maximum of traceability of the requirements, design and
code which facilitates the software maintenance effort.

2.1.2.4 Well-defined and standardized process management

Process-supported environments emerged in the 80’s with the work of in-
fluential researchers such as [Osterweil, 1987] which states that “Software
Processes are Software Too”. This idea forms the basis of a discipline of
software development (on top of the discipline of application software devel-
opment) which “yield highly useful insights on software process requirements,
process architectures, process change management, process families, and pro-
cess asset libraries with reusable and composable process components” [Boehm,
2006].

For a disciplined process to be effective, a software process infrastructure,
i.e., “a systematic application of software processes and software life cycle
models across an organization” [Bourque et al., 2014], should be enabled at
an organizational level. This is also known as process institutionalization.
[Zahran, 1998] specifies that an effective process infrastructure must cover
three important aspects: (1) process definition, (2) process training and
support, and (3) process monitoring and enforcement [Zahran, 1998].

Process definition refers to the specification and documentation of the process
at the organizational level. Such specification should be visible to everyone
in the organization. It generally include detailed plans, activities, workflows,
roles, and workproducts descriptions.

Figure 2.1.: Tailoring the organization’s standard process [Zahran, 1998]

13

2. Research Background

The standard definition may be tuned or tailored down to be used in different
projects with specific needs (see Figure 2.1). This mechanism is known as
Process tailoring (see Figure 2.1). Several formalisms may be used. These
include [SPEM, 2008a] and the [ISO/IEC 24744, 2007] (these will be discussed
in details in Chapter 6).

Process training is related to an important aspect of disciplined software
development, which is consistency. In fact, a software process cannot be
enacted without the active support of the people who will use it. Thus,
the practitioners are trained to the philosophy of disciplined software devel-
opment and to follow the standard process consistently in order to avoid
non-uniformity which is considered as a source of degradation of the process
performance.

Process monitoring refers to the need of inspecting the process activities
in order to ensure their conformance. Enforcement consists in a set of
activities and procedures aiming to uncover and correct the sources of
non-conformance.

2.1.3 Approaches Overview

In the reminder of this section, we provide an overview of the prominent
disciplined methods which embody the characteristics presented in Sec-
tion 2.1.2

2.1.3.1 SDLC Models

As explained in Section 2.1.2, in a DSD environment, the development
process usually follow a sequential workflow, where plans are established
rigorously. These models are commonly known as Software Development
Life-Cycle (SDLC) models. They appeared in the 70’s as a will of more
discipline after the so-called software crisis [Naur and Randall, 1968]. They
aim to assess the chronological evolution of a software product or system
by describing in a simplistic way the fundamental phases and deliverables
of the development process. They represent only partial information about
the software process, e.g., they do not show the roles of the people involved
in the described activities nor describe the documents and detailed work
products to be released.

The SDLCmodels include the Waterfall Model [Royce, 1970], the V-model [Fors-
berg and Mooz, 1991] and the spiral model [Boehm, 1988]. These are
synthesized in the following:

14

2.1. Disciplined Software Development

Waterfall Model

Figure 2.2.: The waterfall model

The waterfall model was in-
troduced by [Royce, 1970],
specifically in the context of
spacecraft mission software
design. It is very simple to
understand and use.

In the waterfall model, the
software life-cycle is dis-
played as a linear sequence
of activities moving along a
horizontal line, punctuated
by major reviews (system re-
quirements review, prelim-
inary design review, etc.).
Each phase must be com-
pleted fully before the next
one can begin, with limited possibility of going backwards. This model is
risky and invites failure since the testing phase occurs only at the end of
the development cycle. If the product fails to satisfy the various external
constraints, then a major redesign is required.

V-Model

The V-model (validation and verification model) is a variation of the waterfall
model with a focus on build and test activities which was first introduced
in [Forsberg and Mooz, 1991]. Its “V” shape (shown in Figure 2.3) was
inspired by the [DOD-STD-2167A, 1988] standard which describes a model
integrating two parallel waterfall cycles for hardware and software develop-
ment.

The V-model starts with the same sequence of phases of the waterfall model
and adds verification and validation activities. It is shaped as a “V” starting
with user needs on the upper left and ending with a user-validated system on
the upper right. The definition of tests starts in parallel of the preliminary
phases of analysis, specification and design.

This model best shows the disciplined way of testing. The verification and
validation activities of the V-model are thoroughly planned and are driven
by a set of formal test plans which are derived from complete and precise
model-based requirements. An independent team of testers identify for each
requirement the possible test scenarios. The V-model as it was originally

15

2. Research Background

Figure 2.3.: The V-model of software development

described conforms to the [MIL-STD-1521A, 1976] standard and is therefore
very prescriptive in terms of documents to produce during the software
project life cycle. It demonstrates how much documentation is important in
DSD methods.

Spiral Model

The spiral model [Boehm, 1988] is an incremental model to software develop-
ment that focuses on the reduction of risks at each increment. It describes
“a cyclic approach for incrementally growing a system’s degree of definition
and implementation while decreasing its degree of risk” [Boehm and Hansen,
2001].

As shown in Figure 2.4, the development of the product passes through
cycles forming a spiral, each cycle is composed of 4 phases: (1) objectives,
alternatives and constraints definition, i.e., solution exploring by identifying
the design alternatives, the reusable components, the cost and schedule
constraints, etc.,
(2) risks identification, evaluation and resolution using prototyping, simula-
tion, benchmarking, questionnaires, analytic modeling, etc.,
(3) implementation, validation and verification of the selected solutions,
(4) planning of the next increment.

At the end of each cycle, a block of functionalities or a version of the product
is released. The radial dimension represents the cumulative cost incurred
in accomplishing the steps to date; the angular dimension represents the
progress made in completing each step.

16

2.1. Disciplined Software Development

Figure 2.4.: The spiral model [Boehm, 1988]

The spiral model in particular influenced the disciplined standards of soft-
ware development such as the [DOD-STD-2167A, 1988] which evolved and
incorporated evolutionary strategies in requirements acquisition and product
development [Boehm and Hansen, 2001]. It also paved the way for agile
methods.

2.1.3.2 Military Methods (DOD)

As explained in Section 2.1.1, disciplined software development appeared
with the rise of complex aerospace systems and system engineering [Schlager,
1956]. Military standards and methods were introduced to guide the software
development endeavor in Mission-Critical systems.

The [DOD-STD-2167A, 1988] Standard, titled the Defense Systems Software
Development, best exemplify this type of methods. It is a document-driven
approach that specifies a large number of deliverables and follows a wa-
terfall life-cycle model (see Section 2.1.3.1). The standard also provide an
overview of the sequential reviews and audits required in the [MIL-STD-
1521A, 1976].

17

2. Research Background

2.1.3.3 PSP and TSP

The Personal Software Process (PSP) is a structured method or frame-
work to be followed by an individual programmer. It has been developed
by [Humphrey, 2000] as a result of applying the Capability Maturity Model
for Software (SW-CMM) [SW-CMMI, 2002] to the smallest organization
possible: an organization of a single individual. It consists basically in
guidelines and procedures to help the programmer structure and control its
way of working. Another purpose of the framework is to help him leverage
its own skills and performance by following more discipline.

The framework rely on several documents: scripts, forms, templates, stan-
dards, and checklists. A script describes ordered tasks that the engineer
should go through to complete a process step. Forms are used to guide
thorough data collection. They serve for example for recording bugs or how
much time the individual spend on development activities.

The Team Software Process (TSP) is a method that complements the PSP
by providing a structure for self-directed teams. It helps them to create
and own their processes, produce their own plans and make their own
commitments. The objective of the TSP is to put software professionals in
charge of their work and to make them feel personally responsible for the
quality of the products they produce [Davis and Mullaney, 2003]. It has also
been developed by [Humphrey, 2006].

Like the PSP, TSP also rely on scripts, forms, and standards organized in
two components: team building and team management. The scripts lay out
detailed steps to guide the teams through the project monitoring. Standards
are used to help the engineers share common values and coding rules. For
example, the TSP includes a standard for defects types and quality criteria
that is used to produce the defect recording log.

2.1.3.4 RUP

The Rational Unified Process (RUP) is a process framework developed in
the late 90’s by Rational Software, a division of IBM. RUP is not a single
concrete process but an adaptable framework for instantiating well-defined
iterative and incremental processes. Despite this iterative and incremental
nature which usually characterizes agile methods (see Section 2.2.2), we
classify RUP as a disciplined approach since it is highly focused on process
standardization and guidance which conforms to the DSD characteristic
detailed in Section 2.1.2.4.

18

2.1. Disciplined Software Development

RUP provides development organizations with industry-standard best prac-
tices to help them define their standard organizational processes. With
such focus on process discipline, it targets to produce high quality software
deliverables within a predictable schedule and budget.

The RUP life-cycle model can be described in terms of two dimensions as
shown in Figure 2.5. The horizontal axis represents time and shows the
dynamic aspect of the process as it is enacted, i.e., how the project life-
time is decomposed into phases and iterations. The vertical axis represents
content and shows the static aspect of the process, i.e., how it is described in
terms of software development disciplines (which are basically a high-level
view of workproducts and activities). The model shows that the focus on
development disciplines vary over the project lifetime. For example, more
business modeling is done during the early iterations of the inception phase
and more implementation and test is done during the later iterations.

RUP is architecture-centric and is based on the Unified Modeling Lan-
guage(UML). It defines a set of reusable process components and guidelines
to help organizations define their standard processes. These organizational
processes are managed in a highly disciplined way, following a top-down
approach of defining, deploying and tailoring them.

Figure 2.5.: The RUP Life-cycle

19

2. Research Background

2.1.4 Software Quality Management

In DSD, the software quality management system mainly relies on formal
Software Quality Assurance (SQA), which can be defined as: “The planned
and systematic approach to the evaluation of the quality of and adherence
to software product standards, processes and procedures.” [Agarwal et al.,
2007].

Quality assurance activities can be split into two categories. The first
category aims to prevent the defects that would arise during the development,
by defining a standard way of working, checkpoints and reviews. This is
better known as process assessment and improvement (see Section 2.1.5).

The second category focuses on defect detection into the completed product
and is better known as Quality Control. Typically, a dedicated quality
team is in charge of establishing a quality plan for each project, agreeing
it with the customers and making it visible to all projects’ stakeholders.
The plan would identify, along industry standard lines, the quality goals for
the given project (e.g., the percentage and aggregated number of defects
that the customer would tolerate per release) and how those goals would be
achieved (e.g., inspection, testing, etc.). Once the software is fully built and
functioning, the quality plan serves as a reference for quality stakeholders to
verify the produced solutions and to track the reasons for poor quality.

In order to be able to thoroughly define these quality goals, smaller and
easier-to-assess quality attributes are needed. This constitutes a key idea in
disciplined quality management. Several quality models and standards pro-
vide such a characterization of software quality, e.g, McCall’s model [McCall
et al., 1977], Boehm’s model [Boehm, 1981], FURPS [Grady and Caswell,
1987], Dromey’s model [Dromey, 1995], [ISO/IEC 9126, 2001] model, etc.
These models explicitly define the set of inherent characteristics that are
further refined into subsequent indicators, which are quantitatively accessible
thanks to specific metrics. Using this structured way of defining quality
goals, well-defined and standardized SQA plans can be established.

Many disciplined methods rely on these models and provide rules, tools, and
heuristics to measure the product’s internal attributes such as modularity, re-
use, coupling, cohesiveness, redundancy and hierarchy and external attributes
such as understandability and maintainability [Berki et al., 2007].

This “objective” or “rationalized” view of quality is originally taught in the
works of influential quality standards such as the [ISO/IEC 9126, 2001] which
states that : “Software quality is the degree to which the software product
satisfies stated and implied needs when used under specified conditions.”
where “stated needs” means those needs that are specified as requirements

20

2.1. Disciplined Software Development

by the customer in a contract and “implied needs” refers to the needs
identified by the supplier company.

This view of quality is often criticized. For example, [Juran, 1998] claims that
because of this standardized view of quality, organizations were stampeded
into going after a set of quality standards instead of going after improvement
at a revolutionary rate. He recommends a more flexible view of quality
which adapts to the customer expectations.

2.1.5 Software Process Improvement

Software Process Improvement (SPI), i.e., the definition of a series of actions
in order to change and optimize existing processes and to achieve gains in
product quality and productivity, is a major concern in disciplined software
development environments.

As explained in Section 2.1.2.4, discipline encourages process infrastructure.
An emphasis is therefore put on the improvement of processes in terms of
compliance and capability, i.e., the inherent ability of process to produce
planned results. As the capability is improved, the process becomes pre-
dictable and measurable which would lead to a better control of the major
causes of poor quality. By steadily improving the process capability, an
organization and its standard processes are said to mature.

The typical mechanisms of a disciplined process improvement framework are
depicted in Figure 2.6.

Figure 2.6.: The elements of a disciplined SPI framework

21

2. Research Background

Software process improvement begins with an assessment of the software
process on the basis of a benchmark model (e.g., [ISO/IEC 12207, 1995]
and [ISO/IEC 9000, 2005]) or using a measurement-based approach. Bench-
marking requires to compare each specific process to be assessed to the
requirements described in the benchmark model to ensure that it meets
a set of basic process quality goals and that the software is implemented
in an efficient manner. Measurement-based assessment provides means for
defining measurable goals to evaluate the effectiveness of the used processes
and understand the effects of implemented improvements [Pfleeger and Rom-
bach, 1994]. A wide range of measurement methods provides quantitative
mechanisms to support measurement-based process assessment. These in-
clude the Goal-Question-Metric (GQM) method [Basili et al., 1994a]. The
output of process assessment is a set of areas to improve and a capability
determination.

SPI requires significant expertise, time, and money [Boehm and Turner, 2003].
Therefore, the SPI initatives are generally encompassed in an organizational
strategy. Usually, a collection of specialists, known as the process group,
facilitate the definition, documentation, maintenance and improvement of
organizational software processes. Moreover, the infrastructure for disciplined
process management includes process asset libraries and rely on process
frameworks such as the [ISO/IEC 12207, 1995] and the [ISO/IEC 9000, 2005]
and on process improvement approaches which can be categorized into two
main categories: prescriptive and inductive.

2.1.5.1 Prescriptive Approaches

Prescriptive approaches take an approach based on a set of best practices
that has proven successful in other organizations. They aim at providing
organizations with a reference or a normative model that is assumed to
be the best way of developing software. It is the model against which the
organization processes can be assessed and improved.

By using this model, it becomes possible to identify the “maturity” of the
organization and propose relevant improvements. Basically, the idea is to
examine the process against the reference model and to evaluate its capability
to develop software effectively, i.e., to accomplish a set of predefined process
goals. A capability level is attributed regarding this evaluation and a set
of improvements are recommended to help the organization upgrade the
attributed capability level. Examples of this type of models include the
Software Process Improvement Capability dEtermination (SPICE) [ISO/IEC
15504, 2004] (actually revised by the [ISO/IEC 330xx, 2015] series of stan-

22

2.1. Disciplined Software Development

dards), the Capability Maturity Model Integration(CMMI) [CMMI, 2006],
Trillium [April and Coallier, 1995], Bootstrap [Kuvaja, 1995] and so forth.

In the reminder of this section, we present some of these prescriptive frame-
works:

SPICE

The [ISO/IEC 33001, 2015] describe a set of standards for software process
assessment and improvement. It relies on the principle of process institu-
tionalization. In fact, a process is defined as : “an implemented process that
is managed and tailored from the organization’s set of standard processes
according to tailoring guidelines” [ISO/IEC 33001, 2015].

Figure 2.7.: [ISO/IEC 33001, 2015] process capability levels

SPICE proposes to assess the process against a reference model (an example is
shown in Figure 2.7). A process reference model consists in “capability levels
which in turn consist of the process attributes and further consist of generic
practices. [It is the model] against which the assessors can place the evidence
that they collect during their assessment, so that the assessors can give an
overall determination of the organization’s capabilities for delivering products
(software, systems, and IT services)” [ISO/IEC 15504, 2004]. In other terms,
the model fixes the scope of the assessment by precisely describing the
process entities to be evaluated. Each process attribute describes a specific

23

2. Research Background

aspect of the overall assessment. The standard specifies that different models
may be used to support the conduct of an assessment but these should be
mapped to a relevant reference model from the [ISO/IEC 15504, 2004] using
a measurement framework specified in the [ISO/IEC 15504-2, 2004].

The assessment output consists of a set of process attribute ratings for
each process assessed, termed the process profile, and the process capability
achieved by that process. SPICE defines an ordinal scale for evaluating
process capability, based upon six-defined capability levels: (0) incomplete,
(1) performed, (2) managed, (3) established, (4) predictable and (5) optimiz-
ing.

CMMI

The Capability Maturity Model Integration (CMMI) is a framework of best
practices designed to guide process improvement across a project, a division
or an entire organization. The area of interest of CMMI addressing product
and service development is called [CMMI-DEV, 2010]. It “deals with the
capability of software organizations to consistently and predictably produce
high quality products” [Humphrey, 1993].

The underlying principles of CMMI are similar to those of SPICE. The
maturity of an organization process is also assessed against are reference
model. It defines the following maturity levels for processes: (1) Initial, (2)
Managed, (3) Defined, (4) Quantitatively Managed and (5) Optimizing.

Figure 2.8.: [CMMI, 2006] process maturity levels

The CMMI has two representations: continuous and staged. The continuous
representation is designed to allow the organizations focus on specific process

24

2.1. Disciplined Software Development

areas so they can primarily address the urgent improvement needs and
specific goals. Maturity levels are available for each process area. The staged
representation provide a standard improvement path. An overall maturity
level for the organizational process is provided.

According to CMMI, SPI typically involves management steering commit-
tees implementing strategies, process groups facilitating and managing the
SPI activities, and process action teams defining and implementing the
improvement. The role of the practitioners is defined as performing the
process.

2.1.5.2 Inductive Approaches

Inductive approaches are based on a thorough analysis of the current prac-
tices, on the identification of specific improvement goals with regards to
the most critical issues and on the management of improvement activities
supported by measurement [Van Solingen and Berghout, 1999].

Such approaches consists of organizational models for continuous quality
improvement that are possibly supplemented by goal-driven measurement
techniques. They provide systematic procedures to conduct the improve-
ment activities in a cyclic and ongoing way and support measurement on
the improvement goals. Examples of these models are Six Sigma [Harry,
1998], IDEAL [McFeeley, 1996] and the Quality Improvement Paradigm
(QIP) [Basili, 1985] which is supplemented by the Goal-Question-Metric
(GQM) paradigm for handling the measurement aspects.

In the reminder of this section, we present some of these inductive frame-
works:

IDEAL

IDEAL provides a disciplined long-term improvement strategy for organi-
zational processes. It consists of five phases: (I) Initiating: preparing the
basis of successful improvement, (D) Diagnosing: analyzing the current
and desired states developing recommendations for improvement, (E) Es-
tablishing: planning the improvement actions, (A) Acting: implementing
the improvement actions, (L) Learning: learning from the experience and
propose future directions for improvement. The IDEAL cycle is shown in
Figure 2.9.

25

2. Research Background

Figure 2.9.: IDEAL model [McFeeley, 1996]

QIP

The Quality Improvement Paradigm (QIP) originates from the quality
paradigms of the manufacturing such as the Shewart-Deming Plan-Do-Chech-
Act cycle (PDCA) and the Total Quality Management (TQM) [Ishikawa,
1976]. It is a basic methodological device of a software process infrastructure
system called the experience factory [Basili et al., 1994b]. It is based on
the principle that software discipline is evolutionary and experimental. The
process improvement is done on the basis of the project and environmental
characteristics and specific goals.

The QIP cycle consists of six steps (see Figure 2.10): (1) Characterize
the environment, (2) Set Quantifiable Goals on the basis of the initial
characterization and of the capabilities of the organization, (3) Choose
the Process on basis of the characterization of the environment and of the
organizational goals, (4) Execute the Process and provide project feedback,
(5) Analyze the data gathered from each project and make recommendations
for the future, (6) Package the experience in form of updated models or
structured knowledge

These steps are performed at two different levels, forming a corporate learning
cycle and a project learning cycle. The corporate cycle has the purpose of
initiating the process for each project, analyzing and comparing the process
execution data with the available knowledge and accumulating reusable
experience. The project learning cycle ensures the feedback provided to

26

2.1. Disciplined Software Development

Figure 2.10.: QIP model [Basili and Caldiera, 1995]

the project during the execution phase. The improvement of the process
basically rely on the analysis of the quantitative indicators of the project.

GQM

Within the QIP, software measurement is considered as a crucial component
to capture experiences and retrieve knowledge on the development practices.
To collect such information, measurements activities are integrated to the
software development process [Van Solingen and Berghout, 1999]. The Goal-
Question-Metric (GQM) [Basili et al., 1994a] is the mechanism used by the
QIP for defining measurable improvement goals.

GQM relies on the concept of goal-oriented software measurement, i.e., it
assumes that any software measurement should be only performed towards
a clearly stated purpose. At a conceptual level, the approach describes a
purposeful way to define measurement goals specific to the organization and
its projects. At an operational level, a set of relevant questions are used to
characterize the way a specific goal is to be assessed or achieved. Finally, at
a quantitative level, a set of data is associated with each question in order
to answer to it (see Figure 2.11).

The measurement goals represent corporate or project improvement goals
and are defined using five dimensions: object of the study, purpose, quality

27

2. Research Background

focus, point of view and environment of use. The goals are then transformed
into activities that can be measured during the execution of the development
process. The result of the application of the GQM approach is a measure-
ment program targeting a particular set of issues and a set of rules for the
interpretation of the measurement data. The GQM method defines the
metrics from a top-down perspective and interprets the measurement data
bottom-up as shown in Figure 2.11.

Figure 2.11.: The Goal-Question-Metric paradigm [Basili et al., 1994a]

2.2 Agile Software Development

2.2.1 Defining Agility

The term “agile” means “characterized by quickness, lightness, and ease
of movement; nimble” 2. Agility is therefore the ability of the software
process to respond effectively to change. It was first used in the field of
flexible manufacturing and later was introduced in the software community
to designate lightweight methods for producing software products rapidly.

2The American heritage dictionary of the English language, 5th edition

28

2.2. Agile Software Development

Table 2.1.: The values and principles of the Agile Alliance

The Agile manifesto defines four values for
characterizing Agile Software Development.
These values indicate preferences and not al-
ternatives encouraging the focus on certain as-
pects of the software development life-cycle
but not eliminating others. That is, while the
items on the right are important, the items on
the left are even more. The 4 values are :

• V1. Individuals and interactions over
processes and tools

• V2. Working software over compre-
hensive documentation

• V3. Customer collaboration over con-
tract negotiation

• V4. Responding to change over follow-
ing a plan

The Agile Alliance also defined twelve prin-
ciples to describe the fundamentals to which
and agile software process must conform. For
each of the principles (AP01 to AP12) we
state to which value the principle relates.

• AP01. Focus on User / Customer:
The user/customer satisfaction should
have the highest priority. This is
achieved through their involvement in
the development process and the early
and continuous delivery of valuable
software. (V3)

• AP02. Welcome change: Changes
even late in development should be tol-
erated. Agile processes harness change
for the customer’s competitive advan-
tage. (V4)

• AP03. Frequent deliveries of valu-
able software : Working software
should be delivered frequently to the
customer. Deliveries should happen,
from a couple of weeks to a couple
of months, with a preference to the
shorter timescale. (V2)

• AP04. Business/IT collaboration:
Business people (i.e., managers, busi-
ness domain experts, administration,
etc.) and developers must collaborate
toward one common goal on a daily ba-
sis throughout the project life. (V2)

• AP05. Team motivation and empow-
erment: Motivated individuals are the

secret of successful projects and hence
projects should be build around them :
they should be given the adequate envi-
ronment that support their needs and
trust them to get the job done. (V1)

• AP06. Face-to-face communication:
The manifesto states that this is the
most efficient and effective way of con-
veying information to and within a de-
velopment team. (V1)

• AP07. Focus on working software:
The progress of the software developed
should be tracked based on working
software. Only working, integrated
and tested features can be used to mea-
sure the progress. (V2)

• AP08. Sustainable pace: Agile pro-
cesses promote a sustainable pace
through the development life-cycle :
The sponsors, developers, and users
should be able to maintain a constant
pace indefinitely. (V1)

• AP09. Technical excellence: Con-
tinuous attention to technical excel-
lence and good design enhances agility.
Having a high product and design
models quality allows for easy mainte-
nance and later changes, thus making
a project more agile. (V2)

• AP10. Focus on simplicity : Simplic-
ity is defined by the Agile Alliance as
“the art of maximizing the amount of
work not done”. Going straight to the
point is an essential value in the agile
paradigm. It avoids time and resource
losses. (V4)

• AP11. Self-organizing and cross-
functional teams: A group of moti-
vated individuals (AP05), who work
together toward a goal (AP04), have
the ability and authority to take de-
cisions and readily adapt to changing
demands. The manifesto says that
best architectures, requirements, and
designs emerge from cross-functional
teams (i.e., involving all competences
internally). (V1)

• AP12. Regular adjustment: At regu-
lar intervals, the team reflects on how
to become more effective, then tunes
and adjusts its behavior accordingly.
(V4)

29

2. Research Background

According to [Boehm and Turner, 2003], agility is to be perceived as the
counterpart of discipline. He specifies that “when discipline ingrains and
strengthens, agility releases and invents”. It drives innovation by releasing
development teams from the heavyweight process chains and by encouraging
them to adopt an adaptive rather than a predictive mindset.

The first Agile methods emerged in the mid-1990s to address the challenges
inherent to disciplined software development. They were initially called
lightweight to distinguish them from heavyweight methodologies. Later,
a group of seventeen software engineering practitioners formed the Agile
Software Development (ASD) Alliance in February, 2001. The group con-
cretely managed to define a consensual manifesto of four values and twelve
principles for encouraging better ways of developing software [Beck et al.,
2001]. These values and principles reported in Tab. 2.1 became one of the
most referenced characterization of agile software development.

Lean thinking, a management philosophy derived from the Toyota Production
System, provides an alternative foundation to agile software development
known as the Lean software development. Tab. 2.2 summarizes the seven
key principles of lean software development as defined by [Poppendieck and
Poppendieck, 2003].

The Lean foundation share several principles with those stated by the
Agile Alliance. The two software development paradigms have many in
common and the underlying principles can be mapped together as proposed
in [Petersen, 2010]. For example, AP03 (frequent delivery) and LP04 (deliver
as fast as possible) are similar principles since they both target faster response
time. Similarly, both Agile and Lean aim to improve the customer service, to
manage the product quality continuously and to empower the teams. They
are therefore sometimes considered as interchangeable.

The main difference between the two methodologies resides in their target.
Lean is designed to eliminate waste and thus improve the operational ef-
ficiency of a manufacturing-like continuous workflow. However, Agile is
designed to continuously increase the business value and thus improve effec-
tiveness of the what is delivered to the customer. This is done by executing
tasks over a short time frame called iteration and by frequently involving
the customer in the development process. The iterative and incremental
development is therefore a pillar of ASD (see Section 2.2.2).

It is important to note that the aforementioned values and principles provide
a solid foundation of the agile movement but they are relative, not absolute.
They represent the philosophy that development teams would attempt to

30

2.2. Agile Software Development

Table 2.2.: The principles of Lean Software Development

Lean is based on seven principles which are:
• LP01. Eliminate waste : Elimi-

nating anything that does not add
value to a product (i.e., value as per-
ceived by the customer) is a basic
concept in Lean Thinking. Seven
types of waste were identified in man-
ufacturing and transported to soft-
ware development in Poppendieck
and Poppendieck [2003]. The seven
wastes of Software Development are
identified as follows: Partially Done
Work, Extra Processes, Extra Fea-
tures, Task Switching, Waiting/De-
lays, Motion/Handovers, Defects.

• LP02. Amplify Learning: : Soft-
ware development is a problem-
solving process that requires inten-
sive knowledge and where learning is
essential during the whole develop-
ment life-cycle. Learning includes a
better understanding of the customer
needs, architecture solutions, testing
strategies, and so forth.

• LP03. Decide as late as possible:
Software development is a process
that involves variability and uncer-
tainty. Just like the most economic
markets that face uncertainty, the
development team should consider
options and defer commitment until
the future is easier to predict. Thus,
the decision-making is based on facts
and not on speculation.

• LP04. Deliver as fast as possible:
Lean has a strong focus on short cy-
cle times, i.e. delivering a potentially

amount of features (determined by
the team) on a regular basis. This
helps the team to stay focused on
continuously adding value.

• LP05. Empower the team: When
equipped with adequate expertise
and leadership, empowered team will
make better technical and process
decisions than anyone can make for
them. Just like in lean manufactur-
ing, software teams use pull tech-
niques(i.e., an agreement to deliver
increasingly refined versions of work-
ing software) and local signalling
mechanisms (i.e., visible charts, daily
meetings, frequent integration, etc.)
so team members know what needs
to be done.

• LP06. Build integrity in: : This is
about to find and fix defects at the
moment they occur. Inspecting after
the fact, and queuing up defects to
be fixed at some time in the future,
isn’t as effective. This principle en-
compass to integrate early and often.
Finding defects during the final veri-
fication means that the development
process is defective.

• LP07. See the whole : When im-
proving the process of software de-
velopment the whole value-stream
needs to be considered end to end.
The focus should be on the overall
system performance rather than the
individual and specialized contribu-
tions, which is likely to result in sub-
optimization.

have and not a state of accomplishment. They can be implemented differently
using several methods and practices (see Section 2.2.3).

Based on the aforementioned discussion, we propose the following definition
of Agile Software Development which will be our reference in the remaining
of the document.

Definition 2.2 (Agile Software Development). A group of lightweight ap-
proaches to software development which apply a level of flexibility into the

31

2. Research Background

delivery of the finished product. They are iterative and incremental and fol-
low a set of values and principles, as expressed in the Agile Manifesto [Beck
et al., 2001].

2.2.2 Characteristics

The agile alliance manifesto provide a solid foundation of the agile movement
but more precise definitions were proposed to characterize what agility is.

[Lindvall et al., 2002] specify that the primary goal of agile software de-
velopment is fast delivery, i.e., reducing the process cycle time. This goal
would be realized through the following process characteristics: iterative (i.e.,
based on repetitive time-frames called iterations), incremental (i.e., each
new product release add business-value and is usable), self-organizing (i.e.,
the team members are empowered, they have the ability and authority to
take decisions) and emergent (i.e., each increment reduce the risks of failure
of the project).

From the practitioners point view, different characteristics can be identified.
For example, these can be found in [Beck and Andres, 2004] and [Highsmith,
2009]. We summarize them as follows: lightweight (i.e., the process contains
only what is needed to create value for the customer), efficient (i.e., the
process delivers a product with as less bugs as possible), low-risk (i.e., the
risks are identified and managed early in the life-cycle), reliable (i.e., team
members figure out ways to consistently achieve a given goal even though the
inputs vary dramatically), empirical (i.e., the process is actively improved
according to past experiences), fun-way (i.e., the team should enjoy the way
of working).

Regarding the aforementioned review, we suggest to summarize the essential
characteristics of agile methods as the following:

• Evolutionary,

• Lightweight,

• Adaptative,

• Emergent,

• Collaborative

32

2.2. Agile Software Development

2.2.2.1 Evolutionary

ASD methods are characterized by evolutionary delivery models. These
include Iterative and Incremental Development and Continuous Development
(a characteristic of Lean). Iterative and Incremental Development (IID)
(see Figure 2.12) was created as a response to inefficiencies and problems
found in the disciplined SDLC models explored in Section 2.1.3.1. The
basic idea behind this approach is to develop a software through repeated
cycles (iterations) and in smaller portions at a time (increments), so that
developers can learn from earlier parts or versions of the system. The
software problem will therefore be solved through successive approximations
of the solution. Therefore, Agile is said to be empirical, i.e., based on
successive experiences.

An iterative process indicates that the development is realized through
successive time-boxed cycles or iterations. During each iteration, a set of
defined activities are repeated.

An incremental process indicates that a smaller portion of the problem is
resolved at a time. The agile approach subdivide the specific system into
small subsystems. With each new release, the team implement new valuable
functionalities and deliver a fully tested and usable subsystem.

Figure 2.12.: The iterative and incremental development model

Usually, a maximum of functionalities are identified of the start of the
project. They are refined throughout iterations and are broken down and
built incrementally. Each set of functionalities passes through the design,
implementation and testing phases before their release. The product is
considered as finished when all functionalities are released and satisfy all the
requirements.

33

2. Research Background

2.2.2.2 Lightweight

Lightweight means that the agile process contains only what is needed to
create value for the customer. This implies minimizing the work to be done
in the development process (e.g., documentation, meetings, requirements
etc.) in order to increase efficiency.

This characteristic is about identifying and achieving what is “just barely
good enough or sufficient”. For example, agile methods tells as to think
about how much and which kinds of documents are needed and when they
need to be written (see V2 in Table 2.1). Therefore, agile teams usually
capture requirements at a high level and detail them just in time for each
functionality to be developed. The rationale for this is to minimize the
time spent on anything that does not actually form part of the working
software.

2.2.2.3 Adaptative

ASD methods assume that changes are inevitable. Thus, rather than spend-
ing efforts trying to reduce variability, an agile team should manage to handle
it efficiently. This characteristic implies that the process, requirements, plan-
ning, code and the design/architecture must be allowed to change to the
advantage of the customer. This is in accordance with the AP02 principle
(see Table 2.1). To achieve adaptability, agile methods actively involve users
so they establish, prioritize and validate requirements.

2.2.2.4 Emergent

Emergence means that the processes and product boundaries are recognized
during the project rather than predefined. The requirements emerges as
the project knowledge is updated thanks to the close collaboration with the
customer. The process emerges as the effectiveness of the work performed
and methods used is estimated. The quality of the product emerges from
the continuous handling of bugs and refactoring of code.

2.2.2.5 Collaborative

Collaboration simply means to work jointly rather than independently to
accomplish a task. This is an essential characteristic in all agile methods.
It implies four things : continuous feedback, self-organization, communi-
cation and motivation. Firstly, an agile team creates the environment for
continuous feedback. This especially includes the feedback to the business

34

2.2. Agile Software Development

representatives and the customer. Secondly, an agile team is self-organized
and empowered, i.e., the whole team is responsible for taking the decisions
and for commitment. Thirdly, communication is an important aspect for
achieving good collaboration. Face-to-face conversations and visual informa-
tive tools are encouraged. Finally, the team’s motivation should be retained
all-through the project life-cycle. Impediments should not derail the cre-
ative impulses of the team. Motivation is encouraged by partnership and
self-directness.

2.2.3 Approaches Overview

Several agile software development methods have been developed over the two
past decades. Most of them describe lightweight development process models
with few prescriptive guidance which make them flexible and applicable to
different agile software development projects.

However, some agile frameworks tend to be more prescriptive regarding
their implementation at an organizational level. These produce well-defined
process models with a perceived focus on control. We will refer to this
category of agile methods as hybrid agile-disciplined methods.

In this section, the following agile methods are selected based on the charac-
terization proposed in Section 2.2.2: eXtreme Programming (XP), Scrum,
Feature Driven Development (FDD), Agile Modeling, Devops, Lean Soft-
ware/kanban, RUP and DSDM atern.

2.2.3.1 Extreme Programming

EXtreme Programming (XP) is a popular agile method that aims to produce
higher quality software, and to provide greater working experience for the de-
velopment team in environments where requirements change frequently [Beck,
1999]. It relies on a set of commonsense development principles and practices
which were formalized and aligned to form a novel methodology. The word
‘extreme’ comes from taking these principles and practices to extreme levels.
XP is hence recognized as one of the most specific of the agile frameworks
regarding appropriate engineering practices for software development [Agile
Alliance, 2012].

As a type of ASD, it advocates frequent “releases” in short development
cycles, which are intended to introduce checkpoints at which the customer
requirements can be validated or adapted.

35

2. Research Background

Figure 2.13.: XP process

The life-cycle of XP (see Figure 2.13) consists of exploration phase and 4
repetitive phases: iteration planning, iteration, customer approval and release.
The exploration phase aims at understanding the project and describing
the desired results as a set of “user stories” (a high-level definition of
requirements, expressed in terms of business value and understandable by
the customers). During the exploration phase, the team conducts “spikes” on
any particular aspect of the project that seem to be risky, specifically on the
architecture of the product to be developed. Once the high-level boundaries
of the project are identified, the entire team gets together to create a release
plan that everyone feels is reasonable. Then the team launches into a series
of weekly iterations. At the beginning of each iteration, the team (including
the customer) gets together to decide which stories will be realized during
that week. Then the team breaks those stories into smaller tasks which can
be affected to individuals or pairs. At the end of the week, the team and
the customer review the state of the achievement and decide whether the
project should continue or be released.

XP recommends several engineering practices such as pair-programming,
refactoring, unit testing and collective ownership.

2.2.3.2 Scrum

Scrum [Schwaber, 1995] has emerged as one of the most popular agile
software development methods [VersionOne, 2017]. It provides an iterative
and incremental process framework that cuts through complexity by applying
simple mechanisms such as requirements privatization, continual feedback,
close collaboration, self-organization and activities time-boxing.

36

2.2. Agile Software Development

Scrum relies on an “inspect and adapt” process, i.e., the software is delivered
in increments called “sprints” (usually 2-4 weeks iterations) (see Figure 2.14).
Each sprint is required to deliver a potentially shippable product increment.
This means that at the end of each sprint, the team has to produce a coded,
tested and usable piece of software.

Figure 2.14.: Scrum process

Each sprint starts with a planning meeting and ends with a review of the
product and a sprint retrospective. A sprint planning is a time-boxed
meeting which could last up to 4 hours for a one-month sprint. It is
dedicated to develop detailed plans for the Sprint and during which the exact
functionalities to be implemented are discussed in details and decomposed
into small tasks. Similarly to XP, the functionalities are expressed in terms
of User Stories. The stakeholders of a project assist to this meeting to help
the Scrum team understand the complexity of the requirements. During
the sprints, the Scrum team meets daily for a 15-minutes stand-up meeting
to inform about the work states and potential impediments. At the end
of each sprint, the Scrum team organizes a review meeting to show the set
of work accomplished during the sprint. Right after the review, a sprint
retrospective is held to look for process improvement opportunities.

Scrum prescribes only 3 important roles, the product owner, the Scrum
Master and the Scrum Team. The product owner is the project’s key
stakeholder in charge of the business. He manages the project vision and
makes sure to share it with the team. He is responsible for prioritizing the
list of features for the product. The Scrum master is responsible for ensuring
a Scrum team applies the values and practices of Scrum. The Scrum Team
represents the cross-disciplinary people in charge of developing the product.
A Scrum team does not include any of the traditional software engineering
roles such as programmer, designer, tester or architect. Everyone on the
team works together to complete the tasks they have collectively committed
to complete within a sprint.

37

2. Research Background

2.2.3.3 Feature-Driven Development

Feature-Driven Development (FDD) [Palmer and Felsing, 2001] is a method
that applies the principle of Model-Driven Development (MDD) in the agile
way. Basically, the idea is to create “just barely good enough” models (see
Section 2.2.2.2) and to refine them each time a new client-valued functionality
(feature) is to be developed. The code is written based on the refinement of
the corresponding feature models.

The method consists of five basic phases, namely, the development of an
overall model, the building of a feature list, the planning by feature, the
designing by feature, and the building by feature (see Figure 2.15).

Figure 2.15.: FDD process

When the development of an overall model begins, the scope, context and
the requirements of the system are acknowledged [Palmer and Felsing, 2001].
The business stakeholders or domain experts conduct a meeting known as
a “domain walkthrough”, where they provide the team with a high-level
description of the domain. As a result, an overall domain model is established.
More detailed walkthroughs can be conducted to detail the different domain
areas.

Then, based on the resulting domain model(s) and the existing requirements
documentation, a comprehensive features list is build. Features should be
detailed enough to take less than two weeks to complete. Once this list is
completed, the next step is to produce the development plan. Based on the
features priorities and dependencies, feature sets are created and assigned
to feature teams. The features are assigned as classes to individuals (class
owners).

Then features are designed and build iteratively. A design package is created
for each feature. Detailed diagrams are created and the overall model is
refined. Next, the class and method structures are written or generated

38

2.2. Agile Software Development

and a design inspection is held. Each class owner code its set of classes.
After unit testing and successful code inspection, the completed feature is
integrated to the main build.

2.2.3.4 Agile Modeling

Agile Modeling (AM) is an agile method which similarly to FDD focuses on
the modeling and implementation phases. It implements the concept of Agile
Model Driven Development (AMDD) (see Figure 2.16 and Table 2.3) using
a collection of values, principles, and practices for modeling software.

The basic idea of AM is to consider that models only need to be good
enough to reach the next release. The method propose to start by an initial
envisioning phase, typically during the first week of a project, to identify
the scope of the system to be developed (high-level requirements modeling)
and a likely architecture for addressing it.

Figure 2.16.: Agile Modeling process

Then, similarly to any scrum
and xp, the team selects and
estimates the highest prior-
ity work to be developed dur-
ing the iteration. During the
iterations, the Just In Time
(JIT) Modeling practice is ap-
plied. This consists in organiz-
ing modeling sessions involv-
ing a few people to discuss an
issue while sketching on pa-
per or a whiteboard. This is
done whenever its needed and
only for few minutes. Since it
only focuses on the modeling
activities, AM is to be used
as a supplement to other agile
methods such Scrum, XP or FDD.

2.2.3.5 DevOps

DevOps [Httermann, 2012] (a clipped compound of “Development” and
“Operations”) is an agile method that integrates the development, deployment,
and IT operation processes in order to deliver value more frequently, rapidly
and reliably. It encompasses on a set of practices to improve the culture,
measurement, automation and collaboration between all the team members

39

2. Research Background

who are involved in creating, delivering, and monitoring software [Microsoft:
DEV212x, 2017].

DevOps implementation can include the definition of the series of tools (a
toolchain) used at various stages of the lifecycle (see Figure 2.17). The
DevOps process starts by a planning meeting which bring together the
business stakeholders, software engineers and IT operation professionals in
order to plan the important activities of the project and define the metrics
and indicators. Then they choose a small slice of full feature to develop
so they can see how it will be received by the customer. Then using a
continuous delivery pipeline, the operation team creates a script to configure
a new server, the testers provision the test environment using the same
script and the developers code the software. This is done iteratively until
the development of the whole features.

Figure 2.17.: DevOps process

2.2.3.6 Lean and Kanban

Lean software development [Poppendieck and Poppendieck, 2003] is a
practice-based method that implements the set of principles and values
presented in Table 2.2. Examples of the Lean practices (more commonly
called tools in the lean words) include: seeing waste, value stream mapping,
set-based development, pull systems queuing theory, cost of delay models,
refactoring and test-driven development.

One famous tool of Lean is Kanban which in Japanese means visual sign or
placard. It brings the concept of pull scheduling to enable the mechanism of
“just-in-time” to software development. Using Kanban, a software process
is perceived as a pipeline or workflow of feature requests passing through a
number of workstations or stages (e.g., analyze the requirements, develop
the code, test and deploy). This workflow is visualized using a kanban board
populated with features or user stories (see Figure 2.18). At each stage,
a Work In Prgress (WIP) limit can be defined. Usually, the velocity is

40

2.2. Agile Software Development

measured in terms of cycle times (i.e., the time that a features passes inside
the pipeline).

Figure 2.18.: An example of a kanban board

2.2.3.7 AUP and DAD

A lighter version of RUP (see Section 2.1.3.4) is the Agile Unified Process
(AUP) [Ambler, 2006] and its simpler open source version, Open Unified
Process (OpenUP) [Kroll and MacIsaac, 2006]. AUP applies a set of agile
practices such as Test Driven Development (TDD), Agile Modeling (AM)
(see Section 2.2.3.4) and refactoring. Recently, the AUP was superseded by
the Disciplined Agile Delivery (DAD) Framework [Ambler and Lines, 2012],
a a context-sensitive agile process decision framework.

DAD aims at guiding organizations in the implementation and tailoring of
agile methods in a more disciplined way. It recognizes that one process size
does not fit all situations and provides contextual advices regarding the
alternatives of agile solution delivery. It does not recommend a unique set
of practices but rather selects the most suitable from various agile methods
such as Scrum, XP, AUP, Kanban, Lean and several other methods.

2.2.3.8 DSDM Atern

DSDM (Dynamic Systems Development Method) Atern [DSDM Consortium,
2008] is an approach to project management and solution delivery that
embraces the principles of agile development with some discipline. It brings
together values from agile development (good communication, business
involvement, transparency) and from disciplined approaches (control and
quality focus).

41

2. Research Background

It proposes a process constituted of two sequential phases followed by three
iterative phases (see Figure 2.19): feasibility study, business study, functional
model iteration, design and build iteration and implementation iteration.
This process is supplemented with a framework of control with appropriate
guidance to ensure that the project manager is tracking and reporting the
right things, and doing so in a manner which involves all the appropriate
stakeholders.

Figure 2.19.: DSDM process

2.2.4 Software Quality Management

In general terms, emergent trends in quality management tend to move to
continuous and holistic (i.e., a matter of the whole organization) quality
assurance. This idea seems to have matured with the Total Quality Manage-
ment (TQM) approach [Kanji, 1990] which consists on the implementation
of organization-wide efforts to continuously improve its ability to deliver
high-quality products and services to customers. Quality is not only a
matter of a dedicated quality assurance team which will control the quality
of the software once the development is finished. Everyone’s continuous
commitment is essential to achieve it.

The agile perception of quality management falls within this perspective.
In fact, since agile teams incrementally deliver working software, SQA
activities are assumed to be engaged during each iteration, ensuring that
both functional and structural quality of the system are addressed on regular
basis. This is known as emergent quality or built-in quality [Poppendieck

42

2.2. Agile Software Development

and Poppendieck, 2003]. Moreover, agile teams embrace the “whole team”
or “cross-functional team” principle which implies that everyone on the team
is focused on the delivery of quality software. The notion of separating the
quality assurance team disappears entirely. Software developers, testers, and
quality-assurance personnel collaborate together on daily basis. Their roles
can be interchanged or merged.

An essential role for ensuring the system functional quality is the customer
itself. Quality in Agile is perceived as a “constantly moving target based on
the customer’s actual experience with the product and that can be measured
against his requirements (i.e., stated or unstated, conscious or merely sensed,
technically operational or entirely subjective)” [Feigenbaum, 1999].

Another essential characteristic of agile QA is taught by the first statement
of the agile manifesto (see Table 2.1) which states that those who embrace
agility values “individuals and interactions over processes and tools (V1)”.
This implies that the QA process should be kept as lightweight as possible.
Therefore, agile methods discourage the establishment of predefined quality
plans and rather prescribe to simply do whatever is necessary at any moment
to satisfy a customer’s requests. This include the implementation of a set
of practices such as refactoring, Test-Driven Development (TDD), Agile
Model Driven Development (AMDD), pair programming or continuous
integration [Ambler, 2005]. Tab. 2.3 gives an overview of some agile practices
inherently related to software quality enhancement.

Technical Debt is a core concept which best demonstrate agile QA. It is a
metaphor aiming to communicate about the need for refactoring the source
code and its architecture. The metaphor consists in comparing code quality
improvement tasks to financial debt: “Shipping first time code is like going
into debt. A little debt speeds development so long as it is paid back promptly
with a rewrite” [Cunningham, 1993]. The metaphor explains that sometimes
we need to develop rapidly and with few care about quality issues and that
we should later improve.

2.2.5 Software Process Improvement

When considering the relationship between agile software development and
SPI, there are one value and two principles in the agile manifesto (see
Table 2.1) that deserve attention: (V1) the valuing of the interaction between
individuals over processes, (AP11) the focus on simplicity and (AP12) the
principle that encourages regular feedback and adjustment of the team’s way
of working. These highlight the importance of continuous improvement in

43

2. Research Background

Table 2.3.: Overview of Agile quality assurance practices (adapted from [Am-
bler, 2005])

Practice Description

Refactoring The basic idea of refactoring is to make small changes
to existing source code in order to improve the design,
making it easier to understand and to modify. The
code behaviour should not be affected. Resulting
code is of higher quality.

Test-Driven Development
(TDD)

This practice combines Refactoring with Test First
Development (TFD) : Create a test, Run a test,
adjust the functional code to make it pass the new
test.

Agile Model-Driven Develop-
ment (AMDD)

The approach consists of an initial requirements en-
visioning to understand the scope and the business
domain followed by iterative model-driven devel-
opment. In each development iteration, the team
members perform Just-In-Time (JIT) model storm-
ing to quickly explore in detail a specific issue before
they implement it (see Figure 2.16).

Acceptance Testing An acceptance test is a formal description of the
behavior of a software product, generally expressed
as a business example or a usage scenario. They
generally complete functional specification. Usually
customers or domain experts are involved in the
creation of acceptance tests.

Pair-programming This practice consists of two developers sharing a
single workstation (one screen, keyboard and mouse
among the pair). The programmer at the keyboard
is usually called the “driver”, the other, also actively
involved in the programming task but focusing more
on overall direction is the “navigator”.

Continuous Integration This practice has two objectives: (1) minimize the
duration and effort required by each integration
episode (2) be able to deliver at any moment a
working version of the product, suitable for release.

On-site Customer This practice consists of having the customer rep-
resentative inside the development team, working
with them on clarifying the requirements.

an agile environment and suggest that the actions to improve the process
should be taken within ongoing projects by the practitioners themselves and

44

2.2. Agile Software Development

should be kept simple enough to not impede their interactions and effective
collaboration.

From the perspective of the agile methods, very few recommendations about
the process improvement endeavor are provided. In fact, most of the methods
(see Section 2.2.3) suggest a simple meeting usually called “retrospective”
or “reflection workshop” during which the improvement actions are decided.
Therefore, several practitioners and researchers argue that agile teams need
more support for conducting such improvement efficiently and systemati-
cally, instead of chaotically [Abbas et al., 2010; Salo, 2006; Ringstad et al.,
2011; Sidky, 2007].

For this purpose, a set of studies has questioned the applicability of the
traditional SPI frameworks in an agile environment. The prescriptive frame-
works or process maturity models (see Section 2.1.5.1), precisely CMMI, has
been particularly investigated to answer the following question: “How agile
processes could be merged with standard industrial process models without
impeding agility or undermining the organizational investment on maturing
their processes?” [Boehm and Turner, 2005].

Such studies reveal little that would prevent teams concerned by process
maturity appraisal from using agile methods. For example, [Anderson, 2005],
[Fritzsche and Keil, 2007] and [Turner and Jain, 2002] demonstrate a possible
level of agreement between CMMI and Agile and warn that some common
CMMI practices need to be adjusted or discarded since they contradict the
values and principles of agility. Consequently, it has bee shown that projects
that use agile methods with certain adjustments can achieve CMMI level 2 or
even 3. To achieve more agility with CMMI, [Glazer et al., 2008] argues that
the key is to consider the list of CMMI practices as advisory or indicative.
The organization is free to propose alternative practices and appropriate
evidence.

Many agile proponents such as [Williams and Cockburn, 2003] argue that
organizations using agility are less interested in standard process maturity
models. This may be explained by the fact that such models support the
ideology of creating a universal and repeatable software development process
whereas it is considered as defective in Agile.

The inductive frameworks (see Section 2.1.5.2) such as the QIP and the
IDEAL model are based on understanding the context and real needs of an
organization. Therefore, they may be considered as better candidates to dis-
cuss agile process improvement. Researches such as [Sidky, 2007] and
[Pikkarainen et al., 2005] provided a detailed discussion of how such models
can be implemented in an agile environment. They argue that such models

45

2. Research Background

are adapted for organizations seeking to implement a systematic approach
for managing their agile process improvement life-cycle.

Yet, two central differences between the traditional inductive SPI models
and agile SPI can be identified. Firstly, the origin of the improvement
goals is traditionally the organizational level. However, the improvement
initiatives in an agile project lies on the self-organizing team. Secondly,
the improvement goals are traditionally defined based on the knowledge
on finished projects while the immediate focus of process improvement
in agile is the ongoing project [Salo and Abrahamsson, 2005; Qumer and
Henderson-Sellers, 2008].

Regarding the previous discussion, we can summarize the underlying differ-
ences between the requirements of an SPI initiative in a disciplined vs. an
agile environment as shown in Table 2.4.

Firstly, the table shows that the ideologies of agile software development
emphasize the need for process adaptation. In Agile, the concept of universal
and repeatable processes is considered defective and it has been proposed
that every situation calls for a specific agile methodology [Boehm and Turner,
2003]. Secondly, the improvement actions should be decided within ongoing
projects and by the team. Such fundamental differences advocate the need to
define new SPI methods for the agile context. Such methods would support
organization in the process of systematic selection and deployment of new
agile practices and for adapting them to suit the organizational context.

Table 2.4.: Disciplined vs. Agile SPI (adapted from [Salo and Abrahamsson,
2007])

DSD and SPI ASD and SPI

Process definition Standardized, measurement-
based and Repeatable

Context-specific and
adaptable

Process focus Predictability and high-
assurance

Responsiveness and rapidity

Process control Organizational level Team level

Knowledge transfer Document-based Face-to-face communication

SPI focus Improvement of organiza-
tional processes (future
projects)

Continuous improvement of
daily working practices (on-
going projects)

46

2.3. Research Scope

2.3 Research Scope

In the previous two sections, we presented a contrasted view of discipline
and agility which we summarize in Table 2.5. Disciplined methods can be
classified as predictive, process-focused, plan-driven and document-driven
whereas agile methods can be classified as adaptive and people-oriented.
It is worth mentioning that this comparison was purposely pushed to the
extremes. In reality, several software development methods mix disciplined
and agile characteristics. The distance between both approaches is actually
a spectrum of various methods which balance rigor and flexibility at different
rates [Boehm and Turner, 2003].

Table 2.5.: Discipline vs Agility (adapted from [Nerur et al., 2005])
Disciplined Develop-
ment

Agile Development

Fundamental assumptions Systems are fully specifi-
able, predictable and can
be built through meticu-
lous and extensive planning

Systems are highly adapt-
able and can be built
through iterative cycles
by small teams using the
principles of continuous
improvement

Development model Linear life-cycle model Evolutionary-delivery
model

Management style Command and control Collaborative leadership

Knowledge management Explicit (document driven) Tacit (people oriented)

Communication Formal Informal

Quality Management Heavy planning and strict
control. Late and heavy
testing

Continuous control of re-
quirements, design and so-
lutions. Continuous testing

Process Management Standardized and
compliance-based

Light-weight and based on
the team experience

We also presented in Section 2.2.3 the main agile methods that have seen
extensive application in companies: Extreme Programming (XP) [Beck and
Andres, 2004], Scrum [Schwaber, 1995], Lean Software [Poppendieck, 2007],
DevOps and others. All these methods offer many tangible benefits over
disciplined methods (e.g., improved time-to-market, productivity, software
quality and time efficiency) which make them the actual appealing solution
for better software development. However, organizations and teams currently
face major obstacles when trying to apply agile methods out of the “sweet-
spot”, that is, the ideal conditions in which agile values are most likely to

47

2. Research Background

succeed [Nerur et al., 2005; Marchenko and Abrahamsson, 2008; Boehm and
Turner, 2005; Abrahamsson et al., 2009].

Typically, agile methods are found to be adapted for small, self-organizing
and collocated teams of motivated developers with at least one co-located
customer [Boehm and Turner, 2003]. Their implementation, although desir-
able, is not trivial in large-scale organizations with several business initiatives
and multiple projects being executed in parallel [Reifer et al., 2003; Nerur
et al., 2005]. Therefore, it has been suggested that organizations with
such complex software development settings need guidance approaches for
supporting them in the deployment of agile methods [Qumer, 2010; Sidky,
2007]. A number of practical scaling frameworks have been recently devel-
oped. The most prominent consist of the following: Scaled Agile Framework
(SAFe) [Leffingwell, 2016], Large Scale Scrum (LeSS) [Larman and Vodde,
2016], Disciplined Agile Delivery (DAD) [Ambler and Lines, 2012] and
the Spotify Scaling method [Kniberg and Ivarsson, 2012]. Each of these
frameworks draws from the “first-generation” agile and lean methods (see
Section 2.2.3) and extends them with a set of practices intended to help
large scale organizations in resolving challenges associated with team siz
e, customer involvement, project constraints, business case approval and
partners and end-users relationships [Alqudah and Razali, 2016].

More generally, several circumstances other than the complex settings of large-
scale organizations may influence the deployment of agile methods. Therefore,
it has been suggested that agile methods need to be “tailored” or “customized”
according to the specific context of their application [Cockburn, 2004a;
Boehm and Turner, 2003]. Agile methods customization is an important
topic that have been investigated in several research work [Qumer, 2010;
Sidky, 2007; Alqudah and Razali, 2017; Ayed et al., 2014, 2017; Simonofski
et al., 2018].

However, although this idea is commonly accepted, the way methods should
be customized is still unclear. Practitioners and researchers reported valuable
experience reports on agile methods customization [Fitzgerald et al., 2003;
Layman et al., 2006; Cao et al., 2004] but these are hardly exploitable.
Indeed, they are often based on the intuitive, intrinsic and non-quantified
knowledge of agile experts and most are too narrowly linked to a specific
situation. Hence, they cannot provide general and practical guidance that
can be systematically reused by other practitioners.

Regarding the aforementioned discussion, the following issue is formulated:

Main Identified Issue: What practical guidance can be pro-
vided to organizations and teams to systematically and impar-

48

2.3. Research Scope

tially support them in the implementation of agile methods to
their specific contexts?

As previously mentioned, this research question is closely linked to the issue
of agile methods customization. Moreover, three more issues are connected
to the question: agile methods adoption, assessment, improvement (see
Figure 2.20).

Figure 2.20.: Identified issues

In the reminder of this section, we provide details on each of these related
issues. Customization is highlighted since it is the main research issue we
target to investigate.

2.3.1 Customization

As previously mentioned, methods customization or tailoring refers to the
adaptation of software development methods to accommodate the specific
context. We report in the following some of the relevant topics of research
related to this issue:

• Customization approaches for Agile: The customization of soft-
ware methods is “commonplace in the vast majority of software devel-
opment projects and organizations” [Fitzgerald et al., 2006]. Empirical
studies such as [Fitzgerald, 2000] show that method use in software
practice is rather limited. Only few developers rigorously adhere to
method prescriptions. Rather, most tend to intuitively and sponta-
neously combine parts from different methods and discard all what
they judge unnecessary.

Several approaches such as “method engineering” (see Section 3.3) have
been proposed for guiding and automating methods customization
in disciplined process-supported environments (see Section 2.1.2.4
and Figure 2.1). However, although agile methods customization is
recognized as important, few guidance specific to the agile context

49

2. Research Background

has been proposed and therefore, more research is still to be done in
this area. The suitability of disciplined approaches for agile methods
customization should be questioned since too much discipline may lead
to what [Fitzgerald et al., 2006] call “goal displacement” where team
members “lose sight of the fact that their primary goal is the product”.

• Customization factors: Specific factors from the development con-
text (e.g., system criticality, requirements variability, leadership style,
team size, etc.) determine the suitability of a particular software
development method and influence the way it should be customized.
These characteristics are commonly known in literature as “contingency
factors” or “tailoring criteria”. Research studies on this aspect of
agile methods customization target to answer the following questions:
What are the relevant criteria to be considered in the customization
of agile methods? What are dependencies between different criteria
and how should certain criteria influence the customization of agile
methods? [Kalus and Kuhrmann, 2013a; Campanelli, 2016].

• Customization knowledge: Another topic of interest concerns the
capture of the customization knowledge, that is, the implications do
the customization factors have. Systematic approaches to customiza-
tion usually store this knowledge in the form of guidelines or actions
stored as a predefined catalog of customization knowledge [Kalus and
Kuhrmann, 2013b; Patel et al., 2004]. Several questions should drive
the constitution of such a catalog: What relevant information should
be provided? How to structure this information? Who is responsible
of creating and evolving the catalog? These questions also need to be
considered in the design of a systematic approach for agile methods
customization.

2.3.2 Adoption

Adopting agile software development methods is a wide and complex organi-
zational change that usually impacts several aspects of the organization (e.g.,
its structure, culture, management practices, produced artifacts, technologies
in use, etc.).

Software organizations face several issues related to agility adoption. These
can be synthesized as follows:

• Readiness to adopt agile methods: Understanding the readiness
of organizations and individuals (i.e, ability and readability to engage
with the agile philosophy) is crucial to minimize the adoption risks and

50

2.3. Research Scope

avoid failure. An organization has to be aware of the blocking factors
so that an enlightened decision on whether or not to proceed with ag-
ile adoption can be made. Moreover, it’s crucial to carefully study
the transformation strategies.

This question has been studied in several research work. In particular,
generic and systematic models to assess the readiness of organizations
to adopt agile methods have been proposed [Boehm and Turner, 2003;
Sidky, 2007; Nerur et al., 2005]. Such models undeniably provide
valuable insights regarding the risks of adopting agile methods in
certain circumstances, but yet still neglected. Indeed, regarding the
growing pressure to embrace agility, several organizations decide to
move to agile software development without much consideration.

• Effective and Efficient implementation of agile practices: An-
other critical issue to be considered is the effectiveness (i.e., doing the
right things) and the efficiency (i.e., doing things right) of the adopted
agile methods.

Indeed, experience shows that agile practices are often superficially
understood and misapplied. [Gregory et al., 2015; Simonofski et al.,
2018] refers to this challenge as “Shallow Adoption” where methods are
followed mechanically without deep knowledge. This may be explained
by the following:

1. the non-prescriptive nature of agile methods makes them open to
different interpretations,

2. the key information on agile practices is limited, unstructured
and scattered which is highly confusing,

3. the information on agile experiences may be misleading since
usually more success stories than failures are available, and

4. the terminologies regarding the key concepts of agile software
development is often confusing: usually each method uses its own
terminology, thus, two different terms may designate the same
practice. (see Section 2.2.3).

2.3.3 Assessment

Once an agile process is implemented, its capability to satisfy the quality goals
and eventually its maturity should be assessed. As discussed in Section 2.2.5,
agile methods include few process assessment and improvement mechanisms

51

2. Research Background

which are purposely made lightweight. Thus, the underlying challenges are
often reported in the agile literature:

• Quality assessment: There seems to be a general feeling in the agile
community that if you follow thoroughly all the practices associated
with your chosen method then by definition you are delivering quality
(see Section 2.2.4. Some practitioners take this hypothesis for granted
without real investigation of the question. Several research studies
investigated the question but the topic still controversial between those
who state that agile practices not necessarily impacts the quality of
systems and those who report undeniable benefits.

Moreover, the relationship between the agile process quality and the
resulted software product quality is not straightforward and often
depends on the specific context of the project and organization. In
fact, one agile method may lead to success when applied to a particular
project and to failure under different circumstances.

• Agility assessment: Several research work propose to empirically
assess the suitability of an existing or an about-to-be-adopted method-
ology using questionnaires or specific metrics. Many of the assessment
approaches evaluate methods with regards to their respect to agile
principles and values and identify accordingly an agile capability or
maturity level (Similarly to the CMMI (see Section 2.1.5.1)).

For example, [Qumer, 2010] (see Section 3.3.1.1) proposes an agility
measurement index intended to be used by agile consultants to de-
termine the degree of agility of individual practices (lower levels),
methods, teams or organizations (upper levels). According to the
obtained agility score, a capability level (from basic to advanced) is
determined.

Also, several self-assessment tools proposed by practitioners, typically
agile consultants, can be found in literature 3.

2.3.4 Improvement

We argued in Section 2.2.5, that once adopted, agile methods require on-
going sustain and improvement. However, methods for supporting teams
and organizations in doing so are lacking. This issue is explained in the
following:

3https://www.benlinders.com/tools/agile-self-assessments/

52

https://www.benlinders.com/tools/agile-self-assessments/

2.4. Summary

• SPI models for Agile: In Section 2.2.5, we discussed the applicability
of the traditional SPI models in an agile environment and argued the
need to define new SPI methods for the agile context. However,
few research on this topic can been found in literature [Salo, 2006;
Sidky, 2007; Ringstad et al., 2011]. Several questions still need to be
investigated: How to efficiently improve teamwork in agile software
development? How to integrate the agile SPI activities of individual
project teams with traditional organizational SPI activities?

2.4 Summary

In this chapter, we provided a comparison between disciplined and agile
software developement and argued the benefits of balancing both approaches
and situationally implementing agility.

The terminology of discipline is adopted from [Boehm and Turner, 2003]. It
refers to a systematic engineering approach to software that carefully defines
repeatable and manageable processes. Discipline implies a high concern of
completeness of the documentation and plans so that thorough verification of
each development step can be accomplished after the fact. In the contrary, the
agile approach promise to be more lightweight by valuing close collaboration,
working software, changeability and customer satisfaction.

The chapter also formulates the main research problem that we investigate
in this research, i.e., how to assist organizations and teams through the situ-
ational implementation of agile methods? Chapter 3 presents and classifies
the existing guiding approaches that target this issue.

53

Chapter 3

Related Work and Research Questions

We discussed in Chapter 2 how agile software development meet some current
expectations of modern software organizations. However, implementing agile
methods is not straightforward. Organizations face major challenges during
the adoption, tailoring, assessment and improvement of agile methods (see
Section 2.3). Consequently, they ask for guidance and assistance on how
to implement agility in their particular cases.

In this chapter, we review and classify the existing research initiatives for
guiding the situational implementation of agile methods. The classification is
done regarding the techniques used: maturity-based approaches, contingency
factor approaches, method engineering approaches and experience-based
approaches. Since no such categorization can be found in literature (only
the contingency factor and method engineering approaches are reported),
this chapter may serve as a starting point for researchers investigating the
problematic of situational agile methods implementation.

The existing approaches are presented in Sections 3.1, 3.2, 3.3 and 3.4. Their
strengths and weaknesses are discussed in the light of the agile fundamental
principles and values shown in Table 2.1 and the agile SPI requirements
shown in Table 2.4.

In Section 3.5, we provide a synthesis on the identified approaches, discuss
the challenges that are still to be solved (which are not yet well investigated in
literature) and discuss the opportunity of reusing and integrating techniques
from disciplined process tailoring and improvement, namely SME and QIP.

Finally, regarding the identified research gaps, we formulate in Section 3.5
the thesis research questions.

55

3. Related Work and Research Questions

3.1 Maturity-based Approaches

A maturity model presents “an evolutionary progress in the demonstration
of a specific ability or in the accomplishment of a target from an initial
to a desired or normally occurring end stage” [Leppänen, 2013]. There
exist several maturity models for improving the organizational software
development process in a prescriptive way (see Section 2.1.5.1). These are
intended to institutionalize a collection of predefined practices and to control
their consistent implementation so as to increase the profitability of the
concerned organization or team and to ensure a certain level of maturity as
compared to competitors.

