
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

On the Design of an Image processing Tool To Help Cell Enumeration

Liteanu, Ariane

Award date:
2018

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. May. 2024

https://researchportal.unamur.be/en/studentTheses/3208bbc9-8e40-4485-8ccf-87949b6b10ae

University of Namur
Faculty of Computer Science
Academic Year 2017–2018

On the Design of an Image Processing
Tool To Help Cell Enumeration

Ariane Liteanu

Supervisor: (Signed for Release Approval - Study Rules art. 40)
Professor Jean-Marie Jacquet

A thesis submitted in the partial fulfillment of the requirements
for the degree of Master of Computer Science at the Université of Namur

Section 0.0

ii

Abstract

Automating the cell detection and enumeration through a picture is a way to save time
for biologists during their experiments. However, if the cells’ background is noisy, e.g. the
surface is porous, the task can become much more complex. This thesis presents an algorithm
combining filters and the morphological operations of erosion and dilation to isolate cells
with a visible nucleus and count them. This is done in two stages: first, separating the
cells from their background, then isolating nucleoli, distinctive part of the cell’s nucleus.
Mathematical morphology allows to ignore intensity variation in images and help to remove
noise elements. Identified cells are notified on the original picture and their number is given
to the user. This processing is done by means of Python scripts. In order to improve the
usability for people unfamiliar with programming, several interface solutions were analysed.
Based on prototypes, their advantages and disadvantages were highlighted.

Résumé

Automatiser la détection et l’énumération de cellules via leur photo est un moyen de faire
gagner du temps aux biologistes lors de leurs expérimentations. Cependant, la perturbation
de l’environnement de ces cellules, comme une surface poreuse, peut considérablement com-
plexifier la tâche. Cette thèse présente un algorithme combinant des filtres et les opérations
morphologiques d’érosion et de dilatation afin d’isoler les cellules dont le noyau est suffisam-
ment visible et les compter. Ceci est obtenu en deux étapes : l’isolation des cellules de
leur arrière-plan et l’isolation des nucléoles, partie reconnaissable du noyau. La morpholo-
gie mathématique permet de passer outre les variations d’intensité que l’on retrouve sur les
images et aide à éliminer les éléments perturbateurs de l’image. Les cellules identifiées sont
alors notifiées sur l’image d’origine et leur nombre est communiqué à l’utilisateur. Ces traite-
ments sont effectués grâce à des scripts Python. Afin de rendre leur utilisation plus aisée
pour une personne peu familière avec la programmation, plusieurs solutions d’interfaces ont
été analysées. Sur base de prototypes, leurs qualités et défauts ont été mis en évidence.

Acknowledgement

Alors que je termine la rédaction de cette thèse, je pense qu’il est temps de donner quelques
remerciements. Tout ceci n’aurait pas été possible sans mon promoteur, le Professeur Jean-
Marie Jacquet. Je voudrais le remercier pour ses conseils et son soutien tout au long de ce
travail. Merci à Marie Fourrez pour sa coopération et les informations au sujet des images
de cellules.
Je pense qu’une fois de plus, je me dois de remercier David pour sa patience et sa com-
préhension devant cette idée un peu folle qu’est de faire un deuxième mémoire.
J’ai pu compter sur mon entourage pour me soutenir dans cette aventure. Grâce aux échanges
avec diverses professionnels j’ai beaucoup appris et ça a de la valeur à mes yeux. Merci à
Loïc Quertenmont pour avoir pris le temps de partager son expérience.
J’ai également une pensée pour Geoffroy qui a fait le même pari fou. Il est clair que pouvoir
partager les hauts et les bas m’a aidé à tenir bon. A tous, merci.

Contents

1 Introduction 1

2 Contextualization 3
2.1 What is an image? . 3

2.1.1 Digital images . 3
2.1.2 Bitmap versus Vector images . 3
2.1.3 Raster images properties . 6
2.1.4 Colours and formalism . 8

2.2 Cells in pictures . 11
2.3 Conclusion . 11

3 Image Processing Methods 13
3.1 State of the art . 13

3.1.1 Thresholding . 14
3.1.2 Region Growing . 15
3.1.3 Classifiers and Clusters . 15
3.1.4 Artificial neural networks . 17
3.1.5 Deformable models . 17
3.1.6 Atals-guided approaches . 17
3.1.7 Machine Learning . 17
3.1.8 Mathematical Morphology . 18

3.2 Other image manipulations . 19
3.2.1 Image Histogram . 19
3.2.2 Filtering . 21

3.3 Selected methods . 22
3.4 Conclusion . 22

4 Mathematical Morphology 23
4.1 Algorithm . 23

4.1.1 Dilation . 24

i

CONTENTS Section 0.0

4.1.2 Erosion . 26
4.1.3 Opening and Closing . 26

4.2 Tools . 28
4.3 Conclusion . 30

5 Development: Algorithm 31
5.1 Development of the protocol . 31

5.1.1 Tumour cells on porous membranes 31
5.1.2 Edges Detection . 33

5.2 Protocol . 34
5.3 Filter the color range . 37

5.3.1 Colour identification . 37
5.4 Mathematical morphology . 39

5.4.1 Erosion . 39
5.4.2 Dilation . 40
5.4.3 Finding nucleoli . 41

5.5 Counting . 41
5.6 Comparison with the expected result . 44
5.7 Conclusion . 45

6 Development: Graphic user interface 47
6.1 Requirements of a GUI . 47
6.2 Choice of framework . 48

6.2.1 Python GUI framework . 49
6.2.2 Web based application . 49

6.3 Implementation . 51
6.3.1 Python with no GUI . 51
6.3.2 Python with appJar . 53
6.3.3 Flask and Angular . 55

6.4 Conclusion . 59

7 Conclusion 61

A Process development 67

ii

Chapter 1

Introduction

Scientists from the Faculty of Medicine of the University of Namur are running experiments
on colonies of tumorous cells grown on porous membranes as part of their cancer research.
The team of Professor J.-P. Gillet studies 17T and 63T cells coming from melanomas. One
time consuming part of the research consists in counting all cells that successfully crossed
the porous membrane, i.e. cells whose nucleus is visible.

Even if cells have recognizable features, this task cannot be performed by the commonly
used software, ImageJ. Indeed, it is unable to differentiate the cells from the pores of the
background. Consequently, the team has to manually count each cell, picture by picture,
on a computer. Using GIMP, they put a red dot on each counted cell. A process that is
repetitive, tiresome and time-consuming. Not to mention that is it easy to make mistakes.

The objective of this master thesis is to propose a solution to assist biologists in the
counting activity. The first solution shall be adapted to the pictures supplied by the Faculty
of Medicine. Then reflection could be opened to the application of the solution to a larger
set of pictures.

This document is organised as follows. The characteristics of an image and their utility
are presented in Chapter 2. Focus is brought to the specificities of cells enumeration. In
order to tackle this problematic, two axes are identified:

• creation of an algorithm which aims at detecting and counting cells on an image.

• implementation of a graphic interface as an intuitive and user-friendly tool.

Three chapters are dedicated to the algorithm. Chapter 3 consists in a state of the art of
the image processing methods. Chapter 4 details the Mathematical Morphology method,
bringing focus on the erosion and dilation operations. Chapter 5 is dedicated to the algorithm
proposed and the results obtained. The graphical interface is presented in Chapter 6 and
conclusions are drawn in Chapter 7.

1

CHAPTER 1. INTRODUCTION Section 1.0

2

Chapter 2

Contextualization

The cell detection problem calls for image processing. This chapter recalls the basis of both
images and cells.

2.1 What is an image?

An image is the visual representation of an object, a scene or a concept [1]. It might also
have a much abstract signification, mostly the result of human imagination. A picture is the
most general term. It can be a painting, a pencil drawing or digital. This is the aspect used
in this thesis.
Sometimes abbreviated as pic, a picture is a visual capture of an object. Pictures can be
created using devices such as a digital camera, scanner or smartphone (photographs) [2].
Those visual objects could also be made exclusively on a computer and not captured by
another device (clip arts, render, illustrations).

2.1.1 Digital images

An image can be considered as digital if it has been acquired, created, processed or stored
as a binary file [4]. It is a multi-dimensional signal [3]. Most of the time, this signal is a
measure of light, like in photos. But it could also be a representation of density (in x-rays),
water concentration (MIR) or metabolism (positron emission tomography).

2.1.2 Bitmap versus Vector images

There is two different kinds of technology that are used to render a visual appearance.
Bitmap (also known as raster) and Vector images.

3

CHAPTER 2. CONTEXTUALIZATION Section 2.1

Figure 2.1: Illustration of the quantized nature of digital images [3]. A 2D image is composed
of tiny pixels which contain a specific signal value.

Figure 2.2: Comparison of a raster image (left) and a vector image (right). Vector images
can be scaled up without losing quality [4].

4

CHAPTER 2. CONTEXTUALIZATION Section 2.1

The Bitmap is closer to our common vision of an image. It is a collection of dots or-
ganised in space. Like a printer would place a specific dot of ink in each spot of a sheet of
paper, the digital representation of the image is made of pixels [5].
Each pixel is therefore a tiny square with a well defined position in a matrix and its own
colour (see Figure 2.1). This is the technique used for scanners and cameras. By arranging
pixels and slowly incrementing or changing the color or shade of the pixels adjacent to them,
it creates a subtle gradation from one color to another [6]. However, if the image file is
enlarged without changing the number of pixels, the image will look blurry, as illustrated in
Figure 2.2.
The common extensions are .bmp, .gif, .jpg, .png. They can easily be edited using an image
or photo editor [2].

The vector image does not use static pixels but points, lines, and curves that are based
upon mathematical equations. This means that even scaled-up, the visual appearance will
stay the same. A vector graphic is created using dedicated software [6] and its extension will
depend on it. .ai is from Adobe Illustrator and .odg from the OpenOffice tool, Draw.

The table below inspired from [6] summarizes the differences between a Bitmap (raster)
and Vector image.

5

CHAPTER 2. CONTEXTUALIZATION Section 2.1

Bitmap Vector

Pixel-based Shapes based on mathematical calculations

Best for editing photos and creating contin-
uous tone images with soft color blends

Best for creating logos, drawings and illus-
trations, technical drawings.

Do not scale up optimally - Image must be
created/scanned at the desired usage size or
larger

Can be scaled to any size without losing qual-
ity. Resolution-independent: can be printed
at any size/resolution

Large dimensions and detailed images equal
large file size

A large dimension vector graphic maintains
a small file size

More difficult to print using a limited amount
of spot colors

Number of colors can be easily increased or
reduced to adjust printing budget

Depending on the complexity of the image,
conversion to vector may be time consuming

Vector art can be used for many processes
and easily rasterized to be used for all pro-
cesses

Most common image format, including:
.jpg, .gif, .png, .tif, .bmp, .psd, .eps
and .pdfs originating from raster programs

Common vector graphic file format: .ai,
.cdr, .svg, .eps and .pdfs originating from
vector programs

Common programs: photo editing / paint
programs such as Photoshop and Paint Shop,
GIMP (free)

Common programs: drawing programs such
as Illustrator, CorelDraw, Inkscape (free)

2.1.3 Raster images properties

Digital images are often restricted to what are in fact raster images (the bitmaps). In the lit-
erature, the aim of image processing is to extract morphological information. Raster images
are the technology of photos and movies and unlike vector graphics, the raw signal does not
give direct information about its content. If we can easily recognize an apple on an image,
a computer has trouble to find a meaning to that group of pixel. It can give back a series of
properties but in therm of meaning, it needs image processing algorithms.

The signal carried in raster images is:

1. Sampled in a limited number of locations

2. Quantized

The first point is about space. A raster image is made of pixels (or voxels for 3D
images) [7]. The second point is about values of the signal. Each pixel will hold a specific

6

CHAPTER 2. CONTEXTUALIZATION Section 2.1

signal. In Figure 2.1, each small box represents a pixel of the image. They are so small
that human eye cannot differentiate them [8]. Each pixel contains a signal that must be
contained in a range of specific values. The reduction of the signal to one of the possible
value in [1,2,3,4,. . . 2b-1] is called the quantization. Here, b is the bit depth and is
defined by the user or a standard.

The matrix that composes the image has several features [3] :

* a size: commonly, images are represented with two dimensions, but it might happen
that three or more dimensions are used. Generally speaking, the size is the number of
pixel along each dimension axis1.

* a bit depth: number of potential values for each pixel (see Figure 2.3a)

* a palette: mapping from pixel value to displayed color

* a definition: number of pixels per length unit (600 dpi printer – dot per inch)

* a point spread function: measured image of a point object, namely an impulse
response function of the imaging device (see Figure 2.3b)

* a spatial resolution: full width at half maximum of point spread function (see Fig-
ure 2.3b)

(a) Depth of an image [3]. Binary rep-
resentation: 2 bits, 22 levels. (b) Point spread function and image resolution [3].

Figure 2.3

While resolution depends on the image acquisition process, the size is specific to the
image itself and the definition characterizes the image display. The latter is the detail an

1If the image is square, otherwise, it is the Cartesian product of those numbers.

7

CHAPTER 2. CONTEXTUALIZATION Section 2.1

image holds. The higher the definition, the heavier the file will be. But this means that it
will also be possible to increase the size of the image without loosing too much quality.

