

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Age-related morphometric changes of the tidemark in the ovine stifle

Hontoir, Fanny; Pirson, Romain; Simon, Vincent; Clegg, Peter D.; Nisolle, Jean-François; Kirschvink, Nathalie; Vandeweerd, Jean-Michel

Published in:
Anatomia, Histologia, Embryologia

DOI:
[10.1111/ahe.12449](https://doi.org/10.1111/ahe.12449)

Publication date:
2019

Document Version
Early version, also known as pre-print

[Link to publication](#)

Citation for published version (HARVARD):
Hontoir, F, Pirson, R, Simon, V, Clegg, PD, Nisolle, J-F, Kirschvink, N & Vandeweerd, J-M 2019, 'Age-related morphometric changes of the tidemark in the ovine stifle', *Anatomia, Histologia, Embryologia*, vol. 48, no. 4, pp. 366-374. <https://doi.org/10.1111/ahe.12449>

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

UNIVERSITÉ
DE NAMUR

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

researchportal.unamur.be

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Age-related morphometric changes of the tidemark in the ovine stifle

Hontoir, Fanny; Pirson, Romain; Simon, Vincent; Clegg, Peter D.; Nisolle, Jean-François; Kirschvink, Nathalie; Vandeweerd, Jean-Michel

Published in:
Anatomia, Histologia, Embryologia

DOI:
[DOI:10.1111/ahe.12449](https://doi.org/10.1111/ahe.12449)

Publication date:
2019

Document Version
Early version, also known as pre-print

[Link to publication](#)

Citation for published version (HARVARD):
Hontoir, F, Pirson, R, Simon, V, Clegg, PD, Nisolle, J-F, Kirschvink, N & Vandeweerd, J-M 2019, 'Age-related morphometric changes of the tidemark in the ovine stifle' *Anatomia, Histologia, Embryologia*.
<https://doi.org/DOI:10.1111/ahe.12449>

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Age-related morphometric changes of the tidemark in the ovine stifle

Journal:	<i>Anatomia, Histologia, Embryologia</i>
Manuscript ID:	Draft
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Hontoir, Fanny; Université de Namur, URVI - Department of Veterinary Medicine Pirson, Romain; Université de Namur, URVI - Department of Veterinary Medicine Simon, Vincent; Université de Namur, URVI - Department of Veterinary Medicine Clegg, Peter; University of Liverpool Faculty of Health and Life Sciences, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease (IACD) Nisolle, Jean-François; CHU UCL Namur - Site Godinne Kirschvink, Nathalie ; Université de Namur, URVI - Department of Veterinary Medicine Vandeweerd, J.M.; Université de Namur, URVI - Department of Veterinary Medicine
Keywords:	sheep, cartilage, knee, osteoarthritis, ageing
Abstract:	Though the ovine stifle is commonly used to study osteoarthritis, there is limited information about the age-related morphometric changes of the tidemark. The objective of this study was to document the number of tidemarks in the stifle of research sheep without clinical signs of osteoarthritis and of various ages (n = 80). Articular cartilage of the medial and lateral tibial condyles and of the medial and lateral femoral condyles was assessed by histology: (1) to count the number of tidemark; and (2) to assess the OARSI (OsteoArthritis Research Society International) score for structural changes of cartilage. The number of tidemarks varied between anatomical regions respectively from 4.2 in the medial femoral condyle to 5.0 in the lateral tibial condyle. The axial part showed a significant higher number of tidemarks than the abaxial part, for all regions except the medial tibial condyle. While the tidemark count strongly correlated to age (Spearman Correlation coefficient=0.70; 95% confidence interval 0.67 to 0.73; P<0.0001), the OARSI score was weakly correlated to age in our cohort of sheep (Spearman Correlation coefficient=0.25; 95% confidence interval 0.19 to 0.30; P<0.0001). Interestingly, no tidemark was seen in the three animals aged 6 months. Our data indicate that the number of tidemarks increases with age and vary with anatomical region. The regional variation also revealed a higher number of tidemarks in the tibia than in the femur. This could be attributed to the local variation in cartilage response to strain and to the

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	difference in chondrocyte biology and density.

SCHOLARONE™
Manuscripts

1
2 1 **Age-related morphometric changes of the tidemark in the ovine stifle.**
3
4 2
5
6 3 **Running title:** Tidemark in the ovine stifle
7
8 4 Fanny Hontoir¹, Romain Pirson¹, Vincent Simon¹, Peter Clegg², Jean-François Nisolle,
9
10 5 Nathalie Kirschvink¹, Jean-Michel E. Vandeweerd¹
11
12 6
13
14 7 ¹ Department of Veterinary Medicine, Integrated Veterinary Research Unit (IVRU) – Namur
15
16 8 Research Institute for Life Sciences (NARILIS), Faculty of Sciences, University of Namur, rue
17
18 9 de Bruxelles, 61, 5000 Namur, Belgium
19
20
21
22
23
24 10 ² Department of Musculoskeletal Biology, Institute of Ageing and Chronic disease, University
25
26 11 of Liverpool, Liverpool L69 3BX, UK
27
28
29 12 ³ Centre Hospitalier Universitaire (CHU) UCL Namur-Mont Godinne, Université Catholique
30
31 13 de Louvain, 5530 Yvoir, Belgium
32
33
34 14
35
36 15
37
38 16
39
40 17
41
42 18
43
44
45 19
46
47 20 **Corresponding author:**
48
49 21 Fanny Hontoir
50
51 22 *61, rue de Bruxelles*
52
53
54 23 *5000 Namur*
55
56 24 *Tel: 0032 496 53 51 45*
57
58
59 25 fanny.hontoir@unamur.be
60 26

1
2
3 27 **Summary**
4

5 28 Though the ovine stifle is commonly used to study osteoarthritis, there is limited information
6
7 29 about the age-related morphometric changes of the tidemark. The objective of this study was to
8
9 30 document the number of tidemarks in the stifle of research sheep without clinical signs of
10
11 31 osteoarthritis and of various ages (n = 80). Articular cartilage of the medial and lateral tibial
12
13 32 condyles and of the medial and lateral femoral condyles was assessed by histology: (1) to count
14
15 33 the number of tidemark; and (2) to assess the OARSI (OsteoArthritis Research Society
16
17 34 International) score for structural changes of cartilage.
18
19

20
21 35 The number of tidemarks varied between anatomical regions respectively from 4.2 in the medial
22
23 36 femoral condyle to 5.0 in the lateral tibial condyle. The axial part showed a significant higher
24
25 37 number of tidemarks than the abaxial part, for all regions except the medial tibial condyle.
26
27

28 38 While the tidemark count strongly correlated to age (Spearman Correlation coefficient=0.70;
29
30 39 95% confidence interval 0.67 to 0.73; P<0.0001), the OARSI score was weakly correlated to
31
32 40 age in our cohort of sheep (Spearman Correlation coefficient=0.25; 95% confidence interval
33
34 41 0.19 to 0.30; P<0.0001). Interestingly, no tidemark was seen in the three animals aged 6 months.
35
36

37 42 Our data indicate that the number of tidemarks increases with age and vary with anatomical
38
39 43 region. The regional variation also revealed a higher number of tidemarks in the tibia than in
40
41 44 the femur. This could be attributed to the local variation in cartilage response to strain and to
42
43 45 the difference in chondrocyte biology and density.
44
45

46
47 47 **Key words:** sheep – cartilage – stifle – osteoarthritis - ageing
48

49 49 **Number of figures in this manuscript: 4**
50

51 50 **Number of tables in this manuscript: 1**
52

53 **Introduction**

54 Osteoarthritis is a degenerative process of the diarthrodial (synovial) joint characterized by
55 progressive degeneration of the articular cartilage, combined with subchondral bone sclerosis
56 and osteophyte formation, leading to reduced joint function (Gympas, Albert, Katz, Lieberman,
57 Pritzker, 1991; McIlwraith, 1996, p.34). Histology is considered as a gold standard technique
58 to assess normality of cartilage, disease development (Lahm, Kreuz, Oberst, Haeberstroh, Uhl
59 et al., 2006; Wucherer, Ober, Cozemius, 2012; Zamlı, Adams, Tarlton, Sharif, 2013), and
60 efficacy of treatments (Huang, Simonian, Norman, Clark, 2004; Hoeman, Hurtig, Rossomacha,
61 Sun, Chevrier et al., 2005; Zscharnack, Hepp, Richter, Aigner, Schultz et al., 2010) in research
62 studies on osteoarthritis.