As explained in Section 2.2.5, implementing maturity models in an agile
environment is challenging since they may impede responsiveness, rapidity,
team-focus and continuous improvement of the team’s daily practices.

Figure 3.1.: Maturity-based approach

However, with the ever growing interest towards agile methods, several pro-
posals for agile process maturity models came out in the last decade [Buglione,
2011]. Such models are intended to assess the level of adoption and maturity
of agile practices/values inside an organization/team and to guide the setting
up of agile practices in an organization/team following a structured and
progressive approach (see Figure 3.1). These are discussed in the following
section.

3.1.1 Existing Research

The agile maturity models are used to : (1) assess the current state of agility
adoption (capability determination), (2) increase the adoption level, (3)

56

3.1. Maturity-based Approaches

support the progressive implementation of practices, and (4) further the
deployment of agile values and principles.

In the following sections, we report some of the most influential maturity-
based approaches.

3.1.1.1 Structured Framework to Agile Adoption

The agile adoption framework [Sidky, 2007] (shown in Figure 3.2) is a struc-
tured and repeatable approach designed to guide and assist agile adoption
efforts. Its main components consist in a 4-stages process of adoption steps
and a measurement index (see Figure 3.2).

Figure 3.2.: The Agile adoption framework

The first stage of the adoption process aims at verifying whether organizations
are ready to adopt agile software development. The second and third stages
uses the Sidky Agile Measurement Index (SAMI) to assess the project’s and
organizational agility. The last stage suggests a final set of Agile practices for
organizations to adopt by reconciling any differences between the targeted
Agile Levels identified in Stage 2 and Stage 3.

57

3. Related Work and Research Questions

The SAMI consists on a scale to be used by agile coaches to determine
the agile potential of a project or organization (i.e., the degree to which
that entity can adopt agile practices). The higher the agility level, the
more practices can the organization adopt. The approach defines 5 levels
of agility and each introduces an important quality or characteristic (e.g.,
collaboration) into the organization to help it become more agile. A set of
agile practices lead to the realization of the respective level quality.

The Agile adoption framework provides structured steps to assist organiza-
tions increasing their agility level progressively. A fundamental issue with
this approach is that the agility level is determined by the ability of an
organization to adopt agile practices rather than its ability to implement the
values and principles of the Agile manifesto. Several practitioners inform us
about this problem and argue that an organization may be ready to select
some agile practices or configure them without having a real agile mindset.

Another critical limitation of the framework is that it does not propose
means to “configure” practices. Rather, for each level, it suggests a set of
practices that might be suitable without any configuration. Additionally, it
follows a predefined roadmap in suggesting agile practices preventing teams
from controlling their own way of working.

3.1.1.2 Agile Maturity Model (AMM)

The Agile Maturity Model (AMM) [Patel and Ramachandran, 2009] is a
SPI model for agile software development teams. It proposes a staged
representation which shows how the agile processes should mature from
an initial or ad-hoc level to a level showing continuous improvement based
on the agile principles and practices. The model defines 5 maturity levels
similar to those defined by the [CMMI, 2006]: initial, explored, defined,
improved and sustained. Each maturity level is decomposed into a set of Key
Process Areas (KPAs) that indicate the areas an agile team should focus
on to improve. It also proposes assessment questionnaires in order to assess
the team capability scores for each KPA and to recommend improvements
based on best agile practices knowledge.

The model also suggests a simple questionnaire to evaluate the suitability of
agile methods to the project context. This assessment brings three possible
results based on the answers supplied by the team: (1) ready to adopt Agile,
(2) ready to adopt Agile but with improvement of recommended areas, and
(3) not ready for Agile (see figure 3.3).

The AMM has the advantage of being team-focused, clear and understandable.
It is designed to enable new agile teams to estimate easily whether agile

58

3.1. Maturity-based Approaches

Figure 3.3.: The Agile Maturity Model [Patel and Ramachandran, 2009]

methods will fulfill their needs and to help them improve their practices
based on a a simple staged maturity model. The main motivation for the
staged representation of improvement models, is to allow for comparison
between organizations or teams.

However, the fundamental limitation its inflexibility in prioritizing process
improvements areas. In fact, the model proposes a predefined improvement
path which may not be feasible in practice. Moreover, the team is not involved
intimately in the overall improvement process which may compromise team
self-organization and empowerment. Another limitation of the model resides
in the recommendation of best practices without considering if they are
feasible or not. The possible configuration of the recommended practices is
also not considered.

3.1.1.3 Agility Adoption and Improvement Model (AAIM)

The Agility Adoption and Improvement Model (AAIM) [Qumer et al., 2007]
is a generic agile maturity model proposed as part of the Agile Software
Solution Framework (ASSF) (see Section 3.1). AAIM is to be used at an

59

3. Related Work and Research Questions

organizational-level as a gradual road map for leveraging the implementation
of agile values and principles.

The model proposes 6 agile maturity levels (from level 1 to level 6), organized
into three blocks: agile-prompt, agile-crux and agile-apex. The agile-prompt
introduces level 1: agile infancy. The agile-crux consists of the core of the
AAIM levels, level 2: agile initial, level 3: agile realization and level 4: agile
value. Finally, the agile-apex block presents level 5: agile smart and level 6:
agile progress (see Figure 3.4).

At each block, the degree of agility of a software development process is
measured quantitatively by using an agility measurement index known as
the 4-DAT [A.Qumer and Henderson-Sellers, 2007] (see Section 3.1). Each
stage specifies goals that must be achieved to attain a particular agility value.
The relevant practices to be incorporated to the method can be derived from
the current or targeted maturity level.

Figure 3.4.: The Agility Adoption and Improvement Model [Qumer et al.,
2007]

The model results from an ethnography study of several industrial case
studies on the adoption and assessment of agile methods and from the
feedback of both researchers and practitioners. However, its relevance,
specifically at the team level, still have to be demonstrated. In fact, the

60

3.2. Contingency Factor Approaches

model informs about a set of goals to achieve at each level without providing
practical guidelines on how to do so.

3.1.2 Limitations

The maturity-approaches presented in Section 3.1.1 and others such as the
ThoughWorks Agile Maturity Model [Humble and Russell, 2009] and the
Scrum Maturity Model (SMM) [Yin et al., 2011], propose CMMI-staged
like models for maturing agility in organizations (see Section 2.1.5.1). In
other terms, they all provide organizations with a predefined and proved
improvement paths and summarize agility implementation in a simple form:
a single maturity-level rating.

Such models are found to be very disciplined and unadapted for agile
environments [Qumer, 2010]. Indeed, as explained in Section 2.2.5, Agile SPI
models should focus on the continuous improvement of daily work practices
of the team. However, these maturity-based models rely on predefined
introduction of practices, preventing teams from controlling their own way
of working. We argue that a goal-oriented continuous model (inspired by
the CMMI continuous representation) to be used by teams would be much
more adapted for agile methods. However, to our knowledge, few and yet
immature research initiatives such as [Packlick, 2007] proposed this kind of
maturity models.

3.2 Contingency Factor Approaches

The contingency factor approaches, also known as situational approaches,
is inspired by a management theory that determines the most appropri-
ate organizational structure or design (e.g., the management style) based
on environmental circumstances. The approach basically describes causal
relationships between a collection of independent contingency variables char-
acterizing the organizational specific situation and a set of response variables
representing the organizational or managerial actions taken in response.

In other terms, it represents the ‘if and then’ approach to management where
‘if’ represents the independent variable characterizing a specific situation
and ‘then’ represents the dependent organizational action to be taken in
that situation. It assumes that the organizational effectiveness depends
on the appropriate matching of contingency factors with organizational
designs [Zeithaml et al., 1988].

61

3. Related Work and Research Questions

Similarly, the contingency factor approach to software development methods
suggests that specific factors from the development context (e.g., system
criticality, requirements uncertainty level, leadership style, etc.) should
be used to identify the most appropriate development method. Based on
contingency factors, the most appropriate method can be selected from
those available on the market, in the published literature or in a portfolio of
organizational methods (see Figure 3.5).

Figure 3.5.: Contingency factor approach

Several contingency factor approaches has been proposed to guide organiza-
tions through the selection of suitable agile methods and practices. These
are discussed in the following section.

3.2.1 Existing Research

Several guidance approaches relying on the principle of contingency factors
have been proposed. They can be classified in two sets according to their
purpose of use: agile adoption (i.e., verifying the suitability of agile methods)
and agile tailoring (i.e., adapting existing methods and practices to make
them feasible under specific conditions). These two sets of existing studies
are detailed in the following sections.

3.2.1.1 Contingency approaches for agile adoption

Research approaches aiming to assess the suitability of agile methods have
concluded that there exist critical contingency factors influencing the decision
to select agile or plan-driven methods in a particular project situation.

In an influential research, [Boehm and Turner, 2003] described five critical
factors: the project’s size, criticality, dynamism, personnel, and culture. For

62

3.2. Contingency Factor Approaches

Figure 3.6.: [Boehm and Turner, 2003] approach

example, the approach suggests that agile development is well-matched for
small products and teams where people feel empowered. By rating a project
along each of the five factors and visualizing them in a radar chart as shown
in Figure 3.6, one can determine the most suitable development approach:
agile or plan-driven. If all the ratings are near to the center, an agile method
is suggested and if they are near the periphery, a plan-driven approach
would be more convenient. Furthermore, the approach warns about the
risks of adopting agile or plan-driven in a particular situation and provide
additional material on how such risks can be managed by balancing agility
and discipline.

Similar research studies and industrial initiatives have identified more factors
to assess the suitability of agile methods [Ahimbisibwe et al., 2015; Nerur
et al., 2005; Khan and Beg, 2013; Griffiths, 2007].

There also exist few formal approaches that tackled the problem of assessing
the suitability of agile methods based on contingency factors. For example,
[Mikulėnas and Butleris, 2010] proposes an approach for evaluating the suit-
ability of agile methods using an Analytic Hierarchy Process (AHP) [Saaty,
1988].

3.2.1.2 Contingency approaches for agile tailoring

There exist valuable studies that investigate the contingency factors influ-
encing agile methods adaptation or tailoring [Kalus and Kuhrmann, 2013a;

63

3. Related Work and Research Questions

Campanelli, 2016; Alqudah and Razali, 2017]. Usually, this studies rely
on authors own expertise or on the review of experts’ knowledge. The
common research methodology consists in: (1) reviewing the previous work
to systematically identify the crucial factors and (2) possibly conducting an
additional survey and a multivariate factor analysis to keep only relevant
factors.

The drawback of such studies is that they identify an isolated set of contin-
gency factors without necessarily providing answers on how to exploit them
in practice.

More practical contingency factor approaches provide precise guidance on
which methods and practices are suitable for a specific context. For example,
[Cockburn, 2004b] which introduces the Crystal agile family of methods
suggests to instantiate the characteristics of these methods based on two
contingency factors: system criticality and team size. The approach proposes
a set of configured methods from which project managers can choose (see
Figure 3.7).

Figure 3.7.: Crystal Family of agile methods [Cockburn, 2004b]

Another practical approach is proposed by [Saleh, 2013]. The approach
comes up with a model that supports the selection of agile practices suitable
for developing a given software project. In order to do so, the model brings
together contingency factors and data mining techniques.

Firstly, using the k-means method and the Euclidian distance measurement,
the research suggests to form clusters of agile practices in terms of their
support to certain abilities (e.g., support of team distribution, large iterations,

64

3.2. Contingency Factor Approaches

acceptance testing, etc.). The practices belonging to the same cluster are
considered as comparable and practices from different clusters are considered
as complementary. Secondly, the approach is supplemented by a cost function
to provide the development team with feasible information about the selected
practices: learning difficulty level, adoption difficulty level and tools to be
used. Finally, the approach uses a rule-based decision system on top of the
cost function to provide the team with recommendations. The inputs of this
system are the project’s contingency factors and the sets of practices. The
output consists in a list of recommended agile practices (see Figure 3.8).

A similar approach is proposed in [El-Said et al., 2009]. It proposes a
mathematical model to act as a tailoring tool relying on fuzzy quantification
of experienced agile methods.

The idea of providing agile teams with practical guidance for agile process
configuration using contingency factors has also been discussed in [Kruchten,
2013] which proposes eight key contextual factors. The study concludes
that it would be interesting for future research to provide an agile team
with a kind of recommending system: “a tool to which we would provide
values [of the contingency factors], that would give an indication of which
practices are usable, which are not, which would require adaptation or special
consideration, as the starting point for a process configuration’ ’. This idea
was considered as a particularly interesting lead for solution for our research
work (see Section 3.5).

3.2.2 Limitations

According to [Zeithaml et al., 1988], the main challenges of the contingency
factor research consist in:

• identifying the critical contingency variables that distinguish between
development contexts,

• grouping similar contexts based on these contingency variables, and

• determining the most effective development method in each major
group.

Although the contingency factor approaches presented earlier met these chal-
lenges, they are still criticized because of their deductive nature [Fitzgerald
et al., 2006]. Indeed, the contingency factor approach preconfigures the
customization decisions and limits the set of methods. The team members
have no control on the customization process, i.e., they only should be able
to understand and execute the recommended method or practices.

65

3. Related Work and Research Questions

Figure 3.8.: [Saleh, 2013] approach

Another fundamental issue with the contingency factor approach in practice
is that “an organization is expected to have a range of methods available to de-
velopers who are expected to be familiar with each and merely choose the most
appropriate one depending on the contingencies of the situation” [Fitzgerald
et al., 2003]. In practice, such an expectation is not realistic since close
familiarity with even one method is not at all common among developers.

3.3 Method Engineering Approaches

The need for systematic and standardized techniques to select or construct
situation-specific methods has led to the emergence of the so-called Method
Engineering (ME) approaches. ME can be defined as “the engineering
discipline to design, construct and adapt methods, techniques and tools for
the development of information systems” [Brinkkemper, 1996].

A core theme of this discipline is Situational Method Engineering (SME),
which aims at designing development methods tuned to the situation of the

66

3.3. Method Engineering Approaches

Figure 3.9.: Method Engineering Approach [Brinkkemper, 1996]

project and the organization at hand. Designing a situation-specific method
is time-consuming and costly. Hence, it is not efficient to build situation
specific methods from scratch. Rather, a project-specific method is created
by selecting, tailoring and assembling appropriate method building blocks.
These building blocks are called fragments or chunks and are stored and
retrievable from a so-called method base [Harmsen et al., 1994]. Usually,
standardized metamodeling constitutes the preferred specification formalism
for method fragments. The rationale of using metamodels is to ensure
an objective and unbiased description of method fragments and to allow
methods comparison in a sound and scientifically verifiable way [Brinkkemper,
1996].

The building blocks are assembled into a situational method using the
configuration process depicted in Figure 3.9. The starting point of this
process is the evolving project environment which can be characterized
using a set of contingency factors, such as the project constraints, the
technical expertise of the development team, the managerial model and the
organizational structure. These factors are input of the process of selecting
the appropriate method fragments from the method base. The set of selected
fragments are then assembled into a consistent method regarding a set of
rules and constraints. This step allows to remove inconsistencies regarding

67

3. Related Work and Research Questions

fragments granularity, arrangement (e.g., how fragments are sequenced) and
dependencies.

ME approaches have been used for constructing appropriate agile methods.
We explore the existing research of tailoring agile methods using method
engineering techniques in the following section.

3.3.1 Existing Research

In a systematic literature review, [Campanelli, 2016] state that method
engineering is a primary choice regarding agile methods tailoring. This
may be explained by the fact that method engineering is an established
research area. Specifically, ME techniques are used in disciplined software
development environments to help organizations tailor down their standard
methods to make them project-specific (see Section 2.1.2.4).

The applicability of such techniques to adapt agile methods and/or to enable
situation-specific selection of agile practices has been questioned in a number
of research studies. However, we were able to identify only few mature
approaches which consider the distinguishing features of agile methods.
These are discussed in the following sections.

3.3.1.1 Agile Software Solution Framework (ASSF)

The ASSF is designed to assist organizations in assessing the degree of
agility they require and in tailoring and improving their agile or hybrid
methods [Qumer, 2010]. To do so, the framework relies describes a theoretical
toolkit that implements the paradigm of assembly-based method engineering.
More precisely, it describes the following components (see Figure 3.10):

• Knowledge Base: the component that provides means for the construc-
tion of method fragments, for example using the standard [ISO/IEC
24744, 2007] metamodel (see Section 6.2.2). Basically, the fragments
contain basic knowledge of software methods: people, tools, process
and product features. They also encompass additional features such
as agility degree, abstraction level, business value, business policy,
business rules and legal aspects. For each agile project, the agile team,
with the help of an agile coach, may select appropriate agile fragments
from the knowledge base.

• Process Composer: the tool that allows to compose the fragments into
a consistent method

68

3.3. Method Engineering Approaches

• Agility Calculator (also known as 4-DAT analysis tool) [A.Qumer and
Henderson-Sellers, 2007]: the component is designed to measure the
degree of agility of either a process fragment or the whole composed
process. It examines software methods from four dimensions: method
scope, agility characterization (with 5 key attributes: flexibility, speed,
leanness, learning and responsiveness), characterization of agile values
(based on those proposed in the agile manifesto [Beck et al., 2001]) and
software process characterization. The agility degree of practices and
processes is evaluated quantitatively and qualitatively. In both cases,
this characterization relies on experts judgment, i.e., “the decision-
makers need to include their own, often subjective, weightings to any
evaluation of the most appropriate agile method [or practice]” [Qumer
and Henderson-Sellers, 2008]

• Knowledge Transformer: the component that transforms the knowledge
about method fragments to a usable format so they can be published
or visualized.

Figure 3.10.: The main components of the ASSF [Qumer and Henderson-
Sellers, 2008]

The ASSF also include maturity-based reasoning (see Section 3.1). In fact, it
suggests to select the relevant agile components based on an Agility Adoption
and Improvement Model (AAIM) [Qumer et al., 2007]. This means that
the relevant agile parts and practices are incorporated to the method to be

69

3. Related Work and Research Questions

followed based on the current or targeted maturity level of an organization
or team.

The ASSF is highly prescriptive, i.e., it describes a high-level systematic
approach to assist organizations, and managers through the effort of agility
adoption. For example, it does not provide a definite formalism to structure
the knowledge base. Rather it suggests to reuse one of the existing meta-
models and provides generic guidelines about the elements that should be
added to document relevant agile fragments. The suitability or applicability
of such metamodels in an agile environment is not really questioned.

The definition of agility in this framework is also questionable, specifically
when it is used to measure the agility of individual practices. In fact, it’s
arguable that a low or high degree of agility of a unique practice is not
necessarily informative since the agility of an agile method or process is
achieved by the synergy and harmonization of several practices [Fitzgerald
et al., 2006].

For example, the agility degree of the XP practice “sustainable pace” (pre-
viously known as “40h-week”) scores badly (one-degree of agility out of
the 5 identified by the framework) [Qumer and Henderson-Sellers, 2006].
However, the practice is heavily stressed by XP advocates because several
studies show that during overtime, a drop in cognitive abilities may result
in increasing mistakes and thus in accumulating technical debt. On the
contrary, a sustainable pace may result in better quality and better customer
satisfaction [Mann and Maurer, 2005]. Regarding the 4-DAT evaluation of
sustainable pace, it may seem not very interesting to an agile team to comply
to that practice notwithstanding that it has such impacts on quality.

3.3.1.2 Partial Agile Methods Adaptation Framework (PAMAk)

Few process metamodels has been described in the literature to support
agile methods adaptation. Actually, most of the existing approaches that
rely on method engineering do not specifically define a metamodel suitable
for agile methods. rather reuse the existing process metamodels as proposed
by the ASSF (see Section 3.3.1.1).

The PAMAk framework describes a formal approach for partial agile methods
adaptation [Mikulėnas et al., 2011]. It defines a specific metamodel that
reuses some features from existing process metamodels and integrates con-
cepts which are directly or indirectly related to agile suitability assessment or
adaptation. Using this metamodel, it is possible to decompose agile methods
into elements or fragments. By composing, merging or generalizing these
fragments, one can define new composite patterns. These new patterns and

70

3.3. Method Engineering Approaches

the basic fragments can then be selected and coupled to construct a suitable
agile method to be implemented in a specific context (see Figure 3.11). The
elements of the metamodel can be of different abstraction levels and be
related to agility requirements or specific application areas.

Figure 3.11.: Overview of the PAMAk Framework

The added value of the proposed metamodel resides in such concepts as
agility requirements, levels of element adaptation, application areas and
prioritization criteria. These are to be used to facilitate decision making
when building an agile implementation model.

From the end user’s point of view, the framework facilitates the process of
element selection. For example, when the project manager identifies the
need to improve application areas such as “code quality”, the framework
would suggest corresponding elements such as “Test Driven Development”.
However, the definition of this decision mechanism is unclear. It is not
enabled explicitly using defined selection rules, it is rather assumed by
the framework user regarding the existing relations between the elements.

71

3. Related Work and Research Questions

Furthermore, the framework does not enable mechanisms for configuring
practices which are presumed as unsuitable.

3.3.2 Limitations

Contingency factor and ME approaches are somehow comparable. In fact,
contingency factors are essential in both approaches. In the first case, the
contingency factors are used to select a preconfigured method from an
available library. In the second case, a new method is engineered from the
ground up using existing method fragments [Brinkkemper, 1996].

However, while agile ME approaches resolve the problem of methods pre-
configuration, they still not grant the team members with enough process
control. Indeed, in most of the agile ME approaches, it is left to the judgment
of a method engineer to ascertain whether the agile method fragment is
appropriate or not, perhaps with the help of a decision-making tool [Qumer
and Henderson-Sellers, 2006]. When the tailoring of agile methods is done
this way, developers lose control on their own way of working and learn little
about each tailoring effort as they progress from one project to the next.
This leads to a decrease of process lightness and to a lack of capitalization
on improvement initiatives conducted at the project level.

This challenge has been discussed in [Conboy and Fitzgerald, 2010] which
suggest that the involvement of all developers in the decision of implementing
and tailoring an agile method would be beneficial. In particular, it would help
to manage the potential negative consequences of introducing non-desirable
practices (e.g., resistance to change, team frustration, etc.).

However, in order to be able to involve the team in the process of engineering
a suitable method, it is critical to ensure the familiarity of developers with
the selected method and the alternative agile methods and fragments that
could eventually be used. It is also essential to ensure that the developers
have sufficient knowledge about informed methods tailoring, i.e., that they
are able to pursue an unbiased and informed decision process.

Another drawback of such approaches is that it is usually unclear whether
they rely on a top-down or bottom-up assembly process (see Section 6.1.3).
The two approaches describes different strategies on how to tackle the
construction of a suitable method. When a top-down approach is used, a
method outline or skeleton supplemented with some tailoring guidelines is
defined. Then a number of fragments is chosen and added to the situational
method. The choice of the method outline and the guidelines limits the
number of possible fragments to be inserted. When a bottom-up assembly

72

3.4. Experience-based Approaches

approach is used, a situational agile method is built block-by-block. The
team would start form small to big. The final method is obtained after a
number of increments.

Additionally, most of the proposed agile method engineering approaches
suggest to meticulously document an appropriate agile method model with-
out questioning the utility of having such a model for the development
team. They also rely on the traditional method engineering languages and
metamodels, without questioning their adaptability in an agile environment.
Traditional method engineering metamodels are very prescriptive. They
provide static and operational semantics defined in terms of the abstract
syntax.

3.4 Experience-based Approaches

The overwhelming majority of empirical studies on agile methods deployment
are single or multiple-case studies which consist in in-depth and detailed
examination of a specific situation over a period of time [Fitzgerald et al.,
2003; Cao et al., 2004; Layman et al., 2004]. These studies have the advantage
of being inspiring since they directly report the practitioners knowledge and
experience.

However, [Dybå and Dingsøyr, 2008] argue that a major challenge consists
in increasing their quality in terms of:

• rigor : do the studies rely on a thorough and appropriate research
methods?,

• credibility: are the findings well-presented and meaningful?, and

• relevance: how useful are the findings to the software industry?.

Specifically, the studies are found to lack of credibility since the customization
decisions are reported in a narrative way and are based on opinions and
intuitive reasonings. Also, the strength of evidence is often found to be very
low since findings are presented as very specific to a particular situation at
a particular time. Consequently, it makes it difficult to offer specific advice
to industry [Dybå and Dingsøyr, 2008].

Recognition of these limitations led some researchers to consider more struc-
tured and systematic experience-based approaches to agile customization
(see Figure 3.12).

73

3. Related Work and Research Questions

Figure 3.12.: Experience-Based Approach

Experience-based approaches to software methods improvement rely on two
core principles:

1. organizational learning: the cyclic and systematic steps to continuously
improve organizational processes (see Section 2.1.5.2), and

2. experience reuse: the collection and reuse of lessons learned from past
projects. This requires a systematic and empirical methodology to
collect and structure learnings (for example as causal relationships
between context factors and process outcomes [Henninger, 2003]).

The most concrete example of an experience-based approach is the Basili
Experience Factory [Basili et al., 1994b; Basili and Caldiera, 1995]. The
basic methodological device of the approach is the QIP paradigm presented
in Section 2.1.5.2. It relies on the notion that “improving the software process
and product requires the continual accumulation of evaluated experiences
(learning) in a form that can be effectively understood and modified (experi-
ence models) into a repository of integrated experience models (experience
base) that can be accessed and modified to meet the needs of the current
project (reuse)” [Basili et al., 1994b].

Very few examples of agile experience-based approaches can be found in the
literature. These are presented in the next Section.

74

3.4. Experience-based Approaches

3.4.1 Existing Research

Only few approaches compatible with the idea of experience-based tailoring
are available [Salo and Abrahamsson, 2007; Chau and Maurer, 2004; Amescua
et al., 2010; Krasteva et al., 2010] and almost none that rely on a unified
and complete experience and knowledge-driven process exists.

[Salo and Abrahamsson, 2007] proposed a relevant framework that relies
on the Quality Improvement Paradigm (QIP) (see Section 2.1.5.2). The
framework adapts the QIP life-cycle to support the systematic selection,
tailoring and deployment of new agile practices.

The approach argues that a constant collaboration between the project
teams and organizational level is a key success of agile implementation.
Its major contribution consists in an iterative improvement process called
Post-Iteration Workshop (PIW) which:

• provides project teams with a mechanism to tailor the deployed and
the existing software development practices during the ongoing project

• provides the organizational level with mechanisms for gaining system-
atic and rapid feedback from the process improvement of projects.

The PIW process consists of six steps to be executed by the team after
each development iteration: (a) preparation, (b) experience collection, (c)
planning of improvement actions, (d) piloting, (e) follow-up and validation,
and (f) storing (see Figure 3.13). Suitable practices are identified by im-
plementing the improvement actions in the ongoing project and iteratively
evaluating their usefulness with available metrics and experience data.

Figure 3.13.: Steps and information flows of the PIW [Pikkarainen et al.,
2005]

75

3. Related Work and Research Questions

Another approach worth citing is reported in [Amescua et al., 2010]. The
approach is aimed at process learning and provides a knowledge-based
process asset libraries (PALs) (a kind of an experience factory) to store agile
best practices. However, although the approach details how the process
knowledge should be stored, utilized and reused in context (using tailoring
guidelines), it doesn’t provide teams with means to grow this knowledge
by documenting their newly experienced practices nor provide means to
propose configurations to the process assets.

3.4.2 Limitations

Although the interest of the [Salo and Abrahamsson, 2007] framework has
been validated in some industrial cases, the authors specify that more specific
procedures are needed to support the systematic selection and deployment
of new agile practices as well as for tailoring them to suit organizational
needs [Salo and Abrahamsson, 2007].

Indeed, the framework theoretically describes the steps to follow for an
experience-based improvement of agile practices but, apart from the PIW
tool, it doesn’t prescribe means on how to implement such a process inside
an organization. Precisely, the way that the improvement and tailoring
knowledge is to be stored is unclear, i.e., the structure of the experience
factory is not detailed.

Moreover, the way that the development context impacts agile methods
implementation is not elicited which makes it difficult to exploit the generated
knowledge to guide other teams outside of the organization.

[Amescua et al., 2010] also do not focus on the customization knowledge.
Indeed, the research details the structure and functionality that a knowledge
repository should have and only overlooks the concept of tailoring guide-
lines. It does not clearly specify how methods are contextualized and how
suggestions can be automatically provided to project teams. Additionally,
the approach doesn’t allow teams to document and integrate their improve-
ments and newly introduced practices which contradict the agile process
improvement mindset (see Section 2.1.5).

3.5 Discussion and Research Questions

The review of the approaches for supporting situational agile methods
deployment, allows us to structure the existing knowledge and to identify

76

3.5. Discussion and Research Questions

several gaps that still need to be addressed. These are synthesized in
Table 3.1.

Table 3.1.: Review of situational agile implementation approaches

Characteristics

Maturity-based (–) Disciplined, prescriptive

(–) Teams have no control on customization

(–) No configuration of practices

Contingency Factor (+) Clear elicitation of context factors and customization
guidelines

(–) Pre-configuration of customization guidelines

(–) Teams have no control on customization

(–) Limited set of custom methods to recommend

Method Engineering (+) Richer description of custom methods (using composi-
tion of method components)

(–) Teams have no control on customization

(–) Ambiguity regarding components assembly

(–) Unadapted method description languages

Experience-based (+) Improvements and customization driven by the team

(–) Few and immature approaches

(–) Unclear elicitation of context factors and customization
guidelines

Maturity-based approaches were found to be useful for organizations seek-
ing a straightforward roadmap to transition to agility or attempting to
improve their agile maturity at an organizational level. However, unlike the
contingency factor and method engineering approaches, maturity models
under-consider the customization aspects.

One marked feature of both contingency factor and method engineering
research is that they help to structure the customization decisions. However,
“they have been largely deductive in nature, employing theoretical and concep-
tual arguments to suggest how methods should be customized” [Fitzgerald
et al., 2006]. Little is known regarding their practical application in real
software development practice.

77

3. Related Work and Research Questions

Generally speaking, in the software field, practice is often ahead of research,
and it has been argued that much can be learned from examining good
practice of past experiences. Therefore, we examined if there exist experience-
based approaches that report and capitalize on the practitioners knowledge
but were able to find only few and yet immature approaches.

Given the above, we considered investigating the use and customization of
agile methods in actual practice and in providing an integrated approach for
practitioners. Specifically, we argue that providing a better customization
method implies bridging the gap between structured and knowledge-based
approaches.

For this purpose, 4 research questions were progressively formulated and
refined over the course of this research, following an exploratory research
cycle (see Chapter 4). For more convenience, we summarize them in the
following sections.

3.5.1 SME Perspective

We argued in Section 3.3.2 that Situational Method Engineering (SME)
is a disciplined and structured approach that have the advantage to help
structuring the key concepts of agile methods and their customization
knowledge. However, applying it in an agile context raises several issues
such as the impediment of team process control.

This highlights the need for a specific approach for engineering situation-
specific agile methods and practices. Specifically, we argue that such an
approach should provide a better method engineering formalism (e.g., sim-
plified syntax, efficient graphical notation, etc.) and easier ways to exploit
the customized method at the team level.

For guiding the construction of this specific SME approach, we propose the
following research questions:

RQ1.a: How to use a situational method engineering approach for the
customization of agile methods?

RQ1.b: Which methodological elements are relevant for creating sit-
uational specific methods and for structuring agile methods
knowledge?

These two questions are mainly investigated in Chapters 6, 7 and 8.

78

3.5. Discussion and Research Questions

3.5.2 Context Study Perspective

In order to be able to support agile practitioners with more objective guidance,
we argue that it would be relevant to understand and characterize the
context thoroughly. Indeed, a thorough understanding of the context leads
to accurate, precise and reusable customization decisions.

The agile contingency factor approaches that we investigated in section 3.2
best elicit the context thanks to the concept of “contingency factors”.
Nonetheless, we argued in Section 3.2.2 that they usually rely on a subset of
predefined factors and customization decisions and that few is known about
their practical application. Therefore, in this research, we target the study
of different contexts in practice and propose a customization approach with
an extensible representation of development contexts.

RQ2: What specific contexts influence the implementation of agile
methods and how these can be characterized ?

This question is mainly investigated in Chapters 9, 10 and 11.

3.5.3 Customization and Capitalization Perspective

Another important gap that we aim to investigate is the characterization of
the customization knowledge. The contingency factor approaches rely on
a predefined catalog of customization guidelines and actions which are not
extensible and often not precise enough.

Moreover, they are often considered as too theoretical, i.e., not relying on
the agile team expertise and learnings. We argue that experience-based
approaches provide a promising solution to handle this issue provided a
fine-grained characterization of the teams’ customization decisions.

The following question drive our proposal for a relevant customization
catalog:

RQ3: How to define reusable and fine-grained customization guidelines
?

Another problem with situational agile adoption approaches consists in their
inflexibility. Once a practice or method is suggested and selected, it often
stays unchangeable. These do not provide any mechanism for evolving
the practice and allowing the team to communicate their adaptations. In
contrast, we discussed earlier that an agile practice enacted by a team should

79

3. Related Work and Research Questions

be continuously adapted to better fit their specific. This knowledge is highly
valuable and constitutes a yet neglected aspect in situational approaches.

The following questions drive our proposal of a tool to support a project-team
to systematically capture their improvement and capitalize their learnings
at an organizational level.

RQ4: How can an agile team continuously improve a customized
method and capitalize its context-related learnings?

These questions are mainly investigates in Chapters 12 and 13.

80

Part II.

AMQuICk Framework

In this part of the dissertation, we detail the research methodology that was
used to design our approach called AMQuICk Framework and provides an
overview of it.

More precisely, Chapter 4 presents a review of the potential research
methodologies that could have been used to conduct our research and
presents the final constructive methodology that we applied and which
based on the Design Science Research methodology.

Chapter 5 provides an overview on the approach including its theoretical
foundations, life-cycle and main artifacts.

81

Chapter 4

Framework Design

The main research questions and motivation for the development of a new
integrated framework for guiding agile methods customization have been
proposed in the previous two chapters. To guide our research for necessary
answers and to ensure rigor and reliability of results, a coherent research
method should be decided.

This chapter presents a review of the potential research methodological
choices that could have been used to conduct our research (see Section 4.1)
and the final constructive research methodology that we applied to pro-
gressively design the AMQuICk framework (see Section 4.2). The latter
section also presents the research studies which we conducted with the aim
of assessing the validity of the framework.

4.1 Review of Research Methodologies

The selection of a research methodology and its research instruments depends
on a set of aspects such as the goal of the research, the nature of the research
topic and the availability of data sources [Benbasat, 1984]. Regarding the
goal of this research (i.e., the development of a new framework) and its
exploratory nature (in the way it explores the solution space), a qualitative
and constructive research approach seem to be adequate.

This section provides a brief review of different research methodologies that
could have been considered and presents our motivation for choosing a design
science that includes case study and grounded theory research as part of its
rigor cycle.

Survey Research

Survey research is a retrospective study of a situation that allows to gather
information from a large group of people, referred to as a population, with

83

4. Framework Design

the purpose of establishing theoretical relevance. It usually requires the
formulation of a clear research question, a careful sampling of a representative
subset of the population and rigorous statistical analysis. Questionnaires
are the primary data collection source. Surveys are especially well-suited for
capturing what is happening broadly over large groups of projects when a
particular method, tool, or technique is employed [Sjoberg et al., 2007].

This research was driven by a motivation to explore agile methods customiza-
tion in practice and to progressively construct a practical solution to be
recommend to practitioners. At the time this research project was initiated,
no clear question was formulated (see definition 2.3) and the framework was
not yet designed. Therefore, survey research was not a suitable option for
conducting this research.

Case Studies

Case studies are one of the most common qualitative research methods in
information system and software engineering research. They are usually used
to test, generate or describe a theory or to assist in the understanding of a
complex phenomenon [Benbasat, 1984; Dresch et al., 2015]. Specifically, they
allow SE researchers to study and evaluate the implementation of methods
and tools in an industrial setting.

Case study research enables to empirically study a contemporary phenomenon
within its natural setting, precisely “when the boundaries between phe-
nomenon and context are not clearly evident” [Yin, 2017]. Case studies can
be either single or multiple. They are well well-suited when ‘how’ or ‘why’
questions are being asked and when the investigator has little or no control
over events [Yin, 2017].

According to [Robson and McCartan, 2016], case studies can also be catego-
rized as:

• Exploratory: finding out what is happening, seeking new insights,
generating ideas and hypotheses for new research or initiating a change,

• Descriptive: portraying a situation or a phenomenon,

• Explanatory: seeking an explanation of a situation or a problem,
mostly but not necessary in the form of a causal relationship.

These different ways to conduct case study research makes it possible to
apply it for many situations and combine it with other methods. In this
research, case studies can be useful in exploring different agile contexts
(i.e., to answer RQ2 and RQ3) and in testing the proposed framework (see
Section 4.2.2).

84

4.1. Review of Research Methodologies

Action research

Action research designates a spectrum of constructive case studies where
“theory emerges in the process of changing” [Cunningham, 1997]. Indeed, this
research methodology aims at resolving a collective problem by intervening,
observing the process of change and exploiting learnings. It usually targets
the challenges of a specific organization and involves participants and rep-
resentatives of the situation researched in a cooperative and participatory
way [Thiollent, 2011; Dresch et al., 2015].

A proper conduction of action research follows a cyclical process where
actions are planned and implemented to address a certain aspect of the
research problem at each iteration. For example, [Susman and Evered, 1978]
describes an iterative process of five main stages: (1) diagnosing, (2) action
planning, (3) action taking, (4) evaluating, and (5) specifying learning (see
Figure 4.1).

Figure 4.1.: Action Research Cycle proposed by [Susman and Evered, 1978]

Following such cycles, action research produces practical solutions to real
problems with opportunities for a theory to emerge.

Despite of the constructive and practical nature of action research, it was
not considered as a primary methodology for this research because of two

85

4. Framework Design

major drawbacks. First, the nature of action research implies that results are
situation-specific and second, it requires a specific research setting including
a longterm industrial collaboration where the researcher have an active role.
However, the methodology can be useful in refining or evaluating a designed
artifact.

Grounded Theory

Similarly to Action Research, grounded theory is also a constructive research
approach but with more focus on theory generation. Key features of grounded
theory are the iterative and systematic collection, coding and validation of
data that may help to describe a phenomenon of interest [Abdel-Fattah, 2015].
Data are captured through the observation of people, their interactions, their
the main concerns and how they go about resolving them.

Grounded theory was not retained as the primarily research methodology
since it does not target to design solutions to practical problems. However,
similarly to case studies, it can be used as a secondary methodology to explore
the problem of agile customization in a specific situation (see Section 4.2.2).

Design Science Research

Design science research is a relatively new methodology in information
systems research that emerged to reduce the gap between theory and prac-
tice [Dresch et al., 2015; Wieringa, 2010; Hevner and Chatterjee, 2010]. It
advocates the concept of “exploration through design”, a prescriptive research
style that goes beyond descriptions, explanations and predictions. Indeed,
design science research seeks to “(i) explore new solution alternatives to
solve problems, (ii) to explain this explorative process, and (iii) to improve
the problem-solving process” [Holmström et al., 2009]. The solution obtained
from the conduction of design science research is not necessarily optimal.
The target is a workable and satisfactory solution to the investigated problem
that must be capable of generalization to a certain class of problems (mid-
range or substantive theoretical relevance) [Dresch et al., 2015; Holmström
et al., 2009].

Design Science research was selected as the method for conducting this work
because it focuses both on building practical solutions and adding value to
existing theoretical knowledge. Indeed, on the one hand, the methodology
allows us to adopt a reality-observer perspective with the purpose of exploring,
describing and explaining contextual implementations of agile methods. On
the other hand, based on this newly generated theoretical knowledge, we
can actually intervene by proposing an adequate solution. Another reason

86

4.2. Design Science Methodology for Building AMQuICk

that motivates this choice is that the methodology is highly relevant in
information systems research since it highlights the role of artifacts and deals
with the lack of professional relevance.

A detailed description of how Design Science Research was applied in this
research is provided in the following section.

4.2 Design Science Methodology for Building AMQuICk

[Hevner, 2007] describes design science research as an embodiment of three
closely related cycles of activities: relevance cycle, rigor cycle and a central
design cycle (see Figure 4.2).

Figure 4.2.: Design Science Research Cycle as defined by [Hevner, 2007]

The Relevance Cycle initiates the design science research by eliciting the
requirements for the research, the opportunity/problem to be addressed
and the acceptance criteria for the solution to be designed. This is done
through an exploration of the domain or research environment. The output
of the design science research activities must be confronted with this envi-
ronment for study or evaluation in the application domain. This is known
as field testing and can be conducted using an adequate technology transfer
methodology such as action research (see Section 4.1). The result of field
testing will determine whether the new artifact is of satisfactory quality and
whether additional iterations of the relevance cycle are necessary to refine
the research requirements.

87

4. Framework Design

The Rigor Cycle connects past knowledge to the design science activities
of the research project. It retrieves from the scientific knowledge base any
appropriate research construct (e.g., theory, method, experiences and existing
artifacts) that would help design or evaluate the solution artifacts. It is
important to thoroughly research and reference such knowledge in order to
ensure that the designed artifacts are research contributions. The research
knowledge base can be extended with any relevant output of the research
design activities: documentation of new artifacts, report of the field testing
of artifacts, report of actual experiences in implementing the generated
artifacts or in performing the research.

The Design Cycle is central to any design science research. It iterates between
the core activities of building and evaluating the solution artifacts [Hevner,
2007]. According to [Simon, 1996], this process consists in generating design
alternatives against the research requirements until having a satisfactory
solution. Usually, multiple design iterations are necessary until achieving
relevant artifacts that can enrich the research knowledge base.

Following this representation, we provide an overview of the design science
methodology applied to conduct this research in Figure 4.3. Furthermore,
we explain in Table 4.1 how the key aspects of design science research were
addressed using the checklist introduced by [Hevner and Chatterjee, 2010].
The next section details the 3 iterations that were necessary to design the
AMQuICk framework.

4.2.1 Design Iterations

Iteration 1: Situational Method Engineering Perspective

This first iteration aimed at exploring the Situational Method Engineering
(SME) perspective (see Section 3.5.1) and at designing a first version of the
AMQuICk metamodel for agile methods customization. To achieve this goal,
we identified as part of the Relevance Cycle the requirements for an agile
SME approach (see Chapter 6) which we later refined against the evaluation
of the metamodel. Then as part of the Rigor Cycle, we reviewed the existing
SME languages and confronted them to the requirements identified earlier.
This allowed us to confirm the need for a specific SME language for agile and
to justify the use of “Essence DSL”. Finally, the metamodel was instantiated
to create the AMQuICk repository of practices (see Chapter 8).

88

4.2. Design Science Methodology for Building AMQuICk

Table 4.1.: Design science research checklist

What are the design re-
quirements?

The research aims at designing a practical ag-
ile guidance approach that can be provided
to organizations and teams to systematically
and impartially support them in the imple-
mentation and customization of agile meth-
ods. Requirements were incubated after a
literature review and refined with exploratory
case studies. These may be synthesized as
follows:

• well-structured and configurable agile
building blocks,

• practical characterization of customiza-
tion knowledge,

• continuous storage and reuse of the team
experiences.

What is the created ar-
tifact and how is it rep-
resented?

An integrated framework for agile methods
customization that includes an agile methods
metamodel at its core, a repository of prac-
tices, an agile knowledge base, a practices
improvement tool and a capitalization tool
(see Chapter 5).

What design pro-
cesses will be used
to build/refine the
artifact?

Exploratory industrial case studies, literature
reviews and grounded theory were used to
build and refine the artifacts (see elements in
red in Figure 4.3 and Section 4.2.2).

What theories support
the artifact design and
the design process?

Several theories (both descriptive and explana-
tory) were grounded from the research knowl-
edge base to support the artifact design (see
elements in light blue in Figure 4.3). These
mainly include the QIP (see Section 2.1.5.2),
ME approaches (see Chapter 6), primary agile
customization studies and the Hofstede model
(see Chapter 11).

89

4. Framework Design

Table 4.1.: Design science research checklist (continued)

What evaluation-
s/improvement are
performed during
the internal design
cycles?

Part III presents the incubation of the AMQuICk
framework. Its iterative refinement, i.e., the ex-
tension of its core metamodel and the design of
the practical artifacts, is performed based on the
case studies learnings (see Chapters 9, 10 and 11).
These case studies are also used to illustrate the
usability of the proposed solution.

How is the artifact
introduced into the
application environ-
ment and how is it
field tested?

The relevance of the AMQuICk framework was
discussed with agile experts using semi-guided in-
terviews. This is reported in Chapter 14. Field
testing was conducted partially. Specifically, the
improvement and customization tools were de-
signed and tested on a master students project.
This is reported in Chapter 13.

What new knowl-
edge is added to
the knowledge
base and in what
form (e.g., peer-
reviewed literature,
meta-artifacts,
new theory, new
method)?

A new conceptual framework is developed during
the course of this research. The framework is
composed of the following artifacts: AMQuICk
core metamodel, a repository of agile practices,
and a collection of customization matrices (cus-
tomization knwoledge base). No such knowledge
has been yet discussed in literature. Also, other
value-added results are the case studies reported
in Chapters 9, 10 and 11 which investigate the
context-related issues of agile methods implemen-
tation. These were published in peer-reviewed
conferences.

Has the research
question been
satisfactorily ad-
dressed?

The 4 research questions were addressed itera-
tively. The evaluation mainly relies on the in-
terview of few experts and on a number of case
studies. According to [Holmström et al., 2009],
such a subjective evaluation may demonstrate
mid-range theoretical relevance. More intersub-
jective evaluation in multiple contexts would be
necessary to strengthen the evaluation.

90

4.2.
D
esign

Science
M
ethodology

for
B
uilding

A
M
Q
uIC

k

Figure 4.3.: Research Methodology

91

4. Framework Design

Iteration 2: Context Study Perspective

With regard to the evaluation of the AMQuICk Essence metamodel, we
identified the need for a better characterization of the customization knowl-
edge and formulated the second research question (see Section 3.5.2). The
design cycle encompasses exploratory studies that we conducted to inves-
tigate the challenges of agile implementation in different contexts and to
retrieve customization decisions made by participants (see Chapter 9, 10
and 11). As part of the rigor cycle, each exploratory research starts by a
review of primary studies that are connected to the specific context being
investigated.

Iteration 3: Customization and Capitalization Perspective

The goal of this iteration is to focus on the collection, structuring and
capitalization of the customization knowledge in practice. As part of the
Relevance Cycle, the third and fourth research questions were defined based
on the results of the context study perspective. Lessons learned from these
case studies allowed us to enrich the AMQuICk metamodel to characterize
the context and customization aspects. We were also able to design a
practical representation of customization decisions in the form of matrices
intended to be directly used by practitioners. The usability and relevance of
these features is evaluated based on a number of illustrations in Chapter 13
and on the feedback of agile experts’ (see Chapter 14). This iteration also
discusses the design of an improvement and a capitalization tool to be used
by teams in practice. The usability of this tool is evaluated in the context
of a students’ project (see Chapter 13).

4.2.2 Exploration and Evaluation

Several exploratory and evaluative case studies and illustrations were used
to support this research. These are briefly reported in the following subsec-
tions.

SPW Case Study: Agile in a Transitional Context (Exploratory)

This study aims at investigating the challenges of implementing agile methods
in a transitional situation. The investigated organization is an public IT
service that has a well-established tradition of waterfall “siloed” development.
The management of the organization was interested to smoothly transition
to agility so we conducted a context study to understand their organizational

92

4.2. Design Science Methodology for Building AMQuICk

and project-level challenges and to prepare a transition plan which later
allowed us to design the AMQuICk life-cycle. Besides the context study, a
customization of Scrum was proposed and discussed with a pilot project-team
during a project retrospective using the affinity diagram methodology. The
study is detailed in Chapter 9.

E-Gov Case Study: Agile e-Government Service Development (Exploratory)

Regarding the previously presented case study, implementing agile in a
public service seem to be particularly challenging. In this case study, we
further investigated the inherent challenges that practitioners face when
developing e-government services using agile practices. To do so, we organized
3 focus groups with representatives of the public service from different
decisional/executive levels, identified and categorized the most commonly
reported challenges. We then analyzed their impact on the principles of the
agile manifesto (see Table 2.1).

The study contributes in several ways to the existing body of knowledge on
agile methods. Indeed, to our knowledge, almost no studies can be found on
the agile development of e-government services. The results could therefore
serve as guidelines for practitioners when implementing agile methods in an
e-government setting. The study is detailed in Chapter 10.

Culture Case Study: Agile Cultural Challenges (Exploratory)

One of the threats to validity of the previous study is that the results are
narrowly dependent on the Belgian context. Indeed, there exist some research
studies that tend to show that cultural factors should not be disregarded
when evaluating the efficiency and/or relevance of software engineering
practices. The question was also briefly discussed by few agile experts but,
to our knowledge, no in-depth studies have been conducted.

Therefore, in this study we investigate the impact of the cultural background
of people (i.e., their national culture) on the implementation of agile practices
in 3 culturally diverse contexts: Belgium, Malaysia and Singapore. The
outcome is a functional set of hypotheses about the potential relationships
between cultural traits and the application of agile practices.

The previous two studies allowed us to initiate the idea of customization
decision matrices. The study is detailed in Chapter 11.

93

4. Framework Design

MDL Case Study: Agility applied on a students’ project (Exploratory and
Evaluative)

This study aims at proposing a solution for the new requirements formulated
in the second iteration. Indeed, the interview with experts confirmed the
need to operationalize the framework for the team and to provide them with
a mean for capitalizing their expertise at an organizational level. This would
be done using simple and visual facilitation tools in order not to impede the
agile mindset.

Prototypes of such tools were designed and used in the context of a software
engineering capstone course. The latter consists on a development project
that simulates a professional environment and where a hybrid Scrum method
(i.e., a mix of Scrum, XP, RUP and Kanban practices) is implemented as
the framework for managing students’ projects and developing the required
software.

The study allowed us to design iteratively a goal-driven and continuous
improvement tool that student groups used to customize their methodology
throughout the sprints according to their specific needs. Moreover, we
designed and tested a capitalization activity to be used during the final
project retrospective in order to collect the team expertise on using and
customizing agile practices. The study is detailed in Chapter 13.

Experts Interviews (Evaluative)

To evaluate the AMQuICk Life-cycle, the context model and the customiza-
tion knowledge base, we conducted semi-structured interviews with agile
experts from different organizations. The overall approach was discussed
in details with them and we collected data on their context factors and on
the significant adaptation decisions they have undertaken sofar. This study
allowed us to demonstrate the usability of the decision matrices, to evaluate
the relevance of the framework and to collect the improvement opportunities
necessary to operationalize it in real-word situations. The study is detailed
in Chapter 14.

94

Chapter 5

Framework Overview

AMQuICk Theoretical foundations, Life-cycle and Artifacts

As previously discussed, while many organizations are interested in adopting
agile methods suitable to their contexts, there is little available guidance on
how to do so. This research aims at designing a practical guidance approach
to support teams and organizations in implementing situation-specific agile
methods. This chapter presents an overview of the approach including its
theoretical foundations, life-cycle and main artifacts.

5.1 Claim

An inherent characteristic of agile methods is adaptability. Thus, agile
methods advocate the frequent adjustment of the development process using
retrospectives which, as we argued earlier, may not be sufficient for teams
and organizations with complex settings. Indeed, the business goals, the
project settings, the people, and the environment in which an organization
works create a unique context that may be very challenging. For example,
not all teams can commit to time-boxed iterations as a way of managing their
work. In some situations, a flow based development is more adequate. When
teams lack relevant agile expertise, they may not consider such customization
decisions and would rather implement practices they learned about without
much consideration.

Research initiatives for guiding agile methods customization (see Chapter 3)
have shown several limitations. Specifically, they have been largely prescrip-
tive, employing predefined and theoretical rules to recommend what a team
should better do. Based on the detailed review of the existing approaches
and on the lessons learned from the case studies conducted in this research
(see Part IV), we claim that success factors of agile methods customization
rely on:

95

5. Framework Overview

1. clear and sufficient structuring of agile building blocks,

2. accurate elicitation of the context factors and customization knowledge,

3. empowering the team to continuously improve their customized method,
and

4. continuous capitalization and reuse of team experience.

The proposed approach builds on existing research knowledge to fulfill those
requirements.

Firstly, the concept of agile building blocks is inherited from the discipline
of SME that advocates the composition of situational development methods
using reusable components. We argue that documenting the building blocks
of agile methods in a well-structured repository is particularly beneficial for
agile practitioners from the same organization or a large-scale community.
Indeed, as previously discussed, the experience shows that agile practices are
often misapplied because the key information about their efficient application
is limited, unstructured and scattered.

Secondly, the approach relies on inductive and experience-based process
improvement. Precisely, it adapts the QIP approach and its organizational
learning cycle (see Section 5.3.2) to provide systematic steps and guidelines
to organizations and teams in order to help them customize their agile
practices.

A set of principles also establish the theoretical foundation of AMQuICk.
These are presented in the next Section.

5.2 Founding Principles

The following principles will guide the design of the AMQuICk framework.

5.2.1 Flexible Customization

A systematic process for customizing software methods requires a certain
balance between control and flexibility. At one extreme, a highly controlled
customization approach allows each project to choose its methodology from
one of several rigid methodologies. On the other, a situational method is
assembled using building blocks that may be of different granularity [Odell,
1996; Harmsen et al., 1994]. A less flexible approach selects and tunes a
method outline. The two latter strategies necessitate the use of Computer

96

5.2. Founding Principles

Assisted Method Engineering (CAME) tools and the expertise of a method
engineer.

AMQuICk advocates for a flexible customization strategy by reusing the
concept of building blocks but unlike the traditional method engineering
approaches, provide the team with more responsibility in such a process.
Indeed, the team should never be provided with rigid methods designed by a
methodologist or automatically generated using a CAME tool. The method
facilitator in collaboration with the team should define their preferred way
of working in terms of practices. Customization rules are used to recom-
mend, prevent the use of or propose configurations for the desired practices.
Adopting such a strategy intends to not impede the team empowerment.
[Tomasini and Kearns, 2012] refers to this as “the art of balancing freedom
with guidance”.

5.2.2 Growing Customization Knowledge

The concepts of knowledge and experiences capitalization and reuse have
been studied and applied for several purposes such as industrial processes
adaptation [Llamas et al., 2016], process learning improvement [Amescua
et al., 2010] and software quality improvement [Basili and Caldiera, 1995].
In this research, we use it for the purpose of customizing agile methods to
the specific context.

A distinction should be made between customization experiences and cus-
tomization knowledge. According to [Amescua et al., 2010; Dalkir, 2013]
knowledge is the subjective interpretation of individual values, perceptions,
and experience. When past experiences are analyzed, information in the
form of lessons learned, guidelines, rules, etc. is implied and knowledge is
obtained.

[Dalkir, 2013] states that creating, sharing, and applying knowledge as well
as feeding the valuable lessons learned and best practices into corporate
memory foster continued organizational learning.

This thesis relies on this statement. It assumes that as the implementation of
agile grows in a particular organization and as more experiences are collected
from different project teams, the knowledge on where practices do or do not
work grows. This implies that the definition of the customization knowledge
should be flexible. Also, the newly identified context-related challenges
should be cataloged in the knowledge base.

97

5. Framework Overview

5.2.3 Shared Mental Model

Shared mental models are defined as “knowledge structures held by members
of a team that enable them to form accurate explanations and expectations for
the task, and, in turn, to coordinate their actions and adapt their behavior to
demands of the task and other team members” [Cannon-Bowers and Converse,
1993].

Software engineering is a highly collaborative activity. The success of
complex projects depends above all on the coordinated activity of a team
of individuals who have different degree of expertise in particular software
engineering areas. Several studies have found that shared mental models
are necessary to facilitate information sharing between developers, reconcile
conflicts between client representatives and software development project
leaders, and improve the overall quality of software.

[Yu and Petter, 2014] particularly demonstrates the value of agile practices
in improving shared mental models (i.e. shared understanding) among devel-
opers and customers in software development teams. Specifically, it argues
that some practices help to develop a shared understanding of the product
development tasks (taskwork mental models) and other practices create a
shared mental models about team processes and interactions (teamwork
mental models). For example, it argues that the on-site customer practice
improves the development of taskwork mental models since it offers greater
opportunities for the team to understand the customer needs. Moreover, the
study suggests that when agile practices are not well understood or clearly
conveyed to teams, shared understanding is affected and the adaptation of
methods is made more difficult.

This fundamental aspect should be taken into account when developing a
guidance approach for agile methods adaptation, i.e., the proposed approach
should investigate means for improving the team knowledge sharing. One of
the principles that motivated the development of AMQuICk is the shared
mental theory. Specifically, the repository of agile practices and building
blocks is intended to help the team having a shared metal model regarding
their development process (see Chapter 8). Actioning and visualizing the
method building blocks in the team working space using practice and the
improvement board are other techniques that we investigated and that may
improve the shared understanding of agile practices(see Chapter 12).

98

5.2. Founding Principles

5.2.4 Continuous, Bottom-up and Goal-driven Improvement

Agile software development methods are people-oriented . Developers are
enthusiastic and creative problem solvers by nature [Wynekoop and Walz,
2000]. Therefore, we assume that if they are provided with a practical
goal-oriented method, they would be motivated to reflect on and customize
their own way of working and to increase their application of agile values
and principles.

Moreover, it has been discussed that developers have a strong sense of
personal worth [Wynekoop and Walz, 2000]. We argue that a bottom-up
improvement approach would be in adequacy with this personality trait
since it would enable them make their own decisions, disseminate their
knowledge and experiences in trying new things and give input to managerial
decisions.

The AMQuICk approach highlights the importance of capitalizing on the
team process knowledge and provides simple means to help the team com-
municate about their experimented practices and improvements. Specifically,
the improvement backlog helps to fulfill this principle.

The customization of the methods in AMQuICk should also rely on a goal-
driven strategy for collecting improvement needs. Goals are defined using
the SMART criteria:

• Specific (S): Clear and non-ambiguous definition of goals: what, where
and how?

• Measurable (M): The measurement provides feedback about the goal
implementation and should inform when the goal is achieved

• Achievable (A): In order to insure that the goal is achievable, it should
be assigned to individuals or groups (the drivers)

• Realistic (R): Goals should be achievable in a time frame

• Time-bound (T): Time frame is crucial and should be aggressive, yet
realistic

Additionally, we argue that a collaborative improvement goals identification
is necessary. This is done using a collaborative activity in which the team
members negotiate the improvement goals and the underlying actions to be
taken.

Team level improvement also implies process self assessment. Self-assessment
is key in performing agile software process assessment. Its success lies on

99

5. Framework Overview

its low cost, good accessibility and ownership of the result. The approach
encourages team self assessment of the customized method.

5.3 The AMQuICk Framework

To address the issues referenced in Section 3.5, this research proposes the
Agile Methods Quality Integrated Customization Framework (AMQuICk)
for systematically guiding the implementation of situation-specific agile
methods.

The approach was first introduced in [Ayed et al., 2012]. Its incorporates
ideas from recent research and several different paradigms and principles
(see Sections 5.1 and 5.2). It encompasses a number of key methodology
characteristics that have not been discussed in previous publications.

An overview of the research contributions is provided in Figure 5.1.

Figure 5.1.: AMQuICk Framework Contributions (An Overview Diagram)

The approach is based on Situational Method Engineering (SME) (see Sec-
tion 3.3), on the Quality Improvement Paradigm (QIP) [Basili and Caldiera,
1995] and on the paradigm of reuse-based organizational learning, which is a
software engineering approach to collect and reuse past experiences with the
goal of constantly improving the development process (see Section 2.1.5.2).

AMQuICk describes a theoretical approach for continuously assisting agile
practitioners, i.e., during the identification of the challenging context factors,
the customization of the method, throughout its enactment and during
the capitalization of agile experiences and adjustment of the customization
knowledge.

It provides a way to structure the team individual customization knowledge
in decisional matrices. These contain information regarding the challenging

100

5.3. The AMQuICk Framework

context factors and how the applied practices were perceived in the presence
of such context factors.

The team experience would be capitalized at the organizational level. Based
on a set of experiences, within the same organization or across different
organizations, an integrated (or aggregated) customization knowledge would
be implied. Moreover, the collection of customization matrices would be
exploitable to automatically generate a set of recommendations, including
information on how practices should be configured to make them suitable.

Finally, in accordance with the agile paradigm, the method initially de-
signed should not remain unchanged: it should be continuously adjusted.
At the process level, AMQuICk describes a goal-driven improvement and
capitalization tools to enable this evolution.

The next sections discuss in further details the context of use of the frame-
work, the different stages of its life-cycle and the artifacts necessary to
operationalize it.

5.3.1 Context of Use

AMQuICk is intended to be used by experienced agile facilitators or consul-
tants as a guide for implementing situation-specific agile methods, especially
in the context of small and medium-sized enterprises transitioning to agile
software development or that still have to mature their agile implementa-
tion.

The agile facilitator is the primary user of the approach. It is responsible
for:

• initiating the approach implementation,

• conducting the context study in order to identify the discontinuing
and challenging factors and to prioritize the agility quality factors,

• populating the repository of agile practices,

• formalizing the customization knowledge based on the experiences
of project-teams and possibly with the help of a projects portfolio
manager and decision-making tools.

Another important role involved in the AMQuICk life-cycle is the devel-
opment team. Firstly, it actively collaborates in studying the context and

101

5. Framework Overview

choosing the suitable practices. Secondly, supported by the agility facili-
tator or consultant, the team is responsible for determining the relevant
improvement actions and for storing its experience.

AMQuICk is not to be viewed as an imposed and rigid step-by-step process.
Rather it should be considered as a flexible guidance approach that facili-
tates the decision making when agile practices should be implemented in
challenging contexts. The approach outcomes are informative, i.e., a team is
not forced to adhere to recommendations. The approach can also be used
for learning purposes since teams can use it to grow their agile knowledge
by learning from each other experiences.

Other artifacts than those suggested in this research may support the deploy-
ment of such an approach. Precisely, agile consultant can use the proposed
models to generate their own situation-specific checklists or instrument
such as assessment models or context models. It would also be particularly
interesting to use a decision-making tool to automate the generation of
customization guidelines based on the experiences of teams from different
companies (community-level). The relevance of such a tool is discussed in
the future works of the thesis (see Chapter 14).

5.3.2 Life-cycle

The AMQuICk life-cycle, depicted in Figure 5.2, consists of 3 levels:

• Organizational / Project Management Level : This level is
where the organizational learning occurs. Its core activities consist
of: the context analysis, the recommendation of adapted practices
and design of custom methods, the continuous improvement of the
deployed method, the capitalization of the project-team experiences
and generation and reuse of the customization knowledge.

• Process Level : This level is where the process learning occurs. Its
core activities (plan, do, check and adapt) are related to the execution
and continuous refinement of the custom method throughout the
software development iterations.

• Product Level : This level represents the development iterations.
It is intimately related to the Process Level. Indeed, it has been
acknowledged that the software solution influences the evolution of
the process and vis-versa. Any change monitored on the products
may result in a revision of the process for the next development or
maintenance iteration and any change in the process may have impacts

102

5.3. The AMQuICk Framework

on the produced artifacts. This level is out of the scope of this research
but we have briefly discussed the importance of this notion of process-
product co-evolution in [Ayed et al., 2013].

Figure 5.2.: AMQuICk Framework Life-cycle

The suggested framework and its steps are designed to comply to the contin-
uous improvement ideology of the QIP. However, the steps of QIP were not
all considered to be compatible with the requirements of a guiding approach
to agile methods implementation mainly because the improvement decisions
in the QIP are planned and driven by the organizational level whereas the
agile team plays a fundamental role in the customization and improvement
of its way of working. Table 5.1 shows how the steps of the QIP map with
the steps of AMQuICk.

The main cycle of AMQuICk consists of the following 4 steps: (1) Context
Study, (2) Customization, (3) Implementation and (4) Capitalization. These
are detailed in the following sections.

103

5. Framework Overview

Table 5.1.: Mapping between AMQuICk and QIP steps
QIP Steps AMQuICk Steps

1. Characterize and Understand 1. Context Study 1.a. Assessing the situational
context

2. Set Goals for Improvement 1.b. Identifying challenging con-
text factors

1.c. prioritizing agility goals

3. Choose Process 2. Customization 2.a. Select preferred practices

2.b. Gather Knowledge from
Similar Contexts

2.c. Recommend Configurations

4. Execute 4.1. Execute 3. Implementation 3.a. Plan

4.2. Analyze 3.b. Do

4.3. Feedback 3.c. Check

3.d. Adapt

5. Analyze Results 4. Capitalization 4.a. Store Experience

6. Package Experience 4.b. Update Customization
Knowledge

5.3.2.1 Context Study

This step aims at understanding, analyzing and characterizing the context.
Interviews, GQM-based diagnosis, and risk-assessment tools can be used
during this step. It results consists of the following tasks:

(1.a.) assessing the situational context,

(1.b.) identifying challenging context factors and

(1.c.) prioritizing the agility goals (process quality goals).

5.3.2.2 Customization

Provided the challenging context factors and the initial process quality
requirements, the suitability of the preferred agile practices can be assessed.
This step consists of 3 main tasks:

(2.a.) selecting preferred practices,

104

5.3. The AMQuICk Framework

(2.b.) gathering knowledge from similar contexts (retrieving adequate cus-
tomization matrices), and

(2.c.) recommending configurations.

The output of the customization step is a set of recommendations, including
information on whether practices should be selected, discarded or configured.
When practices need to be configured, a set of possible configurations may
be suggested.

This step also verifies whether the selected practices can be integrated and
suggests to remove inconsistent combinations.

5.3.2.3 Implementation

The implementation step is about:

(3.a.) the planning of practice-focused and goal-driven improvement actions
(Plan),

(3.b.) the execution of the situation-specific method designed in the previous
step (Do),

(3.c.) checking the effectiveness of improvement actions (Check),

(3.d.) when an improvement action is satisfying enough, the method is
adjusted accordingly for the next iterations (Adapt).

The output of this stage is a stored history of improvement actions and a
list of the adjustments decided by the team.

5.3.2.4 Capitalization

Future incoming projects have to be able to profit from the gained experience
in implementing methods and practices. This step consists of the following:

(4.a.) Storing the team experience in the form of new practices or practice
configurations, common pitfalls or guidelines on practices execution,
tools, techniques, check-lists, etc.

