
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Collaboration to the COLOS project. The use of an Object-Oriented environment, RMG,
for the creation of interactive simulation applications

de Paul de Barchifontaine, Dominique

Award date:
1991

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Sep. 2024

https://researchportal.unamur.be/en/studentTheses/4c59ced4-05ec-4508-ba11-a21000536bf9

Facultes Universitaires Notre-Dame de la Paix
Namur

lnstitut d'Informatique

Collaboration to the COLOS project.
The use of an Object-Oriented environment, RMG,

for the creation of interactive simulation applications.

Thesis presented by Dominique de Paul de Barchifontaine
in order to obtain the degree of Licencie et Maitre en Informatique

Promoter - Professor Philippe van Bastelaer

Academic year 1990-1991

May we be permitted to thank our promoter,
Professor van Bastelaer, for his good advices all
along this work.

We would like also to thank Mrs Veronique
Nachtergaele with whom we realized the 'OSI
on X-25' application and who was of great help
in any moments. We thank Mister Dominique
Corbugy and Mister Joel Denis for our great
collaboration within the Namur's COLOS team

Our whish is to thank also Doctor Hermann
Hartel, Mister Uwe Heimburger, Mister Detlev
Wegener and each person working at the Institut
fiir die Padagogik der Naturwissenschaften of
the University of Kiel (West Germany), who
helped us achieve our work there, during five
months.

Finally, we thank each member of the
COLOS project and each person who took part
directly or indirectly in the achievement of this
work.

Abstract

In this work, we first present the basic principles of Object-Oriented
languages; this concerns a general presentation and a presentation of the
Objective-C language. This language is the base of the RMG (Real-time
Measurement Graphics) environment presented next, which is the Object
Oriented environment used in the COLOS (COnceptual Learning Of Science)
project to build interactive simulation applications. We give a small guide to this
environment which enables a programmer to start developing applications inside
it. We introduce also the different projects which are born from the Namur
University for the COLOS project and concerning telecommunications using ISO
(International Standard Organization) OSI (Open Systems Interconnection)
standard. Finally, we present one of the applications created in Namur by its
COLOS team: the 'OSI on X-25' application.

Resume

Dans ce travail, nous presentons tout d'abord les principes de base des langages
oriente-objets; ceci concerne une presentation generale et une presentation du
langage Objective-C. Ce langage est la base de l'environnement RMG (Real-time
Measurement Graphics) qui est presente ensuite et qui est l'environnement
oriente-objets utilise dans le projet COLOS (COnceptual Learning Of Science)
afin de construire des applications interactives de simulation. Nous donnons un
petit guide de cet environnement qui pe1met a un programmeur de commencer a y
developper des applications. Nous introduisons aussi les differents projets nes a
l'Universite de Namur pour le projet COLOS et qui concernent les
telecommunications utilisant le standard OSI (Open Systems Interconnection) de
l'ISO (International Standard Organization). Finalement, nous presentons une des
applications creees a Namur par son equipe COLOS: !'application 'OSI on X-25'.

I Table of contents

Acknowledgments

Abstract

Table of contents

Chapter 1: Introduction .. 1

FIRST PART: Object-Oriented languages and RMG .. 2

Chapter 2: What is Object-Oriented programming ? .. 2
2.1. Principles of Object-Oriented languages ... 2

2.1.1. Objects, data, methods and classes .. 3
2.1.2. Encapsulation, inheritance and messages .. 4

2.2. Programming with Object-Oriented languages .. 9
2.2.1. Object-Oriented programs ... 9
2.2.2. Finding the right objects .. 13

2.3. Differences between tradition and 'Object-Orientedness' 15
2.4. Summary ... 17

Chapter 3: A specific approach: Objective-C ... 19
3.1. Main topics of the language ... 19

3 .1.1. Introduction ... 20
3.1.2. The syntax ... 21
3.1.3. The main program ... 26
3.1.4 Syntax summary for a class definition .. 27

3.2. How it works ... 28
3.2.1. Compiling .. 29
3.2.2. Instances ... 30
3.2.3. Messages ... 31
3.2.4. Inheritance ... 31
3.2.5. Methods .. 32
3.2.6. Self and Super ... 33

3.3. Illustration through an example of Objective-C program 33
3.4. Summary ... 38

Chapter 4: Looking at RMG ... 40
4.1. The CO LOS project and RMG ... 40

4.1.1. RMG as a Graphical User Interface ... 40
4.1.2. RMG as an application development platform ... 42

4.2. First steps in RMG .. 43
4.3. Getting accustomed to RMG with two applications .. 47

4.3.1. IconEdit. .. 48

4.3.2. MoleView ... 51
4.4. Summary .. 53

SECOND PART: A little guide to RMG .. 55

Chapter 5: Interesting bibliography ... 55

Chapter 6: How to create a new application in RMG ? ... 58
6.1. What is an RMG application ? ... 58
6.2. What to include in a new class ... 60
6.3. Programming without RMG tools .. 65

6.3.1. Editing .. 65
6.3.2. Makefiles, mainClasses and compilation .. 65
6.3.3. Including the application in the RMG environment 68

6.4. Programming with RMG tools .. 69
6.4.1. Editing .. 69
6.4.2. Compilation ... 72
6.4.3. Browsers ... 73

6.5. Summary ... 74

Chapter 7: First useful classes .. 76
7 .1. RMGView ... 76

7.1.1. Instance variables .. 76
7 .1.2. Factory methods .. 77
7 .1. 3. Instance methods ... 81

7 .2. Envir ... 82
7 .2.1. Instance variables .. 82
7 .2.2. Factory Methods .. 82
7.2.3. Instance methods ... 83
7 .2.4. C functions .. 83

7.3. RMGString .. 83
7.3.1. Instance variables .. 84
7 .3.2. Factory methods .. 84
7.3.3. Instance methods ... 84

7 .4. RMGicon .. 87
7 .4.1. Instance variables .. 87
7.4.2. Factory methods .. 87
7.4.3. Instance methods ... 88

7.5. Summary ... 89

Chapter 8: New notions about programming in RMG ... 90
8.1. The actions .. 90

8.1.1. C functions .. 90
8.1.2. Methods .. 94
8.1.3. RMG actions ... 95

8.2. The menus ... 96
8.2.1. The specification of a menu ... 97

8.2.2. Which class can be used ? .. 101
8.2.3. Actions in a menu .. 103

8.3. Additional features ... 108
8.3.1. The mouse .. 108
8.3.2. lconizing an application ... 109
8.3.3. The active collection .. 110

8.4. Summary ... 113

Chapter 9: The Video application .. 115
9.1. General description of the application .. 115

9 .1.1. Introduction ... 115
9.1.2. The hardware ... 115
9.1.3. The application's functionalities ... 116

9.2. The application on the screen .. 118
9.3. The application in deep .. 120

9.3.1. Instance variables .. 120
9.3.2. Factory methods of the 'Video' class .. 121
9.3.2. Factory methods of the 'Video' class .. 122
9.3.4. Instance methods ... 122
9.3.5. The Actions ... 125
9.3.6. The mouse ... 126
9.3.7. The menu .. 127
9.3.8. The active collection .. 128

9.4. The classes used .. 129
9.4.1. Fixtur17 ... 129
9.4.2. ModStrl. .. 130
9.4.3. RMGLine .. 131
9.4.4. Displaying personal icons .. 132

9.5. Problems encountered .. 133
9.5.1. Creating and setting a device file ... 133
9.5.2. Problems while quitting the application ... 134
9.5.3. C1itique ... 135

9.6. Summary ... 136

THIRD PART: Illustrating telecommunication principles under RMG 138

Chapter 10: Representing computer telecommunication under RMG 138
10.1. OSI basics ... 138
10.2. The different steps in representing the OSI model under RMG 140
10.3. Summary ... 141

Chapter 11: The OSI on X-25 application ... 142
11.1. The principles of a scenario ... 142
11.2. The 'OSI on X-25' scenario .. 143

11.2.1. Goal of the application .. 143
11.2.2. Screen composition ... 144
11.2.3. Designing the scenario's evolution ... 145

11.3. The implementation ... 153
11.3.1. User-application interaction ... 153
11.3.2. The application's classes .. 155

11.4. The 'Osil' class .. 156
11.4.1. Instance variables .. 156
11.4.2. Factory methods .. 157
11.4.3. Instance methods ... 157
11.4.4. The actions .. 159
11.4.5. The classes used .. 160

11.5. The 'OsilMTree' class ... 162
11.6. The 'OsiStack' class ... 162

11.6.1. Instance variables .. 163
11.6.2. Factory methods .. 164
11.6.3. Instance methods ... 164
11.6.4. The classes used ... 169

11. 7. The 'Layer' class .. 169
11.7.1. Instance variables .. 169
11. 7 .2. Factory method .. 170
11.7.3. Instance methods ... 170

11.8. The 'Interface' class ... 171
11.9. The 'Pipe' class .. 171
11.10 Critique .. 172
11.11. Summary ... 173

Chapter 12: Conclusion .. 175

Bibliography ... 177

Appendices

Appendix 1 : Video application listing

Appendix 2: OSI on X-25 application listing

Appendix 3 : Example of mainClass.m file

Appendix 4 : Example of individual makefile

Appendix 5 : Example of the environment's makefile

Appendix 6: Screen copy of the Video and OSI on X-25 applications
Appendix 7 : RMG directory structure
Appendix 8 : Example of A.menu file

Chapter 1: Introduction

This thesis is concerned with the collaboration to a European project: the
COLOS 1 project. Within this project and with the use of an Object-Oriented
environment -RMG (Real-time Measurement Graphics)-, several programmers in
different European universities try to realize some interactive simulation applications
to be utilized as a help to Computer Assisted Learning -CAL- in universities.

The RMG environment which is used within the COLOS project was developed
by the laboratories of the Hewlett-Packard company which sponsors the project.
This environment is only available to educational institutions and lacks greatly of
works or books explaining its use and its programming technique. This lack of
references explains the fact that it is an environment difficult to learn and to master.
This is why in this work we try to provide the future RMG programmers with a basic
guide of RMG programming.

The university of Namur is part of the COLOS project and is mainly interested
with the building of applications concerning telecommunications. We realized one
of these applications which is presented in this thesis: the 'OSI on X-25' application.
It concerns telecommunications using the ISO (International Standard Organization)
OSI (Open Systems Interconnection) standard and concerns particularly the opening
and closing of a connection between two machines.

This thesis is divided into three parts.
The first part concerns a presentation of Object-Oriented languages and RMG.

We see what is hidden behind Object-Oriented programming (chapter 2) and give a
specific example, the Objective-C language (chapter 3). In chapter 4, we look for
the first time at the RMG environment and give a first description of it.