63 Different scoring scales have been described for microscopic assessment of cartilage, based on
64 several histological criteria such as the Mankin score, the “modified Mankin score” (Thomas,
65 Fuller, Whittles, Sharif, 2007; Piskin, Gulbahar, Tomak, Gukman, Hokelek et al., 2007; Daubs,
66 Markel, Manley, 2006), and the ICRS (International Cartilage Repair Society) -II scoring scale
67 (Mainil-Varlet, Van Damme, Nesic, Knutsen, Kandel, Roberts et al., 2010). Species-specific
68 scoring scales have been proposed by the Osteoarthritis Research Society International
69 (OARSI) histopathology initiative to ensure comparison between studies using animal models
70 of osteoarthritis, in mice (Glasson, Chambers, Van Den Berg, Little, 2010), rats (Gerwin,
71 Bendele, Glasson, Carlson, 2010), guinea pigs (Kraus, Huebner, DeGroot, Bendele, 2010),
72 rabbits (Laverty, Girard, Williams, Hunziker, Pritzker, 2010), dogs (Cook, Kuroki, Visco,
73 Pelletier, Schulz et al., 2010), horses (McIlwraith, Frisbie, Kawcak, Fuller, Hurtig et al., 2010),
74 goats and sheep (Little, Smith, Cake, Read, Murphy et al., 2010). For example in sheep, the
75 histopathological assessment includes the following parameters: cartilage structure, percentage
76 of the surface area affected by structural damage, chondrocyte density, cell cloning,
77 interterritorial Toluidine blue staining, and tidemark variations.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

78
79 The tidemark is the limit between the hyaline cartilage and the calcified cartilage (Meachim &
80 Allibone, 1984; Oegema, Carpenter, Hofmeister, Thompson, 1997; Burr, 2004). At
81 microscopy, the tidemark appears as a non-cellular line of about 10 µm strongly stained with
82 hematoxylin-eosin, or toluidine blue (Lyons, Stoddart, McClure, McClure, 2005). A trilaminar
83 organization has been demonstrated by combining different histochemical staining
84 (hematoxylin and eosin, picrosirius red, toluidine blue and safranin O), with a distal lamina (to
85 the side of the non-calcified cartilage), a proximal lamina (to the side of the calcified-cartilage)
86 and a central lamina. The proximal and distal laminae differ in their chemistry and, hence, in
87 their tinctorial properties. It is therefore suggested that the central lamina is actually an
88 artefactual zone due to the interpenetration of colorations of the proximal and the distal laminae
89 (Lyons et al., 2005).

90 The general consensus is that the tidemark is the result of accumulation of non-specific
91 molecules at the interface of calcified and hyaline cartilage caused by discontinuous
92 mineralization (Oegema et al., 1997). The tidemark seems to be derived from apoptotic
93 chondrocytes, and to include several molecules such as phospholipides, alkaline phosphatase,
94 type X collagen, adenosine triphosphatase, deoxyribonucleic acid, lectins, and High Mobility
95 Group Box chromosomal protein 1 (HMGB1) (Lyons et al. 2005; Simkin 2012). Chondrocytes
96 are not present in the tidemark but a few can be partially embedded in its mineralizing side
97 (Lyons et al., 2005).

98
99 Tidemark alterations, i.e. duplication, advancement and vascular invasion have been associated
100 to disease such as rheumatoid arthritis (Fassbender, Seibel, Hebert, 1992; Suber & Rosen, 2009)
101 or osteoarthritis (Oettmeier, Abendroth, Oettmeier, 1989; Bonde et al., 2005; Hulth, 1993; Suri,
102 Gill, Massena de Camin, Wilson, McWilliams et al., 2007; Bullough & Jagannath, 1983;

1
2
3 103 Oegema et al., 1997). In the OARSI score, it is observed whether the tidemark is duplicated
4
5 104 (score 1) and whether blood vessels from the subchondral bone cross the tidemark to the
6
7 105 calcified cartilage (score 2) or to the hyaline cartilage (score 3).
8
9
10 106

11
12 107 However, multiple tidemarks can be observed in normal joints (Oegema et al., 1997; Oettmeier
13
14 108 et al., 1989). The number of tidemarks has been reported to change with ageing in humans, with
15
16 109 an average increase from 1.5 to 2.5 in femur and humerus after the age of 60 (Lane & Bullough,
17
18 110 1980). Duplicated tidemarks were visible in mature normal canine femoral articular cartilage
19
20 (Oegema et al., 1997). In a study on 28 cynomolgus monkeys, as many as ten tidemarks were
21
22 111 observed in normal primates over 20 years old while at least two tidemarks were present in all
23
24 112 animals (Miller, Novatt, Hamerman, Carlson, 2004). In horses, the number of tidemarks was
25
26 113 higher in non-athletic than in racehorses with articular pathology (Muir, Peterson, Sample,
27
28 114 Scollay, Markell, 2008). In non-working and working German shepherd dogs, the tidemark
29
30 115 duplication in the femur and the tibia has been suggested to be related to ageing (Francuski,
31
32 116 Radovanović, Andrić, Krstić, Bogdanović et al., 2014).
33
34
35 117 Since tidemark duplication and advancement could be observed in diseased but also in healthy
36
37 118 animals, it is important to document how tidemark varies with age in a population of research
38
39 119 animals. The sheep, in particular, is commonly used as a large animal model for osteoarthritis
40
41 120 (Little et al., 2010). In sheep, there is limited information about the variation of the number of
42
43 121 tidemarks (Appleyard, Burkhardt, Ghosh, Read, Cake et al., 2003; Frisbie, Cross, McIlwraith,
44
45 122 2006). Most of the sheep used in research are skeletally mature sheep (Huang et al., 2004;
46
47 123 Burger, Mueller, Wlodarczyk, Goost, Tolba et al., 2007; Dattena, Pilichi, Rocca, Mara, Casu et
48
49 124 al., 2009) aged between 3 and 6 years old (Hoeman et al., 2005).
50
51
52 125 The objectives of this study were to document the variation of the number of tidemarks of the
53
54 126 stifle in a large cohort of sheep without clinical signs of osteoarthritis and of various ages.
55
56
57 127

128

129 **Materials and methods**130 *Population*

131 Eighty pairs of hindlimbs were collected, between 2012 and 2018, from crossed Texel ewes,
132 euthanatized for reasons other than hind limb lameness (mastitis, metritis), within six hours of
133 euthanasia. Animals were aged between 6 months and 3 years old (N=28), 4 to 6 years old
134 (N=31) and 7 to 11 year old (N=21). Animals had no clinical signs of osteoarthritis (lameness,
135 articular swelling, and pain at manipulation). They had been used for teaching anatomy and
136 were not euthanized for the purpose of the current study. The experimental protocol (KI 10/148)
137 was approved by the local ethical committee for animal welfare.

138

139 *Gross anatomy*

140 After soft tissue dissection and joint opening, synovium and articular surfaces were assessed by
141 one investigator in a blinded manner following OARSI recommendations (Little et al., 2010).
142 Synovium was evaluated for macroscopic alterations (normal, slight, mild, moderate, marked
143 and severe): discoloration, vascularity, thickening and synovial proliferation. Macroscopic
144 scores for cartilage damages were: score 0 for intact cartilage surface; score 1 for surface
145 roughening; score 2 for deeper defects (fibrillation, fissures) not involving the subchondral
146 bone; score 3 for erosions down to the subchondral bone (less than 5 mm diameter); score 4 for
147 large erosions down to the subchondral bone (more than 5 mm diameter). Scoring was
148 performed in four areas of interest: the middle part of the medial tibial condyle (or plateau)
149 (MTC), of the medial femoral condyle (MFC), of the lateral tibial condyle (LTC) and of the
150 lateral femoral condyle (LFC) (Figure 1). Joint margins were observed for the presence of
151 osteophytes. Joint surfaces were digitally photographed (Sony Alpha DSLR-A230 digital
152 camera) with standardized lighting conditions for records (two Sony Illustar SM-300 lighting).