(4.b.) Encoding / updating the customization knowledge by the agile facili-
tator, coach or consultant.

105

5. Framework Overview

5.3.3 Framework Artifacts

AMQuICk steps are operationalized using different artifacts (see Figure 5.3).

Its core artifact consists of a metamodel for authoring agile building blocks
called AMQuICk Essence. This metamodel incorporates the necessary ele-
ments for structuring an agile repository of practices (a kind of an experience
factory), a context model and a customization knowledge base (see Fig-
ure 5.1). Additional operational tools are the AMQuICk Backlog and the
Capitalization Workshop.

The following sections presents briefly each of these artifacts.

Figure 5.3.: AMQuICk Components

5.3.3.1 AMQuICk Essence Metamodel

The described approach defines a metamodel for agile methods customization.
The metamodel relies on the Essence Domain Specific Language (DSL) for
methods engineering and therefore we named it AMQuICk Essence. The
metamodel allows to design well-structured and uniform agile practices using

106

5.3. The AMQuICk Framework

a set of building blocks. Besides, it includes specific packages for modeling
situational contexts, customization knowledge, and improvement actions.

The metamodel has evolved from its first version published in [Ayed et al.,
2012]. The original metamodel separates the constructs of a software method
into structural aspects (what do we produce?) and behavioral or process
related aspects (what we do, when and how?). Its current version focuses
more on practice-based methods authoring. It also supports methods agility,
i.e., it allows practices and methods to be configured and refined during a
project to reflect the team experience. The choice of building the AMQuICk
metamodel upon Essence is further explained in Chapter 6.

As illustrated in Figure 5.4, our approach complies to the Meta-Object
Facility (MOF) architecture [ISO/IEC 19502, 2005]. At the M2-level lies
the required metamodel with its different packages. The figure purposely
separates the context package from the method content package. The former
is a major contribution of this work while the latter takes advantage of the
preexisting Essence DSL to define the abstract syntax of agile methods. At
the M1 level, method building blocks, method models and context models are
designed. A specific context element may call for a specific method building
block. This relationship is guaranteed by customization guidelines derived
from the body of knowledge of agile experts and stored in a knowledge base.
The M0-level is concerned with the collection of new data regarding the
context and the methods and practices enactment. Further details on this
architecture are provided in Chapter 7.

5.3.3.2 Context Model

The definition of the context is crucial in the formalization of adaptation
decisions. At the context modeling step, AMQuICk aims to provide a better
formalization of the context, so that accurate and fine-grained customization
guidelines can be formulated.

Agile facilitators or coaches which are part of the team (e.g., scrum masters)
decide about the context factors that will be used to formalize the cus-
tomization guidelines and procedure to assess them. An assessment model
(typically a questionnaire) may be used to get accurate indicators. During
the customization step, team members contribute to the assessment of the
project’s context (instantiation of the context model).

107

5. Framework Overview

Figure 5.4.: AMQuICk Metamodeling levels

5.3.3.3 Practices Repository

This repository stores the building blocks intended to be reused for authoring
agile practices. These are documented by agile experts or practitioners. It is
structured according to AMQuICk Essence. The organization may consider
storing the key agile practices reported by the community in their local
repository. At the start of the project, the agile facilitator with the team
will select the convenient and desirable practices. They can also document
the experimented practices as they become established. The repository
encompasses documentation of methods, practices organized as families,
individual practices and practices building blocks.

The methods and practices documented within this repository represent
the proven organizational knowledge. It can also be useful in training new
practitioners joining the organization.

This artifact is further discussed in Chapter 8.

5.3.3.4 Knowledge Base

In order to support the long-term vision of assisted customization of agile
methods, it is crucial to complement existing approaches with more objective

108

5.3. The AMQuICk Framework

and systematic guidance. AMQuICk proposes to structure such guidance us-
ing customization matrices stored in an organizational or inter-organizational
knowledge base.

The knowledge base should be continuously expanded and modified by
practitioners as they apply agile practices. The collection of matrices would
be exploitable to automatically generate recommendations for practitioners
willing to customize agile practices to their specific context.

This artifact is further discussed in Chapter 12.

5.3.3.5 Improvement and Capitalization Tools

The AMQuICk improvement tool is a team-level visual tool to be used for
guiding a goal-driven improvement of the selected practices. The improve-
ment backlog practice operationalizes elements from the metamodel using
an expressive graphical syntax and practice cards.

The AMQuICk capitalization tool is a kind of a post-mortem activity ani-
mated by the methodology facilitator. It is suggested as part of the capital-
ization step to facilitate the collection of the team experience regarding the
implementation of practices in context.

These artifacts are further discussed in Chapter 12.

109

Part III.

SME Perspective

This part of the dissertation investigates the first research perspective of the
dissertation which is aimed at exploring the design of an agile Situational
Method Engineering (SME) approach.

More precisely, Chapter 6 discusses the issues underlying the implementation
of a SME methodology in an agile context, explores and compares the
existing SME languages and formulates our proposal for the AMQuICk
framework core.

Then, Chapter 7 discusses the initial design of AMQuICk Essence, the
cornerstone metamodel of the AMQuICk framework.

111

Chapter 6

Agile Method Engineering

AMQuICk relies on Situational Method Engineering (SME) (see Section 3.3)
which aims at developing software methodologies that fit the specific situation
of the project at hand. The rationale for SME is that a project-specific
method is created by selecting, tailoring and assembling appropriate building
blocks that we call method components designed using a method description
language. This enables an unbiased description of method components that
can be systematically reused across projects.

However, as we previously mentioned in Section 3.3.2, applying SME in
an agile context raises several questions. In Section 6.1, we discuss these
questions in further details and propose a list of criteria that an agile method
engineering approach should meet. Then, in Section 6.2, we explore and
compare the existing SME languages in order to study their suitability for
the purpose of engineering agile methods. The comparison of these languages
is done with regards to the list of criteria identified in Section 6.1. Finally,
we justify in Section 6.3 the decision to rely on [Essence, 2014] as a basis for
the AMQuICk framework.

6.1 Requirements for an Agile Method Engineering Ap-
proach

We identified in Section 3.3.2 some of the issues underlying the implemen-
tation of method engineering in an agile context and argued the need for
an agile specific method engineering approach. In the following sections, we
describe in more details these issues and formulate the specific criteria that
such an approach should have.

113

6. Agile Method Engineering

6.1.1 Method Engineer Role

Method engineering approaches separate between the method modeling
stakeholders and method enactment (endeavor-level) stakeholders. At the
method domain, the method engineer role is in charge of specifying the
contingency factor values, retrieving the relevant components from a method
repository and composing them into situational methods (see Figure 3.9)
usually with the help of a Computer Aided Method Engineering (CAME)
tool. At the endeavor level, the team just has to know what the activities
are and in which order should they execute them.

However, since agile methods encourage teams to take the responsibility
for the evolution and adjustment of their own practices (see Table 2.1),
agile method engineering approaches have to rethink the role of the method
engineer [Fitzgerald et al., 2006]. Specifically, they should support teams to
take a more active role in the maintenance and evolution of their methods.
The usage of method repositories and CAME tools has to be redefined so that
the retrieval, population and improvement of method components directly
involve practitioners.

6.1.2 Description of Method Components

As noted earlier, method engineering represents a software method not as a
single indivisible entity but as a collection of small elements called method
components or fragments. The latter basically consist of method building
blocks descriptions from a product perspective (what to produce?) and a
process perspective (how to do it?). However, since agile methods consist
of values, principles and practices, an agile method engineering approach
should consider this specificity.

Another point of interest should be considered when implementing a method
engineering approach in an agile context: method components usually do not
include the information regarding the method evolution during the lifetime
of the project. This is problematic since agile methods are living methods
where practices change overtime (see Table 2.1). To be consistent with
this agile principle, a method engineering approach should include tangible
guidance to help teams continuously inspect and adapt their methods.

The granularity layer of method components, introduced by [Brinkkemper
et al., 1999], should also be considered when designing any SME approach.
The coarser granularity level covers a complete method and the finer level, for
example, covers a specific type of a workproduct to be delivered. As noted in

114

6.1. Requirements for an Agile Method Engineering Approach

Section 2.2.3, most of the agile methods describe best practices, roles, main
activities and provide some details on the essential workproducts to deliver
without much prescription. Therefore, agile method components should be
of average abstraction. This would make the construction of agile methods
easier while maintaining a correct level of flexibility of customization. In
fact, the layer of granularity presents a trade-off between complexity and
flexibility [Becker et al., 2007]. In other words, if the granularity level
of method components is low (coarse-grained), it is less complex to define
situation-specific methods but users would have less flexibility in customizing
fine-grained parts of methods and vis versa.

6.1.3 Construction of Situational Methods

Depending on the method engineering approach, method components can be
of different granularity, i.e., they can represent a single activity or workprod-
uct but they can also describe a complete method model. Hence, the process
of constructing situation-specific methods can start with: (1) a set of atomic
method components which must be assembled, or (2) an existing method
which has to be configured-down or extended. In the first case (1), situa-
tional methods are composed from the selection of a set of components that
originate from different methods and which are stored in some repository.
In the second case (2), the starting of the SME approach is a base method
that is divided into components which are examined according to the project
circumstances and extended, removed or configured if necessary [Becker
et al., 2007].

We present in the following sections the techniques used by each strategy
and discuss their applicability for situational agile method engineering.

Bottom-up Strategy

The bottom-up strategy also known as assembly-based or reuse-based relies
on the selection and combination of reusable pieces of methods following
formal assembly rules of four different types [Bajec et al., 2007]: (a) Process
flow rules that define conditional transitions between activities in the process
view of the method, (b) Structure rules to constrain the link between method
elements of any type (not just activities), (c) Completeness rules to help
check whether the created method includes all required components and, (d)
Consistency rules to ensure that the project-specific method is constituted
of a consistent selection of components.

115

6. Agile Method Engineering

The first two types of rules (a) and (b) put constraints on associations
between method components and the last two types (c) and (d) assure
that each constructed method is complete and consistent. As an example,
the following assembly rules can be defined by an organization to design a
consistent project-specific method (adapted from [Bajec et al., 2007]):

R1. If [the process is in a decision node regarding prototyping] and [the
domain is new or the client requires system prototyping] then [include
the activity “Develop prototype of the system”]. (Process flow rule)

R2. If [the process is in the activity “Develop prototype of the system” and
the time frame for producing the prototype is short] then [“develop the
prototype of the system” using the “Balsamiq” tool1 (Structure rule)

R3. Each activity except the last one must have at least one successor
activity (Completeness rule)

R4. Each activity must be linked with exactly one role (Completeness rule)

R5. The tool “Attlassian Jira”2 is dependent of the “Issue tracking” activity
(Consistency rule)

The method engineering research has mainly focused on the assembly-based
techniques. However, we argue that such techniques are not adapted for an
agile method engineering approach because of the following:

• Agile methods are practice-based whereas the assembly-based tech-
niques focus on the process view of methods.

• The assembly-based techniques are found to be costly in terms of use
since they require the expertise of a method engineer and the support of
composition guidelines [Becker et al., 2007]. This wouldn’t be feasible
in an agile context since the focus on the method customization should
be kept as lightweight as possible.

• The assembly-based techniques are found to be relatively costly in terms
of preparation since they should specify constraints which restrain all
possible combinations between components [Becker et al., 2007].

For these reasons, we argue that if such techniques are to be applied in
an agile context, they should be simplified so that only the inconsistencies
regarding practice associations are verified. For instance, the composition of
two exclusive practices such as “relative story point estimation” and “time
estimation” should not be allowed.

1https://balsamiq.com/
2https://jira.atlassian.com/

116

https://balsamiq.com/
https://jira.atlassian.com/

6.1. Requirements for an Agile Method Engineering Approach

Top-down Strategy

In the top-down strategy also known as extension-based, the method engineer
adapts a reference method model using the following approaches [Becker
et al., 2007; Bajec et al., 2007]:

• Configuration: Certain elements from the base method are identified
as configuration points. They may be removed, extended or modified
through matching predefined configuration rules that refer to specific
project situations,

• Instantiation: Methods components are adapted by selecting specific
values from predefined possible occurrences,

• Specialization: Method components are modified or added using a
reference metamodel or method pattern.

The configuration approach requires lots of preparation since rules should
be predefined and method components annotated according to these rules.
Similarly, the instantiation approach require consequent preparation effort
since it is necessary to designate the adaptable parts of the method repository
and the domain of valid values. This makes both mechanisms costly to
implement. However, the cost of preparation of the specialization approach
is low since it only requires the definition of a well-formed metamodel to be
used by a method engineer.

The cost of use of these approaches also should be considered. In fact, the
guidance in the case of configuration is high and consequently it is easier to
use. Instantiation provides possible values to choose from but no guidance
on what values to choose in which situation. Therefore, it is more difficult
for a method engineer to use it. Specialization is also costly to use since no
situational guidance is provided [Becker et al., 2007]

We argue that because of its low cost of use, the configuration mechanism
would be the most adapted to use by agile practitioners. However, the
configuration approach should not only rely on predefined rules if it is to
allow the agile team to contribute to the customization process as we judged
necessary in Section 6.1.1. Besides, depending on the degree of flexibility
that we wish to provide to an agile team, instantiation and specialization
can also be considered. For example, if they are allowed to introduce any
new method component to their specific method, then specialization from a
metamodel or a pattern is a solution. However, if the organization wishes to
constrain the set of possible variations, then the situational method can be
constructed using instantiation.

117

6. Agile Method Engineering

6.1.4 Summary

To synthesize, we argued in the previous sections that the following criteria
should be considered for an agile method engineering approach:

• Use: The approach should rethink the role of a method engineer and
allow practitioners to directly customize their own way of working.
Most of the agile methods define the role of a method facilitator, a
member of the team with that manages the development process. It
has the responsibility of verifying that the team comply to the defined
method, to remove any potential impediments and to help a team to
self-organize and make changes quickly. We therefore argue naturly
that the role of method engineer should be replaced by the role of a
method facilitator. Moreover, a method engineering approach should
be easy to use. A top-down strategy to method construction is therefore
privileged.

• Definition of constructs: The method description language should
be practice-focused and of a relatively high-level of abstraction since
too much details makes the process of method customization very
complex.

• Scope: The approach should focus on the method domain as well as
the method enactment and continuous improvement

• Top-down strategy: The approach should focus more on the top-
down mechanisms for method customization, since their cost of use is
lower. This implies the customization process to start by a method
base that is to be configured down.

In the following section, we will review the existing method engineering
languages and compare them with regards to the above list of criteria.

6.2 Existing Method Engineering Approaches

Using a SME approach, a specific method is created by selecting, tailoring
and assembling appropriate components from a method repository [Harmsen
et al., 1994] (see Section 3.3). The description of methods and method
components usually conform to standardized languages called Method engi-
neering languages. The most commonly used formalism to describe method
engineering languages is metamodels. The latter provide the necessary
method guidance for describing the structural aspects of software methods
such as work products, roles, development practices, resources to use and so

118

6.2. Existing Method Engineering Approaches

on. Moreover, they capture the information regarding the behavioral aspects
of software methods (the process-view) such as the sequence of activities,
the typical life-cycle for producing a specific workproduct and so on.

Several software method engineering approaches have been defined in the
last decades and each of them proposes to rely on a specific metamodel.
Section 6.2 discusses the most influential approaches, namely, the Open
Process Framework (OPF) [OPF, 2009], the Software Engineering Metamodel
for Development Methodologies (SEMDM) [ISO/IEC 24744, 2007], the
Software Process Engineering Metamodel (SPEM) [SPEM, 2008a] and the
kernel and language for software engineering methods [Essence, 2014].

In the following sections, these approaches are presented and discussed
according to the criteria presented in Section 6.1.4. Section 6.2.5 provides a
synthesis and comparison between the reviewed languages and Section 6.3
questions their suitability to agile environments and argues the choice to rely
upon the Essence language for the design of the AMQuICk customization
metamodel.

6.2.1 OPF

The OPEN Process Framework (OPF) [OPF, 2009] consists of a standard
framework intended to provide an extensible and tailorable process envi-
ronment to help organizations in the process of creating and configuring
project-specific processes.

The framework comes with an extensible repository of reusable method com-
ponents documented as hierarchical linked web pages, including construction
and usage guidelines. Every component in the repository is an “instance
of” some class in a process metamodel specified in the Meta Object Facility
(MOF) language (see Section 7.1).

A method engineer is in charge of constructing project-specific processes or
organizational standards by selecting appropriate and cost effective compo-
nents. He is also responsible for documenting, searching, retrieving, and
tailoring the method components from the OPF method repository. Fig-
ure 6.1 shows the standard core classes of method components and the
general relationships between them as described in the OPF metamodel.
The major metaclasses consist of WorkProduct (the process components
that are produced during the project), Producer (the roles or individuals
in charge of the creation of the work products) and WorkUnit (the opera-
tions performed by producers to develop the work products). These core
metaclasses are supplemented by two other top level classes: Stage (the

119

6. Agile Method Engineering

Figure 6.1.: OPEN Process Framework (OPF) core elements

time intervals organizing the work units) and Language (the components
representing the formalisms used to document work products).

The OPF components are of fine granularity. For instance, several com-
ponents aim to describe what work is to be done at different granularity
levels: Workunit (the supertype), Activity, Workflow, Task and Technique.
Activities are at a coarser granularity than Tasks although both describe

120

6.2. Existing Method Engineering Approaches

what work is to be done. Techniques state how the Task is to be under-
taken [Henderson-Sellers et al., 2008].

It is also worth noting that the OPF framework mainly concentrates on the
method domain layer at the expense of the endeavor layer and specifically on
the product view. It does not consider elements to support process enactment
nor describes mechanisms to configure or assemble method components.

6.2.2 ISO/IEC 24744

[ISO/IEC 24744, 2007] is an international standard which describes a formal
framework for the definition and extension of software development methods.
The core element of the standard is the Software Engineering Metamodel
for Development Methodologies (SEMDM) which serves as a formal base
for supporting method engineers while authoring and extending software
methods. The metamodel includes three major aspects: the process to
follow, the products to use and generate and the people and tools to involve.
Figure 6.2 depicts the core classes of the metamodel.

Figure 6.2.: ISO/IEC 24744 core elements

121

6. Agile Method Engineering

Unlike other method engineering metamodels that only define entities in
the method domain, the ISO/IEC 24744 metamodel contains both classes
to design a method and classes to capture its endeavor (enactment level).
From the practical viewpoint, this is realized thanks to dual-layer modeling
(i.e., the description of two modeling layers: method description and method
enactment) incorporating powertype patterns and claobjects [Henderson-
Sellers and Gonzalez-Perez, 2005b]. This “already breaks with commonly
known and established (MOF-based) modeling paradigms” [Kuhrmann et al.,
2013].

For example, SEMDM includes the class TaskKind and the claobject Task.
Task represents an actual task as performed at the endeavor level. TaskKind,
on the other hand, represents a kind of task as documented in a methodology.
Task has attributes such as StartTime or Duration. TaskKind has attributes
such as Name or Purpose. Obviously, every task “is-of” a particular task
kind. This is shown in the metamodel by pairing Task and TaskKind into
the powertype pattern Task/*Kind, meaning that the TaskKind class (the
powertype) partitions the Task class (the partitioned type) (see Figure 6.3).

Figure 6.3.: ISO/IEC 24744 - Powertype pattern formed by the Task and
TaskKind classes

The metamodel also integrates constructs for assessing the process at the
endeavor level (based on metrics analysis) but do not provide means for
capturing the tailoring guidance.

6.2.3 SPEM

The Software and Systems Process Engineering Meta-model [SPEM, 2008a]
is a formal metamodeling language designed by the OMG to represent
concrete software development processes and a family of related development
processes.

SPEM is specified as a standalone metamodel in the MOF language (see
Section 7.1) as well as a UML profile (an XMI schema to be integrated to

122

6.2. Existing Method Engineering Approaches

Figure 6.4.: SPEM core elements [Henderson-Sellers and Gonzalez-Perez,
2005a]

UML modeling tools) [SPEM, 2008b]. It comes with a high-level represen-
tation of methodology elements and thus can be used to specify multiple
software development approaches including waterfall, iterative, incremental
evolutionary and agile.

The basic idea of SPEM is that a development process model can be described
in terms of few abstract entities basically: “Process Role”, “Activity” and
“WorkProduct” (see Figure 6.4). The process roles are active entities that
perform operations called activities on concrete, tangible entities called
workproducts.

A key separation of concerns in SPEM regards the distinction between the
process structural view and dynamic view including temporal informations.
In practice, the process entities are separated by the two special package
types: a “MethodContent Package” and a “Process Package” (see figure 6.5).
The “MethodContent Package” defines reusable method content elements
(chunks) such as definition of roles, workproducts, tasks and guidance. The
“Process Package” reuses the methods content elements to create end-to-end
processes including temporal sequences such as iterations and phases. It also
defines when tasks are to be performed via activity sequences definition and
work breakdown structures. It provides a rich set of customization attributes
to specify the temporal guidance for process elements. Such elements allow

123

6. Agile Method Engineering

to generate customized project plans (e.g., with a user-defined number of
iterations).

Figure 6.5.: SPEM - Key entities defined in the “MethodContent Package”
and “Process Package”

As part of the “Method Plugin” package, SPEM describes a set of elements
to address the concern of scaling and tailoring methods. The package defines
extensibility and variability mechanisms for method content and processes.
It provides more flexibility in defining different variants of method fragments
and by allowing them to be plugged-in on demand, thus creating situational
content only when it is required. An overview of the package constructs is
shown in Figure 6.6.

SPEM was largely supported by process authoring tools such as the Ratio-
nal Process Workbench (RPW)3 and later the Eclipse Process Framework
(EPF)4. It was also supported by a number of plugins integrated to UML
modeling tools such as Enterprise Architect5 or Magic Draw6.

6.2.4 Essence

Essence [Essence, 2015] is a Domain Specific Language (DSL) for engineering
software methods developed as part of the SEMAT (Software Engineering

3https://www.ibm.com/software/rational
4https://www.eclipse.org/epf/
5http://sparxsystems.com/resources/developers/spem_profile.html
6https://www.nomagic.com/product-addons/no-cost-add-ons/spem-plugin

124

https://www.ibm.com/software/rational
https://www.eclipse.org/epf/
http://sparxsystems.com/resources/developers/spem_profile.html
https://www.nomagic.com/product-addons/no-cost-add-ons/spem-plugin

6.2. Existing Method Engineering Approaches

Figure 6.6.: SPEM - Key entities of the “MethodPlugin Package”

Method And Theory) initiative7. It is intended to support method engineers
as well as practitioners. An interesting point about Essence is that it is
practice-oriented rather than activity-oriented. Indeed, a method is defined
as a “composition of practices (at the desired level of abstraction) forming a
description of how an endeavor is performed.”. Therefore, Essence promises
a better support for the definition of agile methods and their enactment
comparing to SPEM [SPEM, 2008a]. However, unlike in SPEM, Essence
does not provide means to guide method assessment and customization.
It does not recognize the contextual factors faced by organizations and of
individual development teams [Ambler and Agile, 2010].

The Essence specification introduces a method architecture that distinguishes
3 core element Groups formed by the composition of basic elements: kernels,
practices and methods (see Figure 6.7 and Figure 6.9)

Figure 6.7.: Essence core elements

7http://semat.org/home

125

http://semat.org/home

6. Agile Method Engineering

A kernel provides a light-weight model of the essential aspects of software
engineering (see Figure 6.8). It provides the necessary abstract elements
to be used when instantiating any Software Engineering (SE) method: the
things we always have (alphas) (e.g., stakeholders, requirements, development
team, etc.), the things we always do (abstract activities) (e.g., understand
stakeholders needs, understand the requirements, test the system, track
progress, etc.), and the skills we always need (competencies) (e.g., analysis,
development, testing, leadership, etc.) in order to conduct software engineer-
ing endeavors. The kernel elements are organized into 3 areas of concerns:
customer, solution and endeavor.

Figure 6.8.: The essence kernel alphas

A practice is the concrete guidance of how to handle a specific aspect of
a software engineering endeavor (e.g., user stories [Agile Alliance, 2012]).
Practices may extend the software engineering kernel to provide specific
guidance on how to form a consistent method. A method is a composition of
practices. Unlike the conventional method engineering languages, in Essence,
methods are not just descriptions for developers to read, they are dynamic so
they can effectively support their day-to-day activities. This characteristic
makes Essence more suitable for an agile team [Essence, 2014].

Figure 6.10 shows an informal conceptual overview of the main language
elements and their most important associations using the graphical syntax
of the Essence specification. The elements centered in the figure, i.e. alpha,
abstract activity , workproduct, competency and pattern, provide the abstract

126

6.2. Existing Method Engineering Approaches

Figure 6.9.: Essence DSL Core Elements

and essential things to do, things to work with and things to know in software
engineering endeavors. They are used to represent both the structural and
dynamic semantics of software practices and to describe the contents of any
software engineering kernel.

Figure 6.10.: Essence DSL - Conceptual overview

127

6. Agile Method Engineering

The Alpha (an acronym for Abstract Level Product Health Attribute) repre-
sents an essential element for making methods actionable. They are used to
visualize the achievement of objectives at different level of concerns (e.g., so-
lution, team work, customer, etc.). Alphas are provided with evolving states
that are further detailed into checkpoints. Using these simple mechanisms,
the project accomplishments can be simply controlled. Accomplishments
may also be visualized using the graphical syntax of Essence and physical
cards. Figure 6.11 shows examples of a physical alpha state cards (colored
according to the area of concern) with a specific current state and a checklist
of what should be done to achieve the state.

Figure 6.11.: Essence DSL - Examples of alpha state cards

The Essence users are provided with a Practice Workbench8 for composing,
authoring and managing software development practices and methods (see
Figure 6.12).

6.2.5 Comparison

A number of method engineering metamodels have been proposed in Situa-
tional Method Engineering research. In the previous sections, we have criti-
cally examined four of these: the OPEN Process Framework (OPF) [SPEM,
2008a], the Software Engineering Metamodel for Development Methodologies
(SEMDM) [ISO/IEC 24744, 2007], the Software Process Engineering Meta-
model (SPEM) [SPEM, 2008a], and the Kernel and Language for Software
Engineering Methods (Essence) [Essence, 2015]. For each metamodel, we
discussed its specification, usability, constructs granularity, tool support and
whether it integrates method assessment and customization guidance.

8https://www.ivarjacobson.com/esswork-practice-workbench

128

https://www.ivarjacobson.com/esswork-practice-workbench

6.2. Existing Method Engineering Approaches

Figure 6.12.: EssWork Practice Workbench.

A comparative analysis is shown in Table 6.1. First, this comparison shows
the particularity of the ISO 24744 language [ISO/IEC 24744, 2007] regarding
the formalism. In fact, it relies on a dual-layer formalism using powertypes
and claobjects to separate the method constructs from their application.
The other languages combine all the method constructs in a single layer
corresponding to MOF M1 level (see Section 7.1). Another difference re-
garding the formalism consists in the fact that Essence uses a BNF-like
syntax to express different constraints regarding the semantic of language
constructs.

Another noteworthy difference relates to the abstraction level (i.e., the
degree of details incorporated into language constructs). OPF, ISO 24744
and SPEM highly detail the set of language constructs whereas ESSENCE
keep them at coarse granularity. Details are to be added by languages
users thanks to specific constructs such extension elements and kernel. As
discussed in Section 6.1, this might reduce the complexity of implementing
and using a method engineering approach relying on Essence.

In terms of usability, it appears that all the investigated languages mandate
specialists, namely, method engineers to author methods and associated
elements such as activities, workproducts and producers. For instance,
to describe an agile method such as Scrum, the method engineer would
define practices such as “sprint”, “user stories” and “relative estimation”,
activities such as “daily scrum” and “sprint review” and workproducts such
as “burndown chart”, “product backlog” and “sprint goal”. At the endeavor
level, software developers use the described methods: they apply practices,

129

6. Agile Method Engineering

hold activities, and create effective software products. Except in the case
of Essence, developers have almost no control on the method description,
configuration and improvement. Indeed, when using Essence, they still have
the possibility to visually bring the method into action and to automatically
track the goals achievement.

Regarding the method assessment, it appears that both ISO 24744 and
SPEM define a number of measurement-based concepts for assessing the
quality of the designed method. Their definition of the quality assessment
is therefore rather disciplined (see Section 2.1.5). In the other hand, the
assessment of a method designed in Essence is ensured using a continuous
tracking of Alpha states which is more in line with the agile principles (see
Section 2.2.5).

Regarding the aforementioned discussion, we have chosen to reuse the
metamodel defined by the Essence DSL. This choice is justified on the one
hand by the definition of method constructs in Essence (coarse granularity
and practice-based) and on the other hand by its focus on methods use
(methods constructed using Essence are meant to be actionable at the team
level). The selection is also explained by the fact that Essence “supports
methods agility, meaning that practices and methods can be refined and
modified during a project to reflect experience and changing needs” [Essence,
2015].

In the next section, we discuss the need to extend it to fit the requirements
discussed in Section 6.1.1.

6.3 Proposal for the AMQuICk Metamodel

Regarding the requirements for an agile method engineering approach dis-
cussed in Section 6.1 and the comparison of method engineering languages
provided in Section 6.2, we argued that Essence is the most suitable SME
language for the AMQuICk metamodel.

However, the Essence metamodel should be adapted and enriched since it
lacks the necessary knowledge for context-driven customization. Specifically,
the following features should be considered:

• Define the necessary element for structuring agile methods components
at a relatively high-level of abstraction since too much details makes
the customization process more complex.

130

6.3.
Proposalfor

the
A
M
Q
uIC

k
M
etam

odel

Table 6.1.: Comparison of situational method engineering languages
Characteristic OPF ISO 24744 SPEM ESSENCE

Reference [OPF, 2009] [ISO/IEC 24744,
2007]

[SPEM, 2008a] [Essence, 2014]

Last Release December, 2001 December, 2014 Version 2.0, April,
2008

Version 1.1, Decem-
ber, 2015

Specification MOF-based meta-
model

Powertype-based
metamodel

MOF-based meta-
model

MOF-based meta-
model

UML 2.0 profile UML 2.0 profile
BNF-style Textual
Notation

Scope Method domain Method domain Method domain Endeavor
Endeavor Endeavor (Methods are ac-

tionable and track-
able)

Utilization Method Engineer Method Engineer Method Engineer Method Engineer
and Team

Constructs Granularity Fine-grained Fine-grained Fine-grained Coarse-grained

Practice-based (vs activity-based) 7 7 7 X

Continued in next page ...

131

6.
A
gile

M
ethod

Engineering

Table 6.1.: Comparison of situational method engineering languages (continued)
Characteristic OPF ISO 24744 SPEM ESSENCE

Lightweight assessment guidance 7 7 7 X
Disciplined Mea-
surement concepts

Means to track
progress using
Alpha and Alpha
State

Customization guidance 7 7 X 7

Concepts for mod-
eling configurability,
variability and tai-
loring needs

Graphical Notation 7 X X X

Tool Support Repository of OPF
components

7 RPW 1 EssWork Practice
Workbench 5

EPF 2

UML modeling plu-
gins 3,4

132

6.3. Proposal for the AMQuICk Metamodel

• Define the necessary elements for structuring an agile experiences
factory that would inspire teams, enhance inter-teams learning and
facilitate the creation of customized methods at a project level.

• Define the context in which practices will be applied: the context
attributes determine the applicability of practices as well as how they
should be tailored.

• Extend the graphical syntax to be used by team members in order
to support the documentation of practices and to visualize the team
experience easier.

133

Chapter 7

AMQuICk Essence Core

Foundation and Practice Content Packages

As explained in Chapter 5, the metamodel for agile methods customization
that we call AMQuICk Essence is a cornerstone of the AMQuICk approach.
First, it is designed to facilitate the construction of contextualized agile
methods, i.e., it specifies the concepts, rules and relationships required for
authoring agile method components and for combining them into context-
specific methods. Secondly, it is also to be used as a structure for the
repository of reusable practice components. Lastly, it allows to record the
customization knowledge base of agile methods (see Chapter 12). The
resulting models contain the building blocks of a software method and the
knowledge about how these should be combined and customized.

The AMQuICk Essence metamodel has been incrementally developed and
refined through 4 iterative design cycles. As a result of the first design cycle,
we present in this chapter the core of the metamodel which describes the
necessary elements to author agile practices.

Section 7.1 describes how the core elements of AMQuICk Essence fit into the
Meta-Object Facility (MOF) architecture. Section 7.2 explains how the core
elements of the metamodel are structured into packages. Sections 7.3 and 7.4
focus on the specification of the core elements allowing to author methods,
practices and practice repositories. Section 7.5 demonstrates the usage of
the designed constructs. Finally, we discuss in Section 7.6 the opportunities
of refining AMQuICk Essence by extending it with the evidential knowledge
according to practices objectives and context requisites.

135

7. AMQuICk Essence Core

7.1 Specification

In order to explicit the concepts required for authoring and customizing agile
methods, our approach relies on metamodeling, i.e., it defines a metamodel to
express the abstract syntax and the structural relationships between method
elements. The metamodel is based upon the metamodel supporting the
Essence language for methods engineering [Essence, 2014] (see Section 6.2.4).
We therefore call it “AMQuICk Essence”.

Figure 7.1.: The Meta-Object Facility (MOF) layers

It also fits into a standard specification technique, the Meta-Object Facility
(MOF) [MOF, 2011]. The Meta-Object Facility is the conceptual architecture
defined by the Object Management Group (OMG) for supporting Model-
Driven Architecture (MDA). It is designed as a four layered architecture
shown in Figure 7.1. The four levels (from M0 to M3) allow the representation
of the software method constructs at different abstraction levels:

• Level 0 - Method Enactment/Endeavor Level: the concrete elements
of the running development methodology (e.g., the run-time instance
of a practice applied by the team)

• Level 1 - Method Level: the elements specifying the method model
(e.g., the description of a specific practice such as pair-programming
or test driven development)

• Level 2 - Method Metamodel Level: the metamodel describing the types
of method constructs (e.g., the description of the practice construct
type)

• Level 3 - Meta-metamodel: the universal specification language al-
lowing the definition of any domain-specific metamodel, including

136

7.1. Specification

the different constructs used for expressing this specification, like a
“meta-class” or a “binary directed relationship”.

People working on an endeavor (e.g., a specific software development project)
are concerned by the Enactment/Endeavor Level. They make use of method-
ologies, tools and so forth, which are all defined in the Method Level. These
two levels is all what the software development team is concerned with.
The other pair of levels, i.e., the Method Metamodel Level and the Meta-
metamodel Level, is of interest to methodologists, method facilitators, and
tool builders [Tran et al., 2009].

Figure 7.2 shows how the core elements of the AMQuICk framework match
this conceptual architecture. AMQuICk Essence logically fits at the M2-level.
It includes the domain-specific constructs (meta-classes) representing the
semantic of agile methods customization.

Figure 7.2.: AMQuICk Essence Levels

Agile methods and their constitutive elements belong to models at the M1-
level (method definition level). These models are instances of the AMQuICk
Essence Metamodel. This means that the agile facilitator would instantiate
practices and associated agile building blocks at the M1-level. For instance,
to describe an agile method like Scrum, the method facilitator would define
practices such as Sprint Planning and Daily Scrum, activities such as Sprint
Planning Meeting and work products such as Sprint Backlog at M1-level. He
also would document any known or experienced practice configurations.

137

7. AMQuICk Essence Core

A team implementing a default or a configured version of Scrum in a specific
project would be working at the M0-level (method enactment level). The
project team would hold different instances of Sprints Planning, and Daily
Scrums and produce multiple Sprints backlogs.

AMQuICK Essence is consistent with the Essence metamodel, i.e., a mapping
or a transformation between the two metamodels is possible. However, the
Essence metamodel is made very abstract, it is complemented by a set of
invariants using the Object Constraint Language (OCL) syntax in order to
express correctness constraints on the metamodel [Essence, 2015].

In the design of the AMQuICk Essence, we made the choice of expressing
as much constraints as possible using the UML diagrammatic notation
to facilitate its comprehension. This design choice was possible because
the range of constraints on the constructs of the metamodel is known and
manageable. Only few constraints could not be expressed otherwise than by
the use of OCL.

7.2 Structure

AMQuICk Essence consists of methodological elements that are used for
more than just simply generating method descriptions for teams. These are
defined into 4 packages:

• Foundation: inherits the generic language constructs from Essence.

• Practice Content: contains the definition of agile methods con-
structs, namely the practices and associated aspects such as activities,
roles, workproducts and resources.

• Customization: captures the constructs necessary to elicit the con-
text and customization knowledge.

The following sections present the packages investigated during the first
design iteration, i.e., the Foundation and Practice Content Packages.

7.3 Foundation Package

The Foundation package describes all the base elements, including abstract
super classes, necessary to form a baseline foundation for AMQuICk Essence.
The core elements of this package and their relationships are inherited and
slightly adapted from the Essence metamodel (see Figure 7.3). A detailed

138

7.3. Foundation Package

Figure 7.3.: Foundation package - Core elements

definition of each of the foundation package constructs (meta-classes) is
provided below.

7.3.1 LanguageElement

Definition 7.1 (Language Element). An abstract superclass for any AMQuICk
Essence concept required for constructing and customizing software develop-
ment methods (adapted from [Essence, 2014]).

Figure 7.4.: Foundation package - LanguageElement associations

A Language Element is the root for all basic elements, element groups and
other generic elements. It defines all the concepts required for creating
composite entities. Any language element may be related to Tags and
Resources (see Figure 7.4 and Table 7.1).

139

7. AMQuICk Essence Core

Table 7.1.: Directional associations owned by a LanguageElement construct
type

Association Multiplicity Description

tag : Tag [0..*] Tags used in labeling the language element.

resource : Resource [0..*] Resources used to associate additional infor-
mations to the language element.

7.3.2 BasicElement

Basic elements are constituted of the essential building blocks to be used
in authoring and customizing agile practices. Basically, they capture the
elemental and essential things to do, things to work with and the knowledge
of how to do things. Basic elements can be defined as follows:

Definition 7.2 (Basic Element). An abstract superclass for all the elemental
concepts that may be used for constructing software practices.

Basic elements represent the small configurable parts of practices that teams
interact with and adjust to create new practice configurations. Its subtypes
consist of Activity, Workproduct, RoleUse, Role, Competency, Measure and
Criterion (see Section 7.4 and Figure 7.11). The Basic Element construct
type is directly inherited from Essence and is identified by a name, icon, a
briefDescription and a description (see Table 7.2).

Table 7.2.: Attributes characterizing a Basic Element construct type
Attribute Type Description

name String The name of the basic element.

icon Graphical Element The graphical representation of the basic
element.

briefDescription String A short and concise description of the basic
element.

description String A more detailed description of the element
that eventually contains rich formatting in-
formations.

The icon attribute provides a graphical syntax for practice components. It
is of type GraphicalElement, a data type introduced by the Essence DSL.
Using this attribute, it is possible to instantiate a full graphical syntax for
method components that may be useful for making methods actionable. In

140

7.3. Foundation Package

Section 8.4, we discuss the usefulness of such graphical facilities to design
practice cards which can be visualized in the workspace of an agile team
and used for stimulating retrospectives.

7.3.3 ElementGroup

Definition 7.3 (Element Group). An abstract superclass for all the com-
posite concepts of AMQuICk Essence.

ElementGroup is a generic Essence concept that is used to design meaningful
collections of elements that belong together for some purpose. An element
group owns or refers other language elements.

As shown in Figure 7.3, it is the supertype for Method, Practice, Prac-
ticeRepository and KnowledgeBase (the latter will be discussed in Chap-
ter 12). Similarly to basic elements, an Element Group is characterized by
a name, icon, a briefDescription and a description. It is also characterized
by two additional attributes, time and universe (see details in the next
paragraph), that allow to capture element group versions.

An Element group may own or refer one or many basic elements (see
Figure 7.5).

Figure 7.5.: Foundation package - ElementGroup and Basic Element associ-
ations

Meaning of Time and Universe

Agility promotes evolving software processes that are aligned with changing
business objectives. To capture the evolution of agile practices, methods and
even practice repositories overtime, we define the time attribute of Type
Integer. This attribute allows to capture not only the current version on an
Element Group but also its history of configurations. The default time value

141

7. AMQuICk Essence Core

base_time = 0 represents the very first configuration of an element before
any change is introduced at a specific point of time.

Figure 7.6.: Foundation package - Usage of time and universe attributes

In same manner that every object in AMQuICk Essence models is asso-
ciated to a time point, it is also associated to a universe. The reasoning
behind this concept is that the same agile component can exist in different
parallel versions depending on the organization in which it is implemented.
In the metamodel, we represent this concept as an attribute of Element
Group of Type Integer. The default universe value base_universe = 0
represents the default definition of the component independently from a
specific organization. When a particular object is designed with the default
settings (base_time, base_universe), it means that it is part of the
default settings of the AMQuICk framework.

An illustration of element groups, demonstrating the usage of time and
universe attributes is provided in Figure 7.6.

7.3.4 Method

Definition 7.4 (Method). A composition of a set of configured practices
(at a desired level of abstraction) forming a description of the practitioners’
way of working.

Methods are not only specifications for developers to read. They represent
their actual way of working, i.e., they describe the structural as well as the
behavioral aspects of their daily work activities and things that are actually
done. This is a different perspective from the conventional definition of

142

7.3. Foundation Package

software methods that is found in influential metamodels such as [ISO/IEC
24744, 2007] or [SPEM, 2008a] which differentiate between a method content
and its application in a process.

Table 7.3.: Attributes characterizing a Method construct type
Attribute Type Description

purpose String A concise description of the method goal, expressed
in a simple statement. For example, a method
purpose may be expressed as follows:

• Enhancing the agile mindset
• Scaling agility at the organizational level
• Delivering value continuously
• Delivering value iteratively
• Experimenting and learning rapidly
• Improving the product functional quality
• etc.

Additional information can be provided using the
description attribute inherited from the Element
Group construct type.

type UserDefinedType A user of the metamodel may define additional
method types to categorize methods. For example,
a method can be of the following types: project
management, development, maintenance or soft-
ware deployment operations.

To represent the real way of working of agile teams, a method is designed in
AMQuICk Essence as a composition of a set of practices (see Figure 7.7).
It has a purpose and may be of a specific user-defined type (see Table 7.3).
As mentioned in [Essence, 2015], the set of practices composing a method
should assure the coherence, consistency, and completeness properties (see
Section 6.1.3). These properties are assured if the created method includes
all required practices that entirely fulfill its purpose and if it is constituted
of a consistent selection of practices (verified using the PracticeAssociation
construct type).

At the M0 level, the method model is composed of a set of configured
practices and resources used by the team to guide and support their work.
Example of resources are project management tools such as Atlassian Jira1,

1https://www.atlassian.com/software/jira

143

https://www.atlassian.com/software/jira

7. AMQuICk Essence Core

source control tools such as GitHub2 or continuous integration tools such as
Jetbrains TeamCity3.

Figure 7.7.: Foundation package - Practice associations

7.3.5 Practice

A basic concept in methods authoring using AMQuICk Essence is the
Practice construct type. It constitutes the basic building blocks and the
entry point to describe any well-formed agile method. A practice is defined
as follows:

Definition 7.5 (Practice). A guidance on how to handle a specific aspect
of software development or teamwork. It consists of the proven, repeatable
and systematic way of doing work that has a positive impact on the product
or process quality (adapted from SPEM [2008a] and Essence [2014]).

A Practice construct type is a derivation of an element group (see Figure 7.3).
It is used to describe the guidance on how to perform a specific work, the
strategy to do it and the instructions to verify that the objectives have been

2https://github.com/
3https://www.jetbrains.com/teamcity/

144

https://github.com/
https://www.jetbrains.com/teamcity/

7.3. Foundation Package

achieved. If a practice is composed of a set of activities, the achievement of
its objectives is verified using the CompletionCriterion construct type.

The effectiveness of practices may also be verified using theMeasure construct
type. Indeed, practices can be associated with measures (see Section 7.4.6).
For example, the “continuous deployment practice” can be associated with
a set of measures such as “deployment frequency” and “failed deployment
percentage” (see Figure 7.16). Such measures should be visible (i.e., referred)
within a practice description. This is done using the refers relationship
between the Practice and BasicElement construct types (see Figure 7.5).

Different types of practices can be defined by AMQuICk Essence users. In-
deed, practices usually address different areas of development and teamwork.
Therefore, similarly to methods, a practice construct type has a specific
user-defined type attribute . Table 7.4 details the attributes available to
characterize a practice.

A practice can be part of several methods and refers or owns basic elements
(see Figure 7.7). It can be associated to other practices using the Prac-
ticeAssociation construct type (see Section 7.3.6). Indeed, most practices
do not capture all aspects of how to perform a specific aspect of software
development. Instead, a practice addresses only one perspective and need to
be complemented to be effective. To achieve this, it can be associated to
other complementary practices.

As earlier explained, practices may exist of parallel versions depending on
the SituationalContext to which they are associated. For example, a “daily
meeting” may exist in different versions in different practice repositories.
Each version corresponds to a specific configuration of the practice aimed
for a specific situational context.

A full example of practice authoring is shown in Figure 7.17.

7.3.6 PracticeAssociation

A practice can be associated to other practices using the PracticeAssociation
construct type which is defined as follows:

Definition 7.6 (PracticeAssociation). A construct type used to represent a
relationship or a dependency between practices.

A practice relates a source practice to one or many target practices (see
Figure 7.7). To ensure that a practice cannot be associated to itself, we
define the following OCL constraint:

145

7. AMQuICk Essence Core

Table 7.4.: Attributes characterizing a Practice construct type
Attribute Type Description

objective String The objective that the practice pursues expressed
in a short statement. Additional explanations can
be provided in the description attribute which is
inherited from ElementGroup

entry String A textual list of conditions or criteria required to
start the execution of a practice. This attribute is
to be used when we want to provide an overview
of what is needed to start the practice.
If a more precise list of entry conditions is to be
provided, it is recommended to rather use the En-
tryCriterion construct type that accurately defines
entry conditions in terms of Workproducts.

result String A textual list of conditions or criteria obtained as
outputs after the execution of a practice. This
attribute is to be used when we want to provide
an overview of the results of a practice.
If a more precise list of completion conditions is
to be provided, it is recommended to rather use
the CompletionCriterion construct type that ac-
curately defines completion conditions in terms of
Workproducts.

type UserDefinedType A user of the metamodel may define additional
practice types to categorize practices. For example,
a practice can be of the following types:

• Development practices: composed of ele-
ments required for developing the software
product, designing user interfaces, track the
product versions, etc.

• Teamwork practices: practices aimed at im-
proving teamwork values such as collabora-
tion, communication and transparency.

• Organizational practices: practices aiming
to apply the agile mindset in the entire or-
ganization.

-- A practice cannot be associated to itself

Context PracticeAssociation inv:
self. targetPractice -> forAll (p | p <> self.

sourcePractice)

Besides, to prevent a source practice from being associated with the same
target practice twice, we defined the following constraint:

146

7.3. Foundation Package

-- An association between a source practice and a target
practice is unique

Context PracticeAssociation inv:
self. forAll Instances () -> forAll (pa1 , pa2 |
pa1. sourcePractice = pa2. sourcePractice implies
(pa1. targetPractice . allInstances () -> intersection (pa2.

targetPractice . allInstances ()))-> isEmpty ())

A practice association may be of 5 kinds: configuration, equivalence, de-
pendency, complementarity or exclusion (see Figure 7.7). These association
kinds are defined in the following paragraphs.

Configuration

Every practice of the software development endeavor can be configured in
a way that is convenient to the team or organization. For example, the
“Sprint Planning” practice may be configured for a distributed environment
by spending some more time pre-planning for future sprints to identify
interdependencies as soon as possible. Also the practice should be configured
in a convenient way so the distributed teams could interact easily with each
others (for instance by using videoconferencing tools). All this information
is captured in a second practice to be associated with the default “Sprint
Planning” practice using the PracticeAssociation construct type and using
the time and universe attributes (see Section 7.3.3).

A practice can be configured in various ways by making a specific arrange-
ment of practice constructs (i.e., basic elements and auxiliary language
elements). To indicate that two practices configure the same default prac-
tice, a PracticeAssociation of kind configuration should be created. The
sourcePractice[1] end point corresponds to the default practice and the
targetPractice[0..*] end point relates the set of configured practices (see
Figure 7.7).

A practice should have one and only one default configuration where
base_time = 0. Practice configurations from the AMQuICk default reposi-
tory are necessarily associated to one default practice where
(base_time, base_universe) = (0, 0)

Equivalence

Equivalence between two practices occurs when similar results are reached
from similar entries and similar objectives. In other terms, if we define
a practice P as a triple formed by an Entry (E), an Objective (O) and a
Result (R): P = (E, O, R), we say that P1 = (E1, O1, R1) is equivalent to
P2 = (E2, O2, R2) if and only if :

147

7. AMQuICk Essence Core

E1 is similar to E2
O1 is similar to O2
R1 is similar to R2

Note that this similarity is determined by agile software development ex-
perts.

Two equivalent practices substitute each other. Therefore, they cannot be
part of the same method. For example, the XP practice “Planning Game”
is equivalent to the Scrum practice “Sprint Planning”. When both practices
are selected to compose a method, only one should be retained.

Dependency

Dependency between two practices occurs when one practice requires another
to be consistent. A practice P 2 = (E2, O2, R2) depends on another practice
P1 = (E1, O1, R1) if the results of P1 are required as an input for P2:

R1 ⊂ E2

For example, the “User Story Mapping” practice cannot be implemented if we
do not implement the “User Story” practice to capture the requirements.

Complementarity

Complementarity designates a relationship in which two or many practices
improve or emphasize each other’s qualities. A practice P2 complements a
practice P1, if P2 contributes with extra features to P1 in such a way to
improve it.

For example, the “Relative estimation” practice (see Section 7.19) is com-
plementary with “User Story” since it adds extra features for improving the
subjective estimation of user stories.

Exclusion

Exclusion between two practices occurs when two practices cannot be imple-
mented at the same time because they have contradictory objectives. For
example, two exclusive practices can be: (Test Driven Development and Test-
after) or (Relative estimation and No Estimation (recommended by Lean)).
Similarly, the Code Review practice is exclusive with Pair-programming
since the later implies that developers write, inspect, and change the code
continuously in pairs. A code review, in contrast, involves inspecting the
code later, usually when the author thinks it is ready for deployment.

148

7.3. Foundation Package

In other terms, a practice P1 = (E1, O1, R1) excludes a second practice
P2 = (E2, O2, R2) if and only if:

O1 is contradictory with O2

Note that contradiction of two practices’ objectives is determined by agile
software development experts.

7.3.7 PracticeRepository

As earlier discussed, a PracticeRepository construct type intends to capture
organizational experiences in implementing agile practices and methods. It
may be defined as follows:

Definition 7.7 (Practice Repository). A container of established and con-
figured practices and methods that provides one or more organizations with
meaningful guidance for a specific area of knowledge (e.g., organizational
agility).

A practice repository stores the expertise of a unique organization or several
organizations. By default, it comes with a predefined set of default practices
(i.e., those documented in the default AMQuICk repository).

Figure 7.8.: Foundation package - PracticeRepository associations

The association of practice repository to other construct types is ensured
using the owns and refers relationships to the ElementGroup entity (see
Figure 7.8). A practice repository PR1 having a universe value u1, will
own all practices or methods of the same universe. Practices or meth-
ods from a different universe are only associated as referred elements (see
Section 7.3.3).

The following OCL constraints are needed to verify that a practice repository
cannot be associated with other construct types than Practice and Method.

149

7. AMQuICk Essence Core

-- A PracticeRepository cannot be associated to itself

Context ElementGroup
inv: self. oclAsType (PracticeRepository). ownerRepository

-> isEmpty ()
inv: self. oclAsType (PracticeRepository).

referrerRepository -> isEmpty ()

-- A PracticeRepository cannot be associated to a
KnowledgeBase

Context ElementGroup
inv: self. oclAsType (KnowledgeBase). ownerRepository ->

isEmpty ()
inv: self. oclAsType (KnowledgeBase). referrerRepository ->

isEmpty ()

7.3.8 UserDefinedType

A UserDefinedType is used to constrain the definition of typed elements. It
is directly used at the endeavor level, without an instantiation process. It is
defined as follows:

Definition 7.8 (UserDefinedType). A UserDefinedType is a named type
containing a description and constraints that can be used to detail typed
elements (adapted from [Essence, 2014]).

As explained in Sections 7.3.9 and 7.3.10, user defined types are to be
instantiated at the M1 level to constrain the usage of resources and tags.
An example of a UserDefinedType construct is provided in Figures 7.9
and 7.10.

7.3.9 Resource

In order to be able to extend the definition of method elements with external
resources, the metamodel integrates a Resource construct type that can be
defined as follows:

Definition 7.9 (Resource). An external source of information referenced
by an AMQuICk Essence model (adapted from [Essence, 2014]).

A Resource is used to add external informations to any modeling construct.
It is directly used at the endeavor level, without an instantiation process.
For instance, resources are used to reference external descriptions, templates
or guidelines for methodology elements. A resource is simply characterized

150

7.3. Foundation Package

by a resource type and a content(see table 7.5). It is to be associated to
a unique language element (see table 7.1). The resource type is a userDe-
finedType (see Section 7.3.8). It is used to enable consistent representation
and interpretation across community or inter-organizational repositories
of practices [Essence, 2014]. For example, a resource type may be simply
defined as an enumeration of the following values: book, research paper,
experience report, video, tool, template, etc.

Table 7.5.: Attributes characterizing a Resource construct type
Attribute Type Description

type UserDefinedType The user defined type associated with the resource.
This is used to define more specific types such as
books, research papers, etc.

content String A reference to the content of the resource. If no
type is provided, the reference is provided in any
suitable way (e.g., an url, pdf, etc.)

Figure 7.9.: Foundation package - Example of resources

7.3.10 Tag

A Tag is used to attach some labeling to a specific modeling construct. It is
directly used at the endeavor level, without an instantiation process. It may
for example be used to add search labels to a specific method component.

Definition 7.10 (Tag). A label attached to a language element for the
purpose of identification or to provide additional information (adapted
from [Essence, 2014]).

151

7. AMQuICk Essence Core

Table 7.6.: Attributes characterizing a Tag construct type
Attribute Type Description

type UserDefinedType The user defined type associated with a tag. This
is used to define specific types version tag, search
tag or area of concern tag.

content String A reference to the content of the tag.

Examples for tagging include author tags, version tags, and categorization
into areas of concern like “team space”, “customer space”, “solution space”
or “project management space”. An example of tags definition is illustrated
in Figure 7.10.

Figure 7.10.: Foundation package - Example of tags

7.4 Practice Content package

The PracticeContent package contains the basic elements required for au-
thoring agile practices. The elements and their relationships allow to both
represent the structural and behavioral aspects of practices. They may be
composed in different ways to generate simple or rich (in expressiveness and
usefulness) practice models.

Rich modeling is allowed by the metamodel since some organizations may
require thorough method guidance. However, the recommendation of the

152

7.4. Practice Content package

AMQuICk framework is to keep practice models as simple as possible in
order to ensure a wider applicability, greater adaptability and acceptance
by the agile community. Simple practice models should be perceived as a
descriptive tool to share mental models and to enable continuous learning.
They conceptualize what people actually do and how they do it and not what
we think they should be doing [Kruchten, 2011]. Therefore, they should not
be prescriptive regarding the gradual transformation of artifacts and the
work breakdown into activities and tasks.

Moreover, unlike Essence, the elements of this package do not focus on track-
ing the team progress but rather on capturing the possible configurations of
methods and practices (i.e., the specific arrangement of practice construc-
tion elements). In other terms, while Essence focuses on the dynamic of
methods use (supported and enforced by tools), AMQuICk Essence targets
the dynamic of methods evolution and customization.

Furthermore, AMQuICk Essence focuses on the customization of practices.
Specifically, it describes other constructs outside the PracticeContent package
to support this aspect (see Chapter 12).

An overview of the package elements is provided in Figure 7.11. A detailed
definition of each of these constructs is provided in the following subsections.

Figure 7.11.: PracticeContent package - Elements overview

153

7. AMQuICk Essence Core

7.4.1 Activity and ActivityAssociation

Activities constitute basic and essential elements to describe the dynamic
behavioral of practices. Essence incorporates several constructs for capturing
the dynamic behavior of methods, including Alpha, Activity, ActivityAssoci-
ation, State, Checkpoint and Action. As earlier argued, AMQuICk Essence
captures such dynamic behavior in less details since it focuses on structuring
practice building blocks and not on tracking the progress of work or on de-
scribing the exact breakdown structure that progressively transform product
artifacts. Therefore, only the Activity and ActivityAssociation construct
types were retained.

An activity constitutes the basic unit of work captured by AMQuICk Essence.
It describes the work to be performed in order to contribute to or achieve
the objectives of the owned practice. It is defined as follows:

Definition 7.11 (Activity). A concrete definition of the basic unit of work
performed within a practice. (adapter from [SPEM, 2008a] and [Essence,
2015])

If a rich practice model is to be created, entry and completion criteria
(Criterion construct type) may be associated with each activity composing
the practice. An activity could start if its entry criteria are fulfilled and
is considered as completed if all its completion criteria are fulfilled. These
criteria may be expressed using a simple textual notation or in terms of the
level of detail of a workproduct (see Section 7.4.4). Indeed, the completion
of an Activity may be subject to the achievement of a certain level of
completeness of a workproduct.

Besides, activities may be associated with competency levels and competen-
cies (see Section 7.4.3).

Finally, activities may be related to each other using the ActivityAssociation
construct type (see Figure 7.12) which is defined as follows:

Definition 7.12 (ActivityAssociation). A relationship or dependency be-
tween two activities expressed by an owner practice to capture a work flow
or a work breakdown structure.

Activity associations may be of different types among which: part-of, start-
before-start, start-before-end, start-after-start and start-after-end. For exam-
ple, if the kind of the association is part-of, it means that the first end of the
association (i.e., activity1) is part of the second end of the association (i.e.,
activity2). Similarly, if the association is of kind start-after-end, it means

154

7.4. Practice Content package

that the first end of the association (i.e., activity1) starts after the end of
the second end of the association (i.e., activity2) (see Figure 7.12).

Figure 7.12.: PracticeContent package - Activity view

7.4.2 Competency and CompetencyLevel

A competency refers to the capabilities, knowledge and skills required to
complete an activity successfully. It can be of different levels. For example,
to perform the “Unit Testing Activity” the performer (i.e., a team member)
is required to have a good knowledge of one automated testing framework
such as JUnit4, Mockito5, or pytest6.

We define Competency and CompetencyLevel as follows:

Definition 7.13 (Competency). A competency is a quantifiable capability,
knowledge or skill required to perform an activity successfully.

Definition 7.14 (CompetencyLevel). A CompetencyLevel is a measure that
quantifies the capabilities required to perform the activity.

As earlier noted, competency levels contribute to the rich modeling of
practices. A systematic definition of competency levels for all activities
composing a software practice is not at all recommended by AMQuICk
since this could result in highly prescriptive practice models. Rather, for

4https://junit.org/junit5/
5http://site.mockito.org/
6https://docs.pytest.org/en/latest/

155

7. AMQuICk Essence Core

informative purposes, competencies can be directly attached to practices
without necessarily specifying the level of expertise that is required.

7.4.3 Workproduct and LevelOfDetail

A workproduct refers to any artifact developed and produced during the
project by the development team to support the overall software development
process. We define it as follows:

Definition 7.15 (Workproduct). Any artifact developed and produced during
the project that delivers value at any step of a software engineering endeavor.

Figure 7.13.: PracticeContent package - Workproduct view

A workproduct can be of different types such as internal reports, specification
documents, models, technical notes, code, tests scripts, QA plans, bug lists,
deployment notes, and so on. It can also be an internal or external deliverable
or a description for non-tangible product elements.

Workproducts may be described at different level of details (see Figure 7.13).
The LevelOfDetail construct type is used to describe the quantity and
granularity of information that is present in a workproduct. For example,
they allow to distinguish between “a [high-level] system architecture, a
formally modeled system architecture, and an annotated system architecture
which is ready for code generation” [Essence, 2015]. It depends on the
practice to define which of these detail levels is sufficient.

156

7.4. Practice Content package

It is important to note that levels of detail may be used to define completion
or entry criteria for practices or activities. For example, the completion
criteria of a “User Story” practice is achieved when the produced Story is
estimated and if it contains acceptance criteria (see Figure 7.17).

7.4.4 Criterion, CompletionCriterion and EntryCriterion

The Criterion construct type and its subtypes CompletionCriterion and
EntryCriterion are used to inform about the conditions that determine
whether a practice or an activity composing it is ready to be executed
(entered) or to be indicated as complete. These construct Types are defined
as follows:

Definition 7.16 (Criterion, CompletionCriterion and EntryCriterion). Con-
ditions that can be tested as True or False to determine whether a practice
or an activity can be entered or is complete (adapted from [Essence, 2015])

Figure 7.14.: PracticeContent package - CompletionCriterion example

A Criterion must be specialized by either EntryCriterion or Completion-
Criterion. It may be expressed in terms of a required level of detail of a
specific workproducts. For example, the completion of the “Test Driven
Development” practice is subject to a “is passed” status of all instances of
the workproduct “unit test” (see Figure 7.14). An activity or a practice is
considered as completed or ready to start when the specific level of detail
defined by the criterion is reached. A criterion may also be expressed inde-
pendently from a workproduct’s level of detail. Back to the “Test Driven

157

7. AMQuICk Essence Core

Development” practice example, another completion criterion would be the
achievement of a test coverage of 100% (see Figure 7.14). Indeed, test driven
development is a test first approach. Theoretically, it recommends to test
every single line of code, even though in practice it happens often that
developers do not test anything obvious.

It is worth to note that the systematic definition of entry and completion
criteria for all activities composing a software practice is not at all recom-
mended by AMQuICk since this could result in highly prescriptive practice
models. Rather, for informative purposes, such criteria can be directly
attached to practices as a mental note.

7.4.5 Role and RoleUse

Practices are performed thanks to the active participation of one or more
individuals with given skills. The roles involved in the fulfillment of practices
can be defined using the Role and RoleUse construct types.

A role is defined as follows:

Definition 7.17 (Role). An individual (or a group of individuals) with a
set of skills that perform(s) a work unit either directly or indirectly (i.e.,
creates, evaluates, iterates, or maintains).

Definition 7.18 (RoleUse). An association referencing a unique role to
a practice and specifying how that role is involved in the fulfillment of the
practice.

Every RoleUse can reference only one Role and every Role can be represented
by many RoleUses (see Figure 7.15).

A Role involved in a Practice may be referred simply or by specifying its
responsibility (eg., responsible, performer, facilitator or observer) using the
RoleUse construct type. For example, a “Daily Scrum” Practice is performed
by team members under the supervision of a Scrum Master. The Scrum
Master is then considered as a facilitator of this activity and the team as a
performer role.

7.4.6 Measure

Practices may own or refer measures that contribute to their effective im-
plementation and assessment. For example, the Test Driven Development

158

7.4. Practice Content package

Figure 7.15.: PracticeContent package - Role View

practice can be assessed by systematically verifying the test coverage mea-
sure. Similarly, the continuous code review can be assessed by verifying the
number of pull requests per sprint.

Figure 7.16.: PracticeContent package - Measurement View

The measure construct type can be defined as follows:

Definition 7.19 (Measure). The number or category assigned to an entity
that can be assessed quantitatively by making a measurement.

A measure can also be defined as a “function whose input are software
or process data and whose output is a single numerical value that can be
interpreted as the degree to which the software or process possesses a given
attribute that affects its quality” (adapted from [IEEE 1061, 1998]).

Table 7.7 details the attributes that characterize a measure construct type.
In earlier versions of AMQuICk Essence, we further detailed the practice mea-
surement concepts into measurable entities and measurable attributes [Ayed
et al., 2012]. Such constructs would be used in the context of measurement-
based assessment of agile practices which is out of the scope of the thesis.
Indeed, the main goal of the research is on structuring and customizing the

159

7. AMQuICk Essence Core

Table 7.7.: Attributes characterizing a Measure construct type (adapted
from [Vanderose et al., 2012])

Attribute Type Description

type MeasureApproach Provides information of the stance of the method
regarding software measurement (i.e., measure-
ment or estimation).

valuetype String Provides the type associated to each value pro-
duced by the method (e.g., integer, real, string,
etc.).

valueRange String Provides an interval of values (of the same value
type) that presents the lower and upper bounds
for each value produced by the measure.

unit String Provides the unit associated to each value pro-
duced by the measure (e.g., story points, line of
codes, etc.)

scale scaleType Provides the scale associated to each value pro-
duced by the method (i.e., nominal, ordinal, in-
terval, ratio or absolute)

agile building blocks and not at providing practitioners with agility assess-
ment models. This question was however discussed in previous research
results and specifically the integration with the MOCQA framework for
iterative quality assessment model was considered [Vanderose et al., 2012,
2014].

7.5 Practice Authoring Examples

In this section, we illustrate how AMQuICk Essence constructs may be used
to structure agile practices knowledge. It should be regarded as an early
testing of AMQuICk Essence focused on the exploitability and expressive-
ness.

Figures 7.17, 7.19 and 7.18 show some illustrative examples to demonstrate
how AMQuICk Essence constructs can be used to describe practices. The
following paragraphs detail the illustrated practices: User Story (P2.0.0) ,
Story Mapping (P3.0.0) and Relative Estimation (P4.0.0).

160

7.5. Practice Authoring Examples

User Story

User Story7 is a core practice in agile software development that many
methods recommend. It designates a practice that helps to write concise and
value-driven requirements called user stories. A User Story should contain
just enough information so that developers can provide a reasonable estimate
for it and can develop it within one iteration. It is typically a short and a
simple description of a feature told from the perspective of the user who
desires the capability. They are typically written following the connextra
template:

As a < type of user >, I want < some goal > so that < some
reason >.

Figure 7.17 shows an example of how the User Story practice can be modeled
using AMQuICk Essence constructs. First, using the RoleUse construct
type, the practice is attached to two roles :

(ru1) the Product Owner the business representative whose respon-
sibility is to make sure that a Product Backlog of user stories
exist and is consistent,

(ru2) the Team since user stories can be written or refined by team
members.

The practice description is also associated with a set of resources that would
support practitioners write good user stories:

(res1) the connextra template, also known as the Role-Feature-Reason8
template, which is the most common way for writing simple
user stories,

(res2) the Card-Conversation-Confirmation (3C’s)9 model that orig-
inates from the XP method and which describes 3 aspects to
consider when writing user stories: (1) a physical Card that
easily communicate the essential information of user stories
to developers, (2) the feature captured by the user story is
communicated to the team members through a Conversation
(exchange of thoughts and opinions) and (3) the user story needs
to include Confirmation examples and acceptance tests to check
if the feature is correctly implemented.