In a second paii, we give a little guide to RMG programming. In chapter 5, we
give a small bibliography useful for the one who wants to stait programming in
RMG. We see which is the process to be followed to create an application in RMG
(chapter 6) and we give an introduction to the first useful RMG classes (chapter 7).
This is followed by a presentation of new notions concerning the programming in
RMG (chapter 9) and by a small illustration of what can be done with the
environment: the Video application (chapter 9).

The third part concerns the illustration of telecommunication principles under
RMG. We present the projects of the university of Namur concerning the COLOS
project, that is projects concerning the representation of computer
telecommunication in RMG (chapter 10). This is followed by the presentation of
one of these projects which takes the shape of the 'OSI on X-25' application (chapter
11). We end by a conclusion and a critique of the COLOS project (chapter 12).

1 : conceptual Learning Of Science

I FIRST PART: Object-Oriented languages and RMG

Chapter 2: What is Object-Oriented programming?

Object-Orientation, nowadays fashion in the computer world. Everybody is using
it, everybody has a different meaning for it, as says Brad J.Cox in [COX, 87] (p.29):
"It is hard to imagine nvo languages more different than Smalltalk-80 and Ada, yet
both are sometimes called object-01frnted languages. Others think of objects as
primarily a way of expressing concurrency, and yet others as a way of organizing
complex facts into hierarchies."

Nothing will be said about the implementation of Object-Oriented languages,
mainly because it differs from language to language and we want to stay in a fairly
general presentation. We try also to stay fairly objective and concise, swimming in a
sea of opposite definitions and views on the subject 1. We do not pretend to give here
an exhaustive description of 'Object-Orientation'; our goal is only to introduce a few
notions in order to facilitate the reader's comprehension of the next chapters.

So now, what is hidden behind these two words: Object-Oriented ? We will start
by reviewing the principles of Object-Oriented programming (2.1) introducing the
different basic concepts. Then we will try to describe the type of programming that
has to be done with Object-Oriented languages (2.2). In a third point we will see
which are the main differences between traditional programming and 'Object
Orientedness' (2.3).

2.1. Principles of Object-Oriented lan2:ua2:es

Object-Oriented languages is "a ri:ay to organize resources ve,y much like the way
we organize objects in eve,yday life." ([STEPSTONE, 88], p.1.1.). It is difficult to
find a better general definition of an Object-Oriented language without entering
details. That is why we will not give another one, but will just proceed on the
subject.

The principles of Object-Oriented languages can be separated in two. A first
point describes what an object is, with reference to internal data, methods and
classes. The second point concerns the concepts of encapsulation, inheritance and
messages.

1 : Though we want to stay in a general presentation of Object-Oriented languages, the reader will notice that
the syntax used in the examples and some other parts of this chapter are 'impregnated' of the Objective-C
language which is the language presented in the next chapter. This is done so that the reader does not feel to
desoriented while migrating to this next chapter

Chapter 2: What is Object-Oriented prograimning? 3

2.1.1. Objects, data, methods and classes

We see in this point what an object is, with reference to internal data, methods
and classes.

The main starting point of Object-Oriented languages is that the part of the
world that has to be represented can be seen as a set of individual objects. Indeed,
if one looks at a square, it is composed of four equal edges and four right angles
and each of these can be taken as individual objects. This is a very simple and
basic view of the matter, but we think that it is a nice way to introduce the
subject; so we will say that an object represents a certain part of the analyzed
world. We can make here a distinction, for clarity, between external objects
which are the objects of the real world and internal objects which are a
representation of the reality in the computer's memory.

In real life each object has a certain number of properties or parameters. For
example: a point has X and Y coordinates; a line has a certain length, etc; thus we
could see, for the time being, internal objects as records with a ce1iain number of
fields. An object can also be changed, by modifying one or many of its
parameters or properties. A point can be erased and put elsewhere; a line can be
stretched. So in our system the objects must contain the parameters that
characterize themselves and we must also have a way to change these parameters.
We just introduced one of the great characteristics of Object-Oriented languages:
one object contains BOTH the data and the 'procedures' to modify or access this

data.

If we look at this in~ more concrete way, an bbject2 is a part of a system that
contains some intep1af data, the static side, and ~ome procedures, the dynamic
side. Th~~~ side will be represented b)'.,,J ~~rtain number of variables
contained in the object itself; they will take ~iffe~!,1t' values depending on the
evolution of the object during the system's eiecution; so they represent the
ST ATE of the object. The dynamic side will be represented in the object by a
certain number of procedures, called methods, whose goal is to internally manage

\,}ff

the set of variables (print their value, change their value ...); so they characterize /
the actions that can be performed by the objects to change their state or to /
compute some values deduced from their state. _ __j

But object is a very abstract term. In fact, the Object-Oriented languages
supply a way to create what is called a class; that is the code that represents the
definition of an object, it is a "technical term that will be applied in Object
Oriented languages to describe such sets of data structures characterized by
common properties" ([MEYER, 88], p.52). Thus a class is the description of a
family of objects having the same characteristics and behavior. So now we will
see a class as the definition of reality (precedently called object) in which the

2 : Internal object, as described above

,,
I},

I

Chapter 2: What is Object-Oriented programming? 4

variables are called instance variables3 and the set of methods, the class'
protocol. An object will be an instance of a class, that is a structure occupying
memory space during system execution. In this "the basic idea is just that the
class describes the structure of its instances, and the objects themselves conta;,1
the variable data" ([STEPSTONE, 88], p.2.3.). To illustrate this a little bit
further we can take the example from [COX, 87] (p.65): "Betsy is a cow means
also that Betsy is an instance of class cmv" "Betsy is a cow but Betsy is also
Betsy, the individual" "The instance, Betsy, is a tangible flesh and blood creature,
but a class is an abstraction. Betsy, the instance, can moo, but cow, the class, can
not."

As an example we can take an object 'Point', which has as internal data: :j
'x_coord', 'y_coord' (both reals), and has as method: 'location' -which returns the [rl

location of the point in a two dimensional space. (Example 2.1) ii/

Now we can go a little further and say that a difference can be made between
two types of methods :

- Factory Methods: methods used t6/~;eat~new instances of a class; methods
"which are the behaviors of the class" ([STEPSTONE, 88], p.2-4).

- Instance Methods : methods used to consult or modify the state of the
instances of a class; methods "which are behaviors of an instance of a class"
([STEPSTONE, 88], p.2-4).

2.1.2. Encapsulation, inheritance and messages

This point concerns the concepts of encapsulation, inheritance and messages.

Encapsulation is the right word to represent what we saw in the former point; it
means that the consumer can only see and use the services4 of an object that are
available through an interface (see Figure 2.1, from [MASINI, 89]); the entire set
of data and methods described in a class are only available to the supplier of the
class. It is one of the most important points of Object-Oriented languages,
information hiding. It follows that the object -the instance of the class- decides
itself how to respond to a demand; the consumer asks and the object provides, all
the implementation details are hidden. As well, all the internal data contained in
the instance variables and the methods not accessible by the consumer are cajle1 (
the private part, mainly because the object ONLY has access to this data; th(re' 1

is called the public part5. All this allows the builder of the object to present
"cleanly specified inte1faces around the services they provide" "How an object
implements its actions and how its intemal data is arranged, is encapsulated

3 : We will only talk here about instance variables to characterize the type of data one can find in one's classes;
we can find a lot of other different 'types' of variables but this depends mainly on the language analyzed, and
they are not common to all of them
4 : We will see later that these services are mainly the use of certain methods
5 : The methods accessible to the consumer through the interface

Chapter 2: What is Object-Oriented programming? 5

inside a procedural shell that mediates all access to the object" ([COX, 87],
p.52).

I
N

C
E

Figure 2.1 The consumer can only see and use the services
available through the interface.

To illustrate this point, we can deepen example 2.1. A point is characterized
by its coordinates, we will represent them by two variables: 'X_coord' and
'Y_coord'. This internal data is not available directly to the consumer, as shown
in Figure 2.2 (based on [COX, 87], p.52).

The consumer can access these variables and thus their value through two
methods: 'location' -that returns the value of 'X_coord' and 'Y_coord'- and
'changePoint:' -that changes the values of 'X_coord' and 'Y _coord' to the values
given by the consumer. (Example 2.2)

Figure 2.2 Consumer can access variables
only through methods available to him.

Chapter 2: What is Object-Oriented programming? 6

Now that we have seen what encapsulation means, we can ask ourselves if a
class on its own is really worth-while and sufficient? Of course it is not,
otherwise one class would be representing a whole system, without differentiation
between individual objects and the whole concept of Object-Orientation would be
useless. That is why in an Object-Oriented programming environment one is able
to create many classes representing a lot of different things, but also, and this is
the important point here, one can create a hierarchy of classes. For example a
square is a particular type of polygon, we can thus create two classes, a first one
quite general named 'Polygon' -it is a shape with a certain number of sides-, a
second, more precise, named 'Square' -a polygon with four sides, all of the same
length, and four tight angles. This second one will be called subclass of Polygon,
the superclass. But Polygon could also be a subclass of another class 'Shape', and
so on ... (see Figure 2.3)

It does not make a lot of sense to talk about a hierarchy of classes, of
subclasses and superclasses, without talking about inheritance; in Object
Otiented languages one goes with the other. Inheritance is a RELATION of

interdependence established between some classes; it means that within a
specified hierarchy, a subclass A of a class B inherits all the features of B, the
instance variables and the methods, this principle being TRANSITIVE. So a class

will be an extension, a specialization or a combination of others; we will just
mention here that some languages enable simple inheritance -one class inherits
directly the characteristics of a single other class- as well as multiple inheritance -
one class inherits directly the characteristics of several other classes. Inheritance
provides the ability to create classes that will automatically model themselves on
other classes, just by specifying their difference(s) from the existing ones. Says
[COX, 87] (p.69): "Without inheritance, eve,y class would be a free-standing
Unit, each developed from the ground up." "Inheritance makes it possible to
de.fine new software in the same way we introduce any concept to a newcomer, by
comparing it with something that is already familiar."

We can illustrate this by starting again with our polygon and square. Let us
say we will build a class 'Polygon' which will contain one instance variable:
'numberOfSides' -containing the number of sides of the polygon-, and one
method: 'howmanySides' -that returns the number of sides of the polygon.
Let us also build another class named 'Square' with two instance variables:
'lengthOfSide' -containing the length of one side- and 'stringSquare' -containing
the value: "This is a Square"-; and a method: 'changeLength:' -that changes the
length of one side. We will also say that Square is a subclass of Polygon and so
inherits of all the characteristics of Polygon. This means that an object Square -
an instance of class Square- will also have a variable 'numberOfSides' and will be
able to consult the value stored into this variable through the method
'howmanySides'.(see Figure 2.3) (Example 2.3)

Chapter 2: What is Object-Oriented progrrumning?

