Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Optimality of orders one to three and beyond
Cartis, Coralia; Gould, N. I. M.; Toint, Philippe

Published in:
Journal of Complexity

DOI:
10.1016/}.jc0.2018.11.001

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Citation for pulished version (HARVARD):

Cartis, C, Gould, NIM & Toint, P 2019, 'Optimality of orders one to three and beyond: Characterization and
evaluation complexity in constrained nonconvex optimization', Journal of Complexity, vol. 53, pp. 68-94.
https://doi.org/10.1016/j.jc0.2018.11.001

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jan. 2025


https://doi.org/10.1016/j.jco.2018.11.001
https://researchportal.unamur.be/en/publications/d401d6ce-8bc0-4e38-bbd4-33bb13c09735
https://doi.org/10.1016/j.jco.2018.11.001

Optimality of orders one to three and beyond:
characterization and evaluation complexity
in constrained nonconvex optimization

C. Cartis®* N.I. M. Gould' and Ph. L. Toint?

19 May 2017

Abstract

Necessary conditions for high-order optimality in smooth nonlinear constrained opti-
mization are explored and their inherent intricacy discussed. A two-phase minimization
algorithm is proposed which can achieve approximate first-, second- and third-order criti-
cality and its evaluation complexity is analyzed as a function of the choice (among existing
methods) of an inner algorithm for solving subproblems in each of the two phases. The
relation between high-order criticality and penalization techniques is finally considered,
showing that standard algorithmic approaches will fail if approximate constrained high-
order critical points are sought.

Keywords: nonlinear optimization, constrained problems, high-order optimality conditions, com-
plexity theory.

1 Introduction

Analyzing the evaluation complexity of algorithms for solving the nonlinear nonconvex op-
timization problem has been an active research area over the past few years: we refer the
interested reader to [1-8,11-16,19-24,26-37,40,42-44,46,47,49-52] for contributions in this
specific area. The main focus of this thriving domain is to give (sometimes sharp) bounds on
the number of evaluations of a minimization problem’s functions (objective and constraints,
if relevant) and their derivatives that are, in the worst case, necessary for the considered algo-
rithms to find an approximate critical point of a certain order. It is not uncommon that such
algorithms involve costly internal computations, provided the number of calls to the problem
functions is kept as low as possible.
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In nearly all cases, complexity bounds are given for the task of finding e-approximate first-
or (more rarely) second-order critical points, typically using first- or second-order Taylor mod-
els of the objective function in a suitable globalization framework such as those that use rust
regions or regularization. Notable exceptions are [1] where e-approximate third-order criti-
cal points of unconstrained problems are sought, [6,7,17-19] where e-approximate first-order
critical points are considered using Taylor models of order higher than two for unconstrained,
convexly-constrained, least-squares and equality-constrained problems, respectively, and [21]
where general e-approximate g-th order (¢ > 1) critical points of convexly constrained opti-
mization are analyzed using Taylor models of degree q.

Because the present contribution focuses on problems involving a mixture of convex in-
equality and nonlinear equality constraints, it is useful to set the stage by considering earlier
research in this constrained framework. In [14], the worst-case evaluation complexity of
finding an e-approximate first-order critical point for smooth nonlinear (possibly nonconvex)
optimization problems under convex constraints was examined, using methods involving a
second-order Taylor model of the objective function. It was then shown that at most O(e3/2)
evaluations of the objective function and its derivatives are needed to compute such an approx-
imate first-order critical point. This result, identical in order to the best known result for the
unconstrained case, assumes that the cost of computing a projection onto the convex feasible
set is neglible. It comes however at the price of potentially restrictive technical assumptions
(see [14] for details). The analysis of [20] then built on this result by first specializing it to
convexly constrained nonlinear least-squares and then using the resulting complexity bound
in the context of a two-phase algorithm for a problem class involving general constraints. If
ep and ey are the primal and dual criticality thresholds, respectively, it was shown that at
most O(ep Y % 3/ 2) evaluations of the problem’s functions and their gradients are needed to
compute an approximate critical point in that case, where the Karush-Kuhn-Tucker (KKT)
conditions are scaled to take the size of the Lagrange multipliers into account. Because of the
proof of this result is based an the bound for the convex case, it suffers from the same limi-
tations (not to mention an additional constraint on the relative sizes of €¢p and ep, see [20]).
Another more general approach was presented in [43] leading to the same complexity bounds,
but at the price of a subproblem involving the Jacobian of original nonlinear constraints.
The bounds derived in [26] for a trust-funnel algorithm also consider a scaled KKT condition
and are of the same order. The worst-case evaluation complexity of constrained optimization
problems was also recently analyzed in [6], allowing for high-order derivatives and models in
a framework inspired by that of both [7] and [16,20]. At variance with these latter references,
this analysis considers unscaled approximate first-order critical points in the sense that such
points satisfy the standard unscaled KKT conditions with accuracy ep and e,. None of these
papers considers e-approximate second-order points for equality constrained problems, ex-
cept [8] where first- and second-order optimality was proved for trust-region method defined
on manifolds.

The goal of this paper is twofold. The first objective is to fill this gap by deriving
complexity bounds for finding e-approximate second- and third-order critical points for the
inequality /equality-constrained case. The second is to examine higher-order optimality con-
ditions (in the light of [21]) and to expose the intrinsic difficulties that arise for criticality
orders beyond three.

Our presentation is organized as follows. Necessary conditions for higher-order criticality
for nonlinear optimization problems involving both convex set constraints and (possibly)
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nonlinear equality constraints are proposed and discussed in Section 2. A new two-phase
algorithm is then introduced in Section 3, whose purpose is to compute e-approximate critical
points of orders one and two for such problems, and its evaluation complexity is analyzed
in Section 4 as a function of that of an underlying inner algorithm for solving subproblems
occuring in each of the two phases. A discussion of the results and some conclusions are
finally presented in Section 5.

Basic notation. The notation in what follows is mostly inherited from [21]. y”z denotes the
Euclidean inner product of the vectors  and y of R™ and ||z|| = (z7x)'/? is the associated
Euclidean norm. The cardinal of the set S is denoted by |S|. If 77 and T» are tensors, 71 @ T»
is their tensor product and ||T'||4 is the recursively induced Euclidean (or spectral) norm of
the ¢g-th order tensor T'. If T is a symmetric tensor of order g, the g-kernel of the multilinear
g-form

q times

is denoted ker?[T] - {v e R" | T[v]? = 0} (see [9,10]). Note that, in general, ker?[T] is
a union of cones). If X is a closed set, X0 denotes its interior. The vectors {e;}7, are
the coordinate vectors in R™. If {ax} and {b;} are two infinite sequences of positive scalars
converging to zero, we say that ap = o(by) if and only if limg_,o, ar/bx = 0. The normal cone
to a general convex set C at = € C is defined by

Ne(x) e {seR"|sT(z—x)<0 forall z€C}

and its polar, the tangent cone to F at x, by

Te(z) = Ng () o {seR" | sTv <0 forall ve N}

Note that C C T¢(x) for all z € C. We also define F¢[-] be the orthogonal projection onto C
and use the Moreau decomposition [45] which states that, for every x € C and every y € IR"

y=Prwy) + Pxewly] and (Prmly] — )" (Pro@ly) —2) =0. (1.1)

(See [25, Section 3.5] for a brief introduction of the relevant properties of convex sets and
cones, or [38, Chapter 3] or [48, Part I] for an in-depth treatment.)

2 Necessary optimality conditions for constrained optimiza-
tion

We consider the smooth constrained problem in the form

mig f(z) subject to c¢(z)=0 (2.1)
re

where ¢ : R" — IR™ is sufficiently smooth and f and F C IR" is a non-empty, closed convex
set. Note that this formulation covers the problems involving both equality and inequality

(D The 1-kernels are not only unions of cones but also subspaces. However this is not true for general g-
kernels, since both (0,1)T and (1,0)” belong to the 2-kernel of the non-negative symmetric 2-form z1x2 on
R?, but their sum does not. ker'[z] is the usual orthogonal complement to the vector z, ker®[M] is the standard
nullspace of the matrix M.
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constraints, the latter being handled using slack variables and the inclusion of the associated
simple bounds in the definition of F.

We start by investigating the necessary optimality conditions for problem (2.1) at x, by
considering possible feasible descent paths z(«) of the form

zr(a) = zy + Z a'si 4+ o(ad) (2.2)
i=1

where a > 0. As in [21], we define the ¢-th order descriptor set of F at x by

DL (x) def U {(31, oy 8g) ERMY | x4+ Zaisi +o(af) € .7:} (2.3)

s>0 i=1

Note that DL(z) = Tx(x), the standard tangent cone to F at z. We say that a feasible
curve® z(a) is tangent to D%(z) if (2.2) holds for some (s, ..., s,) € DL(x).