7https://www.agilealliance.org/glossary/user-stories/
8https://www.agilealliance.org/glossary/role-feature/
9https://xprogramming.com/articles/expcardconversationconfirmation/

161

https://www.agilealliance.org/glossary/user-stories/
https://www.agilealliance.org/glossary/role-feature/
https://xprogramming.com/articles/expcardconversationconfirmation/

7. AMQuICk Essence Core

(res3) the INVEST checklist describes a widely accepted set of criteria
to assess the quality of a user story: Independent (of all others),
Negotiable (should leave space for discussion), Valuable (must
deliver value), Estimable (its size can be estimated), Small (fine
grained enough to plan, estimate and prioritized) and Testable
(provide enough information to make the definition of tests
possible).

The example of User Story authoring also shows the related workproducts
and how activities may be used to capture the workflow that practitioners
could follow to implement the practice. More precisely, the example describes
the following activities and workproducts:

(p2ac1) Define EPICs: Usually prior to writing any user story, based on
the initial Product Vision (WP1), high level product features
called EPIC user stories (WP2) are identified and are later
broken down into smaller User Stories (WP2).

(p2ac2) Initialize: The product owner initializes the set of user stories
based on his product knowledge, the product vision and on the
list of EPICs. This activity may be done in collaboration with
team members.

(p2ac3) Simplify and decompose: The initial set of user stories may
be simplified, composed and decomposed with respect to the
INVEST criteria so that a better set of user stories is produced.
This activity may be done in collaboration with team members.

(p2ac4) Define acceptance criteria: A user story is considered as ready
for development if it is testable. Usually, it is recommended to
define acceptance criteria (i.e., the conditions of satisfaction of
the feature). Acceptance criteria provide the detailed scope of
the requirement which help the team to understand the value
and design test cases.

(p2ac5) Estimate: A user story is considered as ready for development
if it has been estimated, usually in terms of development effort.
Relative estimation is usually a widely recognized practice for
estimating user stories.

Moreover, the example shows that it is possible to link practices to metrics.
For example, user stories are usually associated with the following measure:

(m1) Lead Time: A measure borrowed to Lean manufacturing which
represents the time elapsed between the formulation of the user
story and its deployment in production.

162

7.5.
Practice

A
uthoring

Exam
ples

Figure 7.17.: Practice Authoring Example - User Story

163

7. AMQuICk Essence Core

Finally, the user story practice is associated with several practices. The
example depicts the following association:

(pa1) The Story Mapping and Relative Estimation practices comple-
ment the User Story practice. Indeed, Story Mapping allows to
improve the activity of collaborative collection and/or prioriti-
zation of user stories and Relative Estimation complements the
practice with an estimation technique.

Story Mapping

Story Mapping10 is a practice that provides a visual way of structuring a
backlog of user stories. It helps to collect and/or refine the requirements
collectively and to enhance their understanding.

The practice basically consists of an engaging exercise where all participants
(product owners, method facilitators and team members) are involved in the
process of ordering user stories and defining development priorities.

It generates a more structured and visual structure of user stories known as
a Story Map. Usually, the horizontal axis of the story map sorts user stories
according to product goals (business value), main product features and/or
Epics. The verical axis allows to sort the user stories according to their
development priority or their implementation sophistication (i.e., level of
details we add for each story or feature). The practice is usually performed
during the definition phase in order to support the product owner prioritize
the business needs in collaboration with the team.

Figure 7.18 shows an example of how the User Story practice can be mod-
eled using AMQuICk Essence constructs. First, the model explicits the
main workproduct produced by the practice, i.e., the Story Map using the
workproduct construct type. Then, it defines three main activities:

(p3ac1) Sort Stories: Sort stories by features, business goals, and/or
EPICs.

(p3ac2) Prioritize Stories: Prioritize stories according to a specific factor
(e.g., development priority or implementation sophistication).

(p3ac3) Define Minimum Valuable Product (MVP): The minimum viable
product (MVP) is the minimum collection of user stories that
is requirement to satisfy the customer.

10https://www.agilealliance.org/glossary/storymap

164

https://www.agilealliance.org/glossary/storymap

7.5.
Practice

A
uthoring

Exam
ples

Figure 7.18.: Practice Authoring Example - Story Mapping

165

7. AMQuICk Essence Core

In addition to the association expressing complementarity between the user
story and the story mapping practices (PA1), the example describes the
following association:

(pa2) The Story Mapping practice complements the Backlog Groom-
ing 11 practice which consists of the ongoing or regular basis
refinement of the product backlog.

Relative Estimation

Figure 7.19 shows an example of how the Relative Estimation practice can
be instantiated.

The rational of Relative Estimation12 is that people are not good at estimat-
ing time-based activities. Indeed, the more complex the activity is, the more
difficult will be its accurate estimation in actual time units (weeks, days
and hours). Therefore, agile methods recommend to estimate in relative
complexity, i.e., by judging how big or complex tasks (typically user stories)
are with respect to each other.

The unit of complexity that is used in this kind of estimation is irrelevant.
Usually, teams user non-numerical scales (or groups) like t-shirt sizing or
point estimates, typically known as Story Points or Nebulous Units of Time
(NUTs)13:

(m2) Story Point: this measure constitute the most common way to
estimate the overall effort of implementing user stories. Usually,
Fibonacci-like scales are used as point estimates, e.g., 1, 2, 3, 5,
8, 13, 21, 40, 80, 120 and infinite. The idea is that the larger
the story is, the more uncertainty there is around it and the
less accurate the estimate will be.

Usually, Relative Estimation relies on the following process:

(p4ac1) Assign a relative story: The team starts by having an agreement
on a reference story as one of the simplest user stories and some
point value is assigned to it (e.g., 3 story points).

(p4ac2) Compare the relative effort: The team members have a dis-
cussion regarding the effort required for implementing the user
story in comparison with the reference story. They should
consider its complexity, the required amount of work and the
potential risks, gaps or issues that they may encounter.

11https://www.agilealliance.org/glossary/backlog-grooming
12https://www.agilealliance.org/glossary/relative-estimation
13https://www.agilealliance.org/glossary/points-estimates-in/

166

https://www.agilealliance.org/glossary/backlog-grooming
https://www.agilealliance.org/glossary/relative-estimation
https://www.agilealliance.org/glossary/points-estimates-in/

7.6. Illustration: Intel Shannon Case Study

(p4ac3) Assign a story point: All stories are estimated according to the
reference story. For instance, the team might decide that the
reference story S1 is a 5 point estimates. Then, when estimating
a specific story S2, it can be compared to S1: is it twice as
bigger or more complex? Is it half as complex?

The Relative Estimation practice may be performed in several ways to make
it as fun and lightweight as possible. For example, teams may use techniques
such as Silent Grouping14 or Planning Poker15.

In the default instantiation of the practice, we associate it with the Planning
Poker resource which is of type tool:

(res4) Planning Poker: A playful technique to relative estimation that
is to be used during the iteration planning. Every team member
posses a cards play carrying numerical values corresponding to
story points. After the the team discusses and fully understands
the user story, each person silently picks an estimate for the
story. The cards are shown when every one has decided about
an adequate story point. The team then discusses the different
estimation, specially when there is an estimation gap and decides
about the final estimate to assign to the story.

7.6 Illustration: Intel Shannon Case Study

In order to evaluate the usefulness of AMQuICk Essence on a realistic case
and to get insights on how it should be refined, we selected an industrial
case study (and used it as a source of secondary data) based on the following
criteria:

• Reliability: Does the method rely on a rigorous methodology for data
collection ?

• Reproducibility: Does the study report generalizable knowledge or
structured lessons that other practitioners can exploit?

• Focus on customization: Does the study report an industrial experience
where agile methods are customized (i.e., the study should not just be
a story telling on agile implementation)?

14https://systemagility.com/2011/05/22/using-silent-grouping-to-size-user-
stories/

15https://www.agilealliance.org/glossary/poker/

167

https://systemagility.com/2011/05/22/using-silent-grouping-to-size-user-stories/
https://systemagility.com/2011/05/22/using-silent-grouping-to-size-user-stories/
https://www.agilealliance.org/glossary/poker/

7.
A
M
Q
uIC

k
Essence

C
ore

Figure 7.19.: Practice Authoring Example - Relative Estimation

168

7.6. Illustration: Intel Shannon Case Study

• Quality of situation description: Does the study report the characteris-
tics of the studied context? Does it highlight how these characteristics
particularly impacted the enactment of practices?

The selected study reports the implementation of agile methods at Intel
Shannon in Ireland [Fitzgerald et al., 2006]. More precisely, it describes how
the company embraced and customized practices from XP and Scrum, to
meet their specific challenges.

The study follows an interpretive and exploratory research methodology.
Data on the usage of XP and Scrum are collected through series of formal
and informal personal interviews, e-mails surveys, post-scrum workshops and
by inspecting source code and queries of change management systems (e.g.,
non-commented lines of code, code defect density, release dates, etc.).

The 2-year longitudinal study was conducted on two medium-sized projects
at Intel Shannon in Ireland, each aiming at the software development of one
processor type. Small, experienced and distributed teams, with an average
of 3 years of agile experience, worked in both projects.

The method adapted to the organization specific context (i.e., critical do-
main, distributed development, rapid time-to-market, etc.) consists in a
combination of XP and Scrum with some configurations and home-made
practices. The study describes what practices were retained, discarded or
customized. It highlights the benefits of agile methods customization and
reinforce the view point that agile methods, like any software method, should
be tailored if they are to achieve optimum effects [Conboy and Fitzgerald,
2010].

7.6.1 XP Usage

The case study report a pragmatic implementation of XP, i.e., only a selection
of practices have been implemented and those were carefully monitored to
the specific context of Intel Shannon. Figure 7.20 summarizes how XP was
used in the context of Intel Shannon.

Seven out of the twelve XP practices (see Section 2.2.3.1) were configured
and implemented:

(XP.P1) Pair Programming: the practice was applied for the develop-
ment of critical components and by pairs of similar profiles. It
appears to be not suitable for simple tasks and for maintenance.
Guidelines were formulated and shared across the teams.

169

7.
A
M
Q
uIC

k
Essence

C
ore

Figure 7.20.: The use and configuration of XP at Intel Shannon (overview)

170

7.6. Illustration: Intel Shannon Case Study

(XP.P2) Simple Design / Quick Design Sessions: Design was done on
white-boards before each block of code is written and then docu-
mented. Consequently, the design documents emerge in parallel
with the development. The practice was as complementary
with refactoring. A design pattern standard was progressively
designed and used to guide teams keep a simple design and help
them refactor their code.

(XP.P3) Refactoring: A practice that was considered as complementary
with design activities. It was done systematically and at early
stages.

(XP.P4) Coding Standards: A practice that was adapted even before the
implementation of XP. A C-coding standard is frequently used
by teams.

(XP.P5) Collective Ownership: Was practiced only to single teams and
not across teams. The pair programming practice was found
highly beneficial for code ownership and therefore considered
as complementary.

(XP.P6) Unit Testing: Implemented as part of a regression test suite and
all tests were run nightly. More complete tests (integration and
smoke tests) are run daily during the last week of the release.

(XP.P7) Continuous Integration: The practice was only applied for
single components developed during the iterations. Indeed, it
was found to be difficult to implement for the whole project
regarding its complexity and since external test equipments are
necessary.

Three of the remaining XP practices were replaced by alternative practices:

(XP.P8) On-site Customer : Since the Intel Shannon teams work at early
stages of the product development, it was not really feasible to
have customers involved. Besides, the product owners which
are located at the US cannot be available on daily basis. The
product marketing group sometimes act as a customer proxy
(they prioritize the product features based on potential revenue).

(XP.P9) Small Releases: The practice is not feasible regarding the com-
plexity of the projects and since the release depends on the
availability of Silicon. When the Silicon was available, the teams
have a minor release every 4 to 6 weeks and major releases every
two quarters.

171

7. AMQuICk Essence Core

(XP.P10) Planning Game: The practice was not retained since it is
equivalent to the Scrum Sprint planning practice

Finally, two practices were completely discarded: the 40-h week andMetaphor.
The first was found inadequate. Indeed, working hours should often be
extended because of the discrepancy of time zones between Europe (between
the US and Ireland). Metaphor was not used because it was found unclear
and not suitable for all design situations.

7.6.2 Scrum Usage

The study reports that most of the Intel Shannon teams use Scrum (see
Section 2.2.3.2). More precisely, the following practices were selected and
configured:

(Scrum.P1) Daily Meeting: The practice was found particularly positive for
visibility. Several configurations were introduced by the different
teams. In its default version, the team members meet around
a task post-it board. Team members arrive to the meeting
with post-its for their daily tasks and discuss them with their
team mates. When needed, tasks are decomposed (in Scrum
this is normally done during the Sprint planning). In another
configuration of the practice, the team systematically docu-
mented their meeting in the project repository. The practice
was also implemented by a distributed team which combined
video conferencing and an online post-it board.

(Scrum.P2) Sprint Planning: This practice was selected in replacement
of the XP planning game. It was configured so that for each
project, a two stages planning is implemented: one at the start
of the project and one at the start of every Sprint. During the
first planning stage (that includes team leads and some team
representatives), the project is decomposed into a functional
series of sprints. The overall features to be developed during the
project is identified. A high level estimate of features is allocated
(in working days) and the features are distributed across a num-
ber of Sprint. Some teams used the Delphi Technique [Linstone
and Turoff, 1975] for estimating the features.

(Scrum.P3) Sprint: In Scrum, it is recommended to have time-boxed Sprints.
However, in Intel Shannon this was found unsuitable because of
the criticality of projects. Rather, a scope is fixed and when all
the features have been developed a minor version is released. A

172

7.6. Illustration: Intel Shannon Case Study

major version is released when all features are fully integrated,
tested (regression testing) and deployed on processors.

(Scrum.P4) Sprint Closure: The practice was modified to include wrap-up
sessions where the teams report their lessons learned, discuss
the work done and the extra tasks included, etc.

Figure 7.21.: The use and configuration of Scrum at Intel Shannon (overview)

173

7. AMQuICk Essence Core

7.6.3 Reflection on AMQuICk Essence Refinement

In the previous two sections, we were able to structure the method im-
plemented at Intel Shannon using AMQuICk Essence elements (practices,
resources, tools, measures, etc.) and captured the information regarding its
evolution overtime (the different practice configurations that were experi-
enced). However, some essential knowledge regarding the implementation
and configuration of practices couldn’t be represented.

Figure 7.22.: Examples of reported relationships between adopted practices
and quality goals

First, using the current version of AMQuICk Essence, we couldn’t capture
essential information regarding the benefits of the configuration of practices.
Indeed, the study discusses the impact (assumed and empirically validated) of
the introduced practices on the process and product quality (see Figure 7.22)
and reveals that practices achieve their benefits only in the presence of
certain context characteristics.

For example, in the context of junior developer profiles, pair programming
was found beneficial to code defects reduction. Moreover, in the context of
complex features, the practice was reported as beneficial for requirements
understandability, team morale and technical excellence. Finally, in the
context of experienced team members and/or simple and repetitive tasks
(such as maintenance), pair programming was found to have a negative
impact on productivity. This kind of information could be essential for

174

7.7. Summary

guiding the customization of agile methods but it is still not provided in the
current version of AMQuICk Essence.

The study also reports several practice configurations for specific situational
contexts. For example, a version of daily meeting was proposed for distributed
teams and another version was proposed for contexts where documentation of
the process is important. Again, using the current version of the metamodel,
it is not possible to capture the relationship between a practice configuration
and the situational context for which it is intended.

Based on the aforementioned discussion, it is clear that the AMQuICk
Essence core needs to be extended in order to support the customization
guidance. Chapters 9, 10 and 11 present case studies that helped us explore
what kind of actual refinements were necessary and how to implement them
in AMQuICk. The implemented refinements are presented in Chapter 12.

7.7 Summary

In Chapter 6, we have argued that a situational method engineering approach
can be used in the context of agile software development provided a suitable
metamodel and a lightweight method engineering approach.

AMQuICk Essence is a method engineering metamodel that allows a practice-
based authoring of software development methods. Moreover, it describes
the essential elements necessary to implement the AMQuICk framework:
the practices repository and the customization knowledge base.

In this chapter, we described the foundation and practice content packages
of the metamodel. At this level of the research, we focused on eliciting the
essential concepts required for authoring agile practices building blocks and
practice configurations. Several design choices have been decided among
which:

• Practice-based method modeling: AMQuICk Essence characterizes
methods as the association of a set of coherent practices. As explained
in Section 6.1.2, this allows a coarse granularity level of method models
and makes it easier to suggest configurations. Indeed, practices con-
stitute the unique variability point of method models. Consequently,
customization decisions (see Chapter 12) would provide high-level
guidance which does not impede the team flexibility.

• Practice and methods evolution: Agile methods encourage team mem-
bers to take responsibility for the evolution of their own practices.

175

7. AMQuICk Essence Core

Therefore, AMQuICk Essence introduced elements for capturing differ-
ent practice configurations (the time and universe attributes and the
PracticeAssociation element of type configuration). By doing so, we
may track the evolution of practice implementations in one or several
organizations.

The current version of the metamodel does not yet provide means to capture
the actual evidence about the success or failure of practices under different
project situations nor describes means to capture customization decisions.
The necessary refinements are discussed in Chapter 12.

In the next chapter, we demonstrate how the current version of metamodel
can be used to design the AMQuICk practices repository.

176

Chapter 8

AMQuICk Repository of Practices

Earlier in this part of the thesis, we discussed the existence of method
engineering frameworks (and their descriptive languages or metamodels)
which rely on the idea of picking up and assembling building blocks from
various software methods to constitute a situational method. We then
designed the AMQuICk Essence metamodel which is intended to document
agile building blocks.

The approach impacts the way that agile methods customization is performed.
First, practice building blocks have to be produced and maintained in an
efficient way. Besides, the emphasis of agile methods on collaboration and
communication implies that the practices and their constitutive blocks should
be easily accessible and shared among the stakeholders. These aspects tend
to increase the time and effort dedicated to the method customization and
improvement. Therefore, various types of tools instantiating the metamodel
should be provided to improve the usability of the approach.

This chapter provides an overview on the repository of agile practices and
its practice cards modeler that may be supplied in order to ensure the
usability and effectiveness of AMQuICk Essence. Sections 8.1 and 8.2 discuss
the existing tool support dedicated to methodological elements authoring
and discusses how to take advantage of them in the context of authoring
AMQuICk practice models. Section 8.3 presents the Agilia web repository
of practices that have been developed during the course of this research in
order to improve the usability of the approach. Finally, Section 8.4 discusses
how a dedicated graphic modeler of practice cards can be used to improve
the usability of the repository.

8.1 CAME Tools and AMQuICk

As explained in [Kent, 2002], “tooling is essential to maximize the benefits
of having models, and to minimize the effort required to maintain them”.

177

8. AMQuICk Repository of Practices

Computer Aided Method Engineering (CAME) tools are required essentially
for authoring and storing method components and for making them available
to those who are defining, implementing and managing methods in an
organization.

Beside these basic editing functionalities, the support expected for such
tooling range from the verification of the well-formedness of method models
to the possibility to work easily on designing new method components.
Moreover, such tools are intended to improve the process learning and to
ensure a greater degree of independence of the team [Amescua et al., 2010].

Based on the method engineering frameworks presented in Section 6.2, a num-
ber of CAME tools including method composer tools, repositories of method
fragments and method modelers have been proposed (see Section 6.2).

For instance, the Eclipse Process Framework (EPF)1, a process engineering
tool based on the SPEM specification, provides a method composer2 and a
number of libraries for some well-known methods such as Scrum, XP and
OpenUP3.

Similarly, the SEMAT Essence initiative4, provides a set of development
tools based on the Essence specification, among which the EssWork prac-
tice Workbench5 for practices authoring and composition and the Essence
Practice Library6 which describes a number of agile essentials.

Research initiatives such as [Tran et al., 2009] and [Amescua et al., 2010]
proposed extensions to existing method repositories, in order to integrate
agile-specific fragments or developed their own repositories built upon non
standardized process metamodels.

Such method repositories have the advantage of being more structured than
some well-known industrial method bases such as the Agile alliance base7
or the recently released Deloitte agile landscape map8. However, they still
do not have much visibility among the agile community. [Esfahani and
Yu, 2010] argues that the most likely reason for this is that complicated
solutions for method engineering won’t even be acknowledged by agile
software companies.

1https://www.eclipse.org/epf/
2https://www.eclipse.org/epf/composer_dev_guide/dev_env.php
3http://www.eclipse.org/epf/downloads/praclib/praclib_downloads.php
4http://semat.org/
5https://www.ivarjacobson.com/esswork-practice-workbench
6https://practicelibrary.ivarjacobson.com/
7https://www.agilealliance.org/agile101/agile-glossary/
8http://blog.deloitte.com.au/navigating-the-agile-landscape/

178

https://www.eclipse.org/epf/
https://www.eclipse.org/epf/composer_dev_guide/dev_env.php
http://www.eclipse.org/epf/downloads/praclib/praclib_downloads.php
http://semat.org/
https://www.ivarjacobson.com/esswork-practice-workbench
https://practicelibrary.ivarjacobson.com/
https://www.agilealliance.org/agile101/agile-glossary/
http://blog.deloitte.com.au/navigating-the-agile-landscape/

8.2. DSM Tools and AMQuICk

Since AMQuICk relies on the Essence 1.0 specification, we considered the
opportunity of reusing the EssWork Practice workbench (see Section 6.2.4),
a tool for composing, authoring, collaborating and managing software devel-
opment practices and methods based on the Essence specification.

However, it was found unsuitable because of the following:

• It relies on the Essence DSL and provides no way to extend it so we
can model practices and practice cards using the newly introduced
concepts.

• The workbench is not open source and the version actually available for
practitioners only allows to visualize process fragments documented by
the SEMAT initiative. When we tested the trial version, we found very
little guidance on how to develop a method or practice from scratch.

• Like EPF composer, the Esswork practice workbench is a desktop-
based software system tightly coupled to the Eclipse environment which
makes it more difficult to scale, i.e., to make it usable by practitioners
from different companies. During its testing, we experienced several
technical problems such as crashing and loosing the library which is
also commonly reported throught the EPF forum9.

• It focuses on providing the team with means to track its progress in
terms of Alphas 6.2.4 (a concept that was not retained for AMQuICk
Essence since it is covered by the Goal construct type that we introduce
later in Chapter 12).

• It does not include the actual evidence on the success or failure of
practices under different project situations.

Given the aforementioned discussion, we designed a web repository of agile
practices that instantiates the AMQuICk Essence specification (see Sec-
tion 8.3). Unlike the published repositories presented earlier, our repository
is intended to be extended by a knowledge base (see Chapter 12), i.e.,
the experience of other practitioners in using the different practices. This
makes it more actionable since such knowledge helps teams decide on the
appropriateness of their own method.

9https://www.eclipse.org/forums/index.php/f/49/

179

https://www.eclipse.org/forums/index.php/f/49/

8. AMQuICk Repository of Practices

8.2 DSM Tools and AMQuICk

Since AMQuICk relies on a method engineering metamodel, more options
were available for building the repository of agile practices and its practice
cards modeler. These include metaCASE tools and Domain-Specific Model-
ing (DSM) frameworks [Kelly, 2004]. In the following, we argue why these
tools were not retained.

MetaCASE tools are similar to CAME tools with the former focusing at
the software level and the later at the method level. MetaCASE tools such
as MetaEdit+ [Kelly et al., 1996] and MetaDone [Englebert and Heymans,
2007] are dedicated to the generation of language workbenches enhanced
with graphical abilities on the basis of a provided metamodel. Using such
tools is useful for a faster and easier generation of a graphic process modeler
such as the Objecteering SPEM Modeler10.

DSM coding frameworks such as the Eclipse Modeling Framework (EMF)
and the Kevoree Modeling Framework (KMF) [Francois et al., 2014] include
code generation facilities for building tools and other applications based
on structured data models. They provide a powerful toolset for develop-
ers to model, structure, and reason about domain data. In our context,
these frameworks may be useful for facilitating the authoring and exchange
of AMQuICk domain-specific concepts with other applications (for exam-
ple, method composers relying on SPEM). Exploiting KMF may also be
considered for structuring, processing and analyzing the knowledge base.

However, in the current version of the framework, the reuse of DSM coding
frameworks and DSM tools is found superfluous. Indeed, even though we
argue the advantage of visualizing some parts of the method graphically
(as graphical physical cards) for transparency and method improvement
purposes (see Section 8.4), providing an agile team with a complete process
model designed using a process modeler may be inconsistent with the agility
characteristics (see Section 2.2.2). Therefore, supporting a whole workbench
for graphically modeling the development method was never an objective
of AMQuICk. Rather, the framework aims at providing a structured and
lightweight representation of agile methods building blocks.

10http://www.objecteering.com/free_addons_spem.php

180

http://www.objecteering.com/free_addons_spem.php

8.3. Repository of Practices

8.3 Repository of Practices

8.3.1 Objectives

The deployment of the AMQuICk framework requires not only the collection
of contextual information (see Chapter 12) but also the documentation of
comprehensive knowledge on agile practices.

Given the information available in the agile community and in the research
base, AMQuICk intends to assist practitioners to determine adequate meth-
ods and practices with respect to their needs and preferences and with
regards to the constraints available within a specific project.

Indeed, unlike the existing method engineering initiatives, AMQuICk sug-
gests that organizations may take advantage of the multiple learned lessons
documented in the research base or shared by practitioners in the active
agile community. It assumes that when such learnings are captured, struc-
tured and disseminated (i.e., made accessible for practitioners from the
same organization or across organizations), customization decisions are made
easier.

The documentation of such knowledge in a structured repository can also be
inspiring for project managers and method facilitators in order to come up
with innovative practices.

Besides, it may provide teams with a greater autonomy in process learning
and with an enhanced inter-teams communication regarding the success or
failure of practices in certain circumstances.

Provided the aforementioned discussion, we designed a repository of agile
practices and reusable practice components that we called Agilia with the
objective to provide functionalities to maintain an up-to-date, structured
and extensive knowledge on available agile practices and to relate them with
the return of experiences of practitioners from various companies. Moreover,
it intends to provide a user friendly access to this knowledge.

8.3.2 Overview

The Agilia repository constitutes a way to gather comprehensive knowledge
on different available agile methods and practices. Relying on the open
source Java Spring Boot framework11, Hibernate and MySQL, the repository
provides agile practitioners and experts with the following functionalities:
11https://projects.spring.io/spring-boot/

181

https://projects.spring.io/spring-boot/

8. AMQuICk Repository of Practices

• creating/changing a practice content,

• creating new practices,

• configuring existing practices,

• browsing practices based on keywords and/or tags,

• publishing selected practices,

• reporting experiences on the usage of practices in specific contexts.

Compared to existing repositories of practices, the documentation of expe-
rience is the most valuable feature of our repository. Indeed, as explained
in Chapter 12, the repository is enhanced with the content stored in the
knowledge base, i.e., with the recommendations documented by practitioners.
These can be suggested by novice practitioners as well as agile experts.

As shown in Figure 8.1, the repository provides a user interface to edit and
consult the content of the online database of practices. A quick navigation
through associated concepts is available to any practitioner willing to browse
the documented practices. Authenticated users may document their learned
lessons and expert users have more privileges in documenting new practices
and recommendations.

Since Agilia is the default repository of AMQuICk, its content is inherited
by any other organizational repository. It is intended to be continuously
expanded and modified based on practitioners feedback. It can also be useful
in training new practitioners.

The data it contains is structured according to AMQuICk Essence models. It
also provides support for the interrogation of the database by the AMQuICk
practice cards modeler (see Section 8.4). An overview of some practices
documented in Agilia is provided in Table 8.1.

8.3.3 Architecture

From an architectural point of view, the key aspect of the repository resides
in the way its conceptual schema has been designed. Many schema models
would have been valid for designing a repository for AMQuICk. However,
ensuring the compatibility with AMQuICk Essence is essential. There-
fore, we designed the conceptual model for Agilia as a series of horizontal
transformation (i.e., the generation of a target model from a source model
while conserving the same level of detail) of AMQuICk Essence [Mens and
Van Gorp, 2005] [Vanderose et al., 2012] [Vanderose and Habra, 2011].

182

8.3. Repository of Practices

Figure 8.1.: Agilia Repository

As a result of this transformation, several elements from the metamodel have
been adapted. For instance, some attributes were modified and new ones
were added for practical reasons (e.g., created_by and last_updated_by
were added in order to track the practitioners involved in authoring the
building blocks). Also, many-to-many cardinalities were instantiated as
intermediary associations:

• Practice_Method: instance of the “owns” directed relationship between
the Method and Practice construct types

• Workproduct_Practice: instance of the “owns” directed relationship
between the Workproduct and Practice construct types

• Metric_Practice: instance of the “owns” directed relationship between
the Workproduct and Practice construct types

• Recommendation_Goal: instance of the “supports” directed relation-
ship between the Recommendation and Goal construct types (discussed
later in Chapter 12)

Another adaptation consists of the definition of 3 instances for the Resource
construct type:

• Guideline: A resource associated with a method or a practice to provide
external guidance that may be of the following types: book, research
paper or practitioner return of experience (typically blog posts).

• Pitfall: A common pitfall (misapplication) of a practice documented
by an agile expert

183

8. AMQuICk Repository of Practices

• Benefit: A common benefit of a practice documented by an agile
expert. Usually it is expressed in terms of process goals, e.g., increased
productivity, reduced development cost or reduced technical debt.

Figure 8.2 shows the overall data schema of Agilia. The code, data modeling
and binding of this version of the repository were encoded from scratch. A
good alternative would have been to rely on DSM frameworks (provided that
they are compatible with web-based applications) which include code gener-
ation facilities for building tools and other applications based on structured
data models (see Section 8.2).

8.4 Practice Modeler

8.4.1 Objectives

We argue that a more user-friendly way to exploit AMQuICk Essence models
and to improve their usability is to use the card metaphor to graphically
visualize the practices implemented by the team.

This idea is inspired by the Essence specification which provides users with
graphical cards to visualize the most important aspects of the language
with the purpose of tracking the team progress in different areas of con-
cerns. In AMQuICk, we use this graphical facilitation technique for different
purposes:

• assisting the practitioners in the improvement of their way of working
(see Chapter 13), and

• contributing to the construction of a shared mental model (see Sec-
tion 5.2) of the implemented method and the customization decisions
made by the team.

In order to author practice cards, a modeling tool enhanced with the graphical
syntax of AMQuICk Essence building blocks is provided and integrated to
the repository of agile practices. This modeler aims at providing an improved
usability for practice authoring and an easier navigation within practice
models.

8.4.2 Overview

A practice card presents a succinct summary of the most important things
practitioners need to know about a particular agile practice. It takes the

184

8.4. Practice Modeler

Table 8.1.: Overview of some stored practices

Practice Brief Description Equivalent Prac-
tices

Domain Walk-
throught

A practice introduced by FDD which
consists on creating domain area models
during one or many collaborative activi-
ties which bring together domain experts,
business representatives, architects, ana-
lysts, developers and any other involved
stakeholder.

Collaborative Do-
main modeling

Dedicated Cus-
tomer Representa-
tive

A practice that recommends the inclusion
of an actual customer representative or
user inside the team, available full-time
to answer the questions

On-site Customer

Model Storming A just in time modeling practice recom-
mended by the agile modeling method.
The practice aims at assisting developers
drive quick design sessions.

Stand-up Design

Acceptance Test
Driven Develop-
ment

A development practice relying on the
close collaboration between customers,
developers and testers to produce accep-
tance tests (from the users point of view)
prior to the development of the features.
It may be automated or not.

Behavioral Driven
Dev., Specification
by Example

Test Driven Devel-
opment

A practice where the development is sys-
tematically conducted through three in-
terlaced steps: writing unit tests, coding
and refactoring.

Test-first

Coding Standards A practice that recommends to main-
tain a formalized set of rules and prac-
tices that developers can adhere to when
writing code in order to ensure that the
produced code is easily understandable,
maintainable and extensible.

User Story A practice describing how work is divided
into small functional units excepted to
yield, once implemented, a contribution
to the overall value of the product.

Story Mapping A practice that consists of ordering user
stories along two independent dimensions.
The “map” arranges stories along the hor-
izontal axis in rough order of priority and
along the vertical axis, in order of imple-
mentation sophistication.

185

8.
A
M
Q
uIC

k
R
epository

ofPractices

Figure 8.2.: Data Schema of AMQuIck default repository

186

8.5. Summary

form of a tangible and actionable card that may be printed and visualized in
the team working place. Practice cards are intended to be used during the
improvement and customization workshops (see Section 5.3.2 and Chapter ??)
as hands-on to drive the discussion between team members. Indeed, their
handy form makes them easy to put on a table, stick on a board or an agile
learning wall, handle them and reason about [Essence, 2015].

The graphical model we propose to complement the AMQuICk repository
of practices is developed using Draw2d Javascript12, a HTML5 Javascript
library for the visualization and interaction with diagrams and graphs. The
library was chosen because of the rich diagramming features it provides,
the availability of data binding features and the possibility to export the
modeled features in different formats (JSON, SVG, PNG, etc.). The choice of
Javascript as a programming language is due to its high portability, especially
for web-based applications and mobile devices.

The modeler includes the following features (see Figure 8.3):

• a toolbar from which elements can be dragged and dropped to add
practice building blocks,

• a central canvas providing the overview on the practice model, and

• a top menu from which practice models can be loaded, registered and
which contains a set of utility features for selecting and (un)grouping
elements.

Since practice cards only contain an overview of the practice building blocks,
a more detailed view on the modeler is ensured using dedicated property
views that allow to edit the component attributes. Draw2d allows to easily
read and write files to different file storage backends using a simple API. We
used this file storage abilities to persist the data of the modeler to JSON
files. However an integration with the repository persistence layer is still
required.

As shown in Table 8.2, AMQuICk relies on a graphical notation that intends
to improve the readability of practice cards. This graphical syntax has been
instantiated using the icon attribute (an attribute of the BasicElement and
GroupElement construct types).

Figure 8.4 shows an example of practice authoring.

12http://www.draw2d.org/draw2d/

187

http://www.draw2d.org/draw2d/

8. AMQuICk Repository of Practices

Table 8.2.: Graphical Syntax of core AMQuICk Essence Element
Entity Symbol

Method

Practice

Activity

Workproduct

Role

Competency

Goal

Resource

Metric

8.5 Summary

In this chapter, we designed the AMQuICk repository for browsing and
authoring agile practices and the actual benefits it would provide to the
framework users. We also designed a practice modeler to improve the
usability of AMQuICk Essence models.

So far, the tooling developed to support AMQuICk implementation is com-
prised of the repository of agile practices, the practice modeler and the

188

8.5. Summary

Figure 8.3.: AMQuICk practice modeler - Overview

knowledge database which documents a set of practitioners experiences and
recommendations (see Chapter 12). Each of these tools focus on a specific
aspect of the AMQuICk framework. Integrating them would provide a more
consistent support of the overall methodology and therefore it is part of our
future perspectives.

Since the repository of agile practices and the customization knowledge
base already exchange compatible data (SQL data), this effort should focus
on the integration between the practice modeler and the repository of
practices. More precisely, the repository should be refined to provide a web
service for reading and writing practice models as JSON files, thus allowing
the AMQuICk model editors to consult and integrate knowledge retrieved
through these web services and to feed the repository starting from the
modeler. Moreover, using these web services it would be easier to integrate
the AMQuICk knowledge with external methodological repositories which
rely on a different structures (e.g., on the TOGAF standard13, SPEM or
any other method modeling specification). Using the KMF framework to
persist AMQuICk Essence models in JSON-like files (in noSQL database) is
also a good alternative to facilitate the tools integration.

In Chapter 12, we discuss the population of the knowledge base with the
knowledge regarding the actual benefits demonstrated by agile method prac-
tices in specific contexts based on the return of experiences of practitioners.
13http://www.opengroup.org/subjectareas/enterprise/togaf

189

http://www.opengroup.org/subjectareas/enterprise/togaf

8. AMQuICk Repository of Practices

Figure 8.4.: AMQuICk practice modeler - An example of practice authoring

This knowledge allows to gain a realistic view on what each agile practice
can bring and in which context and informs about the necessary requisites
for the deployment of practices.

190

Part IV.

Context Study Perspective

In order to understand the customization challenges that agile practitioners
may encounter, we conducted in the part of the dissertation three exploratory
case studies. Each is discussed in one chapter as follows:

Chapter 9 studies a transformation experience in an IT department of the
Public Walloon Service (SPW) in Belgium.

Chapter 10 investigates the contextual challenges that practitioners face
when developing e-government services using an agile software development
method.

Chapter 11 investigates how the European and Asian cultural backgrounds
may impact agile methods implementation.

191

Chapter 9

SPW Case Study

Challenges of Implementing Agile in a Transitioning Context

Transitioning from disciplined to agile software development is a wide and
complex change that may be challenged by several aspects of the organiza-
tion (e.g., its structure, culture, management practices, produced artifacts,
technologies in use, etc). In this chapter, we argue that in order to succeed
in this transition, it’s crucial to understand the organizational and project’s
context and to design custom methods accordingly.

As an exploratory research, the chapter studies a transformation experience
in an IT department of the Public Walloon Service (SPW) in Belgium. It
tends to show that the transition to agility cannot be accomplished only
at the team-level without taking into account the overall context of the
organization. A context-specific method must carefully align the team level
context and requirements and the organizational level context.

In Section 9.1, we review some previous work that had investigated the
influence of the organizational context and provide an overview on the back-
ground of the case study. In Section 9.2, we detail the research design that we
applied to determine and validate the identified challenges. The challenges
that emerged from the organized meetings are contextually explained and
presented in Section 9.3. The results validity is then discussed in Section 9.4.
Finally, in Section 9.5 we synthesize the lessons learned from this case study
and explain how it contributes to the thesis.

9.1 Background

It has been acknowledged by previous studies [Fitzgerald et al., 2006, 2003]
that the organizational characteristics influence the implementation of agile
methods (see Chapter 3). In fact, one agile method may lead to success

193

9. SPW Case Study

when applied in a particular organization and to failure in a different settings.
Therefore, understanding the organizational context is crucial to minimize
the adoption risks and to make the right customization choices.

Several studies in the literature have identified the organizational context
as a dimension that potentially affects the implementation of development
methods [Robinson and Sharp, 2005; Siakas and Siakas, 2007; Tolfo and
Wazlawick, 2008; Boehm and Turner, 2003]. They all clearly show the im-
portance of considering the organizational context which they conceptualize
in a number of different ways [Iivari and Iivari, 2011].

In this chapter, we investigate the question (i.e., the impact of the organiza-
tional context) in the IT department (D443) of the DGO3 direction1, one of
the departments of the “Public Service of Wallonia (SPW)”. The DGO3 is a
large organization of ∼2,300 employees that manages the material and issues
related to agriculture, natural resources and environment in Wallonia.

The D443 is a medium-sized IT department (84 people at the time the study
was conducted). It is in charge of about a hundred software products and is
composed of 5 services : Development, Development Support, Security, Ex-
ploitation and IT Help-desk. The scope of this case study is the Development
service. More precisely we interviewed and collaborated with practitioners
from the following business units : Project Management (PM), solutions
ARchitecture (AR), Quality Assurance (QA), DEVelopment (DEV), Func-
tional Analysis (FA) and Software Maintenance (SM) (see Annex B for more
details).

The main focus of these units is on the development of business applications
for the Walloon Payment Agency which heavily depends on the agricultural
policy of the European Union. At the time the research was initiated, the
department was involved in the development of 15 projects among which
the project IDEES, the pilot project we selected to study.

The desire to adopt an Agile approach came from the team working on IDEES.
The team members, seeking to improve their own working environment,
began implementing some Scrum practices in 2013 in their group comprised
of one business project manager, one technical project manager, 8 developers
and 3 analysts. The group had no special skills in agile software development.
They only read some agile literature before starting implementing Scrum.

In this context, 6 months after the initiation of the first agile experience in
the department, we conducted this case study with the purpose of diagnosing
the current process, identifying and contextually explaining the challenges

1The General Operational Direction for Agriculture, natural Resources and Environment:
http://environnement.wallonie.be/administration/dgo3.htm

194

http://environnement.wallonie.be/administration/dgo3.htm

9.2. Methodology

encountered in implementing Scrum and finally identifying in collaboration
with the practitioners, some customization opportunities.

The following section further details the methodology used in this case
study.

9.2 Methodology

This case study is exploratory and mainly qualitative. The organization
was selected based on convenience sampling. Indeed, we were contacted
by the project management unit of the IT service for training purposes.
After preliminary meetings and regarding a common interest to methods
customization, a research collaboration has been defined to further study
the customization of Scrum.

The overall transition project follows the roadmap depicted in Figure 9.1.
This roadmap was designed in collaboration with the projects’ portfolio
manager. It sets the premises for the AMQuICk framework lifecycle.

Figure 9.1.: Transition roadmap

Two transformation modes are usually reported by agile practitioners : big-
bang and step-by-step. The big-bang transition mode consists of applying
agile to all teams and all projects, as quickly as possible. This mode takes
few time and raises less resistance to change but requires a great investment
in terms of time and training. The step-by-step mode means that agile is
applied in a progressive way. First, agile values are applied in a pilot team
and a pilot project (not too risky but fairly representative of the organization
reality). Then, the experience is capitalized and spread to other projects
transversally or progressively.

Regarding the complexity of the D443 context, a progressive transformation
strategy that employs frequent inspect-and-adapt cycles was advocated.

195

9. SPW Case Study

The following sections further detail the methodology followed for this case
study. More details can be found in the research collaboration internal
report [AYED, 2013].

9.2.1 Objectives

The main focus of the case study is to investigate the contextual challenges
encountered by the organization during its transition from a traditional
waterfall model to a more agile software development approach. More
precisely, its intends to:

1. Study the organizational context and identify the helpful and discon-
tinuing/challenging context factors at the organizational level,

2. Study the transition at in pilot project and identify the helpful and
discontinuing/challenging context factors at the project level,

3. In collaboration with the pilot project-team practitioners, identify
areas of improvement and customization opportunities.

9.2.2 Data Collection

A methodological triangulation is applied for gathering data [Denzin, 2017].
The data of the case study is collected from interviews, questionnaires and a
project level retrospective.

Interviews

It has been largely acknowledged that it’s crucial to spend significant time and
energy building urgency and convincing people that change is beneficial [Satir
and Banmen, 1991]. Moreover, it is recommended to start the transition by
assessing the current process and defining the expected benefits [Tomasini
and Kearns, 2012].

Therefore, after a few meetings with the IT department director and the
projects portfolio manager and as part of the first transitioning step, we
organized 6 interviews with unit representatives (one interview per business
unit). At first, the participants introduce themselves and the researcher
introduces the aim of the interview. Then, the participants are asked about
their actual process (the unit responsibilities, personnel size, geographical
distribution, workflow, etc.) and its strengths and weaknesses regarding to
agility values. Finally, they are questioned about their expectations, i.e., the

196

9.2. Methodology

improvement opportunities from an agile perspective. We used the same
semi-structured interview guide for all the interview sessions.

The 23 practitioners that we interviewed are distributed as follows: Main-
tenance unit (MA): 2, Architecture unit (AR) : 3, Quality Assurance unit
(QA) : 3, Development unit (DEV) :3, Project management unit (PM) : 7
and finally Functional Analysis unit (FA): 3 + 1 external consultant. Only
7 out of the 23 practitioners have already experienced agile methods: 4
developers, 2 project managers and 1 analyst.

Questionnaires

Two specific questionnaires were designed in this study. The first question-
naire2 (see Table 9.1) is organized into 4 sections and aims at analyzing the
current process in terms of agility. The second questionnaire3 (see Table 9.2)
is designed to get more insights regarding the context and the practitioners
knowledge of Scrum practices and to identify the desired and/or applicable
agile practices.

The two questionnaires were e-mailed to 64 persons from all the units. 47
responded to the survey, which gives a participation rate of 74%.

Project Retrospective

After a 6 months experience in implementing Scrum, we organized a retro-
spective meeting with the selected pilot project-team, the IDEES project.
We animated the retrospective using the affinity diagram facilitation method.
This method consists of the following steps : Record each idea on a card (post-
it), look for ideas that seem to be related and finally sort cards into groups
until all cards have been used [Pyzdek and Keller, 2014; Kawakita, 1975].
Causal relationships between groups are also indicated on the diagram.

At first, participants were asked to think about the following questions :
“What worked well?” (opportunities for the transition) and “What did not
work or what can be improved?” (challenges for the transition). Then, each
practitioner silently drew his reflexions on post-its. We recommended to
write down a unique idea/point per post-it and to reuse the adequate color
to differentiate negative and positive points and improvement opportunities.
Two affinity diagrams were built. These can be viewed in [AYED, 2013].
Table 9.4 shows the transcription of the identified groups of challenges.

2https://ayedhajer.wufoo.com/forms/znj8luh18v8dyw/
3https://ayedhajer.wufoo.com/forms/q11mi9p60lhglme/

197

https://ayedhajer.wufoo.com/forms/znj8luh18v8dyw/
https://ayedhajer.wufoo.com/forms/q11mi9p60lhglme/

9. SPW Case Study

The 15 team members all participated to the retrospective. An agile facilita-
tor was also invited to join to bring insights and recommendations regarding
possibly interesting practices. The latter only contributed to the discussion
phase.

9.2.3 Data Analysis

To analyze the gathered data, we followed a theory triangulation strategy,
i.e., more than one theoretical scheme is used for the interpretation of
data: an organizational agility model [Boehm and Turner, 2003], a SWOT
(Strengths, Weaknesses, Opportunities, Threats) analysis of the identified
challenges [Jackson et al., 2003], and an affinity diagram [Pyzdek and Keller,
2014].

Organizational Agility Model

As previously mentioned, the organizational context can be conceptualized
in different ways to study its impact on agile methods implementation.

For instance, [Robinson and Sharp, 2005], based on [Cockburn, 2004a] (see
Section 3.2.1.2), looks at three organizational context dimensions: the orga-
nization’s behavior, beliefs, attitudes & values, the organizational structure
and the physical and temporal setting of the organization. [Siakas and
Siakas, 2007] identifies an ideal organizational culture to embrace agility by
relying on the [Hofstede, 2011] cultural dimensions (see Chapter 11). [Tolfo
and Wazlawick, 2008] defines the following seven organizational context
dimensions: innovation and risk, detail orientation, outcome orientation,
people orientation, team orientation, aggressiveness, and stability. Finally,
[Boehm and Turner, 2003] defines five factors to be considered when an
organization adopts agile methods (see Section 3.2.1.1): (1) Personnel, (2)
Dynamism (requirements variability), (3) Culture (Thriving on chaos vs.
order), (4) Team size and, (5) Criticality.

Using the results of the questionnaires, we analyzed the organizational
context according to the 5 factors of the [Boehm and Turner, 2003] model.
This model was found the most convenient since its dimensions are easier to
capture regarding the study settings. Later in Chapter 11, we used [Hofstede,
2011] to study the cultural perspective of organizations.

198

9.3. Results

SWOT Analysis

Based on the collected data from the questionnaires and interviews, we sum-
marize the benefits and challenges at the organizational level in the form of
a SWOT risk analysis (Strengths, Weaknesses, Opportunities, Threats) (See
Figure 9.3). The main intention of this analysis is to classify the influential
factors reported by practitioners using two dimensions: favorable/unfavor-
able and internal/external. This analysis tend to confirm the influence of
the 5 factors of the [Boehm and Turner, 2003] model and reports additional
challenging factors.

Affinity Diagram

At a project level, using the retrospective results, i.e., the affinity diagrams,
we identify the perceived critical context factors and reflect on the improve-
ment and customization opportunities. The results are reported in Table
are reported in Table 9.4.

9.3 Results

9.3.1 Organizational Context Study

As a preliminary understanding of the organizational context and using
the results of questionnaires and interviews, we first used the [Boehm and
Turner, 2003] assessment methodology to objectively visualize the risk of
adopting agility in the context of the D443 (see Figure 9.2).

The results of the assessment show high risk ratings of 4 out the 5 critical con-
text factors defined by the methodology. This strengthens the idea of careful
agility adoption and customization. More precisely, the implementation of
agile methods seem to be threatened by the:

• Lack of agile experience (or knowledge): 65% have no agile experience,
18% have a little experience and only 2% have good experience. Based
on these results, we identified training needs and planned two half-days
training sessions. with the purpose of introducing different agile meth-
ods to 25+ practitioner from the service. Practitioners demonstrated
particular interest to the DSDM approach which is more adapted to
large organizations with high levels of governance [Tudor and Walter,
2006].

199

9. SPW Case Study

Figure 9.2.: Organizational context according to [Boehm and Turner, 2003]

• Lack of team empowerment: only 36% of practitioners believe that the
team empowerment is satisfactory. Precisely, the team members re-
ported not being involved in the project planning and in the negotiation
of the scope with the business stakeholders. They are often required
to stick to the initial agreement decided between the business project
leader, the technical project leader and the customer representatives.

• The size of the organization: the D443 employs more than 84 peo-
ple working at different projects and different levels which means
that implementing agile methods at scale is more complex and would
necessitate more customization. The question was discussed during
interviews.

• The criticality of the domain: the D443 works on governmental projects
and depends on several regulations which may have a significant impact
on the implementation of agile methods. The practitioners discussed
this aspect specifically during the interview session of the managers
unit which report that their work depends on essential European and
governmental funds and therefore regulation tend to privilege a more
disciplined development process. We further investigate this question
in Chapter 10.

200

9.3. Results

The 5th dimension, i.e., the requirements dynamism seem however to be an
opportunity to apply agility.

This preliminary analysis step allowed us to get insights regarding the chal-
lenging context factors and to plan the resolution strategies to undertake.
As a second step, the data collected from Interviews (I) and the first ques-
tionnaire (Q1) are theoretically coded using a SWOT matrix (Strengths,
Weaknesses, Opportunities, Threats) (see Figure 9.3). The matrix was later
enriched with the factors identified during the Project Retrospective (PR)
(see section 9.3.2).

Table 9.1.: Questionnaire 1 (Q1) : Current process analysis
Rate the following statements
4 : strongly agree, 3 : agree , 2 : disagree , 1 : strongly disagree, N/A Mean Agree (%)

Section 1. Team organization

1.1 Teamwork composition
1.1.1 Team members are kept together as long as possible. 3.3 79.4%
1.1.2 Each member work exclusively on the current project. 2.8 52,9%

1.1.3 Everyone required in the project is on the team. 2.5 35.2%
1.2 Team Empowerment / Collective Leadership

1.2.1 Manager don’t tell members how to achieve goals. 3 58.8%
1.2.2 Members choose tasks according to their added-value. 2.1 14.7%
1.2.3 Manager rarely change priorities within the iteration. 2.7 35.3%
1.2.4 Members choose by them-selves the tasks to do. 2.3 35.3%

1.3 Communication and transparency
1.3.1 Meetings are enough recurrent and improve visibility. 2.8 55.8%
1.3.2 Team members discuss problems unreservedly. 3.1 70.6%
1.3.3 Inter-team communication is efficient. 2.4 41.2%
1.3.4 Documents are used to support informal communication. 2.7 53%

Section 2. Project management

2.1 Planning
2.1.1 The team maintains a prioritized task list. 3.1 79.4%
2.1.2 The team performs just-in-time planning. 2.8 61.8%
2.1.3 The team performs collective planning. 2.9 64.7%
2.1.4 Short iterations (max. 4 weeks.) 2.5 35.3%

2.2 Estimation and Progress tracking
2.2.1 The effort estimation is done collectively. 2.8 54.5%
2.2.2 For each task, a done criteria is defined. 2.9 55.8%
2.2.3 The team is able to estimate and visualize the progress. 2.3 35.3%
2.2.4 The customer track the progress closely. 2.8 58.8%

201

9. SPW Case Study

Table 9.1.: Questionnaire 1 (Q1) : Current process analysis (continued)
Rate the following statements
4 : strongly agree, 3 : agree , 2 : disagree , 1 : strongly disagree, N/A Mean Agree (%)

Section 3. Specification and requirements analysis

3.1 Spec. is done collectively (business & technical actors). 3.1 67.6%
3.2 High-level initial architecture is performed. 2.7 41.2%
3.3 Specifications are gradually refined. 3.1 64.7%
3.4 Team manages efficiently requirements change. 2.8 52.9%
3.5 Team can start developing with incomplete requirements. 3 67.6%
3.6 There’s many requirements change per month. 3.3 76.4%
3.7 The design is performed just-in-time (at iteration start). 2.6 44.1%
3.8 Iterative conceptual modeling 2.6 47%

Section 4. Development practices

4.1 The team uses unit testing 2 24.2%
4.2 The team uses refactoring 2.1 23.6%
4.3 The team respects code versioning 3.6 85.3%
4.4 The team members share the code (collective ownership) 2.3 38.23%
4.5 The team respects design patterns and simplicity rules 3.2 70.6%
4.6 Continuous integration 2.5 38.23%
4.7 Acceptance testing (involving customer or representatives). 2.7 45%

The analysis reveals that strengths (internal favorable factors) are the
team internal communication (Q1 1.3.2, I), autonomy (Q1 1.2.1, I, PR)
and the management buy-in (I). In fact, 57% of the respondents think
that the team members are sufficiently autonomous and 70% think there’s
enough transparency in problem management. These two positive factors
were also discussed during interviews. Team members report that the
Scrum management practices they experienced so far improved the internal
communication and brought greater motivation (see Section 9.3.2).

The only opportunity i.e., (external favorable factor) that we were able to
identify is the Requirements Dynamism or variability (I, Q1 3.6). Indeed,
this means that the project scope is prone to change in which case agile
methods would be helpful to deal with the evolving requirements.

The weaknesses (i.e., internal unfavorable factors) include the lack of a
suitable organizational culture. This involves the lack of process visibility,
the inflexibility to change, the internal reluctance, traditional planning, etc.
For example, the organizational process usually consists of long iterations, a
direct consequence of the disciplined organizational culture (see Section B.2).

202

9.3. Results

Table 9.2.: Questionnaire 2 (Q2) : Context analysis
1. Do you have experience in agile development?
No experience
0 - 6 months
7 - 12 months
More than 1 year
More than 2 years

Section 2. Rate your knowledge of the following development prac-
tices
3 : Expert , 2 : Familiar with , 1 : acknowledged , 0 : Not acknowledged

2.1 Release planning
2.2 Scrum daily meeting
2.3 User stories
2.4 Planning poker
2.5 Definition of Done
2.6 Sprint plan
2.7 User stories
2.8 Sprint review
2.9 Sprint retrospective
2.10 Task board, Kanban board, Post-it board
2.11 Agile Risk Board
2.12 Product Backlog
2.13 Sprint Backlog
2.14 Burn-down chart/ Burn-up chart
2.15 Unit testing
2.16 Refactoring
2.17 code versioning
2.18 Collective ownership
2.19 Continuous integration
2.19 Acceptance testing (involving customer or representatives)
...

Section 3. Rate the following practices according to the degree of
change you desire and think is realistic.

(same list of practices)

Some reluctance towards the agile philosophy was also noticed during the
interviews, especially among business units that are working on many projects
at the same time or in which the task realization is not collaborative (e.g.,
the application maintenance unit in which each member works on the

203

9. SPW Case Study

maintenance of a specific project). 70% think that the business stakeholders
don’t collaborate enough with the technical team members.

Another seemingly critical weakness is the inter-team communication. In-
deed, only 41% of the respondents think that the inter-team communication
is satisfactory. Moreover, the problem was largely discussed during interviews.
For example, the communication between the DEV, AR and FA is seemingly
conflictual. In this context, we discussed leads for solutions and proposed
some practices that were later applied for improving the communication
with the FA unit (see Section 9.3.2).

Questionnaire 2 reveals another important weakness factor that was pre-
viously discussed by the project team: the lack of knowledge of the agile
practices. 65% have no agile experience, 18% have a little experience and
only 2% have good experience.

A major threat (i.e., external unfavorable factor) is the lack of availability
of the customer. 60% of the respondents believe that the customer does not
track the work progress frequently and 72% would like a better implication.

strengths (internal)

CF1: Team internal communication
CF2: Team autonomy and empower-

ment
CF3: Management Buy-in

weaknesses (internal)

CF4: Organizational structure and
culture

CF5: Inter-team communication
CF6: Agile experience and skills
CF7: Size (of the organization and

team)
CF8: Team co-location (vs distribu-

tion)

opportunities (external)

CF9: Requirements Dynamism

threats (external)

CF10: Domain criticality
CF11: Customer availability
CF12: Contracting model (budget,

time, scope)

Figure 9.3.: SWOT Analysis

204

9.3. Results

9.3.2 Project’s Context Study

The retrospective results are mitigated : the participants reported an impor-
tant list of issues but also undeniable benefits, especially at the team-level
(e.g., better team collaboration, better visibility of the work progress, regular
releases and product delivery within deadlines, quick detection of bugs, etc).
These are more detailed in [AYED, 2013]. In this chapter we focus more on
the challenging factors that would drive customization guidelines.

The challenges were either expressed as difficulties to satisfy specific agility
goals or as challenging context factors. They are reported in Table 9.4.

One of the major challenges that was reported consists of the lack of inter-
team communication. Indeed, the team reported several issues related to
the communication with other business units. This factor is emphasized by
the organizational structure since the processes followed by the units are not
always aligned with the team iterations (see Appendix B.3). For example,
the functional analysis (FA) unit is stand alone and its resources are not
exclusively allocated to IDEES. Due to these circumstances, the analyst
cannot always be present at the daily agile meetings and can find difficulties
to deliver detailed analysis on time (i.e., at the sprint start).

The team also reported that adopting agile software development meth-
ods only at the team level is not sufficient to provide satisfactory level of
agility. In fact, Scrum was applied for product development while other
units were still employing the traditional waterfall-like process for planning,
budgeting, testing, etc. This hybrid development approach is known as the
“water-Scrum-fall” approach. The difference of agility levels between the
organizational overall process and the team process is assessed in one of our
previous works [Ayed et al., 2014]. The assessment shows that the degree of
agility of the development sprints is satisfactory (0.6) while it is still very
low in the other phases (0.36). Such a difference in agility levels contributed
to the communication problems.

Other issues related to the lack of agile knowledge are reported: difficulties
to plan and estimate, no clear definition of roles, etc. Many issues regarding
the organizational culture are also discussed: the lack of visibility and
visual facilitation tools, long meetings, overspecialization of team members
(recruitment style in public organizations), etc.

Another point discussed during the retrospective is the possible customization
opportunities (see Table 9.4). Each customization opportunity is expressed
as a recommendation + , a configuration or a cautious implementation

205

9. SPW Case Study

C or an exclusion − of a specific practice. As shown in the table, the
following customization opportunities were discussed:

[C1] User Stories Estimation C : The team reported difficulties to
estimate the identified features in terms of story points (relative
estimation). They explain this by their lack of experience (CF6) and
by the internal communication issues (CF1). Moreover, the team
reported difficulties to estimate because of the lack of understanding
of features. This is caused by the lack of customer and business
representatives availability (CF11). As a matter of fact, more atten-
tion needs to be paid to user stories estimation. Additionally to a
proper consideration to the practice, some consensus-based planning
techniques may be useful. The team discussed the utility of using
planning pokers as a consensus estimation technique. This practice
would help to integrate each one estimation of the development effort
an in fine improve on-time delivery.

[C2] Sprint planning C : The team reported that the sprint planning
meeting usually takes much more time than expected because of
the large team size (CF7) and the criticality of the project (CF10).
A solution discussed to resolve this issue is to configure the sprint
planning practice by dividing it into two meetings as suggested by
the LeSS method4: (1) a high level meeting which brings together
team representatives and the product owner to discuss the sprint or
release objectives and clarify the items to be developed. At this step
no decomposition into tasks is performed. (2) a separate meeting
with all team members aimed at decomposing the user stories into
smaller tasks and to estimate them.

[C3] Grooming session per release + : Team members explained
that there was no dedicated customer representatives to the project
and discussed suitable practices to reduce the impact of this factor.
Particularly, they considered to organize some feature grooming ses-
sions (one per project release for example). The grooming session
would bring together the product owner (PO), the available repre-
sentatives and business stakeholders and some, or all, of the rest
of team to review items on the backlog and ensure that they still
are up-to-date. This would also decrease the external interventions
during sprints. Doing so, the customer representative should not nec-
essarily attend to sprint planning, and therefore the practice would
be recommended in a context where the customer availability is low

4Large Scale Scrum: https://less.works/less/framework/sprint-planning-one.html

206

https://less.works/less/framework/sprint-planning-one.html

9.3. Results

(CF11). In case of the D443, customer representatives work at the
same time on other projects, so their availability is limited.

[C4] Domain walk-through + : Another practice that would further
align the team with the customer project view without much solici-
tation of customer representatives with limited availability (CF11) is
to allow the team to meet them at least once, when the project is
launched. The idea is to start the project by a domain walk-through
meeting5 where the customer and domain experts introduce the team
through the entire project. Doing so, the customer representatives are
mainly involved at the start of the project and (eventually at the start
of releases) with the purpose of improving the team product vision.
Their implication is reduced afterwards. The team discussed the
eventual usefulness of the practice regarding the domain complexity
(CF10).

[C5] Model in small increments − : Small incremental modeling
was also discussed by the team as a possible solution for the upfront
analysis issue. However, since the organization has a traditional con-
tracting model (CF12) and regarding the projects criticality (CF10),
an important time-consuming analysis phase still have to be done at
the beginning of the project. The actual process already include some
kind of incremental modeling but increments are of several months
(see Section B.3). Another challenging factor to the implementation
of the practices is the organizational structure (isolated analysis unit)
(CF4). Having small incremental modeling seem also to be unfeasible
at the moment of the study but a focus group between the project
portfolio manager and a number of analyst representatives was later
organized to discuss the question of having smaller functional analysis
increments.

[C6] US writing workshops + : Writing user stories is not an easy
task for unexperienced practitioners (CF6). Agile training sessions
usually include user story writing workshops6 performed by the agile
facilitator (scrum master) or a coach. Later, two user story writing
sessions were organized in collaboration with the researcher and a
senior functional analyst. Analysts and developer representatives
participated to it.

5http://www.martinbauer.com/Articles/Content-Modelling/Step-1-Domain-
Walkthrough

6https://www.mountaingoatsoftware.com/exclusive/story-writing-workshop-pdf-
download

207

http://www.martinbauer.com/Articles/Content-Modelling/Step-1-Domain-Walkthrough
http://www.martinbauer.com/Articles/Content-Modelling/Step-1-Domain-Walkthrough
https://www.mountaingoatsoftware.com/exclusive/story-writing-workshop-pdf-download
https://www.mountaingoatsoftware.com/exclusive/story-writing-workshop-pdf-download

9. SPW Case Study

[C7] Custom extension of EA C : This customization to Scrum was
already introduced by the analysis unit at the time the retrospective
was animated. It consists of using a special extension of Enterprise
Architect that allows writing user stories and attach them to use
cases. The practice was appreciated but remains time consuming
(work is done twice !)

[C8] Roles ambiguity (coaching) + : The lack of roles clarity seem to
be caused by the structure of the organization (CF4) and the lack of
agile experience and knowledge (CF6). Obviously, it may be confusing
to transition from a development process were traditional titles are
used (business manager, technical manager, business representative,
analyst, architect, analyst developer, etc.): how will play the role of
the product owner? who will play the role of the scrum master? etc.
Accountability in scrum is mainly around all three roles: the PO is
accountable for maximizing the value the product to be delivered,
the SM is accountable improving the team velocity and improving
their way of working and the team member are all accountable for
delivering a product of good quality. Integrating these roles may
not be easy. Coaching sessions may be enforced to integrate this
concepts. Guidelines exist in the literature7.

[C9] Sprint-0 (technical envisioning) C : The team members dis-
cussed a lack of cross-functional skills (CF6). Consequently, at some
phases of the project, some individuals are overloaded while others
are stuck waiting. Moreover, they reported a lack of time to decide
about the best technical alternatives to employ in the project.

As a solution, more technical envisioning (a step where the team can
lean, balance and choose from different technical alternatives) at the
start of the project is considered and discussed. More precisely, a
practice that could be systematically introduced in future projects
is the so-called Sprint-07. This practice may be viewed as a project
before the project. It would allow the team to get time to set-up the
technical environment, define the coding standard, develop some code
snippets or animate technical demos. However, regarding the con-
tracting model (CF12), the planning and the high level technological
architecture are fixed with no consultation of the team. Therefore,
the team thinks the practice would be beneficial but its applicability
to their environment should be verified.

7https://manifesto.co.uk/scrum-practice-sprint-zero/

208

https://manifesto.co.uk/scrum-practice-sprint-zero/

9.3. Results

[C10] Pair programming sessions + : Similarly to the previous rec-
ommendation, pair programming sessions may also be recommended
to reduce the lack of cross-functional skills.

[C11] Parallel independent testing + : In the context of the D443, a
whole team approach where agile teams are totally cross functional
and where all tests are done during sprints is not feasible. The main
reason for this is that testers are outside of the development teams
(CF4). Moreover, regarding the criticality of the domain (CF10), a
sophisticated testing (e.g., security testing, production testing, inves-
tigative testing, integration testing, non-functional testing [Gregory
and Crispin, 2014]) is necessary. Having the team focus on all these
kinds of testing is difficult. In such a context, it is recommended
to let the team focus on functional and confirmatory testing while
delegating more complex testing to a parallel independent testing
team.

[C12] Scrum C : Because of the lack of experience (CF6) and of the
large size of the Scrum team (CF7), the interviewed team members
reported that meetings tend to last more than expected (20 to 30
min for daily meetings, and 4 to 8h for sprint planning meetings). A
solution that was discussed to scale up Scrum is to divide the unique
scrum team to two groups. The practice is known as Scrum of Scrums
and may be very useful when several teams should collaborate on
different components of the same project8.

[C13] Retrospectives facilitation techniques + : The pilot-team re-
ported that retrospective meetings were not systematically held and
that they were sometimes considered as a loss of time. In order
to motivate the team, several retrospective techniques9 are shared
among the agile community and could be recommended for making
the team retrospectives more motivating and efficient.