•••

•••

Shape

Polygon
numberOJSides

howManySides

• ••

.-------,---~

Square •••
lengthOJSide

changeLengch:

•••
Fi1:ure 2.3 inheritance graph

for example 2.3

•••

7

So inheritance is a nice way to avoid duplication in code writing and to nicely
take advantage of already existing code. We can still say two things on
inheritance; the first is that a kind of redefinition is available which means that
there is a possibility to redefine 'features' owned primarily by one of the
superclasses. For example, in our class Square we could redefine the method
'howmanySides', so that it returns the number of sides AND print the value of the
instance variable 'stringSquare'. This will be done by first 'calling'6 the method
'howmanySides' of the class Polygon and then printing the content of the instance
variable 'stringSquare'. As said in [PUGH, 90] (p.18): "A specialized class
inherits all the attributes and operations of the more general class and may:

- have additional operations
- have some modified operations
- override existing operations
- have additional data attributes."

The second thing we can stress about inheritance is renaming; by this we mean
that methods of superclasses can be renamed in the subclasses, one of the
purposes being clarity.

6 : This 'calling' will be done by message-passing, which is explained in the next point

Chapter 2: Wbat is Object-Oriented programming? 8

There is at least one last concept that so far we failed to talk about, that is
'messaging' or message-passing. Behind this stands the key to several questions:
how do objects communicate between themselves? How does a consumer have
access to services through an object's interface? (see Figure 2.2) and many more.
To explain this we must first bear in our minds that an object controls the access
to its state. After this we can state that a message is in fact a request for an object
to 'execute' one of its methods; it specifies what kind of operation has to be
caffied out but does not say how to perform it, this is indeed hidden inside the
object itself.

A message-expression, usually called message, can be divided in three
different parts :

- the name of the object one wants to access (in other words the receiver of
the message);

- the name of the selector (or name of the requested method in the object);
- a number of arguments, if needed.

One thing must be said about the name of the object. If the message has to be
sent to a class -so in this case we are talking of sending a message that concerns a
factory method- the name of the object will be the name of the class; this name is
indeed unique, each class being uniquely present in the system. This leads to the
conclusion that a class is itself an object, unique in the system. For example if
one wants to send a message to class Square, the message will be:

Square <selector> <arguments>

In the case of a message l:leing sertr toanmsfan~e,-01\e has to know the identifier
of this instance. This(ispossible due to the facVth,£!,tAvhen an instance is created
the system returns the' address-of this- instance to the user which has asked the
creation7• The user has just to store it in a variable and from then on is able to
access the instance. We can illustrate this by extending example 2.3. If we want
to know the number of sides of an instance of class Square, we will issue to this
instance the message (without particular attention paid to the syntax) :

aSquare howmanySides8

where 'aSquare' is a variable containing the address of the instance of the class
'Square'.
This is indeed coffect by inheritance and it will return the value 4. If we want to
change the length of the sides of this square to 20, we will issue the message :

aSquare changeLength: 20

7 : An instance is created using a factory method called an initialization method, this will be explained in detail
later on
8 : 'aSquare' is written following a naming convention, which specifies tbat eacb word except the first one
composing a variable name will take a starting capital letter

(

Chapter 2: What is Object-Oriented programming ? 9

Supposing that the argument must be a numeral. (Example 2.4)

By what we just said, we are now able to give a simple definition to our
interface of figure 2.1 :

An inte1face is a set of messages to which an object

is able to respond by selecting and executing one of

its methods.

When an object receives a message9, it determines itself how to cairy on the
operation; it responds to the message by first choosing the method that
implements the selector specified in the message, executes this method, and then
returns control to the caller; even in some cases, an object can accept OR reject
one's message, depending on the fact that it recognizes it or not. To explain this a
little bit more, let us say that each class structure -that is in a run-time system
has a table listing the names of each method defined in this class and an address
of a function that implements the behavior. When an instance receives a message,
the messaging 'system' finds the class by following a link from the instance of this
class to the class itself10 and seai·ches the table to find a con-espondent to the
selector contained in the message. If this fails, the search continues through the
tables of each class composing the inheritance graph until it finds something or
nothing at all, in this last case the message-passing fails and an en-or occurs. So
we can see that objects have, through message-passing, a very special kind of
autonomy, but also that the interactions between objects ai·e carefully controlled;
all this furnishes a very powerful tool in the whole.

2.2. Programming with Object-Oriented languages

Now that we have more informations on Object-Oriented languages and what
they imply, we are going to look briefly at the programming itself. This will require
two points; the first one will discuss the questions of what is really an Object
Oriented program, how it is composed ... ; the second will mainly concern the
problem of finding the right objects for the right applications.

2.2.1. Object-Oriented programs

We are now asking ourselves how it is possible to create a tangible and running
program with all the raw material we presented in point 2.1. An important thing
to say is that in an Object-Oriented language, creating a program is first analyzing
the real world to divide it into objects which will be represented in the system.
Then after this one must create the program. This program will in fact be based

9 : Here we are talking about a combination of a selector and zero or more arguments
10 : This is possible due to the fact that the instance of a class contains a pointer to the class itself

Chapter 2: What is Object-Oriented programming? 10

on a certain number of classes, which when instantiated will interact with each
other by sending messages, this to execute a certain number of things depending
on the cun-ent situation. We could describe programming in such an
environment, in three different steps11 :

1) Creating classes
2) Creating instances of classes
3) Specifying sequences of message exchanges among objects

After designing formally the different new objects one will use in a system,
one must create a class for each of them (step one). Creating a class is going
through multiple phases, which will be described later, but mainly we can
introduce the subject by saying that a class is composed of:

- a name, which will identify it among the other classes of the system;
- a declaration part which specifies the superclass(es) of the cun-ent class; so a

definition of a part of the inheritance tree;
- a declaration part for the new instance variables that are not inherited from

the superclass(es);
- a 'method part' which will declare and define all the new methods of the

class.

Here we will not enter the implementation and syntax details because they all
depend highly on the type of language used; but as an example, we could extend
Example 2.4 by giving a 'definition' of the class Square, following the structure
given above :

Class Square;
Superclass Polygon;

Instance Variables Definition Part:
{
Integer lengthOfSide;
}

Methods Definition Part:
{
changeLength: (integer)aLength

{

}

lengthOfSide = aLength;
}

Each method name is defined in the Methods Definition Part, here 'changeLength:
(integer)aLength', where 'aLength' is a formal parameter which will give the new
value to be put in the instance variable 'lengthOfSide' defined in the Instances

11 : Note that steps 2 and 3 are not specially sequential

Chapter 2: What is Object-Oriented programming ? 11

Definition Part. This method name definition is followed by the code itself, here
'lengthOfSide = a.Length;'. (Example 2.5)

The second step is creating instances of classes. So how can we create these
instances? We can divide this problem in two, the first part concerns the matter
of creating an instance of a particular class, while the second part deals with the
problem of knowing how instances can use other objects.

Concerning the first pati, the general principle is that each class must contain
an initialization method12. The effects oL this method is that a 'live'
representation of the class -an instanc;j;v6fth; cl;~ is created in memory with
default pat·ameters. Also it returns the address of the new instance which will be
stored in a variable; this will indeed enable the user to send the instance messages.
This method can be particular for each class13 but in any case refers through
inheritance to the initialization method of the root class of the hierru·chy tree. So
when one tells the system14 to run a class, it will send a message -which contains
the selector of this initialization method- to this class.

The elements involved so far ru·e a class present in the system, a dedicated
method in this class, and a possible message sent to this class to execute this
method. Again here, we will not go further due to the fact that implementations
of this mechanism, of memory managements, of the exact 'location' of the
classes ... are different from language to language.

So from now on we have in memory an instance of the class we want to 'run'.
But, second part, what does this instance do? The first thing is it can 'play around
with itself, so executing its methods in a ce1tain order, according to the instance
itself, without anybody asking anything, so fat· this is not very useful. The second
thing, it can 'play' with other objects by creating them and coping with them in a
certain defined way: sending them messages to reach certain informations or to
change their state, etc. Thus it underlies that an existing object can act
dynamically on the system by sending classes their initialization message; this
will change the state of the whole system by incorporating new instances of
classes among the ah·eady existing ones.

To explain this a little bit more, we can extend our example 2.5 by saying that
our class Square, to be 'accepted' in our system must contain a new instance
variable called 'a.Square' -which will contain the address of the instance- and a
method called 'new', defined in the Methods Definition Part:

12 : This method is a factory method

Instance Variables Definition Part
{
Pointer a.Squru·e;
Integer lengthOfSide;
}

13 : This means that it can do particular things depending on the class' purpose
14 : By selecting an option in a menu, selecting a name in a list ...

J

Chapter 2: What is Object-Oriented programming? 12

Methods Definition Part
{
new

{
aSquare = Polygon new: 4;1 5

}

This method 'new' when execut~d16)

- creates an instance of Square in memory by allocating a certain amount of
memory to store the data of the instance; this will be done by invoking the
new method of its superclass -'Polygon new: 4', where 4 is the number of
sides of the new polygon-;

- can ask the execution of the method 'changeLength:' with a parameter to
effectively change the state of the object:

new
{

aSquare1~= Polygon new: 4;
aSquare changeLength: 10;
}

- can send a message 'save: lengthOfSide' to an already existing object in the
system -called 'aFile'-; this will result in the object aFile storing the value of
'lengthOfSide' on a disk18 :

new
{
aSquare = Polygon new: 4;
aSquare changeLength: 1 O;
aFile save: lengthOfSide;
}

- can do any other thing necessary at the instantiation of the class, like
variable initialization for example.

It is thus possible to create an instance of class Square from scratch by sending it
an initialization message that will have as effect the execution of the class' Square
'new' method. This is what is illustrated in figure 2.4 with the black 'new aiTow'
which goes from the system to the class Square and which has as effect the
creation in memory of an instance of Square. (Example 2.6)

15 : Note that this syntax was chosen for clarity and is not to be found in every language
16 : After sending a message of the type 'Square new' to the class Square
17 : aSquare is here a variable that will contain the address of the newly created object
18 : To make things easier, we take the liberty of assuming that the object identified by 'aFile' already exists in
the system

Chapter 2: What is Object-Oriented programming ?