Image resolution can be measured in various ways. Resolution quantifies how close lines
can be to each other and still be visibly resolved [9]. Therefore, for a given resolution, the
pixel size is usually chosen to be slightly smaller than it. Any smaller details would be
anyway lost.

How do we define the image bit depth? A common bit depth is 8 which gives a maxi-
mum number of 256 colors (28) and is widely used to store image information in a computer’s
memory. To represent coloured images, three 8-bit channels, can be used. Each of them will
refer to a primary color, i.e. red, green or blue, and the combination of the three will allow
28∗3 colors. This is referred to as 24 bits per pixel (bpp)[10].

A digital image may have a very large depth but the human vision can only discern
about 10 million different colors, so saving an image in any more than 24 bpp is excessive.
Even if digital imaging allows visualisation in a range of 0,001 nm to 100000nm wavelengths,
common picture will only work in the 350 - 700 nm range. However, if the picture is intended
for post-processing, a high-bit file is recommended to end up with a perfectly preserved gra-
dation of color [10].

Figure 2.3a shows a simple example of a 2 bit depth scale. The possible values are 11,
10, 01, 00 and the gray scale on the right is the palette.

In the remaining of this thesis, unless otherwise specified, digital images will be referred
as pictures or simply images.

2.1.4 Colours and formalism

Pixels hold the colour information. Sometimes, the colour can be expressed with a single
number, like gray scale of binary images. But when it comes to coloured images, different
formalism exist. It can be expressed by their names like ‘red’, ‘blue’, ‘cyan’, "magenta" but
when dealing with media for screen, the convention is a three channel pixel.

RGB

With RGB value system the three channels correspond to (Red, Green, Blue). They describe
the nature of a colour by amounts of each of these colours. Like the old cathodic tv, the
colour that is perceived is in fact a combination of three base colours (see Figure 2.4b). This
is an additive system, meaning that the more of each color, the brighter (see Figure 2.4a).
Even if this is a concise system, it is difficult to distinguish amounts of each channel by eye.

8

CHAPTER 2. CONTEXTUALIZATION Section 2.1

For an ’identical’ color that goes darker, the three channels change completely which is not
really intuitive. Same thing to describe a hue shift or saturation.

(a) (b)

Figure 2.4: In RGB, the colour is defined by the amount of red, green and blue that it
contains. The more of each colour, the brighter the result.

HSV

In HSV, H is for Hue (or color-depth), S for Saturation (or color-purity) and V for Value (or
color-brightness) .
This is a colour system that breaks colour down into more simplistic characteristics. Each
of its compound (hue, saturation and value) can be adjusted independently in the triplet
(H,S,V).

Saturation represents the amount to which that respective color is mixed with white and
value represents the amount to which that respective color is mixed with black. Both may
vary according to the lighting condition of that environment [8]. HSV is a more appropriate
approach to perform operations on images [11].

Figure 2.5: In HSV colour system, the hue can be selected independently from its saturation
or brightness.

Here are the hue ranges for basic colors [12]:

9

CHAPTER 2. CONTEXTUALIZATION Section 2.2

• Red 0-60

• Yellow 60 - 120

• Green 120 - 180

• Cyan 180 - 240

• Blue 240 - 300

• Magenta 300 - 360

Conversion from one to another

RGB is expressed as a triplet of values range between 0 and 255.
HSV is also a triplet but the first value, the hue, is expressed in degrees ranging from 0 to
360. The saturation and the value are percent. Therefore those are numbers from 0 to 100.

The value is simply Cmax and the saturation, when this Cmax is non zero, is equal to the
difference of the maximum and minimum values divided by Cmax.
Calculating the hue is a little bit more complex. Equations can be found in Figure 2.7.

R′ = R/255

G′ = G/255

B′ = B/255

Cmax = max(R′, G′, B′)

Cmin = min(R′, G′, B′)

∆ = Cmax − Cmin

Figure 2.6: Equations for saturation

Figure 2.7: Equations for Hue

10

CHAPTER 2. CONTEXTUALIZATION Section 2.3

2.2 Cells in pictures

“ Cells are the basic building blocks of living things. The human body is composed of
trillions of cells, all with their own specialised function [13]. ”

Even if cells may have a variety of shapes and functions, depending on if they are eukar-
iotic or prokariotic cells, they share certain characteristics.
Unlike prokariotes, eukariotes have membrane-encased organelles, including a nucleus. The
nucleus houses the cell’s genetic information contained in its deoxyribonucleic acid (DNA) [14].
All those precious informations are protected by the nuclear envelope. The DNA, along with
proteins and RNA2, forms the nucleolus, a circular structure that is found in the nucleus.
It does not have a membrane and appears darker on Figure 2.8.

Cells are the subject of numerous studies which concerns their size as well as their inter-
actions or their number. Indeed, the size of a colony indicates a lot about the cell health and
reaction to its environment. However, a cell colony might be composed of a huge amount of
them. It takes up to three people and several days to analyse complete images. Therefore,
we better understand the necessity of developing tool to assist biologist in their counting.

Counting devices exists in a lot of domain. But when it comes to pictures, morphology
and patterns becomes predominant. The next chapter highlights some common techniques
that allow to process the image and extract important data. The difficulty with living beings
is the lack of repetition in their shapes and spacial organisation. Correctly identifying a cell
is therefore much more complex than letters in a text. If the objective is to count complete
cells, then identifying the nucleus can be enough. For this application on melanoma cells,
this is what will be used.

2.3 Conclusion

Cell enumeration is very important for biologists whether that is for cancer research or any
other cell study. However, this is a tedious and time consuming work. This is why we
would like to automate the counting identification and counting process. Unfortunately,
current available methods are not suitable for all situations. This is the reason why it is
interesting to try to develop an alternative image processing tool that would address this
specific problematic.

Before any implementation, we recalled what an image is, and more precisely, raster im-
ages. We also gave the definition of several important properties as the palette the bit-depth
and the image definition. The difference between the RGB and the HSV colour formalism
has been highlighted. Finally, we defined the nucleus as the element that would be detected
in a cell.

For more information on numerical images, see the http://www.imedias.pro/cours-en-ligne/
website [4].

2ribonucleic acid

11

CHAPTER 2. CONTEXTUALIZATION Section 2.3

Figure 2.8: Transmission electron micrograph illustrating the typical appearance of the
nucleus in osmium tetroxide fixed material. In this pancreatic acinar cell nucleus, the only
prominent feature is the large nucleolus. [15].

12

Chapter 3

Image Processing Methods

This chapter, presents different image processing algorithms that can be found in the liter-
ature.

The scope of this chapter is not to provide a full description of competing methods but
rather to give the reader an introduction to the variety of methods available to perform a
detection of the region of interest here being, cells. Most of the concept described are com-
monly used for radiological images (MRI, X-Rays, CT) but their algorithm can be applicable
to images from different origins as well.

Feature detection is concerned with determining the presence of some image proper-
ties [7]. This thesis assumes that the property (the cells) is already present and focus on
its localisation. The Labelling, the “ process of assigning a meaningful designation to each
region or class [7] ” shall be confirmed by the user after a solution has been provided.

3.1 State of the art

Image segmentation aims at simplifying an image and transform it into an object more mean-
ingful and easier to analyse. For example, dividing an image into homogeneous regions such
that points within the same region are similar in nature [16] (i.e in intensity or texture [7]).
By assigning a label to every pixel, lines and curves that compose boundaries of objects are
revealed. Ideally, those objects correspond to meaningful regions of interest.

Image segmentation plays a key role in medical imaging applications. It facilitates the
recognition of regions of interest (like anatomical structures) and allows for the automa-
tion or semi-automation of their analysis [7]. Methods for performing segmentations vary
widely depending on the specific application and imaging modality. The articles from Dzung
Pham [7, 16] identify the eight following categories which are explained hereunder.

1. thresholding approaches

13

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.1

2. region growing approaches

3. classifiers

4. clustering approaches

5. Markov random field models

6. artificial neural networks

7. deformable models

8. atlas-guided approaches

3.1.1 Thresholding

Thresholding, as well as the classifier, clustering, and Markov random field approaches ex-
plained in the next sections, is considered as a pixel classification method. This means that
a class is assigned to each pixel. It is a simple but effective method that is often used as
an initial step in a succession of image processing operations. The partitioning of the image
intensities is based on the histogram of the image and the threshold is the intensity value
that separate the desired classes. Figure 3.1 is showing an example of histogram where the
potential threshold is at the valley.
Thresholoding must be associated with other methods. The reasons it is not self-sufficient
are that, in its simplest form, only two classes are generated and furthermore, it is not ap-
plicable to multi-channel images (like RGB images).

Figure 3.1: Example of histogram with two potential classes of pixels. Axis i represent the
gray level value, k is the threshold and h(i) is the number of pixels in the image at each gray
level value [17].

14

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.1

3.1.2 Region Growing

In the Region Growing algorithm, seed points, strategically placed beforehand, are used to
progressively extract the regions having similar properties. This technique typically rely on
the homogeneity of the image intensities in the regions of interest. Deeper algorithms which
deal with the intensity inhomogeneity that often occurs in real-world images exist [18]. How-
ever, the disadvantages remain the same: the seed points need to be manually selected by
an operator and number of classes must be known beforehand.
In the case of very small and numerous regions, like cells, requiring a manual interaction
might quickly become laborious and time consuming. There are algorithms called "split and
merge" [19] which act similar to region growing algorithm but don’t require manual defini-
tion of point seeds. However, they work with recursive division and merging of the pixels
which works best with a gray-scale image like MRI.

3.1.3 Classifiers and Clusters

Classifiers and Clusters perform the same function, the first ones being supervised methods
and the others unsupervised. Supervised means that methods require training data manually
segmented and used as references for automatically segmenting new data [7]. The nearest-
neighbour classifier is one example of a simple classifier where each pixel or voxel is classified
in the same class as the training datum with the closest intensity. With KNN (k-nearest-
neighbour), the decision is made considering the k closest values. This is therefore not taking
into account any potential statistical structure of the data.
The main disadvantage of classifiers approach is the obtention of training sets which can be
time consuming and laborious.

Figure 3.2: Illustration of the nearest-neighbour classifier method. Each pixel has a value (a
number) and some of them are already labelled with a class (a colour). The white pixel will
join the nearest class which is here the green one with a value of 4 (delta is one).

Sometimes, the class must be identified in a collection of unlabelled data. This problem
is addressed by Clustering algorithms, one of the most important unsupervised learning
problem. A cluster is, in this context, a collection of objects which are similar between
them and are dissimilar to the objects belonging to other clusters [21]. Some common
clustering segmentation algorithms are k-means [22] (explained hereunder), the fuzzy c-
means algorithm and the expectation-maximization algorithm.

15

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.1

Figure 3.3: Illustration of the k-means algorithm [20]. On the left, the initialization of the
centroids (which can be a random selection of points. On the right, after 3 iterations, the
centroid have moved to a more stable position and points are gathered in clusters depending
on their relative distance.

Clustering can be applied for a variety of fields like:

• Biology: classification of plants given their features

• Economic sciences: identifying distinct groups of customers profile for marketing

• Spacial Data Analysis

The field we pay interest to in the context of this thesis is the image processing. More
specifically, the distance-based clustering for which the similarity criterion is distance and
determine if two objects belongs to the same cluster or not.
By iteration, clustering methods train themselves using the available data but they do re-
quire initialization. With the k-means clustering algorithm, after defining a distance function
between data points, we need to choose the number of clusters wanted and select k points as
starting centroids. The points (or pixel) the closest to a centroid will be assign to its cluster
during the ’Assignment step’. Then during the ’Update step’ each new centroid location is
calculated for each cluster using the mean of all points assigned to this centroid. By iterating
over those two steps, centroid slowly come to an optimum meaning that the total distance
from each point to its assigned centroid is the lowest. However, this solution is not always
the best one as it only provides a local optimum.
Clustering methods lack spatial modelling but can provide significant advantages for fast
computation. However, this also means that, like classifiers, clustering algorithms are sensi-
tive to noise and intensity inhomogeneities [7]. One way to decrease the sensibility toward

16

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.1

noise is Markov random field modelling [23] which is a statistical model which can be used
within segmentation methods.

3.1.4 Artificial neural networks

Artificial neural networks or ANN are applied for pattern recognition. The parallel networks
of processing elements or nodes learn by adjusting the interconnection, weights, between
layers, and generalizes relevant output for a set of input data [24, 7]. As a paradigm for
machine learning they simulate biological learning. Machine learning applied for images is
addressed in Subsection 3.1.7. In medical imaging, ANN can be applied mostly as classifiers
but also in a unsupervised way as well as for deformable models.

3.1.5 Deformable models

Deformable models are “ physically motivated, model-based techniques for delineating region
boundaries using closed parametric curves or surfaces that deform under the influence of
internal and external forces „ [7]. They give very good results in medical images analysis,
like MR images, but they require manual interaction to place an initial model and choose
appropriate parameters. Even if these models present robustness to noise, in the context of
cell counting, the main concern is finding each cell and the delimitation of their surface is
not essential.