[C14] Physical − vs Virtual C visibility tools: The project team
used to rely on the classical version of Jira Atlassian (an issue tracker)
for encoding user stories and tracking progress. However, several stud-
ies demonstrate the benefits of having physical visibility tools [Perry,
2008; Sharp et al., 2008]. Switching to physical post-it boards was
discussed during the project retrospective. Specifically, 2 tools were

8https://www.agilealliance.org/glossary/scrum-of-scrums/
9https://trello.com/b/40BwQg57/retrospective-techniques-for-coaches-scrum-

masters-and-other-facilitators

209

https://www.agilealliance.org/glossary/scrum-of-scrums/
https://trello.com/b/40BwQg57/retrospective-techniques-for-coaches-scrum-masters-and-other-facilitators
https://trello.com/b/40BwQg57/retrospective-techniques-for-coaches-scrum-masters-and-other-facilitators

9. SPW Case Study

suggested: a physical task board and a portfolio alignment wall. For
the next release, while maintaining their Jira task board, the team
also implemented a physical task board with post-its representing
user stories and tasks and swim lanes representing the current task
state. This solution was not satisfying because of : (a) the size of the
team (CF7), (b) information was double encoded and (c) accessibility
to distributed stakeholders (CF8). Therefore, the team chose to get
back to the virtual task board but using a better Jira extension,
Green Hopper, actually known as Jira Agile5 (an addon for Jira that
integrates more specific agile tools such as boards, burndowns, point
estimation, etc.), and reported a better satisfaction level.

9.4 Discussion

In this study, we investigated the influence of the organizational context
on agile methods implementation and customization. We have been able
to confirm the influence of the 5 factors of the [Boehm and Turner, 2003]
model and to identify 7 more potentially critical factors. The final set of
factors can be classified as shown in Table 9.3.

Table 9.3.: Identified context factors

Dimension Factor

Organization Management buy-in

Organizational structure and culture

Inter-team communication

Agile experience and knowledge

Organization size

Project-team Internal communication

Team autonomy and empowerment

Team distribution

External Environment Requirements dynamism

Domain criticality

Customer availability

Contracting model

210

9.4.
D
iscussion

Table 9.4.: Retrospective - Challenges transcription
ID Challenge (agility goal) Freq. Details Possible customizations Type

1 Planning 11 Decomposition of requirements into
USs

USs estimation (use planning
poker) [C1]

C

(On-time delivery) Self assignment of tasks Sprint Planning [C2] C

(Waste elimination) Difficulty to estimate (Requirements
not well understood)
No respect of tasks assignment
Work estimation : the dev. effort not
considered
Long sprint planning

2 Collaboration with business 8 Weak collaboration between PO and
business

Grooming session per release [C3] +

(Valuable software) Weak collaboration with analysts Domain Walk-through [C4] +

Team disturbed by external demands
during sprints
External pressure

3 Analysis 8 Thorough upfront analysis Model in small increments [C5] −

(Frequent delivery) Alignment of user stories (JIRA5)
and use cases (UML EA 6)

US writing workshops [C6] C

(Valuable software) User Story [C7] +

5https://jira.atlassian.com/
6Enterprise Architect http://sparxsystems.com/products/ea/

211

https://jira.atlassian.com/
http://sparxsystems.com/products/ea/

9.
SPW

C
ase

Study

Table 9.4.: Retrospective - Challenges transcription (continued)
ID Challenge (agility goal) Freq. Details Possible customizations Type

4 Roles ambiguity 7 Unclear role definition Coaching / Guidelines7 [C8] +

(Role ownership) “Everybody is responsible for
every thing and for nothing
!”

5 Team Skills 6 Overspecialization Sprint-0 (technical envision-
ing) [C9]

+

(Technical excellence) Frustration because not
enough learning and knowl-
edge sharing

Pair programming ses-
sions [C10]

+

6 Testing 6 Testing workload at the end
of sprints

Parallel independent test-
ing 8 [C11]

+

(Continuous testing and delivery) No stories for identified bugs C

7Example of Guidelines: https://www.linkedin.com/pulse/how-resolve-agile-roles-conflicts-confusions-doubts-ajay/
8http://www.ambysoft.com/essays/agileTesting.html

212

https://www.linkedin.com/pulse/how-resolve-agile-roles-conflicts-confusions-doubts-ajay/
http://www.ambysoft.com/essays/agileTesting.html

9.4.
D
iscussion

Table 9.4.: Retrospective - Challenges transcription (continued)
ID Challenge (agility goal) Freq. Details Possible customizations Type

7 Project initiation 5 Late delivery of the high-level
architecture

Sprint-0 (envisioning) [C9] C

(Frequent delivery)

8 Meetings 5 Long daily meetings (same for
two sub-projects)

Scrum of Scrums (1 meeting /
subproject) [C12]

+

(Waste elimination) No effective retrospective Retrospective facilitation
tools [C13]

+

9 Visibility 5 Lack of visibility tools Physical task board [C14] −

(Process visibility) No clear and visible definition
of priorities

Virtual task board (Jira)[C14] C

KPIs: are they adapted to agile
projects?

Portfolio alignment wall9 [C14] +

9https://www.pmi.org/learning/library/portfolio-alignment-wall-tool-agile-5834

213

https://www.pmi.org/learning/library/portfolio-alignment-wall-tool-agile-5834

9.
SPW

C
ase

Study

Table 9.4.: Retrospective - Challenges transcription (continued)
ID Challenge (agility goal) Freq. Details Possible customizations Type

10 Organizational structure 2 Transition to agile without assess-
ing risks at an organizational level

– –

11 Team Size 2 Large team size (15 p.) involving
two sub-projects

Scrum of Scrums [C12] +

12 Team Distribution 1 Different locations for project sub-
groups

– –

+ Helpful practice (based on the experience of the team)

C Practice that needs customization or careful implementation (based on the experience of the team)

− Practice to avoid (based on the experience of the team)

214

9.5. Lessons Learned

If we reuse the radar chart analogy from [Boehm and Turner, 2003], the risk
of implementing agile methods in the context of the D443 can be visualized
as shown in Figure 9.4. Some of these factors were already measured using
the questionnaires and other were estimated for illustration purposes.

Figure 9.4.: Illustration of the 12 identified factors (adapted from [Boehm
and Turner, 2003])

It is worth noting that among these factors, some are easily measurable or
estimable using questionnaires for example (as we did in this chapter) while
others are more difficult to capture.

Specifically, ranking the organizational structure (and culture) regarding
agility is not obvious. Some research works establish the relationship between
the organic organizational structure and the success of agile implementa-
tion [Overby et al., 2006]. Studies such as [Strode et al., 2009] investigate
the impact of hierarchical structures on agility. This factor may also be
associated to the concept of enterprise agility, i.e., the degree of adaptivity
and flexibility to changes in the environment [Sherehiy et al., 2007]. Finally,
some studies investigate this factor in further details. For example, [Tolfo
and Wazlawick, 2008; Siakas and Siakas, 2007] use the [Hofstede, 2011] model
for dimensioning the culture of the organization. For the aforementioned
reasons, we further study this factor in Chapter 11.

215

9. SPW Case Study

9.5 Lessons Learned

This first case study allowed us to capture 12 influential context factors,
some of which were previously discussed in Chapter 3. We classified these
factors to 3 dimensions: organization, project-team and external environ-
ment and discussed their measurability and their impact on agile practices
customization.

A direct implication for the AMQuICk framework is that the context is
multidimensional. In other terms, it can be captured using several dimen-
sions and factors (attributes). Moreover, the context is measurable, i.e., it
can be measured using one or many assessment models. To measure the
organizational context, we used in this study a simple opinion-based ques-
tionnaire. As earlier discussed, this may be insufficient for some composite
factors such as the organizational culture. For this kind of factors, more
sophisticated assessment models can be used. Several assessment models
exist in the literature or are shared in the agile community10.

The advantage of dimensioning the context and measuring it using different
factors is to allow an easier and more precise definition of the customization
knowledge (i.e., at a fine grained level). As a simplistic example, the set
of measurable context factors can be used to represent the agile experts
knowledge in the form of customization/recommendation rules as shown in
the following:

Domain_Criticality = High⇒ RecommendP ractice(Domain_W alkthrough)
(9.1)

Customer_Availability = Low ⇒ ConfigureP ractice(Sprint_P lanning)
(9.2)

More interestingly, the measurable context factors could be used to encapsu-
late the knowledge of practitioners in a structured dataset. The collection of
experiences would then be reused to predict adequate customizations (using
a recommender system for example [Ricci et al., 2015]).

This study also tends to show that the adoption of agile methods in a
non-sweet spot context should be carefully planned. The implementation
of a progressive strategy seem to be beneficial. Indeed, the management
was at first hesitant because of the lack of a relevant assessment regarding
the benefits and risks of agility. We therefore, advocated a progressive and
cautious transformation. We chose a pilot project of mid-level criticality
to implement Scrum (see Figure 9.2). Despite the number of encountered
10https://www.benlinders.com/tools/agile-self-assessments/

216

https://www.benlinders.com/tools/agile-self-assessments/

9.5. Lessons Learned

issues, the pilot-team enthusiasm impacted on the way of working of two
other teams that started to work in a more iterative way by including more
frequent checkpoints and team meetings. Then, once the interest to agile
methods raised in the service, a natural desire to gain more knowledge and
to spread agile values among all the teams has followed.

The study also tend to show the importance to systematize the representa-
tion of the project-team knwoledge so it can be better disseminated at an
organizational level.

With these informations in mind, we discuss in Chapter 12, the extension of
AMQuICk Essence by including new concepts necessary to document agile
practitioners knowledge.

217

Chapter 10

E-Gov Case Study

Challenges of Implementing Agile in E-Gov

In the previous chapter, we observed the implementation of a custom agile
method in a transitional context, identified the challenges met by stakeholders
from different units and synthesized the overall impact of the organizational
context on the implementation of agile methods.

However, since we studied an IT public-sector organization, a legitimate ques-
tion that needs to be investigated regards the possible influence of the sector,
its intrinsic characteristics and the nature of e-government service develop-
ment on agile methods implementation. Indeed, agile software development
is still controversial in some circles such as the public IT sector [Mackinnon,
2004]. The main reason for this skepticism is that the public sector reality is
perceived as hardly suitable for agile management structures and culture.

In this chapter, we investigate the contextual challenges that practitioners
face when developing e-government services using an agile software develop-
ment method. To do so, we organized three focus groups with practitioners
involved in the process of implementing agile methods in different Belgian
e-government organizations. The purpose of the study was to identify
the challenges they faced so far in implementing agile practices to their
contexts.

In Section 10.1, we provide an overview on some previous work that had
investigated e-government service development using agile methods. In
Section 10.2, we detail the research design we applied to determine and
validate the e-government specific challenges. The challenges that emerged
from the organized focus groups are contextually explained and presented
in Section 10.3 and their validity is discussed in Section 10.4. Finally, in
Section 10.5 we synthesize the lessons learned from this case study and
explain how it contributes to the thesis.

219

10. E-Gov Case Study

10.1 Background

E-government refers to the use of Information and Communication Tech-
nologies (ICT) by governments to deliver their services in an optimal way.
For a long time, disciplined development methods such as the traditional
waterfall model and RUP (see Section 2.1.3) have been prevailing in the
development of e-government services. The inherent complexity of the public
sector is so important that disciplined methods with their thorough planning
and standardized processes were for a long time considered as the safest way
to produce e-government services.

However, new challenges of e-government (e.g., changing political strate-
gies, willingness to deliver more valuable services and to establish better
transparency between citizens, political representatives and the service devel-
opment stakeholders, etc.) have contributed to make a shift in governmental
strategies. Indeed, these are becoming interested in a number of new initia-
tives such as the open government1 for providing a better transparency [Lee
and Kwak, 2012], increasing the collaboration with citizens [Axelsson et al.,
2010; Lindgren, 2014; Anthopoulos et al., 2007] or enhancing innovation [Hol-
gersson et al., 2017].

Among these initiatives is the willingness to shift towards better development
practices. In this regard, several research studies have underlined the
contextual specificities of the e-government domain and their general impact
on development practices.

For example, [van Velsen et al., 2009] underlined the following factors: the
heterogeneous and large user group (i.e., the citizens), the complicated
processes and requirements of e-government services and the crucial need
for interoperability between the systems of different governmental bodies.

[Anthopoulos et al., 2016] conducted a systematic literature review to under-
stand and classify the failure factors of e-government service development.
The identified factors consists of the influence of the organizational power,
the lack of political support and commitment, the lack of appropriate skills,
several business management issues, the ambiguous business needs and
unclear visions.

[Mergel, 2016] is another study worth citing that referred a failure project
“healthcare.gov” to demonstrate how disciplined models may be dissatisfying.
This failure has initiated calls for more agile management approaches which
are expected to help e-government organizations adapt faster to political
and citizen requests.

1https://www.opengovpartnership.org/

220

https://www.opengovpartnership.org/

10.2. Methodology

In order to meet such challenges, e-government organizations have al-
ready shown a particular interest in agile software development approaches.
[Powner, 2012], a report published by the U.S. Government Accountability
Office, identifies 32 agile practices and approaches as effective for applying
in a federal environment and reports a set of recommendations regarding the
application of agile methods in e-government projects. It also identifies a set
of challenges encountered by governmental agencies when transitioning to
agile software development. These can be synthesized into 3 perspectives:

• Team perspective: the report mentions that teams usually had diffi-
culties in collaborating closely, transitioning to self-directed work and
committing to more timely and frequent input.

• Organizational perspective: the report mentions that agencies had
trouble committing staff and that agile methods do not align with
federal reporting, procurement, status tracking and artifacts review
practices.

• Customers perspective: the report mentions that customers did not
trust iterative solutions.

This report constitutes a valuable reference for e-government practitioners.
However, since it only reports challenges without explaining them contextu-
ally, it cannot be useful for deriving comprehensible recommendations for
practitioners from other e-government agencies.

In this research, we collaborated with practitioners from different e-government
agencies in Belgium with the purpose to elicit the general contextual fac-
tors that influence the implementation of agile methods and to provide
e-government practitioners with comprehensible and reusable guidelines.

10.2 Methodology

As an exploratory methodology to find out and validate the context-specific
challenges and to analyze them, we decided to follow a simplified grounded
theory approach (see Section 4.1). Following this methodology, data was
iteratively coded at each step of the process to identify the challenges and
the correlated causal factors. Three iterations were necessary to generate
enough learnings.

The following sections detail the proposed methodology.

221

10. E-Gov Case Study

10.2.1 Objectives

The studies presented in Section 10.1 tend to show the growing interest to
implement agile methods in an e-government context. However, few research
has yet investigated their adaptability and the challenges that may arise
when implementing them without much discernment.

With this regard, our research aims to:

1. find out, discuss and validate the most critical context-specific chal-
lenges that e-government stakeholders encounter when implementing
agile software development, and

2. identify the causal factors that underlie those challenges and how they
may impact agility goals.

More specifically, the second objective intends to generate comprehensible
guidelines (theoretical coding) that can be reused by other practitioners and
therefore pave to way for the customization of agile methods in the context
of e-government.

These specific objectives relate to RQ2 and RQ3, the second and third
research questions of the thesis (see Section 3.5).

10.2.2 Data Collection

In order to gather the research data, we chose to organize focus groups with
the purpose of capturing and understanding the challenges as perceived by
public sector representatives. We decided to stop grounding theory after
three focus groups as each challenge had reached saturation and no more
original findings were determined.

The focus groups were conducted according to the guidelines and best
practices reported in [Krueger, 2014; Morgan, 1996].

Following these guidelines, we made the choice to involve from 5 to 10
participants (selected based on convenience sampling) at each focus group.
We also chose to follow a single category design, i.e., to focus on a set
of practitioners familiar with agile methods so that the validation of the
constructs is empirically grounded.

However, to stimulate discussion and contrasting opinions, we ensured
diversity in terms of organizations as participants came from different gov-
ernmental levels (local and regional) and from different governmental sectors
(employment, administrative simplification, innovation, etc). Furthermore,

222

10.2. Methodology

the focus groups were diverse in terms of agile expertise (which range among
novice, intermediate and expert) and in terms of roles (developers, analysts,
operational, team leaders (middle level management) and strategic leaders
(top level management)).

Table 10.1.: Focus Groups Participants
ID E-gov Service Role Agile Exp.

Level
Method

P1 Communal services Project Leader Intermediate Custom
P2 Communal services Dev. Novice Custom
P3 Communal services Analyst, Dev., Ops. Novice User Driven

Design
P4 Communal services Dev., Ops. Novice Custom
P5 Communal services Dev., Ops. Novice Custom
P6 Communal services Dev., Ops. Expert Devops
P7 Communal services Dev., Ops. Novice Custom
P8 Communal services Dev., Ops. Novice Custom

P9 Admin. Simplification Project Leader Intermediate Custom
P10 Employment IT Advisor Novice Custom
P11 Employment IT Director Expert Custom

Scrum
P12 Enterprise & Innovation IT Advisor Novice Custom
P13 Digital Technology IT Manager Intermediate Scrum/Kanban

P14 Environment General Director Expert Custom
Scrum

P15 Environment Product Owner Intermediate Custom
Scrum

P16 Transversal IT General Inspector Intermediate Custom
P17 Transversal IT IT Project Leader Intermediate Custom
P18 Routes and highway General Director Novice Custom
P19 Research & Innovation General Inspector Novice Custom

Scrum
P20 Research & Innovation IT Project Manager Novice Custom

Scrum

Table 10.1 details the profiles of the different focus groups participants. It
describes the e-government service that they contribute to, their current
role, their agile expertise and the agile methods they experienced so far. P1
to P8 participated to the first focus group, P9 to P13 to the second and P14
to P20 to the third. It is worth to note that some participants relied on

223

10. E-Gov Case Study

their previous agile experience in other public organizations to identify the
challenges.

Following the guidelines in [Krueger, 2014; Morgan, 1996] and applying
the Affinity Diagram method [Pyzdek and Keller, 2014], we designed the
following questioning route:

Step 1. The participants were asked to present themselves, their organization
as well as their knowledge and experience with agile ;

Step 2. Each practitioner was asked to write on post-its the challenges that
he/she faced so far when trying to implement agile methods in
a public organization. We recommended to write down a unique
challenge per post-it ;

Step 3. Each practitioner discussed the challenges he/she identified and
placed them on a board.

Step 4. Practitioners were asked to collaborate on arranging the challenges
into separate categories to design the Affinity Diagram. We only
helped them naming the categories. Indeed, at this step, our assis-
tance was reduced to the minimum to avoid bias from the researchers
as we only intervene to facilitate consensus among participants about
the assignment of the post-its ;

Step 5. The final grouping are reviewed and discussed by all the practition-
ers, with the researchers playing a mediation role. As suggested
by [Morgan, 1996], we used the theoretical background to generate
discussion for this step.

Step 6. In order to identify the most important category of challenges (as
perceived by practitioners), we used the dot voting technique2 which
allows to visually show what are the most important ideas among a
reasonably small set. Each participant was given 3 dots votes (dv)
(each vote will be represented by a dot on the post it) that they can
place freely. More that one dot could be placed on a single category.

Step 7. We finally drove the discussion to insist on the most populated cate-
gories and to bring practitioners to provide the causal interpretation
of the challenges it contains. This is known in grounded theory as
in-vivo coding.

2http://www.funretrospectives.com/dot-voting/

224

http://www.funretrospectives.com/dot-voting/

10.3. Results

10.2.3 Data Analysis

As mentioned in [Rabiee, 2004], relying exclusively on the focus groups
transcriptions may be overwhelming since they generate a large amount
and complex qualitative data. In this research, the interpretation of the
generated data was largely facilitated by the use of the Affinity Diagram
method. Indeed, using this simple technique, the generated data were
preprocessed (classified) and we were able to visualize the most critical
categories of challenges and the most frequently appearing challenges.

We analyzed the generated data following the recommendations of [Krueger,
2014; Rabiee, 2004] and based on the generated affinity diagrams and on
the focus groups records. After each focus group, we examined, categorized
and arranged the generated data in tables following the same template (see
Table 10.2). The resulting tables contain the identified challenges, their expla-
nations by the practitioners, their categorization and the causal interpretation
that practitioners pointed out to explain them (see Tables 10.3, 10.4, 10.5).
In terms of grounded theory, these tables report what is known as substantive
coding, i.e., the process of conceptualizing the categories and properties of
the theory which emerge from the substantive area being researched [Abdel-
Fattah, 2015].

Table 10.2.: Focus groups transcription template
ID Category Votes /15 Challenges Causes

..

To recombine the evidence, we integrated the generated tables after the
three focus groups were completed. The categories were reformulated into
generic challenges and evidence for the contextual interpretation (obtained
by in-vivo coding) was added from the literature.

Finally, using this synthetic table, we proceeded to the coding of the interpre-
tations, i.e., the impact of the e-gov context factors, in the form of a matrix
diagram [Pyzdek and Keller, 2014] which is useful to analyze the correla-
tions between two groups of ideas and to systematically analyze correlations.
They provide a suitable form for encoding practical recommendations to
practitioners, which is the initial goal of the study. We structured the matrix
diagram as follows: the columns represent the contextual factors and the
rows represent the desirable agility goals (which are formulated based on
the agile principles reported in Table 2.1).

225

10. E-Gov Case Study

10.3 Results

In this section, we first present the challenges identified in the focus groups
(see Tables 10.3, 10.4, 10.5). Then, based on the in-vivo coding and on the
transcriptions of the focus groups, we discuss the impact of those challenges
and generate the theoretical coding, i.e., the matrix diagram.

The resulting diagram is shown in Table 10.6. It summarizes the impact
of context factors on agility principles as described by the agile Manifesto
(see Table 2.1). The matrix columns contain the context factors and its
rows consist of the impacted agility principles. The (−) symbol designates a
hypothetical negative impact identified in focus groups. The diagram should
be considered as a way to focus the reflection and guide the customization
when implementing agile methods for e-government service development.

In the following sections, we detail the set of challenges that we were able
to identify and discuss the derivation of the hypothetical correlations that
construct the matrix diagram.

10.3.1 Internal Competences

The most important category of challenges reported by the practitioners is the
lack of internal competences (15 dot votes). Mainly, this challenge designates
the unavailability of specific IT profiles in e-government teams. For example,
some participants pointed out that team members are over-specialized and
that they often lack time and resources to continuously improve their tech-
nical competences outside of their initial expertise. The lack of soft-skills
and knowledge of agile methods was also pointed out. Indeed, practitioners
reported that when the agile knowledge isn’t disseminated to the whole
organization, it is hard to find a common lexica and understanding with
other public agents to discuss the advancement of projects. Another crucial
challenge resides in the need for influential drivers (or sponsors) able to
impulse the implementation of agility.

Impact

This challenge is directly related to the Technical Excellence principle
(AP09). Most developers in e-government projects are specialized in clear-cut
tasks, which can lead to a decrease in technical excellence (AP9, Technical
excellence)

226

10.3. Results

Table 10.3.: 1st focus group transcription (synthesized)
ID Category dv/24 Challenge Causes

FG1-1 Management
support

2 No motivation to change Low innovation and risk
taking

Agile for “marketing”
with no investment
Lack of sponsoring

FG1-2 Culture 0 No self-organization Siloed organization
Over-processing of every
demand

Bureaucracy

FG1-3 Competences 9 Lack of competences Limited budgets
Developers working on
multiple projects

FG1-4 Regulation
and Politics

4 Communes autonomy High domain complexity

Continuous switch of pri-
orities

High regulatory compli-
ance

Public marketplace pres-
sure
Changing regulations

FG1-6 User In-
volvement

4 One customer representa-
tive is insufficient

Diversity of user profiles

FG1-7 Business
Availability

5 Inaccessibility of represen-
tatives

Formal governance

No dedicated representa-
tives

Causes

The lack of competences is most likely not purely specific to the e-government
domain but can be a result of the low attractiveness of the public sector
as reported by some practitioners. Indeed, participants from the 2nd and 3rd
focus groups reported that governments have difficulties to attract specific
profiles to facilitate the digital transition in general. Similarly, attracting
specific agile profiles such as facilitators, coaches and DevOps experts is
challenging.

Moreover, it can also be the result of the lack of investment on innova-
tion and learning by leaders and top level management of e-government
organizations. Indeed, practitioners from the 3rd focus group particularly
pointed that the implementation of methods may be perceived as superfluous
with no immediate pay-off.

227

10. E-Gov Case Study

Table 10.4.: 2nd focus group transcription (synthesized)
ID Category dv/15 Challenges Causes

FG2-1 Management
support

4 No management buy-in Low innovation and risk
taking

Stakeholders resistance

FG2-2 Culture 4 Over-specialized individu-
als

Hierarchal structure

Low team empowerment
No culture of change ac-
ceptance

FG2-3 Competences 0 Lack of agile drivers Sector attractiveness
Agile understandability /
knowledge

Short-term orientation

FG2-4 Innovation 4 Lack of visibility of prod-
ucts

Low innovation

Outdated and non-
competitive products

Short-term orientation

FG2-5 Business
Availability

3 Multiple strategic levels Hierarchal structure

Strategic alignment be-
tween projects

Formal Governance

FG2-6 User In-
volvement

0 User-orientation products Formal Governance

Collaboration/participation
of users

Users number and diver-
sity

Hypotheses

H1: Impact of Low Attractiveness of Public Sector (CF1) on Technical Excellence
(AP09)

H2: Impact of Low focus on innovation and learning (CF4) on Technical Excel-
lence (AP09)

10.3.2 Business Availability

The relationship between e-government business experts and the IT stake-
holders was reported by focus groups participants as the second most critical
challenge (11 dot votes).

This challenge is not not purely specific to the e-government domain. Actually,
31% of the respondents to the 12th Annual State of Agile survey [VersionOne,
2018] reported that they encounter the same challenge.

228

10.3. Results

Table 10.5.: 3rd focus group transcription (synthesized)
ID Category dv/21 Challenges Causes

FG3-1 Management
support

2 No management buy-in Short-term vision

FG3-2 Culture 0 Multiple delegations for
each decision

Formal Governance

Centralized structure /
decisions

FG3-3 Domain
complexity

2 Intensive initial planning High regulatory compli-
ance

Business model: Fixed
time/budget
Complex requirements
and documentation
(iterative dev.?)
Software of high impact
(data security is critical)

FG3-4 Regulation
and Politics

7 Frequent changes in regu-
lations

High regulatory compli-
ance

Late and complex modifi-
cations

Formal governance

Audits
Public marketplace
Investment cycles
Business continuity

FG3-5 Competences 6 Competence for driving
agility

Low sector attractiveness

Soft skills Limited budgets
Lack of technical experts
Outdated systems hard to
maintain

FG3-6 Business
Availability

3 Multiple focus of business
representatives

Formal governance

FG3-7 User In-
volvement

1 Difficult to have sufficient
citizen representatives

Users size and diversity

However, this challenge seem to be particularly emphasized by the constraints
of e-government. Indeed, governments constitute a diverse ecosystem with
multiple stakeholders working at different strategic levels and having different
objectives. These business stakeholders don’t always communicate with each
other, leading to a certain level of silo structure. This complex ecosystem
makes the close collaboration between business and IT difficult.

Moreover, participants reported that business experts usually manage a
portfolio of several e-government projects which consequently limits their
availability for face-to-face conversations.

229

10. E-Gov Case Study

Impact

This challenge impacts two essential agile principles: Business/IT collab-
oration (AP04) and Face-to-face communication (AP06) .

Causes

When it comes to identify the context factors that contributes to the customer
unavailability, practitioners pointed out the culture of formal governance
(i.e., structures, policies and procedures). Indeed, multiple strategic levels
and several business teams are usually involved in e-government projects.
However, there don’t always communicate with each other, leading to a
difficult alignment internally. The problem makes it particularly difficult to
implement agile methods in the governments at scale.

Hypotheses

H3: Impact of Formal Governance (CF3) on Business/IT collaboration (AP04)

H4: Impact of Formal Governance (CF3) on Face-to-face communication (AP06)

10.3.3 Regulatory Compliance

Governments have to take into account regulations in their processes and in
their development projects. Participants from the focus groups reported the
significant impact of regulatory compliance and political agendas on their
development practices (11 dot votes).

Unsurprisingly, this challenge is taught by several practitioners and re-
searchers. Indeed, 14% of the respondents to 12th Annual State of Agile
survey [VersionOne, 2018] reported that they are challenged by some kind
of regulatory compliance. According to [English and Hammond, 2017], new
regulatory requirements has tripled globally in five years. Studies such
as [Mehrfard and Hamou-Lhadj, 2011], report that heavy regulations intro-
duce changes to business processes (at the governance and strategic level)
and to software engineering practices by which software systems are built,
tested, and maintained (at the team level).

230

10.3. Results

Impact

Focus groups participants pointed out that regulations may be in tension
with their willingness to implement agile methods. Precisely, the third
focus group reported that regulations for protecting and securing sensitive
information and for ensuring a higher business continuity may slow down
the team’s ability to deliver software frequently (AP03). Having short
iterations in such a context seem to be more difficult to implement.

Participants to the first focus group discussed the fact that the regulatory
compliance increases the complexity of the development process and there-
fore impedes the 10th agile principle, i.e., the work simplicity (AP10).
Moreover, they reported that new regulations may be released late in the
project life-time. Indeed, the project team members reported not being able
to work at a constant pace (AP08), i.e., they can be stacked waiting for
fundamental regulations at sometime and rushing on modifying features at
some other time.

When we discussed the problem in more depth, it appears that the implemen-
tation of agile is inadequate. More customization is required to remove time
wastes. Leads for solutions include the establishment of a core team for the
project and a separate acceleration team to provide timely-support3, a better
prioritization and grooming of the backlog, a more efficient collaboration
with the regulator, etc.

Moreover, the second focus group reported that the specific regulation
regarding government procurement require lots of non-functional documents
which distracts teams from their initial goal, i.e., the working software
(AP07).

Government procurement also necessitates the planning of the development
projects to be fixed upfront which makes it difficult to change scope of the
project afterwards. In contrast, they observe that regulatory requirements
are unclear at the beginning, open to interpretation, and evolve over time.
Even thought this seem to be an argument for implementing an agile model,
participants seem to perceive it as extremely problematic. Indeed, the
regulation changes are not necessarily budgeted but have to be integrated
in the development anyway. Moreover, the changes are often very complex
to implement and cause lots of pressure. Regarding the aforementioned
discussion, the high regulatory compliance in the e-government domain is
in tension with one more agile principle: the acceptance or change, i.e.,
Welcome Change (AP02).

3https://www.bcg.com/publications/2017/financial-institutions-technology-
digital-when-agile-meets-regulatory-compliance.aspx

231

https://www.bcg.com/publications/2017/financial-institutions-technology-digital-when-agile-meets-regulatory-compliance.aspx
https://www.bcg.com/publications/2017/financial-institutions-technology-digital-when-agile-meets-regulatory-compliance.aspx

10. E-Gov Case Study

Causes

This challenge is already expressed as a context factor, i.e., high regulatory
compliance.

Hypotheses

H5: Impact of High Regulatory Compliance (CF5) on Welcome Change (AP02)

H6: Impact of High Regulatory Compliance (CF5) on Frequent Delivery of
Software (AP03)

H7: Impact of High Regulatory Compliance (CF5) on Focus on Working Software
(AP07)

H8: Impact of High Regulatory Compliance (CF5) on Constant Pace (AP08)

H9: Impact of High Regulatory Compliance (CF5) on Focus on simplicity (AP10)

10.3.4 Management and Political Support

Inadequate management support and sponsorship is another critical challenge
reported by the focus group participants (8 dot votes).

Particularly, P14 and P15 reported the importance of having the mid-level
management involved in the process of transition. They argue that when the
willingness to change the development practices emerges from operational
development teams, with no support from management, the resistance to
change is likely to be an important drawback. Other practitioners report that
the decision to transition to agile is not sufficient when it is not complemented
by concrete actions (hiring of agile specialists, support of pilot projects,
etc.).

Impact

This challenge impacts the overall ability of an organization to transition to
agile.

232

10.3. Results

Causes

When asked to explain this challenge regarding the e-government domain,
participants stated that a short-term orientation often drive the IT strat-
egy in governments. More generally, the lack of support from management
also raised the question of the innovation in the public sector : who has
the capacity and the responsibility to drive innovation in the products and
services of the governments ? (see Section 10.3.7).

10.3.5 User Involvement

In the case of governments, users can be the citizens, administrations or
other public servants. Participants reported that the number and diversity of
the user profiles makes it difficult to involve users in the development process
and/or to identify a fitting user participation strategy (5 dot votes).

The use of representatives was discussed in the focus groups but several
questions remain unanswered: Can the representatives fully understand the
needs of the whole user population? How to ensure their availability? The
specific case of public servants being users has also been discussed. However,
ensuring their available and reactivity is crucial for communicating their
requirements and frequent feed-back.

Impact

This challenge is directly related with the first agile principle which prescribes
to Focus on users and customers (AP01) by involving them in the
development process.

Causes

As earlier specified, this challenge is caused by the number and diversity
of e-government users.

Hypotheses

H10: Impact of Users Diversity (CF2) on Focus on User / Customer (AP01)

233

10. E-Gov Case Study

10.3.6 Hierarchal Structure

Practitioners from the three focus groups pointed out that governmental
organizations have a culture at odds with the agile values (4 dot votes). This
challenge is not specific to the e-government domain since it is reported as the
first most challenging issue by the Annual State of Agile survey [VersionOne,
2018] (53% of respondents).

Practitioners to the focus groups pointed out that governments tends to
function hierarchically. This top-down way of working is present within
governments as all major decision validations regarding the project or re-
source requests have to pass through several official decision-making bodies
(Steering Committee, Working Group, etc.).

Impact

The pyramidal and siloed structure slows the development process and
therefore prevents the team from maintaining a constant pace (AP08).
This structure also leads to a lack of communication between business
units and developers (AP4 and AP6).

Furthermore, participants reported that leaders in governments are reluctant
towards scope flexibility, i.e., to the principle of welcoming change (AP02)
which is perceived as a loss of control on projects.

Furthermore, the top-down culture is also a consequence of the influence of
political representatives on the functioning of governments. Developments
teams see their work heavily influenced as politicians require the projects to
be modified to fit their own needs and agenda, often linked to the agenda of
the elections. This reduces the self-organization margin of teams (AP11)
and makes the regular improvement of the overall development process
difficult (AP12).

Causes

As earlier discussed, the hierarchal and siloed structure of organizations is a
consequence of its formal governance.

Hypotheses

Regarding the previous discussion, the following hypothetical correlations
were formulated:

H11: Impact of Formal Governance (CF3) on Welcome Change (AP02).

234

10.3. Results

H12: Impact of Formal Governance (CF3) on Constant Pace (AP08).

H13: Impact of Formal Governance (CF3) on Self-organization (AP11).

H14: Impact of Formal Governance (CF3) on Regular Improvement (AP12).

10.3.7 Innovation Management

IT project leaders from the second focus group reported the lack of innovation
as a very critical issue that e-government practitioners encounter when trying
to adopt agile methods (4 dot votes).

[Nerur et al., 2005] states that “organizational cultures conducive to in-
novation may embrace agile methods more easily than those built around
bureaucracy and formalization”. The lack of innovation in the public sector
was pointed out by several studies as a drawback to their digital transforma-
tion [Mergel, 2016; Holgersson et al., 2017].

Impact

Practitioners mainly pointed out the impact of low innovation on the ability
of e-government projects to deliver value to citizens. It is therefore correlated
with the valuable delivery of products principle (AP03). Moreover, the
challenge was also reported as negative for the team motivation (AP05).

Causes

This challenge is already formulated as a context factor, i.e., low focus on
innovation and learning.

Hypotheses

H15: Impact of Low innovation (CF4) on Valuable Delivery (AP03).

H16: Impact of Low innovation (CF4) on Team Motivation (AP05).

235

10.
E-G

ov
C
ase

Study
Table 10.6.: Identified correlations between E-Gov Context Factors and Agility Goals

E-Gov Context Factors

CF1 CF2 CF3 CF4 CF5 CF6

Domain
Attrac-
tiveness

Users Di-
versity

Governance Innovation
and
Learning

Regulatory
Compli-
ance

Domain
Complex-
ity

LOW HIGH FORMAL LOW HIGH HIGH

A
gi
lit
y
G
oa
ls

(p
ri
nc

ip
le
s)

AP01 Focus on User / Customer (−) H10

AP02 Welcome Change (−) H11 (−) H5

AP03 Frequent and valuable Delivery (−) H15 (−) H6 (−) H17

AP04 Business/IT collaboration (−) H3

AP05 Team motivation and empowerment (−) H16

AP06 Face-to-face communication (−) H4

AP07 Focus on Working Software (−) H7 (−) H18

AP08 Constant Pace (−) H12 (−) H8

AP09 Technical Excellence (−) H1 (−) H2

AP10 Focus on simplicity (−) H9

AP11 Self-organization (−) H13

AP12 Regular Improvement (−) H14

236

10.4. Discussion

10.3.8 Domain Complexity

The last e-government challenge that was reported by practitioners is a
generic one. It relates to the complexity of the e-government domain.
This challenges includes several sub-challenges among which the complex
requirements, the security and quality concerns, the interoperability between
systems, size and duration of the projects, etc (2 dot votes).

Impact

Some participants reported that this complexity is in tension with the
notion of short time-boxed iterations and therefore with the Frequent
Delivery principle (AP03). Indeed, regarding the domain complexity, the
most important requirements need time to be integrated in the software.
Moreover, they report that some requirements can’t be delivered as a working
piece of software which is in tension with the Focus on working software
principle (AP07).

Causes

This challenge is already formulated as a context factor, i.e., High domain
complexity.

Hypotheses

H17: Impact of High Domain Complexity on Business/IT Collaboration (AP03)

H18: Impact of High Domain Complexity on Focus on Working Software (AP07)

10.4 Discussion

Table 10.6 shows that Formal Governance (CF3) is the most critical context
factor since it seems to have the highest impact on agile principles. The
lack of focus on innovation and learning and the high regulatory compliance
seem also to have consequent impacts on agile methods implementation.

However, these results need to be considered carefully and further validated
since the discussion mostly rely on the judgment and past (negative) expe-
rience. Further research should rely on a bigger set of data to empirically
validate the hypotheses.

237

10. E-Gov Case Study

Moreover, our findings reflect the situation in Belgium and should be vali-
dated in other countries with different state structures, cultures and maturi-
ties in e-government.

Finally, the composition of the focus group may have influenced the results.
In this study, the aspects of federal level and hierarchy positions were
controlled but other factors could influence the results: individuals agile
knowledge, digital literacy, size of the organization, etc.

10.5 Lessons Learned

In this part of the thesis, we investigated the influence of the e-government
domain on agile methods implementation. We also formulated a reusable ma-
trix diagram to help practitioners identify the discontinuing and challenging
context factors and their impact on agile principles.

The representation of the learnings in the form of a matrix diagram constitute
an interesting lead for structuring the knowledge base (see Chapter 12). In
this study we chose to visualize the impact of the context factors on agile
principles as stated in the Agile manifesto. A better guidance for practitioners
would be to rather give an indication of which practices are usable, which
would require customization or special consideration and which are not
applicable. Therefore, a matrix representing the impact the context factors
on operational agile practices would be a suitable representation of the
knowledge base. Using such a matrix, more precise recommendations could
be provided to practitioners to guide them implement custom methods.

At this stage, we have already reflected on leads for solutions, i.e., cus-
tomizations that could be recommended in case of agile implementation in
e-government context:

• User Involvement: leads for solutions could be found in the infor-
mation system research base. [Simonofski et al., 2017] have established
an inventory of participatory methods to stimulate user participation.
Among these methods, one particular method may fit to stimulate user
participation: Crowd-centric Requirements Engineering (CCRE) that
applies the crowdsourcing paradigm to the requirements engineering
process. With such a method, the large user group of e-government
services could be targeted easier.

• Regulatory Compliance: this challenge may be handled by keeping
a waterfall process at the beginning of the project or around the
release time while implementing an agile process throughout the other

238

10.5. Lessons Learned

phases. For example, e-government projects are usually required to
prepare plans for security emergencies on critical infrastructures. The
preparation of such documents may require the intervention of several
specialists and is often a precondition for the approval of the project. In
such case, a waterfall process could precede the iterative development
phase. Similarly, when several operations, including the verification of
regulations (e.g., citizens privacy rights) are required to take software
to production, a waterfall process can be implemented afterwards.

• Formal Governance: Challenges such as the lack of alignment be-
tween e-government stakeholders can be addressed through the im-
plementation of a change management initiative at strategic levels
of organization. Various change management models could be con-
sidered, e.g., the Satir process model and the Kotter’s eight steps
model [Cameron and Green, 2015].

In summary, by examining all the identified challenges in-depth, we should
be able to provide a concrete agile methodology that fits the specificities of
e-government.

In the next chapter, a similar study is conducted to investigate the impact
of culture on agile methods implementation.

239

Chapter 11

Culture Case Study

Agile Cultural Challenges in Europe and Asia

In the previous two chapters, we investigated the implementation of agile
methods in two distinct contexts and identified a set of influencing context
factors. This chapter focuses on analyzing and understanding the relation-
ships between agile methods customization and the cultural background of
people.

Precisely, this study investigates how the European and Asian cultural
backgrounds may impact agile methods implementation. We focused on
three countries: Belgium, Malaysia and Singapore. Data about practices,
challenges and impediments encountered by software development teams
were gathered from interviews of 19 practitioners and from two agile events
(focus groups). The results of the analysis are prioritized and discussed using
the Hofstede Model for national cultures comparison.

The resulting outcome is a functional set of hypotheses representing the
potential relationships between cultural traits and agile success factors.
Although these preliminary findings call for more validation, they moti-
vate further research and offer an important venue for practitioners and
coaches regarding the fine tuning of agile methods with regards to culture.
This knowledge is particularly relevant for professionals working in globally
distributed projects.

The remainder of this chapter is organized as follows. Section 11.1 provides
an overview on selected related works. Sections 11.2 and 11.3 present our
research methodology and results. Section 11.4 explores the limitations of
this preliminary study and provides closing comments. Finally, Section 11.5
synthesizes the lessons learned from this case study and explains how it
contributes to the thesis.

241

11. Culture Case Study

11.1 Background

Agile methods initially spread in North America before the expected benefits
of agile software development began attracting interest and adoption grew
in other parts of the world. More than a decade after the release of the
first methodologies, practitioners all over the world have accumulated field
experience working with numerous practices and techniques and trying to
achieve higher maturity.

Recently, this search for maturity has been focusing more and more on the
context awareness of agile methods. Among the context-related factors, the
cultural background (i.e., mind-set, values and behaviors that shape culture
over time) of the project-team is one of the most crucial and yet neglected
aspects addressed by research.

According to [Laroche, 2012], culture consists in “patterned ways of thinking,
feeling, and reacting, acquired and transmitted mainly by symbols, constituting
the distinctive achievement of human groups, including their embodiments
in artifacts; the essence of culture consists of traditional (i.e., historically
derived and selected) ideas and especially their attracted values”.

As outlined by [MacGregor et al., 2005], cultural factors are recognized as
critical issues that influence the teams way of working and therefore should
be taken into account when discussing the ability of software teams to work
with agile methods effectively and successfully.

Several studies have been conducted in software engineering research to
investigate the factors influencing agile methods implementation [Chow and
Cao, 2008; Stankovic et al., 2013; Kruchten, 2013]. However, most of them
do not consider the inter-cultural differences and human factors. The few
existing studies to do so are related to Global Software Development (GSD)
research.

[Lee and Yong, 2010] presents a set of challenges encountered by Yahoo in a
globally distributed project across Asia Pacific, Europe and the US. These
are categorized into 3 areas: communication, control and trust. Cultural
differences seem to make the challenges even more difficult. The study
reports that communication lines were not always as open as expected,
since Asian teams were sometimes reluctant to discuss negative issues. It
also explains how local business conditions and sensitive issues may create
disjointed and conflicting priorities within the product backlog.

[Fowler, 2006] reports lessons learned in ThoughtWorks concerning an off-
shore development experience in Bangalore India to support software devel-
opment projects in North America and Europe. It argues that Asian cultures

242

11.2. Methodology

may reinforce deference to superiors which contradicts the value of team
autonomy. This makes the communication harder: Asian team members
may be discouraged from exposing problems, warning about non-feasible
deadlines, or proposing alternatives to perceived directives from superiors.
The authors end the discussion about cultural differences by explaining the
sensitiveness of the problem and that it is obviously not specific to Asia since
we may find the same problems or even worse in some western companies.

[Holmström et al., 2006] explores how agile practices can reduce sociocultural
distance and details the risks and opportunities in the context of global
software development. The results also show that risks are related to
communication, inconsistency in work practices and different perceptions of
authority/hierarchy.

As we may see, the cultural influence on agile development is already reported
in the body of knowledge. However, it often refers to the organizational
culture and not the cultural background of people. Moreover, the few studies
that refers the issue are generally focused on GSD research.

11.2 Methodology

As an exploratory methodology to find out and validate the cultural chal-
lenges and to analyze them, we decided as in the previous chapter to follow
a grounded theory approach (see Section 4.1). Following this methodology,
data was iteratively coded into theory at each step of the process.

The following sections detail the proposed methodology.

11.2.1 Objectives

Studies such as [Borchers, 2003] tend to show that cultural factors should not
be disregarded when evaluating the efficiency and/or relevance of software
engineering practices. As pointed out in Section 11.1, some studies tackle
the challenges related to cultural differences within agile development teams.
However, these efforts regarding cultural aspects in agile software develop-
ment tend to focus on the conflict arising between team members coming
from different cultural backgrounds (in the context of globally distributed
projects).

Our research aims at extending this focus by questioning the impact of culture
in homogeneous cultural environments. Due to agile methods originating

243

11. Culture Case Study

from North America, it stands to reason that many agile practices may
in fact rely on observations or assumptions based on views and behaviors
shared by American practitioners. Successfully applying such practices
would therefore suppose the ability to conform to said views and behaviors.
In multi-cultural development teams, the mitigation of culturally induced
mental blocks through conflict may lead to success. However, in culturally
homogeneous development teams outside of North America, the inability to
conform to specific views may lead to the disregard, inefficiency or failure of
specific agile practices.

In order to challenge this hypothesis, we’ve been investigating the practices
of 9 agile teams spread across 3 culturally diverse contexts outside of North
America, i.e., Belgium (BE), Malaysia (MY) and Singapore (SG). Through
this preliminary study, our goal is to address the following research questions
within these 3 contexts:

1: Is there an observable relationship between adopted practices and
cultural background?

a) Can we rely on a commonly accepted typology of cultural factors?

b) Is there a noticeable difference in the investigated contexts?

2: Can we formulate plausible hypotheses about potential relationships
between cultural factors and agile practices adequacy?

These specific questions relate to RQ2 and RQ3, the second and third
research questions of the thesis (see Section 3.5).

11.2.2 Data Collection

The data of our study has been collected using semi-structured interviews
(see Appendix A) and focus groups. We decided to stop collecting data after
having interviewed 19 practitioners as each challenge has reached saturation
and no more original findings were determined.

The interviewees (see Table 11.1) are distributed as follows:

• in BE: 13 practitioners (3 teams) interviewed during 2013 (2h each)

• in MY: 4 practitioners (one per team) interviewed between April 2016
and June 2016 (1h30 each)

• in SG: 2 practitioners (one per team) interviewed between April 2016
and June 2016 (1h30 each)

244

11.2. Methodology

We asked the interviewees about their teams’ context: size, business domain,
potential geographical distribution, years of agile experience, documentation
strategy, project duration, iteration length, etc. We also asked about the
organizational culture, i.e., compliances, management support to agile, lead-
ership style and innovativeness. We used a formal interview guide with the
list of question and topics to be covered. To drive the discussion, we asked
them to rank some context aspects such as the domain complexity, the scope
variability, the customer involvement and the team self-organization. We
also included open-ended questions which helped identifying new ways of
seeing and understanding the topic.

Table 11.1.: Interviewees profiles
ID Team Country Role Agile Exp. Level

P1 T1 BE Analyst Novice
P2 T1 BE Developer Intermediate
P3 T1 BE Developer Novice
P4 T1 BE Product Owner Intermediate
P5 T2 BE Analyst Intermediate
P6 T2 BE QA Manager Novice
P7 T2 BE Architect Expert
P8 T2 BE Developer Novice
P9 T3 BE Product Owner Novice
P10 T3 BE Architect Intermediate
P11 T3 BE Developer Novice
P12 T3 BE Project Manager Expert
P13 T3 BE Product Owner Intermediate
P14 T3 BE Architect Novice
P15 T3 BE Portfolio Manager Novice
P16 T4 MY Dev. Manager Expert
P17 T5 MY Product Owner/Coach Intermediate
P18 T6 MY Product Owner Expert
P19 T7 MY Dev. Manager Expert
P20 T8 SN Scrum Master Novice
P21 T9 SN Scrum Master/Quality Manager Expert

These informations are synthesized in Table 11.2. We also discussed in
details the challenges and impediments that the teams encounter and asked
(when needed) to explain these challenges according to the team members
cultural background.

As we can see in Table 11.1, the selection of interviewees is unbalanced (4
in MY, 2 in SG and 13 in BE). This is because we relied on convenience

245

11. Culture Case Study

Table 11.2.: Teams Overview
ID Size Domain Ag.

Exp.
Proj.
Length

Itera.
Length

Req.
Change

Method

T1 BE 10 E-Gov. 1 y 2 y 2 w Low Scrum
T2 BE 6 E-Gov. 1 y 1 y 4 w Low Scrum
T3 BE 15 E-Gov. 2 y 1 y 2 w Low Scrum
T4 MY 20 B2B 8 y 3 m na Medium Kanban/Lean
T5 MY 7 Real es-

tate
3 y 3 m 2 w High Scrum/Kanban

T6 MY 8 Oil&Gas,
E-Gov

10 y 6 m 2 w Low Scrum/Kanban

T7 MY 15 E-Gov. 5 y 2 y 4 w High Custom
T8 SN 5 E-

Gaming
2 y 6 m 2 w Low Scrum/Kanban

T9 SN 7 B2B,
Banking

4 y 1 y 6 w Medium Scrum/AUP

sampling which is a non-probability sampling technique where subjects
are selected because of their convenient accessibility and proximity to the
researchers.

We also collected data from the following focus groups:

• in BE: two project retrospectives that we organized in 2013 with the
teams T1 (10 participants) and T3 (10 participants) (see Table 11.2)

• in MY: two agile software development meetings in April 2016 and June
2016. In every meeting, 3 sub-groups were created of ∼5 participants
each.

The focus groups were conducted according to the guidelines and best prac-
tices reported in [Krueger, 2014; Morgan, 1996]. Following these guidelines,
each focus group involved from 5 to 10 participants (selected based on
convenience sampling).

The two focus groups conducted in BE consisted of project retrospectives in
a transitioning context. The team-level challenges in implementing Scrum
to their specific context were discussed and categorized using an affinity
diagram. We also asked them to evaluate the severity of the challenges (low,
medium or high). Then we questioned them about the potential influence of
the cultural factors.

In MY, the two meetings of ∼15 participant each were animated by the
researcher. Participants were of different profiles: coaches and practitioners
from mature teams and newly transitioning teams. In each meeting, we

246

11.2. Methodology

asked the participants to form 3 sub-groups for a free discussion of the
issues and drawbacks they encounter when implementing agile methods.
A reporter from each sub-group was asked to synthesize the most critical
challenges and to evaluate their (low, medium or high) and an affinity
diagram is constructed collaboratively with the researcher playing the role
of the facilitator. The question of the influence of the Asian culture on agile
methods implementation emerged naturally.

The advantage of collecting data from focus groups is that people tend to
discuss openly their challenges.

11.2.3 Data Analysis

In order to be able to analyze and compare the cultural backgrounds, we
first need to determine the discriminating dimensions or variables to describe
culture-related positions.

Several models have been designed by researchers to conceptualize cultural
differences. These can be categorized into three types: single dimension
models, multi-dimensional models and historical-social models [Morden,
1999]. The first two types of models assume that people have a distinctive,
identifiable and influential national culture that we can dimensionalize,
potentially measure and operationalize.

The historical-social models, however, question the distinctiveness of na-
tional cultures and provide broader perspectives which cross geographical
boarders. Such models identify key historical-social variables to analyze
cultural backgrounds. These variables are usually context-specific and thus
may not be useful for cross-cultural understanding. For example, [Chen,
2004] and [Cragg, 1995] propose south east Asian management models and
study the influence of specific variables such as Confucianism or Taoism
which are not representative of other cultures. Thus, this type of models
was excluded.

Table 11.3 synthesizes the models of national culture that we explored. As
we can see, culture has been defined in different ways. Each model has
its own set of discriminating factors characterizing the concept of national
culture. All these models are based on the assumption that cultures can
be distinguished based on differences in what they value. That is, “some
cultures place a high value on equality among individuals, while others place
a high value on hierarchies. Likewise, some cultures place a high value on
certainty in everyday life and have difficulty coping with unanticipated events,
while others have a greater tolerance for ambiguity” [Bhagat and Steers,

247

11. Culture Case Study

2009]. A comparison and an alignment of the multi-dimensional models can
be found in [Bhagat and Steers, 2009].

Table 11.3.: Models of National Culture
Model Cultural dimension(s)

Si
ng

le
di
m
en
-

si
on

[Hall et al., 1959] High/Low Context
[Lewis, 2011] Monochronic/Polychronic
[Triandis, 1995] Ideocentric/Allocentric
[Fukuyama, 1995] High/Low Trust

M
ul
ti
pl
e
di
m
en
si
on

s

[Kluckhohn and Strodtbeck, 1961]

Relationship with nature
Relationship with people
Human activities
Relation with time
Human nature

[Hofstede, 2011]

Power Distance
Uncertainty Avoidance
Individualism/Collectivism
Masculinity/Femininity
Indulgence

[Hampden and Trompenaars, 1993]

Universalism/Particularism
Individualism/Collectivism
Specific/Diffuse roles
Neutral/Affective emotions
Achieved/Ascribed social status
Time perspective
Inner/outer directed

[House et al., 2004]

Power Distance
Uncertainty Avoidance
Human Orientation
Institutional Collectivism
In-Group Collectivism
Assertiveness
Gender Egalitarianism
Future Orientation
Performance Orientation

248

11.2. Methodology

Among all these definitions, the Hofstede’s model [Hofstede, 2011] is mostly
cited in Information System (IS) research. Much of the literature concerned
with cultural and cross-cultural issues in the IS field has relied on Hofstede’s
work, typically the study of global software development teams [Borchers,
2003][MacGregor et al., 2005]. This is maybe not surprising, given that the
Hofstede typology of culture has been derived from empirically strong study
of employee values at a major multinational IT corporation (IBM). The
original project included 60,000 employees and over 40 countries. In total,
Hofstede carried out his research over a period of 15 years and analyzed
some 116 000 questionnaires from 67 countries in a single multinational
corporation.

The validity of the Hofstede model has been discussed in several research.
Criticisms can be found in [Schmitz and Weber, 2014] and [McSweeney,
2002] and concern the research methodology (e.g., the unsuitability of sur-
veys, the uniqueness of the data source: IBM and the measure of national
culture as a statistical average of individuals’ views), the dimensions validity
(e.g., [Schmitz and Weber, 2014] argue that the dimension of “Uncertainty
Avoidance” have lost relevance over the years) and the model’s crucial as-
sumptions (e.g., the assumption of a shared and stable national culture).
Arguments for the model include its strong empirical basis (a large data set),
its applicability to different contexts and the sufficiency of its variables to
study the differences between national cultures (the conceptual and statis-
tical independence of the variables). In [Hofstede, 2002], Hofstede provide
a comprehensive response to the model criticisms and argues that nations
may not be the best unit of culture analysis but they are a legitimate one
regarding the accessibility and availability of information.

Based on the aforementioned merits, we decided to analyze the challenges of
implementing agile practices according to the Hofstede Model.

The model proposes 6 factors to characterize the national culture:

• Power Distance (PDI): indicates the extent to which the less pow-
erful members of organizations accept and expect that power is dis-
tributed unequally. People in societies with high PDI score accept the
hierarchical order easily. People in societies with low PDI, consider
hierarchy as established only for convenience and try to equalize the
distribution of power.

• Individualism vs. Collectivism (IDV): refers to the degree to
which people in a society are integrated into groups. In individualist
societies (high IDV), the ties between individuals are loose: individuals
are expected to take care of only themselves and the immediate groups

249

11. Culture Case Study

to which they belong. In collectivist societies (low IDV), people belong
to “in groups” that take care of them.

• Masculinity vs. Femininity (MAS): refers to the distribution
of values such as assertiveness, achievement, power and control be-
tween the genders. Masculine society (high MAS) indicates maximum
emotional and social role differentiation between the genders and Fem-
inine society (low MAS) indicates minimum emotional and social role
differentiation between the genders.

• Uncertainty Avoidance (UAI): evaluates the degree to which a
society is reluctant to ambiguity and unstructured situations. Societies
with a high UAI score feel threatened by ambiguous and unknown
situations. In societies with a low UAI, uncertainty is accepted as an
inherent in life and “each day is taken as it comes”.

• Long-term vs. Short-term Time Orientation (LTO): is related
to the choice of focus of people’s efforts; the future or the present and
past. In a long-term oriented society (high LTO), people attach more
importance to future. They prescribes to long term commitments in a
pragmatic way: they encourage efforts in the present to prepare the
future. In short-term oriented society (low LTO), people attach more
importance to present, i.e., they prefer to maintain past/time-honored
traditions and view societal change with suspicion.

• Indulgence vs. Restraint (IDG): measures the extent to which
people express their desires and impulses. An indulgent society (high
IDG) allows relatively free gratification and natural human desires
related to enjoying life. Restraint (low IDG) stands for a society that
controls gratification of needs and regulates it by means of strict social
norms.

Figure 11.1 compares the 6 scores for BE, MY and SG. The data is provided
by [Hofstede, 2010]. The scale runs from 0 - 100 with 50 as an average score.
The rule of thumb of the Hofstede model is that if a score is under 50, the
culture scores relatively low on that scale and if any score is over 50, the
culture scores relatively high on that scale. This means that the country
scores on the dimensions are relative. In other words, culture can be only
used meaningfully by comparison.

At the PDI dimension, MY is the country which scores the higher. This
explains the culture of deference to superiors: the management in the country
tends to follow a command-and-control style. It may also indicates that
superiors may have privileges and may be inaccessible. SG and BE have
also relatively high PDI scores. The IDV score in BE is the higher, which

250

11.3. Results

Figure 11.1.: US, BE, MY and SG Cultural Dimensions according to [Hofst-
ede, 2011]

indicates that the BE society is more individualist than MY and SG. The
MAS dimension ranks average in BE, MY and SG (respectively 54, 50 and
48) which indicates that it will not be effective to explain the potential
observations and derive hypotheses. We therefore excluded it.

BE has the highest score in the UAI dimension. This expresses a difficulty of
coping with uncertainty and unanticipated situations. At the LTO dimension,
BE and SG rank high, while MY ranks lower. This indicates that BE and
SG are long-term oriented while MY is short-term oriented.

The IDG score of BE, MY are of 57 which makes them more indulgent
societies than SG which score is a bit lower (46).

11.3 Results

Table 11.4 summarizes the interviews and focus groups findings. These are
categorized and prioritized according to the challenges severity in BE, MY
and SG. Table 11.6 summarizes the hypotheses identified in the following
sections.

251

11. Culture Case Study

Table 11.4.: Comparison of challenges
Priorities

BE MY/SN

Team commitment to practices Medium Low
Team Empowerment Medium High
Team transparency and cohesion Low High
Team’s external communication High Low
Team multidisciplinarity Medium -
Team motivation Low Medium
Customer involvement Medium Medium
Management involvement Low Low
Process improvement Medium High

11.3.1 Team commitment to Practices

To develop a detailed understanding of the deployed agile practices, we asked
the 21 practitioners to rank from none to high the level of adoption of 40
agile practices1 (see an overview in Table 11.5).

Most of the practitioners in MY/SG assign high or medium ranking for most
of the practices. During the focus groups in MY, the majority of participants
reported that team members show high level of commitment to the agile
practices: they respect the method guidelines as much as possible. P18
(see Table 11.1) reported that team commitment to agile practices such as
retrospectives decreases when the process facilitator (Scrum master) is not
enough leading and motivating.

In BE, during a project retrospective, T2 (see Table 11.2) reported some
violations to process rules such as the daily stand-ups duration (same meeting
for two sub-projects which makes the meeting longer than it should be).
However, these violations to process rules are perceived as negative (referred
to as “to drop” practices during retrospectives).

The relatively high level of commitment to practices can be explained by the
PDI factor: cultures with high PDI usually accept established rules easier.
With a score of 100, MY has the highest score of PDI. The PDI scores for
SG and BE are also relatively high (respectively 74 and 65).

Another critical issue reported by BE practitioners is the reluctance to the
newly introduced agile practices. We especially observed this in T2 which

1Agile software development practices as defined by the Agile alliance [Alliance, 2008]

252

11.3. Results

was not enough prepared to the transition from traditional skill-centric siloed
organization (structured in specialized units architecture, business analysis,
QA, etc.).

According to the Hofstede model, the acceptance of change is mainly corre-
lated to the UAI and LTO dimensions. Since BE have a high LTO score,
the commitment to accept new practices when the change is well prepared
should also be high. When the change is not enough prepared (as it was
in T2), cultures which tend to avoid uncertainty (high UAI) will probably
reject it. This may explain the reluctance towards the introduction of new
practices in T2. The problem was not raised by MY and SG practitioners.
It seems reasonable to assume that this is may be due to the fact that the
transition to agile methods in all the Asian companies that we interviewed
follows a top-down model, i.e., the change comes from the management.
Since MY and SG have higher PDI scores, teams should be more prone to
commit to introduced practices.

Hypotheses

H1: Positive impact of high PDI scores on commitment to (new) practices

H2: Negative impact of high UAI scores on commitment to (new) practices
(and vice versa)

H3: Positive impact of high LTO scores on commitment to (new) practices
(if change is well prepared)

11.3.2 Team Empowerment

Traditional teamwork has the project manager controlling everything. The
manager is given responsibility and authority over all decisions and plans. In
Agile, team empowerment is an important feature that removes bottlenecked
decision making and therefore allows the team to be more efficient.

Several practitioners from MY and SG reported the lack of team empower-
ment as a critical issue to their Agile implementations: P16, P17, P19, P20
(see Table 11.1). Participants to the focus groups reported the same issue.
They all relate this to the command-and-control mindset. For instance, P20
(see Table 11.1) reports that the management gives the team the freedom
to decide about their way of working but the team members “don’t dare to
think out of the box” because of their lack of experience.

In BE teams, we observed a misunderstanding of team empowerment: T3
(see Table 11.2) reported that the team members were considered accountable

253

11.
C
ulture

C
ase

Study

Table 11.5.: Overview of practices adoption level
Practitioners ranking of commitment to practices 1

BE MY/SG
High Medium Low None High Medium Low None

Collective Ownership 4 5 3 2 5 1 0 0
Stakeholders Participation 11 4 0 0 4 2 0 0
Customer Representative 7 7 1 0 6 0 0 0
Time-boxed Iterations 7 6 2 0 3 2 0 1
Task board 3 7 4 0 5 0 0 1
Frequent Releases 11 4 0 0 4 0 0 2
Agile Modeling 3 3 6 2 4 0 0 2
Test Driven Development 1 3 8 3 1 1 1 3
Acceptance Testing 10 2 2 1 5 1 0 0
Unit Testing 6 5 3 1 5 1 0 0
Pair-programming 0 4 8 3 4 0 1 1
Code Refactoring 3 3 6 0 2 2 1 1
Continuous Integration 7 7 0 1 3 2 1 0
Daily Stand-ups 6 8 0 1 5 0 0 1
...
Percentage 37.62% 32.38% 20.47% 6.66% 66.66% 14.28% 4.76% 14.28%

254

11.3. Results

for some business decisions and priorities definition. They also reported that
they were sometimes confronted directly to the customer demands. The
proximity of customer in itself is positive but this should not interfere on
the team work during the iteration. The relatively high PDI score in BE
can also explain the customer interference. In countries showing high PDI,
hierarchy is well established and superiors, i.e., the customers in this case,
may consider that they have special privileges such as asking the team for
changes directly and anytime they want to.

Hypothesis

H4: Negative impact of high PDI scores on team empowerment (and vice
versa)

11.3.3 Team Transparency and Cohesion

Transparency refers to open communication, including the communication on
negative points and represents an important agile software development value.
From intensive collaboration and great team cohesion emerges transparency.
The two concepts of transparency and cohesion are therefore interrelated.

During focus groups and interviews, lack of transparency is reported by
several MY and SG practitioners as very critical. P16, P18, P20 and P21
(which were interviewed separately)(see Table 11.1) all reported that team
members have a tendency to not expose problems such as non-feasible
deadlines or technical difficulties. They refer to the command-and-control
mindset as a possible explanation. In such a context, i.e., a high PDI score,
[Hofstede, 2011] argues that “it is advised for the manager to establish a
second level of communication, having a personal contact with everybody in
the structure, allowing to give the impression that everybody is important in
the organization, although unequal”.

We hypothesize that the lack of transparency can be explained by both the
PDI and IDG dimension, depending on the real reason that pushes individuals
to not communicate about problems. If this is related to uneasiness with
superiors, then the cause of the problem would be the high PDI score in MY
and SG. If the cause is the uneasiness with other team members (which are
at the same hierarchal level), then the communication is threatened by the
IDG dimension. IDG score is 57 in MY and 46 in SG.

BE practitioners report a relatively good communication inside the team.
During the project retrospective of T3, a critical issue concerning each
other’s responsibilities and workload was reported. The issue was never been

255

11. Culture Case Study

mentioned before which might suggest a lack of internal communication.
The team also reported having communication problems with the external
environment (see Section 11.3.4).

Hypotheses

H5: Negative impact of high PDI scores on team transparency (and vice
versa)

H6: Positive impact of high IDG scores on team transparency (and vice
versa)

11.3.4 Team’s External Communication

In BE, T1 and T2 (see Table 11.2) report challenges related to the commu-
nication with external teams. The IDV dimension determines the degree
to which individuals are socialized and therefore may be correlated to this
issue. The IDV score is relatively high in BE, which enhances the degree
of interdependence inside the team (cohesion) and in contrast decreases
external relationships. This could mean that the Belgians favor focusing on
their immediate entourage rather than belonging to larger groups.

Another type of external communication is the team’s integration within
the software engineering community. Communicating with other agile teams
represents an excellent opportunity to leverage knowledge. In MY, agile
software development meetings are organized each month in a different host
company. The initiative demonstrates a willingness to mature practices.
A low IDV score indicates a collectivist culture were strong relationships
exist. This is what was observed in MY and SG agile software development
events.