SYSTEM
• • • • • • • • • • • •

Square

Methods
- new

•

Messages sent

Instance
of

Square

t>- : Creation of instances

Figure 2.4 Creating instances of classes

13

The third and last step is about message exchanges. How can one specify a
sequence of messages to be executed? One solution is to program this sequence
in a method to be executed later. So when the method is called, each message,
one after the other, is sent to the right object; this is what we call the static way.
The second solution is the dynamic way. When an instance of a class exists in a
system, the user19 can send it any 'legal' message20 through a special editor,
browser, list of methods name ... 21

2.2.2. Finding the right objects

To the problem of finding the right objects to describe a defined problem or to
describe accurately a part of the real world, we will not give direct solutions or
'magic tricks', but just a few suggestions among which the reader will have to
choose. But before directly considering the point of finding right objects for right
applications, we must again ask ourselves what programming is all about? We
can reply by naming three different purposes for which we use software:

- obtaining certain answers about questions over the real world;
- interacting with the world;
- creating new world representations.

In this prospect, the software must be based in any case on an analysis of this
world in terms of interesting points relevant to the application. In this optic,

19 : By user, we mean any person that has to use instances from a tenninal
20 : Message accepted by the instance
21 : Note that in certain languages, the user has to build a main program in order to use his classes

Chapter 2: What is Object-Oriented programming ? 14

understanding Object-Oriented modeling is quite simple: "the world being
modeled is made of objects" "and it is appropriate to organize the model around
computer representations of these objects" ([MEYER,1], p.51).

Usually, in this type of programming, one does not ask oneself a lot of design
questions, a programmer just picks up the external objects of the real world. So
says [MEYER,1] (p.51): "The software i,vill simply reflect these external objects"
" ... just use as your first software objects, representations of the obvious external
objects". This is the external objects optic.

A second optic, yet less creative, is the existing classes view. In this case, the
programmer tries to find what he looks for in the existing libraries of classes. If
one or many of the classes do not meet exactly his needs, adaptation is possible.
This adaptation can be done by directly changing the original class, but unless
there is a big mistake lying in the code, it is preferable not to do it; let us think of
the interesting mechanism we dispose of, inheritance, and let us use it to add or
change some methods or variables by defining a new subclass. This enables the
class to be undisturbed, thus preserving its clients against 'misfunctioning'.

Every programmer should document his classes sufficiently to explain their
existence in a system so that every other person could understand why a class was
created, in regard of the problem. This can lead another programmer to apply the ,
same techniques to his own problem. Unfortunately classes are not always well

1
1

documented, thus another optic is the evaluation one. In the first place, we can ,
analyze a bunch of classes and the world they represent, and try to discover the ·
underlying 'philosophy'. When it is found, we can just try to apply it to our case. j

We can analyze existing classes or the new founded ones, on a theoretical
design point of view : 'Are the interactions between two classes not too high?'; 'Is
the application domain of one class not too large?'; 'Is the messaging not too
complicated?'; etc... If replies can be found to these questions, a great pace can be
made towards a better design of the considered applications. "The rule 'criticize
and improve existing designs' is not itself a solution to the design problem. But
good Object-Oriented design, as good design in any discipline, must be taught in
part by apprenticeship and experience." ([MEYER,1], P.327)

Usually, something should only be f01malized into a class if it describes, in the
real world, some objects characterized by interesting operations, typical
particularities. But everyone must bear in mind that in some cases external
objects or facts must be represented or must not be, depending on the type of
application and the meaning that they yield in the environment.

The beginner must particularly beware of two nasty habits:

- designing unneeded classes
- designing classes that are not classes.

The first habit depends mainly on the experience of the programmer and the
type and complexity of the applications; the solution is getting more and more
used to this type of programming, by generating code and testing it on a design
and functional point of view. Designing classes that are not is often the case

Chapter 2: What is Object-Oriented programming? 15

when someone builds a class around a routine, a procedure, without a solid
object's base under it. As says [MEYER,1] (p.328): "In contrast with a routine, a
class should not DO something but offer a number of services (features) on
objects of a certain type. " Thus each class has to con-espond to "a meaningful
data abstraction" ([MEYER,1], p.328) to be valid.

We just saw that finding the right objects for the right applications is not so
easy, there is no magic trick. The only solution is habit, training and practice.

2.3. Differences between tradition and 'Object-Orientedness'

Now that we know a little bit better what Object-Oriented languages are all
about, what makes the difference between them and a traditional language? Why is
it that a lot of people in the programming world are venerating this new kind of
programming?

l

We will try here to underline a few of the main topics that make Object-Oriented
languages or techniques different and in some cases more advantageous22• To
introduce the subject, we will strut by looking at language implementation details; let
us first recall that in many cases, in the traditional type of programming, variables
may be local to a procedure, that procedures pass arguments of various types -
strings, numerals ... -, etc; in Object-Oriented programming the building block is the
object, an autonomous piece of information which contains some local data and local
ways to modify it. Further on, these blocks do not just interact with each other by
passing arguments -like in structured programming- but the local methods enable the
mechanism of messaging between objects. As says [TELLO, 89] (p.11): "objects \
resemble smaller computers within the host computer, each with its own data and \
code areas"; or [DUFF, 90]: "Object-Oriented technology improves software systems
because it facilitates better factoring of functionality and related data than do
traditional structured-programming techniques.".
Through the few ideas just suggested, we can deduce two important statements :

- Object-Oriented programming is different because of its MESSAGING

MECHANISM, which enables the communication via messages, referring to

methods reachable through an interface unique to each class;
- Object-Oriented programming is different because of its 'DESIGN cl

PHILOSOPHY', an object is designed around its data and incorporates fully

the methods to modify it; this is the concept of encapsulation or data
abstraction, it means that one does not have to know the implementation of
the object to ask it something; it all alone decides how it will execute the
demand, depending on its physical implementation. It is very impo1iant to
realize this at a design stage, because all the 'thinking' will be made on a
data point of view -identify the objects/ identify inter-relationships between

22 : Note that Object-Oriented languages have also disadvantages, but they do not enter the scope of this part

(}

()

Chapter 2: What is Object-Oriented programming ? 16

them/ ... - this has to be opposed to a function point of view -identify the
functions/ the inter-relationships between them/

An other concept that makes the difference is INHERITANCE. This makes the

design of programs much more modular and distributed than the one usually
incorporated in traditional programming. Indeed the programmer disposes of a
complete set of existing classes -distributed in various libraries-, a complete
rewriting of the code is thus useless; it is quite enough to write classes for the new
concepts present in the problem and inheritance will do the rest. So the fact is that
the represented part of the world is MODULARIZED -structured- into objects EASILY

MODIFIABLE without too much interaction with other objects, due mainly to
inheritance, redefinition, etc. So we are talking of EXTENSIBILITY here.

An other advantage is COMPREHENSIBILITY. Through the modularization of /
I

systems, the encapsulation, the hidden implementation details, etc, code is more :
easily read, understood. In the same way GENERALITY is yet an other point, indeed • 1 0

the different components to be built have to be very general to enable a future i !

reusability. This is not the case in some 'usual' programming languages. Thus the 1 ,
1 1

overall concept developed here, is the one of reusability -being defined by its/ ": . ,
1
.,,,

behavior, the object is easily reachable through its interface-, which is one key, i,,
1
,.,. I 1

concept of Object-Oriented programming and which is not present at this stage in the/,
1

'. ,-

more classic languages and types of programming. As says [DUFF, 90]: "OOP - ;,,:
I

Object-Oriented programming- improves code reuse by using less complex, loosely/,·, '
coupled, highly cohesive components.". You do not bother on how it is done, yo~ '
just bother on what you want to do. ,--\

We can still go further and state that 'Object-Orientedness' provides the ability to
handle complexity in a more transparent manner. Indeed an object view of the world
seems to be easier to understand and to formalize than a structured and procedural
one, it gives the programmer more liberty and more possibilities to work on big
projects. On the other hand using an Object-Oriented 'technique' does not mean
better design, one can do awful coding and designing in such languages, so in the
whole it is something that takes time to acquire but that makes life a lot easier when
mastered.

On a more technical point of view, we will stress three more points:

- one can have as many instances of a class present in a system at the same
time as memory will allow, without them interfering with each other. This
is surely not a prerogative of these types of languages, but it is a very
important factor.

- inheritance enables to deal with a greater and greater specialization of
functions, just by adding the new features, the rest is inherited. Thus we
face LIMITED REDUNDANCY in coding.

- a unifo1m interface can be provided over the widest possible range of object
types. For example, a method 'divide' can be implemented for types of

Chapter 2: What is Object-Oriented programming? 17

object like Integer and Real, so the same name can be found but the code
and the behavior are different.

We could not possibly go through all the differences between Object-Oriented
languages and the others, so we tried to underline the major ones. But to conclude
this point, let us say that Object-Oriented programming is not in the whole a
revolution, but an evolution. 'Object-Orientedness' is not 'a panacea', it has benefits
but they are not for free. To exploit it at the maximum, needs a significant
organizational support on a design point of view but also for the apprenticeship of
this type of programming. It is a whole philosophy to adopt and to master, and this
is even more important than language or application design problems. That is why
the few advantages and differences brought in the light above are vital to understand.

2.4. Summary

We tried in this chapter to produce a simple and general overview of what is an
Object-Oriented language. We started with a general presentation of the main and
most important principles of 'Object-Orientedness' :

- objects, data, methods and classes
- encapsulation, inheritance, messages.

By analyzing different ways to find the 'right objects', we exposed what a program
was in these kind of systems and in a very simple and basic way how to build one.
The steps we followed were :

- creating classes
- creating instances of classes
- specifying sequences of message exchanges among objects
- analyzing briefly Object-Oriented modeling.

We asked ourselves, after that, what made these languages really different from
the traditional ones. We underlined a few differences :

- the messaging mechanism
- the design philosophy
- the concept of inheritance
- the generality of the components
- the handling of complexity.

To strengthen the preceding point, we str·essed a few advantages of Object-Oriented
languages, among which the main ones were :

- the data abstraction

Chapter 2: What is Object-Oriented programming? 18

- the extensibility
- the re usability.

Chapter 3: A specific approach: Objective-C

We will give here an example and illustration of Object-Oriented language, by
analyzing Objective-C1• The goal of this chapter is not to give a complete and
thorough description of Objective-C but to give the reader sufficient bases to
understand the following chapters.

Objective-C is a C based Object-Oriented language designed by Brad J. Cox and
distributed by the Stepstone corporation (Productivity Products International Inc.).

We will proceed in three steps; the first of which will present the main topics of
the language (3.1), the second will show briefly how it works (3.2) and the last one
will give an example of an Objective-C program (3.3) to illustrate what will have
been said in the two preceding points. We assume from now on that the reader is
accustomed to the C language and therefore we will not explain the C code used in
this work.