1
2
3 153
4

5 154 *Histology*
6

7 155 Four mm-thick osteochondral slabs were collected from the middle part of the medial tibial
8
9 156 condyle (or plateau), medial femoral condyle, lateral tibial condyle and lateral femoral condyle
10
11 157 (Figure 1). A total of 640 samples (80 sheep x 2 limbs x 4 regions) were collected. After 48-h
12
13 158 fixation in 10% (v/v) neutral buffered formalin, samples were transferred to 70% (v/v) ethanol
14
15 159 for further processing (Little et al., 2010). They were decalcified in DC3 (non-ionic surfactants,
16
17 160 hydrochloric acid, EDTA, VWR International, Leuven, Belgium) for 2 days and embedded in
18
19 161 paraffin, and then 4-µm sections were cut. Sections were deparaffinised with xylene and graded
20
21 162 ethanol, and then stained with Toluidine blue.
22
23
24

25 163 Each slice was examined for cartilage structure and tidemark count. Scoring of cartilage
26
27 164 structure followed the OARSI recommendations for histological evaluation of structural
28
29 165 changes in ovine articular cartilage (Little et al., 2010). Each region being divided into two
30
31 166 subregions (abaxial (Ab) and axial (Ax)), 1280 subregions were assessed (640 regions x 2).
32
33 167 Assessments were performed in duplicates by two observers to obtain a mean score. Tidemark
34
35 168 counts were obtained by one blinded observer in six equidistant locations per anatomical region.
36
37 169 Mean number was calculated and recorded. Sheep, age and limb identities were blinded to
38
39 170 histological scorers.
40
41
42

43 171
44
45

46 172 *Statistical analysis*
47

48 173 Statistics were performed with GraphPad Prism 7.03 (GraphPad Software, La Jolla). Statistical
49
50 174 significance was set at 0.05. Firstly, the dataset was assessed for normality, skewness and
51
52 175 kurtosis. Due to the moderate positive skewness, to kurtosis, and to non-normal distribution of
53
54 176 the data, nonparametric statistics were conducted (Pearce & Frisbie, 2010). Wilcoxon matched-
55
56
57
58
59
60

1
2
3 177 pairs signed rank test and Friedman test were used to compare data from left and right limbs,
4
5 178 and to compare data from the different (sub-)regions of each limb.
6
7 179 Kruskal-Wallis test followed by a Dunn's multiple comparison test enabled to test difference
8
9 180 between age groups for tidemark count and OARSI scoring. Mean tidemark count and mean
10
11 181 OARSI scores of both limbs was considered for each sheep. Correlation between age and
12
13 182 tidemark number or OARSI scoring of the sheep was assessed using the Spearman's rank order
14
15 183 test. Correlation was considered very weak (0.00-0.19), weak (0.20-0.39), moderate (0.40-
16
17 184 0.59), strong (0.60-0.79) and very strong (0.80-1.00) depending on the absolute value of the
18
19 185 coefficient.
20
21
22
23
24 186
25
26 187 **Results**
27
28
29 188 *Gross anatomy*
30
31 189 Macroscopic assessment of cartilage for the 1280 anatomic areas revealed 911 zones of intact
32
33 190 cartilage (71.2%), 315 score-1 lesions (24.6%), 50 score-2 lesions (3.9%) and 4 score-3 lesions
34
35 191 (0.3%). Score-2 and -3 erosions were found in 11 of the 80 sheep (13.75%). No score-4 lesion
36
37 192 was found. No signs of joint inflammation (effusion, synovitis) and no osteophyte was detected
38
39 193 at gross anatomy.
40
41
42 194
43
44 195 *Histology*
45
46 196 Thirty slides presented artifacts (folding, shredding, splitting) preventing tidemark count. Thus,
47
48 197 1250 of the 1280 sub-regions were appropriately assessed.
49
50
51 198 There was no significant difference between left and right limbs for tidemark count ($P= 0.5898$),
52
53 199 and for OARSI scores ($P = 0.2761$). The tidemark count ($P<0.0001$) showed difference upon
54
55 200 (sub-)regions. The axial sub-region had a significant higher number of tidemarks than the
56
57 201 abaxial sub-region, for all regions except in the medial tibial condyle (Figure 3). The number
58
59
60

1
2
3 202 of tidemarks in the four regions was ranked as MFC < LFC < MTC < LTC, with an average
4
5 203 number of 4.2, 4.5, 4.8 and 5.0, respectively; those differences were statistically significant,
6
7 204 except between MFC and LFC.
8
9

10 205 The OARSI scores significantly differed with (sub-)regions (Figure 4), with the axial sub-
11
12 206 regions showing higher scores than abaxial sub-regions ($P < 0.0001$). OARSI scores in the four
13
14 207 regions were ranked as LFC < LTC < MFC < MTC, with an average score of 2.0, 2.6, 5.0 and
15
16 208 5.3, respectively. The differences were not significant between regions of the same bone.
17
18 209

21 210 The three age groups had significant different tidemark count ($P < 0.0001$) and OARSI scores
22
23 211 ($P = 0.0197$) (Table 1), with a strong positive correlation between age and the number of
24
25 212 tidemarks (Spearman Correlation coefficient = 0.70, 95% confidence interval 0.67 to 0.73; $P <$
26
27 213 0.0001). However, the OARSI score was weakly correlated to age in our cohort of sheep
28
29 214 (Spearman Correlation coefficient = 0.25, 95% confidence interval 0.19 to 0.30; $P < 0.0001$).
30
31 215 The correlation between OARSI scores and tidemark count was weak as well (Spearman
32
33 216 Correlation coefficient = 0.19, 95% confidence interval 0.13 to 0.24; $P < 0.0001$). In the three
34
35 217 young animals aged 6 months, no tidemark was visible (Figure 2).
36
37 218

38 219 **Discussion**
39
40

41 220 In this study, the number of tidemarks increased significantly with age. Interestingly, no
42
43 221 tidemark was identified in the three sheep aged 6 months. This is in agreement with reports that
44
45 222 calcified cartilage layer does not begin to develop until well into the first year postpartum
46
47 223 (Martinelli, Eurell, Les, Fyhrie, Bennett, 2002). In horses, functional adaptation of articular
48
49 224 cartilage occurs during maturation (Brama, TeKoppele, Bank, Barneveld, van Weeren, 2002).
50
51 225 Cartilage-bone interface is a dynamic area where duplication of the tidemark and thickening of
52
53
54
55
56
57
58
59
60

1
2
3 226 calcified cartilage are due to micro-trauma at the bone cartilage-interface and quick repair
4
5 227 process in response to mechanical stresses over time (Burr & Schaffler, 1997).
6
7 228 The effect of constraints on tidemark duplication is also illustrated by the variation of number
8
9 229 of tidemarks between anatomical regions. Constraints are higher in the medial compartment
10
11 230 due to the asymmetry of load bearing and contact area in the stifle (Thomas, Resnick, Alazraki,
12
13 Daniel, Greenfield, 1975; Baliunas Hurwitz, Ryals, Karrar, Case et al., 2002; Lee-Shee, Dickey,
14
15 Hurtig, 2007; Taylor, Poeplau, Konig, Ehrig, Zachow, 2011). This is associated with a higher
16
17 232 deterioration of cartilage and higher OARSI scores in those anatomical regions, as
18
19 233 demonstrated by studies in sheep (Vandeweerd, Hontoir, Kirschvink, Clegg, Nisolle et al.,
20
21 234 2013; Hontoir, Clegg, Simon, Kirschvink, Nisolle et al., 2017), and man (Arøen, Løken, Heir,
22
23 235 Alvik, Ekeland et al., 2004; Neogi, Felson, Niu, Lynch, Nevitt et al., 2009; Flanigan, Harris,
24
25 236 Trinh, Siston, Brophy, 2010). In the current study, OARSI scores were also higher in the medial
26
27 237 tibial and femoral condyles than in the lateral tibial and femoral condyles, with the axial side
28
29 238 being more affected.
30
31 239
32
33 240 In the current study, the number of tidemarks was higher in the tibia than in the femur. A
34
35 241 difference in number of tidemarks has also been described in dogs (Francuski et al., 2014). In
36
37 242 femoral cartilage, tidemark multiplication was more frequently observed in working dogs than
38
39 243 in non-working dogs, whilst in the tibial cartilage it was more frequently observed in non-
40
41 244 working dogs. This particularity has not been described elsewhere. However, regional
42
43 245 differences of cartilage mechanobiology and cell biology could account for change in tidemark
44
45 246 number. Mechanically, the cartilage strain is not homogeneous through the joint after exercise:
46
47 247 for example, in human, the cartilage strain (percentage of thickness change) is higher in the
48
49 248 tibia (30%) compared to the femur (20%) after a 30-minutes jogging (Moscher, Smith, Collins,
50
51 249 Liu, Hancy et al., 2005; Sanchez-Adams, Leddy, McNulty, O'Conor, Guilak, 2014). Moreover,
52
53 250 the cartilage response to loading is different for tibial and femoral cartilage. *In vivo* assessment

