
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER EN SCIENCES INFORMATIQUES

Etude et réalisation d'un générateur d'écrans en langage C

Geltmeyer, Yves

Award date:
1987

Awarding institution:
Universite de Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 15. Jan. 2026

https://researchportal.unamur.be/fr/studentTheses/77cdab25-0d20-43e8-a2bc-32889fe1a3f2

FACULTES

UNIVERSITAIRES

N.D. DE LA PAIX

INSTITUT D'INFORMATIQUE

Etude et réalisation

d'un générateur d'écrans

en langage C.

Mémoire préaenté par
'l\les GEL TMEYER

en vue de l'obtentlon du
dlplome de llcenclé

en Informatique.

Année académique 1986 -1987.

Je remercie particulièrement Monsieur GIGOT pour l'aide constante
qu'il m'a prodigué,Let pour le temps qu'il a consacré pour la
réalisation de ce mémoire.

J'exprime également ma gratitude â Monsieur BOULANGER pour
l'acceuil agréable qu'il m'a réservé au sein de sa société.

\J

Mes remerciements vont aussi â mon épouse pour sa patience et son
soutien moral.

/

CSGEN C SCREEN GENERATOR

S..QMMAIRE.

Paragra.R-"-'h'"""e'---------- ----- -------- ----------=~-ë;!_g_§.

CHAPITRE 1
INTRODUCTION.

1.1 La société.
1.2 Etude des besoins.
1.3 Historique.
1.4 Aperçu du travail.

CHAPITRE 2

2. 1
2.2
2.3

. 2.4
2.5
2.6
2.7
2.8
2.9
2. 10
2. 11
2. 12
2. 13
2. 14

CONCEPTS GENERAUX UTILISES PAR CSGEN.

Conception générale des images écran.
Constituants des images-écrans.
Les différents types d'écrans.
Les écrans de dialogue .
Les écrans de menu .
Les écrans de servitude .
Les attributs d'affichage.
Les modes d'édition d'un écran de dialogue.
Exemple d'application interactive.
Images-écrans induites par l'exemple .
Analogie entre dialogue-écran et graphe.
Les touches de fonction .
Les appels de fonctions-arcs et le scénario .
Les écrans logiques et physiques.

CHAPITRE 3

3. 1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9
3 .10
3. 11
3 .12
3 . 13

CSGEN UTILITAIRE.

L'écran de fond.
Composantes des écrans logiques.
Liaison écran - programme.
Type des zones de saisie.
Les tests de validité.
Quand tester la validité d'une zone de
Le format d'une zone de saisie

Les zones String (cadrées à gauche)
Les zones numériques
Les caractères d'insertion

Les touches de sortie d'écran.
synthèse.
Génération de code source.
Pourquoi une pile d'écrans?
Les écrans de type menu
Les écrans d'aide

saisie ?

1

1
1
2
2

3

3
5
7
7
7
7
7
9
9

10
10
23
23
26

31

32
32
32
33
33
34
34
34
34
35
35
35
43
43
44
44

3.14 Les fonctions disponibles lors de la saisie d'un écran. 45
3.15 Les primitives de CSGen 48
3.16 Fonctions de tests de validité. 49
3.17 Les programmes constituant CSGen 50
3.18 L'éditeur d'écrans. 51

Fichier-écran de fond. 51
Fichier-écran logique. 52
Fichier-écran de menu. 52
Fichier-écran d'aide d'un écran logique . 53

3.19 Les fichiers de définition. 53
3.20 Le compilateur d'écrans et la 11 run-time library" . 54
3.21 Le programme d'impression. 59
3.22 Exemple de programme utilisant CSGen utilitaire. 59

CHAPITRE 4

4. 1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4. 10
4 .11
4. 12
4. 13
4 .14

CSGEN SUPERVISEUR.

L'idée de scénario
Les limitations de CSGen utilitaire
L'écran de fond
La zone des options
La notion de grilles d'écran
Les attributs des zones de saisie
La zone d'effacement
Uniquement des écrans physiques
Les fonctions-arc, le passage d'arguments
L'acceptation des écrans.
L'efficacité de CSGen superviseur .
Compatibilité avec d'autres langages évolués.
Les fonctions du gestionnaire.
Les zones de saisie d'un écran.

La liaison programme-écran.
Les tests de validité.

CHAPITRE 5

5. 1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5 .10
5. 11
5 .12
5 .13

IMPLEMENTATION DE CSGEN SUPERVISEUR.

Portabilité.
Hardware.
Software.

Les fonctions d'accès à l'écran.
Les fonctions de gestion de fichiers.

Performances.
L'édition des écrans.
Les composants élémentaires.
Les dessins d'écran.
Les zones de sa1s1e.
Les zones de fond.
~'édition de l'écran de fond.
L'édition des grilles d'écran.
L'édition des écrans physiques.
Edition du scénario.

63

63
65
66
67
67
68
69
70
71
77
80
80
80
81
81
81

82

82
82
83
84
84
84
85
85
85
87
88
88
89
89
89

5.14 Le compilateur d'écrans.
5.15 La librairie d'exécution.
5.16 Le programme d'installation.
5.17 Le schéma entité-association de CSGen.

CHAPITRE 6
EXTENSIONS DE CSGEN SUPERVISEUR.

6.1 La gestion de la souris.
6.2 Amélioration des écrans d'aide.
6.3 Vers un langage de quatrième génération.

CHAPITRE 7
CONCLUSION.

BIBLIOGRAPHIE.

90
90
90
91

94

94
96
98

99

100

TABL.E ___ DES __ FIGURESJ

Figu_re ~---~D~é~s~i_gnation de la figure Page

FIGURE 2 .1. Position géométrique des sous-ensembles d'un écran. 4
FIGURE 2.2. Un exemple d'image-écran 4
FIGURE 2.3. Un exemple d'image-écran éditée par l'utilisateur 6
FIGURE 2.4. Un exemple d'écran de menu 8
FIGURE 2.5. Un exemple d'écran de servitude 8
FIGURE 2. 6. Images-écrans de la premiere solution. 11
FIGURE 2.7. Images-écrans de la seconde solution. 17
FIGURE 2. 8. Graphe de la première solution. 21
FIGURE 2.9. Graphe de la seconde solution. 22
FIGURE 2. 10. Graphe complet de la seconde solution . 25
FIGURE 2. 11. Ecrans logiques de la seconde solution. 27

FIGURE 3 .1. Exemples de numérotation de zones 47

FIGURE 4 .1. Scénario de la seconde solution. 64
FIGURE 4.2. Exemple de problème d'acceptation d'écran. 79

FIGURE 5. 1. Schéma E-A de CSGen Superviseur. 92
FIGURE 5. 2. Schéma E-A de CSGen Utilitaire. 93

FIGURE 6. 1. Exemple de menu déroulant. 95
FIGURE 6.2. Exemple d'icône. 95
FIGURE 6. 3. Exemple de scénario d'aide. 97

CHAPITRE 1 : INTRODUCTION.

1 . 1 La société.

Fin août 1986 la société Prologic souhaitait étendre son
département Développement de Logiciels, sous les différents
sys t èmes d'exploitation qui accompagnent les systèmes
informatiques qu'elle commercialise, c 'est-à-dire MS-DOS, CCPM-86
et UNIX.

Dans une telle approche, la portabilité a été pressentie comme
fondamentale, c'est la principale raison qui a amené les
responsables de la société à choisir le l angage C pour développer
ses applications.

Prologic développe presque exclusivement des programmes de
gestion, impliquant l'utilisation d'util itaires tels que
gestionnaires de fichi er, SGBD, gestionnaires d'écrans, ...

Sous MS-DOS, le Lattice C est disponible avec son gestionnaire de
fichiers, DBC3-ISAM. De même sous UNIX et CCPM-86, divers
utilitaires sont disponibles, par exemple C-ISAM. Par contre, le
nombre de gestionnaires d'écrans disponibles sur le marché est
beaucoup plus limitée , ou bien ils sont peu puissants, ou encore
d'un coût prohibitif. Il faut également souligner que beaucoup de
gestionnaires d'écrans disponibles sous MS-DOS sont soit associés
au langage BASIC, soit non portables à cause d'appels trop
nombreux au BIOS des ordina teurs compatibles avec l'IBM-PC.
Enfin, sous UNIX, le transfert de progra mmes sur des machines de
modèles ou de constructeurs différents nécessite souvent une
recompilation car les environnements hardware (CPU, .. .) sont très
disparates.

1.2 Etude des besoins.

Ces constatations ont amené les responsables de Prologic à
envisager la réalisation de leur propre gestionnaire d'écrans. Un
cahier de charge a alors été dressé, en voici les points
principaux :

Performance

Les utilisateurs
gestion d'écran
maintenue.

Versatilité

d'un Personal Computer sont habitués à voir une
très rapide et cette approche doit être

Il ne faut imposer ni restrictions, ni "l ourdeur" au programmeur
qui utilisera le logiciel.

1

Simplicité

Les notions de base et l'utilisation du gestionnaire doivent être
rapidement assimilables par le personnel.

Ergonomie

Le gestionnaire doit respecter (si possible imposer) une grande
convivialité pour l'utilisateur final.

Portabilité

Le gestionnaire ne doit utiliser aucune particularité d'un
système d'exploitation et doit pouvoir être utilisé sur une
grande variété de terminaux.

1.3 Historique.

Le développement de la première version du générateur d'écrans
s'est terminée en décembre 1986. Elle a été baptisée "CSGen", les
initiales de "C Screen GENerator".

Bien qu'opérationnelle et employée au sein de la société, cette
version a montré quelques inconvénients qui seront énoncés au
paragraphe 4.2. En effet, les écrans y sont vus comme une simple
suite de caractères affichés sur l'écran ou lus à partir du
clavier.
La lecture de l'ouvrage "L'informatique conversationnelle" de
B.Faulle nous a éclairé quant au rôle de pilote que possèdent les
écrans dans une application conversationne lle .
La fusion des concepts dégagés par B.Faulle avec ceux gui ont été
introduits par la première version de CSGen a abouti à la
réa l isation de la seconde version du générateur d'écrans.

1.4 Aperçu du travail.

Le chapitre 2 commence par énoncer quelques notions élémentaires
liées à la gestion d'écrans; au paragraphe 2.9, nous énonçons un .
exemple qui servira de base au développement des autres concepts
liés à la gestion d'écrans.

Le chapit re 3 décrit
uti l itaire appuyé par
générateur d'écrans.

les concepts et le fonctionnement de CSGen
un exemple de programme utilisant le

Le chapitre 4 reprend la démarche du chapitre 3, mais appliquée à
la version superviseur de CSGen.

2

CHAPITRE 2 : CONCEPTS GENERAUX UTILISES PAR CSGEN.

Les relations homme-machine constituent une problématique
importante à l'heure où presque chaque individu utilise un
système informatique. Il est impératif que ces relations soient
étudiées de manière à éviter à l'utilisateur une trop grande
fatigue visuelle ou nerveuse .

Etant donné que l'interface homme-machine se compose d'un clavier
et d'un écran, la conception des écrans présentés à l'utilisateur
doit permettre une meilleure communication. On peut dés à présent
dégager les caractéristiques suivantes

- Grande lisibilité des écrans.
- Utilisation rationnelle du clavier .
- Permanence d'un "style" de présentation pour toutes les

applications utilisées par une personne.

2.1 Conception générale des images écran.

Une image écran devrait comporter au moins les sous-ensembles
suivants :

- Un sous-ensemble TITRE.
- Un sous-ensemble CORPS D'ECRAN .
- Un sous-ensemble MESSAGES .
- Un sous-ensemble OPTIONS.

Ceux-ci pourraient se répartir géométriquement de la façon
illustrée à la figure 2.1.

Le sous-ensemble TITRE

Il contient des informations qui doivent toujours être
présentes sur l'écran la date, l'heure, ... et, bien
entendu, la description de l'image-écran affichée.

Le sous-ensemble CORPS D'ECRAN :

Il contient les informations affichées par le programme et
les réponses entrées par l'opérateur . Le corps d'écran est
le seul sous-ensemble où se déroule un réel "dialogue".

Le sous-ensemble MESSAGES :

Il est destiné à recevoir le texte des messages
invitations, ...

Le sous-ensemble OPTIONS

erreurs,

Il informe l'utilisateur des choix qu'il peut effectuer à
partir de l'écran affiché. En pratique les options sont
basées sur l'utilisation•des touches de fonction.

3

.I.GIJRE 2 . 1 . Position géométrique des sous-ensembles d ' un écran .

I GURE 2.2.

CLISIGNAL

TITRE

CORPS

DE

L'ECRAN

MESSAGES

OPTIONS

Un e xem le d'ima e-écran

CREATION CLIENT: SAISIE SIGNALETIQUE

Nom d u client

Prénom
:::::::: : :::::::::::::::: : : :::::: : : :::::: : : :::::::::::: : ::: : ::::::: :

Adresse

PTT Localité

Naissance Compte No ···················-· ------
::: : : ::::--c: : : ::: :::::::::: : : : : --c: ::::

Chiffre d ' affaire XXXXXXXXXX Francs

Msg: XX

F10 = Acceptation et création Esc

xxxxxxxxxxx

= Retour menu

4

2.2 Constituants des images-écrans.

De c e qui précède, on peut dégager les constituants de base des
ima ges-écrans. Nous allons utiliser un exemple formé d'un écran
qui permet à l'utilisateur d'encoder le signalétique d'un client
(Voir figure 2.2.).

Ces constituants de base sont :

Un ensemble ordonné de caractères formant le texte del' image­
écran, ce texte est figé par le développeur et non accessible à
l'utilisateur. Un texte est lié à un sous-ensemble de l'écran.
Dans l'exemple, le texte "SAISIE SIGNALETIQUE" appartient au
s o us - ensemble Titre et le texte "Nom du client" appartient au
sous - ensemble Corps d'écran .

- Un ensemble de portions de l'écran réservées à l'affichage
caractères tapés par l'utilisateur et appelées zones
saisie. Elles sont représentées sur la figure 2 par
caractère spécial •m•.

des
de
le

- Un ensemble de portions de
texte évoluant au c ours du
portions sont appelées zones
. .) . Sur la figure 2, ces
caractère 'X'.

l'écran réservées à l'affichage de
déroulement de l'application, ces
de sortie (Heure, messages divers,
zones sont représentées par le

- Un nom qui permet d'identifier un écran parmi l'ensemble des
écrans utilisés par un programme. L'image-écran de la figure
2 . 2. s'appelle "Cl isignal" .

Lorsque cet écran est proposé à l'uti l isateur, ce dernier y édite
les informations, l'image-écran pourra alors avoir l'apparence de
la figure 2.3 .

5

IGURE ,., <
...:_ • • 1 • Un exemple d'image-écran éditée par l'utilisateur

CLISIGNAL CREATION CLIENT SAISIE SIGNALETIQUE

Nom du client DUPONT

Prénom Henri

Adresse rue du préau, 67

F"TT 6543 Localité Bruxel les-lez--antoing

Naissance 26-02-59 Compte No 012-7896543-12

Chiffre d ' aff a ire 0. 00 Fra.ncs

Ms g : Le client DUPONT a été enregistré avec succès.

10 = Accep t ation et création Esc= Retour menu

6

2,3 Les différent~ types d'écrans.

2.4 Les écrans de dialogue.

Les écrans
sa i sie des
type.

de dialogue
données. La

sont nécessaires à l ' affichage et à la
figure 2.2 . représente un écran de ce

2. 5 L_es écrans de m!;illJ.L_.

Un écran de menu propose à l'utilisateur un ensemble de choix,
c'est-à-dire l'ensemble des possibilités offertes par
l'application à un moment donné .
On peut apparenter un menu à un aiguillage dans les traitements.
Un écran de menu est illustré à la figure 2.4 .

2.6 Les écrans de servitude.

De manière à lui faciliter la tâche il est souvent utile de
renseigner l'utilisateur sur la conduite à tenir face à un
problème.
Le "guide opérateur ou écran d'aide" est l ' exemple type d'écran
de servitude. L'écran de servitude ne modifie pas le déroulement
du dialogue mais fournit des informations supplémentaires sur le
fonctionnement du programme ou sur l'écran de dialogue affiché.
La figure 2.5. illustre un écran de servitude.

2.7 Les attributs d-=--a.f_f__ichage.

Les attributs d'affichage sont dépendants des caractéristiques du
terminal et permettent d ' attirer l'attention de l'utilisateur sur
un texte affiché sur l'écran, ou de distinguer les textes et les
zones de saisie.

7

[GUF:E 2. 4. Un exemple d'écran de menu

SELECTION DU FICHIER

1. Gestion du fichier des clients

2. Gestion du fichier des articles

Entrez votre choix : D

-1• = Acceptation Esc= Fin du programme

GURE 2.5 . Un exemole d'écran de servitude

Ecran d ' aide de l'écran CLISIGNAL.

Le nom du client constitue la clef d'accès au client, veillez donc à bien

l'orthographier de manière à éviter des problèmes pour les accès futurs.

Lorsque vous avez terminé l'édition du signalétique, pressez sur la touche

F10 pour enregistrer ces informations. En cas d'erreur d'introduction, pres­

sez sur la touche Esc pour ne pas enregistrer d'informations erronées.

Pressez sur une touche pour revenir à l'écran CLISIGNAL.

8

2.8 Les modes d'édition d'un écran de dialogue.

Lorsqu'un écran de dialogue est affiché, l'utilisateur peut
éditer les zones de saisie. Deux techniques sont envisageables :

- L'utilisateur valide chaque édition de zone de saisie par une
touche spéciale (par exemple "Enter"). Dans ce cas, une zone de
saisie n'est accessible qu'à partir de la zone précédemment
éditée. I 1 s'agit du mode "B-one"

L'utilisateur édite les zones de saisie de l'écran et valide
l'ensemble de l'écran à l'aide d'une touche spéciale (par
exemple "Send" ou "FlO"). Une zone de saisie est alors
accessible à partir de n'importe quelle autre à l'aide de
touches spéciales (par exemple les touches de déplacement du
curseur). Il s'agit du mode "écran".

Il faut remarquer que le choix du mode d'édition d'un écran de
dialogue peut dépendre des caractéristiques des terminaux
utilisés. Les performances d'un terminal synchrone sont nettement
supérieures en mode écran qu'en mode zone. En effet, le mode
écran sur un terminal "intelligent" permet l'édition complète de
l'écran sans nécessiter d'autres ressources que le terminal lui­
même. L'acceptation d'un écran provoque alors la transmission
vers l'ordinateur de l'entièreté des informations entrées, en un
seul bloc. Il en résulte un temps d'attente nul durant l'édition
d'un écran.

2.9 Exemple d'application interactive.

Nous allons utiliser un exemple pour introduire les autres
concepts liés à la gestion d'écrans.