3.1.6 Atals-guided approaches

Atals-guided approaches are generally better-suited for segmentation of structures that are
stable over the population of study. Which is not the case with the cell counting. The use of
statistical atlases in brain images segmentation and the construction of those atlas is detailed
in [25].

3.1.7 Machine Learning

Machine Learning is a way to model phenomena in order to take strategic decisions. There
are a lot of different machine learning problems but they all are composed of specific ele-
ments [26]:

• Datas

• A specific task to be performed

• A learning algorithm

• A performance measure

17

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.1

Given a large amount of data, the algorithm builds an internal representation that enables
it to execute the task (for example classifying, prediction, identification) by itself on new
data. The first phase is called the learning phase, and the data used for this are part of
the training set. Machine learning is based on general algorithm fed with data instead of
custom code specific to the problem. The same algorithm fed with different training data
will come up with different logic and help the classification. There is not only one learning
algorithm to solve all problems. When the algorithm is complex enough, as with artificial
neural networks, raw data can be directly analysed. Otherwise, data shall be pre-processed.
Usually, the algorithm is chosen depending on the task to be performed (output) and the
kind of data available (input). The followings are the most famous ones:

• Linear regression

• K-nn

• neural networks

• random forests

Interest in those techniques is growing rapidly. Even if it can be applied to various kind
of data, (logs, user behaviour on a web site, money transactions), machine learning is also
used to analyse visual objects. This is called Machine Vision [26, 27]. Its effectiveness does
not need to be proven any more, a well known and very convincing example is Google’s
automatic photo search [28]. Given the huge number of photograph uploaded daily on plat-
forms like Flickr, Facebook or Instagram 1, the learning set has become enormous. Machine
learning helps in analysing color and shape patterns, link it to any existing data about the
photograph to help the search engine understand what an image actually is.

For example, if the goal is to create an algorithm capable of finding cars on a video of a
road, first, a training set is built up from many pieces of pictures that only contains cars.
The algorithm will progressively learn what a car looks like and is tested with labelled ex-
amples.

One of the main disadvantages of machine learning is that it only works when a lot of
data is available for the training part. Furthermore, in this work, the target element that
we want to detect are cells. Counting them is one thing, but distinguishing two or more
overlapping cells is a way more complicated exercise [29].

3.1.8 Mathematical Morphology

Unlike most of the methods of image segmentation presented above, Mathematical Morphol-
ogy (MM) is based on shapes (hence the word ’Morphology’). It is a theory for the analysis

1over 350 million in 2013 just for Facebook, according to [28]

18

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.2

of spatial structures [30] based on set theory, topology, lattice algebra and random functions
(hence ’Mathematical’).
It is not a new technique as it was initiated in the late sixties by George Matheron and Jean
Serra [30]. MM is not very popular in papers about image processing and computer vision.
However, we can find some example of its application to industrial machine vision [31, 32].

Mathematical Morphology’s basics arithmetics are erosion and dilation. They are also
called “binary morphological operations „since they are applied on binary (black and white)
images. Extensions of these relationship have been developed in gray scale morphology [31].

The article [33] shows that extending gray scale MM algorithm to color or vector valued
images is complicated as there is no natural ordering on a set of color vectors. However,
erosion and dilation are perfectly adapted for the processing of a mask (binary) resulting
from a filter.

3.2 Other image manipulations

Here are few other techniques that are not technically speaking segmentation techniques but
do have their importance in image manipulation.

3.2.1 Image Histogram

As mentioned earlier, an image is a vector of digital values. Gathering and counting the
amount of each value present in an image allows to represent it as an histogram which can
then be used to collect information or to modify the image properties.

Adjusting Contrast. The contrast of an image is perceived as the difference between
maximum and minimum pixel intensity in it. By analysing the data repartition, we can
sometimes observe that useful data populates only a small portion of the available range [3].
By modifying the original values so that more of the available range is used, we increase
the contrast. The difference between different elements in the picture becomes more obvious
and is easier to process.
There are many different techniques and methods of enhancing contrast and details in an
image [34] . Here are few examples:

• Histogram equalization (HE) [35],

• Histogram Matching [34],

• Local Enhancement [34],

• Histogram Stretching [3]

19

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.2

These are spatial domain techniques in which pixels values are manipulated to achieve the
desired enhancement. However, the image could also be first transferred in the frequency
domain by means of a Fourier transform to perform the enhancement operations on the
result. This is called frequency domain methods.

Figure 3.4 illustrates the "linear stretch" where the original values are stretched so that
they populate the whole available range. This technique is often used with x-ray images.
Indeed, when imaging high-density object, the beam is said to be attenuated and it results
in higher density areas appearing darker. Without a linear stretch, the range of value is
narrow and the resulting contrast, low which complicates their interpretation.

Adjusting brightness. Brightness refers to the overall lightness or darkness of the image.
Even if it strongly depends on the viewer visual perception, an image brightness can be
defined as the amount of energy output by a source of light relative to the source we are
comparing it to [35]. The adjustment of brightness can be obtained simply by adding (to
increase brightness) or subtracting (to decrease) a number to the whole image matrix. On
an histogram, the result is a curve that will be shifted to the left or to the right.

Thresholding. As mentioned earlier, Thresholding is a way to divide an image depending
on the content of its pixels. The threshold is the limit above (or under) which the pixels are
not retained.

Figure 3.4: A linear stretch involves identifying lower and upper bounds from the histogram
and applying a transformation to stretch this range to fill the full range [3]. The image
contrast is therefore enhanced.

20

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.3

3.2.2 Filtering

A filter is a mathematical transformation that is used to suppress and/or extract content
in images. They are mostly known under the name of digital filters. Depending on the
filter, one specific information is isolated. This can be compared to an actual coffee filter
which will let water go through as well as particles under a certain diameter but will retain
all coffee waste.

An image can either be filtered in frequency or in the spacial domain [36, 37]. For the
first one, there is an extra step that requires to transform the image into frequency domain
to then multiply it by a frequency filter function. The result is finally re-transformed into
the spatial domain. The most common function aims at eliminating some of the frequencies
from the image. Keeping only high (High-pass filter), low (Low-pass filter) or a selection of
frequency (combination of both).

The multiplication in the frequency domain corresponds to convolution in the spatial
domain. Most filters are linear and so, based on convolution. The mathematical operation
is identical.

The following are common filters (based on a list from [36]):

• Mean Filter - noise reduction (NR) using mean of neighbourhood

• Median Filter - NR using median of neighborhood

• Gaussian smoothing - NR using convolution with a Gaussian smoothing kernel

• Conservative smoothing - NR using maximum and minimum of neighborhood

• Frequency filters - high and low pass image filters, etc

• Laplacian - edge detection filter

• Unsharp filters - edge enhancement filter

Edge Filtering. Edge filtering is often cited. It is in fact achieved using a combination of
filters as noise filter (Gaussian), gradient-intensity filter and a non-maximum suppression.
The Sobel filter is used to emphasis edges. It allows to find the approximate absolute gradient
magnitude at each point in an input grayscale image using a set of two convolution kernels;
a vertical and a horizontal [3].

Colour Filtering. Colour filtering is a simple form of spacial filtering. Close to the tresh-
olding, boundaries are fixed in the color domain and only the pixels containing the right
value are kept.
It may be applied to multi-dimension channels, unlike most of the classic image processing.

21

CHAPTER 3. IMAGE PROCESSING METHODS Section 3.4

3.3 Selected methods

The aim of this work is to identify cells on pictures in order to count them automatically.
As such, it is not important to obtain a precise delimitation of the cells. This is a first
hypothesis.
A significant problem of our work is that the location of the cells is unknown. Therefore, one
of the main goal is to be able to identify the cells without an operator having to manually
indicate a starting point in each one of them. This eliminates region growing algorithms,
clustering algorithms or deformable models. The lack of labels or stability excludes classifiers
or atlas-guided approaches.

Cells can have variable size, shape, the image are multi-channels and they often vary in
intensities over the surface. In this context geometrical filters are not suitable as the cells are
not regular enough. On the other hand, Mathematical Morphology methods are well suited
but the MM methods are more adapted to binary images than to multi channels images.
Machine learning algorithm are disregarded as overlapping cells can not be handle easily by
such algorithms. Furthermore, they would request a large database which is not available.
As for edge-detections, they are not efficient on a picture with noise like pores. This will be
illustrated in Chapter 5.

As none of the methods perfectly fits our requirements, they will be combined to reach
them. Consequently, the following algorithm is proposed: the picture will be pre-processed
with a color filter step and the MM method will then be applied to the preprocessed image
to get rid of noises and identify regions of interest. The detail of mathematical morphology
is given Chapter 4. The full algorithm implemented will be presented in Chapter 5.

3.4 Conclusion

This Chapter presented a variety of methods available to perform the detection of a region
of interest. It was inspired by the article [7] that compare some of them. Most of the time,
segmenting an image includes looking at the content of its pixels and gather them with
others with a similar nature. Thresholding is quite radical and often used in combination
with other techniques. Some exploit already existing information: labels for the classifiers,
training sets for machine learning or atlas-based approaches. Region growing, clustering and
deformable models will require a starting points and therefore, a manual intervention.
Considering the advantages and disadvantages of each ones, it was decided to base the proto-
col on mathematical morphology. Combined with the use of a colour filter, an identification
of regions of interest (cells) will be possible.

22

Chapter 4

Mathematical Morphology

Mathematical morphology will be used in our cell detection protocol to get rid of noises and
identify regions of interest. In this chapter, the relationships of erosion and dilation will be
detailed as well as the tools available in the python library to perform those operations.

4.1 Algorithm

As we focus on the identification of elements composing a picture, shapes have a particular
meaning. In digital image processing, Mathematical Morphology is a tool used to investi-
gate the geometric structure. Its goals are to allow the underlying shapes in the image to be
identified in spite of imperfections such as, noise, distortions and artefacts. In other words,
it will "clean" image data.
According to [31], mathematical morphology is the natural processing approach to deal with
the machine vision recognition process. Most morphological operators consist in a combina-
tion of primary operations: dilation and erosion. For the sake of simplicity, we will consider
those operators applied on binary images only. If the input image is not a black and white
it can be converted by thresholding (for gray-level images), or more specifically in this case,
a color filter. We will also limit the analyse to 2D images.

We can represent a binary image as a grid of pixels. Most of them are white (background)
and some are black (activated pixel). This is of course depending on the convention. An
example can be found in Figure 4.1.a . We often speak of sets. The definition of sets can
also be applied to higher dimensional space but in a 2D binary image, it is simply the shapes
formed by a same color (for example, all the white points).
One of the set of points is considered as selected. It is those points that are morphologically
transformed.

Aside from the original binary image, we also need a second important type of set: the
Structuring Element (SE).

23

CHAPTER 4. MATHEMATICAL MORPHOLOGY Section 4.1

The structuring element is similar to the image (a grid of pixel in our case), but much
smaller [38] and composed of one type of pixel. It also has an origin (also called anchor
pixel). Depending on how the structuring element will affect the image, the result will be
either a dilation or an erosion. The set B in Figure 4.1 is the structuring element.

Figure 4.1: Illustration of a dilation applied on image A with Structuring Element B. This
result is the image C.

Here under, we will describe the two morphological operations of dilation and erosion.

4.1.1 Dilation

The basic effect of dilation is to gradually enlarge the boundaries of regions of foreground
pixels [39].
Dilation is the operation of combination. In other words, it combines two sets using vector
addition of set elements [31]. This operation is commutative and additive.
It is denoted as:

A⊕B = {c ∈ Z2 | c = a+ b for some a ∈ A, b ∈ B}

with ⊕ which denotes dilation and the ‘+’ defined as: 0+0=0, 0+1=1, 1+0=1 et 1+1=1

Figure 4.1 represents a dilation operation performed on a simple image of 5 x 5 pixels.
Each square with a dot representing a black pixel, others being the white pixels.
The structuring element (a 1 x 2 set) slides over the source image and will "add itself" to the
foreground (black pixels on Figure 4.1) each time its anchor pixel meets a foreground pixel
(of the source image). In Figure 4.1, the source image A is dilated using the Structuring
Element B. Image C is the result. We can notice that the pixel (0,3) has turned black. This
is the outcome of SE sliding over the image and meet a pixel in (0,2).

24

CHAPTER 4. MATHEMATICAL MORPHOLOGY Section 4.1

Figure 4.2: Union of translation of A by the elements of B: (0,0) in orange and (0,1) in green.

Figure 4.3: Result of a dilation performed on a binary image [3]. The resulting image seems
swollen. Some elements (like the legs of the horse) have merged. SE is the structuring
element.

25

CHAPTER 4. MATHEMATICAL MORPHOLOGY Section 4.1

It can also be computed as the union of translation of A by the elements of B. Here, those
elements are (0,0) and (0,1) meaning that C is the union of the source image (translation of
(0,0)) and its translation by vector (0,1) (see Figure 4.2).
After this operation, the image will appear like swollen (see Figure 4.3). Small holes will
tend to be filled and separated element will merge.

4.1.2 Erosion

Erosion has the opposite effect of dilation. The Structuring Element also slides over the
source image. But here, a foreground pixel is kept only if , once the origin meets a pixel
of the foreground, the SE fits completely in it. The subtraction of the SE is illustrated in
Figures 4.4 and 4.6. It is denoted as A	B and is defined as:

A	B = {x ∈ Z2 | for every b ∈ B, exist an a ∈ A s.t x = a− b}

Erosion can also be defined in terms of translations and intersections.