54
55
56
57
58
59
60

1
2
3 251 of cartilage response to load has been performed in human using compositional imaging, this
4
5 252 technique revealed that tibial cartilage showed an homogeneous response for deep and
6
7 253 superficial layers, whilst the femur showed an opposite response for both layers, suggesting a
8
9 254 transport of water to the deep zone of cartilage in the femur, in opposition to the general squeeze
10
11 255 of water of both tibial layers (Souza, Kumar, Calixto, Singh, Schooler et al., 2014).
12
13 256 Biologically, tibial and femoral cartilage shows different pattern, with higher
14
15 257 glycosaminoglycans and collagen content, higher chondrocyte density and proliferation rate in
16
17 258 the femur than in the tibia (Stenhamre, Slynarski, Petrén, Tallheden, Lindahl, 2008). It should
18
19 259 be reminded here that chondrocyte reaction to mechanical load varies from enhanced matrix
20
21 260 synthesis (anabolism) to catabolism, apoptosis and necrosis depending on the frequency, the
22
23 261 amplitude, or the strain-scheme for example (Sanchez-Adams et al., 2014; Bleuel, Zacke,
24
25 262 Brüggemann, Niehoff, 2015; Iijima, Ito, Nagai, Tajino, Yamaguchi et al., 2017). As the
26
27 263 tidemark originates from the chondrocytes activity (Havelka, Horn, Spohrová, Valouch, 1984)
28
29 264 and apoptosis (Simkin, 2012), the higher number of tidemarks in the tibia could be explained
30
31 265 by the combination of higher strain and lower cell yield in the tibia compared to the femur.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

266
267 The correlation between the number of tidemarks and the OARSI score was weak in our sheep
268 population. In a recent research study in man, the tidemark count poorly and non-significantly
269 correlated to the human OARSI scores in the middle part of 42 lateral tibial condyles, with
270 OARSI scores ranging from 0 (normal) to 4 (superficial delamination to mid-zone erosion).
271 (Deng, Wang, Yin, Chen, Guo et al., 2016). These results support the idea, also proposed by
272 other authors (Lane & Bullough, 1980; Bonde et al., 2005; Oegema et al., 1997; Muir et al.,
273 2008; Francuski et al., 2014), that tidemark multiplication is not a unique feature of
274 osteoarthritis and can be found in normal animals. OARSI scores in the current study were low.

1
2
3 275 In addition, we found no osteophytes, a feature of osteoarthritis (Little et al., 2010; Cake, Read,
4
5 276 Corfield, Daniel, Burkhardt et al., 2013).
6
7 277
8
9
10 278 Since there was no osteoarthritic sheep in the current research population, it is not possible to
11
12 279 infer on the association between OA and the number of tidemarks. The use of the sheep as an
13
14 280 animal model for osteoarthritis requires the surgical induction of the disease to ensure the
15
16 281 development of moderate to severe cartilage damages (Little et al., 2010). For example, in a
17
18 282 lateral meniscectomy model, average OARSI scores can reach up to 16 +/-3 for cartilage (with
19
20 283 erosion of cartilage and loss of proteoglycans to the mid/deep zone), associated to moderate
21
22 284 synovitis and osteophytes in the lateral femoral and tibial condyles (Gelse, Körber, Schöne,
23
24 285 Raum, Koch, 2017). Obviously such cases were not identified in the current population.
25
26
27
28 286 One could argue that the decalcification process is a limitation of the current study and would
29
30 287 impair assessment of the tidemark. The tidemark is basically seen as the limit between the
31
32 288 calcified cartilage and the hyaline cartilage (Meachim & Allibone, 1984; Oegema et al., 1997;
33
34 289 Burr, 2004; Lyons et al., 2005). However, the tidemark is not only featured by presence of
35
36 290 calcium deposition; it contains multiple molecules (phospholipids, alkaline phosphatase,
37
38 291 adenosine triphosphatase, DNA, lectins) revealed by a wide range of histologic stains
39
40 292 (Dmitrovsky, Lane and Bullough, 1978; Havelka et al., 1984; Oettmeir et al., 1989; Lyons et
41
42 293 al., 2005). Furthermore, we have purposely conducted the study according to the OARSI
43
44 294 recommendation for assessment of cartilage and osteochondral junction in ovine, i.e. with a
45
46 295 decalcification step during the histological processing of osteochondral samples (Little et al.,
47
48 296 2010). Another limitation is the lack of one-year old sheep to determine the apparition of the
49
50 297 first tidemark. Those animals are not frequently available for research since they are young
51
52 298 skeletally mature animal at the beginning of their reproductive career, and therefore not likely
53
54 299 to be reformed.
55
56
57
58
59
60

1
2
3 300
4

5 301 **Conclusion**
6

7 302 Documentation of animal models is a concern in research and should be pursued to ensure
8
9 303 accurate evaluation of the model and of the tested hypothesis. In the current study, we
10
11 304 demonstrated that the multiplication of the tidemark is associated to ageing in the stifles of our
12
13 305 sheep population aged between 6 months and 11 years old, without clinical signs of
14
15 306 osteoarthritis. The tidemark count was weakly correlated to OARSI scores, confirming that
16
17 307 tidemark count is not a feature of osteoarthritis. This might have implications in the
18
19 308 interpretation of the OARSI histological score in sheep. Indeed, ageing seems to be more
20
21 309 relevant to tidemark count than osteoarthritis progression in the sheep, as well as in man and
22
23 310 dogs.
24
25
26 311
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Review Only

1
2
3 312
4
5

313 Acknowledgements

6
7 314 We acknowledge Nadine Antoine and Joelle Piret for their help in histology.
8
9
10 315
11
12 316 Conflict of interest statement
13
14 317 None of the authors of this paper has a financial or personal relationship with people or
15
16 318 organizations that could inappropriately influence or bias the content of the paper.
17
18
19 319
20
21 320 Funding Information
22
23 321 This study was supported by the University of Namur (UNamur), NARILIS (Namur Research
24
25
26 322 Institute for Life Science).
27
28
29 323
30
31 324 References
32
33
34 325 Appleyard, R.C., Burkhardt, D., Ghosh, P., Read, R., Cake, M., Swain, M.V., & Murrell, G.A.
35
36 326 (2003). Topographical analysis of the structural, biochemical and dynamic biomechanical
37
38 327 properties of cartilage in an ovine model of osteoarthritis. *Osteoarthritis and Cartilage*, 11, 65-
39
40 328 77. <https://doi.org/10.1053/joca.2002.0867>.
41
42
43 329 Arøen, A., Løken, S., Heir, S., Alvik, E., Ekeland, A., Granlund, O.G., & Engebretsen, L.
44
45 330 (2004). Articular cartilage lesions in 993 consecutive knee arthroscopies. *American Journal of
46
47 Sports Medicine*, 32, 211-215. <https://doi.org/10.1177/0363546503259345>.
48
49 331
50 332 Baliunas, A.J., Hurwitz, D.E., Ryals, A.B., Karrar, A., Case, J.P., Block, J.A., & Andriacchi,
51
52 333 T.P. (2002). Increased knee joint loads during walking are present in subjects with knee
53
54 334 osteoarthritis. *Osteoarthritis and Cartilage*, 10, 573-579. doi:10.1053/joca.2002.0797.
55
56
57
58
59
60

1
2
3 335 Bleuel, J., Zaucke, F., Brüggemann, GP., & Niehoff, A. (2015). Effects of cyclic tensile strain
4
5 336 on chondrocyte metabolism: a systematic review. *PLoS One*, 10, e0119816. doi:
6
7 337 10.1371/journal.pone.0119816.
8
9
10 338 Bonde, H.V., Talman, M.L.M., & Kofoed, H. (2005). The area of the tidemark in osteoarthritis:
11
12 339 a three-dimensional stereological study in 21 patients. *Acta pathologica, microbiologica et*
13
14 340 *immunologica Scandinavia*, 113, 349-352. <https://doi.org/10.1111/j.1600->
15
16 341 0463.2005.apm_113506.x
17
18
19 342 Brama, P.A., TeKoppele, J.M., Bank, R.A., Barneveld, A., & van Weeren, P.R. (2002).
20
21 343 Development of biochemical heterogeneity of articular cartilage: influences of age and exercise.
22
23
24 344 *Equine Veterinary Journal*, 34, 265-269. <https://doi.org/10.2746/042516402776186146>.
25
26 345 Bullough, P.G., & Jagannath, A. (1983). The morphology of the calcification front in articular
27
28 346 cartilage. *Journal of Bone and Joint Surgery*, 65B, 72-78. doi: 10.1302/0301-
29
30 347 620X.65B1.6337169.
31
32
33 348 Burger, C., Mueller, M., Wlodarczyk, P., Goost, H., Tolba, R.H., Rangger, C., Kabir, K., &
34
35 349 Weber, O. (2007). The sheep as a knee osteoarthritis model: early cartilage changes after
36
37 350 meniscus injury and repair. *Laboratory animals*, 41, 420-431. doi:
38
39 351 10.1258/002367707782314265.
40
41
42 352 Burr, D.B., 2004. Anatomy and physiology of the mineralized tissues: role in the pathogenesis
43
44 353 of osteoarthritis. *Osteoarthritis and Cartilage*, 12, S20-S30.
45
46 354 <https://doi.org/10.1016/j.joca.2003.09.016>.
47
48
49 355 Burr, D.B., & Schaffler, M.B. (1997). The involvement of subchondral mineralized tissues in
50
51 356 osteoarthritis: quantitative microscopic evidence. *Miscroscopic research techniques*, 37, 343-
52
53 357 357. [https://doi.org/10.1002/\(SICI\)1097-0029\(19970515\)37:4<343::AID-JEMT9>3.0.CO;2-L](https://doi.org/10.1002/(SICI)1097-0029(19970515)37:4<343::AID-JEMT9>3.0.CO;2-L)
54
55
56 358 Cake, M.A., Read, R.A., Corfield, G., Daniel, A., Burkhardt, D., Smith, M.M., & Little, C.B.
57
58 359 (2013). Comparison of gait and pathology outcomes of three meniscal procedures for induction
59
60

1
2
3 360 of knee osteoarthritis in sheep. *Osteoarthritis and Cartilage*, 21, 226-36. doi:
4
5 361 10.1016/j.joca.2012.10.001.