Imaginons avoir à programmer une petite application permettant la
gestion d'un fichier de clients et d'un fichier d'articles. Les
fonctionnalités demandées au programme sont

- La possibilité de créer, de consulter et de modifier des
enregistrements dans chacun des fichiers.

- Lors d'une opération de consultation d'un enregistrement, on
voudrait pouvoir consulter les enregistrements précédents et
les enregistrements suivants.

Une première solution possible à ce problème est de présenter à
l'utilisateur plusieurs menus permettant d'une part la sélection
du fichier à utiliser (client ou fournisseur), d'autre part la
sélection du type d'opération à effectuer sur le fichier
sélectionné (consulter, créer ou modifier). Une fois ces choix
effectués, le programme doit demander à l'utilisateur la clef
d'accès à l'enregistrement de façon à permettre à celui-ci de
mener à bien l'opération choisie.

9

Une seconde solution possible cons iste en la suppression du
second menu de la première solution. Les diverses opérations
s'effectueraient alors par l'utilisation de touches de fonction .
L'utilisateur validerait alors la clef d'accès par une touche
indiquant l'opération qu'il veut effectuer (Figure 2.7.).

2.10 Images-écrans induites par l'exemple.

En se basant sur les deux exemples ci-avant, on peut déduire les
images écran nécessaires à la mise en oeuvre, celles-ci sont
représentées aux figures 2.6 . et 2.7. respectivement pour la
première et la seconde solution. Ces images représentent l'aspect
du terminal tel qu'il serait vu par un utilisateur. Les zones
contenant les caractères 'Ill' , 'x' et 'd' apparaissant en écriture
renforcée représentent les zones de saisie . Ces images font
partie des listings imprimés par le programme PRT qui est décrit
au paragraphe 3.21.

2.11 Analogie entre dialogue-écran et graphe.

On peut schématiser les p ossibilités
l'aide des images-écrans définies et
de ces images.

offertes par le programme à
des enchaînements possibles

Dans un premier temps, nous allons
rectangle et les enchaînements
L'orientation des flèches indique
que l écran est "le fils".

représenter les écrans par un
possibles par des flèches.
quel écran est "le père" et

Les figures 2.8. et 2 .9. donnent respectivement une
représentation possible pour la première et la seconde solution .

Nous pouvons établir un parallèle entre ces deux schémas et des
graphes orientés (Ensemble de sommets, les écrans , reliés par des
arcs orientés).

Les sommets représentent les états du graphe, les arcs permettent
les changements d ' états. Dans un dialogue-écran , les états
correspondent aux images-écrans et les arcs représentent les
procédures de changement. J'appellerai ces procédures les
"fonctions-arcs".

10

[GURE 2.6. Images-écrans de la premiere solution.

SELECTION DU FICHIER

1. Gestion du fichier des clients

2. Gestion du fichier des articles

Entrez votre choix D

;10 = Acceptation Esc= Fin du programme

SELECTION DE L ' OPERATION SUR LE FICHIER CLIENTS

1. Consultation d ' un client

2. Création d ' un client

3. Modification d'un client

4. Suppression d'un client

Entrez votre choix D

; 1 0 = Acceptation du choix Esc= Retour menu

11

SELECTION DE L'OPERATION SUR LE FICHIER ARTICLES

1. Consultation d'un article

2. Création d ' un article

-=~ Modification d'un at-tic le ._, .
4. Suppr-ession d ' un article

Entr-ez votr-e choi:-: : D

10 = Acceptation du c hoi :< Esc = Retour menu

CLIENTS : S(~ISIE DE LA CLEF D'ACCES

Nom du client xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

-

10 = Acceptation de la clef Esc = Retour- menu

1,.,
..:...

ARTICLES SAISIE DE LA CLEF D'ACCES

No de l ' art icle xxxxxxxxxxxxxxx

10 = Acceptation de la cle~ Esc= Retour menu

CREATION CLIENT SAISIE SIGNALETIQUE

Nom du c lient

Prén om xxxxxxxxxxxxxxxxxxxx

Ad r e s se xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Il

PTT dddd Localité xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Nai s sance dd---dd---dd Compte No dd---ddddddd---ddd

=10 = Acceptation et création Esc= Retour menu

13

1

MODIFICATION CLIENT SAISIE SIGNALETIQUE

Nom du client
: ;:::::::::::::: : :: : :::: : : : : ::.:::. :: ... : .. :::

Prénom xxxxxxxxxxxxxxxxxxxx

Adresse xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

PTT dddd Localité xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Naissance dd-dd-dd Compte No dd-ddddddd-ddd

10 = Acceptation et modifi~ation Esc= Retour menu

CONSULTATION CLIENT SAISIE SIGNALETIQUE

Nom du client

Prénom

Adresse

PTT Localité

Naissance Compte No

•gLJp = Client précédent PgDn = Client sûivant F10 =Esc= Retour menu

14

CREATION ARTICLES SAISIE SIGNALETIQUE

No de l'article

Désignation
Omschrijving

...

xx
xx

Prix achat dddddddd Prix vente HTVA dddddddd % TVA dd

Oté en stock dddd Oté en comm a nde fournisseur dddd
client dddd

10 = Acceptation et créati6n

MODIFICATION ARTICLES SAISIE SIGNALETIQUE

No de l'article

Désignation
Omschrijving

···-······· ···· .. ····-············-···········

xx
xx

Prix achat dddddddd Pri x vente HTVA dddddddd % TVA dd

Oté en stock dddd Oté en commande fournisseur dddd
client dddd

~10 = Acceptation et modification

Tau:-:
TVA.

Esc= Retour menu

1 11
)Tau:-:1)
TVA.Il ,,,,,, Il

...... Il

Il

fll!I 1

Esc= Retour menu

15

CONSULTATION ARTICLES SAISIE SIGNALETIQUE

No d e l'article
·················•···························

Désignation
Oms chrijving

: : : : : : :::: : : : : :: : ::: : :::::::.:;;: : ::: : : ::::::::::: : :::: :: :: : :: : ::: : : :::::::::: : : : :::::::::: : : : : : :: :::: : ::: : ::::::: : ::::::

F'ri ;-: achat

Qté en stock

F'r i :-: ve n t e HTVA ------------------------

Qté en comm a nde fournisseur
client

ï. TVA

Tau :-:
TVA.

'gUp = Artic 1 e précédent PgDn = Article suivant F10 = Esc= Retour menu

16

3URE 2.7. Imaaes--écrans de la seconde solution.

SELECTION DU FICHIER

1. Gestion du fichier des clients

2. Gestion du fichier des articles

Entrez votre choix D

CLIENT SAISIE DE LA CLE D'ACCES

! Nom du client xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx]

Prénom

Adresse

Date de

................ ----· ········ ------
:::::::::1:;::

::::::::::::: ::: :::.::: ••••••••••••••••••••••••••••••••••• .. •••••••••••••••••••11:.1•••••••11111,,,,,,.,,_..,,,,11:111,111:,1:11::1:-:-zt::

naissance Compte No

•

1

F10 = Acceptation

Esc= Fin du
programme.

F10= Consultation

F~.
L = Création

F3 = Modification

F7 = Suppression

F'gUp=Client préc.
F'gDn=C lient suiv.

Esc= Retour menu

17

li
1

ARTICLES SAISIE DE LA CLES D'ACCES

No de l'article xxxxxxxxxxxxxxx il

Désignati o n
Omschrijving

::::::::: : ::::::::::::: : : ::::::::::::::::::::::::::::::::::::::: : :::::::::::: : :::: : :: :::::::::::::: : ::: : :::::::::::::: ::

Prix a chat Prix vente HTVA % TVA
-······················· -----------------------·

Oté en stock ------------

Taux de TVA valides

Qté en commande fournisseur
client

··········-·

CLIENT MODIFICATION DU SIGNALETIQUE

Nom du client Il
Prénom xxxxxxxxxxxxxxxxxxxx

Adresse xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

PTT dddd Localité xxxxxxxxxxxxxxxxxxxxxxxxxx~xxx

Date de naissance dd--dd-dd Compte No dd-ddddddd-ddd

F10= Consultation

F2 = Création

F3 = Modification

F7 = Suppression

PgUp=Article préc.
PgDn=Article suiv.

Esc= Retour menu

F10 = Modification
et retour
sélection.

!Esc = Abandon de
la modif.

18

Il

CLIENT CREATION D'UN CLIENT

Nom du c 1 i en t ,,,,::,,,,,,,,,,,,:::::::::::::::::::,,,,::,:::;::,,,,,,,,,,,,,,,::,:::::::::::::::,:::::: li
Prénom xxxxxxxxxxxxxxxxxxxx

Adresse xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

PTT dddd Localité xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Date de naissance dd-dd-dd Compte No dd-ddddddd-ddd

ARTICLES MODIFICATION DU SIGNALETIQUE

1 l __ N_o __ d_e __ 1_·_a_r_t_i_c_1 _e_._···_··_··_··_···_··_··_···_··_··_···_··_··_···_··_···_··_··_·· _ _.,II

Désignation
1Omschrij ving

1

xx
xx

F1O = Création
et retour
sélection.

Esc= Abandon de
la création

F1O= Modification
et retour
sélection.

Prix achat dddddddd Prix vente HTVA dddddddd % TVA dd Esc= Abandon de
la modif.

Qté en stock dddd

Taux de TVA valides

Qté en commande fournisseur dddd
client dddd

19

ARTICLES CREATION D'UN ARTICLE

No d e l'ar-tic le
Il

Désignation
Dmschr-ijving

...

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x
xx

F10= Cr-éation
et r-etour
sélection.

Pr-i x achat dddddddd Pr-ix vente HTVA dddddddd % TVA dd Esc= Abandon de
la cr-éat i on

Oté en stock dddd

~ aux de TVA valides

Oté en commande four-ni sseur dddd
client dddd

20

FIGURE 2 . 8. Graphe de la première solution .

·.··.·.· ,,:·:-:-:,•·

i11i1lili!i:il~!~m~•i:iii11!i!i!l!i
:\!i!i!\i~i}?i!{i/\:!\.; ::::\:!\:)\

::::::.::::::::::::::::::::::::.

lllllillllllll~llllliilllllllil!

::::;:::::::::::::::::::;:;:::::::::::;:;:::;:::::;:;::,:: -:=:-:-:::,:-:-:=:-:-:-::;::,:-:-:-:-:,:,;.:-:-:-:::-:-:::

21

FIGURE 2.9. Graphe de la seconde solution.

22

2.12 Les touches de fonction.

Nous avons déjà évoqué les touches de fonction, il faut
maintenant en préciser l'utilisation. Comme nous l'avons vu dans
la seconde solution, ces touches permettent de choisir une
opération à effectuer. Pour conserver la plus grande convivialité
possible il faut, dans chaque application, attribuer à chaque
touche de fonction une fonction similaire. Pour ce faire, nous
avons mené une brève étude sur des logiciels existants. Il s'en
dégage une standardisation concernant un nombre très restreint
de touches de fonction et qui attribue à ces dernières un rôle
déterminé. Voici les différentes observations que nous avons
faites :

Fl : Touche d'aide .

FlO: Touche d'acceptation d'écran et avancement dans le
logiciel (Parfois appelée SEND ou DO).

Esc: Refus de l'écran affiché et recul dans l'arborescence
(Parfois appelée UNDO) .

Return ou Enter: Acceptation d'une zone de saisie.

Page Up et Page Down: Passage à un élément suivant ou
précédent, par exemple "client suivant"
ou "client précédent" (sens préc isé par
le contexte).

Touches de déplacement du curseur :Elles sont fréquemment
utilisées pour se déplacer au
sein d'une zone ou d'une zone
à une autre.

Insert et Delete Utilisées pour la correction lors de
l'édition d'une zone de saisie.

Les touches de fonction restantes sont laissées à la disposition
des logiciels, leur utilisation varie d'une application à
l'autre .

Il faut insister sur le fait qu'une grande dispersion existe dans
l'attribution de fonctions à certaines touches de fonction,
cette dispersion est encore amplifiée par la grande variété de
terminaux existants.

2.13 Les appels de fonctions-arcs et le scénario.

Dans un graphe, plusieurs arcs peuvent être
sommet. L'utilisateur doit pouvoir déterminer
c'est-à-dire définir les modalités d'appel aux
des moyens couramment utilisé est l'appui sur
fonction.

issus d'un même
quel arc choisir,
fonctions-arc. Un

une touche de

23

Cependant, les touches de fonctions ne suffisent pas à déterminer
complètement les modalités d'appel. Par exemple, un écran de menu
est généralement validé par une seulé touche de fonction bien que
différentes fonctions-arcs y soient attachées. Il faut donc
ajou ter un test qui, en liaison avec une touche de fonction,
déterminera quelle fonction-arc doit être utilisée et donc quel
sera le prochain écran affiché.

Une fonction-arc est identifiée par un nom qui doit répondre à la
syntaxe admise par le langage C .

En reprenant l'exemple de
peut compléter le schéma
figure 2.10.

la seconde solution (Figure 2.8),
du dialogue-écran comme illustré

on
en

Le schéma ainsi complété permet de
l'enchaînement des images-écrans.
"scénario " de l'application.

lever toute
Ce schéma

ambiguïté sur
représente le

24

FIGURE 2.10 . Graphe complet de la seconde solution.