A	B = {x ∈ Z2|(B)x ⊆ A}

A	B =
⋂
b∈B

(A)−b

The notation (B)x represent the translation of matrix B by x ∈ Z2 defined as: {c ∈ Z2 | c =
a+ x for some a ∈ A}.

The second equation means that we only keep the intersection of A being translated by
vectors of B. With this specific SE (see Figure 4.4), the pixels kept are the ones that appear
in both the source image (translation of (0,0)) and its translation by vector (0,1). On eroded
images, small isolated elements will tend to disappear and surface with peaks will tend to
be smoothed. The extend of the effect depends of the structuring element.

It is important to keep in mind that erosion is NOT the inverse of dilation. In general,
successively dilating and eroding an image with the same SE does not produce a null effect.
In fact, this is the base of composite operations.

4.1.3 Opening and Closing

In practice, dilations and erosions are usually employed in pairs. The result of dilation and
erosion combination is called opening or closing depending on which is applied first. In both
cases, the aim is an elimination of specific image details smaller than the structuring element
without the global geometric distortion of unsuppressed features [31].
Closing is a dilation followed by an erosion with the same structuring element. B ◦ K =

26

CHAPTER 4. MATHEMATICAL MORPHOLOGY Section 4.1

Figure 4.4: Illustration of an erosion applied on image A with Structuring Element B. This
result is the image C.

Figure 4.5: Details of an erosion. Pixel (0,1) can be kept as the whole SE can fit in the black
area. However, pixel (0,3) will disappear because the SE go beyond the foreground set.

27

CHAPTER 4. MATHEMATICAL MORPHOLOGY Section 4.2

Figure 4.6: Result of an erosion performed on a binary image [3]. The resulting image is
smaller. Some thin elements (like the bull’s legs) disappeared. SE is the structuring element.

(B 	K)⊕K
Opening is an erosion followed by a dilation with the same structuring element. B •K =
(B ⊕K)	K

An opening have the following effects: smoothed contours, breaks narrow bridges, elim-
inates small islands. Closing also smoothes but it merges narrow gaps and removes small
holes [16].

4.2 Tools

The most popular software to analyse cells is imageJ. It is an open source image processing
program designed for scientific multidimensional images [40]. From its website, we can read
that it runs on any computer with a Java 1.8 or later virtual machine. Downloadable distri-
butions are available for Windows, Mac OS X and Linux.
This software is however not suitable for cell enumeration on a porous surface. It confuses
a cell and a pore. The aim of this thesis is not to explore ImageJ ’s features but to offer an
alternative to it.

There are many softwares to manipulate pictures in order to extract information from
them.
As we mentioned earlier, a digital picture is a matrix of values. Therefore, Matlab, the
tool specialized in matrix manipulation, is an obvious choice. And indeed, Matlab possesses
a wide toolbox for image processing. Common operation as Fourier transform, filters, or
mathematical morphology are already implemented.

28

CHAPTER 4. MATHEMATICAL MORPHOLOGY Section 4.3

The language Java also benefits from libraries to help handling arrays, matrices and pic-
tures. Python however has the advantage of simplicity and code readability. As another
major advantage, Python is free and accessible while Matlab is a professional software that
has to be purchased. Thanks to its libraries numpy , scipy or opencv (described hereunder),
image processing in Python is very similar to Matlab.

Scipy. Scipy is an open-source Python library that is used to define a scientific environ-
ment (Matlab, Scilab, R). Scipy uses tables and matrices from NumPy. Example: computes
the fast Fourier transform of ‘y’

from scipy.fftpack import fft
Number of sample points
N = 600
sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
yf = fft(y)

Numpy. Numpy is a highly optimized library for numerical operations, adding support for
large, multi-dimensional arrays and matrices and the functions to operate on these arrays.
Examples: create arrays

b = np.array([6, 7, 8]) #creates an array from a regular Python list
SE = np.ones((6,6), np.uint8) #create an 6 x 6 matrix of ones

OpenCV-Python. OpenCV-Python is the Python API of OpenCV that currently sup-
ports a wide variety of programming languages. OpenCV deals with algorithms related to
Computer Vision and Machine Learning. It continues to be expanded and a rich documen-
tation and tutorials can be found on the openCV-python tutorial website [41].
Examples: read in gray scale and dilate an image

img = cv2.imread(path_to_image, 0)
res = cv2.dilate(img, SE , iterations=1)

res is the result of a dilation of the image ‘img’ with the structuring element SE.

The combination of the three libraries is considered as an appropriate set-up for fast
prototyping of computer vision problems.

29

CHAPTER 4. MATHEMATICAL MORPHOLOGY Section 4.3

Figure 4.7: Mathmatical Morphology using MATLAB [16]. Processing using spatial filtering,
mathematical morphology and segmentation.

4.3 Conclusion

This chapter detailed the mathematical morphology operations of erosion and dilation on bi-
nary images. It defined the Structuring Element and how it affects the region of foreground
pixels. Dilation have an effect that can be expressed as the union of a translation. The
resulting image appears swollen. Erosion is the intersection of translations and it tends to
make small isolated elements disappear.

The content of this chapter is inspired from the Medical Imaging course of Professors
Lee, Janssens and Macq [3] and Mathematical morphology course of Professor Manzanera
[42].

30

Chapter 5

Development: Algorithm

The aim of this thesis is to propose a solution to design a tool helping biologists to count cells
from pictures taken under a microscope. This can actually be divided into two sub-problems.

1. The choice of the algorithm processing the image

2. The development of a user interface

This chapter goes through the algorithm development and the next one details the user
interface.

5.1 Development of the protocol

As the aim of the thesis is to enumerate cells on a specific type of pictures, the algorithm
should identify them and show them to the user. The software would then deliver an ap-
proximation of the total number.
From a discussion with Marie Fourrez from UNamur, who is familiar with the experiments
with melanoma cells, the ideal error threshold should be of 1 %. If it is a little ambitious, it
should at least not exceed 5 %.

5.1.1 Tumour cells on porous membranes

The Faculty of Medicine provided pictures of cell colonies grown on porous membranes.
Those pictures are especially large. To ease their processing they have been divided. The
sample presented on Figure 5.1 was used for the development of the algorithm whereas the
others have been kept for validation.
As part of their experiments, biologists need to count all cells that successfully crossed the

31

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.1

porous membrane. This means the ones for which the nucleus is visible.

Currently, they use a manual counting, picture by picture, on a computer. Using GIMP,
they put a red dot on each counted cell which is repetitive and tiresome.

Figure 5.1: Original pictures of tumorous cells grown on a porous membrane are too large
to be analysed as one block. Fraction of the complete picture is processed at the time. This
sample has been used for the development of the detection algorithm.

As the problem is the detection of elements, detecting their boundaries could be fine
solution. Several edge detection filters exists. We tried the direct application of edges
detection on an untouched original picture. The results (presented in Subsection 5.1.2) were
not conclusive as the cells boundaries are not well defined and pores are too visible.

Before counting the cells, the first stage is therefore to get rid of the background. One
detail that differentiates cells from the rest of the image is their colour. It ranges in a spe-
cific purple palette. By filtering the image based on its colour, we can eliminate most of the
background. Pores, however, might stay as their contours are darker. Compared to cells,
they are thin. Combining erosion and dilation on the mask obtained with the color filter

32

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.1

will remove small isolated elements, such as pores.

The second stage is the discrimination of cells even if they might might come into contact
each other. We apply the same steps as before but with a more restricted colour range so
that only the nucleoli are preserved. There might be several nucleoli in one nucleolus (hence
in one cell). The dilation will help to merge the closest elements together so that they will be
counted as one. Once we obtain the black and white mask indicating the regions of interest,
the last step is to count them.

The details of the resulting protocol are presented in Section 5.2. Each step was tested
separately to study the effect of the variation of their parameters. Section 5.6 compare the
cells detected using this protocol with the ones detected manually.

5.1.2 Edges Detection

As the problem is the detection of elements, detecting their boundaries could be fine solu-
tion. Several edge detection filters exists. We tried the direct application of edges detection
on an untouched original picture with the ’Canny’ method of openCV.
The method used is edges = cv2.Canny(img,100,200). The first argument is a single-
channel 8-bit input image, the two others are two thresholds for the hysteresis procedure.
The output is an edge map. More details are available on openCV website [41].

Figure 5.2: Direct application of an edge detection filter (open CV - Canny) on the raw
picture. Figure 5.3 shows a close-up.

The Canny Edge Detector can be divided into four steps [41]:

1. A Gaussian filter: smooth the image and remove the noise

2. A procedure close to Sobel filter to find the intensity gradient in the image

3. Suppression of non-maximum pixels

4. Hysteresis using two thresholds.

33

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.2

Figure 5.3: Zoom of the direct application of an edge detection filter. Pores appears clearly
(red arrow). The image is too noisy, there is too much information.

The result was not conclusive. There is way too much noise. Indeed, pores are detected
as well as any other biological noise (see Figure 5.3).

5.2 Protocol

The protocol used in this thesis is the following:

1. color filter

2. erosion of the mask

3. dilation of the mask (= opening)

4. second filter

5. potential additional MM

6. detection of groups from the resulting mask

We begin with a color filter. Indeed, cells, when observed under a microscope are usually
dyed so that they become more recognizable. This means that they adopt a distinctive hue.
By filtering the image to keep this range of colour, we can eliminate the background.
This is a very important step because it reduces the search field. The output of this step
is a binary mask that is composed of white pixels where the original image meets the criteria.

34

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.3

Despite this first selection that removes a big part of the image, there are still small
pieces in the mask that are definitely not cells. Indeed, on the original image, cells stand
on a porous membrane. And those pores are dark and tends to be included into the first
selection. This is why the mask then undergoes an erosion. This operation aims to delete all
elements too small to possibly be a cell. Then, to restore the initial volume of the selection,
a dilation is applied. If both are performed with the same structuring element, this can be
considered as an opening.

Now that the mask should be free of pores, there is still an other problem to deal with.
Cells are likely to be really close, if not superimposed. Distinguishing their exact boundaries
is a real challenge but there is one thing that each individual cell possess: a nucleus.
This nucleus adopt a darked hue but still is not contrasted enough. In Figure 5.1, we can
see that each of those nucleus has even darker spot in them. We make the hypothesis that
those really dark and small dots are nucleoli, condensed DNA. The second hypothesis is that
if they are close enough, they are part of one nucleus. The manual identification in Figure
5.4 reinforces those hypothesis.

The second filter aims at finding each nucleolus among the sub-selection. Then, an ad-
ditional dilation on the resulting mask will merge very close elements so that they represent
a single entity, hence a single cell. An other erosion can also be performed beforehand to
smooth the result.

After some research, it appeared that a similar protocol was recommended by [8] to elim-
inate noise.
"After thresholding the image, you’ll see small white isolated objects here and there. It may
be because of noises in the image or the actual small objects which have the same color as
our main object. These unnecessary small white patches can be eliminated by applying mor-
phological opening."

Visualisation of the result

At each stage of the treatment, it is very important that the user is able to visualise the
result of the step he has done relatively to the initial image.
This is why a script has been developed to obtain a clear superimposition of each processing.
This way, it is easier to notice early if a cell is being excluded due to a wrong parameter
or if too many ’noise elements’ are still included in the selection. In Figure 5.5a, the area
that are part of the selection are highlighted by their HSV color. Cells appear pink and the
darker purple becomes green. To get this result, we call showMask() with the background
and the mask to superimpose. There is also an optional argument: highlight. When it is
at False, the mask will be represented in an uniform red color instead of HSV colors.

35

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.3

Figure 5.4: Manual identification of cells based on indications of Marie Fourrez (red ones)
and the hypothesis that each cell can be identify by its nucleus which is a darker and round
element in the cell (blue ones). The manual counting gives 54 cells.

def showMask(background, mask, highlight=False):
Now create inverse mask
mask_inv = cv2.bitwise_not(mask)
create color mask

if highlight:
imgHighlight = cv2.cvtColor(background, cv2.COLOR_BGR2HSV)
colourTag = imgHighlight

else:
height, width = mask.shape
blank_image = np.zeros((height, width, 3), np.uint8)
blank_image[np.where((blank_image == [0, 0, 0]).all(axis=2))] = [22, 37, 234]
colourTag = blank_image

superimposition
The two images to add (bitwise)
img1 = background.copy()
img2 = cv2.bitwise_and(colourTag, colourTag, mask=mask)
cv2.imshow(’mask2’,img2)
If I want to put logo on top-left corner, I create a ROI
rows, cols, _channel = img2.shape
roi = img1[0:rows, 0:cols]

Now black-out the area of logo in ROI
img1_bg = cv2.bitwise_and(img1, img1, mask=mask_inv)
Take only region of logo from logo image.
img2_fg = cv2.bitwise_and(img2, img2, mask=mask)
Put logo in ROI and modify the main image
dst = cv2.add(img1_bg, img2_fg)
img1[0:rows, 0:cols] = dst
return img1

36

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.3

5.3 Filter the color range

The first step is the elimination of the background. There is a number of different elements
that are not relevant in the cell recognition.