3.1. Main topics of the language

Objective-C implements . the styJe of Object-Oriented programming used in
Smalltalk-80 as a set of extensiontto the C language. Thus it is a good example of
how 'Object-Orientation' can be introduced in other more conventional languages.

Objective-C is a tool to write applications involving Object-Orientation and all
the features of C itself.

It brings two things to C:

- a new data type
- a new operation.

The new data type is the object2 and the new operation is the message expression;
apart from that, Objective-C works just like a usual C compiler. As says [COX, 87]:
"Objective-C is a hybrid language that combines the object-oriented features of
Smalltalk-80 with the C language." "Since it is hybrid, it allows the programmer to
use object-oriented tools when they suit the task at hand, yet all of C remains
convenient for when hand-tools are sufficient."

One important thing to see is that Objective-C is simply a 'supplementary' layer of
C, which enables construction of classes and objects, without touching to the C
mechanisms. For example, variable types are not integrated in the language, an
integer variable is not an instance of a class 'Integer', on the contrary of Smalltalk-
80.

1 : Note that everything said here applies to Objective-C version 3.3
2 : This new data type is in the language the type 'id'. A variable of type id is in fact a pointer which is NULL or

represents the address of an instance of a class

(

Chapter 3: A specific approach: Objective-C 20

We start now with a short introduction on the language. This is followed by a
description of the Objective-C syntax and a description of the main program that has
to be built. Finally we give a small syntax summary.

3.1.1. Introduction

This part will describe in short the main characteristics of the language.

A class, in Objective-C, is the description of informations related to a group of
similar objects; this description is done in tenns of methods and instance variables
and contained in a file called Class Description File. Each class, in this
language, has only a role of description; at run-time and after their compilation,
each one will be represented in the system by a single particular object called a
factory object, that will help the system building the instances.

The second thing to be said concerns the new type added by Objective-C , id,
which is in fact a pointer to a data structure representing the object in memory.
Into each class description file, Objective-C generates a 'typedef statement which
defines it in terms of another well-known C type: pointers to structures. Each
instance of a class used in a program will be represented by a variable of this type,
which will contain the instance's address in memory. An instance identifier -
variable of type id representing an object- enables manipulation of this object in a
message expression, which is the only legal operation on an id.

In Objective-C, the instance variables represent the data -called private data
composing the private part of an instance of a class; this means that it is only
accessible by the instance itself -principle of encapsulation- and is different from
instance to instance; to oppose to the shared part, which is the pait common to
all instances of a class -this concerns the methods. But as says [COX, 87] (p.53)
concerning the private part: "it is also true that it is always possible to bypass the
Objective-C machine,y to access an object's private information directly.". The
methods are usually represented, in Objective-C, by a kind of C function, able to
contain usual C coding as well as 'message sendings' and as C functions, these
methods are able to return a value. This will be described later in further detail.

Inheritance appears in this language as a simple inheritance, in short one class
can only have one parent. It has to be noted that the root of Objective-C
hierarchy tree3 is a class called 'Object'.

When one has created his own classes, one needs to build a main program in
Objective-C that will enable the different classes to be instantiated and the
different instances to interact with each other.

3 : Called also hierarchy graph

Chapter 3: A specific approach: Objective-C 21

3.1.2. The syntax

The syntax of an Objective-C program is slightly different from a normal C
program. But before starting its description we will give a number of conventions
useful for the comprehension of the continuation. A first one concerns class
names; if they are composed of several words put in one, each of these words will
have its first letter in capital (example: MyNewClass); the same is applicable for
each method name4, except for the first word composing this name (example:
myNewClassMethod). A second convention concerns the name of a class source
file5; it will be composed of the name of the class followed by '.m' (example:
MyNewClass.m). Concerning method's return types and values, if a method has
anything useful to return, it should return it, otherwise it should return the address
of the receiver.

A class is defined in a Class Description File and is composed of several parts :

- the definition of its name and the name of its superclass;
- the definition of the instance variables;
- the definition of the factory and instance methods;

To that, one must add possibly the traditional C code with definition of functions,
of local or global variables, etc.

The description of a class begins with the definition of its name, following the
symbol '=' and followed by a colon. Immediately after comes the superclass
name, from which the new object will inherit everything; this is followed by a list
of names called the Message groups. In the case of Objective-C, the result is :

= <class name>: <superclass name> (Message
Groups)

where 'Message Groups' is a list of file names. Each of these files contains
informations concerning the return types of methods. Objective-C provides three
message groups which concern the methods implemented in the classes provided
with the language:

- 'Primitive', which concerns the methods implemented in primitive classes;
- 'Collection', which concerns the methods implemented in all the collection

classes;
- 'Geometry', which concerns the methods implemented in the graphical

classes.6

4 : Note that we use the name 'selector' in the case of a message and the name 'method name' in the case of a
method definition
5 : Also called Class Description file
6 : For further infonnations on these classes, the reader will consult [STEPSTONE, 88]

Chapter 3: A specific approach: Objective-C 22

As the user writes code, he has to use his own message group; he only specifies it
and the system will create it if it is non-existent. It is better to always specify the
message group 'Primitive', as one probably always uses messages from the built-in
Objective-C library. 'Message Groups' is of type:

<User Message Group name>[, <Other Message
Group>]*7

For example, if we define a class 'MyObject', we will have:

= MyObject: Object (MyGroup, Primitive)

where 'MyObject' is the name of the new class and 'Object' its superclass.
(Example 3.1)

Note that all the principles exposed here and below will be further illustrated in
point 3.3. Note also before going further that C comments are allowed, as the
Objective-Cones, introduced by//.

Just afterwards comes the definition of the private data or instance variables:

{

}

For example:

{

<type> <variable name> [, <variable name> J*;
<type> <variable name> [, <variable name> J*;

int aNumber, anOtherNumber, c, d;
id anObjectAddress;

(Example 3.2)

As said earlier, in Objective-C, a method is a sort of C function in which can
be combined some C programming and Object-Oriented messaging. As said in
the previous chapter, there are two types of methods: factory methods and
instance methods. The first ones are methods describing the behavior of the class
and designed to create an instance of this class, they are prefixed by a '+'; the
second ones are methods used to consult or modify the state of an instance of a
class and are prefixed by a '-' in Objective-C. Methods can have zero, one or
many arguments. Note that it is compulsory to specify the type of each argument

7 : From now on, * means that the preceding item can be repeated; [] means that the items between the square
brackets are optional, the reader must not confound the latter with the message-sending syntax defined later

Chapter 3: A specific approach: Objective-C 23

just before its name -between parenthesis-, like in C, except if the argument is of
type 'id'.

A method name can be composed of a unique keyword :

- <keyword> 8

For example :

- myMethod (Example 3.3)

A method name can have also one keyword with one argument, with the type
of the argument preceding its name :

- <keyword>: (<type>) <argument>9

Examples of method names as defined above, are :

- numberOfSides: (int)aNumber
or
- objectPointer: anAddress

In the first case, the argument passed to the method is of type integer; in the
second case, the argument is of type id. (Example 3.4)
It is very important not to leave blank spaces between a keyword and the colon in
this keyword, if any. Indeed, this colon is entirely part of the keyword and
changing its place will have as result the system interpreting the method name
completely differently. For example 'myMethod:' is entirely different of
'myMethod :'. On the other hand one can insert as many blank spaces as wanted
between a keyword and its argument.

A method name can also have any necessary combination of keywords and
arguments:

For example :

- <keyword>: <argument>: <argument>
or
- <keyword>: <argument> <keyword>: <argument>
etc, ...

- coordinate: (int)x: (int)y
or

8 : The starting minus could be a plus, depending on the method desired; this will be true for each syntax
illustration
9 : The type of the argument is not compulsory if it is of type 'id'

Chapter 3: A specific approach: Objective-C

- coordinateX: (int)x coordinateY: (int)y
etc, ...

where in the latter the method name is 'coordinateX: coordinateY:'.
(Example 3.5)

24

The methods are defined like C functions; if the type of the returned value is
different from the type id, it must be specified before the method's name, this can
be applied to each type of method name definition given above. A method
definition is thus :

- [(<return type>)} <method name>
{
Method's Body
}

where 'Method's Body' is C code with possibly Objective-C messaging. To
illustrate this, we can extend the last example of example 3.5, specifying that the
two arguments passed have to be stored in two local variables, 'varX' and 'varY',
and among other things their sum as to be returned. This gives a very simple
example:

- (int)coordinateX: (int)x coordinateY: (int)y
{

int varX, varY, sum;/* line 1 */

varX = x; /* line 2 */
varY = y; /* line 3 */
sum= varX + varY; /* line 4 */

return sum; /* line 5*/
}

The C variables local to the method are defined at line 1. The arguments are
stored in the local variables, at lines 2 and 3. The sum of the two variables is
'done' at line 4. This sum is returned at line 5.
Now that we saw a little bit further the syntax of a method definition, we can say
that method names composed of a single keyword and no arguments are usually
used to identify methods which are designed only to return the value of specific
instance variables or to perform an operation on instance variables without
changing them to new external values10• (Example 3.6)

The main differences with a C function are that the name of the method need
not be unique across several classes, that methods are not called by name but
indirectly by messaging, that methods must address an additional space which is
the private data inside the object.

10 : By new external values, we mean a value given from the outside of the instance by the user of the method,
by mean of an argument

Chapter 3: A specific approach: Objective-C 25

To send a message, one just specifies the receiver of the message and then the
selector with the right arguments :

[<receiver> <selector>]; 11

In the case of a class, '<receiver>' is replaced by the class name which identifies
the class uniquely in the system. In the case of an instance, '<receiver>' is
replaced by the instance address.
For example :

aSum = [oneMyObject coordinateX: 5
coordinate Y: 1 O];

where 'oneMyObject' is a variable of type id containing the address of an
instance12 of the class 'MyObject' to which the message must be sent; where
'coordinateX: 5 coordinate Y: 10' is the selector.
In this case, the value returned by this method 'coordinateX: coordinateY:' after
execution, is stored in a variable 'aSum' that can be a local C variable, a global C
variable or an instance variable. (Example 3. 7)

The following is also valid in message-passing:

[[<receiver> <selector 1 >] <selector2>];
or
[[[<receiver><selectorl>] <selector2>]<selector3>];
etc, ...

In this case, the return value of the method identified by 'selectorl' must
imperatively be of type id and must be the address of the instance to which one
wants to send the message composed of this address and 'selector2'. It is in fact
equal to:

rec = [<receiver> <selector 1>];

followed by :

[rec <selector2>];

where 'rec' is an id variable which receives from the execution of the method
identified by 'selectorl', the address of an instance to which the message '[rec
<selector2>]' is sent afterwards.