Cali_ superviseur clo~e _ c~gen

F10 et choix= 1
PgUp

~ PgDn

~~~ 
!!illl• ~I,;:-F_2 __ __, 

Il = Ecran 

PgUp, PgDn, Esc, F2, F3, Esc = Touches de fonction 

25 



2.14 Les écrans logiques et physiq4es. 

Les images-écrans abordées jusqu'à présent représentent les 
images telles qu ' elles sont affichées sur l'écran du terminal, il 
s'agit d'écrans phy§iques. 

Cependant, on remarque par exemple que l'image de l'écran Inkeyc 
se retrouve en partie dans l' image de l'écran Modcli, ce qui 
implique qu'il n ' est pas nécessaire d ' afficher l ' entièreté de 
l'écran Modcli pour passer de l'écran Inkeyc à 1 'écran Modcli. On 
divise dés lors l ' écran Modcli en deux sous-ensembles, ce sont 
les écrans logiques constituant l'écran physique Modcli. 
Bien entendu, il ne peut être question de changer le numéro 
d'article de l ' écran Modcli, celui-ci étant uniquement affiché 
pour mémoire. L' écran logique constituant l'image-écran Inkeyc à 
donc même apparence dans les deux images-écrans, mais la zone de 
saisie de l'écran Inkeyc est transformée en zone de sortie dans 
l'écran Modcli. 

Les écrans ci-dessous représentent les écrans logiques relatifs à 
la seconde solution. On remarquera que le dessin d'un écran 
logique dépend fortement du scénario qui a été défini au 
paragraphe 2.13. 

26 



1m de l'écran: modcli 

CLIENT: MODIFICATION DU SIGNALETIQUE 

xxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

dddd xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

dd--dd--dd dd--ddddddd--ddd 

de l'écran : newcli 

CLIENT: CREATION D'UN CLIENT 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

dddd xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

dd--dd--dd dd--ddddddd--ddd 

F10 = Modification 
et retour 
sélection. 

Esc= Abandon de 
la modif. 

F10 = Création 
et retour 
sélection. 

Esc= Abandon de 
la création 

28 



bm de 1:écran : inkeya 

ARTICLES: SAISIE DE LA CLES D' ACCES 

f de l'article xxxxxxxxxxxxxxx ~ 
1 

t_gnation 

/

chrijving 

Prix achat 

.l té en stock 

Prix vente HTVA :::::::::::::::,,,,,,,,. 'l. TVA 

I 
Qté en commande fournisseur 

client ········ .... 

I 
Taux de TVA valides: 

pm de l ' écran : modart 

ARTICLES: MODIFICATION DU SIGNALETIQUE 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

c;lddddddd 

dddd 

dddddddd 

dddd 
dddd 

FlO= Consultation 

F2 = Création 

F3 = Modification 

F7 = Suppression 

PgUp=Article préc. 
PgDn=Article suiv. 

Esc= Retour menu 

FlO= Modification 
et retour 
sélection. 

dd!Esc = Abandon de 
la modif. 

29 



m de 1:écran : newart 

ARTICLES: CREATION D'UN ARTICLE 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

dddddddd 

dddd 

dddddddd 

dddd 
dddd 

F10= Création 
et retour 
sélection. 

dd Esc= Abandon de 
la création 

30 



La première version de CSGen a été réalisée sous la forme d'un 
utilitaire composé de : 

- Un éditeur pour la confection d' écrans logiques. 
- Un compilateur d'écrans. 

Une librairie de primitives pour exploiter les écrans ainsi 
conçus. 

Les exigences définies dans l'étude des besoins et l'approche 
"utilitaire" ont mené à 1 'adoption de certains concepts 
partiellement abordés au chapitre 2, mais que nous allons 
maintenant définir plus précisément. Il est a no ter que notre 
prise de conscience de la notion de scénario est largement 
postérieure au développement de CSGen utilitaire, c'est la raison 
pour laquelle celui-ci n'y fait pas référence. 

Nous allons reprendre, dans l'ordre, les étapes qui ont abouti à 
la version définitive de CSGen utilitaire. 

Une des nécessités impliquées par l'ergonomie peut se traduire 
par l'adage "Une place pour chaque chose, chaque chose a sa 
place." 
Intuitivement, on peut donner un "type" à chaque texte ·affiché à 
l'écran. Ce "type" est le reflet de la sémantique du message. Par 
exemple, un message d'erreur ne possède pas la même sémantique 
qu'une question posée à l'utilisateur . 

Durant tout le déroulement d'une application chaque type de 
message échangé entre l'homme et la machine doit avoir une 
localisation bien précise sur l'écran du terminal. On peut ainsi 
"découper" 1 'écran en zones qui réceptionneront un type de 
message. Quatre zones sont rapidement perceptibles : 

- Une zone "titre" correspondant au titre de l'écran affiché. 
- Une zone "corps d'écran" où se déroulera · le dialogue homme-

machine. 
- Une zone "erreur" où seront affichés les messages d'erreur. 
- Une zone "option" indiquant à l'utilisateur quelles sont les 

touches de fonction actives à partir de l'écran affi c hé. 

D'autre zones pouvant se révéler utiles ont été inclues au 
gestionnaire d'écran : 

- Une zone "nom d'écran" facilitant par exemple le debugging par 
téléphone. 

- Une zone "type d'erreur" indiquant la provenance du message 
d ' erreur affiché (SGBD, DISQUE, CLAVIER, ... ) 

- Une zone "message" affichant des ordres à l'utilisateur. 
- Une zone "clé accédée" rappelant par exemple le nom d'un client 

lors de la rédaction d'une facture. 

31 



3.1 L'écran de fond. 

Pour permettre la définition de ces zones, nous avons introduit 
la notion d'écran "de fond". Chaque écran logique sera réalisé en 
fonction de l'écran de fond défini par le développeur. 

Outre cette définition, l'écran de fond permet de séparer 
visuellement les zones en les plaçant par exemple dans des 
cadres, de manière à en améliorer l'esthétique tout en apportant 
un confort d'utilisation accru. L'écran de fond permet également, 
pour chacune de ses zones, de définir les attributs d'affichage 
des textes. En fait, CSGen permet pour chaque zone d'utiliser une 
conjonction de trois attributs choisis parmi ceux-ci 

- Affichage normal. 
- Surbrillance. 
- Contraste inversé. 
- Clignotement. 
- Soulignage. 
- Une palette de seize couleurs de fond de caractères. 

Une palette de seize couleurs de caractères. 

3.2 Composantes des écrans logiques. 

L'étape suivante fut de définir les fonctionnalités du 
gestionnaire d'écran au niveau de la confection des écrans, de 
l'exploitation de ceux-ci ainsi qu'au niveau de l'utilisateur 
final. 

Nous avons considéré un écran logique comme étant constitué d'un 
ensemble de caractères affichés à l'écran et d'un ensemble de 
zones dites "de saisie" dans lesquelles l'utilisateur éditera les 
informations (les zones de saisie constituent les seules portions 
de l'écran éditables par l'utilisateur fin~l). 

Un écran logique est donc actuellement constitué des éléments 
suivants 

- Des caractères dans la zone "titre" 
- Des caractères dans la zone "option" 
- Des caractères dans la zone "corps" 
- Des zones de saisie dans la zone "corps" 

3.3 Liaison écran - programme. 

Il fallait ensuite choisir le mode de liaison entre une zone de 
saisie et un objet manipulable par le langage Cet donc par le 
programmeur. Le moyen le plus naturel consistait à associer une 
zone de saisie à une variable du programme. 

32 



Pour garder suffisamment de souplesse d'emploi nous avons choisi 
de n'utiliser qu'un seul des types de variables admis par le 
langage C : Les chaînes de caractères ou vecteurs de caractères, 
ceux-ci pouvant être utilisés sous n'importe quelle forme 
simple vecteur ("string"), tableau multidimensionnel ou membre 
d'une structure. En langage C, une chaîne de caractères est une 
zone mémoire destinée à recevoir des données de type caractères 
de 8 bits chacune; la fin de la chaîne étant par convention le 
caractère nul (codé comme un zéro binaire). Le fait de n'utiliser 
que des chaînes de caractères ne constitue pas une grande 
limitation puisque le langage C fournit la plupart des fonctions 
de conversion entre les différents types. 

3.4 Type des zones de saisie. 

Il fallait également définir le "type" des zones 
c'est-à-dire informer le gestionnaire d'écrans de la 
ou de l'impossibilité pour l'utilisateur de modifier 
saisie affichée. J'ai utilisé trois types de zones de 

de saisie, 
possibilité 
une zone de 
saisie: 

- Output : La zone n'est pas modifiable par l'utilisateur (elle 
équivaut dans ce cas à une zone de sortie). 

- Modif La zone est modifiable par l'utilisateur. 
- Input La zone doit être initialisée avant d'être modifiée. 

Pour plus de clarté dans la suite, nous parlerons de zones de 
saisies accessibles pour désigner les zones de saisies de type 
Modif et input et zones de saisies inaccessibles dans le cas de 
zones de saisie de type output~ 

La saisie d'un écran peut être vue comme la saisie d'une ou 
plusieurs zones de saisie. Lorsque p l usieurs zones de saisies 
sont accessibles dans un même écran, on parlera de la zone de 
saisie courante pour désigner la zone qui est en train d'être 
éditée. Nous verrons au paragraphe 3.14. les possibilités de 
changement de zone de saisie courante. 

Enfin, un "curseur", représenté sur l'écran par un pavé 
clignotant, indique l'endroit où le prochain caractère tapé par 
l'utilisateur sera affiché. 

3.5 Les tests de validité. 

Un gestionnaire d'écran doit posséder des moyens permettant de 
tester la validité des informations entrées par l'utilisateur. 
Afin d'éviter au programmeur l'apprentissage d'un langage 
spécifique aux tests de validité de CSGen, nous avons choisi 
d'utiliser la syntaxe du langage C pour réaliser ces tests. (Des 
fonctions spécifiques enrichissent les possibilités de test). 
La grande liberté syntaxique du langage C permet d'écrire des 
tests très puissants et très complets, même en limitant le nombre 
de tests possibles relatifs à une zone de saisie. 

33 



Un test de validité est bien entendu lié à un message d'erreur 
qui informera l'utilisateur d'une erreur d'introduction . 

3.6 Quand tester la validité d'une zone dP saisie? 

Il existe deux moments dans l'édition d'un écran pour tester la 
validité des zones de saisie éditées : 

Tester la validité d'une zone après sa saisie. 
- Tester la validité de toutes les zones de saisie après 

acceptation de l'écran affiché. 

Ces deux techniques découlent des deux types d'exploitation d'un 
écran : Le mode zone et le mode écran précédemment définis au 
paragraphe 2.8. Bien que des variantes soient possibles, en mode 
zone le test de validité est mené après l'édition d'une zone de 
saisie alors qu'il est mené pour l'ensemble des zones après 
l'édition de tout l'écran en mode écran. 

Lorsqu'une zone est invalide, un message d'erreur est affiché et 
la zone fautive est à nouveau soumise à l'édition par 
l'utilisateur. En mode écran, la réédition des zones éronnées est 
constituée de l'édition d'un sous-ensemble des zones de saisie 
accessibles de l'écran. 

3.7 Le format d'une zone de saisie 

Il peut être intéressant d'effectuer un contrôle des caractères 
entrés par l'utilisateur tout au l o ng de l'édition d'une zone de 
saisie de manière à refuser d'emblée un caractère fautif . Pour 
mener cette tâche à bien, un "format" est associé à chaque zone 
de saisie accessible. 

Le format indique, pour chaque caractère. de la zone, l'ensemble 
des tou_ches admises (approche semblable au "PICTURE" du COBOL) . 
Cette relation biunivoque permet au format d'indiquer également 
le nombre de caractères acceptés par une zone de saisie. 

Dans un format, des lettres représentent le type de caractère 
accepté à l'emplacement du curseur dans la zone de saisie. 

Les zones String (cadrées à gauche) 

La lettre "a" représente une position alphabétique. 
La lettre "x" représente une position alphanumérique. 
La lettre "d" représente une position numérique. 

34 



Les zones numériques 

Le caractère"." défi n it la position du po i nt décimal et force la 
zone de saisie à êt re numérique, ce qui se traduit 
édition différente d' u ne zone de type st r ing. En effet, 
entière du nombre es t cadrée à dro i te alors que 
décimale est cadrée à gauche du point décimal. 

Les caractères d' i nsert i Q.Q. 

par une 
la partie 

la partie 

Dans un format, un caractère différent des quatres précédent est 
considéré comme un "caractère d'insert io n" . Il sera visualisé sur 
l'écran et inséré da ns la variable liée à la zone de saisie mais 
ne sera pas éditab le par l'utilisateur. Les caractères 
d'insertion permettent d'obtenir une édition plus lisible, par 
exemple dans le cas de dates ou de numéros de comptes bancaires. 

Une date et un 
format suivant : 

compte bancaire pourront avoir respectivement le 
"dd/dd/dd" et "ddd-ddddddd-dd" . 

3.8 Les touches de sortie d'écran. 

Si on envisage l'affichage d'un écran comme consécutif à l'appel 
à une fonction, il faut que l'exécution de cette fonction se 
termine de manière à r endre le contrôle au programme appelant. Si 
la fonction a pour but d'afficher et d'éditer un écran, la 
terminaison de cette fonction peut être appelée la "sort_ie d'un 
écran". 
La sortie d'un écran est provoquée par l'appui sur une touche de 
fonction. Le paragraphe précédent suggère que des touches telles 
que FlO, Esc, PgU, PgD, F2 à F9 sont des touches de sortie 
possibles, en notant que la touche Esc signifie un refus de 
l'écran. 

CSGen permet de définir les touches permettant de sortir d'un 
écran, les autres seront ainsi sans effet et le programmeur ne 
devra pas s'en préoccuper. En effet, l ors de chaque appel de 
fonction impliquant l'édition d'un écran, CSGen renvoie au 
programme appelant un code représentant la touche de sortie 
d'écran que l'utilisa teur a tapé. 

3.9 synthèse. 

Compte tenu de ce q u i précède, 
constitutifs d'un écran 

on peut énumérer les éléments 

- Des caractères dans la zone "titre" 
- Des caractères dans la zone "option" 
- Des caractères dans la zone "corps" 
- Des valeurs représentants les touches de sortie. 
- Des zones de saisie dans la zone "corps" 

35 



Pour chacune des zones de saisie 

- Le nom de la variable C associée. 
- Le type de la zone (In, Mod, Out). 
- Le test de val i dité écrit en Cet son message d'erreur. 
- Le format et la longueur de la z one ( a xd.). 

Le listing figurant ci-après illustre cette synthèse en 
l'appliquant à la seconde solution. Ce texte est en fait la 
sortie imprimée du programme PRT déc rit au paragraphe 3.21 . 

36 



de variable ligne colonne longueur attribut 

Test d'invalidité 
Message d'erreur correspondant 

de l'écran : menu 

ix 13 37 1 Zone de modification 

if(@[0]!='l'&&@[0] !='2') erreur 

Entrez soit 1, soit 2 comme choix. 

de l'écran inke C 

.nom 4 19 30 Zone de modification 

if(isempty(upper(ttrim(@)))) erreur 

Le nom du client ne peut être vide . 

.prenom 7 9 20 Zone de sortie 

if() erreur 

. . adresse 11 10 36 Zone de sortie 

if () erreur 

i.ptt 13 6 4 Zone de sortie 

if ( ) erreur 

i.localite 13 21 30 Zone de sortie 

if ( ) erreur 

i.naiss 17 20 8 Zone de sortie 

if ( ) erreur 

i.banque 17 39 14 Zone de sortie 

if() erreur 

37 



ni· de variable 

Test d'invalidité 

ligne colonne longueu r attribut 

t-------~===:==-~~=~~=~~-:~~~==~~~~:~=--------------------------------------
[_:~l'écran, inkey: 21 15 Zone de modification 

if(isempty(upper(ttrim(@)))) erreur 

Le numéro de l'article ne peut être vi de. 

.design 7 16 40 Zone de s ortie 

if ( ) erreur 

.omschr 8 16 40 Zone de sortie 

if ( ) erreur 

.achat 11 13 8 Zone de sortie 

if ( ) erreur 

.vente 11 39 8 Zone de sortie 

if ( ) erreur 

. tva 11 55 2 Zone de sortie 

if ( ) erreur 

. qstock 14 15 4 Zone de sortie 

if ( ) erreur 

t.qfourn 14 51 4 Zone de sortie 

if() erreur 

t.qclient 15 51 4 Zone de sortie 

if() erreur 

a[O] 18 25 2 Zone de sortie 

if() erreur 

a(l] 18 30 2 Zone de sortie 

if() erreur 

38 



de variable ligne col o nne longueur attribut 

Test d'invalidité 
Message d'erreur correspondant 

[2] 18 35 2 Zone de sortie 

i f ( ) erreur 

[3] 18 40 2 Zone de sortie 

i f ( ) e r r eur 

[4] 18 45 2 Zone de sortie 

if ( ) erreur 

[5] 18 50 2 Zone de sortie 

if() erreur 

[6] 18 55 2 Zone de sortie 

if ( ) erreur 

de l'écran modcli 

i.prenom 7 9 20 Zo ne de modification 

if() erreur 

i . adresse 11 10 36 Zone de modification 

if() erreur 

i.ptt 13 6 4 Zone de modification 

if(!inrange(@,1000,9999) ) erreur 

Le code postal doit être c ompris entre 1000 et 9999 

i . localite 13 

i.naiss 

if() erreur 

17 

if(!isdate(@)) erreu r 

21 30 Zone de modification 

20 8 Zone de modification 

La date de naissance est invalide (JJ-MM-AA). 

39 



de variable ligne colonne longueur attribut 

Test d'invalidité 
Message d'erreur correspondant 

.banque 17 

if(!isbank(@)) erreur 

39 14 Zone de modification 

Le numéro de compte en banque est invalide. 

de l'écran newcli 

. nom 4 19 30 Zone de modification 

.prenom 

if(isempty(ttrim(upper(@)))) erreur 

Le nom du client ne peut être vide . 

7 9 20 

if() erreur 

Zone d'entrée 

1
.adresse 11 10 36 Zone d'entrée 

1 

if() erreur 

. . ptt 13 6 4 Zone d'entrée 

if( ! inrange(@,1000,9999)) erreur 

Le code postal doit être compris entre 1000 et 9999 

. . locali te 13 21 30 Zone d'entrée 

.naiss 

l . banque 

if() erreur 

17 

if(!isdate(@)) erreur 

20 8 Zone d'entrée 

La date de naissance est invalide (JJ-MM-AA) . 

17 

if(!isbank(@)) erreur 

39 14 Zone d'entrée 

Le numéro de compte en banque est invalide. 

40 



de variable 1 igne c o lonne l o ngueur attribut 

Test d'invalidité 
Message d'erreur correspondant 

de l'écran modart 

.design 7 16 40 Zone de modification 

if ( ) erreur 

.omschr 8 16 40 Zone de modification 

if ( ) erreur 

.achat 11 13 8 Zone de modification 

if ( ) erreur 

.vente 11 39 8 Zone de modification 

if(islower(@,art.achat)) erreur 

Le prix de vente ne peut être inférieur au prix d'achat . 

.tva 11 55 2 Zone de modification 

if(! istva(@)) erreur 

Le pourcentage de TVA est invalide . 

. qstock 14 15 4 Zone de modification 

if ( ) erreur 

.qfourn 14 51 4 Zone de modification 

if ( ) erreur 

.qclient 15 51 4 Zo ne de modification 

if ( ) erreur 

41 



de variable ligne colonne longueur attribut 

Test d'invalidité 
Message d'erreur correspondant 

de 1•écran newart 

.num· 4 21 15 Zone de sortie 

if ( ) erreur 

