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Abstract

The generation of random graphs using edge swaps provides a reliable method to draw uniformly
random samples of sets of graphs respecting some simple constraints, e.g. degree distributions.
However, in general, it is not necessarily possible to access all graphs obeying some given con-
straints through a classical switching procedure calling on pairs of edges. We therefore propose to
get round this issue by generalizing this classical approach through the use of higher-order edge
switches. This method, which we denote by “k-edge switching”, makes it possible to progres-
sively improve the covered portion of a set of constrained graphs, thereby providing an increasing,
asymptotically certain confidence on the statistical representativeness of the obtained sample.

Key words: graph algorithms, random graphs, edge switching, Markov-chain mixing,
constrained graphs

Introduction

The generation of random graphs respecting some constraints has two direct applications: the
modeling of realistic network topology when empirical data are missing, and the confirmation of
the role of a given set of constraints in the presence of some empirically observed topological and
structural features (i.e. some target observables, such as in e.g. [17]). There is however currently no
general approach to directly create uniformly random graph samples given arbitrary constraints,
except for some very specific cases usually related to degree distributions (in this paper, degree
distribution refers to a specific sequence of degrees, as opposed to a probability distribution).

Existing methods for generating random samples of a set of graphs GC respecting a given set
of constraints C fall indeed into two broad categories:

• Either by directly building a graph of GC from scratch, i.e. randomly assigning links to pairs
of nodes such that the overall constraint is respected. For instance, the configuration model
as presented by [4] provides random graphs by connecting half-links on nodes such that each
resulting graph respects a given prescribed degree distribution.

• Or by using an original graph which already belongs to GC and iteratively reshuffling edges
of this graph while altogether remaining in GC in order to asymptotically converge, after
a “sufficient” number of iterations, to a uniformly random element of GC. This approach
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of switching pairs of edges has been proposed for instance by [19] who aim at obtaining a
random graph with a given degree distribution by switching pairs of links in an initial graph
which already respects this constraint.
The asymptotical convergence is generally empirically appraised with respect to the target
observables. Besides, approaches based on edge swaps implicitly assume that the number
of nodes N , the number of edges M and the degree sequence are part of C. In this case,
we consider that C is the union of two subsets: C = C∅ ∪ C+, where C∅ refers to the
fundamental constraint forcing graphs to have M links, N nodes, a given degree sequence
and to be of a certain type (simple graphs, multigraphs, etc.), while C+ refers to some
additional and arbitrary set of constraints, depending on the context.

While the former method assuredly poses a new design challenge for every new kind of con-
straint — each set of constraints basically requires a new configuration model — on the other
hand, the latter approach raises the issue of obtaining uniformly random elements of GC. Put
differently and as we will see below, this reshuffling approach, which initially requires at least one
graph from GC, does not guarantee in general that the final graph is uniformly chosen from the
whole set GC.

We propose to both (i) appraise the potential issues and drawbacks of random graph creation
based on pairwise edge switching (Sec. 1), which is a relatively traditional method in the literature
[8, 5, 23, 24, 19, 13, 20, 16, 10, 22, 2, 25, 7, 9, 14, 3, 6] and, then, (ii) introduce a method for
producing random, simulation-based samples of graphs for arbitrary constraints C, using higher-
order edge switching processes (Sec. 2). We eventually present several practical and empirical
illustrations in Sec. 3.

1. Edge swaps as a Markovian reshuffling process

Miklós et al. [15] showed that it is possible to use a pairwise edge switching reshuffling algorithm
to generate a uniformly random sample of oriented graphs whose degree distributions are fixed.
[2] later called this method “switching and holding” (S&H ). More precisely, this edge switching
method comes to randomly choosing two links in the current graph, checking whether swapping
these links leads to a graph respecting the constraint and, if yes, carry out the corresponding swap,
otherwise, “hold” the current graph and reiterate the procedure. Note that, as such, S&H differs
from a simple switching method in that it focuses on the number of swap trials rather than the
number of swaps.