The necessary optimality conditions for problem (2.1) also involve the associated La-
grangian function

A(z,y) © fla) +y (), (2.4)

the subspace

M(x) def ker' [Vlec(z)] Nker! [V, f(z)] (2.5)

and the index sets P(j, k) defined, for k < j, by

k
PGK) E (. 0) € (1. 30 1Y 6 =) (2.6)
=1

For k < j <4, these are given by Table 2.2.

gl k—
1 2 3 4
LMW}
2 1{®)} {1}
3 1{B)} {(1,2),(2,1)} {(LL1)}
4 {4} {(1,3),(22),6,0) {(1,1,2),(1,21),2,11)}  {(1,1,1,1)}

Table 2.2: The sets P(j,k) for k£ <j <4

Theorem 2.1 Suppose that f and each of the {¢;}!", are ¢ times continuously differen-
tiable in an open set containing F, and that x, is a local minimizer for problem (2.1).
Then we have that ¢(z,) = 0 and, for some y, € R™ and j € {1,...,q},

j
1
Z i Z VEA (e, )50, - - - ,Se.) | >0 (2.7)

k=1 (€1,--Lk)EP(5,k)

@) Or arc, or path.
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for all {s;}/_; such that s; € T;, z(a) € F for a > 0 sufficiently small, and such that

‘1 . .
§ o ( § VEA(@wy y)[S0rs -5 80) | =0, (i=1,...,5—1), (2.8)
k=1 (ey,...,

L) EP(i,k)
and
~ 1 . .
o S Vhe(@)[se,-rs0] | =0, (i=1,...,j). (2.9)
k=1 (€1, L) EP(i,k)

Proof. Consider feasible paths of the form (2.2). Substituting this relation in the
expression f(z(«)) > f(zs) (which must be true for small « > 0 if z, is a local minimizer)
and collecting terms of equal degree in «, we obtain that, for sufficiently small «,

0 < fla(@)—flw) =) oy ( Y. Vif@)lses - 7%]) +o(a?) (2.10)
] 01,k ) EP(5,k)

where P(i, k) is defined in (2.6). Similarly, substituting (2.2) in the expression ¢(z(«)) = 0
and collecting terms of equal degree in «, we obtain that, for sufficiently small «,

O:c(x(a)):z:ajzl< > v’;c(x*)[sh,...,séko+O(Cﬂ); (2.11)

T\ (£, by ) EP (i)

Adding now f(z(a)) from (2.10) to y!c(z(a)) from (2.11), we obtain that

q J
ZajZM > VQA(OU*,y*)[SzN---,Sek]) +0(a9) >0 (2.12)
' (

. glvvgk)ep(]vk)

for o > 0 sufficiently small. For this to be true, we need each coefficient of o/ to be
non-negative on the zero set of the coefficients 1,...,5 — 1 (i.e., satisfying (2.8)), subject
to the requirement that the arc (2.2) must be feasible for « sufficiently small, that is (2.9)
holds and z(«)) € F for sufficiently small o > 0.

We start by examining first-order conditions (¢ = 1). For j = 1 (for which conditions
(2.8) and (2.9) are void) and observing that P(1,1) = {(1)} (see Table 2.2), the necessary
positivity of the coefficient of « in (2.12) implies that, for s; € T,

VIA(zy,y:)[51] >0 (2.13)

Consider now the case where ¢ = 2 and assume that s; € 7, and also that (2.8) and
(2.9) hold. The former condition requires that s; € ker![Vlec(z*)] and the latter that
s1 € ker![VLA (2., y.)], yielding together that

51 € To Nker' [Vie(z,)] Nker! [A(zy, y4)] = To N M(z).
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Then the coefficient of o in (2.12) must be non-negative, which yields, using P(2,1) =
{(2)}, P(2,2) = {(1)} (see Table 2.2) and (2.15), that

VEA (2, ) [s2] + 1V2A (s, y2)[51)2 > 0. (2.14)

which is (2.7) for ¢ = 2.

We may then proceed in the same manner for higher orders, each time considering them
in the zero set of the previous coefficients (that is (2.8)), and verify that (2.12) directly
implies (2.7). O

We note that, as the order j grows, (2.7) and (2.9) for i = j may be interpreted as imposing
conditions on s; (via VLA (24, y.)[s;] and V1> f(x.)[s;]), given the directions {sz}{;ll satisfying
(2.8) and (2.9) for i € {1,...,j— 1}.

Theorem 2.1 covers some well-known cases, as shown by the next corollary.

Corollary 2.2 Suppose that f and each of the {¢;}[", are ¢ times continuously differ-
entiable in an open set containing F, and that z, is a local minimizer for problem (2.1).
Let N, be the normal cone to F at z, and 7, the corresponding tangent cone. Then we
have that ¢(z.) = 0 and, for some y, € R,

—VIA(ze,y4) € N, (2.15)

Moreover, if z, € FY, the interior of F, then V2A(x,,y.) is positive semi-definite on
ker! [Vie(x,)].

Proof. Using the fact that the normal cone N, is the polar of T, we immediately deduce
from (2.13) that (2.15) holds. If we also assume that x. € F°, (2.15) unsurprisingly reduces
to VLA(x4,y.) = 0, while, for j = ¢ = 2, (2.7) gives that V2A(x,,y.) must be positive
semi-definite on the subspace defined by (2.9), that is M(z,) = ker![V2¢(z.)]. O

The conditions stated in Corallary 2.2 for ¢ = 1 or 2 are standard (for (2.15), see [25,
Theorem 3.2.1, p. 46|, for instance, and Figure 2.1 for an illustration). For more general
cases, the complicated conditions (2.7)-(2.9) appear not to have been stated before and merit
some discussion.

It was observed in [21, Section 3] that the necessary optimality condition for the essentially
unconstrained case where z, € F (implying NV, = {0}) combines more than a single derivative
tensor and s; for orders four and above. If equality constraints are present this situation
already appears at order three (and above). Indeed, it can be verified that the necessary
conditions (2.7) and (2.9) for ¢ = 3 and N, = {0} (and hence V1A(x.,y.) = 0 because of
(2.15)) can be written as

Vel (e, ya) 51, 52] + EVoA (2,5 [51)° = 0 (2.16)
for all s1 € 7o Nker! [VLA (2, ys)] N ker?[V2A (., y*)] and

Vie(ze)[s2]+1V2c(x)[s1)? = 0,  Vic(za)[ss] + Vaic(ze)[s1,82] + 1 Vic(zi)[s1]® = 0. (2.17)



Cartis, Gould, Toint: Optimality of orders one to three and beyond 7

Figure 2.1: The condition (2.15) with N, shown as a dashed half line. Note that n, =
~VLIA(zy,ys) # Py, [~ VL f(z.] (adapted from [25]).

These conditions do not require the second term of the left-hand side of (2.16) to vanish.
This is at variance with the unconstrained case, since second-order necessary conditions then
ensure that V2A(x,,y,) is positive semidefinite on IR and therefore admits a square root.
Thus VZA (24, y:)[51,52] = [V%A(x*,y*)%SQ]T[ViA(x*,y*)%sl] = 0 since s; must belong to
ker?[V2A(x, y«)]. However, this argument no longer applies in the constrained case because
V2A(x4,y.) is only positive semidefinite on a strict subspace of IR" and the square root may
fail to exist, as is illustrated by the following example.

Example. Consider the problem

min x1 + 3 + x5 — 3 subject to c(z) =

( —x1 — 23 + 1179 + T3 ) 0
zeR? '

Ty + 23 + 1170 + T3

for which the origin is a high-order saddle point.
Comparing the constraints’ expression with (2.2) for ¢ = 3, we see that (2.3) holds for

sy =ey, Sy =—e; and S3=e3
since then
—a’ a?—a?—ad+a?
de={ o | et = (iminle)-o

Now,

1 0 0 0

Vif(z) = | 2x2+ 323 Vif(z)=| 0 24625 0 and [V3f(2)]222 = 6.
-1 0 0 0

O = O
|
SN =
S O O

—1+4+mz —2x0+w1 1 >

1 _ 2 _
VIC((L’) - ( 1 + 9 2.’172 + 1 1 VxC1((17) -

s Vicl (IL’) = O,
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010
Vie(z)=|1 2 0 and  Vieca(x) = 0.
0 00
Moreover,
V c(0)[s2] + 3V2e(0)[s1]?
10 1 0 10 010
<101>el+;e§1—2062e1+;e§1206262
0 00 000
=0.
and
Vi ¢(0)[s3] + Vie(0)[s1, 52] + §Vie(0)[s1]?
10 1 0 10 010
:< 10 1>63— el 1 =2 0 Je|ler—|ed [ 1 2 0 |er|ea—20T[er]?
0 00 0 00

=0.