• The background, which is the lighter

• The pores, very small dark circles

• Organic noise, slightly purples elements that may have detached from cells or being
part of the nutritive environment

All elements listed above could be removed without risking to loose a cell in the process.
For the sake of simplicity, we consider that they are the only external elements. The micro-
scope edges shall not be present on pictures.
The image is composed of a rather narrow color palette. And cells, due to the dye used,
are contained in a purple gradient. By using a classic color filter, it should be possible to
exclude some non-relevant elements from the image that shall be analysed.

This is done using the nucleusIsolation.py script (see Figure A.4 in appendices). It
works as follows.
OpenCV usually captures images and videos in 8-bit, unsigned integer, BGR format. This
means that the channels are not in the same order as in the classic RGB colour system.
HSV color space is the most suitable color space for color based image segmentation [8]. The
original image is therefore loaded and then converted to HSV.

A mask is created using cv2.inRange(imgHSV, min_purple, max_purple)1. This out-
put is a binary matrix. Similarly to a classic thresholding (but applied to a multi-channel
image) the pixels with HSV value in the range are replaced by 1 and the other becomes 0.
The mask is more easily modifiable than the original picture and being binary, it is more
adapted for mathematical morphology methods (see Figure 5.6. In order to visualise the
extend of the selection, it is better to superimpose the result on the original picture. This is
shown in Figure 5.5a.

Several color ranges have been tested to find the one which keeps all the identified nucleus
without keeping to much of the background. The observations are in the following subsection.

5.3.1 Colour identification

The differences between RGB and HSV colour system are presented in Section 2.1.4. To
make sure that cells and the background have a significant color difference and in order to

1cv2 is for openCV

37

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.4

lower limit upper limit

1 [130,50,200] [145,255,255] nucleolus are excluded from the
selection

2 [125,50,0] [145, 200, 255] a fraction of nucleolus are ex-
cluded from the selection

3 [90,34,0] [145, 255, 255] complete nucleus incorporated in
the selection

4 [125,50,0] [145, 255, 255] complete nucleus incorporated in
the selection + more restricted

5 [125,96,68] [145,255,255] selection restricted to isolate only
nucleus

6 [65,106,0] [160, 255, 163] selection restricted to isolate only
nucleus

Table 5.1: Observation of different filter ranges on the source image.

successfully segment objects using color based methods, we convert the image in HSV. Then,
it is necessary to define the range of color that will be kept.

There are a lot of websites where one can find RGB or HSV ’color pickers’ with which it
is easy to obtain the colour code. However, in OpenCV, value range for ’hue’, ’saturation’
and ’value’ are respectively 0-179, 0-255 and 0-255 [8] instead of the classic H = 0-360, S =
0-100 and V = 0-100, as for Gimp. This means that the converted image will not appear in
the same hue than the original. A conversion has to be made.

Different values have been tested in order to find the range which would include all the
cells and exclude the maximum ‘noise’ element at the same time. In Figures 5.5a and 5.5b,
we can see the comparison of two results. Surprisingly, the criteria which has the most
impact is the saturation. But incorrectly calibrated, the value can also impact the quality
of the selection. Figure 5.5b shows an example where nucleoli end up excluded from the
selection due to a too narrow value range. According to [8], the hue for purple is supposed
to be between 130 and 160 on a range of 179 (see Section 2.1.4). However, with tests at a
constant saturation and value, it appears that the ideal hue was between 90 and 145. This
is strongly dependant of the processed picture.

Table 5.1 gathers some significant observations. From there, the filters identified to be
the more adequate for samples of Figure 5.1 are the number 4, for the first restriction, and
number 6, for the nucleoli isolation.

38

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.4

(a) Filter with range [125,50,0] - [145,255,255] (b) Filter with range [130,50,200] - [145,255,255]

Figure 5.5: Comparison of two different range of color. On the first one we can see that
nuclei and nucleoli (highlighted green in HSV) are still included in the selection. The second
one has a narrow value range. The consequence is that the nucleoli are excluded.

5.4 Mathematical morphology

After the first processing, there are still ’noise’ elements in the image. Indeed, pores have
a dark colour that is included in the color range. This can be resolved by some operations
on the binary mask. If pores are selected, they have a really thin shape compared to cells.
Mathematical morphology will help to eliminate them from the mask.
From the technical point of view, note that erosion and dilation can be obtained with the
script mathMorpho.py (see Figure A.5 in appendices). Several Structuring Element sizes
have been tested. This is described in the following subsections.

Figure 5.6: Transformation of the binary mask.
a) mask after the colour filter, b) mask after erosion, c) mask after dilation

5.4.1 Erosion

An erosion eliminates the smallest elements from the binary mask. All depends on the size
of the structuring element. It shall not be to small or the parasitic element will stay. But a

39

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.4

SE observations

[5,5] and smaller Several pores are still part of the selection
[6,6] Most pores are excluded from selection

[7,7] - [9,9] Pores are excluded, cells space start to be reduced
[10,10] The smallest cells start to disappear

from [20,20] Most cells are excluded from the selection

Table 5.2: Observations for an erosion applied on the mask resulting from a colour filter of
range [125,50,0]-[145, 255, 255]

too big SE could start to erase the cell from the selection.

The first intuition was to use round structuring elements to match the cell natural shape.
However, this was not possible with openCV. The structuring element (also called kernel
in openCV) was therefore defined as a square which is the closest. For the programming,
erosion is obtained with the following lines:

kernel = np.ones((SE, SE), np.uint8)
mask_eroded = cv2.erode(mask, kernel, iterations=1)

The kernel is created using Numpy. It is a square element and SE is here the size of it. This
kernel is then used by openCV to erode the mask (binary file) using the ’erode’ method.
The output has the same dimensions as the input ‘mask’.

We compared several square structuring elements on each mask resulting from previously
mentioned color filters (see Table 5.1). Table 5.2 contains the results for the 4th filter.

The results depend a lot of the colour filter. There is a tradeoff to make to make sure
that all pores are eliminated from the selection and at the same time, that the cells are not
excluded from the selection. The best combination observed are a restrictive colour filter
(filter 4 from Table 5.1) with a SE of size 9 or a less restrictive filter (filter 3 from Table 5.1)
with a SE of size 10. In the first case, it is necessary to perform a dilation before going
further in order to regain space around cells in the selection.

5.4.2 Dilation

Dilation is done thereafter to restore selection (fill up the holes) and avoid to separate one
cell into several elements. The combination of erosion and dilation is similar to what is
called an opening except that the structuring element is not necessary the same size. An
illustration of the effect of dilation can be found in Figure 5.7. For the programming, dilation
is obtained with the following lines:

40

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.5

SE erosion SE dilation observations
[9,9] [4,4] and smaller Holes in the cell selection are still there
[9,9] [6,6] Small holes in the cell selection are still

present
[9,9] [8,8] All cell selections are filled up
[9,9] from [17,17] Separate shapes start to merge and

some pores are reintegrated to the se-
lection

Table 5.3: Observations for an erosion followed by dilations applied on the mask resulting
from a colour filter of range [125,50,0]-[145, 255, 255]

kernel = np.ones((SE, SE), np.uint8)
mask_dilated = cv2.dilate(mask, kernel, iterations=1)

The kernel is, once again, a square element of size SE created using Numpy. This kernel is
then used by openCV to dilate the mask (binary file) using the ’dilate’ method. The output
has the same dimensions as the input ‘mask’.

Different SE have been tested. Pertinent observations are gathered in Table 5.3. For the
first phase where the aim is to get rid of pore while making sure that no cells is excluded, it
is important to choose a dilation with a SE of minimum 8 x 8. A larger SE is possible but
may not be necessary. It might instead increased the risk of finding undesired elements back
into the selection.
For the second stage (see Subsection 5.4.3), where only element left are supposed to be
nucleoli, the aim is to merge the closest together. A SE of 12 is suitable. A larger SE might
merge nucleoli from different cells together.

5.4.3 Finding nucleoli

In second stage, undesired elements have been eliminated, a new selection based on color
can be done. It is conceived to be more restrictive than first stage so that we only keep the
nucleoli i.e. dark purple elements present in the selection. Figure 5.8 shows them highlighted
in green.

From this second restriction, nucleoli tends to be isolated from each other. However,
there might be more than one nucleolus is a simple cell. To avoid counting them as multiple
entities, we use dilation one more time. The aim is to fuse very close elements that are more
likely to be part of one cell (see Figure 5.8).

5.5 Counting

Now that we have a binary mask that locates the cells nuclei, they can be counted. In binary
images, finding contours is way easier. This step can be found in the script enumeration.py

41

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.5

Figure 5.7: Effect of a dilation with a SE size 8 on a previously eroded (SE size 7) selection.

Figure 5.8: Application of a second filter on a restricted picture. The pores are out of the
picture, which means that the only dark purple elements left are likely to be nucleoli. Here
the filter applied has the following boundaries: [65,106,0] - [160, 255, 163]. Then an erosion
with SE of size 4 and a dilation with SE of size 12 have been applied to merge close nucleoli
together.

42

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.6

(see Figure A.6inspired from [43]. It contains the following steps.

1. Simplification of the image using conversion to gray scale and threshold.
Not necessary as we already have the mask that is a binary image.

2. Identification of contours is done with the following method.

contours, hierarchy = cv2.findContours(img2, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

findContours() is one of the most frequently used OpenCV algorithms to segment objects
that uses Green’s theorem and image moments. There are three arguments. The first one
is source image, second is contour retrieval mode, third is contour approximation method.
The outputs are a Python list of all the contours2 in the image and their hierarchy. It works
best on a pre-processed image. It is often applied after an edge detection filter could do but
any binary images can be processed. From there, we can directly draw them on the original
image to show what has been detected as a cell using:

cv2.drawContours(background,contours,-1,(0,255,0),3)

For this method we provide the source image (background), a Python list containing con-
tours. The third argument define if you want to draw an individual contour (then this is the
contour index) or draw all contours (then pass -1). The two last arguments are the color
and the thickness.

3. For each contour which has an area greater than a given factor (’fidelity criteria’), the
contour is counted, converted to a rectangle and added to a new list.

br = []
for i in xrange(len(c)):
if h[0][i][3] == ROOT_NODE and cv2.contourArea(c[i]) >= fidelityRange:
totalContours += 1
approx = cv2.approxPolyDP(c[i], 3, True)
br.append(cv2.boundingRect(approx))

4. Every rectangle from the list is added to the original image to frame the cells.

for b in br:
cv2.rectangle(imgCopy, (b[0], b[1]), (b[0] + b[2], b[1] + b[3]), (255, 255, 0), 3)
cv2.imshow(’image’,imgCopy)
cv2.waitKey(0)
print ’Total contours: ’, totalContours

The fidelity criteria is an additional means to control what will be counted as a cell. Its
impact is illustrated in Figures 5.9a and 5.9b. Setting a minimum area prevents some tiny
residual noise to be added to the total. The exact boundaries of cells are not important so
we can approximate their contour by a rectangle. It will be useful for displaying which cell
has been counted.

2a Numpy array of (x,y) coordinates of boundary points of the object

43

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.6

(a) (b)

Figure 5.9: Application of the cell enumeration on the pre-processed masks. In Figure a)
(fidelity fixed at 200), there is still some non-cell elements that are counted whereas in Figure
b) (fidelity fixed at 600), we can see that there are cells that are not counted.

5.6 Comparison with the expected result

Based on the initial hypothesis, the cells are supposed to be detected as depicted in Figure 5.4.
This cell identification does not pretend to be the right one but was necessary in order to
compare the results obtained with our approach and the "reality".
The selection in Figure 5.10 has been obtained with the following processing. The images
resulting from each steps for this set of parameters are shown in appendices.

1. Filter 4: [125,50,0]-[145,255,255] (Figure A.7)

2. Erosion with SE size 9 (Figure A.8)

3. Dilation with SE size 8 (Figure A.9)

4. Filter 6: [65,106,0]-[160,255,163] (Figure A.10)

5. Erosion with SE size 4 (Figure A.11)

6. Dilation with SE size 10 (Figure A.12)

The final number of cell counted is 55. This is 1.85 % more than the manual identification
of Figure 5.4.
This very small difference seems encouraging but it is a little bit misleading. Even if most of
the detected elements are indeed cells, there are errors. Unfortunately some cells are missed
out (Figure 5.11.a), some are fractioned and counted several times (Figure 5.11.b) and there
are still elements that are counted as cells even if they are not. This happens with pores
that are under the cells and therefore, are protected from erosion (Figure 5.11.c). In this
result, the number of non detected cells is 8 out of 54 manually counted in Figure 5.4. This
means a little more than a 14 % false negative. This is more than the maximum tolerance
of 5 %. We should however keep in mind that in the end, what matters the most is the ratio
between the pre and post-treatment cells. And if this error percentage is constant, it will

44

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.7

not influence the final ratio.

Figure 5.10: Cell count obtained with the optimized processing: filter 4, erosion of 9 and
dilation of 8, followed by filter 6, erosion of 4 and dilation of 10. The number of cells reported
is 55.

To address the accuracy problem, we added a functionality that enables a manual cor-
rection of the result by the user. It is explained as part of the user interface development in
Chapter 6.