This procedure may be described as a walk in a Markov graph. The Markov graph is a directed
graph, allowing self-loops and multiple edges such that its set of nodes is exactly GC. Arcs of
the Markov graph are such that, (i) whenever a valid pairwise edge switch transforms Gi ∈ GC
into Gj ∈ GC, we draw an arc from Gi to Gj (and vice versa, mechanically), and (ii) whenever a
pairwise edge switch transforms Gi ∈ GC into a graph which does not belong to GC, we draw a
self-loop from Gi to Gi. In this context, the reshuffling procedure is a random walk in the Markov
graph, that is, a Markov chain [21] converging to an equilibrium distribution whose probabilities
can be obtained from the transition matrix of the Markovian process. If the Markov graph has
constant degrees (i.e. the in-degree and out-degree of all graphs of the Markov graph are all the
same), the reshuffling process is uniform. If the Markov graph is connected, all possible graphs
are reachable. If it is both connected and has constant degrees, the process leads to uniformly
random elements of GC. See an illustration on Fig. 1.

Edge switching methods have been used to generate random graph samples in various instances
[19, 13, 22, 7, 9, 14, 3] and have been studied and improved in various directions [20, 16, 10, 2, 25].
To use such a switching method, one has nonetheless to ensure that all graphs of GC are present
in the equilibrium distribution of the random walk with an identical probability, i.e. ensure that:

(i) all graphs of GC are uniformly drawable, and

(ii) all graphs of GC are exhaustively reachable.
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Figure 1: Simple Markov graph for a constraint on a graph of (i) three nodes with (ii) given in- and out-degree
distributions and (iii) without multiple edges but possibly self-loops. Non-valid swaps are represented by self-loops
in this Markov graph, which has thus a constant degree.

Uniformity is guaranteed by the S&H approach within a given connected portion of the Markov
graph. While [15] show uniformity in the case of degree distribution constraints, the proof they
mention in Appendix A of the same reference can easily be extended to any kind of constraint. A
sketch of this proof is given by the following reasoning: “holding” on failed trials is equivalent to
connecting a Markov graph node to itself as many times as there are failure possibilities. Thus,
the in- and out-degree of all Markov graph nodes will be equal to the number of trials (both failed
and successful ones), which is strictly the same for every graph of GC, since it only depends on the
constant number of links of graphs of GC. Finally, for a random walk in a Markov graph where all
nodes have the same in and out-degree, the probability of being on a given node is asymptotically
uniform.

Exhaustivity relates to the issue of whether the whole Markov graph is connected, i.e. the
existence of a path going from any node to any other node of the Markov graph. In Markov
chain terminology, the chain is said to be irreducible. To our knowledge, existing theorems on
exhaustivity concern simple constraints C, essentially reduced to little more than the conservation
of the original degree sequence: i.e. in the case of trees [5], graphs [8], connected graphs [23] and
bi-connected graphs [24].

However in the general case of more elaborate constraints (e.g. [14, 3]), using the S&H method
appears to be less legitimate, since no such exhaustivity theorems are known. For instance, Rao et
al. [19] show that extending C by requiring the graph to have both directed edges and no self-loop
makes it impossible, in some cases, to reach all graphs of GC by pairwise edge swaps. In particular,
no pairwise edge switch could indeed transform one of the following adjacency matrices into the
other one (forbidden self-loops are marked with a star):





0∗ 1 0
0 0∗ 1
1 0 0∗



 =





0∗ 0 1
1 0∗ 0
0 1 0∗





Convergence of the walk. In addition to these issues, convergence speed remains an open theo-
retical question [19, 12], often coped with using practical heuristics [10, 25]. As said before, the
walk usually aims at randomly drawing an element of GC in order to check whether graphs of GC
exhibit some properties on the target observables (and, implicitly, in order to check whether C

could constitute a sufficient explanation for these observables). In other words, some measure-
ments are carried out on graphs of GC so that the walk is generally considered to have performed
a “sufficient” number of steps when those measurements on the target observables apparently
plateau.
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Figure 2: On the left, one possible realization of a graph drawn from GC0
: note that B-sided nodes of the bipartite

graph (marked by squares) have out-degree zero and A-sided nodes (marked by circles) have in-degree zero. On
the right, the corresponding projection of this bipartite graph onto side A.

2. Higher-order switching process

In this section, for the sake of clarity we focus on directed graphs, although it is effortless to
formulate the whole argument for undirected graphs.