6
7 362 Clark, J.M., & Huber, J.D. (1990). The structure of the human subchondral plate. *Journal of*
8
9 363 *Bone and Joint Surgery Britain*, 72, 866-873. doi: 10.1302/0301-620X.72B5.2211774.

10
11 364 Cook, J.L., Kuroki, K., Visco, D., Pelletier, J.-P., Schulz, L., & Lafeber, F.P.J.G. (2010). The
12
13 365 OARSI histopathology initiative - recommendations for histological assessments of
14
15 366 osteoarthritis in the dog. *Osteoarthritis and Cartilage*, 18: S66-S79. doi:
16
17 367 10.1016/j.joca.2010.04.017.

18
19 368 Dattena, M., Pilichi, S., Rocca, S., Mara, L., Casu, S., Masala, G., Manunta, L., Manunta, A.,
20
21 369 Passino, E.S., Pool, R.R., & Cappai, P. (2009). Sheep embryonic stem-like cells transplanted
22
23 370 in full-thickness cartilage defects. *Journal of tissue engineering and regenerative medicine*, 3,
24
25 371 175-187. doi: 10.1002/term.151.

26
27 372 Daubs, B.M., Markel, M.D., & Manley, P.A. (2006). Histomorphometric analysis of articular
28
29 373 cartilage, zone of calcified cartilage, and subchondral bone plate in femoral heads from
30
31 374 clinically normal dogs and dogs with moderate or severe osteoarthritis. *American Journal of*
32
33 375 *Veterinary Research*, 67, 1719-1724. <https://doi.org/10.2460/ajvr.67.10.1719>.

34
35 376 Deng, B., Wang, F., Yin, L., Chen, C., Guo, L., Chen, H., Gong, X., Li, Y., & Yang, L. (2016).
36
37 377 Quantitative study on morphology of calcified cartilage zone in OARSI 0-4 cartilage from
38
39 378 osteoarthritic knees. *Current Research in Translational Medicine*, 64, 149–154. doi:
40
41 379 10.1016/j.retram.2016.01.009.

42
43 380 Dmitrovsky, E., Lane, L.B., & Bullough, P.G. (1978). The characterization of the tidemark in
44
45 381 human articular cartilage. *Metabolic Bone Disease and Related Research*, 1, 115-118.
46
47 382 [https://doi.org/10.1016/0221-8747\(78\)90047-4](https://doi.org/10.1016/0221-8747(78)90047-4).

48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 383 Fassbender, H.G., Seibel, M., & Hebert, T. (1992). Pathways of destruction in metacarpal and
4 metatarsal joints of patients with rheumatoid arthritis. *Scandinavian Journal of Rheumatology*,
5 21, 10-16. <https://doi.org/10.3109/03009749209095055>.
6
7
8 386 Flanigan, D.C., Harris, J.D., Trinh, T.Q., Siston, R.A., & Brophy, R.H. (2010). Prevalence of
9 chondral defects in athletes' knees: a systematic review. *Medicine and science in sports and*
10 *exercise*, 42, 1795-801. doi: 10.1249/MSS.0b013e3181d9eea0.
11
12
13 389 Francuski, J.V., Radovanović, A., Andrić, N., Krstić, V., Bogdanović, D., Hadžić, V.,
14 Todorović, V., Lazarević Macanović, M., Source Petit, S., Beck-Cormier, S., Guicheux, J.,
15 Gauthier, O., & Kovacević Filipović, M. (2014). Age-related changes in the articular cartilage
16 of the stifle joint in non-working and working German shepherd dogs. *Journal of comparative*
17 *pathology*, 151, 363-374. doi: 10.1016/j.jcpa.2014.09.002.
18
19
20 394 Frisbie, D.D., Cross, M.W., & McIlwraith, C.W. (2006). A comparative study of articular
21 cartilage thickness in the stifle of animal species used in human pre-clinical studies compared
22 to articular cartilage thickness in the human knee. *Veterinary and Comparative Orthopaedics*
23 *and Traumatology*, 19, 142-146. doi:10.1055/s-0038-1632990.
24
25
26 398 Gelse, K., Körber, L., Schöne, M., Raum, K., Koch, P., Pachowsky, M., Welsch, G., & Breiter,
27 R. (2017). Transplantation of Chemically Processed Decellularized Meniscal Allografts.
28 *Cartilage*, 8, 180-190. doi: 10.1177/1947603516646161.
29
30
31 401 Gerwin, N., Bendele, A.M., Glasson, S., & Carlson, C.S. (2010). The OARSI histopathology
32 initiative - recommendations for histological assessments of osteoarthritis in the rat.
33
34 403 *Osteoarthritis and Cartilage*, 18: S24-S34. doi: 10.1016/j.joca.2010.05.030.
35
36
37 404 Glasson, S.S., Chambers, M.G., Van Den Berg, W.B., & Little, C.B. (2010). The OARSI
38 histopathology initiative - recommendations for histological assessments of osteoarthritis in the
39 mouse. *Osteoarthritis and Cartilage*, 18: S17-S23. doi: 10.1016/j.joca.2010.05.025.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 407 Grynpas, M., Albert, B., Katz, I., Lieberman, I., & Pritzker, K.P.H. (1991). Subchondral bone
4
5 408 in osteoarthritis. *Calcified Tissue International*, 49, 20–26. Doi: 10.1007/BF02555898.
6
7 409 Havelka, S., Horn, V., Spohrová, D., & Valouch, P. (1984). The calcified-non calcified cartilage
8
9 410 interface: the tidemark. *Acta Biologica Hungaria*, 35, 271-279.
10
11 411 Hoeman, C.D., Hurtig, M., Rossomacha, E., Sun, J., Chevrier, A., Shive, M.S., & Buschmann,
12
13 412 M.D. (2005). Chitosan-Glycerol Phosphate/Blood Implants improve Hyaline Cartilage Repair
14
15 in Ovine Microfracture Defects. *The Journal of Bone And Joint Surgery*, 87, 2671-2686.
16
17 413 doi:10.2106/JBJS.D.02536.
18
19 414
20
21 415 Hoemann, C., Kandel, R., Roberts, S., Saris, D.B.F., Creemers, L., Mainil-Varlet, P., Méthot,
22
23 416 S., Hollander, A.P., & Buschmann, M.D. (2011). International Cartilage Repair Society (ICRS)
24
25 417 Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal
26
27 Models and Clinical Trials. *Cartilage*, 2, 153– 172. doi: 10.1177/1947603510397535.
28
29 418
30 419 Hontoir, F., Clegg, P., Simon, V., Kirschvink, N., Nisolle, J.-F., & Vandeweerd, J.-M. (2017).
31
32 420 Accuracy of computed tomographic arthrography for assessment of articular cartilage defects
33
34 421 in the ovine stifle. *Veterinary Radiology and Ultrasound*, 58, 512-523. doi: 10.1111/vru.12504.
35
36 422 Huang, F.S., Simonian, P.T., Norman, A.G., & Clark, J.M. (2004). Effects of small
37
38 423 incongruities in a sheep model of osteochondral autografting. *The American Journal of sports
41
42 medicine*, 32, 1842-1848. <https://doi.org/10.1177/0363546504264895>.
43
44 425 Hulth, A. (1993). Does osteoarthritis depend on growth of the mineralized layer of cartilage?
45
46 426 *Clinic Orthopaedics Related Research*, 287, 19–24. doi: 10.1097/00003086-199302000-00004.
47
48 427 Iijima, H., Ito, A., Nagai, M., Tajino, J., Yamaguchi, S., Kiyan, W., Nakahata, A., Zhang, J.,
49
50 428 Wang, T., Aoyama, T., Nishitani, K., & Kuroki, H. (2017). Physiological exercise loading
51
52 429 suppresses post-traumatic osteoarthritis progression via an increase in bone morphogenetic
53
54 430 proteins expression in an experimental rat knee model. *Osteoarthritis and Cartilage*, 25, 964-
55
56 430 975. doi: 10.1016/j.joca.2016.12.008.
57
58 431
59
60