Thus (2.17) holds. From the values of V1 f(0) and V%c(0), we verify that setting yo = (1,0)7
ensures that V1A(0, o) = 0. Hence (2.15) holds as well. Moreover, we have that

ker! [V1¢(0)] = ker! K _1 8 1 )] — span {ea}, V2A(0,y0) =

o = O

10
0 0
0 0

and the only nonzero component of V3A(0, o) is its (2,2,2) element which is 6. Thus (2.8)
also holds for 7 = 2 . In addition, it is easy to check that the third-order necessary condition
(2.16) holds with

V2A(0,y0)[s1,80] = —1 and V2A(0,y0)[s1]* = 6.

This shows that the term involving V3A(0,y0)[s1]? is not the only one occuring in the third-
order necessary condition for our example problem, as announced. Figure 2.2 show the level
lines of the objective function and the constraint manifold in the (z1,z2) (z2,x3) (z1,%3)
planes, illustrating the interaction of the objective function’s curvature and feasible set. O

The third order necessary condition therefore must consider both terms in (2.16) and
cannot rely only on the third derivative of the Lagrangian along a well-chosen direction or
subspace. In general, the ¢-th order necessary conditions will involve (in (2.7)) a mix of other
terms than those involving the g-th derivative tensor of the Lagrangian applied on vectors s;
for ¢ > 1, themselves depending on the geometry of the set of feasible arcs. At this stage, for
lack of a suitable formal understanding of this geometry, conditions (2.7)-(2.9) remain very
difficult to interpret or check.

3 A minimization algorithm

Having analyzed the necessary condition for problem (2.1) and seen that conditions for orders
above three are, at this stage, very difficult to verify for general problems, we now describe
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2 >
kN v

T 05 o [ 1 1 05 [3 [ 1

Figure 2.2: The contour lines of f(x1,x2,0) (left) f(0,z2,x3) (center), f(x1,0,x3) (right) and
the two constraints intersecting at the origin (thick).

a two-phase algorithm whose purpose is to find approximate critical points of order one and
two (and possibly three as we discuss below). Since the presentation is independent of the
order ¢ of the critical points sought, we keep this order general in what follows.

3.1 Inner algorithms for constrained least-squares problems

As was the case in [15,19], the new two-phase algorithm relies on an inner algorithm for solving
the convexly constrained nonlinear least-squares problem in each of its phases. We therefore
start by reviewing the existence and properties of algorithms for solving this subproblem.
Consider first the standard convexly constrained problem

min Y (x 3.1

min () (31)
where v is a smooth function from IR™ to IR and F is (as in (2.1)) a non-empty closed convex
set. Following [21], an e-approximate g-th order critical point for this problem can be defined
as a point x such that

6pj(x) S SN for j=1,....q (3:2)
and some A € (0, 1], where, for F(z) o {deR"| |z +de F},
def .
d’@,j(z) = (z) — globmin Ty j(z,d), (3.3)
deF(x)
ldll<Aa

is the largest feasible decrease of the j-th order Taylor model Ty, j(x, s) achievable at distance
at most A from z. Note that gbﬁ ;() is a continuous function of z and A for given F and
f (see [39, Theorem 7]). It is also monotonically increasing in A. Also note that the global
minimization involved in (3.3) is efficiently solvable for j = 1 because it is convex. It is
also tractable in the unconstrained case for j = 2 since it then reduces to a trust-region
subproblem.

Algorithms for finding e-approximate first-order critical points for problem (3.1), i.e.
points satisfying (3.2) for some algorithm-dependent A € (0, 1] have already been analyzed,
for instance in [13,18,19] or [21], the first two being of the regularization type, the last one be-
ing a trust-region method. Such algorithms generate a sequence of feasible iterates {x} with
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monotonically decreasing objective-function values {¢(x)}. The method described in [18]
proceeds by approximately minimizing models based on the regularized Taylor series of degree
p and and it can be shown [18, Lemma 2.4](3) that, as long as the stopping criterion (3.2)
fails for ¢ = 1 and A = 1, a sufficient objective-function decrease

p+1

P(ag) — P(Tp1) > Kl 7 (3.4)

holds for each k£ € S, where /-{Zf’ecr € (0,1) is a constant independent of €, and where S is the
set of “successful iterations” at which an effective step is made (i.e. 51 # x). Moreover, it
can also be shown [18, Lemma 2.1] that the set S cannot be too small in the sense that, for
all £ > 0,

E<rkl |SN{1,... Kk} (3.5)
for some constant k¥ > 0. Both h;ffecr and k¥ _ typically depend on the details of the

considered algorithm and of the Lipschitz constant associated with the highest derivative
used in the objective-function’s model. Both (3.4) and (3.5) hold under the assumption that
Y (x) is p times continuously differentiable with Lipschitz continuous p-th derivative on the
“path of iterates” Ug>o[zk, Zr+1], in that

s [IVat (@ + Esx) = Ve (welly < Lopllsell (3.6)
for all £ € [0,1], all &k € S and for some constant L;, > 0 independent of zj and sj.
(Obviously, if the p-th derivative of 1 is Lipschitz continuous in an open set containing F or
containing the level set {x € F | ¢(x) < 1(z0)}, then (3.6) holds.)

At variance with the method proposed in [19], the algorithm described in [21] is of trust-
region type with non-increasing radius. It approximately minimizes a ¢-th degree Taylor
inside such a region, Lemma 4.3 in [21] then ensures that, as long as (3.2) fails (for general
g > 1 this time and for A being the trust-region radius at iteration k),

(k) — (Th1) > Koere?™ (3.7)

for each k € S, where we have redefined the constant /{Zf’ecr to reflect the change in algorithm.

In addition, Lemma 4.1 in the same paper also ensures that (3.5) holds for a redefined x¥,..
Both of these properties again hold if ¥ () is g times continuously differentiable with Lipschitz
continuous ¢-th derivative on the “path of iterates” Ug>o[zk, Zx+1], in the sense that (3.6)
(with p replaced by q).

Summarizing, we see that there exist algorithms for the solution of (3.1) which use trun-
cated Taylor series model of degree g and ensure, under suitable assumptions, both (3.5) and,
as long as (3.2) does not hold for some algorithm-dependent non-increasing A € (0, 1], a lower

bound on the objective-function decrease at successful iterations of the form
w(ﬂUk) - ¢<xk+1 > K’d’lpecr[ellss]ﬂ for k€8 (38)

for suitable method-dependent constant KY€ (0,1) and parameter 7 > 1. (We have that

decr
m=((p+1)/pin (3.4) and 7 = ¢+ 1 in (3.7).)
Let us now turn to least-squares problems of the form

min () = 4[| F ()], (3.9)

) Observe that ¢ 1(2)/A = xy,1(z) as defined in [18, equation (2.4)], irrespective of the value of A € (0, 1].
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(that is problem (3.1) where 1(z) = 1||F(z)]]3), where F is a smooth function from IR™ to
IR™. Following [16] and [21], an e-approximate® g-th order critical point for this problem
can be defined as a point x such that

IF(@)]| < e or ¢5,(x) < efAI||F(z)| for j=1,2 (3.10)

and some A € (0,1]. Note that the second part of (3.10) has the same form as (3.2) with
in the former being replaced by e[| F'(x)| in the latter. As in [16,21], it now easy to verify
that, whenever ||F'(xy)| > ||F(xk+1)| and as long as (3.10) fails for xp41,

[F (@)l (IF (@)l = 1F(xer)l)) = 5 (EF @)+ [1F (@)l (E @)l = [F(@e)1])
> HIF(p)ll? — $I1F (z)]1?
= P(zg) — Y(Tpt1)
> Kool €)1F (@)1,

(3.11)
where we used (3.8) with the form of the second part of (3.10) to derive the last inequality.
We will use this last formulation of the guaranteed decrease for least-squares problems as a
key piece of our evaluation complexity analysis, together with (3.5) which is needed because
the algorithms under consideration require one objective-function evaluation per iteration and
one evaluation of its derivatives per successful iteration.

3.2 The outer algorithm

The idea of the two-phase framework which we now introduce is to first apply one of the least-
squares algorithms discussed above or any other method with similar guarantees), which we
call Algorithm INNER,to the problem

. def
min () < 3le(e) 2 (3.12)
(of the form (3.9) with ¢ = v) for finding (under suitably adapted assumptions) an ap-

proximate feasible point, if possible. If one is found, Algorithm INNER is then applied to
approximately solve the problem
L
fx) —te

(again of the form (3.9) with ¢» = u) for some monotonically decreasing sequence of “targets”
tr (k=1,...). The resulting algorithm is described on the following page. Observe that the
recomputations of ¢, j(xp+1,ter1) (4 € {1,...,¢}) in Step 2.(b) do not require re-evaluating
f(xps1) or e(xgy1) or any of their derivatives.

2
def

. def
min p(z, t) = ez, t)]|* = 4 (3.13)
rEF

We now derive some useful properties of Algorithm OUTER. For this purpose, we partition
the Phase 2 outer iterations (before that where termination occurs) into two subsets whose
indexes are given by

Ky € (k>0 |r(zess tr)]| < dep  and (3.16) is applied } (3.19)

# kS is the primal accuracy for solving problem (3.9) and 5 the dual one.
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Algorithm 3.1: OUTER: a two-phase algorithm for constrained optimization

A starting point z_; and a criticality order g € {1,2,3} (for both the feasibility phase
and the optimization phase) are given, as well as a constant ¢ € (0,1). The primal and
dual tolerances 0 < ep <1 and 0 < ep < 1 are also given.