2.1. k-edge switching

In general, the disconnectedness of the Markov graph stems from the impossibility of trans-
forming a graph into another graph by a simple pairwise switching. To overcome this issue, we
propose an experimental method based on higher-order edge switchings: given G ∈ GC, let us
consider k edges (ai, bi)i∈{1,...,k} corresponding to nodes (a1, ..., ak, b1, ..., bk), possibly not all dis-
tinct. The k-edge switching process, henceforth called “k-switch”, comes to randomly choosing
one permutation σ among the k! possible permutations of (b1, ..., bk). The resulting graph is such
that edges (ai, bi)i∈{1,...,k} are replaced with (ai, σ(bi))i∈{1,...,k} (for an example of pseudocode,
see Alg. 1).

It is immediate to see that neighbors of G in the Markov graph corresponding to a classical
pairwise edge swap are also neighbors of G in the Markov graph corresponding to a k-switch, when
considering a permutation that just swaps two bi, bi′ . Similarly, when k = 2, we fall back on the
S&H approach.

For increasing values of k, this procedure creates new links in the Markov graph and new
neighbors appear (in the case of Fig. 1 it is easy to see that the Markov graph is complete for
k = 3). More importantly, some potentially disconnected components of the Markov graph may
thus become connected.

Illustration. To illustrate this higher-order switching process, let us consider the case of bipartite
(or 2-mode) graphs. Such graphs are useful in the context of real-world networks, for example to
study collaborations in social groups [17] or peer-to-peer exchange systems [11]. Nodes belong to
one of two sides A and B, and links connect pairs of nodes from distinct sides only. It is possible
to build monopartite (or 1-mode) graphs from the bipartite one by keeping only A (resp. B) nodes
and linking them if they are connected to the same B (resp. A) node in the original bipartite
structure, as pictured on Figure 2. These graphs are called projections of the original bipartite
graph on side A (resp. B).

Consider a case consisting of a constraint C0 = C∅
0 ∪C+

0 , on bipartite graphs such that:

(i) C
∅
0: the bipartite graph contains no multiple link, it consists of two sides with fixed degree

distributions:

• “side A”: 5 nodes, out-degree {2, 2, 2, 1, 1} (and in-degree 0);

4



Figure 3: Markov graph of GC0
for various k-switching procedures: dashed blue arrows correspond to k = 2, plain

green arrows to k = 4. For readability purposes, we simplified the representation by discarding self-loops and
multiple edges of the Markov graph.

• “side B”: 4 nodes, in-degree {3, 2, 2, 1} (and out-degree 0).

(ii) C
+

0 : the degree distribution of the projected graph on side A is fixed: {2, 2, 2, 1, 1}.

Put shortly, this constraint consists in simultaneously imposing degree distributions on a bi-
partite graph and on one of its monopartite projections. An example of such a graph is represented
Fig. 2. Given such a C0, Markov graphs corresponding to GC0

contain 7 nodes. The Markov graph
for k ≥ 4 is connected, while it actually consists of 3 disconnected components for k ∈ {2, 3} —
see Fig. 3.

We chose this practical case in part because the Markov graph is still small enough to be
visualized for each value of k. In the remaining examples, it will not be possible anymore, and no
theoretical proof is available; we therefore rely on experimental investigations.

2.2. Relationship between k and exhaustivity

There is an upper bound on k such that the Markov graph is assuredly connected and the
underlying walk is exhaustive/irreducible. In particular, given two graphs G1 and G2 of GC, there
always exists a permutation of size at most M (the number of edges) such that G1 is transformed
into G2.

Proof. The M edges of G1 can be written as {(a1, b1); (a2, b2); ...; (aM , bM )}. Similarly, in G2,
because both M and degree sequence are fixed, we can write that M edges originate from
the same family (ai)i∈{1,...,k} to another family (b′i)i∈{1,...,k}, i.e. these edges can be written as
{(a1, b

′
1); (a2, b

′
2); ...; (aM , b′M )}. Because the degree sequence is fixed, families of nodes b and

b′ contain exactly the same nodes repeated the same number of times. Thus, σ defined as
(b1, b2, ..., bM )

σ
−→ (b′1, b

′
2, ..., b

′
M ) is then a valid M -switch permutation which does transform

G1 into G2.