5.7 Conclusion

In this chapter, we tested the chosen protocol. First a filter that restrict the selection to
potential cells. An erosion is then applied to remove noise elements, including pores and
a dilation helps to restore the selection. This treatment is applied a second time with a
more restrictive colour filter. This time, the aim is to isolate nucleoli. The mathematical
morphology is then used to merge together the closest element to avoid them to be counted
as several cells. The cells are then counted using the resulting mask.

An optimized algorithm has been proposed. On the output, the number of pores excluded
is close to 99 %. However, there are still errors like cells missed out or counted as several
ones. This can however be adjusted using the different parameters.

45

CHAPTER 5. DEVELOPMENT: ALGORITHM Section 5.7

Figure 5.11: Illustration of error that can happen.
a) a cell that remains unselected, b) cell fractioned, c) pore under a cell is being counted, d)
pores outside cells are ignored

46

Chapter 6

Development: Graphic user interface

The second objective of this thesis is to propose a way of using the previously developed
algorithm. We will go through requirements of a graphical user interface (GUI) and then
compare several options.
Choosing the appropriate support for the cell counting application is not an evident task.
As it is not possible to test all possible framework exhaustively, we chose to investigate three
solution: a raw Python script, a Python framework for GUI, and a web based application.

6.1 Requirements of a GUI

In order to offer to biologists the opportunity to manipulate their images and use separately
the different tools, the interface must meet several essential requirements:

• Load and display the original image

• Apply filters on the original image and visualise the result

• Compare the original and the result

• Enter parameters to tune processing

• Obtain the number of cells detected

• Apply a default processing

• Should be applicable to at least subsection of the complete picture ("zoom")

From there, an exploration sketch has been made (see Figure 6.1). There are also re-
quirements that are not necessary to a first functional version but would greatly improve the
user experience. They are called secondary requirements:

• Add as many filters as desired

47

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.2

• Decide the order of filters

• Sample colours directly on the picture

• Manually cancel or add cell on the result of detection.

• Memorize each step and allow ‘undo’ action

• Automatic segmentation of the full picture and ’intelligent processing’

Figure 6.1: First exploration sketch. The Cell Counting application should display the
original image and the result of processing. From that, the image with detected cells can be
displayed. A resume of all the steps could be also available.

6.2 Choice of framework

Aside from the solution where the user runs directly a Python script with several parameters,
we need to build an actual graphic interface. Many solutions are available. The choice of a
framework is a crucial decision.

48

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.2

Ideally, the framework should allow the following characteristics:

• dynamic interface: once a processing has been applied on a picture, the result shall
be directly displayed.

• easily accessible: the solution shall be accessible to the general public. Without
additional installation.

• applicable to most computer configurations: Linux, Mac or Windows

• compatible with Python: the image processing is done in Python. The communi-
cation shall be possible between front-end and back-end.

Aside from that, there are also functionality that are required:

• loading an image

• applying processing to an image

• providing parameters as input for the processing

• displaying the original image and the result of processing

Frameworks offer a structure for application development. They cut the development
time by automating the implementation of common solutions. Python offers a huge number
of options to provide graphic interfaces. The ‘python wiki’ lists not less than 36 cross
platform frameworks, 7 platform-specific frameworks and 26 GUI design tools and IDE.
Platform-specific frameworks, like Ocean or MacPython, were directly excluded for both
usability and development reasons. It was not possible to compare all of the remaining
possibilities, therefore, based on characteristics available online and existing comparative
evaluations, one solution has been selected and compared to a web-based REST solution.
A web-based application is any program that is accessed over a network connection using
HTTP, rather than existing within a device’s memory [44]. It has the advantage of being
easily accessible. Indeed web-based applications often run inside a web browser.

6.2.1 Python GUI framework

The selected Python GUI framework is appJar. Designed to run on as many versions of
Python as possible, appJar is intended to be simple. Unlike PyQt, it is free. Few lines are
enough to start a basic interface. Moreover, tutorials are available at http://appjar.info/.

6.2.2 Web based application

A web based interface constitutes a good way to set an easily accessible application. This
is a popular solution which allows a lot of customisation of the graphic interface. However,
this is also a much more time consuming solution regarding developments.

49

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.2

Among all of those frameworks, a lot of them are quite limited in terms of functionality.
One essential feature is a good image manipulation toolbox as the aim of the software is to
analyse and dynamically manipulate images.
The size and the complexity of the project is another non negligible aspect. As the ap-
plication can stay small and simple, and as the time to develop was limited to months, a
micro-framework could be considered. It is suitable for a "proof-of-concept" solution.

For this master thesis, the development platform selected for the front end is Angular.
As for the background, preference was given to a python server as the image processing
was entirely done in this language. Django, Pyramid or TurboGears are called Full-Stack
frameworks. They are suitable when developing a large system packed with features and
requirements but bring a set of limitations.
The most famous micro-frameworks are Flask, Bottle and CherryPy. If the last one is open-
source, Flask present many qualities to help building a solid web application and adapt to
developer’s need. Bottle implements everything in a single source file. It limits dependencies
and is more appropriate for prototyping.
It is Flask that has been selected.

Angular

Angular is a web app framework. It has been developed by Google and has the advantage
of being open-source (over two thousands contributors at the time of Angular 2). It is what
we can call a “client side” framework. It will be used to dynamically handle the graphic
interface in a way that is independent from the functionalities and the server language.

Angular-enriched HTML and JavaScript offers features that make it easier to implement
an application with complex requirements. It is especially adapted for applications that
involve collecting data from forms and process those data.
Even if it is really powerful, Angular is not the most simple or easy-to-use framework. It
takes some time to get a grasp on it but once this is done, developers can obtain robust and
clean results in a small amount of code [45].

50

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.3

Flask

Flask is a python microframework. Like Django, it is used to develop solid web applications
but is focused on providing a functional and concise core. If Django is more adapted to
develop a long-term end product, Flask is considered much more lightweight and experience
focused [46]. It is suitable for working application from the ground up in a short amount of
time which is the description of the application developed in this thesis.

A very complete comparison of Python and Django made by Shamikh Hossain, CS Re-
search Assistant at Duke University, and Michael Yousrie, Python/PHP Full Stack Web
Developer [46] sums up the main arguments in favour of Flask.:

• written in python

• comes with the very basic minimum required elements to get a web app up and running
as fast as possible

• requires less configuration than Django

• does not force a specific structure

Flask is available under the BSD license 1. It does not depend on the front end technology
and provide useful out-of-the-box feature like:

• built-in development server and a fast debugger

• HTTP request handling

• RESTful request dispatching

• integrated support for unit testing

6.3 Implementation

6.3.1 Python with no GUI

The first and the simplest solution is to have no graphical user interface.
The functions are gathered into a package, CellsCountPack. The user has to run a method
to process its image.
The parameters are the source image path, the limits for the color filter and if necessary, the
size of the structuring element for erosion and dilation. The following methods are offered:
restrictSelection(imgSourcePath,min color, max color, SE erosion, SE dilation)
restrictAndCount((imgSourcePath,min color, max color, SE erosion, SE dilation,
fidelity)

1family of permissive free software licenses, imposing minimal restrictions on the use and redistribution
of covered software [47]

51

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.3

The first one returns a restricted version of the picture while the second uses the computed
mask to count the cells. It displays the number of cells and creates an image with the framed
cells. There is also a version with ’viewer’ which allow the user to find the lower and upper
colour limits by trying dynamically on the image. A screen shot can be found in Figure 6.2.

Figure 6.2: OpendCV - python viewer. It allows the user to directly visualise the results of
a color range in the color filter.

As the results of the algorithm is not always perfect, an additional tools has been im-
plemented. When using the restricAndCount() method, the user will have the choice to
correct the detected cells. He can add or delete frames like the ones on Figure 5.10.

The advantages of a raw Python script are:

• It is quickly implemented

• The code is accessible meaning that it can be adapted

• More flexible: the user has a whole library that he can use as he wants.

• Other Python tools can easily be integrated. openCV display feature can be used
without restriction.

The disadvantages of a raw Python script are:

• It is less intuitive

52

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.3

• It requires coding skills in order to use it right

• Code accessible means that it could be altered

• It requires a solid documentation

CellsCountMathods.py must be parametrized directly in those lines:

HOW TO USE THIS SCRIPT
Enter the path to your image in the image_path variable
Enter the parameters for the first restriction:
color range limits, SE for erosion, SE for dilation
Enter the parameters for the second restriction and counting:
color range limits, SE for erosion, SE for dilation (and fidelity)
You can configure the name for the saved result (imwrite)
run the script. Pictures appears for the different steps.
Click any key to continue.
when the detection screen appear, you can rectify the detected cells.
Draw a frame around the cells that you want to add + click ’s’ to save them
Click on the upper left corner of frames you want to delete + click ’d’
When you’re happy with the result, press ’escape’

image_path = directory + ’/TargetCells.png’
low_limit1 = [125,50,0]
up_limit1 = [145,255,255]
SE_erosion1 = 5
SE_dilation1 = 8
low_limit2 = [65,106,0]
up_limit2 = [160,255,163]
SE_erosion2 = 2
SE_dilation2 = 12
fidelity_factor = 200

if os.path.exists(image_path) == False:
print "PATH DOES NOT EXIST"

orig_image = cv2.imread(image_path)
mask = restrictSelection(orig_image,low_limit1, up_limit1,SE_erosion1,SE_dilation1)
res = cv2.bitwise_and(orig_image, orig_image, mask=mask)
#restrictAndCount(directory + ’/F6_E10_D6.png’,[65,106,0], [160,255,163],4,12,210,orig)
cell_detection, cell_number = restrictAndCount(res,low_limit2, up_limit2,SE_erosion2,
SE_dilation2,fidelity_factor,orig_image)
cv2.imwrite(’F1E5D8_F6E2D12_200.png’, cell_detection)

6.3.2 Python with appJar

A first attempt has been done using appJar as a graphical user interface. appJar provides
quick results in minimum time. Useful methods are already present as for the image up-
loader that is available with the openBox(imag_ label, default_ location, extension_
tuple) method (see Figure 6.4).

However, it also suffers from its simplification. The framework was developed for educa-
tional purpose and it is meant to hide away the complexity. In such a way that we end up
quickly stuck. Images can be scaled up or down (zoomImage("img", -2) in Figure 6.3) but
their exact relative position is not customisable.

53

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.3

app = gui("Login")
app.setResizable(canResize=True)

app.addLabel("lab1","Loading Window")
app.setLabelBg("lab1", "green")
app.setLabelFg("lab1", "white")
app.setFont(16)

app.addLabel("l1", "Load your cell image")
app.addButton("Open", openImg)

app.addImage("img", "TargetCells.png")
app.zoomImage("img", -2)

app.addButton("Exit", exit)

app.go()

Figure 6.3: It takes only few lines to create a window using appJar. In this extract, we add
a title, a label, a button to open a picture and a space to place that picture.

def exit():
app.stop()

def openImg():
global file
file = app.openBox("Images", "/home/arianelit/Downloads/", [(’images’, ’*.gif’),
(’images’, ’*.png’), (’images’, ’*.jpg’),
(’images’, ’*.jpeg’)])
app.setImage("img", file)

Figure 6.4: Definition of buttons’ functionalities. openImg is the uploader. We use open-
Box() to select the find the file.

54

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.3

The advantage of a python GUI is that at the end, only one language is used and it is less
likely to have communication problems between front-end and back-end. An attempt has
been made to directly include an openCV window into the interface but it was not really
stable.
Figure 6.5 shows an example of appJar layout. Apart from colours, the different elements
are not customizable.

The advantages of appJar are:

• quick handling: appJar is simple and intuitive

• code in python: this mean that it can directly communicate with the image processing
code

• openCV windows can be lauched from the gui

• functional

The disadvantages of appJar are:

• poor image management: appJar does not offer many option for image display

• very slow for any other extension than .giff and unstable

• the layout is not much customizable due to its educational purpose

6.3.3 Flask and Angular

The solution of an Angular front-end with a Python server is the one that has been the most
explored.
Angular has a steep learning curve. This means that even for what seemed basic features, a
lot of researches were required. Issues encountered and their resolution are presented in the
following sections.
Thanks to time and research, it was possible to create a functional prototype. It allows to
load an image and successively apply color filters, erosions and dilations on it. When the
processing is fine to the user, he can click on a last button to receive the original picture
with cells framed and their estimated number.
Very little time was left for the aesthetic aspects. However, angular works with HTML,
the standard mark-up language for creating web pages. HTML is well documented. The
customization of the layout offers a lot of possibilities.

In the following subsection, key barriers to the development of an Angular front-end are
explained as well as the solutions proposed to address them.

55

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.3

Figure 6.5: First result of an appJar interface. Application of a color filter. The design are
poor and the elements disposition is not very flexible.

56

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.3

Figure 6.6: Extract from one screen of the application with a Angular front-end. There is an
upload section. Colour filter is on the up right and the different results are displayed below.