.design 7 16 40 Zo ne d' e ntrée 

if ( ) erreur 

.omschr 8 16 40 Zone d'entrée 

if ( ) erreur 

.achat 11 13 8 Zone d'entrée 

if ( ) erreur 

.vente 11 39 8 Zone d'entrée 

if(islower(@,art . acha t )) erreur 

Le prix de vente ne peut être inférieur au prix d'achat. 

. tva 11 55 2 Zone d'entrée 

if ( ! istva (@)) erreur 

Le pourcentage de TVA est invalide . 

.qstock 14 15 4 Zone d'entrée 

if () erreur 

t . qfourn 14 51 4 Zone d'entrée 

if ( ) erreur 

t . qclient 15 51 4 Zone d'entrée 

if ( ) erreur 

42 



3.10 Génération de code source. 

Sachant que les variables utilisées par les écrans sont de type 
"cha îne de caractères" et connaissant leur nom et leur longueur, 
on dispose de toutes l es informati ons nécessaires à la définition 
des variables au sens C du terme. C'est pourquoi CSGen génère un 
fichier de définition des variables qui peut être inclus dans le 
code source du programme, évitant ainsi ce travail d' encodage. 

La même approche est utilisée pour utiliser les tests de validité 
associés aux zones de saisie. Ce procédé sera décrit en détail au 
paragraphe 3.20. 

3.11 Pourquoi une pile d'écrans? 

Jusqu'a présent, nous avons exposé un écran comme formant une 
entité entièrement a f fichée sur l'écran ou entièrement effacée . 
En fait, il faut distinguer les notions d'écran physique et 
d'écran logique telles qu'elles sont définies au paragraphe 2.14. 

Il faut maintenant trouver une relation entre les écrans logiques 
et physiques . On voi t qu'un écran physique est constitué de la 
superposition de plusieurs écrans logiques. Une pression sur la 
touche F2 lors de l'édition de l'écran Inkeyc, provoquera 
l'affichage du second écran logique à savoir Newcli; alors que 
dans celui-ci, la même pression de touche effacera celui-ci. 

Cette constatation a amené à considérer un écran physique comme 
un empilement d'écrans logiques. On connait les opérateurs de 
base d'une structure de pile : INITIALISATION, POP, PUSH et TOP. 
Ici le 0:!_Sh d'un écran signifie son affichage; le P.QQ d'un écran 
revient à effacer celui-ci; le ~QQ d'un écran consiste à 
réafficher l'écran au sommet de la pile. 
Il faut maintenant analyser plus en détail les réactions des 
différentes composantes d'un écran 

PUSH : 

- Afficher les zones titre et option. 
- Initialiser les zones de saisie déclarées en input. 
- Afficher le texte et les zones de saisie du corps de l'écran. 
- Permettre l'édition des zones de saisie déclarées en input et 

modif et interdire l'édition des zones des autres écrans de la 
pile . 

POP : 

Effacer les informations affichées lors du push. 
- Restaurer l'affichage des zones titre et option de l'écran qui 

devient sommet de la pile. 
- Restaurer l'affichage du texte de la zone corps de l'écran qui 

devient sommet de la pile et qui aurait été effacé par l'écran 
que l'on enlève de la pile . Cela pose un problème car il se 

43 



peut qu'il faille restaurer l'affichage du texte de chaque 
écran de la pile si l'écran enlevé de la pile occupe une 
surface importante de la zone corps d'écran. Une autre approche 
e st d'interdire la superposition de textes dans la pile, ce qui 
évite évidemment d'avoir à les restaurer . C'est cette dernière 
solution qui a été adoptée dans CSGen. 

- Pour les mêmes raisons il faudrait restaurer les zones de 
saisie de tous les écrans appartenant à la pile. Ici le 
problème dépasse la simple superposition puisque les zones de 
saisie représentent des variables dont la valeur évolue durant 
l'exécution du programme. La solution adoptée à été d'obliger 
le programmeur à définir dans un écran logique toutes les zones 
dont la valeur peut avoir évolué. 
Il faut ensuite permettre l'édition des zones de saisie 
déclarées en input et modif de l'écran devenant le s ommet de la 
pile. 

TOP : 

Il suffit de restaurer l'affichage des zones de saisie puisque 
l'image écran reste fixe. 

3.12 Les écrans de type menu 

Nous avons jusqu'à présent exposé l'écran de fond et des écrans 
que nous appellerons "de dialogue". A des fins d'ergonomie, les 
écrans de choix sont considérés comme un type particulier 
d'écran. Il est en effet courant de trouver des menus dans 
lesquels le choix du traitement à effectuer s'effectue en 
déplaçant, à l'aide de touches de fonction, un "repère" en face 
des différents points du menu; une autre tou c he permettant alors 
d'entériner ce choix. 

L'absence de zone de saisie et le traitement particulier lié à la 
gestion du repère nous a obligé à considérer un menu comme un 
écran de type particulier. La seule valeur retournée au programme 
par un · menu est la valeur associée a u point de menu choisi, ou 
"Esc" en cas de refus du menu. 
La valeur associée à un point de menu est définie par 
l'utilisateur et n'est pas liée à la positi o n de ce point sur 
l'écran, le programmeur peut ainsi modifier l'apparence d'un menu 
sans avoir à modifier le programme l'utilisant. 

Il faut noter que l'affichage d'un écran de type menu vide 
automatiquement la pile des écrans puisqu'il représente un 
aiguillage vers différents traitements donc vers différentes 
images d'écran. ceci empêche de superposer un menu sur un 
quelconque écran ce qui signifie dans le cas d'un menu, quel' 
écran logique est identique à l' écran physique. 

3.13 Les écrans d'aide 

44 



Toujours dans un but de convivialité, une aide (ou guide) doit 
être disponible à n'importe quel moment durant le déroulement du 
programme . Pour cette raison , un écran de servitude peut être 
déf i ni par le programmeur en liaison avec un écran logique. Un 
appui sur la touche d'aide affichera l'écran esclave, ensuite, un 
appui sur une touche quelconque produira le réaffichage de 
l'écran "maître" tel qu'il se trouvait avant la demande d'aide. 

3.14 Les fonctions disponibles lors de la saisie d'un écran. 

Il faut distinguer deux concepts lors d e la saisie d'un écran 

- La manière d'accéder à une zone de saisie. 
- La saisie proprement dite d'une z o ne de saisie. 

Dans ce paragraphe, les termes "zones de saisie" font référence à 
des "zones de saisie accessibles" telles qu'elles sont définies 
au paragraphe 3.4. 
Dans CSGen, un sous-ensemble de touches de fonction est réservé 
au "voyage" entre les zones de saisie d'un écran. Selon la 
disposition géométrique des zones de saisie sur l'écran, la zone 
de saisie "suivante '' sera différente. Cette dispos i tion détermine 
si l'écran affiché représente ou non un tableau. 

CSGen numérote les zones, de manière interne , en commençant au 
coin supérieur gauche du corps de l'écran et incrémente le numéro 
de la zone de gauche à droite et de haut en bas. A la figure 3 . 1. 
se trouvent deux exemples illustrant cette numérotation; le 
premier représente un écran de saisie "normal", le second 
représente un tableau 

Les touches de fonction réservées au cheminement vers la zone 
suivante sont I.hB et "flèche vers le bas" alors que vers la zone 
précédente, les touches utilisées sont Shift-TAB et "flèche vers 
le haut". Dans le second exemple de la figure 3 . 1., il est plus 
logiqu~ que la touche "flèche vers le haut" conduise à la zone de 
saisie située au dessus de la zone courante plutôt qu'a la zone 
située à gauche de la zone courante (celle-ci est sa précédente 
numérique). Donc, selon la disposition géométrique de l'écran, 
ces touches ont un fonctionnement différent, ou encore la notion 
de succession est modifiée . 

Dans l'exemple du tableau, il faut uti l iser d'autres touches pour 
accéder à la zone située à gauche ou à droite de la zone 
courante. Il s ' agit respectivement de FS ou "Ctrl-flêche gauche" 
et F6 ou "Ctrl-flêche droite". En effet, les touches "flèche 
gauche" et "flèche droite" ont une autre fonction comme nous le 
verrons ci-dessous. 
Une zone de saisie est validée par les touches "Return" ou 
"Enter" provoquant le passage à la zone de saisie suivante. 

45 



Les touches de fonction 
respectivement d'accéder 
l'écran affiché. 

"Ctrl-PgUp" et "Ctrl-PgDn" permettent 
à la première et à la dernière zone de 

Les touches utilisées pour l'édition au sein d'une zone de saisie 
sont définies ci-dessous : 

Flèche gauche 
Flèche droite 
Home 

End 

Back space 
Del 
Ins 

Ctrl-Home 

Déplacement du curseur vers la gauche. 
Déplacement du curseur vers la droite. 

Positionnement du curseur sur le premier 
caractère de la zone. 

Positionnement du curseur sur le dernier 
caractère de la zone. 
Effacement du caractère à gauche du curseur. 
Effacement du caractère sous le curseur. 

Insertion d'un caractère blanc sous le 
curseur. 
Mise à blanc de la zone de saisie. 

46 



GURE 3.1. Exemoles de numérotation de zones 

CREATION CLIENT 

Naissance (4) 

10 = Acc eptation et c réation 

Prénom e nf a nt 

CREATION CLIHH 

( 1 ) 
(4) 
(7) 
(10) 
(13) 

Date naiss. 

( 2) 

(5) 
(8) 
(11) 
(14) 

10 = Acceptation et création 

SAISIE SIGNALETIQUE 

(0) 

SA-ISIE FAMILLE 

(0) 

Commentaire 

:::: :::u::::: .. 

:::::::::: .. 

::: ::::::: :: 

Esc= Retour menu 

(3) 
(6) 
(9) 
(12) 
(13) 

Esc= Retour menu 

47 



3.15 Les primitives de CSGen 

Après cette approche de la programmation nous allons énumérer les 
primitives que fourn i t CSGen pour manipuler les écrans, en les 
commentant brièvement. 

Pour respecter la philosophie du langage C, chaque fonction 
retourne une valeur. Les fonctions provoquant la saisie d'un 
écran ou l'attente d'un caractère (Fonctions marquées *) 
renvoient une valeur représentant la touche de sortie utilisée 
par l'utilisateur . Les autres retournent une valeur indiquant si 
la fonction s'est correctement déroulée ou non (erreur dans un 
fichier, ... ) . 

Nom Commentaire 

Cnewst(nom écran) 
Initialisation de la pile d'écrans et push d'un écran 

Cnewsted(nom écran) 

Initialisation de la pile, push d'un écran et édition 

Cpsh(nom écran) 
push d'un écran au sommet de la pile . 

Cpshed(nom écran) 

push d'un écran au sommet de la pile et édition. 

Cmenu(nom menu) 

Initialisation de la pile, 
"édition" de celui-ci . 

affichage d'un menu et 

Cpop(nom écran) 
pop de l'écran au sommet de la pile. 

Cpoped(nom écran) 

Ctop () 

Ctoped () 
* 

pop de l'écran au sommet de la pile et édition. 

restaure les zones de saisie de l'écran au sommet de la 
pile. 

restaure et édite les zones de saisie de l'écran au 
sommet de la pile. 

48 



Csavest() 

Crsted ( ) 
* 

Csgopen () 
Csgclose() 

sauvetage de la pile courante pour réutilisation 
ultérieure (utile lors d'un changement de contexte). 

Suppression de la pile courante et restauration de la 
pile sauvegardée par Csavest(). 

Initialisation et clôture d'une session de travail. 

Cerror ( :tY,Re erreur, me?_sage erreur) 
Affichage d'un message d'erreur dans la zone erreur 
et type d ' erreur. 

Ceerror () 
Effacement de la zone erreur et type d'erreur . 

Cperror(:t_ype erreur.message erreurJ.. 

Combinaison de Cerror, d'une pause et de Ceerror. 

3.16 Fonctions de tests de validité. 

Les tests de validité sont menés lors de la sortie d'un écran par 
une touche de fonction différente de Esc. 

Les fonctions de tests de validité qui réalisent une comparaison 
renvoient une valeur prédéfinie "OK" ou "ERR" qui correspondent 
respectivement aux valeurs "TRUE" et "FALSE" du langage C . Ces 
fonctions sont distinguées par leur préfixe "is". Les autres 
fonctions énoncées ci-dessous retournent une valeur de type 
"char*". 

La syntaxe de ces tests est très libre puisqu'ils sont écrits en 
langage · c. Le programmeur peut donc les utiliser à d'autres fins 
que la simple vérification syntaxique ou sémantique. Une 
application possible de ces tests est d'altérer la valeur d'une · 
variable ou d'une zone de saisie. En effet, par défaut, CSGen 
renvoie une zone de saisie telle qu'elle est affichée c'est-à­
dire complétée par des caractères "blanc". c'est la raison pour 
laquelle certaines fonctions de test d e validité suppriment les 
blancs à gauche ou à droite d'une variable liée à une zone de 
saisie . 

49 



Nom commentaire 

isempty(chaîne de caractères) 
Teste si une chaîne de caractères est vide. 

isblank(chaîne de caractères) 
Teste si une chaîne de caractères n'est composée que de 
caractères "blanc". 

isdigit(chaîne de caractères) 
Teste si une chaîne de caractères n'est composée que de 
caractères numériques. 

isdate(chaîne de caractères) 
Teste si une chaîne de caractères est une date valide 
au format j j -mm-aa. 

isbank(chaîne de caractères) 
Teste si une chaîne de caractères est un numéro de 
compte bancaire valide au format nnn-nnnnnnnn-nn. 

isequal(chaîne de caractères.chaîne de caractères) 
Converti les chaines de caractères en nombre entier et 
vérifie s'ils sont égaux. 

islower(chaîne de caractères.chaîne de caractères) 
Converti les chaines de caractères en · nombre entier et 
vérifie si le premier nombre est inférieur au second. 

isgreater(chaîne de caractères.chaîne de caractères) 
Converti les chaines de caractères en nombre entier et 
vérifie si la premier nombre es t supérieur au second. 

trim(chaîne de caractères) 
Supprime les "trailing blanks" d'une chaîne de 
tères. 

ltr i m(chaîne de caractères) 
Supprime les "leading bla nks" 
caractères . 

ttrim(chaîne de caractères) 

d'une chaîne 

carac 

de 

Supprime les "leading" et "trailing blanks" d'une 
chaîne de caractères. 

upper(chaîne de caractères) 
converti une chaîne en "upper case". 

lower(chaîne de caractères) 
converti une chaîne en "lower case". 

50 



3.17 Les programmes constituant CSGen 

Nous n'allons pas entrer dans le détail de l'utilisation des 
programmes de CSGen, mais nous allons brièvement décrire leurs 
fonctions et énoncer les données échangées entre ces composants. 

3.18 L'éditeur d'écrans. 

L,=. r·•··1·1·~1·· =-n1n1 -'ï "t , 1- •t ) G · ' t ~ 
- .l. - 1 1 L . 1 lll - l'éditeur d'écran. 

ic-cran di=- fond, des écrans de type [lenu, 
et des écrans d'aide . 

GET eE;t. Il permet de définir un 
des écranE; de di al 0.§!.lfili 

Les fonctionnalités de cet 
fonctionnalités offertes par 
traitements de textes (édition 
line, déplacement du curseur, 
automatique de cadres, ... ) . 

éditeur sont semblables aux 
beaucoup d'autres éditeurs ou 
"full screen", i nsert et delete 

move et copy block, tracé 

Les différences les plus sensibles avec ses "congénères" est la 
limitation de l'édition à une seule p~ge d'écran, la prise en 
compte des zones de saisies et des zones de fond. 

Pratiquement, l'édition de l'écran de fond s'effectue en deux 
temps 

- Sur l'entièreté de l'écran le développeur définit l'aspect de 
1 'écran de fond (cadres, commentaires, . . . ) . 

- Le développeur définit ensuite la taille et- la position des 
zones de fond . 

L'édition des écrans logiques s'effectue zone de fond par zone de 
fond (dialogue,titre,options), ensuite s'effectue la définition 
des touches de sortie de l'écran. Lors de l'édition de la zone de 
dialogue, une touch e de fonction permet l'affichage d'un 
caractère spécial, qui est reconnu par l'éditeur comme "caractère 
de définition d'une zone de saisie''. Après édition de l'écran 
logique, l'éditeur o b lige le développeur a préciser les zones de 
saisie ainsi définies (nom de variable,type,format,test de 
validité,message d'erreur) . 

L'éditeur d'écran crée des fichiers représentant les divers types 
d'écran édités, les fichiers-écrans, en voici une brève 
description formalisée à l'aide des structures du langage C: 

Fichier-écran de fond. 

struct { 
int ligne; 
int colonne; 
char texte(80); 

} 
texte_fond(); 

struct { 
int ligne_début; 

51 



int colonne_début; 
int ligne_fin; 
int colonne_fin; 
int attribut; 

} 
déf_zone_fond(); 

··-7 

La première structure représente le tex t e contenu par l'écran de 
fond, la seconde contient la définition des zones de fond. 

Fichier-écran logique. 

struct { 
int ligne; 
int colonne; 
char texte(BO); 

} 
texte_logique(); 

struct { 
int ligne; 
int colonne; 
int longueur; 
char type_zone; 
char nom_variable(30); 
char format_zone(80) ; 
char test_zone(BO); 
char message_erreur(80) ; 

} 
zone_de_saisie(); 

int touches_de_sortie(lO); 

Le premier groupe représente le texte affiché par cet écran, le 
second contient les renseignements relatifs aux zones de saisie 
et le troisième groupe définit les touches de sortie de cet 
écran . 

Fichier-écran de menu. 

struct { 
int ligne; 
int colonne; 
char texte(BO); 

} 
texte_menu ( ) ; 

struct { 
int ligne; 
int colonne; 
int longueur; 

52 



char abbréviation_choix(S); 
int valeur_retour_choix; 
char commentaire_choix(80); 

} 
point_de_menu(); 

Le premier groupe représente le texte affiché par l'écran de 
menu, le second définit les points du menu. 

Fichier-écran d'aide d'un écran logique . 

struct { 
int ligne; 
int colonne; 
char texte(80); 

} 
texte_aide(); 

Il faut également noter que l'éditeur d'écrans crée un fichier 
contenant les noms de tous les fichiers des écrans logiques 
utilisés pour réaliser une application. Il est possible, de cette 
manière, de connaître les noms de fichiers-écrans sans utiliser 
les fonctions C d'accès aux directory , Celles-ci n'étant pas 
nécessairement portables car trop dépendantes du système 
d'exploitation. 

3.19 Les fichiers de définition. 

Pour assurer une portabilité aisée, CSGen utilise des fichiers de 
définition de l'environnement de travail. 

- Un fichier définit le système d'exploitation employé. S'il 
s'agit du MS-DOS, des paramètres décrivent l'emplacement en 
mémoire de la carte d'affichage , de manière à court-circuiter 
MS-DOS dont la gestion d'écran n'est pas des plus rapides ! 

- Un fichier définit les "Escape sequences" liées aux fonctions 
d'affichage au terminal (Attributs d'affichage, Positionnement 
sur l'écran, Effacement de l'écran , ... ) . 

- Un fichier définit les codes envoyés lors de l'appui sur les 
touches du clavier, ce qui est particulièrement important pour 
l'utilisation des touches de fonction. Les touches 
correspondant à de simples caractères sont supposées être 