Hypothesis

H7: Negative impact of high IDV scores on team’s external communication
(and vice versa)

11.3.5 Team Multidisciplinarity

Multidisciplinary or cross-functional teams are believed to be essential in
developing innovative solutions to many types of business problems. It
refers to expertise diversity and shared knowledge emerging from intensive

256

11.3. Results

collaboration inside the team. During the semi-structured interviews, we
asked the participants to comment the way they are managing this Agile
value.

The interviewed teams in BE reported a lack of multidisciplinarity and
ranked it as a mid-level challenge (see Table 11.2). This may be explained
by the fact that BE teams come originally from a environment formally
structured in skill-centric silos. Individuals are already aware of the issue
and making efforts to overcome it by collaborating closer and communicating
as much as possible about each other workload.

We hypothesize that the organizational culture (conjugated with a high UAI)
favors this issue and that the LTO orientation moderate it. In fact, high UAI
(94 in BE) relates to a culture where members feel threatened by unknown
situations (e.g., learning new skills) and high LTO (82 in BE) refers to a
pragmatic culture where individuals invest time in the present to prepare
for future change.

In MY, P17, P19 reported unsatisfactory levels of multidisciplinarity which
may confirm the correlation between this value and the UAI dimension (MY
has a UAI score of 42). SG practitioners, which have a very low UAI score
of 8, have not exposed any issue related with multidisciplinarity.

Hypotheses

H8: Negative impact of high UAI scores on team multidisciplinarity (and
vice versa)

H9: Positive impact of high LTO scores on team multidisciplinarity

11.3.6 Team Motivation

Successful organizations understand that teams enthusiasm and motivation
is an essential factor for achieving high productivity [Asproni, 2004]. Moti-
vating the team is therefore considered as a critical success factor of Agile
deployment for coaches and managers.

Practitioners from BE showed a certain satisfaction about their motivation
(referred to as “to keep” during the projects retrospectives) while some MY
and SG practitioners showed concerns about it. Practitioners P16, P20 and
P21 (see Table 11.1) from MY and SG reported team fatigue as a serious
concern, mainly related to very critical time schedules. Team members
therefore loose motivation to some practices which they become to consider

257

11. Culture Case Study

as unnecessarily time-consuming such as retrospectives (but they commit to
them as explained in Section 11.3.1).

One of the cultural dimensions that might be related to motivation is
IDG. With a score of 57, BE and MY societies are considered as relatively
indulgent. In high indulgence societies, individuals tend to show a positive
attitude which helps to maintain team motivation. With a score of 47, the
IDG dimension is below the average in SG. This may be explain why the
two interviewed practitioners from SG report team fatigue as an essential
challenge.

Hypothesis

H10: Positive impact of high IDG scores on team motivation (and vice
versa)

11.3.7 Customer Involvement

Active user involvement is a key principle of Agile to enable clear under-
standing and appropriate prioritizing of requirements. It refers to daily
basis collaboration between the team and the customer representatives. We
asked the participants to explain their relationship with the customers (or
customers’ representatives). If the participants don’t have a clear opinion,
we ask them to rank this from 0 to 5 to facilitate the discussion.

Some of the MY and SG seem to be unsatisfied about the customer com-
mitment level. P19 (see Table 11.2) reports concerns about the customer
relationship and explains it regarding the e-Gov domain: “How to convince
customers such as representatives of ministries and government agencies?”.

BE participants have also expressed concerns about it. T3 (see Table 11.2),
the same team that reports being sometimes confronted directly to customer
demands during the iteration (see Section 11.3.2), raises the problem of
customer representatives’ absence in some iteration planning sessions, which
impacts on the team velocity and constrains them to make choices about
business and priorities.

We hypothesize that the customer’s availability issue is related to the organi-
zational culture primarily but may also be impacted by the national culture,
in particular the PDI cultural dimension. A high PDI may be correlated with
privileged superiors (i.e., the customers in this case), not always following
the rules.

258

11.3. Results

Hypothesis

H11: Negative impact of high PDI scores on customer involvement (and
vice versa)

11.3.8 Continuous Improvement

Assessing and adapting its way of working continuously is a core Agile
value. Implementing this value was found challenging in BE, MY and SG,
probably because it requires ongoing attention. T1, T2, T3, P16, P20 and
P21 (see Table 11.1) particularly insisted on the lack of commitment to
process improvement. When we ask them to detail the reasons for this,
they report: (1) the insufficient level of team empowerment (improvement
initiatives usually come from top management levels) and (2) the lack of
time to think about what should be improved.

As explained in Section 11.3.2, the lack of empowerment might be caused
by the PDI dimension (H4) and we hypothesize that the lack of time might
actually be a consequence of the LTO dimension. In fact, BE and SG are
long-term oriented which means that the individuals need time to effectively
adjust their way of working. This might explain the feeling of frustration
due to the lack of time.

However, all the interviewed practitioners seem to be aware about the issue:
P16, P17, P18 and P20 (see Table 11.1) reported growing interest to mature
practices using maturity models such as the Kotters 8 steps to change [Kotter
et al., 1995] and the Satir Interaction Model [Satir and Banmen, 1991].

In BE, process improvement appears to be both a team’s and management’s
issue. The 3 teams we interviewed reported considering retrospectives very
seriously. P15 (see Table 11.1), a portfolio manager, showed great interest in
formal guidance and documentation of the process. This initiative of process
modeling may seem opposite to agile values (since work improvement should
be the essential measure, not process documentation) but this actually should
be considered according to the cultural background and the organization
context.

BE has a high LTO score, which suggests that individuals will be more
pragmatic in change management: they encourage efforts as a way to prepare
for the future. Of course, we should mitigate this according to the business
domain. In e-government, heavy formalization is a requirement in itself (see
Section 10.3.3) and this is something we observed in BE and MY: T1, T2,
T3, T6 and T7 (see Table 11.2).

259

11. Culture Case Study

Hypotheses

H12: Negative impact of high PDI scores on continuous process improvement
(and vice versa)

H13: Positive impact of high LTO scores on continuous process improvement
(and vice versa)

11.4 Discussion

In order to understand the impact of the cultural background on agile software
development, we conducted a study in culturally diverse contexts (BE,
MY, SG). We collected data about practices, challenges and impediments
encountered by teams in each context. As earlier discussed, we have been
able to observe potential relationships (Question 1) between agile methods
adoption and 5 cultural factors (out of the 6 defined in the Hofstede model):
PDI, IDV, UAI, LTO and IDG. We derived 16 hypotheses (Question 2) (see
Table 11.3) which basically represent positive or negative correlations between
cultural factors and agile success factors. The results of the study tend to
show that the Hofstede model helps us find relevant hypotheses regarding
the impact of cultural background on agile methods implementation.

In order to validate the plausibility of the hypotheses (Question 2), we tried
to find evidence in the literature. Studies corroborating the hypotheses were
found, e.g., [Asnawi et al., 2011] and [Asnawi et al., 2012] which discuss
the management role in agile projects in MY and seem to consolidate H1.
These studies tend to show that the hypotheses we propose, although not
always expressed explicitly, are based on some concrete reality.

We also found studies that assert the impacts of some cultural factors
(coherent with the hypotheses we derived) and detail their solutions to
overcome the adoption challenges.

For example, [Yasuoka and Sakurai, 2012] investigates the applicability of
the participatory design practice (coming originally from the Scandinavian
and North American context) in the Japanese context. It refers to H5 and
explains how team transparency and cohesion can be achieved by building
confidence (creating a fun environment) and mitigating the LTO of Japanese
by installing certain conditions such as a feel of urgency. In the end, our
study seems to show that cultural background has a tangible impact on how
agile practices are perceived and applied.

260

11.4.
D
iscussion

Table 11.6.: Hypothetical correlation between Agile challenges and cultural factors

Cultural factors

PDI IDV UAI LTO IDG

High Low High Low High Low High Low High Low

A
gi

lit
y

G
oa

ls
(S

uc
ce

ss
Fa

ct
or

s)

Commitment to practices (+) (?) H1 (−) (+) H2 (+) (?) H3

Team Empowerment (−) (+) H4

Transparency and cohesion (−) (+) H5 (+) (−) H6

External Communication (−) (+) H7

Team multidisciplinarity (−) (+) H8 (+) (?) H9

Team motivation (+) (−) H10

Customer involvement (−) (+) H11

Process improvement (−) (+) H12 (+) (−) H13

261

11. Culture Case Study

However, the study still has several limitations that should be addressed.
Firstly, as [Borchers, 2003] reminds us, any study addressing culture-related
aspects should be cautious not to stereotype individuals through cultural
traits. To an extent, our study is not void of such stereotyping. Indeed,
by focusing on cultural background instead of individual mental models,
our research simplifies complex human relationships but provides a good
entry point for practitioners. The study should be regarded as pointing out
potential links between cultural background and ease of adoption, individual
preferences notwithstanding.

Furthermore, the definition of culture in terms of nations is problematic and
somewhat simplistic. In fact, studying socio-cultural differences is sensitive.
Some models explore a more dynamic view of culture, one that sees culture as
contested, temporal and emergent. To this regards, [Hofstede, 2002] responds
that national culture may not be the best unit of cultural differences analysis
but its use is legitimized by the accessibility and availability of information.

The results need also to be considered carefully since more empirical data are
required to confirm the practitioners’ opinion. Moreover, the results might
be affected by the non-systematic analysis method and by the imbalance of
data.

Another significant threat to validity is the possible influence of other factors
on the challenges listed in Table 11.4. In fact, the observations may be
caused by other variables (independent from the national culture) since
the participant groups share more than just cultural differences. Other
factors, namely, the organizational culture and the projects’ constraints (size,
experience, business domain, technology, etc.) may also have an impact on
the reported challenges. In order to validate the actual impact of cultural
background, other varying factors should be controlled.

The decision to consider only the national culture for this analysis was made
for simplification reasons (we decided to study one factor at a time). It is
motivated by the fact that during the first focus group, several practitioners
reported culture as a critical challenge towards implementing agile methods.
Another argument for this decision, may be found in [Child, 1979] which
studies the impact of organizational culture on management practices. He
argues that macro-level variables characterizing the cultures of organizations,
may not be the most determinant. The micro-level variables, i.e., the behavior
of people, continue to retain their cultural identity and have significant impact
on the work practices. Therefore, the cultural background of people ought
to be studied.

262

11.5. Lessons Learned

Regarding data collection, the study is based on small data sets that cannot
claim statistical relevance in any way. The study should be regarded as
preliminary, aiming at pointing out relevant hypotheses to be validated in
the future through more sophisticated surveys (i.e., larger scale and more
controlled experiments) and using correlation and regression analysis.

Finally, due to the theoretical coding of the relationships between cultural
dimensions and data, our analysis of the data may be undermined by
subjective opinions. The input of practitioners during the redaction of
this paper is one mechanism designed to overcome this risk but is still not
sufficient. A more systematic approach should be followed in future research.
Increasing the number of analysts (and therefore of inputs) should guarantee
a more objective outcome.

Regarding the aforementioned discussion, the study should be considered
as preliminary, aiming at pointing out potentially relevant hypotheses that
have to be further validated in the future. Future perspectives include the
validation of the hypotheses through larger surveys and more controlled
experiments (see Chapter 14). Future studies should also switch from
convenience sampling of participants to a more controlled selection (which
is only possible if the number of participants is high enough). They should
also go further by investigating the same research question in other contexts
than those we studied (BE, MY and SG).

11.5 Lessons Learned

As previously discussed, the learnings from this chapter can be valuable
for practitioners implementing agile software development in distributed
environments as well as practitioners working in culturally homogeneous
teams, that is, teams where no possibility of conflicts arise from cultural
differences.

The direct implication for the AMQuICk framework is that the cultural back-
ground is another context dimension to be considered in the customization
process (see Chapter 12).

As in the previous study, we also used the form of a matrix diagram to
represent the learnings which initiates the idea of structuring the knowledge
base using customization decision matrices (see Chapter 12). Using such
matrices, more precise recommendations could be provided to practitioners
in a particular cultural configuration: which practices are recommended,

263

11. Culture Case Study

which would require customization or special consideration and which are
not applicable.

Another learning of this study is that the cultural dimension can be measured
using the 6 factors of the Hofstede model. A cultural self-assessment survey
can be conducted internally in the organization to precisely measure the
team members individual culture. A self-assessment questionnaire or the
original Hofstede questionnaire1 may be reused. The results of the assessment
would help to decide about the customization guidelines using culture-related
decision matrices documented by experts and/or other practitioners (see the
example in Table 13.3).

Finally, the fact that context factors can be measured using specific models
helped us introduce a new concept in AMQuICk Essence, the Assessment
Model (see Chapter 12) which aims at providing precise context indicators.

1https://www.surveymonkey.com/r/QVY9YXV

264

https://www.surveymonkey.com/r/QVY9YXV

Part V.

Customization and
Capitalization Perspective

This part of the dissertation generalizes the learnings of the exploratory
studies and proposes an extension to the AMQuICk framework accordingly.

More precisely, Chapter 12 describes the theoretical process to be followed
by practitioners to instantiate a suitable agile method and presents the
AMQuICk customization matrix, a core AMQuICk artifact used to represent
the practitioners expertise. It also presents some facilitation tools proposed
as a guidance to help practitioners easily capitalize their customization
knwoledge at an organizational level.

Chapter 13 discusses the usability of the proposed AMQuICk artifacts based
on illustrative examples and on a complete case study.

265

Chapter 12

AMQuICk Customization and Capitalization

We explored in the previous chapters a number of challenging contexts
where agile methods have been deployed and identified a set of context
factors influencing the success of such deployment. We also captured and
structured the identified customization guidelines so they can be easily reused
by other practitioners working on similar contexts. The aim of this chapter
is to generalize the learnings of the exploratory studies and to propose an
extension to the AMQuICk framework accordingly.

In Section 12.1, we first synthesize the case studies learnings and propose a
theoretical process to be followed by practitioners to instantiate a suitable
agile method. Then, in Sections 12.2 and 12.3, we discuss the extension of
the AMQuICk Essence metamodel to include context and customization
related concepts. In Section 12.4, we present the AMQuICk customization
matrix, a visual artifact used to represent the practitioners expertise. Fi-
nally, in Section 12.5, we present some facilitation tools that may be used
to easily capitalize the customization knwoledge from practitioners at an
organizational level. The usability of the proposed artifacts is discussed in
Chapter 13.

12.1 Proposal

The exploratory studies presented in chapters 9, 10 and 11 allowed us to
observe that the customization of agile methods is a dual-level process
involving both the organizational and the project-team level. More precisely,
the studies highlight the importance of capitalizing (disseminating) the
project-team process knowledge at the organizational level. Moreover, the
studies show that both the organizational and the project context influence
the choice of suitable practices to select. For instance, if the team decides
to implement Scrum without considering the availability of a customer
representative, the implementation of Sprint Reviews is likely to be ineffective.
The practice should be configured accordingly.

267

12. AMQuICk Customization and Capitalization

The studies also allowed us to figure out the multi-dimensional and mea-
surable nature of a situational context. In other terms, a specific context
where an agile method is to be implemented can be characterized by a set
of factors, each of which can be estimated or measured using assessment
models. For example, the organizational culture factors can be characterized
by the 6 factors of the [Hofstede, 2011] model (see Chapter 11) which can
be measured using some specific surveys1. Another learning consists of the
fact that a context factor may be favorable or unfavorable for an agility goal.
This aspect should also be taken into account in the customization process.
Finally, the exploratory studies allowed us to initiate the idea to use matrix
diagrams to structure the customization knowledge base.

Regarding the aforementioned learnings, we argue that the customization of
an agile method should be the result of a consensus between the organiza-
tional learnings (stored in a knowledge base), the project-team preferences
(a set of practices that the team wants to apply) and a context model.

Figure 12.1 depicts the customization process of AMQuICk. At the organi-
zational level, the process repository documents a set of agile practices (as
well as interesting references, techniques, tools and measures). Moreover, a
knowledge base is available to store the past experiences and teams’ feedback
regarding the implementation of practices in their specific contexts.

At the project level, the method facilitator, in collaboration with the team
members, defines the preferred way of working in terms of quality goals and
agile practices (this provides more empowerment to the development team
since practices are not imposed but suggested). Moreover, it instantiates the
context model using an adequate assessment model. The consistency of the
selected practices is checked based on the documented practice associations
(see Section 7.3.6). The suitability of the selected practices is verified with
regards to the available customization knowledge.

Based on the previously stored knowledge, a set of recommendations can be
generated. These would approve, disapprove or propose configurations for
the desirable practices. An additional set of beneficial practices may also be
suggested as solutions to deal with challenging factors. The set of dependent
or complementary practices (see Section 7.3.6) may also be proposed for
selection.

The customization knowledge is stored using decisional matrices and is
continuously refined and expanded at the organizational level. The matrices
combine a set of recommendations and therefore provide a better guidance to
practitioners in a particular situational context: which practices are helpful,

1For example: https://www.surveymonkey.com/r/QVY9YXV

268

https://www.surveymonkey.com/r/QVY9YXV

12.1. Proposal

Figure 12.1.: Customization process levels

which would require customization or special consideration and which are
not applicable or are harmful (see Section 12.3.1).

As they are deployed, the set of selected practices is continuously improved
and new configurations may emerge. These are documented by the method
facilitator and are later capitalized at an organizational level. The team also
capitalizes its experience regarding the suitability of the selected practices
in their specific context using a the common format of AMQuICk decisional
matrices.

To summarize, the AMQuICk customization process is composed of the
following steps:

1. Context Study

a) assessing the situational context,

b) identifying challenging context factors and

c) prioritizing the agility goals (process quality goals).

269

12. AMQuICk Customization and Capitalization

2. Customization (see Figure 12.1)

a) selecting preferred practices,

b) gathering knowledge from similar contexts (retrieving adequate
matrices), and

c) recommending configurations.

The AMQuICk implementation and capitalization processes are composed
of the following steps:

1. Implementation (see Figure 12.8)

a) Plan

b) Do

c) Check

d) Adapt

2. Capitalization (see Section 12.5.2)

a) Store Experience

b) Update Customization Knowledge

In the next section, we discuss the necessary conceptual elements that need
to be added to AMQuICk Essence in order to support such a context-oriented
customization.

12.2 Context Modeling

When an organization is going to develop a project in an agile way, a context
profile has first to be instantiated. This instantiation is compliant with the
AMQuICk context characterization described below.

12.2.1 Context Defined

The software development context influencing agile methods implementation
can be defined as follows:

Definition 12.1 (Situational Context). The influential circumstances and
variables that make the project situation unique and comprehensible and that
affect the way of working of stakeholders involved in the project.

270

12.2. Context Modeling

The situational context factors for example consist of the market uncertainty,
budget constraints, application domain, project criticality, project duration,
team size, familiarity with the involved technology, etc..

In an agile context, we have been able to identify a set of influential factors
but more can be defined by an organization that is willing to use AMQuICk.
Indeed, the set of relevant context elements to support the agile methods
adjustments may be potentially different from an organization to another.
Therefore, using AMQuICk, a custom context model can be designed to
structure organizational or inter-organizational knowledge.

As earlier mentioned, some contextual models have been proposed by re-
searchers and practitioners to guide the adoption and adaptation of agile
software development practices.

[Cockburn, 2004b] in the crystal family of processes define different processes
based on Product Size, Criticality, and Skills.

[Boehm and Turner, 2003] define a home ground of agile vs. plan-driven
methods as associated to five critical factors namely, Product Size, Criticality,
Dynamism (i.e. requirements change rate), Personnel (i.e., level of method
understanding Cockburn [2000]) and Culture (of the team: thriving on chaos
or on order).

[Kruchten, 2013] defines 2 sets of factors that make up the context: factors
that apply at the level of the whole organization, and factors that apply
at the level of the project. The organization-level factors do influence
heavily the project-level factors which should drive the process to adopt.
The organization level factors are defined as: Business domain, Number of
instances, Maturity of the Organization, Level of Innovation and Culture.
Project-level context factors are: Size, Stable Architecture, Business Model
(contracting, money flow, etc.), Team Distribution, Rate of Change, Age of
System, Criticality and Governance (management style).

[Ambler, 2009] in the Agile Scaling Models (ASM) framework defines a range
of 8 scaling factors for effective adoption and tailoring of Agile strategies:
Team size, Geographical distribution, Regulatory compliance, Domain com-
plexity, Organizational distribution, Technical complexity, Organizational
complexity and Enterprise discipline.

Even though the context models reported above have been defined for
different purposes (i.e., crystal family of methods configuration, defining
Agile vs. Plan-driven home grounds, practices adoption guidance and scaling
agility to larger scopes), they seem to be more or less similar with only
minor variations. They are all composed of context “dimensions” at the

271

12. AMQuICk Customization and Capitalization

higher levels refined into a set of “factors” or “attributes” at the lower
levels. The main issue with such models is that they do not provide any
explanation concerning the measurement of the context factors and their
interpretation.

Based on this observation, we aim in the following section to abstract the
context modeling in a common paradigm, so that agile facilitators (or any
other relevant role) can characterize and assess the development context
objectively.

12.2.2 AMQuICk Essence Extension - Context Package

This AMQuICk Essence context package aims to define the concepts and
relationships to be used for the specification of a context model.

Figure 12.2.: AMQuICk Essence - Context Package

Figure 12.2 depicts its core elements. These are detailed below.

Context

The context construct type allows to instantiate custom context models, i.e.,
custom descriptions of situational contexts. Possible instantiations of this
concept are the [Boehm and Turner, 2003] and [Kruchten, 2013] models. A
context model is composed of a set of dimensions and measurable factors.

272

12.2. Context Modeling

Context Dimension

A context dimension is a construct type that allows to define the high-level
key-concepts used to categorize a situational context. Possible instantiations
are “project”, “organization”, “team”, “solution” or “customer”. Each
dimension is characterized by a set of context factors.

Context Factor

A context factor is used to describe a set of variables underlying a context
dimension. For example, the “project dimension” may be characterized by
the “scope variability” factor. A context factor may be divided into a set of
sub-factors. For example, the “organizational culture” factor may be further
refined into the “PDI, IDV, MAS, UAI, LTO and IDG” sub-factors of the
Hofstede model [Hofstede, 2011] (see Chapter 11).

Moreover, a context factor is a measurable entity, i.e., it can be determined
quantitatively using a set of measures. For example, a possible measure
for the “scope variability” factor would be the “percentage of requirements
change per month” and “a team appreciation of the criticality of requirements
change”.

As earlier discussed, in order to be conceptually correct and allow for the
right operation and comparison, the measure has to be identified by a se-
ries of variables: its value type, unit, scale and a measurement/estimation
method. These indicate how the sheer value of a measure must be under-
stood, compared to other measurement values and interpreted in fine (see
Section 7.4.6).

Context Indicator

An indicator corresponds to the interpretation of context factors. It indicates
how the sheer value of measures must be understood, compared to other
measurement values and interpreted. Indicators inform about the suitability
of the context providing agile methods implementation. In other terms, they
interpret the values of context factors and provide the information needs for
the customization process. They are the result of assessment models.

Indicators are key to the approach since they allow bridging the gap between
objectified (through measurement) context elements and derived practices or
practice configurations. As explained in [Vanderose et al., 2012], indicators
are only as useful as their interpretation rules. In the context of product
quality assessment, the interpretation associated to a given indicator de-
termines the action to be undertaken in the next steps of the development.

273

12. AMQuICk Customization and Capitalization

Building upon this notion, the AMQuICk approach proposes to link the
interpretation to practice customization guidance so that the interpretation
of the indicator impacts directly the way the method is to be implemented
(see Section 12.3).

Assessment Model

An assessment model is used for interpreting the set of context measures. It
defines the acceptable values for the metrics according to a set of thresholds
and generates a collection of context indicators. An assessment model will
be for example the Hofstede model [Hofstede, 2011] which describes how
to interpret the measures of the culture-related context factors (PDI, IDV,
MAS, UAI, LTO and IDG) and which generates indicators for each of the
factors (High vs Low).

Assessing the context factors highly depends on the tacit knowledge and inner
experience of agile experts and may therefore be subjective. For instance,
[Qumer, 2010] is an assessment model that generates an indicator for the
degree of agility. The assessment model relies on the estimates of 5 attributes:
flexibility, speed, leanness, learning and responsiveness. Each attribute is
estimated to 0 or 1. The degree of agility is determined by the aggregation
of the number of practices (or phases) which have been estimated to fulfill
the attribute divided by the total number of applied practices. In a similar
assessment model [Gandomani and Nafchi, 2014], this indicator is measured
regarding to the degree of adoption and the weight (importance) of the
practice to the company.

Several assessment models can be found in the literature for guiding agile
methods implementation and for different purposes (see Chapter 3).

12.2.3 Example

As an illustrative example of context modeling, we provide a purposely
simple context model in Figure 12.3.

The model describes one context dimension (customer) characterized by
3 context factors (availability, agility culture and business model). The
customer availability context factor may be measured in different ways:

(CF3.M1) Commitment time: the effective time of collaboration between the
customer and the development team per sprint. This measure is
of type ratio and is expressed in hours per sprint,

274

12.3. Customization Modeling

Figure 12.3.: Context Modeling Example

(CF3.M2) Spatial distribution: refers to the geographical distance and is
expressed in km,

(CF3.M3) Communication channel: refers to the more frequent channel used
to communicate with customers. The measure is of type nominal
with a range of possible values, i.e., face-to-face, video, phone,
mail or documents.

The interpretation of these measures in an assessment model results in 2
possible indicators that rank the level of customer availability (Low, High).
In the case of lack of customer involvement, a possible customization to be
undertaken is to recommend the “Proxy PO” practice as a configuration of
the “on-site customer” practice.

275

12. AMQuICk Customization and Capitalization

12.3 Customization Modeling

A standalone context model has no meaning if not linked to adequate
customization abilities. When an organization is going to develop a project
in an agile way, a context profile has first to be instantiated using the
context elements described in Section 12.2. Then, this profile and eventually
a prioritized list of quality goals will be used to generate customization
guidance.

We describe in the next sections how such guidance can be structured and
formalized in AMQuICk Essence.

12.3.1 Customization Defined

As earlier mentioned, the customization of agile methods is often done in an
ad-hoc way relying on the tacit knowledge of experts. We argue that it could
be beneficial to structure such a knowledge so it can be reused to guide the
customization decision-making. Accordingly we define the customization of
agile methods as follows:

Definition 12.2 (Agile Methods Customization). The process in which
agile teams define a suitable development method for their specific situation
through a set of guided and knowledge-based adaptation decisions.

Using AMQuICk, the customization body of knowledge would mainly doc-
ument the contexts where practices have been deployed so far (inside and
outside the organization), a set of experienced and recommended customiza-
tion decisions and references to suitable practice configurations. The core
AMQuICk Essence elements used to structure such knwoledge are presented
in the following section.

12.3.2 AMQuICk Essence Extension - Customization Package

In order to properly structure the customization guidance and to support an
easier decision-making, we define the constructs shown in Figure 12.4.

The figure describes the AMQuICk elements used to recommend customiza-
tions. These are detailed in the following paragraphs.

276

12.3. Customization Modeling

Figure 12.4.: AMQuICk Essence - Customization Package

Recommendation

The Recommendation construct type is the main element used to capture
the customization knowledge and recommend practice configurations in a
particular combination of context indicators. A recommendation has as
an input a source practice and a set of context indicators and provides
as an output information regarding the suitability or not of the selected
practice and possibly a number of configured practices. It is suggested to
associate recommendations with explanations using the Resource construct
type. Doing so, a rational for the customization may be provided to end users.
Moreover, experience reports of organizations where the configuration have
succeeded may be provided as an additional guidance for practitioners.

Recommendations are to be visualized using the AMQuICk customization
matrices (see Section 12.4). Each cell of the customization matrices actually
represents an instantiation of the Recommendation construct type for a
specific Practice and a unique Context Indicator (and/or one (or many)
quality Goal(s)).

Knowledge Base

The Knwoledge Base construct type is used to store the collection of prac-
titioners’ and experts’ recommendations which are available to assist the
customization decision making. A knowledge Base belongs to a specific or-
ganization. This information is represented using the universe attribute (see
Section 7.3.3). The default configuration of a knwoledge base (i.e., which has

277

12. AMQuICk Customization and Capitalization

a base_universe = 0) may be reused / inherited by other organizations. A
knwoledge base is more easily visualized using the AMQuICk customization
matrices (see Section 12.4).

Goal

A practice may be recommended with regards to one or many Quality Goals.
For example, the “pair programming” practice is reported in several empirical
studies to contribute to “design quality” and to the “reduction of defects
in code”. Therefore, the practice may be recommended to practitioners
that seek to improve these goals. More importantly, goals also provide the
rational for the customization decisions. For example, one may recommend
to customize or pay a special attention to the “daily meeting” practice in the
context of “a low indulgence (IDG) level within the team” (see Chapter 11)
in order to achieve a “better transparency”.

Goals are expressed with regards to the SMART criteria (see Section ??)
and in terms of agile principles such as “frequent delivery of the software”
or “knowledge sharing”. A goal may also be generic (e.g., “agility”) so that
recommendations can be formulated at a higher level. A prioritized list
of agility goals may be used as an input of the AMQuICk customization
process. Practices that contribute to the fulfillment of the selected goals
may be recommended.

Recommendation Type

The Recommendation Type construct is used to express the nature of the
relationship between a Practice, a Context Indicator and an agility Goal. A
practice is to be recommended to satisfy a particular goal and/or provided a
specific context indicator. Indeed, as earlier mentioned, a recommendation
may be of different types to determine whether the practice can be imple-
mented or not provided the specified context indicators. AMQuICk relies
by default on 4 recommendation types : ∼ Neutral practice, + Helpful

practice, C Helpful if customized or carefully implemented and − Harm-
ful practice (see Section 12.4.2). If different recommendation types are to be
defined, one may use the UserDefinedType construct type.

Recommendation Status

The Recommendation Status can be understood as the confidence level
that an AMQuICk user may have in a specific recommendation. Indeed,
recommendations may represent the expertise of a specific agile team, an

278

12.3. Customization Modeling

agile expert or be generated automatically based on the aggregation of a set of
previously documented customizations (for instance using a recommendation
system). When a recommendation is documented by a unique team, there is
a high risk that this one would be subjective. However, when it has been
validated by an expert or generated based on several experience reports,
then the risk is reduced.

Typically, we propose the following statuses: proposed, partially validated or
fully validated. When a recommendation is documented by a practitioner,
then it has the status of proposed in the knowledge base. If it is documented
by an expert, then it has the status of partially validated. In order to be
fully validated, more evidence is required based on several experience reports.
Basically, a recommendation has this status if it is automatically generated.
If different recommendation statuses are to be defined, one may use the
UserDefinedType construct type.

12.3.3 Example

Team distribution is one of the most frequently reported challenges to
the implementation of agile methods [Vallon et al., 2018]. Indeed, agile
software development as it is initially defined in the manifesto [Beck et al.,
2001] promotes direct and informal communication with the team and with
customer representatives. Several practices such as the daily stand-up, sprint
reviews, on-site customer and so on recommend co-location.

In contrast, global software engineering is becoming very common. In such
environments, the customization of the common agile methods is necessary.
Several adaptations are possible. Return of experiences can be found in
research and practice.

Figure 12.5 shows an example of a customization that can be recommended
to a distributed team planning to implement Scrum. The example is inspired
by an experience report2 from the Agile alliance.

The example shows that in case of a high spatial and temporal distribution
(big difference in time zones), an agile team should adapt its way of working.
Typically, it describes how the daily stand-up practice (identified as P7.0.0)
could be configured:

(P7.0.1.) Separate and Document Daily Stand-ups: A possible configuration
to the practice would be to hold one meeting per site and to

2https://www.scrumalliance.org/community/articles/2013/july/managing-
distributed-teams

279

https://www.scrumalliance.org/community/articles/2013/july/managing-distributed-teams
https://www.scrumalliance.org/community/articles/2013/july/managing-distributed-teams

12. AMQuICk Customization and Capitalization

Figure 12.5.: Customization Modeling Example

document what has been discussed. This configuration may be a
source of controversy since agile methods advocate the reduction
of unnecessary documentation

(P7.0.2.) Hold a unique video-conference stand-up and alternate times: Usu-
ally, it is recommended to hold the daily meeting in the morning
as it helps set the context for the coming day’s work. For team
members working in different time zones, it is still possible to hold
a common stand-up meeting using video-conferencing (or a phone
call) but with an alternation of the meeting time.

(P7.0.3.) Hold separate stand-ups and update the other team: Another pos-
sibility is to hold one daily stand-up per site and inform the other
team about the important points that were discussed in the meeting.
The update may be ensured by the Scrum masters.

The example also shows that the recommendation is activated by the physical
and temporal distribution context indicators and with regards to the team
communication agility goal. As earlier mentioned, the example also shows
how a recommendation can be associated to a resource. In this case, we
associated the recommendation to the experience report32 from which the
example was retrieved.

280

12.4. Customization Matrices

12.4 Customization Matrices

As shown in Figure 12.4, the recommendation of customization decisions
is a many-to-many relationship between a list of practices and a set of
context indicators. Matrix diagrams provide a convenient and compact way
to represent many-to-many relationships between two or many list of items.
This simple tool helps to analyze relatively complex situations and causal
relationships in a straightforward way [Burge, 2011].

Taking the aforementioned consideration into account and inspired by the
exploratory studies in Chapter 10 and Chapter 11 and by [Kruchten, 2013],
we considered the opportunity for presenting the customization knowledge
using matrix diagrams. The format, interpretation and population of such
matrices is discussed in sections 12.4.1, 12.4.2 and 12.4.3, respectively.

12.4.1 Format

AMQuICk customization matrices act as a reference model for the expertise
of agile practitioners. Depending on how a matrix is to be used, it may
represent a unique context (see Table 13.2) or aggregate several possible
contexts (see Table 13.3). They aim to help teams visually identify the
presence of relationships between the agile practices they wish to implement
(rows) and the relevant indicators regarding their specific context (columns).
Table 12.1 shows how the matrices are formatted.

At each intersection (cell), a relationship between a specific practice and
a context indicator is either present (+ , ∼ , C , −) or absent (?).
The different colors indicate the specific nature of the relationship, i.e., the
nature of the specific knwoledge available regarding the implementation of
practices in the specified context indicators.

As discussed in Chapter 5, the matrices should not be considered as prescrip-
tions that tell what the team should exactly do. Rather, they are a mean to
drive reflection on the value of practices and in fine to drive customization.

Another point worth discussing is the fact that customization matrices
may be subject to many discussions and controversies. Indeed, they store
the subjective knowledge of practitioners which may contain contradictory
evaluations of practices or may be biased by the success or failure experiences.
Consequently, it is important to consider the level of expertise of those who
report the knowledge and to allow experts to validate their recommendations,

281

12.
A
M
Q
uIC

k
C
ustom

ization
and

C
apitalization

Table 12.1.: Customization Matrix Format
Context Factors (Indicators)

CF1 CF2 CF3 .. CFy

V1 V2 ... V1 V2 ... V1 V2 ... V1 V2 ... V1 V2 ...
P

ra
ct

ic
es

Goal 1

P1 ∼ ∼ ? ∼ + ? ∼ C ? C ∼ ∼ ∼ − ?

P2 ∼ C ∼ ∼ − ? ∼ ∼ − ∼ + ∼ − ∼ ?

Goal 2

P3 + ? ? ∼ ? ? ? ∼ ? + ? ? ? ? ?

.. ∼ + + ? ∼ − ∼ ∼ ? ? ∼ ? ∼ ∼ ?

Goal n

Px + ∼ ? ∼ ∼ − ∼ ∼ − ∼ C ∼ ? ∼ −

+ Helpful practice

∼ Neutral practice

C Harmful practice if not adequately customized / Helpful if adequately customized

− Harmful practice

? Not enough evidence to conclude

282

12.4. Customization Matrices

i.e., allow them to tell their confidence level about the reported knwoledge
using the Recommendation Status construct type.

Moreover, it is important to consider the aggregation of several customiza-
tion matrices (with the same structure) to guide the final customization
decisions. In other terms, the final customization decision should depend
on the interpretation of a collection of cells from one or many matrices (see
Section 12.4.2 and Figure 12.6).

As shown in Table 12.1, the proposed customization matrices correspond
to L-type matrix diagrams, i.e., basic matrix diagrams that illustrate the
relationship between two lists [Burge, 2011]. Additionally, they include
a third dimension consisting of the goals fulfilled by practices in specific
contexts. This allows a goal-oriented decision making and provides the
rationale for the customization (see Section 12.3.2).

A possible option to represent this third dimension is to use a C-type matrix
diagram (a cubic arrangement), i.e., one that allows for three dimensional
relationships [Burge, 2011]. However, since this can be difficult to visualize,
the two dimensional representation of customization matrices seem to be
more convenient assuming that the “inside” of cells contains additional
information: the goal achieved from the customization and more (inspiring
resources on how to implement the customization, pointers to suitable
practice configurations, etc.). When necessary and for convenience, we
depict the relationship between practice recommendations and goals in the
matrix diagram as row headers (see Table 12.1).

12.4.2 Interpretation

A recommendation of a practice with regards to a specific context indicator
can be of the following types:

• Helpful practice: helps to satisfy a particular agility goal in
the specified context indicator (+)

A practice that helps to reduce the negative impact of a non-sweet spot
context indicator on an agility goal. For example, pair programming
is a helpful practice to satisfy technical excellence in the context of a
team that is composed of junior developers profiles [Dybå et al., 2007].

Helpful practices typically include the facilitation practices that may
be implemented by an agile coach to help a team resolve the context
related issues. For example, given the indicator lack of organizational

283

12. AMQuICk Customization and Capitalization

innovativeness, method facilitators may implement the practice of a
monthly agile innovation meeting (where the team members brain
storm on a set of specific features) with the purpose of satisfying the
goal of better competitiveness.

• Neutral practice: may or may not satisfy a particular agility
goal in the specified context indicator (∼)

If previous experiences show no evidence that the practice is impacted
(positively or negatively) by the specific context indicator, then the
practice is indicated as neutral. A neutral practice means that the
success of the practice or its failure is not conditioned by the indicator.
For example, the Sprint Review practice is neutral with regards to the
context indicator diversity of users profiles.

• Harmful practice if not adequately customized (or helpful
if adequately customized): needs to be customized and/or
carefully implemented in order to satisfy a particular agility
goal in the specified context indicator (C)

In non-sweet spot context, a practice may need to be carefully im-
plemented or customized. A practice is either customized in order to
become helpful or to not be harmful to satisfy a specific goal. For
example, if the team is distributed, the Sprint review practice should be
carefully implemented or configured in order to still satisfy continuous
feedback.

• Harmful practice: presents a high risk to satisfy a particular
agility goal in the specified context indicator (−)

A possible recommendation is to avoid the implementation of the
practice because it would be infeasible or unfavorable. For example,
a monthly release to users may be infeasible and even harmful if the
project is of a very high criticality.

Each cell of the matrix must be read as follows:

Practice [specific practice] is [helpful, neutral, harmful if not customized
(helpful if customized) or harmful]
to satisfy [quality goal].
in the context of [specific indicator]

For example, pair programming may be recommended or not in different
contexts and with regards to different goals. The following recommendations
are formulated based on experience reports from the literature[Dybå et al.,

284

12.4. Customization Matrices

2007; Arisholm et al., 2007; Padberg and Muller, 2003; Sfetsos et al., 2009;
Choi et al., 2008; Pikkarainen et al., 2008]:

• Pair Programming is helpful (+)
to satisfy a better code correctness
in the context of complex system and junior profiles
Resource [Arisholm et al., 2007]

• Pair programming is harmful (−)
to satisfy a better time to market
in the context of large project, small team size and high market
pressure
Resource [Padberg and Muller, 2003]

• Pair Programming is helpful (+)
to satisfy productivity
in the context of heterogeneous personality profiles
Resource [Sfetsos et al., 2009; Choi et al., 2008]

• pair programming is harmful (or counterproductive) (−)
to satisfy productivity
in the context of homogeneous personality profiles and similar ex-
pertise
Resource [Choi et al., 2008; Pikkarainen et al., 2008]

• pair programming is harmful (−)
to satisfy productivity
in the context of low system complexity and senior profiles
Resource [Dybå et al., 2007]

Another worth discussing question is the horizontal and vertical interpre-
tations of matrices. [Burge, 2011] recommends to adopt a disciplined and
systematic approach to examine the potential relationships of a matrix dia-
gram. Whether to proceed row-wise or column-wise depends largely on the
situation. The interpretation of AMQuICk matrices is mainly row-wise.

For example, let’s consider the matrix depicted in Figure 12.6 which is
instantiated for a specific context profile (one value per indicator). A quick
horizontal scanning of the matrix shows that P1 is almost not affected and
may therefore be implemented easily (∼ cells are the greater part of the
row) while P2 seem to be particularly challenging (the row contains only

C and − cells). The recommendation regarding the P4 practice may

285

12. AMQuICk Customization and Capitalization

be more arguable. The customization or not of such a practice should be
debated until the team reaches a consensus. The vertical lecture of the matrix
also may provide some valuable information. For example, in Figure 12.6 we
may see that the high regulatory compliance is one of the most challenging
factors.

Figure 12.6.: Customization Matrices Interpretation

The aggregation of several customization matrices documented by different
teams with the same structure may generate valuable information. For
instance, we may possibly observe that in a distributed context 80% of the
customization matrices documented by practitioners recommend the con-
figuration of the Monthly Release practice. Consequently, the configuration
of the practice could be recommended for future distributed projects and
possible configurations of the practice would be proposed for selection.

12.4.3 Population

AMQuICk Essence provides a mean to structure and classify the customiza-
tion knowledge and to link context-related elements to relevant practices
(see Section 12.3.2). However, it do not instantiate a default knowledge base
filled with experience reports.

Such a knowledge can be documented by practitioners (based on their previ-
ous experiences) and validated by a number of agile experts (see Section 12.5).
They may also be automatically generated based on the aggregation of a set
of previously documented customizations.

If a recommendation is to be automatically generated, one of the greatest
challenges will be to collect a relevant learning set. A possibility that could

286

12.5. Facilitation Tools

be considered is to collect such data based on a survey. Participants would
be asked to fill-in information regarding their situational context and to rank
the adaptability of a set of agile practices (e.g., adapted, adapted but needs
few configuration, adapted but needs consequent configuration, not adapted).
The results of some few surveys45 conducted by agile practitioners are
available but yet are not directly exploitable. In order to be able to extract
relevant customization knowledge, the collected data can be processed using
a multivariate factor analysis or a recommendation system (see Chapter 14).
However, to apply such a methodology, it is crucial to have an important
set of observations in order to have an empirical relevance.

Another possibility is to collect as much data as possible using a systematic
literature review of scientific publications or practitioners’ return of experi-
ences. Indeed, several Scrum masters, agile coaches and experts frequently
report their knowledge in the form of blog posts or articles in an agile con-
sortium (e.g., Agile alliance6, Scrum alliance7, scrum.org8). This knowledge
is valuable but considerable effort is needed to structure it.

In the next section, we describe how the customization knowledge can
be directly collected during the implementation of the method and the
capitalization at the organizational level.

12.5 Facilitation Tools

Asking teams to fill the customization matrices after the project is completed
may not be an intuitive task. Moreover, team members may not remember
all the different customizations that they experienced so far. We therefore
propose to support the AMQuICk approach with some facilitation tools
to be used during the method implementation and at the closure of the
project.

The first facilitation tool consists of a visual board to be used during iteration
retrospectives. It aims to facilitate the conversion of the reasoning behind
process improvements into such an explicit format that it can be reused for
eliciting the learning at the organizational level.

The second facilitation tool consists of a postmortem activity to perform
during the capitalization step. It aims to summarize and structure all the

4http://stateofagile.versionone.com/
5http://www.ambysoft.com/surveys/
6https://www.agilealliance.org/
7https://www.scrumalliance.org/
8https://www.scrum.org/

287

http://stateofagile.versionone.com/
http://www.ambysoft.com/surveys/
https://www.agilealliance.org/
https://www.scrumalliance.org/
https://www.scrum.org/

12. AMQuICk Customization and Capitalization

team learnings in a customization matrix at the organizational level. Team
members are the primary users of both tools. They are assisted by the
method facilitator.

These two facilitation tools should not be perceived as the unique way to
collect the customization knowledge from the team. They actually describe
one possibility from many others that may be proposed by agile facilitators.
During the course of this research, these tools were iteratively built and
experienced in the context of a master’s students project (see Section 13.4).
However, their effectiveness comparing to other experienced retrospective
tools was not validated empirically because of the unavailability of a longi-
tudinal study to allow for a controlled experiment and because many factors
actually may influence the effectiveness of retrospectives. The next sections
discuss in further details the proposed tools.

12.5.1 Improvement Backlog

We discussed in Section 2.2.5 that while traditional SPI approaches usually
adopt a top-down approach for improving the development process, agile
methods seek to move the process control from the organizational level to
the team. More precisely, the agile manifesto [Beck et al., 2001] advocates
to empower development teams so that they adjust and improve their daily
working practices continuously and in a face-to-face manner (see Table 2.1).

Complying with this principle many agile methods propose practices for iter-
ative improvement. For example, Scrum proposes to perform retrospectives
at the end of each sprint and Crystal [Cockburn, 2004b] describes a reflection
workshop technique. Lean approaches rely on just-in-time improvement,
i.e., improvement is done if and when necessary (see Section 2.2.3). Several
process improvement practices and techniques are documented and shared
in the agile community [Derby et al., 2006]9.

However, while these practices most likely accomplish their objective of
empowering the team process control, they do not or hardly allow for a
systematic knowledge transfer from one team to another. Indeed, they “do
not provide guidance on how the tacit or even explicit knowledge and learning
of the project teams can be converted into an explicit form that can be utilized
in organizational learning as well” [Salo, 2005].

In order to be able to disseminate the team learnings at an organizational
level, we argue that it is beneficial to systematically collect the information

9http://www.funretrospectives.com/category/retrospective/

288

http://www.funretrospectives.com/category/retrospective/

12.5. Facilitation Tools

available regarding the operated improvements and their effectiveness. The
continuously collected information can be used for the encoding of the final
team learnings in a customization matrix.

With the purpose of collecting the knowledge from practitioners as soon
as possible and to not overload the development process, we argue that it
would be beneficial to do it jointly with retrospectives.

In this section, an extension to the commonly used retrospective techniques
is proposed using practice cards and an improvement backlog to support the
systematic collection of improvement actions.

Format

Basically, retrospective techniques focus on identifying the things that went
well, the things that doesn’t and the things that the team can improve in the
future. Different visualization techniques are suggested by method facilitators
so they can still maintaining the motivation of the team. Usually, the team
observations are written on post-its and openly discussed. Improvement
actions are decided and eventually prioritized. However, the improvement
actions are not expressed in terms of practices, nor are they goal-driven.
Moreover, their effectiveness is not validated and their progress is not
tracked.

In order to add more structure to the generated observations using the
elements of the AMQuICk metamodel, we use visualization techniques
familiar to development teams. Precisely, practice cards are displayed on the
team room, post-its are used to represent practices that we want to improve
or implement, goals, recommendation types and improvement actions. The
latter are sorted by practices and goals and enacted in the improvement
backlog (see Figure 12.7). The visualization of the practice cards in the
team working space is called practices wall. This wall aims at animating the
discussion during the retrospective sessions and to visualize a history of the
practices evolution.

Based on the history of improvement actions and or their enactment, practice
configurations may be proposed and are formalized in practice cards.

Retrospectives represent the iterative learning of the project. The last
retrospective of the project is considered as a postmortem capitalization
workshop. It captures the learnings at the organizational level in the form
of a matrix (see Section 12.5.2).

289

12. AMQuICk Customization and Capitalization

Figure 12.7.: AMQuICk Improvement Tool

Usage

The continuous improvement and customization of agile practices is aligned
with the development iterations. Improvement actions are planned, imple-
mented and checked continuously. A set of improvement actions may lead
to the configuration of one practice. Taken the aforementioned into account,
we modified the Deming’s PDCA cycle [Deming and Edwards, 1982] by
replacing the Act step by Adapt. Figure 12.8 depicts this cycle.

Retrospective sessions are the place where improvement actions are planned
and checked and where practice adaptation decisions are discussed. The
PDCA steps are detailed below:

1. Plan: This step aims at formulating feasible and collectively agreed
practice improvement actions to be tried out in the next iteration.
These would eventually lead to the definition of new practice config-
urations. Based on the perception of practices implemented in the
previous iteration (green and red post-its), the team decides about
the most urgent practices to improve. For each selected practice to
improve, improvement actions (and alternatives) are discussed and
written on post-its. The facilitator should confirm that these are
within the possible organizational limitations for process improvement.
Dot votes10 are then used to prioritize all the improvement actions:

10http://www.funretrospectives.com/dot-voting/

290

http://www.funretrospectives.com/dot-voting/

12.5. Facilitation Tools

Figure 12.8.: Implementation Cycle - Plan Do Check Adapt (adapted
from [Deming and Edwards, 1982])

every team member is given 3 dot votes for example and should place
them on whatever interesting action he/she thinks would be beneficial.
Many dot votes may be placed on the same post-it. Only a number
of improvement actions with the highest dot votes are selected to
integrate in the iteration. The team then decides about qualitative
or quantitative means (observation, estimation or measurement) to
validate the improvements. For example, if the team decides to improve
the unit testing implementation, they have to decide about a minimal
threshold for the test coverage to achieve.

2. Do: Team members self assign for the improvement actions. The
assigned person is not necessarily the unique performer of the im-
provement actions. He/she rather plays the role of a responsible for
ensuring that the action will be considered during the next sprint. An
improvement action should be enough specific to be completed during
one iteration.

3. Check: This step is carried out at the beginning of the next improve-
ment iteration. First, the team has to check out if the actions have
taken place as expected or if they need to be postponed to the next
iteration. The effectiveness of the implemented actions is also verified.

291

12. AMQuICk Customization and Capitalization

Then, the team reflects on all the practices implemented during the
Sprint and discuss how helpful/or harmful they were. To do so, each
team member is given a number of green and red post-it and is asked
to individually write notes on the positive and negative aspects of the
practices. The practices with many harmful notes are discussed and
are eventually selected to improve.

4. Adapt: Considering the previously introduced improvements, and the
discussion on the effectiveness of practices, the team may identify more
suitable ways of doing things. It decides about the new practice config-
urations (configuration of tools, metrics, practice activities, resources,
etc.), the practices to discard and the new practices to introduce. This
step should be carefully monitored by the method facilitator. If a new
configuration is agreed, he/she documents it in a practice card and
enriches the practices wall.

12.5.2 Capitalization Workshop

The capitalization workshop is a postmortem meeting that aims at summa-
rizing and transforming the tacit knowledge of practitioners (highly personal,
hard to formalize and, therefore, difficult to communicate) to explicit kn-
woledge (formal and systematic). Postmortem meetings are not a new
concept. They have been used both in disciplined and agile environments
as one of the most powerful tools “that facilitates the transformation of
personal knowledge into organizational knowledge” [Takeuchi, 1995].

The output of this step is the customization matrix that captures the final
experience of the project-team. To capitalize the team knowledge successfully,
the role of the method facilitator is essential. The latter has to challenge
the team for what they take for granted, ensure that they express both their
negative and positive tacit knowledge and remind them about the history of
improvement actions.

The meeting is animated around a capitalization board or knwoledge elicita-
tion board (see Figure 12.9) which facilitates the generation of knowledge.
At the end of the workshop, the facilitator has the responsibility to encode
the generated knowledge using in a matrix diagram. The workshop may be
animated following the steps below:

• Preparation: this step aims at stimulating the reflection. The facili-
tator reminds the team about the most important steps of the project
and draw them in a time-line and overviews the history of improvement
actions and practice configurations. The team members are asked to

292

12.6. Summary

Figure 12.9.: Capitalization Workshop - Knowledge Elicitation Board

reflect on how the positive and negative events were distributed across
the project life-cycle and on how practices contributed to leverage
the encountered impediments. They may also discuss the possible
practices that could have helped but that were not experienced.

• Generation of explicit knowledge: the implemented and the likely
helpful practices (that could have helped) are displayed on the capital-
ization board (see Figure 12.9). Team members are given green, red
and orange post-its that respectively represent the reason why they
think that the practice may be helpful, harmful or helpful if configured.
The facilitator reminds the usage of practices one by one as well as the
experienced configurations. For each practice, team members are asked
to record their feedback using as many post-its as they want. Then, a
row-wise examination of the board is performed and the team finds
a consensus about the final recommendations. The facilitator is the
responsible for encoding the generated knowledge in a customization
matrix to be stored in the organizational knowledge base.

As previously mentioned, this facilitation workshop should not be perceived
as the unique way to collect the customization knowledge from the team. It
is actually one possibility among others. Specifically, the preparation step
may be helpful for getting a read on how team members felt about where
the team was at particular points in time via a visual representation but
clearly is not mandatory.

293

12. AMQuICk Customization and Capitalization

12.6 Summary

We focused in this chapter on the formalization of the customization kn-
woledge and its capitalization at the organizational level. Precisely, we
proposed an extension to AMQuICk Essence, a new formalism to docu-
ment the customization guidance using decisional matrices and finally some
facilitation techniques.

The extension of AMQuICk Essence provides means to characterize in a fine-
grained way the customization knwoledge so it can be easily reused by other
practitioners. Basically, this characterization relies on the breakdown of the
context into finer measurable factors. Practices and practice configurations
are recommended or not depending on the value of these factors, on their
interpretation and on the agility goals that a team is looking for.

Using AMQuICk customization matrices, the team expertise is captured
more easier and in a more compact and systematic way. The proposed
facilitation techniques are aimed to assist practitioners when capturing and
capitalizing their expertise.

In the next chapter, we demonstrate the usability of the AMQuICk cus-
tomization matrices through a number of illustrations. We also discuss the
usability of the facilitation techniques which we experienced in the context
of a masters’ projects (see section 13.4) to elicit the customization knwoledge
that we acquired regarding the implementation of Scrum in the context of
an academic project.

294

Chapter 13

Illustrations

We argued in the previous chapter how important it is to structure the cus-
tomization knowledge for enabling organizational learning. To this regards,
we presented the newly introduced artifacts consisting of the extension
of AMQuICk Essence, the knowledge base that is composed of a set of
customization matrices and the facilitation tools for the collection of the
customization experiences and their capitalization.

This chapter discusses the usability of these artifacts based on some illus-
trations. More precisely, Section 13.1 extends the Intel Shannon case study
(see Chapter 7) by structuring the extracted knowledge in an AMQuICk
customization matrix. Similarly, Section 13.2 structures the knowledge
reported by the SPW practitioners (see Chapter 9). Section 13.3 provides
an example of some recommendations that can be formulated with regards
to the cultural context (see Chapter 11). Finally, Section 13.4 provides a
more complete illustration that formalizes our key learnings regarding the
implementation of a custom Scrum in the context of a masters’ capstone
course.

13.1 Intel Shannon Customization

We studied in Section 7.6 the implementation and customization of Scrum
and XP in the specific context of Intel Shannon (a case study selected from
literature). In this section, we demonstrate how the customization decisions
taken by practitioners can be documented using an AMQuICk customization
matrix (see Table 13.1).

The matrix lists only the XP and Scrum practices that were configured or
discarded. For convenience, the agility goals fulfilled by the practices are not
presented in the matrix but are detailed in the following list which provides
a row-wise explanation of customization decisions:

295

13.
Illustrations

Table 13.1.: Intel Shannon Customization Matrix
Context factors

Project / Requirements Team

Complexity Variability Compliance Expertise Size Turnover Distribution

High Low High Low High Low High Low Large Small High Low High Low

A
gi
le

pr
ac
ti
ce
s

Pair programming [C15] + − − ∼ ? ? + − ? ? ? ? ? ?

Simple Design [C16] C ∼ ? ? ? ? ? ? ? ? ? ? ? ?

Coding Standards [C17] ? ? ? ? ? ? ? ? ? ? + ∼ ? ?

Collective Ownership [C18] ? ? ? ? ? ? − ∼ + ∼ ? ? ? ?

Continuous Integration [C19] C ? ? ? ? ? ? ? ? ? ? ? ? ?

On-site Customer [C20] ? ? ? ? ? ? ? ? ? ? ? ? C ∼

Small Release [C21] − ∼ ? ? ? ? ? ? ? ? ? ? ? ?

Daily Meeting [C22] ? ? ? ? ? ? ? ? + C ? ? C +

Sprint Planning [C23] C ? ? ? C ? ? ? ? ? ? ? ? ?

Sprint Closure [C24] ? ? ? ? C ? ? ? ? ? ? ? ? ?

+ Helpful practice

∼ Neutral practice

C Harmful practice if not adequately customized / Helpful if adequately customized

− Harmful practice

? Not enough evidence to conclude

296

13.1. Intel Shannon Customization

[C15] Pair Programming: The customization of pair programming is
discussed in the study with regards to the complexity of the project,
the variability of scope and the expertise of the team. More precisely,
it was found that pair programming helps the team members to un-
derstand the complex requirements. Moreover, the practice seemingly
contributed to the reduction of defect density when junior profiles
integrate the team. However, pair programming was found unsuitable
for easy features and maintenance tasks (low variability of require-
ments) and when pairs are formed of expert profiles since it reduces
the team productivity and concentration.

Provided the aforementioned, the following recommendations can be
formulated:

• Pair Programming is helpful to satisfy requirements under-
standability in the context of high requirements complexity

• Pair Programming is harmful to satisfy Productivity and
Teamwork quality (concentration) in the context of low
requirements complexity

• Pair Programming is harmful to satisfy Productivity and
Teamwork quality (concentration) in the context of low
requirements variability (and neutral in the context of high
variability)

• Pair Programming is harmful to satisfy Productivity in the
context of high team expertise.

• Pair Programming is helpful to satisfy Code Reliability (re-
duction of defect density) and Technical Excellence in the
context of low team expertise

[C16] Simple Design (Quick Design Sessions): The simple design prac-
tice is implemented through quick design sessions where practitioners
brainstorm on white-boards before each block of code is written.
However, they report that this practice needs to be configured to
satisfy the high expectations of maintainability and traceability. More
precisely, the practice was adapted so that design documents were
systematically updated after each quick design session.

Provided the aforementioned, the following recommendations can be
formulated:

• Simple Design, if not customized, is harmful to satisfy
maintainability and traceability in the context ofHigh project

297

13. Illustrations

complexity (and neutral in the context of low project com-
plexity)

• Simple Design, if not customized, is harmful to satisfy
maintainability and traceability in the context of high pro-
cess compliance (and neutral in the context of low process
compliance)

[C17] Coding Standards: The Intel Shannon practitioners applied the
coding standards practice by defining their own C coding standard
rather then relying on an accepted community standard1. They found
the practice helpful for ensuring a better maintainability in the context
where teams membership is volatile (a high turnover rate).

Provided the aforementioned, the following recommendation can be
formulated:

• Coding Standards (the practice) is helpful to satisfy maintain-
ability in the context of high turnover (and neutral in the
context of low turnover)

[C18] Collective Ownership: In the default configuration of the practice
(as it is defined in XP), everyone shares responsibility for code quality
and everyone can make necessary changes and fix bugs anywhere.
However, in the context of Intel Shannon, the practice was only
considered appropriate on a single-team basis, i.e., code was not
shared across multiple teams even when those work on the same
project. Practitioners also felt that the practice could not scale to
a wide team. Moreover, the practice was found helpful to ensure
maintainability in the context of a high turnover rate. The study
reports : “Collective ownership allowed management more flexibility
as it resulted in teams being able to maintain the code base.”.

Provided the aforementioned, the following recommendations can be
formulated:

• Collective Ownership, if not carefully implemented/cus-
tomized, is harmful in the context of large team size (un-
specified goal) (and neutral in the context of small team size)

• Collective Ownership is Helpful to satisfy maintainability in
the context of high team turnover (and neutral in the context
of low team turnover)

1http://agileinaflash.blogspot.com/2009/02/coding-standards.html

298

http://agileinaflash.blogspot.com/2009/02/coding-standards.html

13.1. Intel Shannon Customization

[C19] Continuous Integration: Because of the complexity of the projects
and regarding the need for external test equipments, the code was
not fully integrated at the end of each sprint. Rather, the system is
integrated only two weeks before a major release.

Provided the aforementioned, the following recommendation can be
formulated:

• Continuous integration, if not carefully implemented/cus-
tomized, is harmful to satisfy software testability in the
context of high project complexity

[C20] On-site Customer: In the context of Intel Shannon, customers
are not available during the early development stages and customer
representatives are distributed. To ensure a value-driven delivery of
features, the co-located marketing team played the role of a customer
proxy, “prioritizing features based on potential revenue”.

Provided the aforementioned, the following recommendation can be
formulated:

• On-site Customer, if not carefully implemented/customized,
is harmful to satisfy value-driven delivery in the context of
high distribution (between the team and customer rep-
resentatives)

[C21] Small Release: With no configuration, the practice was found un-
feasible because of the complexity of the project. Indeed, the software
development and deployment on processors depend on silicon avail-
ability, require test equipment and intensive integration. As a balance
between continuous delivery and valuable software delivery, the prac-
tice was transformed to a two-level release strategy where minor
versions are released every 4 to 6 weeks and major versions every two
quarters.

Provided the aforementioned, the following recommendation can be
formulated:

• Small Release, if not adequately customized, is harmful
to satisfy valuable delivery in the context of high project
complexity

[C22] Daily Meeting: The practice was found helpful in the context of
small teams to help achieve transparency (shared visualization of tasks
and of the project progress). Daily meetings are held around a post-it
board where team members record their daily tasks and discuss them.

299

13. Illustrations

In the context of large teams, the practice was configured to also
record the tasks in the project repository. Moreover, the practice was
configured for distributed teams using an online tool.

Provided the aforementioned, the following recommendation can be
formulated:

• Daily Meeting is helpful to satisfy transparency in the context
of small team size and small distribution (of the team)

• Daily Meeting, to satisfy transparency in the context of large
team size

• Daily Meeting, if adequately customized, is helpful to satisfy
transparency in the context of high distribution (of the
team)

[C23] Sprint Planning: Because of the complexity of projects at intel
shannon, a two-level planning is performed: one at the start of the
project and one at the start of each sprint. Another reason for this
configuration resides in the high process compliance (audited) which
requires an upfront planning of the project including a predefinition
of the project scope (at a high level).

Provided the aforementioned, the following recommendation can be
formulated:

• Sprint planning, if adequately implemented or customized,
is helpful to satisfy on-time delivery in the context of high
project complexity and of high compliance (audited)

[C24] Sprint Closure (lightweight): Scrum recommends to close the
sprint by performing a review and a retrospective and delivering/de-
ploying a valuable product version. In Intel Shannon, the practice
was customized to include a wrap-up session aiming at finalizing the
documentation of the end-of-sprint deliverables (wrap up report listing
the completed/extra tasks, lessons learned, measurement of the actual
effort, test scripts, tests scenarios, demo deliverables, etc.) This is
explained by the importance of compliance and the fact that it is
audited. In such a context, one may say that the only delivery of
code is not sufficient. Documentation is important and should be
considered as a valuable feature that needs to be delivered (i.e., to
treat documentation like requirements2).

2http://www.agilemodeling.com/essays/agileDocumentationBestPractices.htm

300

http://www.agilemodeling.com/essays/agileDocumentationBestPractices.htm

13.2. SPW Customization

Provided the aforementioned, the following recommendation can be
formulated:

• Lightweight Sprint Closure, if not adequately customized, is
harmful to satisfy valuable delivery in the context of high
and audited process compliance

13.2 SPW Customization

In Chapter 9, we presented a set of customization decisions collected during
the project retrospective in collaboration with the team and the Scrum
master. Table 13.2 restructures the collected knowledge using an AMQuICk
customization matrix. For each practice, we provide a row-wise explanation
of the documented customizations (from C1 to C14). The are presented in
Section 9.3.2.

The table do not depict neutral relationships, i.e., ∼ cells since in the
SPW case study we only focused on identifying the practices that may help
the team and those that were found particularly difficult or impossible to
implement. When the practice applicability with regards to a specific context
indicator was not discussed with the team members, we consider that not
enough evidence exist and therefore mark the cell with ? .

For convenience, the agility goals fulfilled by the practices are not presented
in the matrix. These appear in Table 9.4.

13.3 Culture-based Customization

To show how the customization knwoledge can be documented using deci-
sional matrices, we provide in this section an example related to the case
study discussed in Chapter 11. Table 13.3 illustrates a customization matrix
that can be provided to AMQuICk users to guide them through the imple-
mentation of methods taking into account their specific cultural context.
The recommendations it presents should be seen as illustrative since they
are suggested by the researchers and not designed by agile practitioners.

A row-wise explanation of the set of illustrative recommendations is provided
in the following:

301

13.
Illustrations

Table 13.2.: SPW Customization Matrix
Organizational and Project’s Context Indicators

Team
Com-
munica-
tion

Org.
Struc-
ture

Agile
Skills

Team
Size

Team
Distri-
bution

Domain
Critical-
ity

Customer
Avail-
ability

Contract
Model

Average Siloed Low Average Mid-
level

Ess.
Funds

Low Fixed
scope

A
gi
le

pr
ac
ti
ce
s

User Stories Estimation[C1] C ? C ? ? ? C ?

Sprint Planning[C2] ? ? ? C ? C ? ?

Grooming Session per Release[C3] ? ? ? ? ? ? + ?

Domain Walk-through[C4] ? ? ? ? ? + + ?

Model in Small Increments[C5] ? − ? ? ? − ? −

US Writing Workshops[C6] ? ? + ? ? ? ? ?

User Story (US)[C7] ? C ? ? ? ? ? C

Role Coaching[C8] ? + + ? ? ? ? ?

Sprint-0 (Technical Envisioning)[C9] ? ? + ? ? ? ? C

Pair-programming Sessions[C10] ? ? + ? ? ? ? ?

Parallel Independent Testing[C11] ? + ? ? ? + ? ?

Scrum Team[C12] ? ? ? C ? ? ? ?

Retrospective facilitation[C13] + ? ? C ? ? ? ?

Physical Taskboard[C14] ? ? ? − − ? ? ?

302

13.3.
C
ulture-based

C
ustom

ization

Table 13.3.: An example of cultural customization matrix
Cultural factors

PDI IDV UAI LTO IDG

High Low High Low High Low High Low High Low

A
gi
le

pr
ac
ti
ce
s

Team Commitment to Practices

Satir Change Model (Research Model) [C25] ? ? ? ? + − + − ? ?

Kotter 8-Step (Industrial Model) [C26] ? ? ? ? + − + − ? ?