1
2
3 432 Jeffery, A.K., Blunn, G.W., Archer, C.W., & Bentley, G. (1991). Three-dimensional collagen
4
5 433 architecture in bovine articular cartilage. *Journal of Bone and Joint Surgery*, 73, 795-801.
6
7 434 <https://doi.org/10.1016/j.joca.2017.02.673>.
8
9
10 435 Kraus, V.B., Huebner, J.L., DeGroot, J., & Bendele, A. (2010). The OARSI histopathology
11
12 436 initiative - recommendations for histological assessments of osteoarthritis in the guinea pig.
13
14 437 *Osteoarthritis and Cartilage*, 18, S35-S52. <https://doi.org/10.1016/j.joca.2010.04.015>.
15
16
17 438 Lahm, A., Kreuz, P., Oberst, M., Haeberstroh, J., Uhl, M., & Maier, D. (2006). Subchondral
18
19 439 and trabecular bone remodelling in canine experimental model of osteoarthritis. *Archives of*
20
21 440 *Orthopaedic and Trauma Surgery*, 126, 582-587. doi: 10.1007/s00402-005-0077-2.
22
23
24 441 Lane, L.B., & Bullough, P.G., (1980). Age-related changes in the thickness of the calcified
25
26 442 cartilage and the number of tidemarks in adult human articular cartilage. *The journal of bone*
27
28 443 and joint surgery, 62, 372–375. doi: 10.1302/0301-620X.62B3.7410471.
29
30
31 444 Laverty, S., Girard, C.A., Williams, J.M., Hunziker, E.B., & Pritzker, K.P.H. (2010). The
32
33 445 OARSI histopathology initiative - recommendations for histological assessments of
34
35 446 osteoarthritis in the rabbit. *Osteoarthritis and Cartilage*, 18, S53-S65. doi:
36
37 447 [10.1016/j.joca.2010.05.029](https://doi.org/10.1016/j.joca.2010.05.029).
38
39
40 448 Lee-Shee, N.K., Dickey, J.P., & Hurtig, M.B. (2007). Contact mechanics of the ovine stifle
41
42 449 during simulated early stance in gait. An *in vitro* study using robotics. *Veterinary and*
43
44 450 *comparative orthopaedics and traumatology*, 20, 70-72. doi: 10.1055/s-0037-1616591.
45
46
47 451 Little, C.B., Smith, M.M., Cake, M.A., Read, R.A., Murphy, M.J., & Barry, F.P. (2010). The
48
49 452 OARSI histopathology initiative - recommendations for histological assessments of
50
51 453 osteoarthritis in sheep and goats. *Osteoarthritis and Cartilage*, 18, 80-92.
52
53 454 <http://dx.doi.org/10.1016/j.joca.2010.04.016>.
54
55
56 455 Lyons, T.J., Stoddart, R.W., McClure, S.F., & McClure, J. (2005). The tidemark of the chondro-
57
58 456 osseous junction of the normal human knee joint. *Journal of molecular histology*, 36, 207–215.
59
60 457 <https://doi.org/10.1007/s10735-005-3283-x>.

1
2
3 458 Mainil-Varlet, P., Van Damme, B., Nesic, D., Knutsen, G., Kandel, R., & Roberts, S. (2010).
4
5 459 A new histology scoring system for the assessment of the quality of human cartilage repair:
6
7 460 ICRS II. *American Journal of Sports Medicine*, 38, 880-890. doi: 10.1177/0363546509359068.
8
9
10 461 Martinelli, M.J., Eurell, J., Les, C.M., Fyhrie, D., & Bennett, D. (2002). Age-related
11
12 462 morphometry of equine calcified cartilage. *Equine Veterinary Journal*, 34, 274-278.
13
14 463 <https://doi.org/10.2746/042516402776186100>.
15
16
17 464 McIlwraith, C.W. (1996). Joint Disease in the Horse. Philadelphia, PA: Saunders.
18
19 465 McIlwraith, C.W., Frisbie, D.D., Kawcak, C.E., Fuller, C.J., Hurtig, M., & Cruz, A. (2010).
20
21 466 The OARSI histopathology initiative - recommendations for histological assessments of
22
23 467 osteoarthritis in the horse. *Osteoarthritis and Cartilage*, 18, S93-S105.
24
25
26 468 <https://doi.org/10.1016/j.joca.2010.05.031>.
27
28
29 469 Meachim, G., & Allibone, R. (1984). Topographical variation in the calcified zone of upper
30
31 470 femoral articular cartilage. *Journal of Anatomy*, 139, 341-352.
32
33 471 Miller, L.M., Novatt, J.T., Hamerman, D., & Carlson, C.S. (2004). Alterations in mineral
34
35 472 composition observed in osteoarthritic joints cynomolgus monkeys. *Bone*, 35, 498-506.
36
37 473 <https://doi.org/10.1016/j.bone.2004.03.034>.
38
39
40 474 Mosher, T.J., Smith, H.E., Collins, C., Liu, Y., Hancy, J., Dardzinski, B.J., & Smith, M.B.
41
42 475 (2005). Change in knee cartilage T2 at MR imaging after running: a feasibility study.
43
44 476 *Radiology*, 234, 245-249. <https://doi.org/10.1148/radiol.2341040041>.
45
46
47 477 Muir, P., Peterson, A.L., Sample, S.J., Scollay, S.C., Markell, M.D., & Kalscheur, V.L. (2008).
48
49 478 Exercise-induced metacarpophalangeal joint adaptation in the Thoroughbred racehorse.
50
51 479 *Journal of anatomy*, 213, 706–717. doi: 10.1111/j.1469-7580.2008.00996.x.
52
53
54 480 Neogi, T., Felson, D., Niu, J., Lynch, J., Nevitt, M., Guermazi, A., Roemer, F., Lewis, C.E.,
55
56 481 Wallace, B., & Zhang, Y. (2009). Cartilage loss occurs in the same subregions as subchondral

1
2
3 482 bone attrition: a within-knee subregion-matched approach from the multicentre osteoarthritis
4
5 483 study. *Arthritis and rheumatism*, 61, 1539-1544. doi: 10.1002/art.24824.
6
7 484 Oegema, T.R., Carpenter, R.J., Hofmeister, F., & Thompson, R.C. (1997). The interaction of
8
9 485 the zone of calcified cartilage and subchondral bone in osteoarthritis. *Microscopy research and*
10
11 486 *technique*, 37, 324–332. [https://doi.org/10.1002/\(SICI\)1097-0029\(19970515\)37:4<324::AID-JEMT7>3.0.CO;2-K](https://doi.org/10.1002/(SICI)1097-0029(19970515)37:4<324::AID-JEMT7>3.0.CO;2-K)
12
13
14
15
16
17 488 Oettmeier, R., Abendroth, K., & Oettmeier, S. (1989). Analyses of the tidemark on human
18
19 489 femoral heads. II. Tidemark changes in osteoarthritis: a histological and histomorphometric
20
21 490 study in non-decalcified preparations. *Acta morphologica Hungarica*, 37, 169-180.
22
23
24 491 Pearce, G.L., & Frisbie, D.D. (2010). Statistical evaluation of biomedical studies. *Osteoarthritis*
25
26 492 and *Cartilage* 18, S117-122. doi: 10.1016/j.joca.2010.04.014.
27
28
29 493 Piskin, A., Gulbahar, M.Y., Tomak, Y., Gulman, B., Hokelek, M., Kerimoglu, S., Koksal, B.,
30
31 494 Alic, T., & Kabak, Y.B. (2007). Osteoarthritis models after anterior cruciate ligament resection
32
33 495 and medial meniscectomy in rats. A histological and immunohistochemical study. *Saudi*
34
35 496 *Medical Journal*, 28, 1796–1802.
36
37
38 497 Sanchez-Adams, J., Leddy, H.A., McNulty, A.L., O'Conor, C.J., & Guilak, F. (2014). The
39
40 498 mechanobiology of articular cartilage: bearing the burden of osteoarthritis. *Current*
41
42 499 *Rheumatology Reports*, 16, 451. doi: 10.1007/s11926-014-0451-6. doi: 10.1007/s11926-014-
43
44 500 0451-6.
45
46
47 501 Simkin, P.A. (2012). Consider the tidemark. *The Journal of Rheumatology*, 39, 890-892. doi:
48
49 502 10.3899/jrheum.110942.
50
51
52 503 Souza, R.B., Kumar, D., Calixto, N., Singh, J., Schooler, J., Subburaj, K., Li, X., Link, T.M.,
53
54 504 & Majumdar, S. (2014). Response of knee cartilage T1rho and T2 relaxation times to *in vivo*
55
56 505 mechanical loading in individuals with and without knee osteoarthritis. *Osteoarthritis and*
57
58 506 *Cartilage*, 22, 1367-1376. doi: 10.1016/j.joca.2014.04.017.
59
60