définies selon le code ASCII. 

53 



3.20 Le compilateur d'écrans et la "run-time library" . 

Le compilateur d'écran a pour but de rendre les fichiers-écrans 
créés par l'éditeur utilisables par un programme d'application, 
via la librairie de CSGen. En effet, certains paramètres définis 
dans les fichiers-écrans sont inutilisables par le compilateur C. 
Par exemple, on ne peut accéder à une variable C en utilisant 
directement son nom, considéré comme une constante. De la même 
manière, on ne peut exécuter un test de validité sans compiler 
son expression. 
Le langage C ne fournit pas de fonction telle que DO ou 
EXEC("command string"). 
Le problème revient à extraire des fichiers-écrans les variables 
et les tests de validité et à les présenter au compilateur sous 
une forme syntaxiquement correcte. 

Pour mener cette tâche à bien, nous avons joint, à chaque 
variable liée à une zone de saisie un numéro qui l'identifie. Il 
suffit alors de créer une table d'adresses indicée par le numéro 
d'identification; cette table donnant, pour chaque entrée, 
l'adresse d'une variable. On peut de cette manière accéder à une 
variable par son numéro. Cette table doit être créée lors de 
l'exécution du programme puisque le langage C effectue une 
allocation dynamique de la mémoire (On ne connaît l'adresse d'une 
variable que lors de l'exécution du programme) . 
Comme je l'ai déjà souligné, les variables correspondant aux 
zones de saisies sont globales, donc accessibles à partir de 
n'importe quelle fonction C. 

Pratiquement 

Nous allons utiliser les écrans du second exemple du paragraphe 
2.9 . En tenant compte des variables définies dans les écrans, le 
compilateur d'écrans génèrera les fichiers sources C illustrés 
ci-après. 

Le premier fichier définit les variables rencontrées dans les 
différents écrans de l'exemple. 

struct { 
char nom[31); 
char prenom[21); 
char adresse[37); 
char ptt[S]; 
char 1 oca l i te [ 31 ) ; 
char naiss[9); 
char banque [ 15 J ; 

} cli 

struct { 
char num[ 16]; 
char design[41); 

54 



char omschr[41]; 
char achat[9]; 
char vente [9]; 
char tva[3]; 
char qstock (5); 
char qfourn[SJ; 
char qclient[S]; 

} art ; 

char tva[7][3]; 

char choix[2]; 

Le second fichier définit certaines variables internes à la 
librairie de CSGen. Ces variables dépendent du nombre de 
variables définies dans les écrans de CSGen. Il eut été possible 
d'éviter cette génération par l'utilisation de la fonction 
"malloc()" (pour "memory allocation") mais certaines 
irrégularités de fonctionnement de ce t te fonction dans certains 
compilateurs nous ont forcé à éviter son emploi. 
La variable "vadd" représente l'index vers les variables 
utilisées par les écrans. La fonction "Cparinit()" est appelée 
avant la première référence à un écran et a pour but 
d'initialiser l'index. 

char "'vadd[24]; 
extern char err_mess[]; 

Cparinit() 
{ 
vadd[O]=choix; 
vadd[l)=cli.nom; 
vadd[2]=cli.prenom; 
vadd[3]=cli.adresse; 
vadd[4)=cli.ptt; 
vadd[S]=cli.localite; 
vadd[6]=cli.naiss; 
vadd[7]=cli.banque; 
vadd[B]=art.num; 
vadd[9J=art.design; 
vadd[lO]=art.omschr; 
vadd[ll]=art.achat; 
vadd[12]=art.vente; 
vadd[13]=art.tva; 
vadd[14]=art.qstock; 
vadd[15]=art.qfourn; 
vadd[16]=art.qclient; 
vadd[17]=&tva[O][O]; 
vadd[lB]=&tva[l][O]; 
vadd[19]=&tva[2][0]; 
vadd[20]=&tva[3][0]; 
vadd[21]=&tva[4][0]; 

55 



vadd[22]=&tva[S][O]; 
vadd[23)=&tva[6][0]; 

csginit(" M3"); 
} 

Le développeur n'aura qu'à inclure cette source dans son 
programme et à programmer un appel à la fonction "Cparinit()" 
pour que CSGen puisse retrouver les variables représentées par 
les zones de saisie. 
L'appel à la fonction "Csginit'' réalise l'initialisation interne 
de CSGen, c'est-à-dire 

- Le chargement des fichiers de définition de l'environnement 
décrits au paragraphe 3.19. 

- Le chargement des paramètres liés à l'application (Définition 
des attributs d'affichage des zones, Noms des écrans définis, 
. . ) . 

- Affichage de l'écran de fond sur le terminal. 

Le problème des tests peut également être résolu par le même 
principe. En utilisant toujours le second exemple , CSGen génère 
le code-source suivant : 

test zone(numzone) 
int numzone; 
{ 

err mess[O)=O; 

switch(numzone) 
{ 

/****************** Ecran : menu .SM3 *********************/ 
case O ·: 

if (choix [ 0] ! = ' 1 '&&choix [ O J ! = '2' ) 
strcpy(err_mess,"Entrez soit 1, soit 2 comme choix."); 

break; 

/****************** Ecran : inkeyc . SM3 *********************/ 
case 1 

if(isempty(upper(ttrim(cli.nom)))) 
strcpy(err_mess,"Le nom du client ne peut être vide."); 

break; 

/****************** Ecran : inkeya .SM3 *********************/ 
case 8 : 

if(isempty(upper(ttrim(art.num)))) 
strcpy(err_rness,"Le numéro de l'article ne peut être vide."); 

break; 

56 



/****************** Ecran : modcli.SM3 *********************/ 
case 26 : 

if(!inrange(cli.ptt,1000,9999)) 
strcpy(err_mess,"Le code postal doit être compris entre 1000 

et 9999"); 
break; 

case 28 : 
if(!isdate(cli.naiss)) 
strcpy(err_mess,"La date de naissance est invalide (JJ-MM­

AA) . " ) ; 
break; 

case 29 : 
if(!isbank(cli.banque)) 
strcpy(err_mess,"Le numéro de compte en banque est 

invalide."); 
break; 

/****************** Ecran : newcli.SM3 *********************/ 
case 30 : 

if(isempty(ttrim(upper(cli.nom)))) 
strcpy(err_mess,"Le nom du client ne peut être vide."); 

break; 
case 33 : 

if(!inrange(cli.ptt,1000,9999)) 
strcpy(err_mess,"Le code postal doit être compris entre 1000 

et 9999") ; 
break; 

case 35 : 
if(!isdate(cli.naiss)) 
strcpy(err_rness,"La date de naissance est invalide (JJ-MM­

AA) . ") ; 
break; 

case 36 : 
if(!isbank(cli.banque)) 
strcpy(err_mess,"Le numéro de compte en banque est 

invalide."); 
break; 

/****************** Ecran : modart.SM3 *********************/ 
case 40 : 

if(islower(art.vente,art.achat)) 
strcpy(err_mess,"Le prix de vente ne peut être inférieur au 

prix d'achat."); 
break; 

case 41 
if(!istva(art.tva)) 
strcpy(err_rness,"Le pourcentage de TVA est invalide."); 

break; 

/****************** Ecran : newart.SM3 *********************/ 
case 49 : 

if(islower(art.vente,art.achat)) 
strcpy(err_mess,"Le prix de vente ne peut être inférieur au 

prix d'achat."); 

57 



break; 
case 50 : 

if(!istva(art.tva)) 

} 

} 

strcpy(err_mess,"Le pourcentage de TVA est invalide."); 
break; 

if(err_·mess[0] == 0) return(l); 
else return(0); 

On retrouve dans ce listing chaque test de validité défini dans 
les écrans de l'exemple. Chaque test est précédé de la primitive 
"case" dont l'argument est fourni par une variable interne à 
CSGen, cette variable constitue un index vers les tests et est 
créée par le compilateur d'écran décrit au paragraphe 3.20. 
Il suffira à CSGen d'appeler la fonction "test" pour déterminer 
si une zone de saisie a été correctement éditée par 
l'utilisateur . 

Pour être complet, il reste à lier la numérotation établie et les 
fichiers-écrans. Pour ce faire, le compilateur d'écrans crée un 
ensemble de fichiers qui reprennent la structure des fichiers­
écrans de dialogue, et qui seront utilisés par la librairie de 
CSGen (on peut les appeler fichiers-écrans compilés). En voici la 1 

forme exprimée sous la forme de structures en langage C: 

struct { 
int ligne; 
int colonne; 
char texte(B0); 

} 
texte_écran(); 

struct { 
int ligne_début; 
int colonne_début; 
char format_saisie(); 
int numéro_de_variable; 

} 
déf_zone_saisie_compilee(); 

struct { 
int code_touche_de_fonction; 

} 
touche_de_sortie(); 

58 



La première structure représente le texte contenu par l'écran, la 
seconde contient la définition des zones de saisie et leur 
association aux variables C . 

Il suffit donc de remplacer dans les fichiers-écrans les noms de 
variables par le numéro identificateur créé . Ce numéro peut alors 
être utilisé pour accéder, via la table des adresses, à la 
variable correspondant à la zone de saisie . Par exemple, "choix" 
sera remplacé par O, "cl i. nom" par 1, . .. 
On remarque que le f i chier-écran compilé ne reprend pas les 
données déjà exploitées dans les sources générées. 

3.21 Le programme d'im pression. 

Le programme d'impress i on permet d'obtenir la copie sur papier de 
toutes les images-écrans d'une application, a c compagnées de 
l'impression des attributs des zones de saisie qu'elles 
contiennent. Ce programme imprime également une "cross reference" 
des écrans et des zones de saisie qui y sont définies. Un message 
d'erreur ("Warning") est imprimé lorsqu'une même variable possède 
des longueurs différentes dans différents écrans. Il est enfin 
possible d'envoyer ces impressions dans un fichier, de manière à 
les utiliser dans un traitement de texte puisqu'il s'agit d'une 
documentation accompagnant le dossier d'analyse de l'application. 

3 . 22 Exemple de programme utilisant CSGen utilitaire. 

Voici, ci-après, un listing montrant comment les primitives de 
CSGen utilitaire peuvent être employées pour programmer le second 
exemple. 

On y retrouve les fichiers générés par l e compilateur d'écrans, 
sous les noms "Csgenm3.h" et "Csgenm3.hst". Le fichier 
"Benkeys.h" définit les codes des touches de fonction tels que 
TI_Fl, TI_F2, TI_CAN, 
On suppose dans ce p r ogramme avoir un utilitaire de gestion de 
fichier dont les fonctions s'appellent "Dopen", "Dread", 
"Dexist'', Ces fonctions sont données à titre d'exemple et ne 
sont pas explicitées, l eur syntaxe étant triviale. 

#include <stdio.h> 
#include <csgenM3.hst> 
#include <csgenM3.h> 

#include <benkeys.h> 

#define CLI 0 
#define ART 1 

main ( ) 

59 



{ 

} 

int st; 

csgopen (); 

do 
{ 

} 

st = Cnewsted ("MENU") ; 

if(st != TI_CAN) 
{ 
switch(choix[O]) 

{ 

} 
} 

case '1' 

case '2' 

ges_client(CLI); 
break; 

ges_article(ART); 
break; 

while(st != TI_CAN}; 

csgclose (); 

ges client (} 
{ 
int key,keys; 

Dopen ( CL I ) ; 

key = Cnewsted("INKEYC"}; 

while(key != TI_CAN} 
{ . 
switch(key} 

{ 
case TI FA 

pas"}; 

case TI F2 

if(Dexist(CLI,cli.norn)} Dread(CLI,cli.nom}; 
e l se Cperror("DBCLI","Le client n'existe 

break; 

if(! Dexist(CLI ,cli .nom)) 
{ 

} 

keys = Cpshed("NEWCLI"); 

if(keys != TI_CAN) Dadd(CLI); 

Cpop(); 

else Cperror("DBCLI","Le client existe déjà"}; 

60 



case TI F3 

case TI PGD 

case TI PGU 

atteinte") ; 

case TI F7 

pas"); 

} 

} 
key = Ctoped(); 

} 
Dclose(CLI); 

ges article() 
{ 
int key,keys; 

Dopen ( CL I ) ; 

break; 

if(Dexist(CLI,cli.nom)) 
{ 

} 

keys = Cpshed("MODCLI"); 

if(keys != TI_CAN) Drew(CLI); 

Cpop(); 

else Cperror("DBCLI","Le client n'existe pas"); 

break; 

if(Dnext(CLI,cli.nom) == NOKEY) 
Cperror("DBCLI", "Fin du fichier atteinte"); 

break; 

if(Dprev(CLI,cli.nom) == NOKEY) 
Cperror("DBCLI","Début du fichier 

break; 

if(Dexist(CLI,cli.nom)) Dsupp(CLI,cli.nom); 
else Cperror("DBCLI","Le client n'existe 

break; 

key = Cnewsted("INKEYA"); 

while(key != TI_CAN) 
{ 
switch(key) 

{ 
case TI FA 

pas" ) ; 

if(Dexist(ART,art.num)) Dread(ART,art.num); 
else Cperror("DBART","L'article n'existe 

61 



case TI F2 

case TI F3 

case TI PGD 

case TI PGU 

atteinte"); 

case TI F7 

pas"); 

} 

} 

key = Ctoped ( ) ; 
} 

Dclose(CLI); 

break; 

if(! Dexist(ART,art.num)) 
{ 

} 

keys = Cpshed ( "NEWART"); 

if(keys != TI CAN) Dadd(ART); 

Cpop () ; 

else Cperror("DBART","L'article existe déjà"); 

break; 
if(Dexist(ART,art.num)) 

{ 

} 

keys = Cpshed ( "MODART"); 

if(keys != TI_CAN) Drew(ART); 

Cpop () ; 

else Cperror("DBART","L'article n'existe pas"); 

break; 

if(Dnext(ART,art.num) == NOKEY) 
Cperror("DBART","Fin du fichier atteinte"); 

break; 

if(Dprev(ART,art.num) == NOKEY) 
Cperror("DBART","Début du fichier 

break; 

if(Dexist(ART,art.nurn)) Dsupp(ART,art.num); 
else Cperror("DBART","L'article n'existe 

break; 

62 



CHAPITRE 4 CSGEN SUPERVISEUR. 

La version utilitaire de CSGen est utilisée au sein de la société 
Prologic depuis environ six mois. Elle a permis de développer 
différentes applications telles que diverses gestions de fichier, 
une gestion de cabinet médical, une comptabilité forfaitaire et 
une comptabilité générale à l'état encore embryonnaire. 
Cette confrontation avec les besoins réels a permis de mieux 
cerner les avantages et les inconvénients du gestionnaire 
d'écrans. 

Outre les inconvénients, des améliorations ont été suggérées par 
les programmeurs utilisant CSGen, ce qui a amené à étudier une 
nouvelle version du gestionnaire d'écrans. 

La lecture du livre de Bernard Faulle a permis de mettre en 
exergue des notions qui n'existent pas (ou sont déformées) dans 
l'approche utilitaire du gestionnaire d'écrans. 
Cette lecture a également montré les nombreux avantages qu'il y 
avai t à considérer le gestionnaire d'écran non pas comme un 
utilitaire mais comme le ''superviseur" du programme c'est-à-dire 
à considérer le dialogue homme-machine non pas comme un 
auxiliaire mais comme l'élément pilote d'une application. 

4.1 L'idée de scénario 

L'approche superviseur est radicalement différente de l'approche 
util i taire par la dynamique qu'elle engendre, à l'aide par 
exemple de la notion de scénario. 
Dans ce cas, un écran logique n'est plus vu comme une unité de 
dialogue indépendante mais au contraire, il appartient à une 
suite ordonnée préétablie d'unités dialogues. 
Le concept de scénario a été défini au paragraphe 2.13. La figure 
4.1. illustre le scénario du second exemple tel qu'il a déjà été 
présenté à cet endroit. 

Comme nous l'avons déjà mentionné dans le chapitre 2, les 
rectangles représentent des écrans logiques alors que les arcs 
représentent des traitements. Un gestionnaire d'écran exploitant 
un tel schéma peut être à même de gérer tout un programme à 
cond i tion de "connaître" et de pouvoir appeler les traitements 
liés aux arcs, les fonctions-arcs (définies au paragraphe 2.13.). 

63 



FIGURE 4.1 . Scénario de la seconde solution. 

Cali_ superviseur close_csgen 

illlllil \!ft 
F1 O et choix = 1 

0 · = ,t:'onçl'on - arc 

• = Ecnln 

PgUp, PgDn, E$c, F2, F3, Esc = Touches de fonction 

64 



4.2 Les limitations de CSGen utilitaire 

Voici les inconvénients qui ont été constatés lors de 
l'utilisation de la première vers i on de CSGen. Certaines 
critiques constituent de simples détails mais permettront de 
définir une fois pour toutes les fonctionnalités attendues pour 
la nouvelle version du gestionnaire d'écrans. 

- Difficulté de découper les images-écrans en écrans logiques. 
- A l'utilisation, on s'est aperçu qu'il était parfois ardu de 

définir si c'était une instruction CPUSH, ç_pop ou CNEWST qu'il 
fallait employer. Le schéma précédent légèrement complété 
permet au gestionnaire d'écran de savoir quelle instruction 
employer, ce qui permet une disparition des appels explicites 
aux fonctions de manipulation d'écran. 

- Une limitation est 
plusieurs écrans 
communes. 

l'impossibilité de superposer 
logiques ayant des régions 

proprement 
de l'écran 

La forte distinction entre un écran de dialogue et un écran de 
menu interdisant leur superposition limite beaucoup 
l'utilisation de menus "locaux" (par exemple "choisissez le 
périphérique d'impression, ... ). De plus le principe consistant 
à faire se déplacer un repère en face des choix possibles n'est 
pas toujours le moyen le plus rapide pour choisir un point de 
menu. 

- CSGen utilitaire n'admet pas de valeurs de zones de saisie par 
défaut. 

- Il est impossible de forcer le cadrage d'une zone de saisie à 
gauche ou à droite. 

- Le format de la date n'est pas imposé mais sa validation bien 
car l_a fonction isdate() assume que la date est entrée sous le 
format "jj-mm-aa". 

- La taille maximum de l'écran du terminal admise par CSGen est 
de 25 lignes de 80 caractères. Or les nouvelles cartes sous MS­
DOS, ou les terminaux graphiques admettent des tailles plus 
importantes. 

Les écrans d'aide de CSGen apportent plusieurs limitations 
- Chaque écran logique doit avoir au plus un écran d'aide. 
- Il est impossible d'enchaîner des écrans d'aide. 
- Un écran d'aide est une "constante de texte". 

- Le nombre et 
certaines de 
inutilisées. 

la désignation des zones de fond 
ces zones (clé accédée) sont 

est fixe, or 
généralement 

65 



- Les touches de fonction propre 
suivante, précédente, aide, DO, 
pourrait limiter la portabilité 
nécessairement la touche la plus 

à CSGen (zone entrée-sortie 
UNDO, . ) sont fixées ce qui 
ou l'ergonomie (FlO n'est pas 

accessible !) . 

- Les attributs d'affichage des zones de saisie sont définis pour 
l'ensemble des écrans d'une application or il peut être 
intéressant de les modifier localement. 

- La modification de la taille d'une variable ou de son format 
entraîne en général un important travail de modification au 
sein des écrans logiques utilisant cette variable. 

- La création d'un écran logique se fait "en aveugle" puisque la 
notion d'écran physique n'existe pas de manière explicite. 

- Les textes et les zones de saisie sont définis en coordonnées 
ligne, colonne relative au coin supérieur gauche de l'écran du 
terminal. Le déplacement d'une zone de fond entraîne donc des 
résultats inattendus comme par exemple la présence d'une zone 
de saisie hors de la zone de dialogue. 

- La présence permanente de la zone des 
elle limite la surface utilisable de 
plus un utilisateur habitué à utiliser 
pas avoir constamment sous les yeux les 

4.3 L'écran de fond 

options est gênante car 
l'écran du terminal. De 
une application ne doit 
options disponibles. 

Les critiques de CSGen utilitaire mettent en évidence la 
nécessité pour le programmeur de pouvoir définir ses propres 
zones de fond selon l'application à réaliser. 
Néanmoins, il existe des zones nécessaires au bon déroulement de 
CSGen (par exemple la zone des messages d'erreur) et au 
déroulement du dialogue (par exemple la zone corps d'écran). 
Lors de la création d'un écran de fond, il faudra donc définir 
des zones de fond et spécifier leur rôle. Les zones de fond 
obligatoires sont au nombre de trois, à savoir : 