The number of connected components of the Markov graph is thus a monotonously decreasing
function of k converging at most for k = M . As increasing k guarantees a better coverage of
the Markov graph, the relevance of this method lies essentially in improving the confidence in
the random mixing achieved by rewiring procedures — rather than addressing convergence speed
issues.1

1In practice, increasing k comes however at the price of an increasingly slow convergence of the walk, in terms
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2.3. Data storage format

One of the first requirements for the data format is to enable quick random selection of edges
and subsequent edge switches, i.e. update of the graph. A straightforward option for drawing
random links consists in using an array of edges, and picking a random integer lower or equal to
the array size. To store the graph, by contrast, we opt for an adjacency list, especially because
the operation of constraint checking often requires to access neighbors of a given node (which is
possible in O(δ), where δ is the node degree). Eventually, we thus maintain and update two data
structures: an adjacency list and an array. These two data strutures have a comparable size and
are respectively most efficient for link selection and graph operations.

2.4. Complexity

Carrying out a k-switch in G ∈ GC consists in:

1. Finding k random edges in G represented as an adjacency list, in O(k);

2. k-switching their extremities into a resulting graph G′, in O(k);

3. Verifying that G′ respects the constraint set, i.e. G′ ∈ GC, in O(fGC
) related to a given

design of the constraint check.

C should be such that there exists a tractable check on any graph of GC.
2 In best cases when it

is possible to check incrementally if G′ ∈ GC relatively to the k switched edges only, fGC
at best

belongs to O(k). The complexity of doing n trials of k-switches is thus at least O(nk).
Additionally, target observables have to be computed at regular intervals to monitor their asymp-
totical convergence. Those target observables shall also be chosen to be tractable. If, moreover,
the observation frequency is chosen to be sufficiently low, constraint checking shall dominate the
overall running time.

Algorithm 1: Pseudocode of the k-switching procedure in the case of a directed network
with constraints: degree distributions, no self-loops, no multiple arcs and a set of constraints
C+ (associated to the set GC+), which depends on the context.

input : Graph G0 = (V0, E0), stored as an array of adjacency lists; number of switching
trials: n ; size of the switches: k;

output: graph G produced by n attempts of switching;
G = (V,E)← G0 ; // initialization

for j ← 1 to n do

draw randomly k different arcs : {(ai , bi)}i∈I ∈ E ;
draw randomly σ a permutation of the index set I ;

build the set of swapped arcs
{(

ai , bσ(i)
)}

i∈I
;

E′ ← E ∪
{(

ai , bσ(i)
)}

\ {(ai , bi)} ;
define G′ = (V,E′) ;
define ∀i ∈ I , Wi = {b : ∃ (ai , b) ∈ E} \ {bi} ;
if ∀i , ai 6= bσ(i) // test no self-loops

and ∀i , bσ(i) /∈ Wi // test no multiple arcs

and G′ ∈ GC+ // test constraint C+

then G← G′ ;

end

The reason why large values of k are not necessarily advisable actually lies in the possibility of
k-switch failures, i.e. such that the resulting graph does not anymore belong to GC and thus the
walk stays on the same graph at the next step. Odds of such failure depend in a complicated way
on k: on one hand, when increasing k we are allowing new types of switches, therefore allowing

of switch trials, as detailed in the following subsection on complexity.
2Various optimizations of this very step are open to a discussion which depends on the chosen external set of

constraints C, but are obviously outside the scope of the present paper. In particular, we assume that fGC
is not

e.g. exponential in N or M .

6



access to possibly more graphs from a given graph of GC. On the other hand, many of these new
possible k-switches are also likely to fail (i.e. fall on a graph which does not belong to GC), because
they alter more deeply the graph (i.e. more deeply than k′-switches for k′ < k). In the end, the
proportion of k-switch successes generally depends on k in a non-monotonous manner.

In practice, given an a priori fixed number of trials, we observe that the number of successful
alterations tends to decrease sharply for large values of k (as shown below e.g. in Tab. 2). In other
words, high-order alterations apparently make the walk stay longer on a given graph, although at
the same time successful alterations reshuffle more strongly the graph. Put shortly, with increasing
k, the walk is more likely to stagnate, but when it does not, it is more likely to lead to more different
graphs.

2.5. Random graph sampling using k-switches

It is therefore hard to assess whether the mixing achieved by a k-switch-based walk of given
length is more efficient or not for higher values of k. However, the number of connected components
of the Markov graph is monotonously decreasing with k: increasingly connected portions of GC
are visited with increasing values of k. Because of that, it is relevant to propose an asymptotical
approach on k.