Team Empowerment

Self-organizing teams (Scrum) [C27] C ∼ ? ? ? ? ? ? ? ?

Sign-up or self-assign (XP) [C28] C ∼ ? ? ? ? ? ? ? ?

Dickinson et al. teamwork model (Research Model) [C29] + ? ? ? ? ? ? ? ? ?

Transparency and Cohesion

Task Board (Scrum) [C30] C ∼ ? ? ? ? ? ? ∼ C

Daily Meeting (Scrum) [C31] C ∼ ? ? ? ? ? ? ∼ C

Code Ownership (XP) [C32] C ∼ C ∼ ? ? ? ? ∼ C

Gemba Walk (LEAN) / Go See (LeSS) 3 [C33]) + ? ? ? ? ? ? ? ? C

etc...

303

13. Illustrations

[C25] Satir Change Model: Implementing a change model such as the
Satir Model [Satir and Banmen, 1991] is usually recommended by
agile experts to improve the commitment to agile practices where
more resistance to change is likely to happen. In environments where
changes are welcome, there is no need to implement such heavyweight
models to guide transformation.

Regarding the LTO factor, H3 (see Chapter 11) argues that when
change is enough planned and prepared in a long-term oriented context,
the team is more likely to commit to practices. Therefore the use of
change models is assumed to be useful in contexts where organizations
are long-term oriented. References where this model is used for these
purposes can be found in literature [Babuscio, 2009; Liebmann, 2003;
Kelly, 2008].

It seem also reasonable to assume that in a short team oriented
context, the implementation of strategic change models would bring
unnecessary complexity to the process.

Provided the aforementioned, the following recommendations can be
formulated:

• Satir Change Model is helpful to satisfy the team commit-
ment to practices in the context of high UAI

• Satir Change Model is helpful to satisfy the team commit-
ment to practices in the context of high LTO

• Satir Change Model is harmful to satisfy Process Simplicity
in the context of low UAI or low LTO

[C26] Kotter 8 step model: Similarly to the previous recommendation,
the Kotter 8 step model4 [Kotter et al., 1995] can be recommended
for guiding agility transition and improving team commitment to
practices. References where this model is used for these purposes can
be found in literature [Kelly, 2008; Hayes and Richardson, 2008; Hui,
2013].

Provided the aforementioned, the following recommendations can be
formulated:

• Kotter 8 step model is helpful to satisfy the team commit-
ment to practices in the context of high UAI

• Kotter 8 step model is helpful to satisfy the team commit-
ment to practices in the context of high LTO

4https://www.kotterinc.com/8-steps-process-for-leading-change/

304

https://www.kotterinc.com/8-steps-process-for-leading-change/

13.3. Culture-based Customization

• Kotter 8 step model is harmful to satisfy Process Simplicity
in the context of low UAI or low LTO

[C27] Self-organizing teams: In culture environments with an estab-
lished hierarchy (high PDI), the implementation of self-organizing
teams should be configured and/or carefully implemented. To this re-
gards, [Hoda et al., 2012] states that “teams facing a management that
was still dictating terms are unlikely to self-organize”. The study iden-
tifies a set of practices to configure the self-organizing team practice:
Balancing freedom & responsibility, Balancing cross-functionality &
specialization and Balancing continuous learning & iteration pressure.

In a low PDI context, its more easier to have self-organized teams.

Provided the aforementioned, the following recommendations can be
formulated:

• Self-organizing teams if adequately customized, is helpful
to satisfy team empowerment in the context of high PDI
(and neutral in the context of low PDI)

[C28] Sign-up: Sign-up or Self-assign is another practice that is impacted
by a high PDI index and therefore the practice should be configured
or carefully implemented. [Hoda et al., 2012] discusses the need for
configuring this practice.

Provided the aforementioned, the following recommendations can be
formulated:

• Sign-up if adequately customized, is helpful to satisfy team
empowerment in the context of high PDI (and neutral in
the context of low PDI)

[C29] Teamwork improvement models: Specific models such as [McIn-
tyre and Dickinson, 1997] which provide a better understanding of
the nature of self-organization may be recommended for empowering
team members to share the tasks and responsibilities of leadership.

Provided the aforementioned, the following recommendation can be
formulated:

• The [McIntyre and Dickinson, 1997] teamwork model is helpful
to satisfy team empowerment in the context of high PDI

[C30] Task Board: Task boards are one of the most important information
radiators used by agile teams to track their progress. However, when a
culture of transparency isn’t available, the practice should be carefully

305

13. Illustrations

verified by the agile facilitator. The issue is discussed in some return
of experiences from practitioners [Perry, 2008].

Provided the aforementioned, the following recommendations can be
formulated:

• Scrum Task Board, if carefully implemented/customized,
is helpful to satisfy Transparency in the context of high PDI
(and neutral in the context of low PDI)

• Scrum Task Board, if carefully implemented/customized,
is helpful to satisfy Transparency in the context of low IDG
(and neutral in the context of high IDG)

[C31] Daily Meeting: Daily meetings are recommended by several agile
practices. In an environment where transparency lacks, their imple-
mentation may be problematic. To this regards, it is crucial that the
agile facilitator configures and/or cares about the implementation
of this practice by building trust. Studies such as [Pries-Heje and
Pries-Heje, 2011] discuss this question.

Provided the aforementioned, the following recommendations can be
formulated:

• Daily Meeting, if carefully implemented/customized, is
helpful to satisfy Transparency in the context of high PDI
(and neutral in the context of low PDI)

• Daily Meeting, if carefully implemented/customized, is
helpful to satisfy Transparency in the context of low IDG
(and neutral in the context of high IDG)

[C32] Code Ownership: The practice of shared code ownership is related
to team cohesion (i.e., to the team IDV context factor). [Bacchelli and
Bird, 2013] explains how managers promote collective code ownership
and code review processes to improve team cohesion and transparency.
In an environment of low IDG and high PDI, the implementation of
such a practice is likely to fail. The implementation of the practice
may also be influenced by the IDV dimension. Developers with an
individualistic mindset usually feel that they individually own the
code and that they are the only ones understanding it in details5.
Therefore, it is recommended that agile facilitators particularly take
care of the implementation of this practice in this combination of
these context factors.

5https://www.coderhood.com/12-reasons-avoid-individual-code-ownership/

306

https://www.coderhood.com/12-reasons-avoid-individual-code-ownership/

13.4. Agile Customization in a Master’s Capstone Course

In contrast, in a low PDI, low IDV and high IDG context, it is arguable
that the practice may be implemented easily.

Provided the aforementioned, the following recommendations can be
formulated:

• Code Ownership, if carefully implemented/customized, is
helpful to satisfy Transparency in the context of high PDI
(and neutral in the context of low PDI)

• Code Ownership, if carefully implemented/customized, is
helpful to satisfy Transparency in the context of high IDV
(and neutral in the context of low IDV)

• Code Ownership, if carefully implemented/customized, is
helpful to satisfy Transparency in the context of low IDG
(and neutral in the context of high IDG)

[C33] Gemba: Gemba is a practice from Lean meaning the real place. It
encourages both managers and developers to go for “walks” to observe
the team or users’ working places. The practice is recommended6 for
providing more transparency and cohesion between team members
and external stakeholders in a context characterized by a command-
and-control mindset. However, one should ensure, particularly in a
low IDG context, that the practice is not perceived as invasive by the
team members or users [Womack, 2013].

Provided the aforementioned, the following recommendations can be
formulated:

• GembaWalk, if carefully implemented/customized, is help-
ful to satisfy Transparency in the context of high PDI (and
neutral in the context of low PDI)

• GembaWalk, if carefully implemented/customized, is help-
ful to satisfy Transparency in the context of low IDG (and
neutral in the context of high IDG)

13.4 Agile Customization in a Master’s Capstone Course

A capstone course have the objectives to help the students integrate the
material previously learned in the curriculum, improve their understanding

6https://www.scrumalliance.org/community/articles/2013/june/transparency-in-
agile-product-development

307

https://www.scrumalliance.org/community/articles/2013/june/transparency-in-agile-product-development
https://www.scrumalliance.org/community/articles/2013/june/transparency-in-agile-product-development

13. Illustrations

of that material, extend their knowledge to other areas and help them acquire
a realistic simulation of a professional experience [Mahnic, 2012; Adcock
et al., 2009].

Several studies such as [Cleland and Mann, 2003; Mahnic, 2012; Schroeder
et al., 2012] tend to show the benefits of implementing agility in capstone
courses to improve the technical and soft skills of students. Besides, they
argue the need for special consideration and/or adaptation of numerous agile
practices and to this regards, some studies such as [Williams et al., 2008;
Reed, 2008] formulate guidelines to help other educators be as successful as
possible when introducing agility to their courses.

In this section, we report our experience on the implementation of agile
software development in three masters’ students projects during the academic
years 2015-2016, 2016-2017 and 2017-2018. Relying on the feedback collected
from the students, on observational data, and on project management
reporting, we formalize our key learnings in an AMQuICk customization
matrix and discuss the general applicability of the learnings.

13.4.1 Background

The laboratory of software engineering7, most commonly called MDL (for
Méthodologies de Développement de Logiciel in french, i.e., methodologies
of software development), is a master’s capstone course in the faculty of
computer science of the University of Namur. The course is of 14 weeks
duration and is actually of 9 ECTS which according to [European Union,
2015] corresponds to 16/20 hours workload per week (1 ECTS = 25 to 30
hours workload) including an average of 4 hours per week in class. In each
academic year 4 to 5 groups of 5 to 6 students each were created.

The three projects P1, P2 and P3 were of an average complexity with some
few features of a relatively high complexity (for non experimented developers).
The most challenging features of the projects were purposely chosen to be
similar. In P1 and P2 (2015-2016, 2016-2017), students worked on the same
business case with some few variations. More precisely, they were asked
to develop a parcels delivery system, starting from the customer’s order
placement to the final delivery of the parcel. Several features were required
to achieve the Minimum Viable Product (MVP)8. These mainly include
the order placement, the parcels routing through the sorting centers, the
management of the fleet of vehicles and parcels trolley, the delivery of parcels

7https://directory.unamur.be/teaching/courses/INFOM111/2016
8https://www.agilealliance.org/glossary/mvp/

308

https://directory.unamur.be/teaching/courses/INFOM111/2016
https://www.agilealliance.org/glossary/mvp/

13.4. Agile Customization in a Master’s Capstone Course

to the final destination (that may be outside the country) and the potential
return of parcels. In this business case, the major complexity consisted in the
development of a routing algorithm which corresponds to a rich Traveling
Salesman Problem (TSP) [Hoffman et al., 2013].

In P3 (2017-2018), students worked on a different business case. More
precisely, they were asked to develop a dynamic public bike-sharing sys-
tem [Contardo et al., 2012], starting from the citizens subscription to the
dynamic bikes booking. Several features were required to achieve the MVP.
These include the subscription, the dynamic booking of bikes, the tracking
of the bikes ride, the closure of a ride and the dynamic balancing of the
fleet of bikes. As in the other business case, the most challenging feature
consisted in the dynamic balancing of the bikes which again requires to use
a heuristic to solve the TSP [Hoffman et al., 2013].

Regarding the scope variability, students working on P1 and P2 were not
enough empowered to adapt the scope except for some few features. In
P3, they were much more free to innovate in the implementation of some
features such as the booking of bikes and the balancing algorithm.

For the three projects, the technologies used are the Java Enterprise Edition
(JEE)9, the Java API for RESTful Web Services (JAX-RS)10 and Android11.
For the development of the routing algorithm, the students were free to
choose any heuristic API or to develop their own algorithms. Most of them
chose to use JSprit, an open source Java based library for solving rich TSPs12.
The average student is not familiar to the proposed technologies.

The course requires students to work as Scrum teams, responsible for the
implementation of a set of EPICs13 and user stories.

Based on an opinion survey, project management reporting (using Jira
Atlassian14) and on observational data, we discuss the customization decisions
that have been decided during the course of the projects and summarize
our lessons learned using an AMQuICk matrix. These lessons reflect the
issues to be considered when using agile software development in a teaching
context.

9http://www.oracle.com/technetwork/java/javaee/overview/index.html
10https://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
11https://developer.android.com/
12https://github.com/graphhopper/jsprit
13Large features that can be broken down into a number of smaller user stories
14https://www.atlassian.com/software/jira/agile

309

http://www.oracle.com/technetwork/java/javaee/overview/index.html
https://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
https://developer.android.com/
https://github.com/graphhopper/jsprit
https://www.atlassian.com/software/jira/agile

13. Illustrations

13.4.2 Objectives and Data Collection

The main focus of this study is to investigate the implementation of agile
methods in a teaching context. More precisely, it intends to identify and
structure the customization decisions that emerged during the implementa-
tion of a custom Scrum method.

The applied methodology to collect the data is mainly observational. Our
intervention was limited to the facilitation of Scrum, the introduction of facil-
itation techniques to collect the customization knwoledge (see Section 12.5.2)
and the suggestion of additional practices or practice configurations when
necessary. We also assisted the team getting started with Jira and configured
the tool to their needs when required.

Data was collected from the following:

1. Survey at the closure of P1: After the last release of P1, students
were asked to answer a questionnaire15 to collect data regarding their
general perception of the course, the technologies that were used, their
appreciation of the relevance of different practices that were applied
(see Table 13.6) and the eventual practice configurations they think
would be helpful. We decided to not use the survey in the other years.
Indeed, in order to collect the groups learnings in a more systematic
way, we applied the AMQuICk capitalization workshop. Since in this
study, we only focus on reporting the customization decisions, the
survey results regarding the course agenda, the achievement of the
course objectives and the appreciation of tools and used technologies
are not reported.

2. Observation of Scrum meetings: We (the teaching assistants)
participated to all sprints planning, review meetings and to some
retrospectives. The latter were held by the student groups right
after their sprint review and generally without our intervention. We
participated to only few retrospectives with the purpose of facilitating
the customization and introducing improvement and capitalization
techniques.

3. Reporting: For the 3 projects, we collected data on project manage-
ment using Jira with the purpose of analyzing the amount of work
completed, the compliance with sprint plans, the team velocity and
ability in effort estimation, etc. Teams were frequently provided with
comments regarding their usage of Jira.

15https://goo.gl/forms/QPscpm5VVlYmJRJJ3

310

https://goo.gl/forms/QPscpm5VVlYmJRJJ3

13.4. Agile Customization in a Master’s Capstone Course

13.4.3 Implemented Method

General Settings

In order to effectively apply Scrum, a dedicated space furnished with white
boards was allocated to each group of students for the duration of the project.
Moreover, we used Jira which was deployed in an internal server under the
academic license. The choice of Jira was made because of its reporting
abilities and because of the fact that it is one of the most used tools in
professional settings. Groups were also encouraged to maintain a physical
tasks board and to use different visualization techniques in their working
place. The average student was not familiar to agile software development
and Jira. We also provided each group with a repository for code versioning
and a web application server.

Regarding the Scrum roles, in P1, two students from each group played the
roles of a Scrum Master and a proxy Product Owner respectively. Only
the role of a Scrum Master was maintained in P2 and P3. The teaching
assistants and eventually external stakeholders (colleagues) played the roles of
customer representatives, domain experts (product owners), agile facilitators
and technical consultants.

Sprint-0 and Design Sprint

During the first month, students were not fully committed to the project
since other courses are taught in parallel. Therefore, we payed attention
during this period to not implement time-consuming practices.

More precisely, we exploited the first 2 weeks to introduce the business
case and animate workshops to familiarize the students with the project’s
technologies, the agile practices and the business domain. We refer to this
initial preparation period as Sprint-0.

Regarding the application complexity (distributed and multi-plateform), the
remaining 2 weeks were exploited to conduct a Design Sprint consisting of a
high-level architecture envisioning, prototyping, preparing the skeleton of
the data access layer, etc.

Development Sprints

The rest of the project was decomposed into 4 development Sprints of 2
weeks (10 open days) (see Table 13.4). Each sprint started with a Sprint
Planning of ∼2h and ended with a Sprint Review of ∼1h and a Retrospective
of ∼1h.

311

13. Illustrations

At the start of the second sprint, and with the purpose of helping the groups
to continuously verify the quality of their code, we conducted a training
on Continuous Code Inspection (see Section 13.4.4.4). Moreover, groups
were encouraged to perform Pair programming sessions, to Continuously
Document their code and to perform Unit Testing for the critical features.
The initially produced design documents were continuously maintained
throughout the development sprints. We refer to this practice as Continuous
Documentation16. Groups were encouraged to perform Model Storming17
sessions whenever necessary.

Final Release

The final release is a special sprint where the student groups finalize the
development, deploy their web applications on the application server and
define the test case scenarios for user acceptance testing. Two review types
are performed: a functional review (more focus on technical aspects) and a
customer oriented review (more focused on soft skills).

13.4.4 Key Learnings and Recommendations

Conducting the course as an observational study made it possible to study the
behavior of student groups using Scrum for the first time. Generally speaking,
and according to our observations and to the survey conducted at the closure
of P1 (N=23), the students opinions’ regarding the implementation of Scrum
in such courses were overwhelmingly positive: 65% reported that they found
it as useful (and 13% as very useful) and 86% reported that they would
recommend agile methods for future projects. Moreover, most of the practices
were reported as being relevant to their context, even though we were able
to observe that they were not systematically applied.

The survey also allowed us to collect some information regarding the cus-
tomization needs. Mainly, it shows that the questioned groups (T1 to T4)
didn’t found relevant pair-programming, user stories estimation (relative
and time-based) and burndown charts (i.e., velocity tracking).

Even thought very few configurations were tried out by the teams during P1,
when answering the 4th question of the survey (see Table 13.6), the students
provided the rational why some practices were found irrelevant which was
helpful to formulate the final recommendations (see Section 13.4.4).
16http://agilemodeling.com/essays/documentContinuously.htm
17http://agilemodeling.com/essays/modelStorming.htm

312

http://agilemodeling.com/essays/documentContinuously.htm
http://agilemodeling.com/essays/modelStorming.htm

13.4. Agile Customization in a Master’s Capstone Course

Table 13.4.: MDL Course Schedule for P1, P2 and P3
Sprint-0 Weeks 1-3 Practical agility workshop

Technical workshop (P1, P2)
Customer representatives interview (P1, P2) or
World Café (P3)

Design Sprint Weeks 4-5 Domain walkthrough (P1, P2, P3)
Design Sprint planning
Design Sprint review (with technical consultants)

Sprint-1 Weeks 6-7 Testing workshop (in anther course) (P2, P3)
Sprint planning
Sprint review

Sprint-2 Weeks 8-9 Product quality workshop (SonarQube) (P2, P3)
Process quality workshop (retrospectives)
Sprint planning
Sprint review

Sprint-3 Weeks 10-11 Sprint Planning
Sprint Review

Sprint-4 Weeks 11-12 Sprint Planning
Test cases for user acceptance testing (P2)
Sprint Review

Final Release Weeks 12-14 Deployment (P1, P2)
Functional Review
Final Customer Review (P1, P2)

The observation of retrospectives and the examination of the identified im-
provement actions also revealed valuable information regarding the practices
suitability and the needs for customization even though some improvement
actions were vague (especially in P1). This tends to prove the need for a
better support of such a practice.

The examination of Jira, namely the product backlog, sprints task boards,
sprints reports, velocity charts and burndown charts also allowed us to assess
the groups ability to define well-formed user stories, to estimate them and
to track their own progress.

Finally, the results of the capitalization workshops conducted at the closure
of P2 and P3, allowed us to encode some customization decisions and to
identify a set of potentially interesting configurations.

313

13.
Illustrations

Table 13.5.: MDL customization matrix
Context Indicators

Domain
Exper-
tise

Process
Exper-
tise

Technical
Exper-
tise

Sense
of Ac-
count-
ability

Time
Pres-
sure

Scope
Vari-
ability

Distri-
bution

Project
Dedi-
cation

Scope
Com-
plexity

Power
Dis-
tance

Low Low Low Low High High High Halftime High High

A
gi
le

p
ra
ct
ic
es

Req. Brainstorming[C34] + ? ? ? ? ? ? ? + ?

Backlog Grooming[C35] C ? ? ? ? + ? ? ? ?

Proxy PO (Student)[C36] ? ? ? − ? ? ? ? ? ?

Relative Estimation[C37] ? C ? ? ? ? ? ? ? ?

Time Estimation (Tasks)[C38] ? + ? C ? ? ? ? ? ?

Taskboard[C39] ? C ? ? C ? ? ? ? ?

Sprint Planning[C40] ? ? C ? ? ? ? ? C ?

Architecture Envisioning[C41] ? ? C ? ? ? ? ? + ?

Domain Walkthrough[C42] + ? ? ? ? ? ? ? ? ?

Iterative Modeling[C43] ? ? ? ? C ? ? ? ? ?

Test First Design[C44] ? ? C ? C ? ? ? ? ?

Code Inspection[C45] ? ? ? ? C ? ? ? ? ?

Pair Programming[C46] ? ? ? ? C ? ? ? + ?

Story Mapping[C47] ? ? ? ? ? + ? ? + ?

Daily Meeting[C48] ? ? ? ? ? ? C C ? ?

Retrospective[C49] ? ? ? ? C ? ? ? ? C

314

13.4. Agile Customization in a Master’s Capstone Course

The remaining of this section provides an overview of data collected and
analyzes the major customization decisions that were made by the different
teams during the 3 projects.

13.4.4.1 Requirements Gathering

There exists several practices that product owners usually use to gather
the requirements and to help share a common understanding of the project
with the development teams. One of the objectives of this course was to get
students more involved in the process of requirements gathering and thus
more familiar with Backlog Grooming (the main responsibility of product
owner consisting of writing user stories and continuously refining them).

The definition of EPICs and User Stories appeared to be particularly chal-
lenging. Indeed, when examining the product backlogs defined by the student
groups in Jira, it usually appears that user stories are so coarse grained or
vague that they wouldn’t allow a complete comprehension of the feature or
that they they cannot be implemented in just one sprint.

Moreover, we often observed that the groups discover the real complexity of
user stories during the development sprint which reveals that the planning
was not sufficiently granular.

To address these issues, we used the following facilitation techniques:

• User Stories Exercises: During the agility workshop, we insisted
on the concept of the Definition of Ready which specifies that a ready
user story (a user story that is ready to be pulled to the sprint) is
necessarily clear, feasible, estimated and testable. We also proposed
a set of practical exercises for writing user stories. Moreover, we
proposed to the teams to first identify EPICs, i.e., capture coarse-
grained features without committing to the details. Then break epics
into more detailed user stories.

• User Stories Gathering Meetings: At the start of the Sprint-0
and in order to help the groups understand the requirements and
instantiate the Product Backlog, we implemented some facilitation
techniques for requirements gathering.

In P1 and P2, we organized Customer Interview sessions. Student
groups interviewed the customer representatives twice during a 1h
meeting (one per group) to discuss the unclear and yet ambiguous
parts of the project.

315

13. Illustrations

In P3, we conducted a Requirements Brainstorming session using
the World Café technique (a structured brainstorming process for
knowledge sharing in which groups of people discuss a topic at several
tables and switch periodically except of one table host)18. The practice
was found as helpful regarding to the requirements flexibility (or
volatility).

The face to face communication with the customer representatives was
found useful to get the students better understand the requirements.
However, students were sometimes expecting customers to be more
prescriptive. The fact that they do not systematically make decisions
about the way features should be developed was perceived negatively.

• Student as Proxy Product Owner (PO): In order to assist the
team writing user stories, we experienced in P1 to attribute the role of
a Proxy PO to one student. The proxy PO had the responsibility to
contact the customer representative and the product owners (assistant
teachers) to ask for more precisions whenever needed, to help the
team make sound decisions on the business process and to maintain
the backlog on Jira. As shown in Table 13.6 and in the answers of
students to open-ended questions from the same survey, the practice
was found to not have a real added value. This may be explained by
the avoidance of individual accountability. Such a role represents more
responsibilities. The student groups in P1 report that they would
better prefer to share this accountability.

• Story Mapping: As earlier mentioned, in P3, we allowed more
flexibility on the scope and the prioritization of the features. To help
the team instantiate and organize their product backlog in such a
context, we decided to implement the story mapping practice which
consists of a collaborative top-down approach of requirement gathering.
The practice aims at ordering user stories along two independent
dimensions. The generated “map” arranges stories along the horizontal
axis in rough order of business value and along the vertical axis, in
order of development priority or sophistication. The practice was
particularly found helpful and all the 4 teams of P3 continued using it
for their backlog grooming. When asked about its relevance during
the capitalization workshop, they reported that the practice helped
them to decide about the scope refinement since they could focus on
more valuable user stories.

Regarding the aforementioned, the following recommendations can be for-
mulated:
18http://www.theworldcafe.com/

316

http://www.theworldcafe.com/

13.4. Agile Customization in a Master’s Capstone Course

[C34] Backlog Grooming (involving the team), if carefully implement-
ed/customized, is helpful to satisfy detailed and valuable re-
quirements definition in the context of low Domain Expertise

[C35] Requirements Brainstorming is helpful to satisfy detailed and valu-
able requirements definition in the context of low Domain Ex-
pertise

Requirements Brainstorming is helpful to satisfy detailed and
valuable requirements definition in the context of high Require-
ments Volatility

[C36] Student as Proxy PO is harmful (counterproductive) to satisfy
detailed and valuable requirements definition in the context of
low Sense of Individual Accountability

[C37] Story Mapping is helpful to satisfy detailed and valuable require-
ments definition in the context of high Scope Variability

13.4.4.2 User Stories Estimation

Despite our focus on the estimation of user stories during the agility workshop,
this practice was found to be particularly challenging. More precisely, we
have been able to observe the following issues:

• No estimation: the examination of the sprints planning in Jira show
that some groups simply skipped user stories estimation in the first
sprint (we purposely didn’t remind them to estimate their stories) (see
Table 13.7 and Figure 13.1).

• Estimation changes: another common issue that we have been able
to observe is the change of the initial user story estimation during
the sprint. A typical situation is that the sprint is launched without
encoding the initial estimation (which would be done after, typically
in the first day of the sprint).

• No consensus-based estimation: we also have been able to observe
that the estimation of user stories was sometimes exclusively done
by the Scrum Master without involving the team members, i.e., the
estimation was not consensus-based as it is recommended by agile
methods (no use of Planning Poker or an alike technique). The issue
was particularly discussed during the capitalization workshop of project
P2.

317

13. Illustrations

Table 13.6.: Practices Appreciation (2015-2016), N= 23
1. Rate your overall experience with agile methods

Poor 4.34%
Fair 17.39%
Good 65%
Excellent 13%

2. Would you recommend to apply agile methods in similar projects?
Yes 86.95%
No 13.04%

3. Rate the relevance of the following practices (to your context)
Not at all Helpful, not Helpful, Neutral, Helpful, Very Helpful

Helpful Neutral Not Helpful

2 weeks sprint 91.30% 4.34% 4.34%
Team Room 86.95% 4.34 8.70%
Standup Meetings 82.60% 8.70% 8.70%
Pair Programming 34.78% 39.13% 26.08%
Agile Modeling 73.91% 4.34% 21.73%
Sprint Review 86.95% 4.34% 8.70%
Sprint Retrospective 65.21% 13.04% 21.73%
User Stories 82.60% 4.34% 13.04%
Planning Poker 30.43% 43.47% 26.08%
Relative Estimation 39.13% 4.34% 56.52%
Time Estimation 60.86% 4.34% 34.78%
Student as Proxy Product Owner 43.47% 8.70% 47.82%
Student as Scrum Master 56.52% 8.70% 34.78%
Physical Task Board 52.17% 26.08% 21.73%
Virtual Task Board 73.91% 4.34% 21.73%
Burndown Chart 43.47% 8.70% 47.82%
Unit Testing 86.95% 4.34% 8.70%
Acceptance Testing 82.60% 13.04% 4.34%
Continuous Code Inspection 82.60% 8.70% 8.70%
Continuous Documentation 43.47% 8.70% 47.82%

4. How the previously cited practices were eventually improved?
...

5. Rate the relevance of the following facilitation workshops
Not at all Relevant, not Relevant, Neutral, Relevant, Very Relevant

Customer interviewing 73.91% 13.04% 13.04%
Domain walkthrough 73.91% 21.73% 4.34%
Agility workshop 56.52% 21.73% 21.73%
Agile testing workshop 73.91% 21.73% 4.34%
Retrospectives workshop 65.21% 13.04% 21.73%

318

13.4. Agile Customization in a Master’s Capstone Course

During the retrospectives workshop (Sprint 2) (see Table 13.4), we particu-
larly discussed these issues and reminded the importance of estimation. We
also configured Jira so that the groups that want it can use time to estimate
the subtasks of user stories.

The survey shows that students found time estimation even more helpful
than user stories. Some students reported in the Capitalization workshop
that they found it easier to discuss in terms of time. The time tracking
encouraged them to use Jira more frequently. However, regarding their
avoidance of individual accountability, some groups discarded the use of time
estimation and preferred to track velocity based on the number of completed
tasks (issues in Jira).

Table 13.7.: Reported Story Points via Jira (committed vs. completed per
sprint)

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Relative
Error
(%)

T1 0 6 42.5 37.5 33 0 21 36 50%
T2 No estimation 0 6 38 38 12 21 55.55%
T3 No estimation 47 6 89 8 97 124 57.30%
T4 17 17 0 71 71 51 40 31 50.25%

T5 21 21 78 66 102 70 68 28 31.22%
T6 25 25 81 81 107 53 75 50 27.43%
T7 20 20 35 31 62 57 21 21 3.62%
T8 20 20 6.5 12.5 66.5 66.5 45 43 5.55%
T9 84 76 82 44 119 74 74 35 36.21%

T10 62 25 51 19 190 37 161 111 43.75%
T11 0 21 153 62 309.5 219.5 281 282 26.51%
T12 No estimation 32 5.5 51 7 157 120 44.79%
T13 0 12 52 39 83 44 101 58 43.1%

Regarding the aforementioned, the following recommendations can be for-
mulated:

[C38] Relative Estimation if not carefully implemented/customized,
is harmful to satisfy an efficient velocity tracking in the context
of low Process Expertise

[C39] Time Estimation is helpful to satisfy an efficient velocity track-
ing in the context of low Process Expertise

319

13. Illustrations

Time Estimation is harmful to satisfy an efficient velocity track-
ing in the context of low Sense of Individual Accountability

Figure 13.1.: Burndown chart example - Scope change during the sprint
(T11)

Figure 13.2.: Burndown chart example - Time tracking of tasks (T9)

320

13.4. Agile Customization in a Master’s Capstone Course

13.4.4.3 Velocity Tracking (Continuous Update of Task Boards)

The main idea behind velocity tracking is to provide a lightweight method
to measure the pace at which teams consistently deliver business value for
future planning purposes. Velocity is measured based on the point estimates
of the completed user stories and/or the time estimates of the user story
tasks. Since teams encountered several estimation issues, the tracking of
velocity was not always effective.

Precisely, we observed two main issues regarding velocity tracking: no
frequent update of task boards and the addition or removal of tasks during
the sprint (see Figures 13.1 and 13.3). For example, Figure 13.3 shows an
example of a sprint closed later than expected and without an update of the
user stories status.

Figure 13.3.: Burndown chart example - Scope change during the sprint (T8)

These issues suggest that more attention needs to be payed to raise the
students awareness of the importance of the frequent update of task boards.
When asked about the reasons for the misuse of practice, students pointed
out the time pressure. Indeed, during the last sprints they are usually so
focused on the functional completeness that they considered the update of
Jira task boards as a waste of time.

Regarding the decomposition of user stories into tasks during the sprint,
they reported that it is difficult to anticipate and plan all the tasks during
the Sprint Planning because of the complexity of some features and/or the

321

13. Illustrations

difficulty to estimate the development effort from the technical point of
view.

Regarding the aforementioned, the following recommendations can be for-
mulated:

[C40] Continuous Update of Taskboard if not carefully implemented/-
customized, is harmful to satisfy an efficient velocity tracking
in the context of low Process Expertise

Continuous Update of Taskboard if not carefully implemented/-
customized, is harmful to satisfy an efficient velocity tracking
in the context of high Time Pressure

[C41] Sprint Planning if not carefully implemented/customized, is
harmful to satisfy an efficient velocity tracking in the context
of high Requirements Complexity

Sprint Planning if not carefully implemented/customized, is
harmful to satisfy an efficient velocity tracking in the context
of low Technical Expertise

13.4.4.4 Agile Design

As discussed in Section 2.2.2, agile design is emergent. There is a range
of agile design practices from the high-level architectural practices to the
low-level development practices that intend to help teams iteratively improve
their design. In the context of our capstone course, we introduced a set of
practices from the Agile Modeling method (see Section 2.2.3.4).

Precisely, Architectural Envisioning19 is a practice that consists of undertak-
ing a high-level architectural modeling at the very beginning of a project and
then performing further detailed modeling during the development sprints.
The practice was applied to our context during the Design Sprint. Regarding
the projects complexity, the practice helped the student teams identify and
think about the critical architecture-level issues (system distribution, multi-
platform communication (android and java web), database replications, data
access layer, etc.) and therefore reduce several technical risks early in the
life-cycle.

During the design sprint, the student groups were also asked to work on
some high-level design models to get a better understanding of the entire
application domain (not just the features that are captured in the final
solution). With this purpose, we conducted a Domain Walkthrough session
19http://agilemodeling.com/essays/agileDesign.htm

322

http://agilemodeling.com/essays/agileDesign.htm

13.4. Agile Customization in a Master’s Capstone Course

where we further discussed the details of the business domain and assisted
the groups brainstorm on the creation of a Domain Model. At the end of
the design sprint, we reviewed the produced artifacts and provided feedback
on the architectural choices. The students reported that the practice was
helpful and that having more alike sessions would be even more helpful (see
Table 13.6).

Other agile design practices were helpful but more challenging. These consist
of Iteration Modeling, Continuous Documentation20, Test First Design and
Continuous Code Inspection.

Iterative Modeling19 consists of performing lightweight modeling sessions for
a few minutes at the beginning of each sprint to help the team identify its
design strategy for the sprint. The practice is complementary with Model
Storming. The student groups reported that such sessions where helpful
regarding to the complexity of features but that they we not systematically
performed at the start of the sprint. They would rather not plan the design
needs for the sprint a nd brainstorm when a specific design model needs to
be refined. Students, especially in P1 and P2, also reported to lack of time
to Iteratively Document their design changes. This explained by the fact
that the scope of the two projects was larger and more complex then in P3.
We therefore scheduled an additional week to allow students to finish their
documentation.

Test First Design19 which consists of writing a single test before writing
enough production code to fulfill that test was almost not applied. The
main reason for this is that the practice is very time consuming and that
the students lack of sufficient expertise in unit testing.

Continuous Code Inspection or Refactoring consists of making small changes
to the developed solution without changing the code semantics and thus,
whenever needed. To help students continuously refactor their code, we
conducted a training on SonarQube21 and SonarLint22, a tool and its IDE
extension for the statical and dynamic inspection of the code quality. The
groups were encouraged to use the tool to continuously inspect the quality
of their code. Students overwhelmingly agreed on the relevance of the
practice, however, regarding the lack of time few of them frequently used
the SonarQube server to analyze the whole code. They preferred to user the
lightweight SonarLint for IDEs which helps to get instantaneous feedback as
the code is typed but do not provide means to analyze the whole project to
find bugs.
20http://agilemodeling.com/essays/documentContinuously.htm
21https://www.sonarqube.org/
22https://www.sonarlint.org/

323

http://agilemodeling.com/essays/documentContinuously.htm
https://www.sonarqube.org/
https://www.sonarlint.org/

13. Illustrations

Regarding the aforementioned, the following recommendations can be for-
mulated:

[C42] Architecture Envisioning is helpful to satisfy reduced technical
risk in the context of high requirements complexity

[C43] Domain Walkthrough is helpful to satisfy requirements under-
standability in the context of low domain expertise

[C44] Iterative Modeling if carefully implemented/customized, is help-
ful to satisfy continuous design improvement in the context of
high time pressure

Iterative Modeling is helpful to satisfy continuous design im-
provement in the context of high requirements complexity

[C45] Test Driven Design if carefully implemented/customized, is
helpful to satisfy continuous design improvement in the con-
text of high time pressure

[C46] Continuous Code Inspection if carefully implemented/customized,
is helpful to satisfy continuous code improvement in the context
of high time pressure

13.4.4.5 Pair Programming

Pair programming is another practice intended to continuously improve
the quality of the produced code, i.e., to continuously reduce the technical
debt. Very few groups have experienced pair programming or pair design
because it was found very time consuming. Regarding to our observation,
the practice was seemingly helpful when implemented for the development
of complex features such as the routing algorithm and the data access web
service. Particularly, we observed that when students worked in pairs on
the routing algorithm, they were able to produce high quality solutions (the
observation is worth to be validated through a controlled experiment).

Student groups reported different configurations to pair programming among
which: (a) pair programming/testing (a variation of pair programming where
a student writes a test and the others write code to make it pass) and (b)
pair programming with one pivot role (designate each sprint a pivotal role
that can be solicited for pairing when necessary).

Regarding the aforementioned, the following recommendations can be for-
mulated:

324

13.4. Agile Customization in a Master’s Capstone Course

[C47] Pair programming if carefully implemented/customized, is help-
ful to satisfy code quality in the context of high time pressure

Pair programming is helpful to satisfy code quality in the context
of high requirements complexity

13.4.4.6 Daily Meeting

The implementation of daily meetings was found helpful but needed to be
configured regarding because of distribution and because of the fact that
students were not fully dedicated to the project (i.e., they had other courses
in parallel). Maintaining the same schedule and daily to preform the meeting
was simply not feasible.

Students configured the practice in different ways: daily feedback on slack23
(a professional messaging system), variable schedules for daily meetings (a
planning done at the start of the sprint), a daily meeting on Skype, etc.

Regarding the aforementioned, the following recommendations can be for-
mulated:

[C48] Daily Meeting if carefully implemented/customized, is help-
ful to satisfy a better team collaboration in the context of high
distribution

Daily Meeting if carefully implemented/customized, is helpful
to satisfy a better team collaboration in the context of no full
dedication to the project

13.4.4.7 Retrospectives

In P1, a set of retrospective techniques were presented to the groups at the
start of Sprint 2. We asked each group to choose some specific techniques to
experiment. A list of improvement actions was maintained by each group (on
their physical board and documented at the end of the sprint). An average
of 1,6 completed improvement actions per sprint were reported.

In P2 and P3, the students only used the AMQuICk improvement and
capitalization boards presented in Section 12.5.2. Once the improvement
actions elicited, they were encoded in Jira as a “Work Improvement”. A
specific extension to Jira (see Figure 13.4) was developed to enable teams
encode their practice-based improvements. An average of 3,6 improvement
actions per sprint were reported as completed by the groups of P2 and P3.
23https://slack.com/

325

https://slack.com/

13. Illustrations

These were later used as an input for the capitalization workshop. Some
examples of concrete improvement actions are the following:

• Practice: Versioning
Improvement Goal: Maintainability
Improvement Action: Convention naming for commit messages
Priority: Medium
Reporter: T6 (Project 2)

• Practice: Functional Testing
Improvement Goal: Reliability
Improvement Action: Pair functional testing of developed features
Reporter: T5 (Project 2)

• Practice: Functional Testing
Improvement Goal: Reliability
Improvement Action: Maintain a list of bugs and technical impedi-
ments
Reporter: T12 (Project 3)

• Practice: Code Integration
Improvement Goal: Correctness
Improvement Action: Stop coding in the last 2 days of Sprint in
order to have enough time to integrate, design test scenarios and test.
Reporter: T7 (Project 2)

We have been able to observe several issues regarding retrospectives. First,
in some cases retrospectives were not really effective since no concrete actions
were decided at the end of the meeting. It also happened that a retrospective
is skipped because of the time pressure, the non availability of team members
(distribution, or other courses in parallel) or demotivation at the end of
sprints.

Another common issue consists of the fact that improvement actions are
formulated in such a way that they cannot be implemented in one sprint
or cannot be verifiable. Example of vague improvement actions that were
formulated are the following: improve functional testing or provide
scrum master with more feedback.

Finally, our participation as observers was also reported as harmful since it
impacts the team’s openness and ability to discuss the issues freely.

Regarding the aforementioned, the following recommendations can be for-
mulated:

326

13.5. Summary

Figure 13.4.: Jira Extension to encode identified practice improvements

[C49] Retrospective if carefully implemented/customized, is helpful
to satisfy continuous process improvement in the context of high
time pressure

Retrospective if carefully implemented/customized, is help-
ful to satisfy continuous process improvement in the context
of power distance (between teachers and students)

13.5 Summary

In this chapter, we did managed to provide different illustrations, with dif-
ferent contexts and different representations of the customization knwoledge.
The results tend to give confidence in the feasibility and pertinence of the
AMQuICk approach. However, we cannot ignore the threats to validity that
surround this evaluation work.

First, as mentioned in Chapter 12, the validation of the AMQuICk matrices is
intrinsically complex, and would ideally require the customization knwoledge
to be confronted to other experience reports from different practitioners.
Indeed, the study of similar contexts overtime with different and multiple

327

13. Illustrations

participants could in all likelihood reveal different behavior and other repre-
sentations of the customization knowledge. Moreover, we only collaborated
with few end-users (SPW and MDL case studies) and we played the role
of the facilitator that encode the generated knwoledge, which inevitably
reduced the potential divergent uses of the matrices. Finally, the feedback
of practitioners when implementing the approach in real-life projects is still
lacking. To this regards, in the next chapter, we will focus on collecting
feedback from practitioners regarding the relevance of the approach and
discuss its possible improvements.

328

Part VI.

Closing Comments

In this part of the dissertation, we discuss the AMQuICk approach and
envision possible future works. In particular, Chapter 14 summarizes the
specificities and merits of the approach and discusses its limitations and
improvements that could be considered. Chapter 15 finally concludes this
dissertation.

329

Chapter 14

Discussion

Contribution, Practitioners’ Feedback and Perspectives

In the previous parts of the thesis, we iteratively constructed a theoretical
framework for guiding agile methods customization. This chapter summarizes
the research outcomes and discusses the framework limitations and future
research perspectives.

First of all, Section 14.1 reviews the main contributions and specificities
of the AMQuICk framework. Secondly, Section 14.2 gives insights on how
this framework could be perceived by the industry. Then, Section 14.3 dis-
cusses the current limitations and improvement points. Finally, Section 14.4
provides an overview of the research perspectives and future works.

14.1 Contribution

During the course of this research work, we developed a theoretical framework
to agile methods customization called AMQuICk in an attempt to provide a
better support for practitioners going through agile methods deployment in
challenging or non-sweet spot contexts.

First of all, based on a review of the research context and gaps (see Chapters 2
and 3), we iteratively identified the following core perspectives to explore
for the construction of our framework:

1. Situational Method Engineering (SME) perspective (see Part III):
SME is a disciplined approach for building situational methods by
selecting, tailoring and integrating a set of method components. The
latter are designed using a meta-method modeling process and are
stored in a repository of reusable components. In this perspective, our
objective was to investigate the opportunity to use a SME approach
to customize agile methods without impeding the agility values.

331

14. Discussion

2. Context Study perspective (see Part IV): A thorough understand-
ing and characterization of the context is needed for enabling the
elicitation of accurate, precise and reusable customization knowledge.
In this perspective, our objective was to study in practice the im-
plementation of agile methods in different non-sweet spot contexts
with the purpose of supporting our customization approach with an
extensible and accurate representation of development contexts.

3. Customization and capitalization perspective (see Part V): The
experience of practitioners, if conveniently structured and interpreted,
provides a valuable customization knowledge that can be reused to
formulate recommendations intended to guide other practitioners. This
is what we refer to as experience-based learning. In this perspective, our
objective was to find out a practical way to structure the customization
knowledge and to interpret it.

The exploration of these perspectives, following the design science research
framework and relying on a set of founding principles (inherited from the
field of software process improvement and from agile best practices), allowed
us to successfully design this approach to agile methods customization in a
practical framework.

This Agile Methods Quality Integrated Customization framework (AMQuICk)
defines an iterative incremental and multi-level cycle adapted from the Qual-
ity Improvement Paradigm (QIP) [Basili and Caldiera, 1995] where the team
process learning is structured into a reusable organizational knowledge. Its
core activities consist of: (1) the context assessment, (2) the recommendation
of suitable practices, (3) the continuous improvement of the implemented
method, (4) the capitalization of the project-team learnings and the genera-
tion and reuse of the customization knowledge. These activities, associated
with a set of designed components, have the potential to provide agile orga-
nizations and teams with the necessary support for guiding context-aware
implementation of agile methods.

The framework allows the description of agile methods through a dedicated
method engineering metamodel called AMQuICk Essence. The metamodel
helps to support the agile facilitators structure and organize their knowledge
regarding agile practices. It also provides means for capturing the context
and for characterizing the customization knowledge in a fine-grained way so
it can be easily reused by other practitioners.

AMQuICk relies extensively on the involvement of the development team in
the process of agile methods customization and therefore the metamodel
is supplemented with a set of tools that improve its usability. Precisely,

332

14.2. Practitioners’ Feedback

it involves a Repository of agile practices that can be browsed or used to
document the newly introduced practices. Additionally, it provides a Practice
Cards Modeler to design informative user-friendly practice cards that the
teams visualize in their working space to ensure that all stakeholders share
the same vision on the process and its evolution throughout the project.

Regarding the usability of the customization knwoledge collection, reuse and
capitalization, AMQuICk is enhanced with decisional matrices and with some
facilitation techniques. AMQuICk customization matrices aim to capture
the team expertise more easily and in a more compact and systematic way
while the facilitation techniques aim to assist practitioners to capture and
capture their expertise during the enactment of their method and in the
final project retrospective.

The proposal of this framework and its constituent components allows a
continuous back-and-forth exchange of learnings between the organizational
level and the project-teams level. The approach has the potential to be
applied at a broader scale if the learnings are exchanged at a community
level, i.e., at an inter-organizational level.

Since the framework was iteratively grounded, its usability has been contin-
uously discussed through a set of examples, illustrations and case studies.
However, its overall effectiveness and relevance to agile practitioners still
needs to be validated through an implementation in the industry. This
validation would require the active participation of several practitioners and
an extensive timeframe for observing, collecting, analyzing and comparing
the assessment data from different industrial settings. Therefore, as we come
to the end of this research, we rather propose in the next section to explore
insights from experienced agile practitioners on how this framework could
be perceived by the industry.

14.2 Practitioners’ Feedback

A common approach for validating the relevance of new research frameworks
to industry is to conduct a longitudinal study, a research method consisting
of gathering data from the same subjects repeatedly over a period of time.
In this kind of studies, one or more organizations use the newly designed
framework and researchers collect data following a specific protocol to
evaluate the relevance of the framework with regards to different quality
criteria. Regarding the aforementioned, a longitudinal study would be a
suitable approach to evaluate the relevance of the AMQuICk Framework to
practitioners [Yin, 1994; Vitalari, 1985].

333

14. Discussion

However, the main challenges of this kind of evaluative studies is that they
call for consequent amount of time and require practitioners to buy into
the use of the proposed framework before any empirical evidence can be
gathered. The latter requirement is particularly challenging. Indeed, even
though several agile facilitators are highly interested in the question of agile
methods contextualization, they usually are reluctant to use a new framework
with no evidence of its validity.

A good alternative to longitudinal case studies is to gather feedback from
agile experts as a preliminary assessment of the relevance of the framework
to industry. This feedback may be qualitative or quantitative and should
highlight the expected benefits as well as the potential problems to the
framework implementation. This kind of straightforward evaluation would
increase the credibility of the framework and prepare for further empirical
validation. Moreover, it would increase the likelihood to get practitioners
experience the framework in the future.

The next section describes the procedure used to collect feedback from agile
experts.

14.2.1 Feedback Collection

Our initial idea was to collect data using a survey that would be sent to
the agile practitioners of different expertise levels through agile community
groups1,2. However, since the potential practitioners are not informed about
the framework, it would have been necessary to supplement the survey
with material on the framework life-cycle, metamodel, context modeling
and assessment and customization knwoledge capitalization in AMQuICk
matrices. The problem with this approach is that practitioners with their
tight schedules, will presumably not take the time to read such material and
fill out a survey.

Another possibility was to collect feedback from available practitioners face-
to-face which is more in adequacy with the collaborative nature of agility. In
the context of our previous case study on culture-based customization (see
Chapter 11), we were able to have the commitment of 6 agile experts which
we visited for a 1h30 semi-structured interview session. These meetings
appeared to be a good opportunity to present the framework face-to-face to
experienced practitioners familiar with the agile adoption and improvement
issues. Since then, we interviewed two more practitioners and therefore

1https://www.linkedin.com/groups/49087
2https://www.meetup.com/fr-FR/Agile-Belgium/

334

https://www.linkedin.com/groups/49087
https://www.meetup.com/fr-FR/Agile-Belgium/

14.2. Practitioners’ Feedback

Table 14.1.: Interview Steps and Questions
Discuss the way agile practices are currently customized

1.a. How your agile practices are currently customized?

1.b. What outstanding customizations have been proposed so far and who initiated them?

Present and discuss the framework

2. Would you suggest any improvements or adjustments to the approach?

3. Rate the following liker-scale questions

Comprehensiveness 3.a. To what extent do you agree that the overall objec-
tive of the approach is comprehensive?

Relevance 3.b. To what extent do you agree that the approach is
appropriate/relevant to agile practitioners?

Practicality 3.c. To what extent do you agree that the approach is
practical and is applicable in industry?

Necessity 3.d. To what extent do you think that the capitalization
of the customization knowledge is necessary to agile
teams?

4. Do you have any additional comments?

a total of 8 participants provided us with their feedback regarding the
AMQuICk framework.

In order to assure a response at the time of our visit, the interview questions
had to be short and concise, especially that we also interviewed them about
their context, the practices they implemented so far and their cultural issues
(see Chapter 11 and Appendix A).

First, we asked them about their current agile practices improvement and
customization process. Second, we gave a presentation on the AMQuICk
framework (AMQuICk Essence, repository, context modeling, customiza-
tion matrices and capitalization tools) and, based on their specific context,
provide them with examples on how the framework might be used. Then,
based on a 5-point Likert scale, from 1 “Strongly disagree” to 5 “Strongly
agree”, we asked them to rank the framework according to the following
criteria: comprehensiveness, practicality, necessity and relevance. During
the presentation of AMQuICk and when ranking the approach, participants
expressed their concerns through informal discussions. Finally, there were
2 open-ended questions about the possible changes and enhancement of

335

14. Discussion

the framework. The answer to these questions coupled with the informal
discussion, helped to elicit a better feedback from participants about the
possible improvements and considerations for future work. Table 14.1 shows
the questions that were asked.

The 8 participants are all from different companies, working on different
contexts and have different agile expertise (see Table 14.2). They all are
either managers or agile facilitators. If a larger number of practitioners was
available, it would have been interesting to differentiate the feedback analysis
based on their expertise level but with only 8 participants this would have
been meaningless.

The next section presents an analysis of the feedback gathered from the
participants.

Table 14.2.: Interviewees profiles
ID Role Agile Expertise Method Domain

P1 Dev. Manager Expert Kanban / Lean B2B
P2 Product Owner/Coach Intermediate Scrum/Kanban Real Estate
P3 Product Owner Expert Scrum/Kanban Oil&Gas, E-Gov
P4 Dev. Manager Expert Custom E-Gov
P5 Scrum Master (SM) Novice Scrum/Kanban E-Gaming
P6 SM/QA Manager Expert Scrum/AUP B2B, Banking
P7 Portfolio Manager Novice Custom Scrum E-Gov
P8 Analyst/SM Intermediate Scrum Web/Mobile Dev.

14.2.2 Feedback Discussion

Due to the nature of the feedback and to convenient sampling from the agile
community, the number of participants was relatively small and thus, no
complex statistical analysis was possible. Therefore, we mainly discussed
the feedback of practitioners qualitatively. Only few quantitative discus-
sion is made based on simple statistical descriptions and comparison of
percentages.

The main feedback and improvement suggestions (which are identified from
F1 to F13) are classified according to the framework components and sum-
marized in Table 14.3. These are identified detailed in the following para-
graphs.

336

14.2. Practitioners’ Feedback

Figure 14.1.: Feedback of Agile Experts (8 participants)

Comprehensiveness

As shown in Figure 14.1, almost all participants except one (who ranked
comprehensiveness as neutral) reported to understand the approach, with
50% strongly agreeing and 38% agreeing to its comprehensiveness. The
overall mean is 4,25 (between slightly and highly agree).

In the informal discussions, practitioners mainly pointed out that some
of the chosen terminologies were found to be difficult to understand or
inappropriate (F6). In particular, one practitioner (P6) suggested to use
more familiar terms to industry. He would suggest to borrow some terms
from the CMMI: Process Asset Library rather than Repository of practices
and Process Asset or Pattern rather than Agile Component or Building
Block. Another participant (P5) also commented that it would be more
appropriate to use the term Suggestion rather than Recommendation to be
less prescriptive and formal.

Moreover, two practitioners (P6 and P8) reported that the customization
knowledge need to be systematically supported with more detailed guidelines
to ensure the comprehensiveness of the recommendations (F12). This com-
ment confirms what we discussed in Section 12.3.2 regarding the possibility
to supplement the AMQuICk recommendations with further information to

337

14. Discussion

improve their usability. This is by all means a possible use of the Recom-
mendation construct type of the metamodel. However, further investigation
is needed to decide on whether or not we should constrain practitioners
that report their customization knowledge to document detailed guidelines.
Especially since another practitioner (P5) reported in contrast that recom-
mendations should not be very specific.

Practicality

While none of the participants highly disagreed about the practicality of the
framework, the strong consensus reported for comprehensiveness decreased,
with 25% of the participants strongly agreeing, 28% slightly agreeing, 25%
remaining neutral and 13% slightly disagreeing. The overall mean is 3,62 (a
little below agree).

In the informal discussions and when answering the open ended questions,
practitioners mainly pointed out that simplicity should be kept when the
approach is introduced (F1). Specifically, they reported that process model-
ing is a complex feature that must be kept as simple as possible to ensure
its comprehensiveness by the team and to avoid too much discipline. This
is a valid and important concern which we have discussed in Chapter 6
and which we actually addressed by the fact that AMQuICk Essence isn’t
intended to be directly used by the development teams. Indeed, the latter
will rather use the repository of practices and the practice cards.

The overall feedback regarding the AMQuICk matrices was positive. Their
utility could have been confirmed using examples from the practitioners’ own
contexts. For instance, we discussed with P1 the reasons why they switched
from Scrum to Kanban/Lean and were able to formulate the following
recommendation:

Continuous Software Development (no iteration) is helpful (+)
to satisfy short time schedules
in the context of maintenance-like projects (small and fluid tasks)
and high scope variability

Nonetheless, we were able to discuss two main concerns regarding the
practicality of the customization knowledge capitalization.

Firstly, one concern that we were aware of and that we discussed with P7,
consists in the need to provide AMQuICk users with a default taxonomy
of context factors. Indeed, as we discussed in Chapter 12, with no default
characterization of context factors, each facilitator would have to instantiate
a custom context model which would prevent inter-organizational learning.

338

14.2. Practitioners’ Feedback

It seems also reasonable to assume that a default configuration of the quality
attributes would enhance the framework practicality.

Secondly, P4 and P6 reported that the ranking of recommendations is an
important improvement to consider (F13). Indeed, only the statistical learn-
ing may not be sufficient to confirm the well-formedness of a customization
decision and recommend it. More precisely, some customization decisions
may be very relevant but may face more resistance. We partially address
this concern using the Recommendation Status construct type but the ques-
tion may be further investigated, may be by defining a recommendation’s
confidence level.

Necessity

When it comes to discuss the necessity of the approach, we first had to ask
about the current way agile methods are customized in the participants’ orga-
nizations with the purpose of determining whether they would be interested
in a more systematic experience-based customization approach.

Almost all the participants reported that, in their contexts, the major
customization decisions are made by managers at an organizational level
and that only minor adaptations are decided at the team level. They also
report that retrospectives are not always effective since process adjustment or
improvement is considered to be “a matter of the management” (P5) (which,
as discussed in Section 2.2.2, fundamentally contradicts the agility values).
This tends to demonstrate the necessity to consider another way to support
agile methods improvement and customization other than retrospectives so
that the team-level improvements are more valued.

Returning back to Figure 14.1, almost all participants (except P5) agreed
with the necessity of having an approach such as AMQuICk to better support
the customization decisions at the team level and to capitalize on the teams’
experience. 25% strongly agreed and 63% slightly agreed and 13% (one
participant) disagreed, with a mean of 3,37 (little above agree).

The discussion of necessity with practitioners showed that they expect the
approach to be beneficial for early agile adopters (P3, P7 and P8) (F2). The
more experienced agile practitioners may not require to use the approach as
a customization guidance but rather as a reference to learn about new agile
practices or to document their own practices and practice configurations.

339

14. Discussion

Table 14.3.: Improvements and Suggestions for the AMQuICk framework

Id Feedback: Improvements and
Suggestions

Reporter(s)

General F1 Keep the framework as simple and
open as possible

1, 2, 5

Make sure it is not complex for teams
to use

F2 Target mainly early adopters to use
it

3, 7, 8

Investigate how it can be used effi-
ciently by experienced agile practition-
ers (may be use it as reference?)

Life-cycle F3 Support the organizational-level (top
down) improvement

6

F4 Study the relationship of the team-
level practices and organizational ma-
turity levels

6

Metamodel F5 Support Organizational Process Mod-
eling

6

F6 Use more familiar terminologies to
practitioners

2, 6, 7

F7 Consider the dynamic aspects of pro-
cess modeling

6

Repository F8 Support organizational-level practices 6

Context Modeling F9 Consider the team maturity as a con-
text factor

2, 8

F10 Default taxonomy of context factors 7

Capitalization F11 Involve customer representatives, con-
ventional project managers, transfor-
mation leaders, CEOs, coaches

6, 2, 1

F12 Investigate when to provide detailed
vs. less specific guidance?

5, 6, 8

F13 Rank the recommendations 6, 4

Relevance

As shown in Figure 14.1, none of the participants disagreed about the
relevance of the approach. 50% strongly agreed, 25% agreed and 25% neither340

14.3. Limitations

agreed or disagreed. The overall mean is of 4,25 (between strongly agree
and slightly agree).

Nonetheless, participants expressed some concerns which relate to the need
to contextualize the approach. First of all, as earlier mentioned, the approach
was found to be more relevant to the context of new agility adopters (F2)
and thus, if the framework is to be adopted in industry, yet immature teams
should be the primary targeted users.

Secondly, one participant (P6) suggested that the approach needs to scale
up to specific contexts such as large scale projects where the customization
has mainly to be done in a top-down way (F3). He argues that relying
exclusively on the experiences collected from the team level to recommend
customizations is an elusive target. This is an interesting point that we briefly
discussed in Section 2.3 and Chapter 3 and that we certainly need to further
investigate in the future. Arguments for the fact that the two strategies to
agile methods customizations (top-down and bottom-up) and for a hybrid
approach3 can be found in the literature [Rolland et al., 2016; Ambler and
Lines, 2016]. In connection with this suggestion (F3), participants reported
the need to consider the organizational-level practices (i.e., practices of
organizational agility) (F8) and to study the relationship between the team-
level practices and the organizational maturity levels (F4) which we argued
against in Chapter 3 because the approach would be too much prescriptive
and disciplined.

Moreover, a question about the roles to involve in the customization process
was raised. Indeed, some participants (P1, P2 and P6) argued the need to
involve conventional managers, transformation leaders and coaches in the
process of capitalization and particularly during the customization workshops.
P2 particularly argued that since the final goal in agile methods is to satisfy
the customer, it would be probably interesting to consider the customer
representatives in the capitalization of the customization knowledge.

Finally, another improvement suggestion regards the relevance of AMQuICk
Essence. P6 suggested that customizations may not only concern static parts
of an agile method (i.e., practices, resources and artifacts) (F7). Indeed,
he states that the behavior aspects of process models (e.g., the sequence
of activities, the flow of workproducts construction, etc.) may also be
customized. Despite the pertinence of the suggestion, the choice to not
consider the dynamic behavior was made deliberately to not impede the
simplicity advocated by agility as argued in Chapter 6. Nonetheless, it
remains interesting to investigate the question in future work.

3http://www.disciplinedagiledelivery.com/tag/process-tailoring/

341

http://www.disciplinedagiledelivery.com/tag/process-tailoring/

14. Discussion

14.3 Limitations

In spite of the positive outcome from the case studies and of the overall
positive feedback from practitioners, the AMQuICk framework, its underlying
theoretical foundations and its artifacts still have to be further investigated.
Indeed, the illustrations and the conducted case studies gave confidence in
the relevance and applicability of the framework, however more evidence is
required so that it gains more maturity and can be perceived as a viable
approach that may be applied at an industrial scale. Throughout the design
process and the review of the practitioners feedback, we identified and
discussed a set of potential limitations that still need to be addressed. These
are reported and detailed in the remainder of this section.

First of all, since the research was conducted following build-and-evaluate
loops, an evaluation of the whole approach in an actual industrial case
study from scratch would be necessary to validate the efficiency of the
approach (i.e., whether or not the approach helps practitioners to improve
the quality of their development process). Indeed, although we provided
several demonstrations on the expressiveness of AMQuICk (precisely, the
expressiveness of its metamodel and customization matrices) and on its
feasibility in different contexts, its relevance and efficiency to practitioners
cannot be confirmed without an extensive empirical testing.

Only through repeated empirical studies in various contexts will the approach
collect enough customization knowledge to exploit and therefore show enough
evidence of its advantages or reveal more drawbacks that need to be addressed.
This empirical validation would require the commitment of practitioners with
whom a close collaboration would be necessary to configure the framework,
(i.e., to develop individual instances of the context model, context assessment
model, repository of practices and customization knowledge base) and to
observe its usage overtime.

Additionally, one of the limitations of this research might appear to be the
lack of generalizability of the exploratory studies results (see Chapters 9, 10
and 11), as the data collected were specific to particular contexts. The
results of these case studies might also be biased by the non-systematic
analysis method and by the researcher subjective interpretation of learnings
and therefore they should be validated through larger surveys or through
more controlled experiments. The researcher role as a facilitator can also be
considered as a factor of bias when capitalizing the customization knwoledge
in the AMQuICk matrices.

Another limitation of the approach is the fact that we only focused on the
expressiveness of the customization knwoledge using AMQuICk Essence

342

14.4. Perspectives

and the customization matrices. The tooling to generate the right recom-
mendations starting from a set of documented experiences is still lacking.
Future work on the refinement of the framework should undeniably focus on
automating the recommendation process (see Section 14.4).

The scalability of the approach is another aspect that needs to be further
investigated in order to ensure its viability in the industry. Indeed, when
discussing the approach with agile experts, the question of whether AMQuICk
is appropriate in all the contexts was raised. More specifically, the viability of
the framework in already mature agile teams or in large-scale organizations
should be verified.

Finally, another noteworthy threat to validity regards the fundamental agile
value of process simplicity. Indeed, the introduction of a systematic and
more disciplined approach to guide the customization of agile methods may
be perceived by the development teams as a costly process. Even thought
we discussed in Chapter 2 that the implementation of agile methods also
require some kind of discipline, we should ensure that the use of AMQuICk
is not heavyweight and do not fundamentally impede the simplicity required
by the agile manifesto [Beck et al., 2001]. This is an issue that was reported
to us during the collection of the feedback from practitioners and when
communicating about the framework in conferences. Therefore, the proposal
of practical tools to operationalize the framework was an essential part
of our design process. The AMQuICk repository of practices, its practice
cards modeler, the facilitation tools and the capitalization matrices are
all tools that are intended to enable a more lightweight and team-focused
customization process. However, their ability to preserve a lightweight way
of working should be further assessed in the future. Eventually, their design
may be further refined with the purpose of improving their usability to agile
teams.

14.4 Perspectives

The research described in this dissertation attempts to answer a complex
question on how to guide the customization of agile methods. It provides an
original view that changes the way customization is currently performed by
agile teams. As such, the proposed framework opens multiple perspectives
for improvement through further research. The remainder of this section
discusses some of these perspectives.

343

14. Discussion

Conducting further evaluation in industry

As explained in the previous section, the AMQuICk framework still needs
to be used in professional environments in order to validate its relevance
and usability and to gain in maturity. The more the framework will be
applied in concrete contexts, the more its credibility and the confidence on
its relevance will increase. Moreover, conducting different evaluations will
allow a continuous growth of the customization knwoledge base.

During the course of this research, we did have the opportunity to collaborate
with practitioners interested in the question of agile methods adaptation.
These collaborations helped us to confirm the relevance of the research
problematic to agile facilitators, to deeper our knowledge of it and to
iteratively design the framework.

In the future work, finding more opportunities to apply the whole framework
in specific organizations is still required. In order to convince more industry
partners to collaborate in the maturation of the framework, it is crucial to
understand which aspects would slow its adoption rate.

Based on our experience with the SPW (see Chapter 9), we observed that
the main reluctance regarding the adoption of a new process improvement
framework consists of its experimental status. Therefore, prior to the solici-
tation of professionals, the AMQuICk tool-support should be improved and
fully integrated and the feedback from practitioners should be integrated.

Another aspect that should be considered is that when the development
process is already well established, it is hard to get people involved in a
new approach. Therefore, when seeking for industrial collaboration, we
should put the accent on the fact that AMQuICk do not require additional
effort from developers since it builds on the existing retrospectives and
uses facilitation techniques familiar to what the agile teams usually use.
The commitment of the facilitator is also not time consuming especially if
he is assisted by the researcher. Another argument that should convince
the agile facilitators to collaborate on the evaluation of AMQuICk, is the
feature of inter-team and inter-organizational knwoledge sharing. Indeed,
a knwoledge sharing culture is essential among the agile community and
facilitators frequently share their learnings through community groups or
blog posts.

Proposing a default context model and a default knwoledge Base

Proposing a default context model for AMQuICk (i.e., a selected set of
relevant context factors that are generic enough to apply to various situa-

344

14.4. Perspectives

tions prior to further customization) and a default knowledge base would
enhance the usability of the framework. This can be performed through a
Systematic Literature Review (SLR) of empirical studies that report the
situational implementation of agile methods in different contexts. The sys-
tematic sampling from experience reports would increase the likelihood to
constitute a complete context model, i.e., which covers the most critical
context factors reported by practitioners and allow the early adopter of the
framework to have a reusable default knowledge base as a starting point.
Indeed, a growing number of empirical agile implementation studies are
published every year in the agile community. For instance, a simple search
in IEEE Explore4 for papers published in the last decade and which title
containing “Pair programming” returns more then 150 results. These studies
form an important body of knowledge from which we can extract valuable
information regarding agile practices implementation in specific contexts.
The [Kitchenham and Charters, 2007] guidelines can be followed to perform
this review.