1
2
3 507 Stenhamre, H., Slynarski, K., Petrén, C., Tallheden, T., & Lindahl, A. (2008). Topographic
4 variation in redifferentiation capacity of chondrocytes in the adult human knee joint.
5
6 508 509 *Osteoarthritis and Cartilage*, 16, 1356-1362. doi: 10.1016/j.joca.2008.03.025.
7
8 510 511 Suber, T., & Rosen, A. (2009). Apoptotic cell blebs: repositories of autoantigens and
9 contributors to immune context. *Arthritis and Rheumatism*, 60, 2216-2219. doi:
10 512 10.1002/art.24715.
11
12 513 514 Suri, S., Gill, S.E., Massena de Camin, S., Wilson, D., McWilliams, D.F., & Walsh, D.A.
13 (2007). Neurovascular invasion at the osteochondral junction and in osteophytes in
14 osteoarthritis. *Annals of Rheumatic Diseases*, 66, 1423–1428. doi: 10.1136/ard.2006.063354
15
16 515 516 Taylor, W.R., Poeplau, B.M., Konig, C., Ehrig, R.M., Zachow, S., Duda, G.N., & Heller, M.O.
17 (2011). The medial-lateral force distribution in the ovine stifle joint during walking. *Journal of*
18
19 517 518 *Orthopaedic Research*, 29, 567-571. doi: 10.1002/jor.21254.
20
21
22 519 520 Thomas, C.M., Fuller, C.J., Whittles, C.E., & Sharif, M. (2007). Chondrocyte death by
23 apoptosis is associated with cartilage matrix degradation. *Osteoarthritis and Cartilage*, 15, 27–
24 521 34. <https://doi.org/10.1016/j.joca.2006.06.012>.
25
26 522 523 Thomas, R.H., Resnick, D., Alazraki, N.P., Daniel, D., & Greenfield, R. (1975). Compartmental
27 evaluation of osteoarthritis of the knee: a comparative study of available diagnostic modalities.
28
29 524 *Radiology*, 116, 585-94. <https://doi.org/10.1148/116.3.585>.
30
31 525 526 Vandeweerd, J.M., Hontoir, F., Kirschvink, N., Clegg, P., Nisolle, J.F., Antoine, N., & Gustin,
32 P. (2013). Prevalence of Naturally Occurring Cartilage Defects in the Ovine Knee.
33
34 527 *Osteoarthritis and Cartilage*, 21,1125-1131. doi: 10.1016/j.joca.2013.05.006.
35
36 528 529 Wucherer, K.L., Ober, C.P., & Conzemius, M.G. (2012). The use of delayed gadolinium
37 enhanced magnetic resonance imaging of cartilage and T2 mapping to evaluate articular
38 cartilage in the normal canine elbow. *Veterinary Radiology and Ultrasound*, 53, 57-63. doi:
39 530 531 10.1111/j.1740-8261.2011.01867.x.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 532 Zamlı, Z., Adams, M.A., Tarlton, J.F., & Sharif, M. (2013). Increased Chondrocyte Apoptosis
4
5 533 Is Associated with Progression of Osteoarthritis in Spontaneous Guinea Pig Models of the
6
7 534 Disease. *International Journal of Molecular Sciences*, 14, 17729-17743. doi:
8
9 535 10.3390/ijms140917729.
10
11
12 536 Zscharnák, M., Hepp, P., Richter, R., Aigner, T., Schultz, R., Somerson, J., Josten, C., Bader,
13
14 537 A., & Marquass, B. (2010). Repair of chronic osteochondral defects using predifferentiated
15
16 538 mesenchymal stem cells in an ovine model. *American Journal of Sports Medicine*, 38, 1857-
17
18 539 1869. doi: 10.1177/0363546510365296.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

1
2
3 540 **Table 1:** Tidemark count and OARSI score values (median and interquartile range) for the three
4
5 541 age groups.
6

	6 months to 3 years old (N = 28)	4 to 6 years old (N = 31)	7 to 11 years old (N = 21)
Tidemark count			
Median	2.67	4.33	6.67
Range	(1.33 – 4.00)	(3.33 – 5.50)	(5.30 – 8.08)
OARSI Scores			
Median	1.50	2.00	3.00
Range	(1.00 – 3.00)	(1.00 – 5.00)	(1.00 – 7.00)

26 542
27
28
29 543 N= number of sheep. Mean tidemark count and OARSI scoring of both limbs were considered
30
31 544 for each sheep.
32
33 545 The tidemark count ($P<0.0001$) and the OARSI scores ($P=0.0197$) differed significantly
34
35 546 between groups.
36
37
38 547
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

548 **Figure legends**

549 **Figure 1.** Sampling sites in the middle third of the medial tibial condyle (MTC), medial femoral
550 condyle (MFC), lateral tibial condyle (LTC) and lateral femoral condyle (LFC). Tibial slabs
551 were centered on the intercondylar eminence (black lines). Femoral slabs were obtained in the
552 centre of the middle third of the circumference of the condyle (black lines and dotted black
553 box). White rectangles illustrate the histological slices that were obtained, each abaxial (Ab)
554 and axial (Ax) part being assessed separately at microscopy. White arrows highlight cartilage
555

556 **Figure 2.** The osteochondral junction at histology.

557 A. The white line indicates non-calcified hyaline cartilage (HC); the black line is the calcified
558 cartilage (CC).

559 B. White arrows indicate tidemarks.

560 C. Histological slide showing the absence of tidemark in a sample of cartilage of the medial
561 femoral condyle in a 6 months old sheep.

562

563 **Figure 3:** Number of tidemarks in the different sub-regions for right and left limbs, expressed
564 as median and interquartile range (bar). Asterisks means that statistical significance ($P<0.05$) is
565 reached for the difference between the axial and the abaxial part of the region.

566 MFC, LFC: medial and lateral femoral condyle, respectively; MTC, LTC: medial and lateral
567 femoral condyle, respectively.

568

569 **Figure 4:** OARSI scores in the different sub-regions for right and left limbs, expressed as
570 median and interquartile range (bar). Asterisks means that statistical significance ($P<0.05$) is
571 reached for the difference between the axial and the abaxial part of the region.

1
2
3 572 MFC, LFC: medial and lateral femoral condyle, respectively; MTC, LTC: medial and lateral
4
5 573 femoral condyle, respectively.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

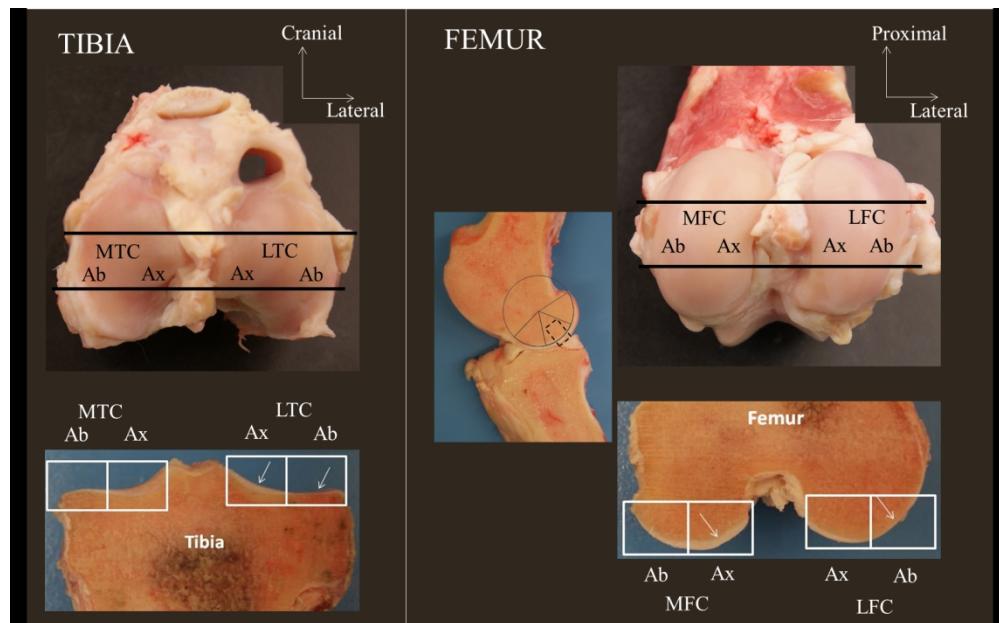


Figure 1. Sampling sites in the middle third of the medial tibial condyle (MTC), medial femoral condyle (MFC), lateral tibial condyle (LTC) and lateral femoral condyle (LFC). Tibial slabs were centered on the intercondylar eminence (black lines). Femoral slabs were obtained in the centre of the middle third of the circumference of the condyle (black lines and dotted black box). White rectangles illustrate the histological slices that were obtained, each abaxial (Ab) and axial (Ax) part being assessed separately at microscopy. White arrows highlight cartilage.