- La zone corps d'écran . 
- La zone des messages d'erreur (et la zone type d'erreur). 
- La zone des options. 

Il faut aussi distinguer les zones de fond ''éditables" par le 
programmeur de celles qui ne le sont pas. Par exemple, la zone 
corps d'écran ainsi qu'une éventuelle zone titre sont éditables, 
alors que la zone des messages d'erreur ne l'est pas. 

Pour être tout à fait complet, il faut déterminer les zones qui 
sont entièrement effacées à chaque affichage d'écran logique. Le 
problème, posé à l'envers, revient à voir quelles zones doivent 
être superposables. Après analyse, il ressort que seule la zone 
corps d'écran doit l'être, entre autres raisons de façon à ne pas 

66 



compliquer la confection des écrans. Pour cette même raison, on 
confinera toujours les zones de saisie à la zone corps d'écran. 

Par contre, il peut être intéressant de définir des "zones de 
sortie permanentes" liées à l'écran de fond. Elles peuvent 
uniquement apparaître à un endroit de l 'écran où n'y a aucune 
zone de fond. On pourra par exemple les utiliser pour afficher 
l'heure, la date du jour, ... Ce moyen permet également de 
supprimer la zone de fond "nom d'écran " , en assumant que CSGen 
initialise une variable globale contenant le nom de l'écran 
logique au sommet de la pile . 

4.4 La zone d~9 options 

Les critiques de CSGen utilitaire indiquent les inconvénients à 
obtenir l'affichage permanent de la zone des options. Cette zone 
peut occuper une surface importante de l'écran, celle-ci étant 
alors inutilisable pour la zone de corps d'écran . Cependant la 
zone des options est indispensable à l'utilisation du logiciel 
puisqu'elle traduit l e scénario de l'application. La solution 
retenue dans CSgen superviseur est de considérer les options 
comme une aide, dont l'affichage est consécutif à l'appui sur une 
touche de fonction. 

Il faut aussi souligner l'importance des touches de sortie 
d'écran dans la confection de la zone des options puisqu'en effet 
elles sont sa seule raison d'être. Pour cette raison, CSGen 
superviseur propose un utilitaire en simplifiant considérablement 
la confection. Cet utilitaire propose au programmeur d'une part 
une zone des options vierge, dans laquelle celui-ci y définit les 
emplacements qui recevront les "noms" des touches de fonction 
ainsi que leur signification et d'autre part un tableau 
permettant d'affecter des significations par défaut aux touches 
de fonctions (L'ergonomie n'en sera que meilleure). A l'aide du 
scénario et des informations ci-avant, CSGen peut ainsi générer 
semi-automatiquement le texte de la zone des options de chaque 
écran physique. 

4.5 La notion de grilles d'écran 

L'utilisation de CSGen utilitaire a montré que, dans une 
application de gestion, beaucoup d'écrans avaient trait à de même 
textes ou zones de saisie positionnés au même endroit. Par 
exemple, les écrans logiques affichés lors de traitements de 
création d'un client, de modification d ' un client ou encore de 
consultation d'un client ont la même apparence et utilisent les 
mêmes zones de saisie. Seuls les types (input,modif ou output) ou 
les tests de va l idité sont différents d'un écran logique à 
l'autre. 
La création de ces différents écrans logiques devient alors une 
tâche répétitive et constitue dès lors une source d'erreurs. 

67 



Face à ce nouveau problème, nous avons eu .l'idée non plus de 
diviser un écran logique en un ensemble de textes et de zone de 
saisie, mais de le diviser en grilles d'écrans constituées de 
textes et de zones de saisie. 

Les éléments constitutifs de ces grilles d'écrans sont donc un 
sous-ensemble des éléments constituants les écrans logiques, à 
savoir : 

- du texte situé dans l a zone corps d'écran. 
des zones de saisie dans la zone corps d 'écran. 

Pour chacune de ces zones 

- Le nom de la variable C associée. 
- Le format et la longueur de la zone. 

Après l'introduction de la notion de grilles d'écrans, un écran 
logique devient une "somme" de grilles d'écrans, accompagnées de 
précisions relatives à l'utilisation des zones .de saisie et de 
textes dans les zones éditables autres que la zone corps d'écran. 

4.6 Les attributs des zones de saisie 

Lors de la confection des applications à l'aide de CSGen 
utilitaire, nous avons remarqué des dépendances fonctionnelles 
entre les zones de saisie et leurs attributs. Il est possible 
d'exploiter ces dépendances pour alléger la création des écrans 
d'une application. 
Nous allons décrire ci-après ces dépendances fonctionnelles 

- Le format d'une zone de saisie est lié à la variable de la 
zone. 
Il est en effet peu probable qu'une variable soit affichée dans 
différents formats dans différents écrans. De plus, les 
caractères d'inserti o n permettent d'employer un même format en 
entrée ou en sortie sans alourdir la tâche de l'utilisateur. 

- Le test de validité d'une zone de saisie et son message 
d'erreur sont liés à la variable et au type de la zone de 
sa i sie (In, Out, Mod). 
Comme précédemment, il est logique que dans un programme 
l'édition d'une variable utilise les mêmes critères dans des 
écrans différents. 

En conclusion, lorsque le développeur utilisera dans un écran une 
variable déjà définie dans un autre écran, il sera possible de 
reprendre le format, les tests et les messages d'erreur déjà 
définis, de manière à accélérer l'édition des écrans. 

Dans CSGen utilitaire les tests étaient utilisés 
des fonctions de formatage à postériori de la zone 
telle approche constitue un amalgame de 
fonctionnellement différentes. Il en résultait 

pour appliquer 
de saisie. Une 
deux actions 

d'ailleurs des 

68 



tests lourds, par exemple, le test de validité d'une zone de 
saisie dans laquelle l'utilisateur doit entrer les lettres 'O' ou 
'N' se traduisait par : 

Test : "strcmp(upper(=), "O") !=0 && strcmp(upper(=), "N") !=0" 
Message d'erreur : "Entrez o ou N dans cette zone . " 

Cet exemple illustre le manque de cohésion des tests de validité 
par la redondance de l'appel à la fonction "upper". Nous avons 
donc décidé de séparer les tests de validité et les actions de 
formatage, ce qui a donné les fonctions à postériori. L'exemple 
précédent devient alors 

Fonction à postériori "upper(=)" 
Test : "strcmp(=,"O") ! = 0 && strcmp(=,"N") != 0" 
Message d'erreur : "Ent rez O ou N dans cette zone." 

Enfin, nous avons trouvé intéressant de pouvoir utiliser la 
variable d ' une zone de saisie avant son édition par 
l'utilisateur. Nous avons introduit les fonctions à priori qui 
permettent, par exemple d'attribuer une valeur par défaut à une 
zone de saisie. Il est également possible, par ce biais, d'entrer 
la valeur d'une zone de saisie à l'aide de moyens qui ne sont pas 
offerts par CSGen. Par exemple, le choix d'une valeur dans une 
table de valeurs possibles; dans ce cas , le zone de saisie 
possède un type "Out" une tentative d'édition de cette zone se 
soldera par l'appel de la fonction à priori. 
Il faut remarquer que la "fonction à priori" est le seul attribut 
d'une zone de saisie de type "Out" puisqu'une telle zone n'est 
pas réellement éditable. Les éventuels tests de validité seront 
menés par la fonction à priori. 

En résumé, nous allons énoncer les attributs d'une zone de saisie 

Nom de variable. 
Taille : Nombre de ligne, nombre de colonnes. 
Format. 
Type In Fonction à priori, fonction à postériori. 

Tests de validité, messages d'erreur associés. 
Type Mod: Fonction à priori, fonction à postériori. 

Tests de validité, messages d'erreur associés. 
Type Out: Fonction à priori. 

4.7 La zone d'effacement 

Les critiques de CSGen utilitaire et l'utilisation d'un scénario 
permettent de supprimer l'utilisation de primitives d'accès aux 
écrans logiques. Il faut néanmoins que les routines de CSGen 
superviseur puissent éliminer toute ambiguïté sur la méthode à 
employer pour afficher un écran. Ce problème se pose tout 
particulièrement pour effectuer la distinction entre les rôles 

69 



joués par les primitives CPUSH et CNEWST, ainsi que pour résoudre 
les problèmes de superposition d'écrans logiques. 

Notre idée est de supprimer la nécessité d'employer la primitive 
CNEWST en créant une p i le vide lors du lancement de l'application 
et en empilant ensuite tous les écrans logiques. 
En agissant de la sorte, un problème de superposition se pose 
lorsque l'on désire effacer totalement le contenu de la zone 
"corps d'écran " pour changer de contexte. 
Une solution possible est alors d'associer à chaque écran logique 
une ''zone d'effacement" . Cette zone détermine ainsi la portion de 
corps d'écran qui sera effacée avant l'affichage de l'écran 
logique, permettant également de mieux définir un éventuel texte 
ou zone de saisie à sauvegarder. 
Néanmoins, cette solution souffre de critiques liées entre autres 
aux efforts supplémentaires nécessaires au programmeur pour 
imaginer les enchaînements d'écrans. En effet, la démarche du 
programmeur doit être "Si j'utilise tel écran sachant que c'est 
tel autre écran qui est affiché, il ne me reste plus qu'a faire 
afficher tel et tel texte puisque tel autre texte est déjà 
affiché !" 
Le paragraphe suivant apporte une solution à ce problème. 

4.8 Uniquement des écrans physiques 

Une des critiques de la version utilitaire de CSGen est de devoir 
créer un écran logique "en aveugle" sans pouvoir visualiser 
exactement 1 'écran tel qu'il se présentera. Les dessins des 
écrans logiques du second exemple illustrent cette constatation. 
Dans CSGen utilitaire, il était impossible d'agir autrement 
puisqu'un écran était une entité indépendante. Par contre, le 
scénario permet de cheminer à travers les écrans logiques et, en 
conjonction avec les zones d'effacement, il est possible de 
reproduire lors de la création d'un écran, la vue qu'aura 
l'utilisateur final lors de l'utilisation du programme. 

Il existe une autre solution possible qui serait radicalement 
différente des autres : Ne pas éditer d' écrans logiques mais 
éditer des écrans physiques. Dans ce cas, les écrans logiques 
deviennent un objet interne de CSGen dont le seul but est 
d'augmenter les performances du logiciel. Il en résulte que la 
notion de grilles d'éc r ans disparaît, ou plus précisément, se 
ramène à la notion d'écrans logiques précédemment décrites. 
Les problèmes de superpositions sont également résolus puisque 
CSGen , en connaissant l'écran physique affiché et l'écran 
physique à afficher, détermine lui-même les portions d'écran à 
modifier sur le terminal et ceci avec une efficacité maximum. On 
peut parler, lors de l'exécution de l'application, d'affichage 
différentiel. 
L'utilisation de grilles d'écrans permet de confectionner 
directement des écrans physiques sans exiger plus de travail de 
la part du programmeur. En effet, la création d'un écran physique 
se limite à 

70 



- L'association d'une ou plusieurs grilles d'écran 
- La précision du type des zones de saisie 
- L'édition des zones éditables ("titre", "options", .. ). 

Cette méthode apporte un autre avantage , par exemple lors de la 
modification d'un signalétique. Il suffit de modifier une grille 
d'écran pour qu'automatiquement soient modifiés tous les écrans 
physiques utilisant le nouveau signalétique. Cet avantage est 
important car il apporte un énorme gain de temps par rapport à 
CSGen utilitaire qui obligait le programmeur à rééditer chaque 
écran logique. 

4.9 Les fonctions-arc, le passage d'arguments 

Dans la version utilitaire de CSGen les variables associées à une 
zone de saisie sont toutes globales. Cette approche n'est pas la 
plus efficace mais supprime tous les problèmes de passage 
d'arguments aux primitives d'accès aux écrans. Il doit en être de 
même pour la nouvelle version de CSGen et pour les même raisons. 
Pour comprendre le problème, il faut savoir qu'il n'existe en 
langage C que trois types de variables 

- Des variables globales au programme. 
- Des variables locales à une fonction. 
- Des variables locales à un ensemble d'instructions inscrites 

dans une fonction . 

La durée de vie d'une variable locale est limitée à l'exécution 
de la fonction qui l'emploie et n'est accessible qu'a l'intérieur 
de cette fonction (sauf bien sûr si elle figure en tant que 
paramètre dans l'appel d'une fonction) . 
Il se pose alors un problème pour qu'une fonction-arc puisse 
passer des arguments à la fonct ion-arc suivante. En effet, 
l'absence de primitive d'accès aux écrans logiques résulte en 
l'affichage d'un écran logique lors d'une terminaison de 
fonction-arc, l'appel à la fonction-arc étant en fait effectué 
par le "superviseur" de CSGen. Les arguments passés à une 
fonction-arc ne peuvent donc être que de deux types : 

- Des variables locales a u superviseur. 
- Des variables globales. 

Il faut noter que ces deux types de variables ont sensiblement la 
même efficacité puisque l'exécution du superviseur commence et se 
termine pratiquement en même temps que l'exécution du programme. 
De plus, il est impensable d'écrire ou de générer des définitions 
de variables locales au superviseur puisque celles-ci ne 
pour r aient être exploitées qu'en le compilant, impliquant une 
perte de temps (la compilation) et un manque de protection (en 
devant fournir les sources du générateur). 

Une problématique importante est liée aux fonctions-arcs : le 
morcellement du programme en une kyrielle de petites fonctions. 

71 



Pour illustr er ce fait, nous allons reprendre l'exemple de la 
gestion des fichiers clients et articles, en le programmant selon 
les règl~s définies ci-dessus . 

menu_cli() 
{ 
if(Dopen(CLI) != OK) 

{ 

display_error("Erreur d'ouverture du fichier clients"); 
} 

} 

menu_art () 
{ 

if(Dopen(ART) != OK) 
{ 

display_error("Erreur d'ouverture du fichier articles"); 
} 

} 

c 1 i menu () 
{ 

Dclose(CLI); 
} 

art menu() 
{ 

Dclose(ART ) ; 
} 

cl i rnod ( ) 
{ 

readcli(); 
} 

rnod cli ok() 
{ 

Drew(CLI); 
} 

rnod c 1 i bad ( ) 
{ 
} 

art mod() 
{ 
readart (); 

} 

rnod art_ok() 
{ 

Drew(ART); 
} 

C 

72 



mod_art_bad() 
{ 
} 

c 1 i new ( ) 
{ 
initcli(); 

} 

new_cl i_ok () 
{ 

Dadd(CLI); 
} 

new_cli_bad() 
{ 
} 

art new () 
{ 
initart(); 

} 

new art_ok() 
{ 

Dadd(ART); 
} 

new_art_bad() 
{ 
} 

read_cli() 
{ 
readcl i () ; 

} 

read next_cli() 
{ 

} 

if ( Dnext ( CL I ) ! = OK) 
{ 
display_error("Impossible de lire le client suivant"); 

} 

read_prev_cli() 
{ 

} 

if ( Dprev ( CL I ) ! = OK) 
{ 
display_error("Impossible de lire le client précédent"); 

} 

73 



read_art() 
{ 
readart(); 

} 

read next art() 
{ 

} 

if(Dnext(ART) != OK) 
{ 

display_error("Impossible de lire l'article suivant"); 
} 

read_prev_art() 
{ 

} 

if ( Dprev (ART) ! = OK) 
{ 

display_error("Impossible de lire l'article précédent"); 
} 

readcl i () 
{ 

} 

if(Dread(CLI) != OK) 
{ 
display_error("Ce client n'existe pas"); 

} 

readart ( ) 
{ 

} 

if ( Dread (ART) ! = OK) 
{ 

display_error("Cet article n'existe pas"); 
} 

Une nouvelle fois, on suppose, dans cet exemple, que l'on dispose 
d'un gestionnaire de fichier dont la syntaxe des primitives est · 
triviale. 

Avant de continuer, il est intéressant de décrire brièvement le 
fonctionnement du superviseur. Nous allons énoncer les routines 
du superviseur à l'aide du (pseudo) langage C utilisé jusqu'a 
présent, de manière à observer les problèmes de passages 
d'arguments. 
Les noms des fonctions utilisées sont fictifs mais , décrivent 
suffisamment le traitement effectué. 

c?ll_superviseur() 
{ 
clear screen(); 

74 



load_scénario(); 
load_and_display_fond(); 

current_screen = first_of scénario; 

while(current screen != NIL) 
{ 
out_key = load_display_edit(current_screen); 

current screen = call_function_next(current_screen,out_key); 
} 

} 

call_function_next(screen,key) 
char ~screen,key; 
{ 

switch(screen) 
{ 
case MENU : 

{ 

switch(key) 

} 

{ 
· case FlO 

case ESC 
} 

break; 

case INKEYC 
{ 
switch(key) 

{ 

case FlO 
case ESC 
case PGU 
case PGD 
case F2 
case F3 

} 
} 

break; 

case INKEYA 
{ 
switch(key) 

{ 

case FlO 
case ESC 
case PGU 
case PGD 
case F2 
case F3 

} 

if(choix(O) == '1') menu_cli(); break; 
if(choix(O) == '2') menu_art(); break; 
return(NIL); break; 

read_cli(); break; 
end_cli(); break; 
read_next_cli(); break; 
read_prev_cli(); break; 
new_c l i(); break; 
mod_cli(); break; 

read_art(); break; 
end_art(); break; 
read_next_art(); break; 
read_prev_art(); break; 
new_art(); break; 
mod_art(); break; 

75 



} 

} 

break; 

case MODCLI 
{ 
switch(key) 

{ 

} 

case FlO 
case ESC 

} 

break; 

case NEWCLI 
{ 

switch(key) 
{ 

} 

case FlO 
case ESC 

} 

break; 

case MODART 
{ 
switch(key) 

} 

{ . 

case FlO 
case ESC 

} 

break; 

case NEWART 

} 

{ 
switch(key) 

{ 

} 

case FlO 
case ESC 

} 

break; 

cli_mod_ok(); break; 
cli_mod_bad(); break; 

cli_new_ok(); break; 
cli_new_bad(); break; 

art_mod_ok(); break; 
art_mod_bad(); break; 

art_new_ok(); break; 
art_new_bad(); break; 

On peut remarquer que la fonction "call_function_next" peut être 
générée par CSGen et compilée en même temps que l'application. 
Cette méthode permet d 'appeler les fonctions-arcs à partir du 
19 ngage C, sans artifice tel que des conversions d'adresses à 
l'exécution. En effet, cette fonction n'est formée que 
d'informations disponibles dans le scénario. 

76 



On peut également noter que seule la fonction 
"call function_next" doit exister en source, 
superviseur peuvent être disponibles sous 
librairie assurant par conséquent la protection 

les routines du 
la forme · d'une 

du générateur 
d'écran. 

Il est possible de simplifier la programmation des applications 
utilisant CSGen superviseur en supprimant, par exemple, les 
définitions de fonctions qui ne possèdent pas d'instructions 
(mod_cl i_bad (), new_art_bad (), ... ). 

4.10 L'acceptation des écrans. 

Nous avons jusqu'à présent considéré que l'acceptation ou le 
refus d'un écran était consécutif à la pression sur une touche de 