More precisely, a k-switch walk is stopped when some measures on GC apparently plateau to
some values. Starting with the traditional case k = 2, we thus progressively increase k up to a
“sufficient” value, i.e. such that the measurements appear to plateau from some k0; as is classical
in asymptotical convergence of simulation-based methods. As we will see in the following section,
it seems empirically that even very small values of k are often satisfactory.

3. Illustrations on practical cases

In addition to the earlier toy example C0 shown on Fig. 3 on an extremely small graph, we now
illustrate this asymptotical approach on four practical cases for various kinds of constraints. For
the sake of clarity, we gathered in Appendix 3.4 the descriptions of constraint checking algorithms
and their respective complexity. Note that, here, we only consider constraints on graphs without
multiple edges; the higher-order switching approach may nonetheless be used in the context of
multigraphs.

3.1. Constraint based on oriented and colored triangles

We first suggest a quite fictitious constraint C1 such that:

(i) C∅
1 : the graph is directed and made of N nodes, each one having one outgoing and one

incoming arc;

(ii) C+

1 :

• nodes are equally divided into 3 groups of N/3 nodes, each denoted with a color: red
(R), green (G), or blue (B);

• the graph is made of N/3 isolated and oriented cycles of 3 nodes (i.e. N isolated
triangles such that each node points to a single other node of the triangle).

Graphs of GC1
are thus such that each node exactly has an in-degree of 1 and an out-degree

of 1. Suppose we want to randomly draw an element of GC1
using k-switches, starting with an

initial graph G0 such that each triangle is “R-G-B-oriented”, i.e. a red node points to a green one
which points to a blue one which points to the red one.

For k = 2, the only possible k-switch is identity, so that in the Markov graph it is not possible
to leave G0. For k = 3, possible k-switches reshuffle links within a given triangle, as illustrated
on Fig. 4; the associated walk can only lead to “R-G-B-oriented” and “R-B-G-oriented” triangles.
For k = 4, link exchanges are possible between triangles, so that eventually all combinations of
colored triangles are possible (including non trichromatic triangles “R-R-R”, “R-G-G”, etc.).3

3The corresponding Markov graph is thus connected for k = 4, which hence happens much before k = M .
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Figure 4: Left: Illustration of the increasing possibilities of k-switches for k ∈ {2, 3, 4} in the case of “R-B-G”
triangles. Right: Number of “R-B-G” triangles with respect to the number of k-switch trials, for k ∈ {2, 3, 4}
(averages and corresponding confidence intervals computed over 10 000 simulations for each k).

Table 1: Proportion of triangles of each type with respect to k, averaged over 10000 completed simulations
consisting of 108 trials, including the respective mean number of effectively successful k-switches. The last column
features the theoretical average value over all graphs of GC1

.
k = 2 k = 3 k = 4 k = 5 k = 6 Theoretical 〈GC1

〉
R-R-R 0. 0. 0.036 0.036 0.036 0.036
G-G-G 0. 0. 0.036 0.036 0.036 0.036
B-B-B 0. 0. 0.036 0.036 0.036 0.036
R-G-G 0. 0. 0.111 0.111 0.111 0.111
R-B-B 0. 0. 0.111 0.111 0.111 0.111
G-G-B 0. 0. 0.111 0.111 0.111 0.111
G-B-B 0. 0. 0.111 0.111 0.111 0.111
R-R-B 0. 0. 0.111 0.111 0.111 0.111
R-R-G 0. 0. 0.111 0.111 0.111 0.111
R-B-G 0. 0.500 0.113 0.113 0,113 0.113
R-G-B 1.000 0.500 0.113 0.113 0,113 0.113

Successes 0 997 ± 74 2643 ± 108 2067 ± 132 936 ± 55 -

Considering a trivial target observable which is the proportion of triangles of a given color-
orientation, we now compare the performance of k-switch-based walks for k ∈ {2, 3, 4, 5, 6}. Using
simulations on graphs of N = 180 nodes, we consider the plateauing values of each walk, as shown
on Fig. 4. We then gather in Tab. 1 the various averages of such values obtained over 10000
simulations for each k. We see that average values plateau for k = 4 which generally fits well
the theoretical values, which can be analytically computed for C1 (see also Tab. 1). However,
values obtained for k = 2 (classical S&H ) and k = 3 are significantly different from the theoretical
values, indicating that the corresponding Markov processes are unable to reach every graph of the
set GC1

. In particular, the classical S&H method cannot be used in the case of C1 to generate a
random sample, whereas the multiple edges switching method with k ≥ 4 is reliable.