11 : Note that in this case and for every messages, the [] are integrally part of the syntax and are thus obligatory,

as for the items between them. Note also that the semicolon is obligatory in Objective-C, following the same

rules as in C
12 : We will see later that this address is the value returned at the creation of the instance of the class

'MyObject', by the initialization method.

Chapter 3: A specific approach: Objective-C 26

So this syntax is valid only in the case of the 'selector(n-1)' method return value
being an id, so that 'selector(n)' can be sent to the instance identified by this id.
For example :

[[oneMyObject myMethod]
coordinateX: 5 coordinate Y: 10];

where the method identified by 'myMethod' performs a set of actions on the
instance identified by 'oneMyObject' AND returns a value of type id which

identifies an instance to which will be sent the selector 'coordinateX: 5
coordinate Y: 1 O'. (Example 3.8)

One last thing we want to say about the syntax is that each class definition will
end with the sign: '=:'.

3.1.3. The main program

When the user has defined several classes, he has to build a main program to
make possible instances of these classes interact with each other. The overall
aspect of this program is very much the one of a traditional C program, except for
paiticular details. Note that a simple example will also be given in point 3.3.

A program starts with an equal sign followed by the definition of the message
groups that have to be used in the program :

= (Message Groups)

The message groups that have to be specified ai·e the ones used in the different
classes that will be used in the program.
For example :

= (MyGroup, Primitive) (Example 3.9)

Then comes the definition of the body of the main program itself, which is
done exactly in the same manner as for a C program. As said in [STEPSTONE,
88] (p. 3.10): " ... the only difference between a C program and an Objective-C
program is that messages are sent in Objective-C programs.". One remark that
has to be made is that the methods must be made available so that the system
knows which classes are used. This is made with a C 'extern' declaration, using
the id type, as follows :

extern id <name of class> [<other class name>]*;
For example :

extern id MyObject; (Example 3.10)

Chapter 3: A specific approach: Objective-C 27

The last things that must be enclosed after the definition of the body of the
main program are two clauses. The first one is '@classes()' and the second one is
'@messages()'. These clauses are necessary to the compiler so that it can
combine the classes and the messages used, to build tables so that it can reference
them. One just has to add these two lines after the program :

@classes (List of used classes);
@messages (List of message groups);

where 'List of used classes' is a list of all the class names used, separated by
commas and enclosed in parenthesis; 'List of message groups' is a list of all the
message groups used, also separated by commas and enclosed in parenthesis.
For example :

@classes(M yObject);
@messages(MyGroup, Primitive); (Example 3.11)

Note that the file containing these two clauses and thus the main program must be
compiled AFTER all the classes used have been compiled.

3.1.4 Syntax summary for a class definition

= <class name>: <superclass name> (Message Groups)
{

}

<type> <variable name>[, <variable name>]*;

<type> <variable name>[, <variable name>J*;

+ [(return type)] <method name>
{
Method's Body
}

- [(return type)] <method name>
{
Method's Body
}

-· -.

where 'Message Groups' is :

<User Message Group name>[, <Other Message
Group>]*

Chapter 3: A specific approach: Objective-C

'<method name>' is :

<keyword>
or
<keyword>: (<type>) <argument> 13

or
- <keyword>: <argument>: <argument>
or
- <keyword>: <argument> <keyword>: <argument>
or any necessary combination of keyword and arguments.

And 'Method's Body' is C code with eventually Objective-C messaging.

Objective-C messaging takes the shape of:

[<receiver> <selector>]; 14

or
[[<receiver> <selectorl>] <selector2>];
or
[[[<receiver><selectorl>] <selector2>]<selector3>];
etc.

28

We will just recall here that a main program has the same structure as a C
program except for the definition of message groups at the beginning :

= (Message Groups)

except for the declaration of the classes used, inside the program :

extern id <name of class> [<other class' name>]*;

except for the possible Objective-C messages present in the code and for the
clauses ending the file of the program :

3.2. How it works

@classes (List of used classes);
@messages (List of message groups);

We will try to see in this part, how the language works without entering the
details.

13 : The type of the argument is not compulsory if it is of type 'id'
14 : Note that in this case, the [] are integrally part of the syntax and are thus obligatory, as for the items
between them.

Chapter 3: A specific approach: Objective-C 29

This part takes in concern the compilation and the creation of instances. It is
followed by an explanation concerning messages, inheritance and methods. Finally
we introduce the notions of 'self and 'super'.

3.2. l. Compiling

The compilation of an Objective-C program or a class description file by the
Objective-C compiler is done in several stages. First we must say that when
compiling, Objective-C uses a script to control the compilation and the linking:
objcc15•

Objee-tive-C:
Compiler

Class
Descrlpdon

File

CODE

Figure 3.1 The Objective-C
compiler composition

A first stage concerns a C Preprocessor which translates statements like
'#include' or '#define' into C source; concretely, objcc transforms the '.m' files into
'.c' files with the help of the Objective-C compiler.

The second stage concerns an Objective-C frontend, which checks the accuracy
of the Object-Oriented code. Then the third stage is the compilation of the
generated '.c' files into assembler '.o' files by the C compiler into assembler source
code16 during a third stage. (see figure 3.1, inspired of [COX, 87]).

15 : This script works very much like the C script: cc. The reader will refer to [STEPSTONE, 88] to have all the

existing compiling options for objcc
16 : Note that after this, the assembler code is compiled into binary by an assembler

Chapter 3: A specific approach: Objective-C 30

3.2.2. Instances

An instance of a class is created from a factory object. This factory object is
the result of the compilation of a class; it is its representation in the system. The
user must recall here that a factory object is a real object which purpose is to
provide a way to create instances of a class. We will only say here concerning
compilation of classes that at compile time, two tables are created, one for the
instance methods and another for the factory methods. These tables contain a
pointer to the superclass -so that the inheritance tree can be followed- but also all
the pointers to the C functions representing the methods.

At an instance creation request, the factory object knows the amount of bytes
to allocate in memory. This memory block will contain a part from the data
structure and will constitute the private part of the instance; it will also contain a
pointer to the 'owning' factory object containing the methods -both instance and
factory methods. This method part contained by the factory object will be called
the shared part of the instance, because shared by all the instances of one same
class (see figure 3.2). Note that a factory object, as it is an object like every other
one, has also a private and a shared part composed essentially of respectively the
instance and factory methods of the class.

A faetory Objoot

Instance
Variables

Private
Part

Private
Part

(

Instance
Methods

An Instance

Shared
Part

Factory
Methods

Figure 3.2 Link between
instances and factory objects

But we could ask ourselves how can objects be created in the system when
nothing already exists? First we saw that when the whole system is running, all

Chapter 3: A specific approach: Objective-C 31

the classes exist under the shape of factory objects. Their purpose is to provide a
way to create instances of their class, they are automatically present and available
at run-time, because built by the compiler and the linker. So all the material is
ready to build instances, one just has to send to the factory objects the right
messages. Secondly, an instance of a class is built by sending the class a message
referring to a factory method; the result will be the allocation of memory, the
initialization of this memory and the 'return' of the address of the newly created
instance. This address is stored by the 'caller' in an id variable; only at this stage
does a new instance of the class exist. This method allocates memory for the new
object's private part ONLY, but also initializes the link between this part and the

already existing shared part (see figure 3.2).
This initialization message contains a selector identifying a factory method

which is implemented by the class one wants to instantiate or which is inherited
by the class one wants to instantiate. In any case the method identified by this
selector refers to the 'new' method owned by the root factory object -'Object'- and
inherited by any factory object.

3.2.3. Messages

Once a user has an object's identifier, he can send this object messages. The
principle is similar to calling a procedure, except that here dynamic binding is
involved. When a message is specified in a program, it is in fact translated by the
Objective-C preprocessor into a call to a function :

_msg() or _msgSuper() 17

in which the first parameter is the receiver of the message and the rest is the
message selector. In general, the class receiving the message or the class linked
to the instance receiving the message contributes to furnish a table that the routine
searches to determine how the object implements the selector. The table in
question is composed of the selector of every message that the object knows how
to perform and a pointer to the procedure -or function- that implements this
message.

3.2.4. Inheritance

Inheritance has multiple aspects, in the sense that one can inherit instance
variables, instance methods or factory methods.

As a subclass inherits everything of its superclass the variables present in the
private part of an object are the duplication of the vruiables in the private prut of
its superclass, plus the newly defined ones. At least every class will inherit the
only instance variable contained in the root class18 -variable 'isa'-, which links
every object to its shared part19•

17 : The difference between these two functions is explained later
18 : The class 'Object', as it is the root of the inheritance tree
19 : In other words, which contains the address of its shared part

Chapter 3: A specific approach: Objective-C 32

20: _msg()

Concerning the inheritance of instance methods, the shared part is not
represented by one sole block containing the local and inherited information,
instead the inherited information is attached to the eventually new one by linking
the shared parts together. Each shared part has a table composed of names and
implementation for each method. The messager function20 only, has access to
these links and disposes of two or more arguments, the receiver's identifier and
the message selector. This function takes the receiver's identifier to find the
private part and follow the 'isa' variable to the table of methods and
implementations. If the selector is recognized in this table, the implementation
identifies the C function to be executed. If this fails, the search is continued
across the superclass shared part table by following the specified link to the next
inherited shared part, and so on until it finds something or reports an error
because ending the inheritance chain without success.

The case is the same for the inheritance of factory methods. All this seems
complicated until one realizes that each object has a private and a shared part and
that this last one is a chain of inherited subpruis.

3.2.5. Methods

Looking at methods, we can see that the compiler builds a factory object by
generating its two parts -shared and private- from information provided by the
programmer, essentially through the method definitions. Each of these definitions
contain several informations :

- whether it is an instance or a factory method
- the return type of the method;
- the selector -or method name-, composed possibly of argument names with

their types;
- the method's body.

Note that inside any method, one is able to access a vru·iable 'self that identifies
the object that performs the method. This is detailed later.

We talked earlier about a factory object knowing the amount of memory to be
reserved for an instance. In fact when a class is compiled, a variable is created in
the private prui of the factory with as value, the amount of memory required to
hold the class' instance vruiables. Then, when a factory method is called in a
particular class, it stores in the first word of the new block of memory reserved
for the new instance the address of the concerned factory object and then returns
the address of this block to the caller as the id of the new object. So a new
instance has been created -through the C 'alloc' function-, initialized to default
values and is thus fully operational as a new, fully functional, instance of a class.

Chapter 3: A specific approach: Objective-C 33

3.2.6. Self and Super

Before going further and illustrating what we have said until now, we must
introduce two new notions: self and super.