fonction. Cette vue, i ntroduite par CSGen utilitaire permettait 
de mieux fixer les idées. Il faut en fait voir la notion 
d'acceptation d'un écran comme globale à un dialogue et non comme 
locale à un écran. 
A cette fin, il faut étudier de plus près les conséquences de 
l'édition d'un écran sur la valeur des variables du programme. 
Il est logique que lorsqu'un écran est refusé par l'utilisateur, 
les variables modif iées par celui-ci reprennent la valeur 
qu'elles avaient avant l'édition de cet écran. L'édition des 
zones de saisies d'un écran devrait avoir lieu dans un "buffer", 
celui-ci ne serait affecté aux variables que lors de 
l'acceptation de l'écran; dans le cas contraire, aucune 
affectation n'aurait l ieu. 

La méthode exposée ci-dessus impose l'utilisation d'un "buffer" 
sous forme d'une pile lorsque plusieurs écrans sont enchaînés, 
comme dans le cas du scénario représenté à la figure 3.2. Ce 
scénario illustre une gestion de fichier client dans laquelle un 
enregistrement contient le signalétique du client ainsi que les 
caractéristiques du matériel qu'il utilise. Dans cet exemple il 
se pose un problème lorsque l'utilisateur valide l'écran Modmat 
et, ens~ite, refuse l'écran Modcli. Dans ce cas, en effet, le 
désir de l'utilisateur est d'enregistrer la description du 
matériel du client et de refuser les modifications apportées au 
signalétique. Nous pouvons alors constater un problème : 

Les informations appartenant à un même enregistrement, 
logiquement un seul ordre d'écriture dans le fichier doit 
apparaître dans le programme et forcément lors de la validation 
de l'écran Modcli. Cet écran étant refusé par l'utilisateur, 
aucune mise à jour du fichier n'aura lieu. Il y aura donc 
discordance entre l'enregistrement situé en mémoire centrale et 
l'enregistrement se trouvant dans le fichier . 

Il est difficile d'échapper à ce problème, une solution étant 
d_'accepter la discordance tout en prévenant le programmeur de 
manière à en éviter les conséquences. Il faut noter que, dans le 
cas de l'exemple, la discordance n'aura aucune influence sur le 

77 



programme à condition de programmer un ordre de lecture de 
l'enregistrement lors du retour à l'écran Inkeyc. 

Nous avons vu dans ce paragraphe que certaines touches de 
fonction provoqueront la mise à jour des variables liées aux 
zones de saisie, alors que d'autre ne le feront pas. Il faut donc 
ajouter un attribut aux touches de fonction définies dans le 
scénario qui indiquera pour chacune d'elles le mode de mise à 
jour des zones de saisie de l'écran. Nous appelerons cet attribut 
"mise-à-jour". 

78 



FIGURE 4 . 2. Exemple de problème d'acceptation d'écran. 

start 

F10 
~--~PgUp 

PgDn 

,__ ___ .___ -_---~!!i;ii!ffl~[il_: E_sc ____ __ stop ---- ______ ___,,. 

Esc 
F10 

i!~!l!iïiiii 
F3 

Esc 
F10 

1

1,lli_:_:wra_j_i_i_l_'._::_:_~_:i_il_f l_l_!_: 
·::·:·:·:·::::::. 

F3 

F2 

Esc 
F10 

79 



4.11 L'efficacité de CSGen superviseur. 

Pour revenir au problème du morcellement du programme, on 
s' aperçoit d'une (quasi) disparition des variables locales, au 
profit de variables globales. 
Il faut remarquer que la perte de place mémoire due à la 
"g l obalisation" des variables est en partie compensée par la 
simplification des fonctions, c'est-à-dire par un code plus 
compact. 

En fait, le danger le plus important dû au morcellement du 
programme est son absence de signification s'il n'est pas 
accompagné de son scénario. En effet la perte ou la destruction 
du s cénario rendra le programme tout à fait incohérent puisque 
c'est lui qui relie toutes les fonctions du programme. 
Il est donc nécessaire pour le développeur , plus encore que pour 
d'autres méthodes, de bien documenter le programme . Sinon sa 
maintenance sera impossible . Heureusement, le générateur d'écran 
peut fournir automatiquement une documentation imprimée très 
complète du scénario, des écrans physiques et logiques ainsi que 
des variables employées. 
Dans l'exemple donné ,on peut remarquer que les fonctions sont en 
général très courtes. Il est parfois plus long d'éditer leur nom 
que d'éditer leur corps ! On pourrait e nvisager de ne pas limiter 
le générateur à appeler une fonction-arc, mais à autoriser le 
développeur à éditer le corps de cette fonction. Il est 
fastidieux de donner un nom à une fonction alors que celle-ci 
peut être identifiée par l'écran dont elle est issue. Il suffit 
d'ajouter au programme d'édition des écrans une r outine d'édition 
de texte. 

4.12 Compatibilité avec d'autres lang~~es é volués . 

Il est certain que 
se basent sur le 
d'écrans existants 
utilis~, ce qui en 

les choix faits au c ours de l'analyse de CSGen 
langage C alors que beaucoup de gestionnaires 
font abstraction d u langage de programmation 

permet évidemment une plus large diffusion. 

Pour examiner une éventuelle possibilité d'utiliser CSGen 
d'autres langages, i l faut distinguer les c omposants 
utilisent spécifiquement le langage C. 

4.13 Les fonctions du gestionnaire~ 

avec · 
qui 

Les appels de fonctions appartenant à la librairie de CSGen sont 
normalement résolus par l'éditeur de lien accompagnant le système 
d'exploitation. 
Néanmoins, le passage des arguments dépend très fort du langage 
employé . Par exemple, la terminaison des chaînes de caractères 
par un zéro binaire est une convention propre au langage C, la 
plupart des autres langages ne précisent pas ce point. 

80 



Le problème de passages d'arguments peut cependant être 
les routines du gestionnaire sont écrites en langage C 
permet l'accès à la mémoire au byte près. Il suffit 
réaliser différentes librairies pour les différents 
visés. 

4.14 Les zones de saisie d'un écran. 

résolu si 
puisqu'il 
donc de 
langages 

On doit ici distinguer les différentes composantes des zones de 
saisies. 

La· liaison programme-écran. 

CSGen utilise le nom de la variable C du programme pour lier une 
zone de saisie d'un écran avec le programme qui l'utilise. 
Comme expliqué au paragraphe 3.20, chaque variable est identifiée 
par une table d'adresses et l'indice correspondant. 

Cette méthode est en fait valable pour tous les langages évolués 
qui permettent un accès direct à une zone mémoire occupée par une 
variable. Les langages PASCAL et BASIC possèdent généralement des 
fonctions "varptr" et "varlen" pour réaliser cette tâche. 
Des langages tels que COBOL et FORTRAN possèdent d'autres formes 
d'accès tels que "equivalence" ou "redefine". Dans ce dernier cas 
il faudrait apporter quelques modifications à CSGen puisque le 
fonctionnement de ces instructions est fondamentalement 
différent. 
Les conventions 
dépendantes du 
fonctions qui 
variable. 

de dénomination des variables sont fortement 
langage employé, il faut donc reprogrammer les 

déterminent le type de donnée représenté par une 

Les tests de validité. 

La génération de code source utilisée par CSGen est envisageable 
pour tous les langages évolués . Il faut bien entendu générer des 
sources syntaxiquement correctes. De toutes manières, il est 
toujours possible de programmer, dans le langage choisi, un 
inter prèteur plus ou moins puissant de tests de validité. 

81 



CHAPITRE 5 : IMPLEMENTATION DE CSGEN SUPERVISEUR. 

Nous n'aborderons pas dans ce chapitre l'implémentation de CSGen 
utilitaire. L'intérêt de cette étude est moindre puisque CSGen 
utilitaire reprend en grande partie les même concepts que CSGen 
superviseur. 
Nous allons aborder l'étude 
certains points rés u ltant 
l'analyse des besoins. 

de l'implémentation à l 'aide de 
direc tement ou indirectement de 

5.1 Portabilité. 

La notion de portabilité sous entend principalement l a faculté 
d'adaptabilité du log iciel à son environnement hardware et 
software et, en outre, ses performances vis-à-vis de ce l ui-ci. 

5.2 Hardware. 

Le principal facteur à ranger dans cette catégorie est 
l'adéquation possible de CSGen aux divers types de terminaux 
existants. Ce problème a été résolu par l'utilisation de fichiers 
"driver de terminal " . Ces fichiers décrivent, pour chaque 
termina 1, les "escape sequences" des (~ommEi.ncje:=; des terminaux, 
d'une part, et les c odes liés aux touches de fonction d'autre 
part. Ces fichiers sont redéfinissable par le programmeur pour 
adapter CSGen à un type de terminal qui n'est pas encore défini. 
CSGen est programmé d e manière à faire abstraction du terminal 
employé, via des primi t ives d'accès qui servent d'interface entre 
le terminal et le pro gramme. Ces primitives sont réalisées sous 
la forme de fonctions écrites en langage C. Voici les principales 
fonctions d'accès au t e rminal 

- display(ligne,colonne,chaîne de caractères); 
- displayc(ligne,colonne,caractère); 

Ces deux fonctions affichent sur l'écran du terminal 
respectivement une c haîne de caractères et un caractère au 
coord6nnées (ligne,co lonne). Cet affichage se fait en accord 
avec les attributs de visualisation définis par les deux 
fonctions suivantes 

- setattr(attribut); 
- resetdisp(); 

La première de ces fonctions permet de définir l'attribut de 
visualisation qui sera employé par les fonctions d'affichage. 
La valeur "attribut'' est codée sur 16 bits décrits ci-après. La 
seconde fonction place l'attribut d'affichage "au neutre", 
selon une valeur définie dans le fichier "driver de terminal". 

Description d'un code d'attribut 

Le code d'attribut est composé de 16 bits répartis en 4 groupes 
de 4 bits : Le premier représente le code de couleur des 

82 



caractères, le second le code de 
affichés les caractères, enfin les 
les attributs d'affichage tels que 
clignotement, haute intensité, 
nécessaires pour mener cette 
attributs sont cumulatifs (par 

couleur sur laquelle sont 
deux derniers groupes codent 
soulignement, vidéo inverse, 

Au moins deux groupes sont 
tâche a bien, puisque les 

exemple, haute intensité et 
sou 1 i gnement) . 

L'interface est également 
d'initialisation des paramètres 
le fichier "driver de terminal" 
fonctions d'accès au terminal . 
fonction : 

composé d'une fonction 
du terminal. Cette fonction lit 
et initialise ainsi les autres 

Voici la syntaxe de cette 

- load ter(nom de fichier driver de terminal); 

Enfin, une fonction permet de lire les caractères tapés au 
clavier: 

- car= pgetch(); 

Cette fonction attend qu'une touche soit tapée au clavier du 
terminal, et renvoie ensuite un byte qui représente le 
caractère tapé 
- Code ASCII pour les touches de caractères ( < 127) 
- Code spécial pour les touches de fonction ( > 127). Ce code 

peut être utilisé dans un programme à l'aide d'un fîchier 
source C qui défini les codes renvoyés . L'enfo ncement de la 
touche Fl provoque l'envoit au programme du code TI_Fl, le 
touche Del envoie code TI_DC, 

Au niveau hardware, les seules exigences de CSGen vis-à-vis du 
terminal sont : 

Qu'il puisse afficher au moins 24 lignes de 80 caractères. 
- Que la position de son curseur puisse être adressable à l'aide 

coordonnées (ligne.colonne) ou (colonne,ligne) . 

5.3 Software. 

La portabilité, dans ce cas, concerne le compilateur Cet ses 
librairies de fonctions. Pour développer un logiciel portable, il 
faut respecter les convention dictées par "la bible du 
programmeur en langage C" que constitue le livre de Kernighan et 
Ritchie qui définit le langage Cet ses instructions. On y trouve 
également les originalités présentées par certains compilateurs, 
qui constituent donc des éléments à prendre en compte lors du 
développement (par exemple les divergences constatées dans les 
valeurs retournées par certaines fonctions, le nombre de bytes 
des différents types de variables, l'implantation en mémoire des 
structures, tableaux, ... ) . 

Cependant, 
échappent à 

deux ensembles de fonctions utilisées par CSGen 
cette règle de portabilité . La première dans un but 

83 



de performance, 
développement. 

et la seconde dans un but de simplification du 

Les fonctions d'accès à l ' écran. 

Les accès à l'écran du terminal via les fonctions o ffertes par le 
langage C "standard" se sont avérées trop lentes sous MS-DOS. Il 
risque d ' en être de même sous d'autres systèmes d'exploitation. 
Pour pallier cette lenteur, nous avons fait appel à des fonctions 
particulières à MS-DOS. En réalité, seules les fonctions 
"display" et "displayc" souffrent de cette incompatibilité, aussi 
les avons nous isolées dans un module particulier . De toute 
man i ère, les instructions particulières ne seront appelées que si 
un bit particulier du fichier "driver de terminal" est 
pos i tionné (Bit de compatibilité MS-DOS); sinon les instructions 
classiques d'entrée-sortie vers la console sont employées 
(cprintf, putchar, ... ). 

Les fonctions de gestion de fichiers . 

La plupart des fichiers utilisés par CSGen sont de type 
séquentiel et sont codés en ASCII, de manière à pouvoir être 
facilement transférés d'un système à un autre via une simple 
ligne RS-232. Cependant, dans un but de simplification du 
développement, nous avons utilisé un gestionnaire de fichiers 
séquentiels indexés. Cet utilitaire n'est pas portable, il faut 
donc envisager d'autres solutions : 

- Programmer un gestionnaire de fichier à l'aide des intructions 
standard du langage C. 

- Utiliser un autre gestionnaire de fichiers existant sur la 
machine sur laquelle on désire porter CSGen. 

La deuxième solution est sans doute la plus facile à réaliser car 
toutes les fonctions d'accès aux fichiers séquentiels indexés 
sont réunies dans un module de CSGen, il suffit alors de 
reprogrammer ce module en fonction des primitives offertes par le 
nouveau gestionnaire de fichiers. De plus ce module n'implémente 
qu'un nombre restreint de fonctions d'accès : Read , Add, Rewrite, · 
Delete, Next et Previous . record. 

5.4 Performances. 

Le but principal de ce paragraphe est de mettre l'accent sur le 
fait que, généralement, l'accès aux terminaux se fait par 
l'intermédiaire de lignes dont la vitesse est lente (240 ou 480 
caractères par seconde). Il a donc fal l u développer CSGen de 
manière à éviter l'envoi sur ces lignes de caractères qui ne sont 
pas indispensables. Ce point, qui paraît trivial, est en fait 
important puisque CSGen a été développé sous MS-DOS, système 
~•exploitation monoposte, où les transferts ê l'écran sont 
instantanés. 

84 



5.5 L'édition des écrans. 

L ' analyse de CSGen superviseur a mis en évidence l'utilisation de 
trois types d'objets éditables 

- L'écran de fond. 
- Les grilles d'écran. 
- Les écrans physiques. 

Ces objets sont eux-mêmes constitués de composants élémentaires 
que nous allons définir ci-dessous . Ces composants constituent 
des "types abstraits de données" qui ne sont exploitables par le 
programme que par l'intermédiaire de fonctions d'accès. Cette 
méthode à l'avantage de ne nécessiter que des modifications très 
localisées dans un programme, même si les composants subissent 
des modifications importantes. La portabilité et la maintenance 
du logiciel n'en seront que facilitées, au prix d'une légère 
perte de performance i nhérente à ce type de représentation. 
Les descriptions suivantes ne sont pas formelles, en effet il ne 
s'agit pas ici d'exposer un doss i er d'analyse mais bien 
d'illustrer les solutions qui ont été adoptées . 

5.6 Les composants élémentaires. 

Les paragraphes 
précisent les 
objets. 

suivants sont divisés en sous-paragraphes qui 
diverses facettes de l'implémentation de ces 

La définition, en langage naturel, précise la constitution du 
composant. 
La représentation externe exprime la structure d'un composant 
telle qu'elle sera écrite sur un support magnétique. 
Les fonctions d'accès décrivent les principales opérations que 
l'on peut effectuer sur les composants. 

Il faut préciser que l'affichage d'un écran se déroule en deux 
phases : 
- La préparation d'un écran en mémoire centrale (sans affichage). 
- L'affichage de l'écran préparé sur l'écran du terminal. · 

Cette distinction reflète la 
représenter l'état dans lequel 
type abstrait "dessin d'écran" 
qui constitue la future image 
terminal. 

nécessité qu'a CSGen de se 
se trouve l'écran du terminal. Le 

cache en fait un "écran interne" 
qui apparaîtra sur l'écran du 

Dans les paragraphes suivants le terme "écran" signifie "l'écran 
interne", alors que "l'écran du terminal" fera référence à la vue 
que peut avoir un util i sateur regardant le terminal. 

5.7 Les dessins d'écran. 

Définition. 

85 



Ce premier composant est constitué par des caractères qui seront 
envoyés dans un ordre déterminé à un emplacement déterminé de 
l'écran du terminal . Ces caractères sont accompagnés d'un 
attribut qui en précise l'apparence l'attribut de 
visualisation . 

Représentation externe . 

(ligne,colonne,texte)* 
(ligne,colonne,longueur,code d'attribut)* 

Exemple . 

1 1 Entrez 
1 10 le 
1 14 nom 
1 18 du 
1 20 client 
0 0 79 1234 
1 0 1839 2456 

Fonctions ~•accès. 

fill_ecra(car,ligne début,colonne début,ligne fin,colonne fin); 
Rempli une portion rectangulaire d'écran à l'aide d'un 
caractère, sans en changer les attributs . 

fill_att(car,ligne début,colonne début,ligne fin,colonne fin); 
Modifie les attributs d'affichage d'une portion 
rectangulaire de l'écran. 

move_ecra(ligne 
origine, 

début,colonne début, 1 igne fin,colonne 

ligne début,colonne début destination); 

fin 

Déplace une portion rectangulaire d'écran, accompagnée des 
attributs. 

chg_attr(code attribut); 
Cette fonction défini l'attribut "courant", qui sera 
utilisé par la fo nction "put_ecra " définie ci-dessous. 

put_ecra(ligne,colonne,chaine de caractère); 
Place une chaine de caractère aux coordonnées 
ligne,colonne, en utilisant l'attribut courant. 

aff_ecra(ligne début ,colonne début,l igne fin,colonne fin); 
Affiche une portion rectangulaire d'écran sur l'écran du 
terminal. 

load_ecra(fichier,déplacement ligne,déplacement colonne); 
save_ecra(fichier,déplacement ligne,déplacement colonne); 