Such apparently arbitrary constraints can actually be relevant when considering e.g. complex
molecular edifices modeled as graphs linking molecules according to chemical constraints [18].

3.2. Constraint based on correlations of degrees

We now consider constraint C2 imposing that:

• C
∅
2: the graph is directed, without self-loops nor multiple edges and has a fixed degree

sequence,

• C
+

2 : the distribution of out-degree correlations between pairs of connected nodes is fixed.
In other words, the number of links connecting nodes of some out-degree to nodes of
some (possibly distinct) out-degree remains the same across the set of graphs.

The practical interest of this constraint becomes explicit in the empirical case of a hyperlink
citation network. In qualitative terms, this constraint should in effect help in appraising how much

8



correlations in citing activities (in terms of out-degrees) explain the existence of cyclic citation
patterns (in terms of directed triangles). To this end, we start with an initial graph G0 extracted
from the 50,000 first web pages from the network database used in [1]4, we denote this database
WWW. We carry out one billion trials in each walk corresponding to k-switches for k ∈ [2, 6]. We
measure the average number of directed triangles (i.e. oriented cycles of length 3) of graphs of
GC2

thereby estimating how much C2 contributes to this kind of topological patterns. Results are
gathered on Tab. 2 and Fig. 5.

Figure 5: Number of directed triangles with respect to the number of k-switch trials (k ∈ [2, 6]).

Table 2: Number of directed triangles with respect to k, averaged over 50 completed walks consisting of 1 billion
trials, and respective number of effectively successful k-switches. Standard deviation are generally negligible and
never exceed 5% of the observed mean.

Target
observables

Starter G0 k = 2 k = 3 k = 4 k = 5 k = 6

50.77·103 1.92·103 1.91·103 1.91·103 1.92·103 1.91·103

31.70·104 2.90·104 2.88·104 2.89·104 2.90·104 2.88·104

15,423 59 56 58 58 59
Successes - 6.96·107 8.22·107 5.28·107 2.50·107 1.00·107

In spite of their diverse convergence speeds and success rates, ∀k ∈ {2, 3, 4, 5, 6} walks converge
to a same average number of such directed triangles. As is usually the case with random graphs
with constraints, and contrarily to the previous example, we are trying to empirically estimate
the theoretical average of this measure on GC2

. We therefore assume that the plateauing of limit
measures for increasing k is a sufficient indication that this empirical estimate can be trusted,
which is classical with simulation-based convergence — similarly, the user may also decide to ex-
tend simulations to higher values of k. These results suggest that the reshuffling process is likely
to cover well GC2

even for k = 2, i.e. traditional edge swaps. As such, the k-switch approach pro-
vides an increasing confidence in the simulation estimate of this measure. Qualitatively, because
average observable values for GC2

do not match those of G0, we have additional confidence in
the interpretation that correlations in citation activities does not suffice to explain cyclic citation
patterns.

To get some insights on how the convergence process varies with input size, we implement the
algorithm on smaller samples of this dataset: the first 20,000 and 10,000 pages. Corresponding

4 Available from http://www.barabasilab.com/rs-netdb.php
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results are gathered on Table 3, providing information about computational requirements in the
various cases5. As will also be the case in the next examples, it seems to be difficult to find
any obvious relationship between input size and the number of trials necessary to observe the
convergence.

Table 3: Experimental values obtained for constraint C2 on different inputs (with N : number of nodes, M :
number of arcs): minimum k measured to obtain a uniformly random sample, approximate amount of trials needed
for convergence, maximum memory space used during the process.

Input N M k threshold approximate number of trials memory used
WWW-50K 50,000 143,592 2 ∼ 1000m 13 MB
WWW-20K 20,000 63,224 2 ∼ 250m 8 MB
WWW-10K 10,000 36,970 2 ∼ 250m 5 MB

3.3. Constraint based on triangles

As said above, it is straightforward to apply the method with constraints on undirected graphs.
C3, and C4 below, are of this kind.