Phase 1:
Starting from x¢ = Pr(x_1), apply Algorithm INNER to minimize v(z) = L||c(z)||?
subject to z € F until a point z; € F and Ay € (0, 1] are found such that

le(z)ll < dee o ¢k (21) < epAlle(z)ll (€ {1,-.,q}). (3.14)
If ||e(z1)]| > d€p, terminate with . = x;.
Phase 2:

1. Set t1 = f(z1) — /€& — ||c(x1)]?.
2. For k=1,2,..., do:

(a) Starting from zy, apply Algorithm INNER to minimize p(z, ) as a func-
tion of x € F until an iterate x4, € F and A, € (0, Ag_;] are found

such that
HT(ﬂjk—f—latk)” < dep oOr f(:Ck_H) < tg
A . (3.15)
or qsug'(wk-‘rl’tk) < EDAJkHT(xk-‘rlatk)H (] S {17 s 7Q})
(b) i If |r(zgs1,tk)|| < dep, define t;41 according to
thar = f(@r41) — VEE — [le(@rg) |- (3.16)

and terminate with (z,t.) = (Xg41, tps1) if
&5 (@hr trat) < ALl (@, b)) for j € {1, ¢} (3.17)
. If [|r(xgs1, te)|| = dep and f(xp41) < tg, define tx4;1 according to
thr1 = 2f (zpe1) — tk (3.18)

and terminate with (zc,t.) = (xg41, te41) if (3.17) holds.
. If [|r(zgs1,te)]| > dep and f(xps1) > tg, terminate with (x,t) =
(Tht1, k)
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and
Kok >0 |r(zpser, te)| = der and (3.18) is applied } (3.20)

The partition (3.19)-(3.20) allows us to prove then following technical results.

Lemma 3.1 The sequence {tx} is monotonically decreasing. Moreover, in every Phase
2 iteration of Algorithm OUTER of index k& > 1, we have that

flzr) =tk 20, (3.21)
|lr(xgs1, ter1)|| = €0 for ke Ky, (3.22)
17 (@pt1, trr )l = [r(@esr, te)l| < e for ke K-, (3.23)
lle(zp)|| < e and f(xg) —tp < ep, (3.24)
te —tir1 > (1 —0)ep for ke Ky (3.25)
Finally, at termination of Algorithm OUTER,
[r(ze,te)ll > dep,  fxe) > te
(3.26)

and )" (ze,tc) < epAf[r(ze,to)|| for j€{1,...,q}.

Proof.  The inequality (3.21) follows from (3.16) for K — 1 € K4 and from (3.18) for
k—1¢eK_. (3.22) is also deduced from (3.16) while (3.18) implies the equality in (3.23),
the inequality in that statement resulting from the monotonically decreasing nature of
||r(z,t;)|| during inner iterations in Step 2.(a) of Algorithm OUTER. The inequalities
(3.24) then follow from (3.21), (3.22) and (3.23). We now prove (3.25), which only occurs
when ||7(zg+1,tx)|| < dep, that is when

(f(@re) = te)? + lle(@rsn) | < 6% (3.27)
From (3.16), we then have that
te — tier = —(F(@rr1) = t) + VlIr(ew, to) 12 = lle(zr) 2. (3.28)

Now taking into account that the global minimum of the problem

min 2zS‘(f, c) def —f + /€2 — 2 subject to f? + ¢? < w?,
(fre)eR

for w € [0, ep] is attained at (f.,cx) = (w,0) and it is given by U(fs, cx) = €p — w (see [20,
Lemma 5.2]), we obtain from (3.27) and (3.28) (setting w = dep) that

ty —tkr1 > ep —w=(1—=0)ep for keKyi

for k € K, which is (3.25). Note that, if £k € K_, then we must have that tx > f(zri1)
and thus (3.18) ensures that ¢ < tx. This observation and (3.25) then allow us to
conclude that the sequence {t;} is monotonically decreasing.
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In order to prove (3.26), we need to consider, in turn, each of the three possible cases
where termination occurs in Step 2.(b). In the first case (i), ||7(xg+1,t%)| is small (in the
sense that the first inequality in (3.15) holds) and (3.16) is then used, implying that (3.22)
holds and that f(zpy1) > try1. If termination occurs because (3.17) holds, then (3.26)
clearly holds at (zj+1,tk+1). In the second case (ii), the residual ||r(xg41,tr)| is large
(the first inequality in (3.15) fails), but f(xg11) < tx, and tg4q is then defined by (3.18),
ensuring that f(zgy1) > tg+1 and, because of (3.23), that ||r(zg41,tk+1)]| is also large. As
before (3.26) holds at (xgy1,tx+1) if termination occurs because (3.17) is satisfied. The
third case (iii) is when ||r(zg41, )| is sufficiently large and f(2p41) > tx. But (3.15) then
guarantees that qbﬁ’;. (@p+1.tk) < ep AL |7 (zps1, t)| for j € {1,...,¢}, and the inequalities
(3.26) are again satisfied at (zgy1,tx). O

4 Evaluation complexity

In order to state the smoothness assumptions for problem (2.1), we first define, for some
parameter 5 > 0, the neighbourhood of the feasible set given by

Cs = {z e Flle(@)[l < 5}

We then assume the following.

The feasible set F is closed, convex and non-empty.

AS.2 The function v(z) is smooth enough to ensure that conditions (3.11) and (3.5)
hold for Algorithm INNER applied on problem (3.12).

AS.3 The function p(z,t) is smooth enough in x to ensure that conditions (3.11) and
(3.5) hold for Algorithm INNER applied on problem (3.13), with constants x/.,
and k" independent of t.

uns

AS.4 There exists constants 8 > ep and fiow € IR such that f(z) > fiow for all
def
v€Cg={zeF||c)]<p}

AS.2 and AS.3 remain implicit and depend on the particular inner algorithm used (see Sec-
tion 3.1). For completeness, we now give conditions on the problem’s functions f and {¢;}/",
which allow the transition between assumptions on f and ¢ and the required ones on the
Phase 1 and Phase 2 objective functions v and pu.

Lemma 4.1 Let p > 1. Assume that f and {¢;}]”; are p times continuoulsy differen-
tiable and that their derivatives of order one up to p are uniformly bounded and Lipschitz
continuous in an open set containing F. Let the iterations of Algorithm INNER applied to
problem (3.12) be indexed by j. Then (3.6) holds for Viv(z) on every segment [z, z;+s;]
(j > 0) generated by Algorithm INNER during Phase 1 and any g € {1,...,p}. The same
conclusion holds for Viu(x,t) on every segment [z;,z; + s;] (j > 0) generated by Algo-
rithm INNER during Step 2.(a) of Phase 2 and any g € {1,...,p}, the Lipschitz constant
in this latter case being independent of t.
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Proof. Since

m

Viv(x) = Z Z g jVici(x) @ Viei(z) + ci(z)Vie(z)

=1 |£,j>0,l+j=¢q

(where {ay ;} are suitable non-negative and finite coefficients), condition (3.6) is satisfied
on the segment [z}, z;+ 5] if (i) the derivatives {vi““[“ ]ci(:c) ™, are Lipschitz continuous
on [zj,z;+s;], (ii) {Vglax[g’ﬂci(x) ™ are uniformly bounded on [z, z; + s;], and (iii) we
have that

3

> lleilw; + &s5)Viei(x; + &sy) — ci(w) Viei(a) g < Liélls; | (4.1)
=1

for some constant L; > 0. The first two of these conditions are ensured by the lemma’s
assumptions. Moreover,

lci(zj + &s5)Viei(zj + &s5) — i) Viei(xj)lq
< ei(wy + &sj) — cizy)| | Viei(zy + €s5)llq
+ei(z) [ Vici(z; +Es5) — Viei(z)) g

and the first term on the right-hand side is bounded above by L?¢||s;|| and the second by
lci(xj)|LE||s]]. Hence (4.1) holds with

m
Ly =Y (L* +|ei(x))|L) < mL? +mlle(a;)||L < mL? + m|le(x0) || L
=1

because Algorithm INNER ensures that ||c(z;)|| < [|c(zo)| for all j > 0. As a consequence,
the lemma’s assumptions guarantee that (3.6) holds with the Lipschitz constant

m [( max ai> L+ L7+ ||c(xo)|L] .
i=1,....,m
We may now repeat, for p(x,t) (with fixed ¢) the same reasoning as above and obtain that

condition (3.6) holds for each segment [z}, z; + s;] generated by Algorithm INNER applied
in Step2.(a) of Phase 2, with Lipschitz constant

m [( max ai) L+ L7+ ||c(xj,0)HL] + ( max ozi) L? + L + |f(zj0) — 4| L
i=1,....m i=1,....,m
i=1,....m

< (m+1) [LQ <1 + max ozl-> + L] of Lyp,

where we have used (3.22) and e, < 1 to deduce the inequality. Note that this constant
is independent of ¢;, as requested. O
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As the constants 4., and x*_ in (3.11) and (3.5) directly depend, for the class of inner
algorithms considered, on the Lipschitz constants of the derivatives of u with respect to x,
the independence of these with respect to ¢ ensures that /.., and s _ are also independent
of t, as requested in AS.3.