Methods are called by sending a message to a receiver. The messaging routine
chooses the proper implementation for the message and invokes the C function
with a formal parameter, 'self, that contains the address of the object receiving the
message and enables the system to remember to which object the message was
being sent.

Instance variables within an object are described as a C structure
declaration21 • The methods can access these variables by Objective-C looking in
the method body for the instance variable names and replacing them by a
structure member reference. So the variable 'self is implicitly used each time an
instance variable is accessed in the code. In short, it is a predefined object
identifier designating 'a priori' the receiver of the message and enabling access to
the private data of this object in the body of a method. As says [F AZARINC, 89]
(p.32): "The variable self has been reserved to always contain the address of the
object receiving the message."

Sometimes it is necessary to access directly a method in the superclass, for
example when a method is inherited but oven-idden in the cun-ent class. Unlike
self, 'super' is not a variable, it is really, as says [COX, 87] (p. 83), "a syntactic
device". Its effect is to 'short-circuit' the messaging process, by calling the
function '_msgSuper()' in place of '_msg()'. What changes is the first argument of
the function; it is no longer the receiver of the message, but the address of the
shared structure in which the selector search should begin. So the pseudo
variable super is defined to cope with the situation where the message search
begins in the object's superclass 'method table' and not in its own.

3.3. Illustration through an example of Objective-C program

We tried in the two preceding points to give a general review of Objective-C in
terms of concepts and principles found in nearly every Object-Oriented languages.
To illustrate these points, we are going to develop a very simple example of class
definition based on example 2.6 and with a few added 'items'.

Let us create a class Polygon:

=Polygon: Object (MyGroup, Primitive)/* line 1 */

21 : struct _PRIVATE

Chapter 3: A specific approach: Objective-C

/******************* Instance variables definition Part***************/

{
int numberOfSides; /* line 2 */

}

/****************** Factory methods definition Part****************/

+new: (int)sides /* line 3 */

{
self= [self new]; /* line 4 */

numberOfSides = sides; /* line 5 */

return self; /* line 6 */

/****************** Instance methods definition Part****************/

-(int)howManySides

{
return numberOfSides;

}
-· -.

/* line 7 */

/* line 8 */

/* line 9 */

/******************* End of class Polygon definition ***************/

And another class Square, subclass of Polygon:

= Square: Polygon (MyGroup, Primitive) /* line 10 */

/******************* Instance variables definition Part***************/

{
int lengthOfSide;
char stringSquare;

/* line 11 a*/

/* line 11 b */

/****************** Factory methods definition Part****************/

+new: (int)aLength /* line 12 */

{
self= [self new: 4]; /* line 13 */

lengthOfSide = aLength; /* line 14 a*/

strcpy(stringSquare, "This is a Square"); /* line 14 b */

return self;
}

/****************** Instance methods definition Part ****************/

- changeLength: (int)aLength

{
lengthOfSide = aLength;

/* line 15 */

/* line 16 */

34

(;

Chapter 3: A specific approach: Objective-C

return self;
}

- (int)howManySides

{
int sides;

/* line 17 */

/* line 18 */

sides= [super howManySides]; /* line 19 */
printf ("%sand it has %d sides ! ! !", stringSquare, sides);/* line 20 */

return sides;
}

-· -.
/******************End of definition of class Square******************/

35

A few comments are necessary. At line 1 in our example, comes the definition of
the name of the new class, 'Polygon', and the specification of its superclass, 'Object',
immediately followed by the definition of the message groups, '(MyGroup,
Primitive)'.

At line 2 one finds the instance variable definition part, with 'numberOfSides'
defined as an integer. Note that as standard C can be used, the programmer can
define global C variables, define some constants, define some local variables inside
methods and so on, just as in a normal C program.

At line 3 starts the definition part of the factory methods. Note that no order is
imposed to define factory or instance methods, but by convention one will first
define all the factory methods and then the instance methods. So line 3 defines a
factory method -'new:'- for this class, with an integer argument, 'sides', which
represents the desired number of sides of the new instance of Polygon. Line 4 is
where the instance is really created. In '[self new]', 'self designates the Polygon
factory object, in other words the receiver of the message and 'new' designates the
method invoked, inherited from 'Object'; the result of this message will be the return
of the address of the new instance created. This address will be stored in 'self, but
could indeed be stored in another variable. This is a principle adopted by many
Objective-C programmers so that the 'self variable references directly the instance of
a class.

Line 5 initializes Polygon's only instance variable with the value of 'sides'. Line 6
specifies the returned value of this method, which is 'self as this method has nothing
important to return. This will enable imbrication of messages, as said in point 3.1.2.

With line 7 starts the instance methods definition part and the definition of
method 'howManySides'. This method has no argument and is only designed to
return the value of an instance variable, 'numberOfSides' which is an integer (see line
8); this is why the returned variable type is specified before the method name. Line
9 means that the class definition is finished.

Line 10 starts the definition of another class with the definition of its name -
'Square'- and its superclass which will be here the class Polygon. This is followed by

Chapter 3: A specific approach: Objective-C 36

the definition of the message groups. Line 11 a and line 11 b define the two instance
variables of class Square: 'lengthOfSide' and 'stringSquare'.

At line 12 starts the definition part of the factory methods. It defines a factory
method for this class, with an integer argument, 'aLength', which represents the
desired side length of the new instance of Square.

Line 13 is where the instance is created. In '[self new: 4]', 'self designates the
Square factory object, 'new:' designates the factory method inherited from Polygon
and 4 is the desired number of sides of the polygon; the result of this message will
be the return of the address of the newly created instance. This address will be
stored in self.

Line 14 a initializes Square's instance variable -'lengthOfSide'- with the value of
'aLength' and line 14 b copies into Square's second instance variable -'stringSquare'-,
the value "This is a Square".

Line 15 starts the instance methods definition part by defining the method
'changeLength' which has one integer argument -'aLength'. This argument represents
the desired side length to be stored into lengthOfSide. Line 16 stores the argument's
value into the instance variable.

Line 17 starts the redefinition of Polygon's method 'howManySides'. Line 18
defines a local C variable named 'sides' which is an integer. Line 19 stores into the
local variable 'sides', the value returned by the method 'howManySides' in the
superclass. '[super howManySides]' causes the message to be directly sent to the
superclass. Line 20 prints a string on the screen composed of Square's instance
variable 'stringSquare' and of the local variable 'sides'.

Now that we have created our two classes, let us build a main program to test
them:

= (MyGroup, Primitive) /* line 1 */

/********************Main program to test Polygon and Square****************/

main()

{
extern id Polygon, Square;
id aPolygon, aSquare;
int numSquSides;

aPolygon = [Polygon new: 5];
aSquare = [Square new: 1 O];

/* line 2 */

/* line 3 */

/* line 4 */

/* line 5 */

/* line 6 */

/* line 7 */

printf ("This is a Polygon with %d sides \n\r", [aPolygon howManySides]);
/* line 8 */

numSquSides = [aSquare howManySides]; /* line 9 */

}
/********************End of the program*******************************/

@classes (Polygon, Square) /* line 10 */

Chapter 3: A specific approach: Objective-C 37

@messages (MyGroup,Primitive) /* line 11 */

/********************End of the definition of the test program***************/

Line 1 declares the message groups to be used in the program, of course one must
take in consideration the message groups of the different classes used in the program.
Here the message groups are 'MyGroup' and 'Primitive'.

Line 2 starts the main program as any C program. Line 3 is the line where the
factory objects are made available; in our case we use the classes Polygon and
Square.

Line 4 declares two local variables that will be used to point at instances,
respectively of Polygon and Square. These two variables are 'aPolygon' and
'aSquare'. Line 5 is also the declaration of a local variable -an integer-,
'numSquSides', that will contain the number of sides of the instance of class Square
pointed at by aSquare.

Line 6 contains a message which creates an instance of class Polygon; it will also
have as effect, if we look at the method 'new:' in Polygon, the 'storage' of the value
5, passed as parameter, into the instance variable of Polygon: 'numberOfSides' and
the return of the address of the newly created instance. This address will be stored in
the variable 'aPolygon'. Note that the receiver is explicitly specified -'Polygon'-,
because we are not currently in a class -we are in a program- and thus the variable
'self can not be used, the system not knowing at which factory object this variable
would be pointing.

Line 7 creates an instance of class Square. By calling the method 'new:' of class
Square, this will create a Polygon of 4 sides, store the value 10, passed as parameter,
into class Square's instance variable 'lengthOfSide' and copy the string 'This is a
Square' into class Square's other instance variable 'stringSquare'.

At line 8, one can see that in the message '[aPolygon howManySides]', aPolygon
is the receiver of the message, so we are sending the message to the instance of
Polygon created above and one can see also that the selector is 'howManySides',
causing this method to be executed. The overall result of line 8 is the printing on the
screen of the string 'This is a Polygon with %d sides', where '%d' will be replaced by
the value returned by the message '[aPolygon howManySides]'.

At line 9, one can see that in the message '[aSquare howManySides]', aSquare is
the receiver of the message, so we are sending the message to the instance of Square
created above and one can see also that the selector is 'howManySides', causing this
method to be executed. This execution will cause the message '[super
howManySides]' to be sent to aSquare's superclass, the result of this message-passing
to be stored into the local variable 'sides' and the suing "%sand it has %d sides ! ! !"
to be printed, where '%s' will be replaced by aSquare's instance variable
'stringSquare' and %d by the value of 'sides'. The overall result of line 9 will be the
'storage' of the result of the message-passing -'[aSquare howManySides]'-, which is
the number of sides of a square, into the variable 'numSquSides'.

Line 10 and 11 are required by the Objective-C compiler to be able to combine all
the classes and messages used in a program so that it can build accurate tables to
reference them. Line 10 defines the classes used in the program: Polygon and

Chapter 3: A specific approach: Objective-C 38

Square. Line 11 defines the message groups used in the program: MyGroup and
Primitive. (Example 3.12)

We can see through this example how a class definition is really structured and
how all the principles of Object-Oriented languages apply to Objective-C :

- ENCAPSULATION : to access the instance variable 'numberOfSides' -in

Polygon-, one must use method 'howManySides'.
- INHERITANCE : class 'Square' inherits of the instance variable

'numberOfSides' of Polygon and the method 'howManySides' which is
however overwritten in this class. Class 'Polygon' inherits of factory
method 'new' from its superclass 'Object'.

- MESSAGING CAPABILITY : messages can be found in the two classes, as

'[self new]' in method 'new:' of class Polygon or as '[super howManySides]'
in method 'homManySides' of class Square, etc.

This example is very simple but provides a good view of a class structure, of the
utilization that can be made of classes and finally a good illustration of what has
been said about Objective-C in the preceding points.