C3 = C∅
3 ∪C+

3 is such that:

• C
∅
3: the graph is undirected, with a fixed degree distribution, has no multiple edges nor

self-loops

• C
+

3 : the number of (undirected) triangles remains the same.

The interest of C3 can be illustrated in the case of a collaboration network. The amount of
distinct motifs of size four will be our target observables. In that case, C3 practically aims at
checking whether the size and shape of the close neighborhood of a scientist in this field is related
to the cohesiveness between agents — that is, more precisely, to check how the tendency to do
triangular interactions influences the number and connectedness of neighbors at distance 1 and 2.

G0 is an undirected graph of collaborations between scientists extracted from the Anthropo-
logical Index Online database.6 The dataset we use focuses on a specific subfield consisting of
Scandinavian archeology-related papers published over the period 2000–2009: nodes are paper
authors, links feature collaborations between authors in these papers. G0 contains 273 individuals
and 280 links.

Results of the corresponding exploration of the random graph space defined by C3 are gathered
on Fig. 6 and Tab. 4 for motifs of size four, for which there is significant variation from G0 for
k > 2. More importantly, these diverging results do not appear when using k = 2, but only appear
from k > 2, being then similar for all k ∈ {3, 4, 5, 6}. Thus, the usual S&H method — unlike
the generalized switching method with k ≥ 3 — cannot be used to generate a uniformly random
subset of GC3

on this particular dataset: the obtained sample would be significantly biased. In
other words, only by going beyond k = 2 makes it possible to show that C3 is not sufficient to
explain the particular shape of the neighborhood of these agents in this empirical network.

On Table 5 we gather results on the convergence process on larger collaboration databases
extracted from the AIO database in other geographical area, namely the British Isles and the
whole of Europe, over the same period of time. Qualitative results on the relationship between
C3 and target observables hold, yet there is, again, no obvious relationship between convergence
and input size & type.

3.4. Constraint based on connected components

Finally, C4 addresses the issue of connected components. C4 is such that:

5Computations have been made using a standard computer (2x2.33GHz processor, 2GB memory).
6Available from http://aio.anthropology.org.uk/aiosearch
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Figure 6: Cumulative mean number of 4-nodes cycles for C3.

Table 4: Mean number of motifs of size four after 20 simulations of 10 billion trials on G0 from the AIO database.
Target observables Starter G0 k = 2 k = 3 k = 4 k = 5 k = 6

2794 2799 ± 4 2907 ± 53 2933 ± 32 2942 ± 64 2894 ± 42

406 410 ± 3 483 ± 6 483 ± 5 481 ± 5 482 ± 6

730 734 ± 3 843 ± 9 841 ± 10 841 ± 6 840 ± 8

108 108 ± 0 120 ± 2 120 ± 2 120 ± 2 119 ± 2
Successes (in millions) - 79 166 96 34 8

Table 5: Experimental values obtained for constraint C3 on different inputs.
Input N M k threshold approximate number of trials memory used

Scandinavia 273 280 3 ∼ 20, 000m 2 MB
British Isles 807 1020 2 ∼ 10, 000m 2 MB

Europe 12112 9090 2 ∼ 100, 000m 3 MB

• C
∅
4: the graph is undirected, with a fixed degree distribution, has no multiple edges nor

self-loops

• C
+

4 : distribution of the sizes of connected components remains the same

G0 is an undirected graph built from human metabolic pathways listed in the Biocyc database7:
each node is a protein, and each link connects any two proteins involved in the same biochemical
pathway. It features 679 nodes and 11030 links. C4 aims at checking whether the existence of
islands of pathways, as represented by connected components, is correlated with the presence of
particular local, short-range interactions patterns between specific proteins.

Simulation results are featured on Tab. 6: averages of statistical variables obtained over cor-
responding explorations of GC4

do not match those of G0. This suggests that C4 is not a possible
explanation for the presence of 3- and 4-sized local patterns in this metabolic pathway network.

In this case, going beyond k = 2 did not yield any particular improvement on the random
mixing process results, yet provided a stronger confidence on the random exploration of GC4

.
Again, we run the algorithm on other network datasets: biochemical pathways of Aquifex

aeolicus (denoted aaeo) and Burkholderia pseudomallei (bpse), see Table 7. Qualitative results
hold too, while there is still no obvious relationship between convergence features and input size
& type.