We now start the evaluation complexity analysis by examining the complexity of Phase 1

of Algorithm OUTER.

Lemma 4.2 Suppose that AS.1 and AS.2 hold. Then Phase 1 of Algorithm OUTER
terminates with an x; such that ||c(z1)|| < dep or qbyA,[; < eA] after at most

[l oo max [, b7 7] | + 1

. . . . c|| def H_ _ _ . .
evaluations of ¢ and its derivatives, where HlCH = 2 gy [kY ]710Y™ with k%, being

the problem-dependent constant defined in (3.11) for the function v(z) corresponding to
(3.12).

Proof. First observe that, as long as Algorithm INNER applied to problem (3.12) has
not terminated,

le(zo)]l = dep, (4.2)

because of the first part of (3.14). Let ¢ € Sk be the index of a successful iteration of
Algorithm INNER before termination and suppose first that ||c(xps1)|| < 1|le(xe)]]. Then

le(@oll = le(zer )l = 3lle(zo)ll = 35 e (4.3)

Suppose now that ||c(zsy1)] > 3llc(z¢)]|. As a consequence, we obtain that

(el = lle(@er) ) lle(@oll > Kgeer (enlle(zera) DT

where we have also the fact that gzbf;? (Tpg1) > eD||c(xg+1)||Ai since ¢ occurs before termi-
nation, the fact that ||c(z¢)|| > |lc(x¢41)]| for £ € S and condition (3.11). Hence, using
(4.2), we have that

le(zoll = (el > K2 le(ae) 7t e > 27t 671 et e,
Because of the definition of k%, in (3.11), we thus obtain from this last bound and (4.3)

that, for all 7,

le(@ol = lle(er)] = 3%, 5™ min [en, " €]

We then deduce that
_1 _ e
|Sk| < 2[kh..] 7107 [le(xo) || max [e,", ef ™ €]

The desired conclusion then follows by using condition (3.5) and adding one for the final
evaluation at termination. O
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Using the results of this lemma allows us to bound the number of outer iterations in K.

Lemma 4.3 Suppose that AS.4 holds. Then

f(xl) - flow + 1 6_1

|IC+‘§ 1_(5 P -

Proof. We first note that (3.22) and (3.23) and AS.4 ensure that x, € Cg for all
k > 0. The result then immediately follows from AS.4 again and the observation that,
from (3.25), t;, decreases monotonically with a decrease of at least (1 — d)ep for k € K.
a

Consider now xy, for k € Ky and denote by x,,;) the next iterate such that n(k) € K4 or the
algorithm terminates at n(k). Two cases are then possible: either a single pass in Step 2.(a)
of Algorithm OUTER is sufficient to obtain x4 (n(k) = k + 1) or two or more passes are
necessary, with iterations k+1,...,n(k) —1 belonging to _. Assume now that the iterations
of Algorithm INNER at Step 2.(a) of the outer iteration ¢ are numbered (¢,0), (¢,1),..., (¢, es)
and note that the mechanism of Algorithm OUTER ensures that iteration (¢, ep) is successful
for all . Now define, for £k € K, the index set of all inner iterations necessary to deduce
Ty (k) from xy, that is

def
T = {(k,0),...,(kyer), ..., (£,0),....(¢ep),...,(n(k) —1,0),...(n(k) — 1, en(k)—1)} (4.4)
where k < ¢ < n(k) — 1. Observe that, by the definitions (3.19) and (4.4), the index set of
all inner iterations before termination is given by Ugex, Z, and therefore that the number of
evaluations of problem’s functions required to terminate in Phase 2 is bounded above by

| Tl +1<
keK 4+

f@1) = fow+1 4
< T € X I?ell%)i |Zx| | + 1, (4.5)

where we added 1 to take the final evaluation into account and where we used Lemma 4.3 to
deduce the inequality. We now invoke the complexity properties of Algorithm INNER applied
to problem (3.13) to obtain an upper bound on the cardinality of each Zj.

Lemma 4.4 Suppose that AS.1-AS.3 hold. Then, for each k& € K before termination,
Ty < (1—6)kbe max [1, €2 e;™] .

where kb is independent of €, and e, and captures the problem-dependent constants
associated with problem (3.13) for all values of t; generated by the algorithm.

Proof. Observe that (3.23) and the mechanism of this algorithm guarantees the
strictly decreasing nature of the sequence {H’I“(JZ[,U)H}ZSZ)il and hence of the sequence
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(e, te)ll} o,s)ez,- For each k € Ky, this reduction starts from the initial value
lr(zk,0,tx)|| = €p and is carried out for all iterations with index in Zj at worst until

it is smaller than dep (see the first part of (3.15)) or ¢, (zrs) < eDAiHr(:cg,sH,tg)H for
Jj€{1,...,q}. We may then invoke (3.13) and (3.11) to deduce that, if (k,s) € Z,

(I (@e,ss i)l = I (@kst1s ) DI (@, )| = Eleer(enllr(@rss1, te))™ (4.6)
for 0 < s < e, while
sl @k e te)ll = 3llr(Zrs10, tera) I = 0.
As above, suppose first that ||r(zg s11,t%)|| < L||r(zk.s, tr)]. Then
17 (ks )| = 17 (@hst1 te) | 2 5lr (@, trD) ]| = 50€p (4.7)

because of the first part of (3.15). If ||r(zk st1,tk)|| > L||7(2ks, tr)| instead, then (4.6)
implies that

‘7r—1 ™

I (ks i) | = I (@hs1s ti) | 2 Faeor 27 17 (ks i)™ €p.
Combining this bound with (4.7) gives that
I (@ss ti) | = 7 (@rsn, t) || > 277kl 67" min [ep, €' ep]

and therefore, as in Lemma 4.2, that

-0
[Tl < 27 [t ) 7100 | o = 27(1 = 0)8Y [T max [1, €T
min [ep, €p eg]
and the conclusion follows with x£ def 275 T kA L)L O

We finally combine the above results in a final theorem stating an evaluation complexity
bound for Algorithm OUTER in terms of the measures qﬁfj (xe).

Theorem 4.5 Suppose that AS.1-AS.4 hold. Then, for some constants K,l(l;él' and khg
independent of €, and e, Algorithm OUTER applied to problem (2.1) needs at most

K“M le(@o)l| + Kbalf (1) = fiow + 1]) max [e. e%:”e;ﬂJ +2 (4.8)

evaluations of f, ¢ and their derivatives up to order p to compute a point x. and (possibly)
ate < f(xe) such that, when t. = f(x.),

le(@a)ll > dep, and @k (xe) < enple(ae)|| for j € {1,....q} (4.9)
or, when t. < f(z.),

”C(‘TE)” <eép, and ¢ﬁ};($67t6) < €DAZ;HT(xsat5)” for j € {17 oo 7Q}- (4.10)
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Proof. If Algorithm OUTER terminates in Phase 1, we immediately obtain that (4.9)
holds, and Lemma 4.2 then ensures that the number of evaluations of ¢ and its derivatives
cannot exceed

{KQCCH le(wo)|| max [, e%f”eg”u +1. (4.11)

The conclusions of the theorem therefore hold in this case. Let us now assume that
termination does not occur in Phase 1. Then Algorithm OUTER must terminate after a
number of evaluations of f and ¢ and their derivatives which is bounded above by the
upper bound on the number of evaluations in Phase 1 given by (4.11) plus the bound on
the number of evaluations of p given by (4.5) and Lemma 4.4. Using the inequality ¢, < ¢
and the facts that |a] + |b] < |a + b] for a,b > 0 and |a +i| = |a] + i for a > 0 and
1 € IN, this yields the combined upper bound

[l (w0l max [, e

+ [(1 = §)Kbc max [1, EE_WEBWH X f(xl)l__flgw +1 €;1H + 2,

and (4.8) follows. Remember now that (3.26) holds at termination of Phase 2, and there-
fore that
ep > |[r(ze, te)|| = dep. (4.12)

Moreover, we also obtain from (3.26) that

&5 (e te) < epAf||r(we,te)|| for je{l,....q} (4.13)

Assume first that f(z.) = t.. Then, using the definition of r(x,t), we deduce that, for
jeil. . . |
g (@e) = 8,5(xe) < enAfle(ae)ll

and (4.9) is again satisfied because (4.12) gives that |c(x)|| = ||r(xe, te)|| > dep.