155x96mm (300 x 300 DPI)



Figure 2. The osteochondral junction at histology.

A. The white line indicates non-calcified hyaline cartilage (HC); the black line is the calcified cartilage (CC).
B. White arrows indicate tidemarks.
C. Histological slide showing the absence of tidemark in a sample of cartilage of the medial femoral condyle in a 6 months old sheep.

92x95mm (300 x 300 DPI)

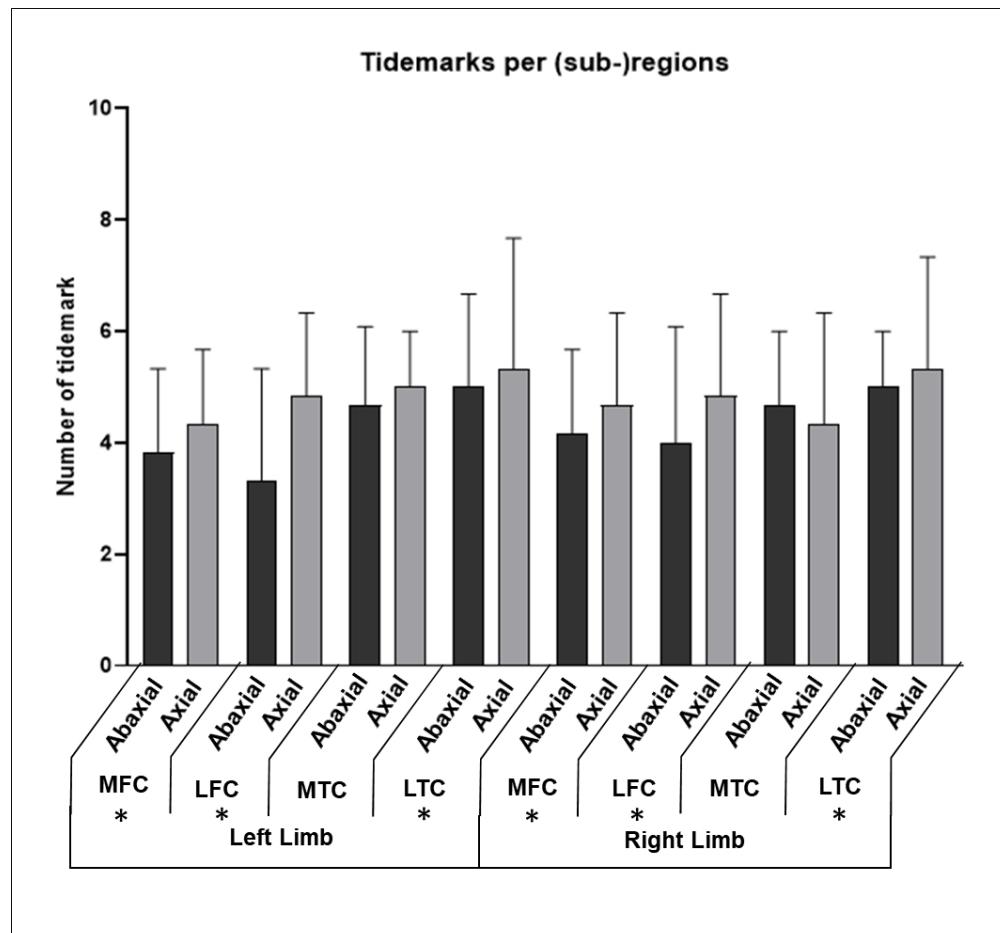


Figure 3: Number of tidemarks in the different sub-regions for right and left limbs, expressed as median and interquartile range (bar). Asterisks means that statistical significance ($P<0.05$) is reached for the difference between the axial and the abaxial part of the region.

MFC, LFC: medial and lateral femoral condyle, respectively; MTC, LTC: medial and lateral femoral condyle, respectively.

90x85mm (300 x 300 DPI)

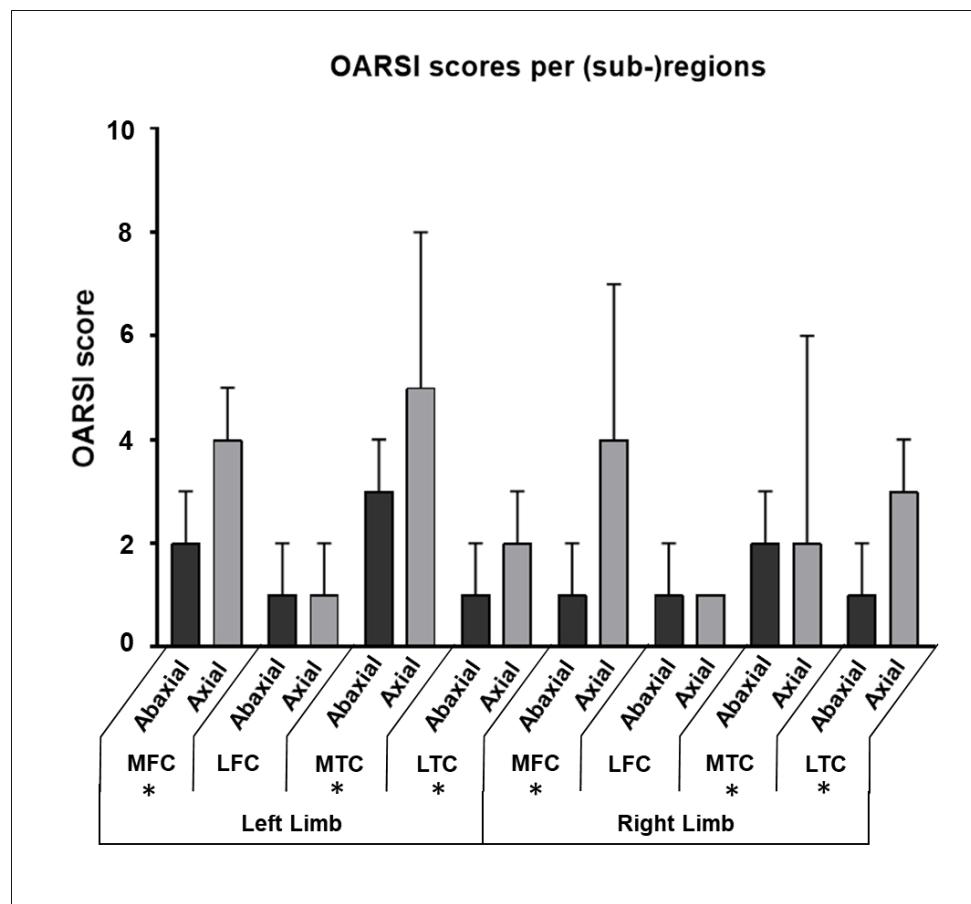


Figure 4: OARSI (OsteoArthritis Research Society International) scores in the different sub-regions for right and left limbs, expressed as median and interquartile range (bar). Asterisks means that statistical significance ($P<0.05$) is reached for the difference between the axial and the abaxial part of the region. MFC, LFC: medial and lateral femoral condyle, respectively; MTC, LTC: medial and lateral femoral condyle, respectively.

92x92mm (300 x 300 DPI)

1
2
3 **Table 1:** Tidemark count and OARSI score values (median
4 and interquartile range) for the three age groups.
5

	6 months to 3 years old (N = 28)	4 to 6 years old (N = 31)	7 to 11 years old (N = 21)
Tidemark count			
Median	2.67	4.33	6.67
Range	(1.33 – 4.00)	(3.33 – 5.50)	(5.30 – 8.08)
OARSI Scores			
Median	1.5	2	3
Range	(1.00 – 3.00)	(1.00 – 5.00)	(1.00 – 7.00)

19 N= number of sheep. Mean tidemark count and OARSI
20 scoring of both limbs were considered for each sheep.
21

22 The tidemark count ($P<0.0001$) and the OARSI scores
23 ($P=0.0197$) differed significantly between groups.
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60