[Kitchenham and Charters, 2007] states that one of the most important
pre-review steps is to clearly define the objectives and research question(s).
In software engineering, systematic literature reviews are often performed for
4 main reasons: (1) to summarize the existing evidence concerning a research
field, (2) to identify any gaps worth to be investigated, (3) to provide
background to position new research work and (4) to provide empirical
evidence to support a theory or to generate new hypotheses.

Our motivation is actually closer to the 4th reason. The purpose of this
future work would not be to proof a theory or a hypothesis, but to develop
a practical context model for AMQuICk and validate it taking into account
the published practitioners’ experiences. The research questions of the SLR
could be formulated as follows: What are the most critical context factors
that should be considered for customizing agile methods? What implications
do have these context factors?

Better tool support

The conceptual level of the AMQuICk framework sets the foundation for
the tool-support that has to be provided. The current version of AMQuICk
is supported by a repository of practices and a practice cards modeler.
Additional development efforts has to be provided in order to improve these
tools, to integrate them and to provide additional support to the framework
users.

4https://ieeexplore.ieee.org/

345

https://ieeexplore.ieee.org/

14. Discussion

First of all, the Agilia repository of practices, which is designed to help share
a common vision on the development practices and to emphasis the inter-
team knowledge sharing, needs to be extended to integrate the customization
knowledge base and to enable the inter-organizational learning. Its current
version is limited to the essential features for managing and consulting the
content of a database of practices and related material (artifacts, metrics,
tools, templates, literature references, etc.). However, the tool is able to
support the extension towards a full community-based platform (which is
technically possible in the current version). The main challenge of this
community-wide repository is to ensure the validity of the documented
knowledge, i.e., to ensure that there is no co-existence of more or less similar
practices, that the associations between practices are correctly informed,
that the description of practices is relevant and more importantly that
related recommendations are relevant. As earlier discussed, this requires
the validation of the proposed content by an agile expert. The repository of
practices also needs to be fully integrated with the practice cards modeler
so that the cards can be automatically generated from the description of a
practice and vis versa.

Additionally, the framework may be improved by supporting automation of
the context assessment process (prior to the customization) and to assist the
evaluation of the context indicators. This may be feasible through the
development of a context assessment form builder or thanks to an automatic
chatbot for knowledge acquisition [Wu et al., 2008].

Moreover, the tool-support for AMQuICk may involve the automation of
the facilitation tools. The extension to Jira that we developed in the context
of the MDL case study (see Chapter 13) to capture the practice-based
improvement actions is an interesting lead for solution but we should provide
a way to bridge the gap between Jira and the integrated AMQuICk tool
support.

Finally, in the current description of the AMQuICk framework, the process
of relating the context elements with the right practices remains mainly a
matter of expert knowledge and intuition. The automation of this process
would be feasible using a multivariate analysis approach to select the context
factors that are correlated with the successful implementation of practices
or using a collaborative recommendation system that would recommend
practices based on the previous ratings of users in similar contexts.

346

Chapter 15

Conclusion

As this dissertation comes to an end, let us take the time to recall the
different stages we went through during the elaboration of this research
work.

First of all, the research started by our willingness to challenge the false
assumption or belief that agile methods are a magic bullet silver that works
well in all possible situations and that delivers quality anyway. Indeed, a
cursory glance at the multiple success stories shared by agile “evangelists”
can induce many false beliefs1 among which:

• Agile Software Development lead obviously to success

• Agile Software Development is anti-documentation and anti-planning

• Agile Software Development is undisciplined

• Agile Software Development is a set of simple practices to apply at
the team level

Regarding to all these misconceptions, seventeen years after the release of
the agile manifesto [Beck et al., 2001], some of the early agile thought leaders
(including authors of the manifesto) claim that “Agile is in decline”2 or even
that “Agile is dead!”3,4. They argue that many teams are claiming to be
Agile where they are just picking up some of the simplest practices such as
sprints and stand-up meetings, without adopting any of the essential technical
practices such as pair programming, test driven development, continuous
integration, and test automation which are necessary to produce high-quality
software. They also argue that the popularity of Scrum doesn’t make it
a sufficient method to deliver quality and explain that Scrum is popular
“because it’s easy”. They even criticize the misuse of the word Agile as a
noun rather than an adjective to define the way to develop software3.

1http://www.agilenutshell.com/agile_myths
2http://www.jamesshore.com/Blog/The-Decline-and-Fall-of-Agile.html
3https://www.youtube.com/watch?v=a-BOSpxYJ9M
4https://pragdave.me/blog/2014/03/04/time-to-kill-agile.html

347

http://www.agilenutshell.com/agile_myths
http://www.jamesshore.com/Blog/The-Decline-and-Fall-of-Agile.html
https://www.youtube.com/watch?v=a-BOSpxYJ9M
https://pragdave.me/blog/2014/03/04/time-to-kill-agile.html

15. Conclusion

From this initial existential questioning, we started by examining the context
of the agile software development research. Criticisms and questioning
regarding the efficiency of agile methods could also be found in the software
engineering research community. Indeed, several research studies have
questioned the real impact of agile methods on quality [Stamelos and Sfetsos,
2007] or investigated the conditions to succeed using agility [Chow and Cao,
2008; Ahimbisibwe et al., 2015].

As such, it appeared that an increasing number of practitioners and re-
searchers support a contextual approach to agile software development,
where agile methods are customized to suit the specific context of their
organizations and teams. [Conboy and Fitzgerald, 2007] notes that “the
very name agile suggests that the method should be easily adjusted to suit its
environment.” and to this regards, [Kruchten, 2013] defines agility as “the
ability of an organization to react to changes in its environment faster than
the rate of these changes.”. These studies demonstrate the importance of
context-awareness when implementing agile methods and provide us with the
assumption that motivated our research work: “A situational or contextual
implementation of agile methods is more likely to succeed and therefore to
produce high quality software”.

Going back to the literature, we found that the systematic guidance ap-
proaches for supporting a situational deployment of agile methods are still
lacking. Practitioners are seeking for methods to help determine whether they
are ready for the change to agility and to help them identify the right agile
practices to adopt. In addition, they are interested in learning more about
the potential difficulties in their journey towards agility [Qumer, 2010; Sidky,
2007]. Without sufficient support, they strive to mature their methods in
many non-sweet spot contexts. Moreover, it’s arguable to assume that rely-
ing simply on retrospectives is not sufficient to help them fully and efficiently
customize their methods.

The creation of the Agile Methods Quality Integrated Customization frame-
work (AMQuICk), presented in this dissertation, is motivated by the absence
of a structured approach capable of providing agile teams and organizations
with practical customization guidance.

The framework builds on existing software process improvement methods
such as the Quality Improvement Paradigm (QIP) [Basili, 1985], on Situ-
ational Method Engineering [Henderson-Sellers and Ralyté, 2010] and on
the paradigm of reuse-based organizational learning [Basili et al., 1994b].
By doing so, it brings more discipline to the overall customization process
but we argue that this doesn’t necessarily lead to less agility. Indeed, one of
our major concerns throughout the development of the framework was to

348

provide means for keeping the customization process as simple as possible
and for extensively including teams in the overall process to not impede
agility values.

The framework, that has been iteratively grounded thanks to the design
science research methodology, relies on an iterative, incremental and multi-
levels life-cycle that allows a continuous back-and-forth exchange of learnings
between the organizational level, the process-implementation level and the
product-development level.

Its core artifact consists of a metamodel for authoring agile building blocks
called AMQuICk Essence. This metamodel incorporates the necessary ele-
ments for structuring an agile repository of practices (a kind of an experience
factory), a context model and a customization knowledge base (see Fig-
ure 5.1). Additional operational tools are the AMQuICk Backlog and the
Capitalization Workshop.

Since the framework was iteratively grounded, its validity was discussed at
different design steps using several exploratory and evaluative case studies.
However, further work is still needed in order to ensure its viability in
industry.

Finally, by following an iterative and incremental process to design an
iterative and incremental approach to customize agile methods which are
iterative and incremental, we can say that we experienced a (meta)agility at
all levels !

In the end, we can conclude that the AMQuICk framework is an attempt to
find the middle-ground between disciplined process improvement (relying
on heavyweight prescriptive approaches) and agile process improvement
(relying exclusively on the lightweight retrospectives), demonstrating that
once again, agility and discipline, these apparently opposite approaches are,
in fact, complementary.

349

Appendices

351

The goal of this interview session is first to outline the issues you have experienced so far and specifically the

culture-related ones when adopting and practicing agile and second to understand how do you usually assess

the effectiveness of the applied agile practices? How do you tune and adjust them and why?

This interview is semi-structured. The rest of the document represents the interview guide, which is the list of

questions and topics that needs to be addressed.

1. Understand your context

1.1. Your profile:

Years of agile experience

Role

1.2. Company

Attribute Value and Comments

1.2.1. Size:
number of personnel

1.2.2. Domain:
Organization Business Domain

1.2.3. Structure:

departments boundaries

communication procedures between them

1.2.4. Agile experience:
years of agile methods practice

1.2.5. Culture:

a. Compliance and governance: ITIL, Cobit, ISO,

CMMi …

b. Additional Regulatory compliance (financial,

privacy...)

Appendix A

Semi-structured Interview Guide

353

c. Level of agile management support: 1-5

d. Innovativeness: 1-5

1.3. Typical Project and Team

Attribute Value and Comments

1.3.1. Size:
Typical team size

1.3.2. Average agile experience:

Team average experience (in years)

1.3.3. Geographical distribution:
Co-located – Distributed (same division) - Distributed

(different divisions) – Global (1-4)

1.3.4. Multidisciplinary Team
True – False

1.3.5. Schedule:
Typical Project time

1.3.6. Domain Complexity:
Straightforward -- Very Complex (1-5)

Note: More domain complexity means greater modeling and planning

and sophisticated testing strategies

1.3.7. Technical Complexity:
Straightforward - - Very Complex (1-5)

Note: Very complex technical environment may be due to refactoring

of existence systems, usage of several technology platforms … Very

complex means more architecture and design effort

1.3.8. Criticality:
Comfort – discretionary funds – essential funds - single life –

many lives (1-5)

1.3.9. Scope variability:
Percentage of change per month (%)

Note: This attribute refers to how stable is the business environment

1.3.10. Volatility:
Likelihood of hard to control change (1-5)

1.3.11. Iteration duration:
Iteration duration for a typical project

1.3.12. Applied Method:
What method is most frequently applied?

1.3.13. Customer Involvement:
Commitment and capability of the customer and his

representative (1-5)

A. Semi-structured Interview Guide

354

Average commitment time per week?

1.3.14. Documentation Strategy:
Lightweight – Heavy (1-5)

1.3.15. Team self-organization and dependencies:
Self-organized -- Dependent (1-5)

2. Discuss the applied practices, work products, tools and Metrics?

Please rank your commitment to the following agile practices and eventually comment how these were

customized

Practice, work product or metric

Please comment when filling

Not adopted Planning

adoption

Adoption in

progress

Partially

adopted

Completely

adopted

Unit testing
1 2 3 4 5

Acceptance testing
1 2 3 4 5

Integration testing
1 2 3 4 5

Regression testing
1 2 3 4 5

Continuous integration
1 2 3 4 5

Test driven design
1 2 3 4 5

Test driven development (or test first)
1 2 3 4 5

Active stakeholder participation
1 2 3 4 5

Collaborative requirements

workshops

1 2 3 4 5

Dedicated customer representative
1 2 3 4 5

On-site customer
1 2 3 4 5

40-hours per week
1 2 3 4 5

Architecture envisioning
1 2 3 4 5

Burn-down charts
1 2 3 4 5

Coding standards
1 2 3 4 5

Collaborative teams
1 2 3 4 5

Collective ownership
1 2 3 4 5

Common room (war-room)
1 2 3 4 5

Collaborative workspace
1 2 3 4 5

Daily standup
1 2 3 4 5

Definition of done
1 2 3 4 5

Definition of ready
1 2 3 4 5

355

Document continuously
1 2 3 4 5

Document later
1 2 3 4 5

Domain modeling
1 2 3 4 5

Empowered team
1 2 3 4 5

Iteration Review
1 2 3 4 5

Metaphor
1 2 3 4 5

Models brainstorming
1 2 3 4 5

Pair work (design, programming …)
1 2 3 4 5

Personas
1 2 3 4 5

Prioritized Feature List
1 2 3 4 5

Prioritized requirements
1 2 3 4 5

Prototyping
1 2 3 4 5

Code refactoring
1 2 3 4 5

Retrospective
1 2 3 4 5

Short release
1 2 3 4 5

Simple code design
1 2 3 4 5

Story post-it board
1 2 3 4 5

Time-boxed Iteration Planning
1 2 3 4 5

User stories
1 2 3 4 5

Velocity
1 2 3 4 5

Waste elimination
1 2 3 4 5

3. Discuss the common encountered issues and impediments encountered when adopting agile practices:

Please report 5 of the most critical and challenging ones

Issue Details

A. Semi-structured Interview Guide

356

4. Discuss the culture-related issues and impediments encountered when adopting agile practices.

Discuss their impact on agile methods implementation

Issue Details

5. Discuss the way agile practices are currently customized:

One of the manifesto principles is “At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behavior accordingly”

How your agile practices are currently customized? What outstanding customizations have been proposed so

far and who initiated them?

357

6. Explain the targeted issues of AMQuICk, Present its lifecycle and different components

Would you suggest any improvements or adjustments to the approach?

Rate the approach comprehensiveness, practicality, necessity, relevance

Comment while ranking

 strongly

agree

agree neutral disagree strongly

disagree

Comprehensiveness 1 2 3 4 5

Practicality 1 2 3 4 5

Necessity 1 2 3 4 5

Relevance 1 2 3 4 5

Do you have any additional comments?

Thank you!

A. Semi-structured Interview Guide

358

Appendix B

SPW case study - D443 IT department details

This annex presents some more details regarding the contex of the SPW
case study (see Chapter 9). A more complete overview of the study can be
found in [AYED, 2013].

B.1 Structure

The D443 service is structured hierarchically (see Figure B.1). It is composed
of 5 services : Development (DEV), Development Support (DEV Support),
Security, Exploitation and IT Help-desk. In Chapter 9, we report the
implementation of agile practices in DEV and DEV Support.

Figure B.1.: D443 Structure

The DEV Support service is composed of two units for the maintenance,
support and production operations (MA). 2 practitioners from the service

359

B. SPW case study - D443 IT department details

were interviewed. The DEV service is composed of the following business
units:

AR Architecture unit. 3 practitioners from the unit were interviewed.

QA Quality Assurance unit. 3 practitioners from the unit were inter-
viewed.

DEV Development unit. 3 practitioners from the unit were interviewed
and 8 participated to the project retrospective.

PM Project Management unit. 7 practitioners from the unit were
interviewed.

FA Functional Analysis unit. 3 practitioners and 1 external consultant
were interviewed.

B.2 Development Life-cycle

The development process (at the time the study started) of the D443 is
mainly composed of a classic waterfall process (in preliminary and closure
phases). The development process is incremental which makes the refinement.
It rarely happens that an increment is developed iteratively.

B.3 Example Workflow

An example of the heavy-weight development process is provided in Figure.
The figure shows some details regarding the development process that the
architecture unit follows.

360

B.3. Example Workflow

Figure B.2.: Overview of the D443 Development Life-cycle before the intro-
duction of agile methods

361

B. SPW case study - D443 IT department details

Figure B.3.: Overall view of the architecture unit process

Figure B.4.: High-level analysis workflow (architecture unit)

362

Bibliography

Abbas, N., Gravell, A. M., and Wills, G. B. (2010). Using factor analysis to
generate clusters of agile practices (a guide for agile process improvement).
In AGILE Conference, 2010, pages 11–20. IEEE.

Abdel-Fattah, M. A. (2015). Grounded theory and action research as
pillars for interpretive information systems research: A comparative study.
Egyptian Informatics Journal, 16(3):309–327.

Abrahamsson, P., Conboy, K., and Wang, X. (2009). “lots done, more to
do”: the current state of agile systems development research.

Adcock, R., Alef, E., Amato, B., Ardis, M., Bernstein, L., Boehm, B.,
Bourque, P., Brackett, J., Cantor, M., Cassel, L., et al. (2009). Curriculum
guidelines for graduate degree programs in software engineering.

Agarwal, R., Nayak, P., Malarvizhi, M., Suresh, P., and Modi, N. (2007).
Virtual quality assurance facilitation model. In Global Software Engineer-
ing, 2007. ICGSE 2007. Second IEEE International Conference on, pages
51–59. IEEE.

Agile Alliance (2012). Agile alliance guide to agile practices. Online at:
http: // www. guide. agilealliance. org/ .

Ahimbisibwe, A., Cavana, R. Y., and Daellenbach, U. (2015). A contingency
fit model of critical success factors for software development projects: A
comparison of agile and traditional plan-based methodologies. Journal of
Enterprise Information Management, 28(1):7–33.

Alliance, A. (2008). Agile alliance home. Online at:
http://www.agilealliance.org.

Alqudah, M. and Razali, R. (2016). A review of scaling agile methods in
large software development. International Journal on Advanced Science,
Engineering and Information Technology, 6(6):828–837.

Alqudah, M. and Razali, R. (2017). Key factors for selecting an agile method:
A systematic literature review. International Journal on Advanced Science,
Engineering and Information Technology, 7(2):526–537.

363

http://www.guide.agilealliance.org/

Bibliography

Ambler, S. (2005). Quality in an agile world. Software Quality Professional,
7(4):34.

Ambler, S. and Agile, I. (2010). Context counts: Position paper for semat.
In Proceedings of the Semat, Zurich Workshop.

Ambler, S. W. (2006). The Agile Unified Processe (AUP). Ambysoft - Best
Practices for Software Development.

Ambler, S. W. (2009). The agile scaling model (asm) : Adapting agile
methods for complex environments. Technical report, IBM.

Ambler, S. W. and Lines, M. (2012). Disciplined agile delivery.

Ambler, S. W. and Lines, M. (2016). Scaling agile software development
tactically: Disciplined agile delivery at scale.

Amescua, A., Bermón, L., García, J., and Sanchez-Segura, M.-I. (2010).
Knowledge repository to improve agile development processes learning.
IET software, 4(6):434–444.

Anderson, D. J. (2005). Stretching agile to fit CMMI level 3-the story
of creating MSF for CMMI/spl reg/process improvement at Microsoft
corporation. In Agile Conference, 2005. Proceedings, pages 193–201. IEEE.

Anthopoulos, L., Reddick, C. G., Giannakidou, I., and Mavridis, N. (2016).
Why e-government projects fail? an analysis of the healthcare. gov website.
Government Information Quarterly, 33(1):161–173.

Anthopoulos, L. G., Siozos, P., and Tsoukalas, I. A. (2007). Applying
participatory design and collaboration in digital public services for discov-
ering and re-designing e-government services. Government Information
Quarterly, 24(2):353–376.

April, A. and Coallier, F. (1995). Trillium: a model for the assessment
of telecom software system development and maintenance capability. In
Software Engineering Standards Symposium, 1995.(ISESS’95)’Experience
and Practice’, Proceedings., Second IEEE International, pages 175–183.
IEEE.

A.Qumer and Henderson-Sellers, B. (2007). An evaluation of the degree of
agility in six agile methods and its applicability for method engineering.
Information and Software Technology, 50:280–295.

Arisholm, E., Gallis, H., Dyba, T., and Sjoberg, D. I. (2007). Evaluating
pair programming with respect to system complexity and programmer
expertise. IEEE Transactions on Software Engineering, (2):65–86.

364

Bibliography

Asnawi, A. L., Gravell, A. M., and Wills, G. B. (2011). Empirical investi-
gation on agile methods usage: issues identified from early adopters in
malaysia. In International Conference on Agile Software Development,
pages 192–207. Springer.

Asnawi, A. L., Gravell, A. M., and Wills, G. B. (2012). Emergence of agile
methods: perceptions from software practitioners in malaysia. In 2012
Agile India, pages 30–39. IEEE.

Asproni, G. (2004). Motivation, teamwork, and agile development. Agile
Times, 4(1):8–15.

Axelsson, K., Melin, U., and Lindgren, I. (2010). Exploring the importance
of citizen participation and involvement in e-government projects: practice,
incentives, and organization. Transforming Government: People, Process
and Policy, 4(4):299–321.

AYED, H. (2013). Spw transition project - context analysis report.

Ayed, H., Habra, N., and Vanderose, B. (2013). Agile processes evolution
challenges.

Ayed, H., Vanderose, B., and Habra, N. (2012). A metamodel-based approach
for customizing and assessing agile methods. In Quality of Information
and Communications Technology (QUATIC), 2012 Eighth International
Conference on the, pages 66–74. IEEE.

Ayed, H., Vanderose, B., and Habra, N. (2014). Supported approach for
agile methods adaptation: an adoption study. In Proceedings of the 1st
International Workshop on Rapid Continuous Software Engineering, pages
36–41. ACM.

Ayed, H., Vanderose, B., and Habra, N. (2017). Agile cultural challenges in
europe and asia: insights from practitioners. In Proceedings of the 39th
International Conference on Software Engineering: Software Engineering
in Practice Track, pages 153–162. IEEE Press.

Babuscio, J. (2009). How the fbi learned to catch bad guys one iteration at
a time. In Agile Conference, 2009. AGILE’09., pages 96–100. IEEE.

Bacchelli, A. and Bird, C. (2013). Expectations, outcomes, and challenges of
modern code review. In Proceedings of the 2013 international conference
on software engineering, pages 712–721. IEEE Press.

Bajec, M., Vavpotič, D., Furlan, Š., and Krisper, M. (2007). Software
process improvement based on the method engineering principles. In

365

Bibliography

Situational Method Engineering: Fundamentals and Experiences, pages
283–297. Springer.

Basili, V., Caldiera, G., and Rombach, D. H. (1994a). The Goal Question
Metric approach.

Basili, V. R. (1985). Quantitative evaluation of software methodology.
Technical report, DTIC Document.

Basili, V. R. and Caldiera, G. (1995). Improve software quality by reusing
knowledge and experience. Sloan Management Review, 37.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994b). Experience factory.
Encyclopedia of software engineering.

Beck, K. (1999). Embracing change with extreme programming. Computer,
32(10):70–77.

Beck, K. and Andres, C. (2004). Extreme programming explained: embrace
change. Addison-Wesley Professional.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,
Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., and
Thomas, D. (2001). Manifesto for agile software development. Online at :
http: // www. agilemanifesto. org , 13.

Becker, J., Janiesch, C., and Pfeiffer, D. (2007). Reuse mechanisms in
situational method engineering. In Situational method engineering: Fun-
damentals and experiences, pages 79–93. Springer.

Benbasat, I. (1984). An analysis of research methodologies. The information
systems research challenge, 47:85.

Berki, E., Siakas, K., and Georgiadou, E. (2007). Agile quality or depth of
reasoning? applicability vs. suitability with respect to stakeholders’ needs.
In Agile software development quality assurance, pages 23–55. IGI Global.

Bhagat, R. S. and Steers, R. M. (2009). Cambridge handbook of culture,
organizations, and work. Cambridge University Press.

Boehm, B. (2006). A view of 20th and 21st century software engineering. In
Proceedings of the 28th international conference on Software engineering,
pages 12–29. ACM.

Boehm, B. and Hansen, W. (2001). The spiral model as a tool for evolutionary
acquisition. CrossTalk, 14(5):4–11.

366

http://www.agilemanifesto.org

Bibliography

Boehm, B. and Turner, R. (2003). Balancing agility and discipline: A guide
for the perplexed. Addison-Wesley Professional.

Boehm, B. and Turner, R. (2005). Management challenges to implementing
agile processes in traditional development organizations. IEEE software,
22(5):30–39.

Boehm, B. W. (1981). Software engineering economics. Prentice-Hall
Advances in Computing Science and Technology Series, Englewood Cliffs:
Prentice-Hall, 1981, 1.

Boehm, B. W. (1988). A spiral model of software development and enhance-
ment. Computer, 21(5):61–72.

Borchers, G. (2003). The software engineering impacts of cultural factors
on multi-cultural software development teams. In Proceedings of the 25th
international conference on Software engineering, pages 540–545. IEEE
Computer Society.

Bourque, P., Fairley, R. E., et al. (2014). Software engineering process. In
Guide to the software engineering body of knowledge (SWEBOK (R)):
Version 3.0, chapter 8. IEEE Computer Society Press.

Brinkkemper, S. (1996). Method engineering: engineering of information
systems development methods and tools. Information and Software Tech-
nology, 38(4):275–280.

Brinkkemper, S., Saeki, M., and Harmsen, F. (1999). Meta-modelling based
assembly techniques for situational method engineering. Information
Systems, 24(3):209–228.

Buglione, L. (2011). Light maturity models (lmm): an agile application.
In Proceedings of the 12th International Conference on Product Focused
Software Development and Process Improvement, pages 57–61. ACM.

Burge, S. (2011). The systems engineering tool box – matrix diagram.

Cameron, E. and Green, M. (2015). Making sense of change management:
A complete guide to the models, tools and techniques of organizational
change. Kogan Page Publishers.

Campanelli, A. S. (2016). A tailoring criteria model for agile practices
adoption.

Cannon-Bowers, JA, S. E. and Converse, S. (1993). Shared mental models
in expert team decision making. Individual and group decision making:
Current issues, 221.

367

Bibliography

Cao, L., Mohan, K., Xu, P., and Ramesh, B. (2004). How extreme does
extreme programming have to be? adapting xp practices to large-scale
projects. In System Sciences, 2004. Proceedings of the 37th Annual Hawaii
International Conference on, pages 10–pp. IEEE.

Chau, T. and Maurer, F. (2004). Knowledge sharing in agile software teams.
In Logic versus approximation, pages 173–183. Springer.

Chen, M. (2004). Asian management systems: Chinese, Japanese and Korean
styles of business. Cengage Learning EMEA.

Child, J. (1979). Culture, contingency and capitalism in the cross-national
study of organizations. University of Aston Management Centre.

Choi, K. S., Deek, F. P., and Im, I. (2008). Exploring the underlying aspects
of pair programming: The impact of personality. Information and Software
Technology, 50(11):1114–1126.

Chow, T. and Cao, D.-B. (2008). A survey study of critical success factors in
agile software projects. Journal of Systems and Software, 81(6):961–971.

Cleland, S. and Mann, S. (2003). Agility in the classroom: Using agile
development methods to foster team work and adaptability amongst
undergraduate programmers. 16th Annual NACCQ.

CMM (1993). Capability Maturity Model, version 1.1. IEEE software,
10(4):18–27.

CMMI (2006). Capability Maturity Model Integration for Development,
version 1.2.

CMMI-DEV (2010). CMMI for Development, Version 1.3.

Cockburn, A. (2000). Selecting a project’s methodology. IEEE software,
17(4):64–71.

Cockburn, A. (2004a). Agile Software Development. Addison-Wesley.

Cockburn, A. (2004b). Crystal clear: a human-powered methodology for
small teams. Pearson Education.

Conboy, K. and Fitzgerald, B. (2007). The views of experts on the cur-
rent state of agile method tailoring. In Organizational Dynamics of
Technology-Based Innovation: Diversifying the Research Agenda, pages
217–234. Springer.

Conboy, K. and Fitzgerald, B. (2010). Method and developer characteristics
for effective agile method tailoring: A study of xp expert opinion. ACM
Transactions on Software Engineering and Methodology (TOSEM), 20(1):2.

368

Bibliography

Contardo, C., Morency, C., and Rousseau, L.-M. (2012). Balancing a
dynamic public bike-sharing system, volume 4. Cirrelt Montreal.

Cragg, C. (1995). The new taipans a vital source book on the people and
business of the pacific rim.

Cunningham, J. B. (1997). Case study principles for different types of cases.
Quality and quantity, 31(4):401–423.

Cunningham, W. (1993). The wycash portfolio management system. ACM
SIGPLAN OOPS Messenger, 4(2):29–30.

Dalkir, K. (2013). Knowledge management in theory and practice. Routledge.

Davis, N. and Mullaney, J. L. (2003). The team software process (tsp) in
practice: A summary of recent results.

Deming, W. E. and Edwards, D. W. (1982). Quality, productivity, and
competitive position, volume 183. Massachusetts Institute of Technology,
Center for Advanced Engineering Study Cambridge, MA.

Denzin, N. K. (2017). Sociological methods: A sourcebook. Routledge.

Derby, E., Larsen, D., and Schwaber, K. (2006). Agile retrospectives: Making
good teams great. Pragmatic Bookshelf.

DOD-STD-2167A (1988). A Defense System Software Development, Version
A.

Dresch, A., Lacerda, D. P., and Miguel, P. A. C. (2015). A distinctive
analysis of case study, action research and design science research. Revista
brasileira de gestão de negócios, 17(56):1116–1133.

Dromey, R. G. (1995). A model for software product quality. Software
Engineering, IEEE Transactions on, 21(2):146–162.

DSDM Consortium (2008). Dsdm atern: the handbook.

Dybå, T., Arisholm, E., Sjøberg, D. I., Hannay, J. E., and Shull, F. (2007).
Are two heads better than one? on the effectiveness of pair programming.
IEEE software, (6):12–15.

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile software
development: A systematic review. Information and software technology,
50(9):833–859.

El-Said, S. M., Hana, M., and Eldin, A. S. (2009). Agile tailoring tool (att):
A project specific agile method. In Advance Computing Conference, 2009.
IACC 2009. IEEE International, pages 1659–1663. IEEE.

369

Bibliography

Englebert, V. and Heymans, P. (2007). Towards more extensible metacase
tools. In International Conference on Advanced Information Systems
Engineering, pages 454–468. Springer.

English, S. and Hammond, S. (2017). Cost of compliance 2017. Online
at: https: // risk. thomsonreuters. com/ content/ dam/ openweb/
documents/ pdf/ risk/ report/ cost-of-compliance-2017. pdf .

Esfahani, H. C. and Yu, E. (2010). A repository of agile method fragments.
In Proceedings of the 2010 international conference on New modeling
concepts for today’s software processes, pages 163–174. Springer-Verlag.

Essence (2014). Kernel and language for software engineering methods,
version 1.0. Online at : http://www.omg.org/spec/Essence/1.0.

Essence (2015). Kernel and language for software engineering methods,
version 1.1. Online at : http://www.omg.org/spec/Essence/1.1.

European Union (2015). Ects users’ guide.

Feigenbaum, A. V. (1999). The new quality for the twenty-first century. The
TQM magazine, 11(6):376–383.

Fitzgerald, B. (2000). Systems development methodologies: the problem of
tenses. Information Technology & People, 13(3):174–185.

Fitzgerald, B., Hartnett, G., and Conboy, K. (2006). Customising agile
methods to software practices at intel shannon. European Journal of
Information Systems, 15(2):200–213.

Fitzgerald, B., Russo, N., and O’Kane, T. (2003). Software development
method tailoring at motorola. Communications of the ACM, 46(4):64–70.

Forsberg, K. and Mooz, H. (1991). The relationship of system engineering to
the project cycle. In INCOSE International Symposium, volume 1, pages
57–65. Wiley Online Library.

Fowler, M. (2006). Using an agile software process with offshore
development. Online at: http: // martinfowler. com/ articles/
agileOffshore. html .

Francois, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N.,
and Jézéquel, J.-M. (2014). Kevoree modeling framework (kmf): Efficient
modeling techniques for runtime use. arXiv preprint arXiv:1405.6817.

Fritzsche, M. and Keil, P. (2007). Agile Methods and CMMI: Compatibility
or Conflict?

370

https://risk.thomsonreuters.com/content/dam/openweb/documents/pdf/risk/report/cost-of-compliance-2017.pdf
https://risk.thomsonreuters.com/content/dam/openweb/documents/pdf/risk/report/cost-of-compliance-2017.pdf
http://www.omg.org/spec/Essence/1.0
http://www.omg.org/spec/Essence/1.1
http://martinfowler. com/articles/agileOffshore. html
http://martinfowler. com/articles/agileOffshore. html

Bibliography

Fukuyama, F. (1995). Trust: The social virtues and the creation of prosperity.
Free press New York.

Gandomani, T. J. and Nafchi, M. Z. (2014). Agility assessment model to
measure agility degree of agile software companies. Indian Journal of
Science and Technology, 7(7):955–959.

Glazer, H., Dalton, J., Anderson, D., Konrad, M., and Shrum, S. (2008).
CMMI or Agile: Why Not Embrace Both! Software Engineering Institute
(SEI).

Grady, R. B. and Caswell, D. L. (1987). Software metrics: Establishing a
company-wide program.

Gregory, J. and Crispin, L. (2014). More Agile Testing: Learning Journeys
for the Whole Team. Addison-Wesley Professional.

Gregory, P., Barroca, L., Taylor, K., Salah, D., and Sharp, H. (2015). Agile
challenges in practice: a thematic analysis. In International Conference
on Agile Software Development, pages 64–80. Springer.

Griffiths, M. (2007). Agile suitability filters. Online at:
http: // leadinganswers. typepad. com/ leading_ answers/ 2007/
06/ agile_ suitabili. html .

Hall, E. T. et al. (1959). The silent language, volume 3. Doubleday New
York.

Hampden, C. and Trompenaars, F. (1993). The seven cultures of capitalism.
Doubleday New York.

Harmsen, F., Brinkkemper, S., and Oei, H. (1994). Situational method
engineering for information system project approaches. In Proceedings of
the IFIP, volume 8, pages 169–194.

Harry, M. J. (1998). Six sigma: a breakthrough strategy for profitability.
Quality progress, 31(5):60.

Hayes, S. and Richardson, I. (2008). Scrum implementation using kotter’s
change model. In International Conference on Agile Processes and Extreme
Programming in Software Engineering, pages 161–171. Springer.

Henderson-Sellers, B. and Gonzalez-Perez, C. (2005a). A comparison of
four process metamodels and the creation of a new generic standard.
Information and software technology, 47(1):49–65.

371

http://leadinganswers.typepad.com/leading_answers/2007/06/agile_suitabili.html
http://leadinganswers.typepad.com/leading_answers/2007/06/agile_suitabili.html

Bibliography

Henderson-Sellers, B. and Gonzalez-Perez, C. (2005b). The rationale
of powertype-based metamodelling to underpin software development
methodologies. In Proceedings of the 2nd Asia-Pacific conference on Con-
ceptual modelling-Volume 43, pages 7–16. Australian Computer Society,
Inc.

Henderson-Sellers, B., Gonzalez-Perez, C., and Ralyté, J. (2008). Com-
parison of method chunks and method fragments for situational method
engineering. In Software Engineering, 2008. ASWEC 2008. 19th Australian
Conference on, pages 479–488. IEEE.

Henderson-Sellers, B. and Ralyté, J. (2010). Situational method engineering:
state-of-the-art review. Journal of Universal Computer Science, 16(3):424–
478.

Henninger, S. (2003). Tool support for experience-based software develop-
ment methodologies. Advances in Computers, 59:29–82.

Hevner, A. and Chatterjee, S. (2010). Design science research in information
systems. In Design research in information systems, pages 9–22. Springer.

Hevner, A. R. (2007). A three cycle view of design science research. Scandi-
navian journal of information systems, 19(2):4.

Highsmith, J. (2009). Agile project management: creating innovative products.
Pearson Education.

Hoda, R., Kruchten, P., Noble, J., and Marshall, S. (2010). Agility in context.
In ACM Sigplan Notices, volume 45, pages 74–88. ACM.

Hoda, R., Noble, J., and Marshall, S. (2012). Developing a grounded theory
to explain the practices of self-organizing agile teams. Empirical Software
Engineering, 17(6):609–639.

Hoffman, K. L., Padberg, M., and Rinaldi, G. (2013). Traveling salesman
problem. In Encyclopedia of operations research and management science,
pages 1573–1578. Springer.

Hofstede, G. (2002). Dimensions do not exist: A reply to brendan mcsweeney.
Human relations, 55(11):1355–1361.

Hofstede, G. (2010). Hofstede cultural dimensions. Online at : https:
// geert-hofstede. com/ .

Hofstede, G. (2011). Dimensionalizing cultures: The hofstede model in
context. Online readings in psychology and culture, 2(1):8.

372

https://geert-hofstede.com/
https://geert-hofstede.com/

Bibliography

Holgersson, J., Lindgren, I., Melin, U., and Axelsson, K. (2017). Not
another new wine in the same old bottles–motivators and innovation in
local government e-service development. In 25th European Conference
on Information Systems (ECIS), Guimarães, Portugal, June 5-10, 2017,
pages 691–702. Association for Information Systems.

Holmström, H., Fitzgerald, B., Ågerfalk, P. J., and Conchúir, E. Ó. (2006).
Agile practices reduce distance in global software development. Information
Systems Management, 23(3):7–18.

Holmström, J., Ketokivi, M., and Hameri, A.-P. (2009). Bridging practice
and theory: A design science approach. Decision Sciences, 40(1):65–87.

House, R. J., Hanges, P. J., Javidan, M., Dorfman, P. W., and Gupta, V.
(2004). Culture, leadership, and organizations: The GLOBE study of 62
societies. Sage publications.

Httermann, M. (2012). DevOps for developers. Apress.

Hui, A. (2013). Lean change: Enabling agile transformation through lean
startup, kotter and kanban: An experience report. In Agile Conference
(AGILE), 2013, pages 169–174. IEEE.

Humble, J. and Russell, R. (2009). The agile maturity model applied to
building and releasing software. ThoughtWorks White Paper.

Humphrey, W. S. (1993). Introduction to software process improvement.

Humphrey, W. S. (2000). The personal software process (psp).

Humphrey, W. S. (2006). TSP (SM) Coaching Development Teams. Pearson
Education.

IEEE 1061 (1998). standard for a software quality metrics methodology.
IEEE Computer Society, Tech. Rep.

Iivari, J. and Iivari, N. (2011). The relationship between organizational
culture and the deployment of agile methods. Information and Software
Technology, 53(5):509–520.

Ishikawa, K. (1976). Total quality management. The Japonese way. Prentice.

ISO/IEC 12207 (1995). Information technology - Software life cycle processes.
Standard, International Organization for Standardisation (ISO).

ISO/IEC 15504 (2004). Information technology – process assessment.

ISO/IEC 15504-2 (2004). Information technology – process assessment –
part 2: Performing an assessment.

373

Bibliography

ISO/IEC 19502 (2005). Information technology - meta object facility (mof).

ISO/IEC 24744 (2007). Metamodel for development methodologies.

ISO/IEC 33001 (2015). Information technology – process assessment –
concepts and terminology.

ISO/IEC 330xx (2015). Information technology – process assessment series
of standards.

ISO/IEC 9000 (2005). Quality management systems - fundamentals and
vocabulary.

ISO/IEC 9126 (2001). Software engineering product quality.

Jackson, S. E., Joshi, A., and Erhardt, N. L. (2003). Recent research on team
and organizational diversity: Swot analysis and implications. Journal of
management, 29(6):801–830.

Juran, J. (1998). Juran’s quality handbook. McGraw Hill (New York).

Kalus, G. and Kuhrmann, M. (2013a). Criteria for software process tailoring:
a systematic review. In Proceedings of the 2013 International Conference
on Software and System Process, pages 171–180. ACM.

Kalus, G. and Kuhrmann, M. (2013b). Criteria for software process tailoring:
a systematic review. In Proceedings of the 2013 International Conference
on Software and System Process, pages 171–180. ACM.

Kanji, G. K. (1990). Total quality management: the second industrial
revolution. Total Quality Management, 1(1):3–12.

Kawakita, J. (1975). The kj method–a scientific approach to problem solving.
Technical report, Technical report, Kawakita Research Institute, Tokyo.

Kelly, A. (2008). Changing software development: Learning to become agile.
John Wiley & Sons.

Kelly, S. (2004). Comparison of eclipse emf/gef and metaedit+ for dsm. In
19th annual ACM conference on object-oriented programming, systems,
languages, and applications, workshop on best practices for model driven
software development.

Kelly, S., Lyytinen, K., and Rossi, M. (1996). Metaedit+ a fully configurable
multi-user and multi-tool CASE and CAME environment. In International
Conference on Advanced Information Systems Engineering, pages 1–21.
Springer.

374

Bibliography

Kent, S. (2002). Model driven engineering. In International Conference on
Integrated Formal Methods, pages 286–298. Springer.

Khan, P. and Beg, M. S. (2013). Extended decision support matrix for selec-
tion of sdlc-models on traditional and agile software development projects.
In Advanced Computing and Communication Technologies (ACCT), 2013
Third International Conference on, pages 8–15. IEEE.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing system-
atic literature reviews in software engineering. Technical report.

Kluckhohn, F. R. and Strodtbeck, F. L. (1961). Variations in value orienta-
tions.

Kniberg, H. and Ivarsson, A. (2012). Scaling agile @spotify. online], UCVOF,
ucvox. files. wordpress. com/2012/11/113617905-scaling-Agile-spotify-11.
pdf.

Kotter, J. P. et al. (1995). Leading change: Why transformation efforts fail.

Krasteva, I., Ilieva, S., and Dimov, A. (2010). Experience-based approach
for adoption of agile practices in software development projects. In Inter-
national Conference on Advanced Information Systems Engineering, pages
266–280. Springer.

Kroll, P. and MacIsaac, B. (2006). Agility and Discipline Made Easy:
Practices from OpenUP and RUP. Addison-Wesley Professional.

Kruchten, P. (2011). We do not need richer software process models. On-
line at: https: // philippe. kruchten. com/ 2011/ 03/ 11/ we-do-not-
need-richer-software-process-models/ .

Kruchten, P. (2013). Contextualizing agile software development. Journal
of Software: Evolution and Process, 25(4):351–361.

Krueger, R. A. (2014). Focus groups: A practical guide for applied research.
Sage publications.

Kuhrmann, M., Fernández, D. M., and Steenweg, R. (2013). Systematic
software process development: Where do we stand today? In Proceedings
of the 2013 International Conference on Software and System Process,
pages 166–170. ACM.

Kuvaja, P. (1995). Bootstrap: A software process assessment and improve-
ment methodology. Objective software quality, pages 31–48.

Larman, C. (2008). Scaling lean & agile development: thinking and organi-
zational tools for large-scale Scrum. Pearson Education India.

375

https://philippe.kruchten.com/2011/03/11/we-do-not-need-richer-software-process-models/
https://philippe.kruchten.com/2011/03/11/we-do-not-need-richer-software-process-models/

Bibliography

Larman, C. and Vodde, B. (2016). Large-scale scrum: More with LeSS.
Addison-Wesley Professional.

Laroche, L. (2012). Managing cultural diversity in technical professions.
Routledge.

Layman, L., Williams, L., and Cunningham, L. (2004). Exploring extreme
programming in context: An industrial case study. In Agile Development
Conference, 2004, pages 32–41. IEEE.

Layman, L., Williams, L., and Cunningham, L. (2006). Motivations and
measurements in an agile case study. Journal of Systems Architecture,
52(11):654–667.

Lee, G. and Kwak, Y. H. (2012). An open government maturity model for
social media-based public engagement. Government Information Quarterly,
29(4):492–503.

Lee, S. and Yong, H.-S. (2010). Distributed agile: project management in a
global environment. Empirical Software Engineering, 15(2):204–217.

Leffingwell, D. (2013). Scaled agile framework. Online at: http: //
scaledagileframework. com .

Leffingwell, D. (2016). SAFe R© 4.0 Reference Guide: Scaled Agile
Framework R© for Lean Software and Systems Engineering. Addison-Wesley
Professional.

Leppänen, M. (2013). A comparative analysis of agile maturity models. In
Information Systems Development, pages 329–343. Springer.

Lewis, R. (2011). Finland, cultural lone wolf. Nicholas Brealey Publishing.

Liebmann, L. W. (2003). Layout impact of resolution enhancement tech-
niques: impediment or opportunity? In Proceedings of the 2003 interna-
tional symposium on Physical design, pages 110–117. ACM.

Lindgren, I. (2014). Stakeholder involvement in public e-service development–
broadening the scope of user involvement. Electronic Government and
Electronic Participation: Joint Proceedings of Ongoing Research and
Projects of IFIP WG 8.5 EGOV and ePart 2014, 21:84–92.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero,
R., Williams, L., and Zelkowitz, M. (2002). Empirical findings in agile
methods. Extreme Programming and Agile Methods, XP/Agile Universe
2002, pages 81–92.

376

http://scaledagileframework. com
http://scaledagileframework. com

Bibliography

Linstone, H. and Turoff, M. (1975). The delphi method: Techniques and
applications.

Llamas, V., Coudert, T., Geneste, L., Bejarano, J. R., and De Valroger, A.
(2016). Experience reuse to improve agility in knowledge-driven indus-
trial processes. In Industrial Engineering and Engineering Management
(IEEM), 2016 IEEE International Conference on, pages 651–655. IEEE.

MacGregor, E., Hsieh, Y., and Kruchten, P. (2005). The impact of intercul-
tural factors on global software development. In Canadian Conference on
Electrical and Computer Engineering, 2005., pages 920–926. IEEE.

Mackinnon, T. (2004). Xp: Have you got the discipline? TickIt International
magazine.

Mahnic, V. (2012). A capstone course on agile software development using
scrum. IEEE Transactions on Education, 55(1):99–106.

Mann, C. and Maurer, F. (2005). A case study on the impact of scrum on
overtime and customer satisfaction. In Agile Conference, 2005. Proceedings,
pages 70–79. IEEE.

Marchenko, A. and Abrahamsson, P. (2008). Scrum in a multiproject
environment: An ethnographically-inspired case study on the adoption
challenges. In Agile, 2008. AGILE’08. Conference, pages 15–26. IEEE.

McCall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in software
quality. General Electric, National Technical Information Service.

McFeeley, B. (1996). Ideal: A user’s guide for software process improvement.
Technical report, DTIC Document.

McIntyre, R. M. and Dickinson, T. L. (1997). A conceptual framework for
teamwork measurement. In Team performance assessment and measure-
ment, pages 31–56. Psychology Press.

McSweeney, B. (2002). Hofstede model of national cultural differences and
their consequences: A triumph of faith-a failure of analysis. Human
relations, 55(1):89–118.

Mehrfard, H. and Hamou-Lhadj, A. (2011). The impact of regulatory
compliance on agile software processes with a focus on the fda guidelines
for medical device software. International Journal of Information System
Modeling and Design (IJISMD), 2(2):67–81.

377

Bibliography

Mens, T. and Van Gorp, P. (2005). A taxonomy of model transformation. In
International Workshop on Graph and Model Transformation (GraMoT):
a satellite event of the Fourth International Conference on Generative
Programming and Component Engineering (GPCE), Tallinn, Estonia,
September 28, 2005.

Mergel, I. (2016). Agile innovation management in government: A research
agenda. Government Information Quarterly, 33(3):516–523.

Microsoft: DEV212x (2017). Introduction to devops (edx online course).

Mikulėnas, G. and Butleris, R. (2010). An approach for constructing eval-
uation model of suitability assessment of agile methods using analytic
hierarchy process. Elektronika ir Elektrotechnika, 106(10):99–104.

Mikulėnas, G., Butleris, R., and Nemuraitė, L. (2011). An appraoch for
the metamodel of the framework for a partial agile method adaptation.
Information Technology And Control, 40(1):71–82.

MIL-STD-1521A (1976). Technical Reviews and Audits for Systems, Equip-
ment, and Computer Programs, Version A.

MOF (2011). Meta Object Facility (MOF) Core Specification, Version 2.4.1.
Online at : http://www.omg.org/spec/MOF/2.4.1/.

Morden, T. (1999). Models of national culture: a management review. Cross
Cultural Management: An International Journal, 6(1):19–44.

Morgan, D. L. (1996). Focus groups. Annual review of sociology, 22(1):129–
152.

Naur, P. and Randall, B. (1968). Software engineering: A report on a nato
conference. Garmisch, Germany, October, pages 7–10.

Nerur, S., Mahapatra, R., and Mangalaraj, G. (2005). Challenges of migrat-
ing to agile methodologies. Communications of the ACM, 48(5):72–78.

Odell, J. (1996). A primer to method engineering. In Method Engineering,
pages 1–7. Springer.

OPF (2009). Open process framework. Online at : http://www.opfro.org/.

Osterweil, L. (1987). Software processes are software too. In Proceedings
of the 9th international conference on Software Engineering, pages 2–13.
IEEE Computer Society Press.

Overby, E., Bharadwaj, A., and Sambamurthy, V. (2006). Enterprise agility
and the enabling role of information technology. European Journal of
Information Systems, 15(2):120–131.

378

http://www.omg.org/spec/MOF/2.4.1/
http://www.opfro.org/

Bibliography

Packlick, J. (2007). The agile maturity map a goal oriented approach to
agile improvement. In Agile Conference (AGILE), 2007, pages 266–271.
IEEE.

Padberg, F. and Muller, M. M. (2003). Analyzing the cost and benefit of
pair programming. In Software Metrics Symposium, 2003. Proceedings.
Ninth International, pages 166–177. IEEE.

Palmer, S. R. and Felsing, M. (2001). A practical guide to feature-driven
development. Pearson Education.

Patel, C., De Cesare, S., Iacovelli, N., Merico, A., et al. (2004). A frame-
work for method tailoring: a case study. In 2nd OOPSLA Workshop on
Method Engineering for Object-Oriented and Component-Based Develop-
ment, pages 1–14. Citeseer.

Patel, C. and Ramachandran, M. (2009). Agile maturity model (AMM): A
Software Process Improvement framework for agile software development
practices. International Journal of Software Engineering, IJSE, 2(1):3–28.

Perry, T. (2008). Drifting toward invisibility: The transition to the electronic
task board. In Agile 2008 Conference.

Petersen, K. (2010). Implementing Lean and Agile software development in
industry. PhD thesis.

Pfleeger, S. L. and Rombach, H. D. (1994). Measurement based process
improvement. IEEE Software, 11(4):8–11.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., and Still, J. (2008).
The impact of agile practices on communication in software development.
Empirical Software Engineering, 13(3):303–337.

Pikkarainen, M., Salo, O., and Still, J. (2005). Deploying agile practices in
organizations: a case study. Software Process Improvement, pages 16–27.

Poppendieck, M. (2007). Lean software development. In Companion to the
proceedings of the 29th International Conference on Software Engineering,
pages 165–166. IEEE Computer Society.

Poppendieck, M. and Poppendieck, T. (2003). Lean software development:
An agile toolkit. Addison-Wesley Professional.

Powner, D. (2012). Software development: effective practices and federal
challenges in applying agile methods.

379

Bibliography

Pries-Heje, L. and Pries-Heje, J. (2011). Why scrum works: A case study
from an agile distributed project in denmark and india. In Agile Conference
(AGILE), 2011, pages 20–28. IEEE.

Pyzdek, T. and Keller, P. A. (2014). The six sigma handbook, volume 4.
McGraw-Hill Education New York.

Qumer, A. (2010). A framework to assist in the assessment and tailoring of
agile software development methods. PhD thesis.

Qumer, A. and Henderson-Sellers, B. (2006). Comparative evaluation of
xp and scrum using the 4d analytical tool (4-dat). In Proceedings of the
European and Mediterranean Conference on Information Systems.

Qumer, A. and Henderson-Sellers, B. (2008). A framework to support
the evaluation, adoption and improvement of agile methods in practice.
Journal of Systems and Software, 81(11):1899–1919.

Qumer, A., Henderson-sellers, B., and Mcbride, T. (2007). Agile adoption
and improvement model.

Rabiee, F. (2004). Focus-group interview and data analysis. Proceedings of
the nutrition society, 63(4):655–660.

Reed, P. (2008). An agile classroom experience. In Agile, 2008. AGILE’08.
Conference, pages 478–483. IEEE.

Reifer, D. J., Maurer, F., and Erdogmus, H. (2003). Scaling agile methods.
IEEE software, 20(4):12–14.

Ricci, F., Rokach, L., and Shapira, B. (2015). Recommender systems:
introduction and challenges. In Recommender systems handbook, pages
1–34. Springer.

Ringstad, M. A., Dingsøyr, T., and Brede Moe, N. (2011). Agile process
improvement: Diagnosis and planning to improve teamwork. Systems,
Software and Service Process Improvement, pages 167–178.

Robinson, H. and Sharp, H. (2005). Organisational culture and xp: three
case studies. In Agile Conference, 2005. Proceedings, pages 49–58. IEEE.

Robson, C. and McCartan, K. (2016). Real world research. John Wiley &
Sons.

Rolland, K. H., Mikkelsen, V., and Næss, A. (2016). Tailoring agile in
the large: Experience and reflections from a large-scale agile software
development project. In International Conference on Agile Software
Development, pages 244–251. Springer.

380

Bibliography

Royce, W. W. (1970). Managing the development of large software systems.
In proceedings of IEEE WESCON, volume 26, pages 328–338. Los Angeles.

Saaty, T. L. (1988). What is the analytic hierarchy process? In Mathematical
models for decision support, pages 109–121. Springer.

Saleh, M. H. (2013). Methodology for selection of agile practices. PhD thesis.

Salo, O. (2005). Systematical validation of learning in agile software devel-
opment environment. In Biennial Conference on Professional Knowledge
Management/Wissensmanagement, pages 106–110. Springer.

Salo, O. (2006). Enabling software process improvement in agile software
development teams and organisations.

Salo, O. and Abrahamsson, P. (2005). Integrating agile software development
and software process improvement: a longitudinal case study. In Empirical
Software Engineering, 2005. 2005 International Symposium on, pages
10–pp. IEEE.

Salo, O. and Abrahamsson, P. (2007). An iterative improvement process for
agile software development. Software Process: Improvement and Practice,
12(1):81–100.

Satir, V. and Banmen, J. (1991). The Satir model: Family therapy and
beyond. Science and Behavior Books.

Schlager, K. J. (1956). Systems engineering - key to modern development.
IRE Transactions on Engineering Management, 3(EM-3):64–66.

Schmitz, L. and Weber, W. (2014). Are hofstede’s dimensions valid? a test
for measurement invariance of uncertainty avoidance. interculture journal:
Online-Zeitschrift für interkulturelle Studien, 13(22):11–26.

Schroeder, A., Klarl, A., Mayer, P., and Kroiß, C. (2012). Teaching agile
software development through lab courses. InGlobal Engineering Education
Conference (EDUCON), 2012 IEEE, pages 1–10. IEEE.

Schwaber, K. (1995). Scrum development process. In OOPSLA Business
Object Design and Implementation Workshop, volume 27, pages 10–19.
Austin, TX.

Sfetsos, P., Stamelos, I., Angelis, L., and Deligiannis, I. (2009). An experi-
mental investigation of personality types impact on pair effectiveness in
pair programming. Empirical Software Engineering, 14(2):187.

381

Bibliography

Sharp, H., Robinson, H., and Petre, M. (2008). The role of physical arte-
facts in agile software development: Two complementary perspectives.
Interacting with computers, 21(1-2):108–116.

Sherehiy, B., Karwowski, W., and Layer, J. K. (2007). A review of enterprise
agility: Concepts, frameworks, and attributes. International Journal of
industrial ergonomics, 37(5):445–460.

Siakas, K. V. and Siakas, E. (2007). The agile professional culture: A
source of agile quality. Software Process: Improvement and Practice,
12(6):597–610.

Sidky, A. S. (2007). A structured approach to adopting agile practices: The
agile adoption framework. PhD thesis, Virginia Tech.

Simon, H. A. (1996). The sciences of the artificial. MIT press.

Simonofski, A., Ayed, H., Vanderose, B., and Snoeck, M. (2018). From
traditional to agile e-government service development: Starting from
practitioners’ challenges. In Americas Conference on Information Systems,
Boston. Association for Information Systems (AIS).

Simonofski, A., Snoeck, M., Vanderose, B., Crompvoets, J., and Habra,
N. (2017). Reexamining e-participation: Systematic literature review on
citizen participation in e-government service delivery.

Sjoberg, D. I., Dyba, T., and Jorgensen, M. (2007). The future of em-
pirical methods in software engineering research. In Future of Software
Engineering, 2007. FOSE’07, pages 358–378. IEEE.

SPEM (2008a). Software & systems process engineering metamodel specifi-
cation, version 2. Online at : http://www.omg.org/spec/SPEM/2.0/.

SPEM (2008b). SPEM 2.0 UML 2 Profile. Online at : http://www.omg.
org/spec/SPEM/2.0/.

Stamelos, I. and Sfetsos, P. (2007). Agile software development quality
assurance. Igi Global.

Stankovic, D., Nikolic, V., Djordjevic, M., and Cao, D.-B. (2013). A survey
study of critical success factors in agile software projects in former yu-
goslavia it companies. Journal of Systems and Software, 86(6):1663–1678.

Strode, D. E., Huff, S. L., and Tretiakov, A. (2009). The impact of organiza-
tional culture on agile method use. In System Sciences, 2009. HICSS’09.
42nd Hawaii International Conference on, pages 1–9. IEEE.

382

http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/SPEM/2.0/

Bibliography

Susman, G. I. and Evered, R. D. (1978). An assessment of the scientific
merits of action research. Administrative science quarterly, pages 582–603.

SW-CMMI (2002). CMMI for Systems Engineering/Software Engineering/In-
tegrated Product and Process Development/Supplier Sourcing, Version
1.1, Continuous Representation.

Takeuchi, N. (1995). The knowledge creating company: How japa-nese
company create the dynamics. Oxford: Oxford Un-iversity Press.

Thiollent, M. (2011). Action research and participatory research: An
overview. International Journal of Action Research, 7(2):160–174.

Tolfo, C. and Wazlawick, R. S. (2008). The influence of organizational
culture on the adoption of extreme programming. Journal of systems and
software, 81(11):1955–1967.

Tomasini, A. and Kearns, M. (2012). Agile transition-what you need to
know before starting. InfoQueue Enterprise Software Development Series.

Tran, Q., Henderson-Sellers, B., and Hawryszkiewycz, I. (2009). Some
method fragments for agile software development. In Handbook of Research
on Modern Systems Analysis and Design Technologies and Applications,
pages 223–242. IGI Global.

Triandis, H. C. (1995). Individualism & collectivism. Westview press.

Tudor, D. and Walter, G. A. (2006). Using an agile approach in a large,
traditional organization. In Agile Conference, 2006, pages 7–pp. IEEE.

Turner, R. and Jain, A. (2002). Agile meets CMMI: Culture clash or common
cause? In Conference on Extreme Programming and Agile Methods, pages
153–165. Springer.

Vallon, R., da Silva Estácio, B. J., Prikladnicki, R., and Grechenig, T.
(2018). Systematic literature review on agile practices in global software
development. Information and Software Technology, 96:161–180.

Van Solingen, R. and Berghout, E. (1999). The Goal/Question/Metric
Method: a practical guide for quality improvement of software development.
McGraw-Hill.

van Velsen, L., van der Geest, T., ter Hedde, M., and Derks, W. (2009).
Requirements engineering for e-government services: A citizen-centric
approach and case study. Government Information Quarterly, 26(3):477–
486.

383

Bibliography

Vanderose, B., Ayed, H., and Habra, N. (2014). Software quality in an
increasingly agile world. ERCIM News, 2014(99).

Vanderose, B. et al. (2012). Supporting a model-driven and iterative quality
assessment methodology: The MoCQA framework. PhD thesis, PhD thesis,
University of Namur.

Vanderose, B. and Habra, N. (2011). Tool-support for a model-centric quality
assessment: Quatalog. In Software Measurement, 2011 Joint Conference
of the 21st Int’l Workshop on and 6th Int’l Conference on Software Process
and Product Measurement (IWSM-MENSURA), pages 263–268. IEEE.

VersionOne (2017). 11th annual state of agile report. Online at : http:
// www. versionone. com/ .

VersionOne (2018). 12th annual state of agile survey. In Technical Report.
Version One.

Vitalari, N. P. (1985). The need for longitudinal designs in the study of
computing environments. Public Policy Research Organization, University
of California.

Wieringa, R. (2010). Design science methodology: principles and practice. In
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2, pages 493–494. ACM.

Williams, L. and Cockburn, A. (2003). Guest editors’ introduction: Agile
software development: It’s about feedback and change. Computer, 36(6):39–
43.

Williams, L., McCrickard, D. S., Layman, L., and Hussein, K. (2008). Eleven
guidelines for implementing pair programming in the classroom. In Agile,
2008. AGILE’08. Conference, pages 445–452. IEEE.

Womack, J. (2013). Gemba Walks: Expanded 2nd Edition. Lean Enterprise
Institute.

Wu, Y., Wang, G., Li, W., and Li, Z. (2008). Automatic chatbot knowledge
acquisition from online forum via rough set and ensemble learning. In
Network and Parallel Computing, 2008. NPC 2008. IFIP International
Conference on, pages 242–246. IEEE.

Wynekoop, J. L. and Walz, D. B. (2000). Investigating traits of top perform-
ing software developers. Information Technology & People, 13(3):186–195.

384

http://www.versionone.com/
http://www.versionone.com/

Bibliography

Yasuoka, M. and Sakurai, R. (2012). Out of scandinavia to asia: adaptability
of participatory design in culturally distant society. In Proceedings of
the 12th Participatory Design Conference: Exploratory Papers, Workshop
Descriptions, Industry Cases-Volume 2, pages 21–24. ACM.

Yin, A., Figueiredo, S., and da Silva, M. M. (2011). Scrum maturity model.
Proceedings of the ICSEA, pages 20–29.

Yin, R. K. (1994). Case study research: Design and methods (applied social
research methods, vol. 5). Sage Publications, Beverly Hills, CA. Rick
Rantz Leading urban institutions of higher education in the new millennium
Leadership & Organization Development Journal, 23(8):2002.

Yin, R. K. (2017). Case study research and applications: Design and methods.
Sage publications.

Yu, X. and Petter, S. (2014). Understanding agile software development
practices using shared mental models theory. Information and Software
Technology, 56(8):911–921.

Zahran, S. (1998). Software process improvement. Addison-wesley.

Zeithaml, V. A., Rajan Varadarajan, P., and Zeithaml, C. P. (1988). The
contingency approach: its foundations and relevance to theory building
and research in marketing. European Journal of Marketing, 22(7):37–64.

385

	Contents
	List of Figures
	List of Tables
	Introduction
	Contribution
	Outline
	Publications

	Problem Statement
	Research Background
	Disciplined Software Development
	Defining Discipline
	Characteristics
	Approaches Overview
	Software Quality Management
	Software Process Improvement

	Agile Software Development
	Defining Agility
	Characteristics
	Approaches Overview
	Software Quality Management
	Software Process Improvement

	Research Scope
	Customization
	Adoption
	Assessment
	Improvement

	Summary

	Related Work and Research Questions
	Maturity-based Approaches
	Existing Research
	Limitations

	Contingency Factor Approaches
	Existing Research
	Limitations

	Method Engineering Approaches
	Existing Research
	Limitations

	Experience-based Approaches
	Existing Research
	Limitations

	Discussion and Research Questions
	SME Perspective
	Context Study Perspective
	Customization and Capitalization Perspective

	AMQuICk Framework
	Framework Design
	Review of Research Methodologies
	Design Science Methodology for Building AMQuICk
	Design Iterations
	Exploration and Evaluation

	Framework Overview
	Claim
	Founding Principles
	Flexible Customization
	Growing Customization Knowledge
	Shared Mental Model
	Continuous, Bottom-up and Goal-driven Improvement

	The AMQuICk Framework
	Context of Use
	Life-cycle
	Framework Artifacts

	SME Perspective
	Agile Method Engineering
	Requirements for an Agile Method Engineering Approach
	Method Engineer Role
	Description of Method Components
	Construction of Situational Methods
	Summary

	Existing Method Engineering Approaches
	OPF
	ISO/IEC 24744
	SPEM
	Essence
	Comparison

	Proposal for the AMQuICk Metamodel

	AMQuICk Essence Core
	Specification
	Structure
	Foundation Package
	LanguageElement
	BasicElement
	ElementGroup
	Method
	Practice
	PracticeAssociation
	PracticeRepository
	UserDefinedType
	Resource
	Tag

	Practice Content package
	Activity and ActivityAssociation
	Competency and CompetencyLevel
	Workproduct and LevelOfDetail
	Criterion, CompletionCriterion and EntryCriterion
	Role and RoleUse
	Measure

	Practice Authoring Examples
	Illustration: Intel Shannon Case Study
	XP Usage
	Scrum Usage
	Reflection on AMQuICk Essence Refinement

	Summary

	AMQuICk Repository of Practices
	CAME Tools and AMQuICk
	DSM Tools and AMQuICk
	Repository of Practices
	Objectives
	Overview
	Architecture

	Practice Modeler
	Objectives
	Overview

	Summary

	Context Study Perspective
	SPW Case Study
	Background
	Methodology
	Objectives
	Data Collection
	Data Analysis

	Results
	Organizational Context Study
	Project's Context Study

	Discussion
	Lessons Learned

	E-Gov Case Study
	Background
	Methodology
	Objectives
	Data Collection
	Data Analysis

	Results
	Internal Competences
	Business Availability
	Regulatory Compliance
	Management and Political Support
	User Involvement
	Hierarchal Structure
	Innovation Management
	Domain Complexity

	Discussion
	Lessons Learned

	Culture Case Study
	Background
	Methodology
	Objectives
	Data Collection
	Data Analysis

	Results
	Team commitment to Practices
	Team Empowerment
	Team Transparency and Cohesion
	Team's External Communication
	Team Multidisciplinarity
	Team Motivation
	Customer Involvement
	Continuous Improvement

	Discussion
	Lessons Learned

	Customization and Capitalization Perspective
	AMQuICk Customization and Capitalization
	Proposal
	Context Modeling
	Context Defined
	AMQuICk Essence Extension - Context Package
	Example

	Customization Modeling
	Customization Defined
	AMQuICk Essence Extension - Customization Package
	Example

	Customization Matrices
	Format
	Interpretation
	Population

	Facilitation Tools
	Improvement Backlog
	Capitalization Workshop

	Summary

	Illustrations
	Intel Shannon Customization
	SPW Customization
	Culture-based Customization
	Agile Customization in a Master's Capstone Course
	Background
	Objectives and Data Collection
	Implemented Method
	Key Learnings and Recommendations

	Summary

	Closing Comments
	Discussion
	Contribution
	Practitioners' Feedback
	Feedback Collection
	Feedback Discussion

	Limitations
	Perspectives

	Conclusion
	Appendices
	Semi-structured Interview Guide
	SPW case study - D443 IT department details
	Structure
	Development Life-cycle
	Example Workflow

	Bibliography