If f(xe) > te (the case where f(z¢) < t. is excluded by (3.26)), we see that the inequality
lle(ze)]| < ||r(xe,te)|| < €p, and (4.13) imply (4.10). O

Note that the bound (4.8) is O(e~(?7=1) whenever ep = ¢, = €. Also note that we have used
the same algorithm for Phase 1 and Phase 2 of Algorithm OUTER, but we could choose to use
different methods of complexity m, and =, respectively, leading a final bound of the form

0 (max [6;1, €L e ™ ] + max |:€;1, e ESW”D . (4.14)

Different criticality order may also be chosen for the two phases, leading to variety of possible
complexity outcomes.

It is important to note that the complexity bound given by Theorem 4.5 depends linearly
on f(x1), the value of the objective function at the end of Phase 1. Giving an e-independent
upper bound on this quantity is in general impossible, but can be done in some case. A trivial
bound can of course be obtained if f(x) is bounded in a neighbourhood of the feasible set,
that is {x € F|||c(z)|| < B} for some § > 0. This has the advantage of providing a complexity
result which is self-contained (in that it only involves problem-dependent quantities), but
it is quite restrictive as it excludes, for instance, problems with equality constraints only
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(F = R"™) and coercive objective functions. A bound is also readily obtained if the set F is
itself bounded (for instance when the variables are subject to finite lower and upper bounds)
or if one assumes that the iterates generated by Phase 1 remain bounded. This may for
example be the case if the set {z € R" | ¢(z) = 0} is bounded. For specific choices of the
convexly-constrained algorithm applied for Phase 1 of Algorithm OUTER, an ep-dependent
bound can finally be obtained without any further assumption. If Phase 1 is solved using the
trust-region based algorithm of [21] and 2 is produced after k. iterations of this algorithm,
we obtain from the definition of the step that ||sk|| < Apax for all £ > 1. In the same spirit, if
the regularization algorithm of [19] is used for Phase 1 and z; is produced after k. iterations of
this algorithm, we obtain from the proof of Lemma 2.4 in [19] and the definition of successful
iterations that

v(zo) = v(zo) —v(21) = k;&c [v(zg) — v(zpe1)] > (Z(:imln)

S skl

’ k’ESke

giving that

il < (<o><p+1>'>

710 min
Hence ||z1 — xq]| is itself bounded above by this constant times the (ep-dependent) number of
iterations in Phase 1 given by Lemma 4.2. Using the boundedness of the gradient of v(x) on
the path of successful iterates implied by AS.2 then ensures (see Appendix) the (extremely
pessimistic) upper bound

f(z1) = f(z0) + O (max [e; ' ep ™ ep™]) - (4.15)

Substituting this bound in (4.8) in effect squares the complexity of obtaining (., t.).

Assuming that f(z1) — fiow can be bounded by a constant independent of €5 and €y, Ta-
ble 4.3 gives the evaluation complexity bound for achieving first-and second-order optimality
for the problem with additional equality constraints, depending on the choice of underlying
algorithm for convexly-constrained optimization. In this table, ¢ is the sought criticality order
and p is the degree of the Taylor series being used to model the objective function in the inner
algorithm. The table also shows that the use of regularized high-degree models for optimality
orders beyond one remains to be explored.

TR-algo Regularization
q (r=1q) p=q p=q+1 p>gq
T2
1] 0(e? O(ef?’) O(e’Q) O 67%>
21 Ofe® ? ? ?
q| 0 e—<2q+1>) ? ? ?

Table 4.3: Evaluation complexity bounds for Algorithm OUTER as a function of the underlying
algorithm for convexly-constrained problems, for e-independent f(z1) — fiow and € = €p = €p

We now consider the link between the necessary conditions derived in Section 2 and the
results of Theorem 4.5. For future reference, we start by giving the full expressions of the
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first four derivatives of u(x,t) as a function of x:

m

Vin(e1) = Y ci@)Vie) + (f(a) ~ 1)V} (@), (4.16)
1=1
Viu(a,t) = Y [Viei@) ® Vieia) + (@) Via(@)] + Vif(@) @ Vi (@) + (f(@) —)VEf(2)
= (4.17)
Viu(e,t) =Y [BVQCZ )®Viei(x )+ci(:c>v§c,»<x)] +3 V3 f(2) @V, f(2)+(f(x)—t)V3 fx)
i=1
(4.18)

Viu(z,t) = i”: [4 V3ci(x) @ Viei(x) + 3V2e(z) @ Viei(z) + ¢i(2)Vie(z)
i=1

+AVE f(2) ® Vi fx) +3VEf(z) @ V3 f(z) + (f(x) — )V f(z)
(4.19)
where ® denotes the external product.
We finally establish the consequences of Theorem 4.5 in terms of the functions involved
in problem (2.1). Because this results makes repeated used of Theorem 3.7 in [21], we first
recall this proposition.

Theorem 4.6 [21, Th. 3.7] Suppose that v, a general objective function, is ¢ times
continuously differentiable and that Vi is Lipschitz continous with constant Ly 4 in an
open neighbourhood of a point z. € F of radius larger than A.. Suppose also that, for
some ¢,

gbﬁ;(:cg) <eAl for j=1,...,q
Then

leAZ\ a+1
Y(xe +d) > Y(x) —2eA? for all d € F(x,) such that ||d|| < (qLe ) T
P,q

Theorem 4.7 Suppose that AS.1-AS.4 hold and that, at (z.,t¢) and for some A, > 0,
conditions (4.9) hold if f(x.) = te or conditions (4.10) hold for {1,...,q} if f(z¢) > t..

(i) If f(xc) =t and, for j € {1,...,q}, Viv is Lipschitz continuous with constant L,;
in a neighbourhood of z, of radius larger than A, then, for each j € {1,...,q},

le(@e)| > S and le(we + d)l| = e(we)l| — 2enle(ze) 1A (4.20)

for all d € F(z,) such that

1

>~ LV]

’
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(i) If f(ze) > te, then, for
c(ze)

Ye = T -t (4.21)

one has that
$2 (e, ye) < eoAcll(Lyl)]| and @1 (2, v0) < ALyl (5 =2,3), (4.22)

where (Zﬁej differs from </>§} in that it uses the feasible set F(z¢) N M(z¢) instead
of F(z¢). Moreover, if f and ¢ have Lipschitz continuous j-th derivatives with
constants Ly ; and L. j, respectively, then

le(ze)ll < dep and  f(ze+d) > flze) = 2epllyell = 200 A2 (Ly )| (4.23)

for all d such that d € M(z.) N F(x.) whenever j = 2,3, ||c(ze + d)|| < ¢, and

1
jlepAd T
|d||§< D - ‘]> : (4.24)
C,J

V2max[Ly
Moreover, the second bound in (4.23) can be simplified to
flae+d) 2 f(ze) = 2e0AL|(L,50) | (4.25)

for any d such that d € M(z¢) N F(ze) whenever j = 2,3, (4.24) holds, and for
which ¢(z. +d) = 0 or ¢(ze + d) = c(xe).

Proof.  Consider first the case where f(z.) = t. (and thus ||c(z¢)|| > dep because of
Theorem 4.5). Note that we only need to consider the case where ||c(zc + d)|| < [[e(ze)]].
We have that, for d € F(z.),

o - etz DI~ el vl +d) vz
le(ze )l =Nl = e T @l =~ Tl

and the second part of (4.20) then follows from (4.9) and Theorem 4.6 applied to the
function v.

Consider now the case where f(z¢) > t. (and thus ||c(z.)|| < €p because of Theorem 4.5).
Focus first on the case where j = 1. Theorem 4.5 then ensures that

¢ﬁ,€1($€7 te) < epAcl|r(@e, te)]|-

Using now (4.21) and
b
f(xe) - te

c(ze)

Vinlaete) = J@d) s

+V;:f($e) = J(l'e)Tye_'—V;:f(xé) = V;A(xe,te).

(4.26)
one has that (4.22) holds for j = 1. Moreover, applying Theorem 4.6, we obtain that

A(xe + d7 ye) Z A(x&ye) - 2€DA€H(1’ yeT)H
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for all d € F(x,) such that

(L, yE) €A

dl| < )/ ——=z 22—
Il <A 2 Tyl

Using now the fact that, for any a > 0, \/2(1 + a?) > 1 + a, we obtain that

L [lyell

1LyD)| > 4.27
1L,y )l = 7 (4.27)
Hence we deduce that, for all d € F(z) satisfying
FA
dl| < , 498
el < \/ﬁmax[Lf,l,LCJ] (4.28)
we have that
f(ze+d) + 930(536 +d) > f(ze) + yzc($6) - 2€DA6H(1,ZJ3)H (4.29)

and hence, using the Cauchy-Schwarz inequality, that

f@e+d) = fze) = [[yelllle(ze) — e(ze + d)|| = 2enAcl[(1, ye) I

If one additionally requests that ||c(z. + d)|| < €p, then, from the first part of (4.10),
lle(xe) — c(ze + d)|| < 2¢p and therefore f(ze + d) > f(ze) — 2ep||ye] — 2enA||(1,y1)|| for
all d € F(x.) such that (4.28) holds. Also note that, if d exists such that ¢(z. + d) = 0,
ze +d € F and (4.28) holds, then (4.29) ensures that

flae+d) 2 f(ze) = 2enAc]| (L, ye) " | (4.30)

since y!'c(xc) > 0 because f(x) —t. > 0. Similarly, if d exists such that c(z. +d) = c(z.),
d € F(x¢) and (4.28) holds, then (4.29) ensures that (4.30) also holds.