Load an image

The first crucial point was to be able to load the image which will be processed. Surprisingly,
unlike appJar which has a one-line-code solution, Angular has no ready-to-use solution for
such a thing. There is no embedded solutions but the angular community offers several pos-
sibility to be able to upload files. Some are difficult to apply to a Flask-Angular combination.
Since a basic file uploader was enough, the solution selected is angular-file-uploader [48]
which is a module from kzrfaisal.github.io last updated in July 2018. It is compatible with
Angular 2/4/5 and 6 and can be installed using ’npm i angular-file-uploader’2. Com-
pared to the other solutions, it is easy to install with only a little configuration. This module
will upload the image to an api url. The server side must therefore be configured to receive
the image and save it. On the Flask side, an @app.route(’/uploader’, methods=[’GET’,
’POST’]) is created with a function upload_files(). The file is retrieved using ’request’ and
saved to a defined folder.
It is important to note that it is still the responsibility of the user to make sure that the file
does not have a reserved name. At this stage, it is also possible to refuse a file if it is not
one of the expected file extensions. But since this can be handled on the Angular side, this
is not mandatory.

Display Images

Angular provides ways to display images. Usually, it is recommended to keep static resources
in the Angular folder so that it would be easier to package it later for deployment. However,
the cellCounting application needs to process images and then display the result. This means
that the display needs to be dynamically updated with new images. If we want to avoid

2with Angular CLI

57

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.3

overwriting the images, different names might be used.

One solution to that problem was to define the path to image as a concatenation of
strings: a root path and the result name. This way, each time the result name is updated,
the result emplacement points to another image.

Local storage

Most of the storage is done through the server which itself saves the images locally on the
computer. However, this is not enough to guarantee a smooth experience to the user. In-
deed, Angular loses its local variable at each reload (which can happen often) and the user
needs to trigger a request to get the information (like the image path) back and make that
Angular can display it.

To fix that problem, we therefore need to add a kind of “long-term memory” for the
front-end. So that it can recall the recent information at least the time of a session.

One solution is a “LocalStorage”. The module angular-webstorage-service is an An-
gular module that gives access to the browsers local storage [49]. By using its feature, it is
possible to store information, as the last image name received, into the session. This way,
even if the page reloads, it can display the right image. If the session ends (page closed), the
information is cleared.

Flexibility

In the conception of the GUI, flexibility was also considered. This means that it should be
possible to come back and cancel an action to rectify the result. This means that the simple
solution of overwriting a single ’result file’ was not satisfactory. To allow a roll back, each
step needs to be saved with a different name.

The advantages of an Angular front-end are:

• Separation of concerns back-end front-end

• Maintainability

• Component-based architecture that provides a higher quality of code

• Cleaner code (compared to javaScript alone)

• Great possibilities of layout customization

• Run on browsers

• Higher scalability

The disadvantages of an Angular front-end are:

58

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.4

• No dynamic processing: the processing of an image happens in the server. The user
cannot interact directly with the image. i.e. using openCV display

• Steep learning curve: it takes time and research to be able to obtain a functional
prototype.

• Verbose and complex

• Not the best for a short term "proof-of-concept": Angular is a strong framework with
a lot of features but it is too much for a "proof-of-concept"

6.4 Conclusion

Choosing the appropriate support for the cell counting application is not an evident task.
As it is not possible to test all possible framework exhaustively, we chose to investigate three
solutions. The first one is to gather the python methods into one package without graphical
interface. This is obviously the easiest option for the developer. It is possible to exploit the
openCV display options directly. However, the final user must be comfortable with Python.
In a second time, we tested a python GUI, appJar. Due to a rush towards implementation,
the choice for this framework was probably not the most adapted. Nevertheless, we were
looking for a fast result prototype and appJar had the advantage of being really intuitive.
The last is a web-based application. We chose to ally an Angular front-end with a Flask
back-end to stay close to the Python image processing methods previously developed. It
appeared that even if Angular is promising it is more suited for large and complex applica-
tions. It is not the simplest or smallest JavaScript framework. Thanks to time and research,
it was nevertheless possible to create a functional prototype. Very little time was left for the
aesthetic aspects. However, since it uses HTML, a well documented language, it should not
be problematic to customize it.

As said earlier, none of the proposed solution is a perfect match. The Angular-Flask
combination was probably the most promising but is not very appropriate for a small ap-
plication. The solution was kept because of the time already spent on the project but it
would have been interesting to try an easier solution. The result is that the application is
not "clean", closer to a prototype than a deployable solution.
Angular is often said to be too opinionated and too rigid. The article [45] explains that An-
gular works best for applications being built by medium or large teams and suggest a simple
library like jQuery. In the domain of front-end web framework, there is an other famous
framework. REACT is often mentioned as Angular main alternative. While Angular has
been developed by Google, REACT has been produced by Facebook. Its strong argument
is the freedom and simplicity it offers while keeping most Angular features. A third option,
worth to mention, is Vue. It is often seen as an outsider but clearly has nothing to envy to
the two others. Lighter than REACT, it is probably the best option for a small project with
a limited amount of time for development.

59

CHAPTER 6. DEVELOPMENT: GRAPHIC USER INTERFACE Section 6.4

Assuming that we keep a web interface, possible measures of improvement.

• Integrate the dynamic selection windows to allow the user to see directly the effect of
a parameter

• Allow to cancel a step or correct it

• Including a ’save’ option

• Include the correction of the final result by the user

• Handle complete images and add an ‘intelligent’, automatic segmentation of pictures
that are too large.

60

Chapter 7

Conclusion

What does it takes to build a functional tool to count cells? This is the question that we
tried to answer.
First, knowing your support: we limited our researches to pictures of cells. Before investi-
gating their characteristics and the way to detected them, we recalled what an image is and
in that case, it shall be raster images. They have properties like a definition, a bit-depth of
a palette and this is by playing with those properties that it will be possible to extract infor-
mation from the picture. Most of the time, we are interested in the value in the pixel. If we
can easily recognize an apple on an image, a computer has trouble to find a meaning to that
group of pixel. It can tell their value, the contrast between them, the colour it corresponds
to but in therm of feature identification, a computer needs image processing algorithms. In
the literature, it is referenced as ’computer vision’.

There are many different ways to transform an image into an object more meaningful
and easier to analyse. Most of the time, it includes looking at the content of pixels and
gather them with others with a similar nature. Thresholding is quite radical and often used
in combination with other techniques. Some exploit already existing information: labels for
the classifiers, training sets for machine learning or atlas-based approaches. Region growing,
clustering and deformable models will require a starting points, a manual intervention.
A raster image originating from a real element is rarely perfect and smooth. This is the
main obstacles of those algorithms. This is where mathematical morphology take action.
Compared to the previously described ones, it is a fairly simple techniques which exploit a
pre-processing with a binary outcome. By using erosion and dilation operators, the binary
image will be smoothed. It is kind of a blind method since it does not care about the initial
content of the picture but only the binary shape obtained from a pre-processing.

The protocol that is studied here is a combination of a color filter, mathematical mor-
phology and a contour detection filter. In order to refine the result, the first two are repeated
twice. Each time the color filter restrict the selection to a certain element and mathematical

61

CHAPTER 7. CONCLUSION Section 7.0

morphology removes noises. Several parameters have been tested. We proposed a combina-
tion that produce good results. However, there are still some errors in the detection: some
cells are counted twice and others (about 7 %) are missed out.

Three interface solutions have been explored. A raw python script, a simple python
GUI (apJar) and a web application with python server (combination of angular and Flask).
None of the three have demonstrated a perfect match however, they have noticeable advan-
tages. appJar provided quick results but was also very limited and did not really match with
openCV display. The raw script allow to exploit all the possibilities of openCV and a lot
of control on the image processing steps but it is also very little user friendly. It requires
an expansive documentation and knowledges in python to use it correctly. As for angular,
it is known to be a steep-learning curve framework that can provide strong results with a
clean code. It is used to create efficient user interfaces. The disadvantage is that it does not
permit to use directly openCV display functions and it is not straight to obtain a similar
result in javaScript.

62

Bibliography

[1] Collins English Dictionary. Dictionary.com - picture. http://www.dictionary.com/
browse/picture?s=t. 2017-11-19.

[2] Computer Hope. Picture. https://www.computerhope.com/jargon/p/picture.htm,
April 2017. 2017-11-12.

[3] Janssens G., Lee J.A., and Macq B. Lgbio2050 - medical imaging course, 2014.

[4] Imedias. Les images vectorielles et les images matricielles. http://www.imedias.
pro/cours-en-ligne/graphisme-design/definition-resolution-taille-image/
les-images-vectorielles-matricielles/, 2011. 2018-07-23.

[5] Patrick Finot. La différence entre une image bitmap et une image vectorielle. http:
//www.informatique-enseignant.com/image-bitmap-ou-vectorielle/, November
2013. 2018-07-23.

[6] GomezGraphics. Raster vs. vector. https://vector-conversions.com/vectorizing/
raster_vs_vector.html, June 2018. 2018-07-23.

[7] Dzung L Pham, Chenyang Xu, and Jerry L Prince. Current Methods In Medical Image
Segmentation. Annual review of biomedical engineering, 2(1):315–337, 2000.

[8] Shermal Fernando. Color detection and object tracking. https://www.opencv-srf.
com/2010/09/object-detection-using-color-seperation.html, June 2017. 2018-
07-05.

[9] Wikipedia. Image resolution. https://en.wikipedia.org/wiki/Image_resolution,
November 2017. 2017-11-19.

[10] Stuart Grais. Bit depth. http://facweb.cs.depaul.edu/sgrais/bit_depth.htm,
Jully 2017. 2018-07-25.

[11] Sunita Roy and Samir K Bandyophadyay. Face Detection Using A Hybrid Approach
That Combines HSV And RGB. International Journal of Computer Science and Mobile
Computing, 2(3):127–136, 2013.

63

BIBLIOGRAPHY Section 7.0

[12] Darrin Cardani. Adventures in hsv space. Laboratorio de Robótica, Instituto Tecnológico
Autónomo de México, 2001.

[13] NIH. Genetics home references - what is a cell. https://ghr.nlm.nih.gov/primer/
basics/cell, August 2018. 2018-08-08.

[14] Eric P Widmaier, Hershel Raff, and Kevin T Strang. Digital Filters. Chenelière éduca-
tion, 2013.

[15] Don W. Fawcett. Pancreatic acinar cell. cil. dataset cil:10974. https://doi.org/doi:
10.7295/W9CIL10974, 2011. 2018-01-08.

[16] Alexandre Cunha. Biological image processing with matlab. http://www.cacr.
caltech.edu/~cunha/bi199/three.html, 2016. 2018-01-08.

[17] National Instruments. Thresholding. https://zone.ni.com/reference/en-XX/help/
370281AC-01/nivisionconcepts/thresholding/. 2017-07-30.

[18] Chunming Li, Rui Huang, Zhaohua Ding, Chris Gatenby, Dimitris N Metaxas, John C
Gore, et al. A Level Set Method For Image Segmentation In The Presence Of Intensity
Inhomogeneities With Application To MRI. IEEE Transactions on Image Processing,
20(7):2007, 2011.

[19] IN Manousakas, PE Undrill, GG Cameron, and TW Redpath. Split-and-merge Segmen-
tation Of Magnetic Resonance Medical Images: Performance Evaluation And Extension
To Three Dimensions. Computers and Biomedical Research, 31(6):393–412, 1998.

[20] Michel Verleysen. Lgbio2020 - bio-instrumentation course, 2014.

[21] Zaïane Osmar R. Principles of knowledge discovery in databases - chapter 8:
Data clustering. http://www.cs.ualberta.ca/~zaiane/courses/cmput690/slides/
Chapter8/index.html, 1999. 2018-06-28.

[22] Guy Barrett Coleman and Harry C Andrews. Image Segmentation By Clustering. Pro-
ceedings of the IEEE, 67(5):773–785, 1979.

[23] Alberto F Goldszal, Christos Davatzikos, Dzung L Pham, Michelle XH Yan, R Nick
Bryan, and Susan M Resnick. An Image-processing System For Qualitative And Quan-
titative Volumetric Analysis Of Brain Images. Journal of computer assisted tomography,
22(5):827–837, 1998.

[24] Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina Chanu. Im-
age Segmentation Using K-means Clustering Algorithm And Subtractive Clustering
Algorithm. Procedia Computer Science, 54:764–771, 2015.

[25] Lilla Zöllei, Martha Shenton, William Wells, and Kilian Pohl. The impact of atlas
formation methods on atlas-guided brain segmentation. In Proceedings of Medical image
computing and computer-assisted intervention: MICCAI International Conference on

64

BIBLIOGRAPHY Section 7.0

Medical Image Computing and Computer-Assisted Intervention, pages 39–46. Citeseer,
2007.

[26] Yannis Chaouche. Initiez-vous au machine learning. https://
openclassrooms.com/courses/4011851-initiez-vous-au-machine-learning/
4011858-quest-ce-que-le-machine-learning, May 2018. 2018-06-30.

[27] Carsten Steger, Markus Ulrich, and Christian Wiedemann. Machine Vision Algorithms
And Applications. John Wiley & Sons, 2018.

[28] Kevin Rowe. How search engines use machine learning. https://www.
searchenginejournal.com/how-search-engines-use-machine-learning/224451/,
February 2018. 2018-06-30.

[29] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis, And Ma-
chine Vision. Cengage Learning, 2014.

[30] Jean Serra and Pierre Soille. Mathematical Morphology And Its Applications To Image
Processing, volume 2. Springer Science & Business Media, 2012.