7http://www.biocyc.org
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Figure 7: Number of undirected 4-nodes paths with respect to the number of k-switch trials (k ∈ [2, 7]) for C4.

Table 6: Mean number of patterns of size 3 and 4 on 50 simulations involving 200 000 trials on G0 for ’Pathways’.
Target observables Starter G0 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

161.3 ·103 51.7 ·103 51.7 ·103 51.7 ·103 51.7 ·103 51.7 ·103 51.7 ·103

2070 ·103 178 ·103 178 ·103 178 ·103 178 ·103 178 ·103 177 ·103

34.5 ·106 31.1 ·106 31.1 ·106 31.1 ·106 31.1 ·106 31.1 ·106 31.1 ·106

Successes - 42,300 60,400 52,800 38,100 25,500 20,400

Table 7: Experimental values obtained for constraint C4 on different inputs.
Input N M k threshold approximate number of trials memory used
aaeo 264 1,193 2 ∼ 20, 000 2 MB

Human 679 11,030 2 ∼ 200, 000 3 MB
bpse 1,447 20,620 2 ∼ 500, 000 6 MB

Conclusion

Pairwise edge swapping methods, such as S&H, are relevant to generate uniformly random
samples of graphs in some simple cases, such as degree distributions. As constraints get stronger
than just degree distributions, pairwise edge swaps may not be appropriate since the corresponding
Markov graph is likely to be disconnected. We therefore proposed a higher-order switching method,
denoted “k-edge switching”, which makes it possible to tackle this issue by improving progressively
the connectedness of the Markov graph of the corresponding walk.

While this approach guarantees that it is theoretically possible to navigate uniformly through-
out the whole Markov graph for some value of k, for high values of k the process is likely to
be empirically less and less practicable. As such, this approach nonetheless constitutes an easily
implementable method to incrementally explore larger portions of the Markov graph; thereby ob-
taining an increasing, asymptotically certain confidence on the representativeness of the obtained
sample. In particular, this method potentially generates random graphs for any type of constraint
preserving degree distributions. It also makes it possible to incrementally check the robustness
of results obtained using traditional edge swaps with k = 2 (which have no reason to yield valid
results as such), thereby improving the confidence on the Markov graph exploration achieved by
2-switches.

Put simply, when average measurements on the reshuffled graphs tend to plateau for some
successive values of k, we suggest that it is empirically sensible to assume that the walk covers a
reasonably representative portion of the graph set GC — as such constituting a useful extension
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of edge swapping random graph generation approaches. In this respect, an interesting perspective
for the present work would be to find classes of constraints C for which some low values of k
guarantee the connectedness of the k-switch Markov graph.
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APPENDIX: Constraint checking algorithms and complexities

In this Appendix, we describe briefly some possible algorithms for implementing tests corre-
sponding to the above-described constraints.

Constraints C1 and C3

Constraint C1 may be implemented by testing whether a switch trial creates as many triangles
as it destroys. For each arc (ai, bi) involved in a switch trial, we may list which oriented triangles
are being created and destroyed by looking for the out-neighbors of bi which are also in-neighbors
of ai before and after the switch trial. The same goes for C3, except for the fact that triangles
are not oriented.

A random link has a probability proportional to δ to be connected to a node of degree δ, and
we have to go through the list of neighbors for each neighbor of bi. The same goes with ai, so that

the comparison of both lists of neighbors has eventually an average complexity in O(δ
4
), where δ

is the mean degree. This yields an overall complexity in O(nkδ
4
), where n is the number of trials.

Note that δ is always equal to 1 in the case of C1.

Constraint C2

The test corresponding to this specific constraint can be implemented as follows: after storing
at the beginning of the process the out-degree of each node, the user checks at each trial that
for any couple of degrees (δ1, δ2), links whose extremities have degrees δ1 and δ2 are created and
destroyed in equal numbers. This specific test can be done in constant time, yielding an overall
time complexity of the algorithm in O(nk).

Constraint C4

A very simple (yet not optimal) way to implement this constraint test is to check, for each
link involved in a switch, the size of the connected component it belongs to before and after the
switch. This can be done in O(M) by using a breadth first search algorithm. This induces a global
complexity in O(nkM).
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