Now turn to the case where f(z¢) > te and j = 2. Observe now that, because of (4.17)
and (2.5),

V2A(xe,yo)[d]* = V2 (xe, t)[d]? forall de M(z,). (4.31)

1
flad) —te
Now, gbﬁ;(we) < epA?||r(x,, te)|| implies that

V(e tld) + 32 (e A > —en2lr(aerty)|
for all d € M(z¢)NF(x,), and thus, dividing by f(z.)—t. > 0 and using (4.26) and (4.31),
Vol (@e,yo)ld) + 3 VEA(ze, ye)[d)? > —en AZ[|(1, 56|

for all d € M(zc) N F(xe). This in turn ensures that (4.22) holds for j = 2. Applying
Theorem 4.6 for the problem defining ¢, we deduce that

Aze +dyye) > Moo, ye) — 2602 (1, ye) || (4.32)



Cartis, Gould, Toint: Optimality of orders one to three and beyond 24

for all d such that d € M(z.) N F(x.). As a consequence, using (4.27) as above, we have
that (4.23) holds for j = 2 and all d € M(x.) N F(z¢) such that

1
2ep A2 ?
Hd||§< i ) : (4.33)

v2max[Lya, Leo]

Applying the same reasoning as above, we deduce that

flze +d) > f(xe) — 2ep||yell — 25DA?H(173/6)||

if one additionally requests that ||c(ze+d)|| < ep. We may also, as for j = 1, deduce from
(4.32) that f(zc+d) > f(xe) — 2epA?||(1,5e)|| for any d such that d € M(z.) N F(z.) and
(4.33) holds and for which ¢(z. + d) = 0 or ¢(ze + d) = c(z¢).

We finally turn to the case where f(z.) > t. and j = 3. It can be verified that, for
s1 € M(x.),
Vi(ze te)lst, s2] = Vie(z)[s1].-Vae(ze)[s2] + Vi f(@e)[s1]. Vi f (@) [se]
+(f(xe) = te) ViA(ze, ye)[51, 52] (4.34)

= (f(ze) = te) VaA(ze, ye)[s1, 2]

and

Vau(ze t)[s1]® = 3| 30, Viei(we)[s1]2.Vaei(ae)[s1] + Vaf(ze)[s1]*. Vi f (ze) [s1]

+(f(we) — t) VA (e, ye) [51]

= (f(ze) — te)v?cA(xea ye)[sl]g'
(4.35)
At termination we have that qufg(xE) < epA3||r(xe, te)||, and thus, for all d € F(z.),

V(e to)d) + IVZN(xsa te)ld)® + 1V3N(x67 te)ld® > —en AZ[|r(zc, t)]].
As for j =1 and 2, and for every d € M(z¢) N F(x,), the above relations imply that
Ve (@ yelld) + §VaA (e yold® + § VoA (e yold = —en AZI(1, 501

and therefore that (4.22) holds for j = 3. Applying Theorem 4.6 again, we now deduce
that
Aze +d,ye) > Mwe, ye) — 2€DA3H(1796)H

for all d € M(z¢) N F(x). As for the previous cases, this implies that (4.23) holds for for
j = 3 and, using (4.27) once more, for all d € M(z.) N F(x.) satisfying

6ep A3 3
|d|| < D2 . (4.36)
\/ﬁmax[Lfyg, Lc’g]

The inequality (4.25) is obtained as for the cases where j = 1, 2. O

We verify that (4.22) for j = 1 is the scaled first-order criticality condition considered in [20]
(Theorem 4.7 thus subsumes the analysis presented in that reference) and is equivalent to

“Pﬁme)[_viA("Ef?yG)]H < 6DA€||(173/5T)H)

which corresponds to a scaled version of the first-order criticality condition considered in [6].
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4.1 Beyond third-order optimality?

We have now proved that, if an approximate g-th order critical points for the convexly con-
strained problem can be obtained by an inner algorithm at a given evaluation complexity,
then the same result holds for the critical points of ||c(x)|| whenever Algorithm OUTER termi-
nates with an infeasible stationary point of the constraint violation (either at Phase 1 or at
(4.9)). When Algorithm OUTER terminates with (4.10), we have shown in Theorem 4.7 that
similar results hold for criticality of orders one, two and three.

As indicated already, the situation becomes considerably more complicated for higher
orders. The first difficulty, which we covered in Section 2, is that the conditions (2.15)-(2.14)
involve, for higher orders, the geometry of the feasible arcs in a way which is hard to exploit.
Moreover, the fact that we could derive, in Theorem 4.7, some lower bounds on the objective
function values by exploiting information at orders one up to three is strongly dependent of
the observation that, in the suitable subspace,

b
f(xe) — te

(see (4.26), (4.31), (4.34) and (4.35)), which in turn ensures that minimizing p(z,t) with
respect to x on the said subspace also results in minimizing A(z,y) with respect to x on the
same subspace®. Is this crucial property maintained for high orders? We now show that
the answer to this question is negative for orders four and beyond, due to the ever more
distant relationship between Vi u(ze,t.) and VLA (z,y.) when j grows, which is apparent
when considering the expressions (4.16)-(4.19). Indeed, the terms

v]x'u(xﬁ tE) - vg:A(m& y€) (j - 17 27 3) (437)

f(x?—t > _(Viei(x) @ Viei(@)d' + (Vif(x) ® Vif(x))[d]“]
S (4.38)

NE

2 2
2 . 2 2 2
T~ |4 (chz(ﬂﬁ)[d] ) + (fo(x)[d] ) ]
in (4.19) would only vanish in general if d € ker?[V2f(x)] Nker?[V2c(x)]. Although this is
formally reminiscent of the definition of M(x) in (2.5), this crucial inclusion now no longer
follows from lower-order conditions.

This is illustrated by what happens on the problem

min —xy — :L‘% + 2129 — %xil subject to &+ a9 + x% —x122 =0 (4.39)
1,21
for some ¢ € (0, 1]. If we consider z. = (0,0) and ¢, = —¢ (yielding y. = 1), then one can ver-

ify (see Appendix) that p(0,t.) satisfies the necessary conditions for a fourth order minimizer
at the origin while the problem itself has a global (fourth order) constrained maximizer. Fig-
ure 4.3 shows the contour lines of the objective function with the constraint set superimposed
as a thick curve (left), the contour lines of p(x,t.) (center) and A(x,y.) (right).

It is worthwhile to note that the above discussion has wider implications. Indeed the
first of the problematic terms in (4.38) not only occurs in the function p(z,t) used in this
paper, but also when applying to problem (2.1) a quadratic, ¢; or fo penalty function, a

®)For order three, it is fortunate that terms in (4.34) and (4.35) involving the second derivatives always
appear in product with terms involving the first, which is the reason why the minimization subspace at order
three is not smaller than that at order two.
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Figure 4.3: Contour lines for (4.39) (left), u(x,t¢) (center) and A(x,y.) (right)with the con-
straint shown as a thick curve

classical augmented Lagrangian approach, or a sequential quadratic programming method
using a merit function depending on such penalty terms. The same difficulty may also occur
if more general penalizations of the type p(v(z)) (for some increasing smooth function p from
IR to RT) are employed. Indeed, consider the derivatives of p(v(z)). One verifies that

Vap(v(z)) = p"((2))[Var()]'® + 6p" (v(2)) Viv(z) ® [Vov(x)]*®
+Hp" (v(2)) Vav(z) @ Viv(z) + 3p" (v(@) [Viv(@)]*?

+p' (v(2)) Vav (@)

whose last term, together with

m

Vav(e) =) [4Vici(r) @ Viei(z) + 3[Vie(@)]™® + ci(2) Viei(n) |,
i=1

indicates that the troublesome terms involving [VZ¢;(x)]*® do not vanish unless p’(v(z)) also
vanishes with v(x).

None of the linear or quadratic penalization approaches can therefore be expected to reliably
produce critical points of orders four or more. Innovative techniques are thus needed if one is
interested to compute high-order critical points of (2.1) of higher order. One possible research
direction is to follow the propositions formulated in [19] and to exploit penalization terms
of order higher than two in the definitions of v and pu, for which an improved evaluation
complexity bound is already available for the subproblem solution.