[31] Robert M Haralick, Stanley R Sternberg, and Xinhua Zhuang. Image Analysis Using
Mathematical Morphology. IEEE transactions on pattern analysis and machine intelli-
gence, (4):532–550, 1987.

[32] Navid Razmjooy, B Somayeh Mousavi, and Fazlollah Soleymani. A Real-Time Mathe-
matical Computer Method For Potato Inspection Using Machine Vision. Computers &
Mathematics with Applications, 63(1):268–279, 2012.

[33] Olivier Lezoray, Cyril Meurie, and Abderrahim Elmoataz. A graph approach to color
mathematical morphology. In Signal Processing and Information Technology, 2005.
Proceedings of the Fifth IEEE International Symposium on, pages 856–861. IEEE, 2005.

[34] Raman Maini and Himanshu Aggarwal. A Comprehensive Review Of Image Enhance-
ment Techniques. arXiv preprint arXiv:1003.4053, 2010.

[35] P Rajavel. Image Dependent Brightness Preserving Histogram Equalization. IEEE
Transactions on Consumer Electronics, 56(2):756–763, 2010.

[36] A. Walker R. Fisher, S. Perkins. Digital filters. http://homepages.inf.ed.ac.uk/
rbf/HIPR2/filtops.htm, 2003. 2017-12-06.

[37] Kaiming He, Jian Sun, and Xiaoou Tang. Guided Image Filtering. IEEE transactions
on pattern analysis & machine intelligence, (6):1397–1409, 2013.

[38] Utkarsh Sinha. Mathematical morphology: Dilation. http://aishack.in/tutorials/
mathematical-morphology/, 2010. 2017-12-08.

[39] A. Walker R. Fisher, S. Perkins. Mathematical morphology: Dilation. https:
//homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm, 2003. 2017-12-06.

65

BIBLIOGRAPHY Section .0

[40] Wiki ImageJ. Particle counting in imagej. http://imagejdocu.tudor.lu/doku.php?
id=video:analysis:particle_counting_-_automated_and_manual, January 2010.
2017-11-05.

[41] Mordvintsev Alexander. Opencv-python. http://opencv-python-tutroals.
readthedocs.io/en/latest/py_tutorials/py_setup/py_intro/py_intro.html#
intro, 2013. 2018-08-10.

[42] Manzanera Antoine. Cours de morphologie mathématique. http://perso.
ensta-paristech.fr/~manzaner/Cours/CentraleSupElec/MATIS4_Partie2_
Papier.pdf, 2014.

[43] Github: Object counting. https://github.com/EmanuelOverflow/
object-counting/blob/master/countobj.py, author = Emanuel, month = April,
year = 2017, note = 2018-06-08.

[44] Web-based application. https://www.techopedia.com/definition/26002/
web-based-application. 2018-08-05.

[45] Tj VanToll. What is the angular framework and why should
developers use it? https://www.programmableweb.com/news/
what-angular-framework-and-why-should-developers-use-it/analysis/2017/
03/06, March 2017. 2018-07-30.

[46] Shamikh Hossain. What is flask framework used for in python?
how is it different from django? https://www.quora.com/
What-is-flask-framework-used-for-in-Python-How-is-it-different-from-Django-and-why-would-you-prefer-it-over-Django,
December 2017. 2018-07-30.

[47] Bsd licenses. https://en.wikipedia.org/wiki/BSD_licenses. 2018-07-30.

[48] angular file uploader. https://www.npmjs.com/package/angular-file-uploader,
July 2018. 2018-07-10.

[49] Angular webstorage service. https://www.npmjs.com/package/
angular-webstorage-service, December 2017. 2018-07-10.

66

Appendix A

Process development

Cells detection algorithm

Figure A.1: Identification of cells by Marie Fourrez, technician in the ’Laboratoire de Biologie
Moléculaire du Cancer’

67

APPENDIX A. PROCESS DEVELOPMENT Section A.0

Figure A.2: Applying the edge detection on a restricted image does not give better results.
The cells boundaries are not sufficiently clear.

(a) (b)

Figure A.3: Application of the cell enumeration on an other sample. Filter 4, erosion X,
dilation 10 then filter 6, erosion 2 and dilation 12. In a), X = 4 and b) X = 5.
We can see that by this small adaptation, all what disappeared are pores.

68

APPENDIX A. PROCESS DEVELOPMENT Section A.0

import numpy as np
import cv2
import os
from processing.CellsCountPack import imgTools as tools

directory = os.path.dirname(os.path.abspath(__file__))
iteration = 6 #s t a r t i n g from 1

imIn = cv2.imread(directory + ’/TargetCells.png’)
imgHSV = cv2.cvtColor(imIn,cv2.COLOR_BGR2HSV) #HSV = hue s a t

va l u e

hsv_min_values = [[125,50,0],[130,50,200], [125,50,0], [125,50,0
], [125,96,68], [90,34,0]]

hsv_max_values = [[145,255,255],[145,255,255], [145,200,255], [14
5,255,255],[145, 255, 255], [145, 255, 255]]

min_purple = np.array(hsv_min_values[iteration−1])
max_purple = np.array(hsv_max_values[iteration−1])

mask = cv2.inRange(imgHSV, min_purple , max_purple)
res = cv2.bitwise_and(imIn, imIn, mask = mask)# the r e i s

something in the frame and the mask i s t r u e

cv2.imshow(’frame’,imgHSV)
cv2.imshow(’mask’,mask)
cv2.imshow(’res’,res)
cv2.imwrite(’filter_result’+ str(iteration) + ’.png’, res)

img3 = tools.showMask(imIn, mask, True)
cv2.imshow(’addition’, img3)

WRITE
#cv2 . imwri te (’ f i l t e r _ r e s u l t D i f f ’+ s t r (i t e r a t i o n) + ’ . png ’ , img1)
#cv2 . imwri te (’ f i l t e r_mask ’+ s t r (i t e r a t i o n) + ’ . png ’ , mask)

cv2.waitKey(0)

Figure A.4: NucleusIsolation.py

69

APPENDIX A. PROCESS DEVELOPMENT Section A.0

import cv2
import numpy as np
import os
from processing.CellsCountPack import imgTools as tool

directory = os.path.dirname(os.path.abspath(__file__))
f = ’1’

original = cv2.imread(directory + ’/TargetCells.png’)
img = cv2.imread(directory + ’/filter_mask’+ f+’.png’, 0)
SE_erosion = 8
kernel_e = np.ones((SE_erosion ,SE_erosion), np. uint8)
SE_dilatation = 10
kernel_d = np.ones((SE_dilatation ,SE_dilatation), np. uint8)

img_erosion = cv2.erode(img, kernel_e , iterations=1)

cv2.imshow(’Input’, img)

resultErosion = tool.showMask(original,img_erosion , True)
cv2.imshow(’Erosion’, resultErosion)

img_dilation = cv2.dilate(img_erosion , kernel_d , iterations=1)
cv2.imshow(’Dilation mask’, img_dilation)
resultDilatation = tool.showMask(original,img_dilation , True)
cv2.imshow(’Dilation’, resultDilatation)

WRITE
name_erosion = ’F’+f+’erosion_SE’+ str(SE_erosion) + ’.png’
name_dilation = ’F’+f+’dilatation_motif’+ str(SE_erosion)+’_’

+ str(SE_dilatation) + ’.png’
cv2.imwrite(name_erosion , resultErosion)
cv2.imwrite(name_dilation , resultDilatation)

cv2.waitKey(0)

Figure A.5: mathMorpho.py

70

APPENDIX A. PROCESS DEVELOPMENT Section A.0

import sys
import cv2
import numpy as np
import os

directory = os.path.dirname(os.path.abspath(__file__))

mask = cv2.imread(directory + ’/dilation_mask8.png’, 0)
original = cv2.imread(directory + ’/TargetCells.png’)
background = original.copy()

ROOT_NODE = −1

imgt = cv2.morphologyEx(mask, cv2.MORPH_OPEN , (5, 5))
img2 = imgt.copy()
contours , hierarchy = cv2.findContours(img2 , cv2.RETR_TREE ,
cv2.CHAIN_APPROX_NONE)
h = hierarchy
area = cv2.contourArea(contours[2])
print area

Direc t con tour ing #pass −1 i f you want to draw a l l con tours
cv2 . drawContours (background , contours ,−1 , (0 , 255 , 0) , 3)

fidelityRange = 200
totalContours = 0
br = []
for i in xrange(len(contours)):

if h[0][i][3] == ROOT_NODE and
cv2.contourArea(contours[i]) >= fidelityRange:

totalContours += 1
approx = cv2.approxPolyDP(contours[i], 3, True)
br.append(cv2.boundingRect(approx))

for b in br:
cv2.rectangle(background , (b[0], b[1]), (b[0] + b[2], b[1] + b[3])

, (22, 20, 234), 3)
cv2.imshow(’image’,background)

print totalContours
cv2.imwrite(’detection_fidelity−’+str(fidelityRange)+’.png’,background)
cv2.waitKey(0)

Figure A.6: enumaration.py

71

APPENDIX A. PROCESS DEVELOPMENT Section A.0

Figure A.7: Step 1: Original image restricted with a first filter of [125,50,0] - [145,255,255]

Figure A.8: Step 2: Erosion with SE of 9 on the mask obtained from the color filter to clean
pores. The result is superimposed on the original image.

72

APPENDIX A. PROCESS DEVELOPMENT Section A.0

Figure A.9: Step 3: Dilation with SE of 8 on the mask already eroded to restore the volumes.
The result is superimposed on the original image.

Figure A.10: Step 4: Second filter of [65,106,0] - [160,255,163] to isolate only the darkest
elements, likely to be nucleoli.

73

APPENDIX A. PROCESS DEVELOPMENT Section A.0

Figure A.11: Step 5: Erosion with SE of 4 on the mask obtained from the color filter to
clean tiny isolated elements. The result is superimposed on the restricted image.

Figure A.12: Step 6: Dilation with SE of 10 on the mask already eroded to merge nucleoli
together. The result is superimposed on the restricted image.

74

APPENDIX A. PROCESS DEVELOPMENT Section A.0

Graphical Interface

Figure A.13: Exploration sketch for the interface and exchange with the server.

75

APPENDIX A. PROCESS DEVELOPMENT Section A.0

import t he appJar l i b r a r y
from appJar import gui
import processingTools as PTools

def press(name):
if name == "Cancel":

app.stop()
elif name == "Reset":

app.clearEntry("Username")
app.clearEntry("Password")
app.setFocus("Username")

elif name == "Submit":
username = app.getEntry("Username")
password = app.getEntry("Password")
if username == "alitean" and password == "123":

app.setImage("Light", "bulb_on.gif")
app.infoBox("Success", "Valid password")

else:
app.setImage("Light", "bulb_off.gif")
app.infoBox("Error", "Invalid password")
app.disableButton("Cancel")

def transform(name):
if name == "Cancel":

app.stop()
elif name == "Erode":

app.setFocus("Motif")
app.infoBox("Success", "apply erosion")

elif name == "Dilate":
motif = app.getEntry("Motif")
if int(motif) > 0:

app.setFocus("Motif")
app.infoBox("Success", "apply dilation")

else:
app.infoBox("Error", "Invalid motif")
app.disableButton("Cancel")

Figure A.14: CellCountApp.py

76

APPENDIX A. PROCESS DEVELOPMENT Section A.0

def exit():
app.stop()

def openImg():
global file
file = app.openBox("Images", "/home/arianelit/Downloads/", [(’images’, ’∗.gif’)

, (’images’, ’∗.png’), (’images’, ’∗.jpg’), (’images’, ’∗.jpeg’)])
app.setImage("img", file)

def filter():
min_val, max_val = PTools.filterViewer()
print min_val[1]
new_limits = str(min_val) + "," + str(max_val)
app.setLabel("limits", new_limits)
filter_result = PTools.applyFilter(min_val,max_val)
app.setImage("result", filter_result)
app.zoomImage("result", −2)

app = gui("Login")
app.setResizable(canResize=True)
app.addLabel("lab1","Loading Window")
app.setLabelBg("lab1", "green")
app.setLabelFg("lab1", "white")
app.setFont(16)

app.addLabel("l1", "Load your cell image")
app.addButton("Open", openImg)

app.addImage("img", "TargetCells.png")
app.zoomImage("img", −2)
app.addLabelEntry("Motif")
app.addButtons(["Erode", "Dilate", "Cancel"], transform)

app.addButton("Exit", exit)
app.addButton("Viewer", filter)
app.addLabel(’limits’, "[0,0,0], [179,255,255]")
app.addImage("result", "TargetCells.png")
app.zoomImage("result", −2)

app.go()

Figure A.15: CellCountApp.py

77

APPENDIX A. PROCESS DEVELOPMENT Section A.0

Figure A.16: Screen shot from the first page of the cell counting application with appJar

78

APPENDIX A. PROCESS DEVELOPMENT Section A.0

Figure A.17: Screen shot from the first page of the cell counting application with angular

Figure A.18: First page of angular application.

79

APPENDIX A. PROCESS DEVELOPMENT Section A.0

Figure A.19: Screen shot from the second page of the cell counting application with angular.
The user can apply a second filter and launch the automatic enumeration.

80