Ces fonctions, respectivement chargent et sauvegardent des 
dessins d'écran dans un fichier référencé par une variable 
"fichier" (Pointeur de fichier défini en C en tant que 

86 



FILE*). Dans le cas de la sauvegarde, les déplacements 
constituent des valeurs à ajouter aux coordonnées 
ligne.colonne présentes dans le fichier. Lors du 
chargement, on retranchera ces valeurs. Ces valeurs 
permettent d'obtenir des fichiers de dessins d'écrans 
indépendants de l'emplacement réels où ils se trouvent sur 
l'écran. Il suffit donc de modifier ces valeurs pour 
déplacer un dessin d'écran complet. 

5.8 Les zones de saisie. 

Comme nous l'avons déjà mentionné, les zones de saisies sont 
liées à des variables du programme. 
Comme nous l'avons expliqué au paragraphe 1.2., l'analyse des 
besoins insiste sur la nécessité qu'a CSGen d'être le plus 
convivial possible, ce qui se traduit entre autre par l'adoption 
d'un maximum d'automatismes, résultant en un minimum d'efforts 
nécessaires à la réalisation d'un écran . 

Définition. 

Une zone de saisie est une portion rectangulaire située à un 
endroit défini de l'écran qui correspond à une variable du 
programme et qui pourra être affichée ou éditée par 
l'utilisateur. Dans un programme, une variable est identifiée par 
son nom. La taille de la portion rectangulaire défini la taille 
de la variable. Nous avons déjà abordé les différents attributs 
d'une zone de saisie a u paragraphe 4.6. 

Représentation externe. 

ligne début, colonne début, attribut de visualisation, 
Nom de la variable associée) * 

Exemple. 

1 1 1234 date 
4 5 234 cli.nom 
6 7 0 ligne(O) 

Fonctions d'accès. 

getvar(ligne,colonne); 
Cette fonction fo urnit les attributs d'une variable affichée 
aux coordonnées (ligne,colonne) de l'écran, s'il en existe 
une. Sinon, un code d'erreur est renvoyé. 

inpvar(); 
Cette fonction permet d'éditer les attributs d'une variable 
préalab l ement référencée par getvar. 

put var ( ) ; 

87 



Suite logique des deux 
sauvegarde les attributs 
préalablement par getvar . 

précédentes fonctions, putvar 
de la variable référencée 

aff_ecra(ligne début,colonne début,ligne fin,colonne fin); 
Affiche sur l'écran du terminal la ou les zones de 
définies sur une portion rectangulaire d'écran . 

5.9 Les zones de fond. 

Définition. 

saisie 

Une zone de fond détermine une portion rectangulaire située à un 
endroit défini de l'écran. Une zone de f o nd est identifiée par 
son nom et est destinée à recevoir un dessin d'écran et / ou des 
zones de saisie qui possèderont, par défaut des attributs de 
visualisation. 

Représentation externe. 

Ligne début, colonne début, ligne fin, co l onne fin, 
attribut par défaut du texte, 
attribut par défaut des zones de saisie, 
nom de la zone de fond ) 

Exemple . 

0 0 2 79 1234 5678 Titre 
3 0 18 79 3421 7654 Dialogue 
19 0 19 79 4 67 Options 

Fonctions d'accès ... 

Possédant une structure proche de la structure des zones de 
saisie, les fonctions d'accès aux zones de fond sont simila ires 
aux fonctions d'accès aux zones de saisie. 

getzone(l igne;colonne ); 
inpzone(); 
putzone ( ) ; 

5.10 L'édition de l'écran de fond. 

Un écran de fond est constitué des composants élémentaires 
suivants 

- Un dessin d'écran. 
- Des zones de fond non superposées . 
- Des zones de saisie de type "Out" non superposées entre elles 

et non superposées aux zones de fond. 

L'édition de chacun de ces éléments peut avoir lieu sur 
l'entièreté de la surface de l'écran du terminal . 

88 



(: i -
f a • • • - - - ~~;:-: Noue. avons développé , à 1 aide des fonctions d 'accés ÈnO!ii:.,:<'...:· :_; .-_·.i 

avant, un éditeur d'écran qui prend en compte les composants 
utilisés par l'écran de fond . 

5.11 L'édition des grilles d'écran. 

Une grille d'écran est constituée des composants suivants 

- Un dessin d'écran. 
- Des zones de saisie non superposées entre elles. 

L'édition de chacun de ces éléments ne peut avoir lieu que dans 
les limites définies pour la zone de fond "Dialogues". 

~~1-G_J.,_'._~dition des écrans physiques. 

Un écran physique est constitués des composants suivants 

- Une ou plusieurs grilles d'écran. 
- Pour chacune des zones de saisie de ces grilles le "type" de la 

zone de saisie. 
- Des dessins d'écran dans toutes les zones de fond éditables, 

excepté dans la zone de "dialogues" . 

Il y plusieurs méthodes pour mener à bien l'éditi on d'un écran 
physique, selon que l' on place toutes les gr llles sur un pied 
d'égalité ou que l'on en privilégie une d'entre elles. Dans le 
premier cas, l'édition de l'écran physique se borne à superposer 
des grilles déjà définies . Dans le second cas, cette 
superposition est complètée par l'édition d'une grille d'écran 
particulière, tout en visualisant "en fond" les autres grilles. 
Cette seconde solution n' o ffre finalement que peu d'avantages au 
progr ammeur, elle a donc été rejetée . De plus, elle apporte un 
inconvénient par la confusion des concepts de grille d'écran et 
d'écran physique (Elle permet d'ailleurs de ne pas emp loyer les 
grilles d'écran au même titre que CSGen utilitaire). 

5.13 Edition du scénario. 

Les composants du scénario d'une application ont été décrits aux 
paragraphes 4.9 et 4.10 . L'édition du scénario est, 
chronologiquement, la première étape de la création des écrans 
d'une application. On aurait pu autoriser le développeur à 
définir des écrans n'apparaissant pas dans le scénario (Les 
écrans physiques étant finalement indépendants) de manière à 
assouplir sa tâche mais cette démarche risque de conduire à des 
incohérences que nous avons préféré éviter. 
L'éditeur du scénario permet, à partir du nom d'un écran 
physique, de modifier la liste de ses touches de sortie et, pour 
chacune d'entre elles, de modifier les attributs de 

89 



l'enchaînement de l'écran physique suivant (Test, instruction 
d'appel de la fonction-arc et attribut de mise-à-jour). 

5.14 Le compilateur d'écrans. 

Le compilateur d'écran de CSGen superviseur, qui n'est pas encore 
développé, ressemblera de très près au compilateur de CSGen 
utilitaire. Le principe de génération de sources C sera conservé, 
nous l'avons déjà abordé au paragraphe 4.9. Comme pour CSGen 
utilitaire, la compilation des écrans consistera principalement 
en la numérotation des zones de saisies et en la production de 
fichiers-écrans optimisés, de manière à réduire les temps d'accès 
lors de l'exécution de l'application. 
La génération des sources contenant les définitions des variables 
sera plus complète. Elle séparera les fichiers liés aux vecteurs, 
aux matrices et aux structures, et générera ces références en 
"external". Il sera également possible de générer des sources à 
partir d'un schéma défini par l'utilisateur, pour obtenir, par 
exemple des schémas de définition de bases de données. 

5.15 La librairie d'exécution. 

La librairie d'exécution de CSGen superviseur contiendra les 
fonctions d'exploitation des fichiers-écrans, c'est-à-d ire la 
lecture et l'affichage "différentiel" . Les autres fonctions de la 
librairie permettront les enchaînements entre les écrans 
physiques, via les fonctions arcs. Les fon ctionnalités fournies 
lors de l'édition d'un écran seront semblables, les améliorations 
(tant au niveau de la programmation qu'éventuellement au niveau 
de l'interface utilisateur) résulteront de l'adj onction des 
fonctions à priori et à postériori et du "buffer des zones de 
saisie". 

5.16 Le programme d'installation. 

Le programme d'instal l ation permet à l'utilisateur d'adapter 
CSGen à l'environnement matériel et organisationnel. 
Le but principal du programme d'installation est de définir le 
terminal de l'utilisateur, c 'est-à-dire de choisir les paramètres 
du terminal utilisé parmi une liste de terminaux supportés par 
CSGen ou bien de permettre à l'utilisateur de définir un terminal 
qui n'existe pas dans la liste. 
Le programme d'instal l ation permet également au développeur de 
décider des "directory" qui contiendront d'une part les fichiers­
écrans et les programmes source de l'application et d'autre part 
les programmes de CSGen (L'éditeur et le compilateur d'écrans) . 
Il est aussi possible , à l'aide de ce programme, de définir les 
noms d'options par défaut attachés aux touches de sortie d'écran 
qui ont été définis au paragraphe 4.4. 

90 



5.17 Le schéma entité-association de CSGen. 

Les différents composants définis ci-avant peuvent être organisés 
selon le schéma entité-association illustré à la figure 5.1. 
La figure 5.2. illustre le schéma entité-association de CSGen 
utilitaire qui n'est pas commenté et qui n'est représenté qu'à 
des fins de comparaisons. 

91 



FIGURE 5.1. Schéma E-A de CSGen Superviseur. 

TEXTE PHYSIQUE 

texte, ligne, colonne, 
Num zone édltable 

ECRAN PHYS 

l7m7 fa.YS 

FORME DE 

Nom grille - phys 

GRlLLE D'ECRAN 

~g77/d 

SCENARIO 

touche de sortie, test 
fonction_arc, modifica­

tion 

EXECUTE SUR 

Nom fichier configuration 

TERMINAL 

7jpt1_ lel7llinRI 
codes_ affichage 
codes fonction 

TEXŒ GRILLE SAISIE GRILLE 

Texte, ligne, colonne, 
"DIALOGUE" 

Nom_var, llgne,colonne, 
type, ' DIALOGUE" 

ZONE DE SAISIE 

Nom variable 
ln:pno,post, test,msg 
Mod:prt, post, test, ms 
Ol.tprlo, post 

ZONE DE FOND 

~~onD 
Hgne,col début 
figne, col fin 
éditable 
AUrlbuts texte 
Attributs zones 

COUVERT PAR 

Nombre zones de fond 

texte = aggrégat formé d'une chaine de caractère et des attributs de visualisation. 

APPLICATION 

M.nltiro 
directory écrans 

BASEE SUR 

ECRAN DE FOND 

Fa?a'~p 
~igne, col, texte) 
(llgne,col,lg,var) 

92 



FIGURE 5 .2. Schéma E- A de CSGen Utilitaire . 

APPLICATION 

At.nléro 

BASEE SUR 

ECRAN FOND 

MVJ/'(Jlld 
(tigne, col , texte) 

\ 

CONTIENT 

LOGIQUE AIDE 

ECRAN LOGIQUE 

~logique 

LOGfQ TEXTE LOGIQ VARlABLE 

TEXTE 

texte 

ONE DE SAISIE 

Atm Ullta.b/6 
ligne,colonne, long. 
we 
test,err_msg 
format 

TEXTE SUR \ SAISIE SUR 

COMPOSE DE 

ZONE DE FOND 

111.nJtfro .zone 
Ligne, col début 
Ligne, col fin 
Attributs affclhage 

ECRAN D AIDE 

Atm ii/dd 
(ligne, col, texte) 

AIDE BASEE SUR 

FOND D AIDE 

M:w!liYld4/da 
(igni,col,iëxte) 

TEXTE SUR AIDE 

/ / 



CHAPITRE 6 : EXTENSIONS DE CSGEN SUPERVISEUR. 

6 . 1 La gestion de la souris. 

On peut affirmer que la souris est un interface dont l'emploi se 
généralise rapidement dans le domaine grand public. 
Les routines d'édition d'un écran peuvent facilement être 
adaptées pour utili ser la souris et permettre à l'utilisateur et 
au programmeur d'accéder rapidement à n'importe quel endroit de 
l'écran. 
Les difficultés présentées par l'utilisation de la souris sont 
liées à deux techniques qu'elle a introduites Les menus 
déroulants (dont un exemple est représenté à la figure 6.1.) et 
la disparition des touches de sortie au profit d'icônes (voir 
figure 6.2.). En effet, dans ce cas l'acceptation d'un écran est 
généralement réalisée de deux manières : 

- La sélection d'un icône d'acceptation. 

On peut considérer q u' il ne s'agit ici que d'une nouvelle forme 
de touche de sortie, l'adaptation de CSGen ne pose aucun 
problème car les systèmes d'exploitation fournissent un 
ensemble complet d'interfaces souris. 

- Le choix d'un point de menu. 

Les applications basées sur l'utilisation de la souris 
affichent généralement en permanence le menu principal . La 
sélection d'un point de menu peut donc intervenir à n'importe 
quel moment au cours du dialogue homme - machine. Le choix d'un 
point de menu doit alors être considéré par CSGen comme l'appui 
sur une touche de fonction inconnue, et demander à 
l'utilisateur s'il veut conserver les modifications ou non, 
puisque dans ce cas l'attribut "mise-à-jour" est inconnu. 

94 



FIGURE 6.1. Exemple de menu déroulant. 

1 

FIGURE 6.2 ._ .. ___ Exemple d'icône. 

ii 
Financial ûiznoz 1.2 

Scientific 

REAil-ME 

a 
HenoPad Rollodex 

ta 95 

HotJ<ey 
- ~ -- - - - - --- -- --------"-= - ---- --- ~ - --



6.2 Amélioration des écrans d'aide. 

Nous avons volontairement passé sous silence les é c rans d'aide de 
CSGen superviseur car leur gestion n'est actuellement envisagée 
qu'en tant qu'extension. 
Le système d ' écrans d'aide utilisé par CSGen utilitaire est lourd 
a développer, il faut en effet créer un écran d'aide pour chaque 
écran logique. Nous envisageons de permettre la définition d'un 
scénario d ' aide et d'utiliser des zones de saisies dans les 
écrans d'aide . Cette méthode permet d'inclure des points de 
décision dans les écrans d ' aide, ce qui est utile lorsqu'il en 
existe un grand nombre (par exemple le "guide" de WORD3 ou l' 
"assist" de Dbase3). Dans cette approche, les écrans d'aide 
constituent une forme simplifiée d'écrans de dialogue, on ne 
parlera pas dans ce cas de grilles d'écran ou de fonctions à 
postériori. Le scénario d'aide ne comprendra pas de fonctions-arc 
et on peut raisonnablement limiter à deux le nombre de touches de 
sortie d'écran : Une touche qui permet "d'avancer" dans l'aide et 
une autre qui permet le retour à l'écran de dialogue suspendu. 
Lors d'appuis sur la touche d ' avancement, les aiguillages entre 
les différents écrans d ' aide pourront être réalisés à l'aide du 
"test de sortie" et des zones de saisie. La figure 6.3. illustre 
le scénario de la seconde solution (énoncée au paragraphe 2.9) 
accompagné du scénario d ' aide. 

96 



FIGURE 6 . 3. Exemple de scénario d'aide. 

Gall_ superviseur close_ csgen 

SC 

lillll! ·--- -·- ---·-·----·-- ---·- --·--rtii~ 
Help = 'R' 

: .. .',•· 

.· • .· .. . . 

Help = 'G' 

Help = 'M' /fo,~~y:· 
/ Gê#/ ::: 
.·.-·:-·.-

Help = 'P' 
.. ',.. ~ .. -' ... '-... -'--~ 

:: MOd::::::. · · .- · · .- · . .- · ·· 

·:·:a:i4~::\ Help = 'M' ::::~:tti 
.·• .:,•-.: . .. ... _ ........... _ .. .. . 

i ! i i ' 
'------- -- --- - ------ -~------ -- -J·--- ------ -- --·- ·-·-'-·-·-·- ·-·- ---------J 

Q = Fonction - arc 

1 = Ecran 

LJ = Ecran d'aide 

PgUp, PgDn, Esc, F2, FJ, Esc = Touches de fonction 

--- -- -- - = Appel d'écran d'aide 

. . · _ _ ..... 
. :, Ecr.ari::: 
.'.d".aJdè 
.. _ . . ·•.· ···.····. -

. . :. ·.·-

Esc 

97 



6.3 Vers un lang9._ge de qu~,:trième génération. 

Cette extension de CSGen résulte de deux constations 

-Les écrans développés avec CSGen contiennent beaucoup 
d'informations qui seront insérées dans les sources de 
l'application . Ces informations constitueront le programme, au 
même titre que les fonct i ons développées par le programmeur. 

-Les sources des fonctions-arc seront, dans la majorité des cas, 
constituées d'un petit nombre d'instructions. 

Il serait donc intéressant de considérer les sources des 
fonctions-arc comme des informations liées aux écrans physiques . 
En effet, si ces informations sont liées logiquement aux écrans, 
elles devraient l'être également physiquement. CSGen deviendrait 
alors l'unique outil nécessaire à l'écriture d'un programme, 
intégrant un éditeur d'écrans et un éditeur de textes. Cette 
approche offre l'avantage de supprimer les problèmes de 
morcellement des programmes évoqués au paragraphe 4.11. Il est de 
plus relativement fac i le d'ajouter un éditeur de texte à CSGen, 
puisque la plupart des fonctions nécessaires à 1 'éditi on existent 
déjà dans l'éditeur d'écran . 

Cette démarche 
simplifiant la 
accroissement 
permettrait à 
programmes. 

pourrait être complétée par un dispositif 
programmation qui, de ce fait, permettrait un 

de la rentabilité des programmeurs ou encore 
des non informaticiens de créer leurs propres 

Pour mener à bien cette tâche, CSGen peut fournir des macros­
instructions de très haut niveau fournies sous la forme d'une 
librairie ou d'un interpréteur. Cette seconde approche pourrait 
éviter au programmeur de devoir se plier à la syntaxe du langage 
C qui n'est pas très "digeste" pour un débutant. 

On peut aussi envisager l'adjonction d'un générateur de programme 
qui servirait d'interface "évolué" entre CSGen et l'utilisateur. 
Ces extensions sont réalistes puisque CSGen possède déjà toutes 
les fonctions de manipulation d'écrans et de leurs variables 
ainsi que des fonctions d'accès aux fichiers indexés. 

98 



,- CHAPITRE 7: CONCLUSI ON . 

La nécessité d ' employer des utilitaires adaptés n'est plus à 
démontrer. 
Tou t le problème réside dans le mot "adapté" 

Nous avons dépeint deux utilitaires qui 
fonctions , bien qu'ils différent 
implémen t at i on et par leur uti l isation. 

remplissent les 
totalement par 

mêmes 
leur 

Le premier utilitaire (CSGen utilita i re) apporte peu de 
contraintes au programmeur, il s'agit réellement d'un outil de 
programmation au même t i tre qu'un gestionnaire de fichier. Par 
contre, cette approche a prouvé qu ' elle impose des limitations et 
des comp l ications, dont certaines sont paradoxalement dues au 
désir de ne pas contraindre le programmeur. 

Au contraire, le second utilitaire (CSGen superviseur) est très 
contraignant puisqu'il impose sa propre découpe du programme. Il 
en décou l e la nécessité d ' une analyse adaptée . Néanmoins , cette 
démarche apporte une grande simplification de la programmation en 
supprimant toute référence explicite aux écrans et à leurs 
enchaînements et en obligeant le développeur à se concentrer sur 
les fonct i ons-arcs qui son t des traitements é l émentaires. 

Comme c'est sou vent le cas, on ne peut pas parler de panacée 
universelle. La r aison en est probablement que les langages 
informat i ques courammen t employés ne sont pas centrés sur le 
dialogue homme-machine. Il faut alors plutôt se rabattre sur des 
langages te l s que OMEGA ou sur des générateurs d ' applications. 

99 



BIBLIOGRAPHIE. 

"L'informatique conversationnelle", B.Faulle, 

"Le langage C", Ritchie & Kernighan, 

"Micrac: Manuel technique", I.T.C., 1985. 

"!CL 6402G User guide", I. C . L. , 1985. 

"Peripherals configuration, dealer course", I.C.L., 1986 . 

"GST-C User Manual", GST Edit, 1985. 

"Turbo-C Reference Guide" , Bor land Inc., 1987. 

"Lattice C User Manual", La t tice Inc., 1984 . 

100 