5 Conclusions and discussion

We have formulated and analyzed, in Section 2, the necessary conditions for high-order opti-
mality in nonlinear optimization problems involving both convex set constraints and nonlinear
equalities. We have also discussed the difficulties inherent to their form for third-order critical
points and higher.

We then have shown in Sections 3 and 4 that the evaluation complexity of finding an
approximate g-th-order scaled critical point (¢ = 1,2, 3) for a large class of smooth nonlinear
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optimization problem involving both equality and inequality constraints is at most O(e%,_”eg )

evaluations of the objective function, constraints and their derivatives, where €" is the order
of the guaranteed objective function decrease during the successful iterations of an under-
lying inner algorithm for convexly constrained least-squares problems. We refer here to an
“approximate scaled critical point” in that such a point is required to satisfy (4.9) or (4.10),
where the accuracy is scaled by the size of the constraint violation or that of the Lagrange
multipliers. In particular, the above results provide the first evaluation complexity bound
for second- and third-order criticality in the case involving general inequality and equality
constraints.

This result also corrects an unfortunate error(® in the first-order analysis of [20], that
allows a vector of Lagrange multipliers whose sign is arbitrary (in line with a purely first-
order setting where minimization and maximization are not distinguished). The present
analysis now yields the multiplier with the sign associated with minimization.

Interestingly, an O(epep, (P+1)/p min|ep, ep] ~PH1)/P) evaluation complexity bound was also
proved by Birgin, Gardenghi, Martinez, Santos and Toint in [6] for first-order unscaled, stan-
dard KKT conditions and in the least expensive of three cases depending on the degree of
degeneracy identifiable by the algorithm(”). Even if the bounds for the scaled and unscaled
cases coincide in order when €, < €, comparing the two results for first-order critical points
is not straightforward. On one hand the scaled conditions take into account the possibly
different scaling of the objective function and constraints. On the other hand the same scaled
conditions may result in earlier termination with (4.10) if the Lagrange multipliers are very
large, as (4.10) is then consistent with the weaker requirement of finding a John’s point. But
the framework discussed in the present paper also differs from that of [6] in additional signifi-
cant ways. The first is that second-order critical points are now covered in the analysis. If we
now restrict the scope to first-order, the present paper provides a potentially stronger version
of the termination of the algorithm at infeasible points (in Phase 1): indeed the second part of
(4.9) can be interpreted as requiring that the size of the feasible gradient of ||c(x)|| is below ep,
while [6] considers the gradient of ||c(x)||? instead. The second is that, if termination occurs
in Phase 2 for an x. such that ¢ﬁ’f (x) is of order epep Ay (thereby covering the case where
f(z.) = t), discussed in Theorem 4.5) and z. € F, then | Pr[~Viv(x,)]|| = |[Viv(z,)| is
of the same order and Birgin et al. show that, in this case, the Lojaciewicz inequality [41]
must fail for ¢ in the limit for ep and €, tending to zero (see [6] for details). This observation
is interesting because smooth functions satisfy the Lojaciewicz inequality under relatively
weak conditions, implying that termination in these circumstances is unlikely. The same in-
formation is also obtained in [6], albeit at the price of worsening the evaluation complexity
bound mentioned above by an order of magnitude in e,. We also note that the approach
of [6] requires the minimization, at each iteration, of a residual whose second derivatives are
discontinuous, while all functions used in the present paper are p times continuously differen-
tiable. A final difference between the two approaches is obviously our introduction of qbﬁ’; in
the expression of the criticality condition in Theorem 4.5 for taking the inequality constraints
into account.

Will regularization-based methods provide better evaluation complexity bounds when us-
ing polynomial models of higher order? Can the limitations of penalty approaches for finding

(©)The second equality in the first equation of Lemma 3.4 in [20] only holds if one is ready to flip the gradient’s
sign if necessary.
(DThis result also assumes boundedness of f(z1).
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high-order solutions for equality constrained problems be circumvented? These and many
other questions remain open at this stage.
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Appendix

Details of the derivation of (4.15)

For the trust-region algorithm,

fai) < S+ () mox 95O ) A (W e %6 ] 1),

é€Ujes(zj,xj41]

For the regularization algorithm,

1

flxr) < f(x0)+<V(96(7)7)(§};$1)!)p+1X

_ 1 _ _p+1
me (VI { Wb leto max [ 7 7] | 1.

¢€Ujes(zj,xj+1]
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Details for the example (4.39)

We prove the validity of the statement made after the definition of problem (4.39), namely
that 1(0,t.) satisfies the necessary conditions for a fourth order minimizer at the origin while
the problem itself has a global (fourth order) constrained maximizer.

Let T3(z) = z2 + 22 — 27122 and define, for some ¢ € (0, 1],

f(x) = —Ts(z) — Ltz and c(z) = e+ T3(x). (A1)

and thus, for a given multiplier ¥,

A(z,y) = ~T3(x) - jai + yle + T3(x)] (A-2)
We have that
1 o 2131 — 2332 2 o 2 =2 3 _
V.T3(x) = ( 1 2, > , ViTs(z) = < 9 0 ) and V;T3(x) = 0. (A.3)
Thus, at the origin and for ¢, = —¢
c(0) =e= f(0) —t. and Vic(0) = VIiT3(0) = —VIif(0) for j=1,2,3. (A.4)
4

As a consequence, the choice y =1, (A.2) and (A.3) ensure that A(z,1) = e — Lz7as well as
VIA0,1) =0, VZA(0,1)=0, V3A(0,1)=0, V2IA(0,1)=Vif(0)=—129* (A5)
Using (4.16)-(4.19) and (A.4), we also have that, for t = —¢,
Var(0,te) = (¢(0) = f(0) 4+ to) Vi T3(0) = (¢ — 0 — g)ea =0, (A.6)
V2u(0,t) = 2VLT3(0) @ VIT3(0) = 2e9ed,  V3u(0,t) = 6 V2T3(0) @ VLT3(0) =0 (A.7)
and, using the last equation in (A.5),

Vau(0,te) = 6V2T3(0) ® VET5(0) + c¢(0)V3ie(0) + (f(0) — t)Vaf(0)
1 -1 \®2 s
(_1 O) et

(Notice the contribution of the first term in the bracketed expression, potentially dwarfing
that of the second for sufficiently small e.)

Let us attempt to verify (2.15)-(2.9) with ¢ = 4 for the problem of minimizing u(x, t¢)
with s1 € ker?[V2u] = span {e; }. We have that (2.15) holds because of (A.6). We also obtain,
from (A.6)-(A.8), that, for s; = Te; for some 7 € R and for any choice of s, s3,s4 € R",

o (A.8)

Viu(o,te)[é’g] + %V?Cu(O,te)[slP = 0Tsy + Tegel e; =0,

3

3
Vi,u(O,tg)[s?,] + TV?:,u(O,tE)[sl, S9] + %Vi,u(O, tg)[s1]3 =0Ts3 + 755626561 + %0[31]3 =0
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and
v}cﬂ(oy te)[34] + V:%/L(Q te)[slv 33] + %V%M(O, te)[SQ]z + %Viﬂ(oa te)[sh S1, 32] + iviu(ov te)[31]4

2
=0Tsy + 4755 eseler + 1(ed s2)? + S0 [eq, €1, 59

1 -1
6?(_1 O>61

= j(ezs2)* + (1 =)l (efer)”.

2
— 6] 74(61T61)4

(A.9)
The choice of s3, s3 and sy is however constrained by (2.9) for ¢ = 1, 2,3, in that those vector
must also satisfy the equations

Vic(O) [s1]=0= Tegel,

Vze(0)[s2] + §Vae(0)[s1]” = 0 = ey s + 7%eg ( —i _(1) ) e1,

Vic(O)[s;g] + Vic(O) [s1, s2] + %Vic(O)[sl]?’ =0= 6;83 +27(e1 — 62)T82 + T30T[61]3.
and

V,.c(0)[s4] 4+ V3e(0)[s1, s3] + +1V2c(0)[s2] + 1 Vac(0)[s1, 51, 52)% + 4 Vac(0)[s1]*

=0= 6’554 + 6{82(6{82 —272) + 2761T33 — 472,

The second, third and fourth of these conditions impose constraints on the values of el 'ss, el's3
and el'sy. In particular, the second implies that el'sy = —72, which we may then substitute
in (A.9) and deduce that

Vo110, te)[sa] + V(0. te)[s1, s3] + §VEu(0, te)[s2]? + §VEu(0, te) [s1, 51, 80] + 55 Vu(0, te) [s1]*

=it (L —e)rt=(1-L1e)rt >0.
(A.10)
We therefore obtain that, for all € € (0, 1], x, satisfies the necessary conditions of Theorem 2.1
with ¢ = 4, except that ¢(z.) = €. However (A.5) shows that A(x, ye) is a polynomial of degree
4 with a global maximizer at the origin, independently of the value of €. Letting ¢ tend to zero
and using the fact that all quantities in the example depend continuously on this parameter
then allows to conclude.