3.4. Summary

In this chapter, we reviewed quickly an Object-Oriented language: Objective-C.
With the presentation of the main topics we saw that it was an extension of the C
language, Smalltalk-80 based and bringing to C two things :

- a new data type, id
- a new operation, messaging.

We saw also that in Objective-C, the classes are merely the description of
informations related to a group of similar objects and that they are represented at
run-time by what is called a factory object. This object is unique in the system, is
also composed of a private and a shared part and its goal is to produce instances.

Concerning the instances, they are composed of a private part, the data specific to
each instance, and a shared part composed mainly of the methods shared by each
instance -methods inherited or newly built.

We described the main points of the syntax and tlied to explain the functioning of
this language :

- COMPILATION is carried on through three different steps.
- INSTANCES are built 'using' factory objects. These objects are built at

compile time and are always present in the system. They keep the necessary
informations to be able to create the instances.

- MESSAGES are implemented using two C functions, _msg() and

_msgSuper().

Chapter 3: A specific approach: Objective-C 39

- SIMPLE INHERITANCE concerns instance variables by duplication of the

superclass variables in the object's private part; it concerns also instance
methods and factory methods, by linking the object's shared pati to the
shared part of its superclass.

- the 'new' METHOD reserves a certain amount of memory -known from a

variable kept in the factory object's private pait- and places the address of
the factory object at the beginning of the block, before returning the address
of this block.

After that we introduced two new notions :

- self : an object identifier designating 'a priori' the receiver of the message
and enabling access to the private data of this object in the body of a
method.

- super : a pseudo-variable defined to cope with a situation where the
message search begins in the object's superclass 'method table' and not in its
own.

To finish we gave a short example to illustrate what had been said.

Chapter 4: Looking at RMG

Our goal in this chapter is to look at an Object-Oriented environment: RMG (Real
time Measurement Graphics). Designed by Hewlett-Packard laboratories, RMG is
used in a European project called COLOS (COnceptual Learning Of Science), whose
goal is to build simulation tools for Computer Assisted Learning (CAL).

In the first place we see what the COLOS project and RMG imply (4.1), stressing
the fact that RMG can be seen as a Graphical User Interface. Then we try to lead the
user in his first steps in the RMG environment (4.2). The last point describes more
in depth two RMG applications (4.3) 1•

4.1. The COLOS project and RMG

We are going to describe briefly the ins and outs of the COLOS project and
RMG.

The COLOS (COnceptual Learning Of Science) project is a European project
initiated and sponsored by the Hewlett-Packard company. It gathers approximately
ten European universities whose goal is to create graphical, interactive simulation
applications in the RMG (Real time Measurement Graphics) Object-Oriented
environment. These applications are designed to be used mainly in universities as
pedagogical tools for teachers and students. The applications concern fields as
different as electricity, integrated circuits design, computer communications, etc.

The software base of the project is the RMG environment. It was written in
Objective-C by Charles Young2 and cmrently runs on a Hewlett-Packard workstation
-9000/360 series- with HPUX (UNIX) as operating system. This environment is
designed to be highly graphical and highly interactive, offering to the user a great
suppleness of utilization.

RMG can be seen as a Graphical User Interface, as we see in a first point. But it
can also be seen as an application development platform, as we see in a second point.

4.1.1. RMG as a Graphical User Inte1face

RMG can be seen by some users merely as a Graphical User Interface -GUI
designed to run applications. GUI usually implies for the 'common user':

- using a mouse;

1 : The reader will notice from now on that very few authors are quoted. This is due to the near complete lack of
books and works on the RMG environment. The following work done on the RMG environment is the result of
our working experience in this environment and is thus 'non-exhaustive'
2 : Charles Young, Hewlett-Packard research laboratories, Palo Alto, California, USA.

Chapter 4: Looking at RMG 41

- coping with various windows3;

- clicking4 with the mouse on icons representing programs or files;
- coping with roll-down or pop-up menus;

all this on the display screen.

RMG fully enables all this5• It is a mouse-driven environment; so once inside,
the user is able to control it using a two buttons mouse, represented on the screen
by an icon6 -usually a hand or an anow.
The actions that can be performed with the mouse are among others :

- clicking on objects present on the screen -icons, boxes, etc-;
- dragging7 the mouse -to move an object on the screen for example.

Windows are also present in RMG. Each application that runs in RMG runs
inside an independent window, enabling the user to run various applications at the
same time, in different windows.

Icons are omnipresent in RMG. They usually represent two different things:

- an application's window that the user does not want fully present on the
screen at the cunent moment;

- an action (making some text scroll up or down in a text editor, enlarging an
application's window, etc) that can be pe1f01med if the user clicks on this
icon.

These icons take the shape of little squares with a drawing or a string inside them.
Menus are something that the user can also find in RMG. The principal reason

to this is that, as we explain in a following point, menus are one of the
communication means that enables the user to interact with the environment and
its applications. For example, when the user enters the environment and wants to
start a particular application, he has to select an option in a menu.

Note that it could be a very interesting thing to compare RMG to other GUis
like 'X Window' for example8 and could be the subject of a future work.

In regard of what was just said now, we can state that the four aspects
reviewed above and concerning a GUI are to be found in each RMG application.

3 : By 'window', we mean a rectangle displayed on a part of the screen representing and containing a running
application
4 : By clicking we mean depressing one of the mouse buttons, while the icon representing the mouse is
positioned on an object present on the screen
5 : The reader will see in a following point how to use RMG as a Graphical User Interface only
6 : We call this particular icon the 'RMG cursor'
7 : By dragging we mean depressing one of the mouse buttons and holding it down while moving the mouse
8 : This is not done in this work as it is outside its scope and because of our lack of knowledge concerning the X
Window environment

Chapter 4: Looking at RMG 42

We talk later about developing an application in RMG and we see that a certain
number of classes shipped with the environment enable the programmer to create
these graphical screen objects -icons, menus, etc- and enable the programmer to
include in his applications every mouse functionality, allowing them to be highly
'mouse-interactive'.

Another important parameter in a GUI is the graphical speed. It brings many
advantages :

- it enables the user not to wait too long for the graphical information;
- it enables the creation of applications using more complicated graphics;
- it enables the creation of applications using graphical animation;
- it enables the creation of applications which 'redrawing time' is faster than

the user perception time.

The particularity of RMG on this point is that it is able to redraw the whole screen
and to manage the graphical memory at a very high speed9; this enables the use of
complicated graphics in the applications and in the general graphical presentation
of the environment. This is of course a big advantage for the creation of COLOS
simulation applications using animation.

To conclude this point, we just want to say that RMG is reinforced in its role
of GUI by the gist of the COLOS project itself, which is the creation of
simulation applications to be used in the RMG environment possibly by non
programmers. This is supported by the presence of many graphical applications
designed by the Hewlett-Packard laboratories and the members of the COLOS
project. Indeed, one can find various tools like a text editor or a graphical editor.
But one can mainly find various simulation programs as 'Particle Physics' or
'Elstat' which simulate particles interaction or electrical fields interaction,
'ICDesign' which simulates the elaboration of an integrated circuit design, etc.

4.1.2. RMG as an application development platform10

The second aspect of RMG is the application development platform aspect.

As RMG is an Object-Oriented environment and was created with the
Objective-C language, the development of applications follows an Object
Oriented 'philosophy'11 • Nevertheless, we can say that the creation of an
application in the RMG environment can be summarized into three steps :

- creation of the classes that composes the application;

9 : Due mainly to the management of the graphical memory by assembler routines
10 : Note that everything about the creation of an application is fully detailed in a following chapter
11 : Except for some little changes, we will see later that it uses Objective-C's syntax

Chapter 4: Looking at RMG 43

- compilation of these classes;
- incorporation of the application in the environment.

For the moment we do not have to know how an application and its classes are
created, it is explained later. We just have to know that RMG enables the user to
create applications outside the environment or inside the environment using some
of its applications. If the applications are developed inside the environment,
various tools are offered to the programmer. Among these tools, the basic ones
are editors -both text and graphical editors- and a certain number of browsers.
These browsers are very useful tools that enable the user to consult a class' code,
to obtain the address of an instance or to obtain the address and value of all its
instance variables, etc. One also finds :

- a menu tool which enables the user to easily create an application's menu;
- a prototyping tool which enables the user to create applications by

graphically defining scenarios under the shape of flow charts. The various
objects in the flow charts am controlled by attaching algorithms or
equations to each scenario;

- a program interpreter that enables the user to utilize RMG classes without
compiling Objective-C code.

RMG also provides the user with a certain number of classes. First the user
disposes of all the classes present in the Objective-C libraries. Among these
Objective-C classes, one can find classes designed to cope with arrays, graphical
objects, etc. Secondly the user disposes of all the classes present in RMG. These
classes are mainly designed to create graphical objects such as squares, boxes,
windows but also strings, menus, etc.

4.2. First steps in RMG

In this part we are going to try and lead the user in his first steps in the RMG
environment.

One thing one needs to recall before starting RMG is that nearly everything is
mouse-driven. This means that 90% of the things done by the user are mouse
directed, the 10% left being mainly some text typing, imperatively done from the
keyboard.

'env.out' is the name of the executable file to be typed by the user at the Unix
prompt in order to start the RMG environment. This file is located in the
'RMG/ENVIR' directory. After typing 'env.out', hitting the 'Return' key and waiting
a few seconds the screen goes blank and the user is able to see the RMG cursor12 by
moving the mouse up. Says [FAZARINC, 89] : "The appearance of the hand-cursor
indicates that you have a working RMG environment literally at your fingertips."

12 : The cursor takes the shape of a hand

Chapter 4: Looking at RMG 44

From now on the user is inside the RMG environment, everything depends on his
actions, on his requests. The user is not prompted to reply any questions, no window
is created without him asking for it. In other words the user has got the initiative.

At this stage the user is not very far; no application is running; nothing appears on
the screen except the RMG cursor. By depressing the right-hand side button of the
mouse the user sees a pop-up menu appear on the screen -at the cunent location of
the RMG cursor-, this is the environment's main menu. As we said earlier, menus
are one of the main means of action in the RMG environment and each application
has its own particular one13 • While holding down the right button in order to make
the menu appear and pushing the mouse up and down, one can see the RMG cursor
and the highlights of the menu items14 following the motions of the mouse. Now,
when one wants to select something from a menu15 , one depresses the right-hand
side button to make the menu appear, moves the mouse until the desired menu item
is highlighted and releases the button; the action associated with the menu item is
performed. Note that if the number of menu items exceeds the length of the menu,
non-displayed menu items can be reached by moving the highlights of the menu
items towards the top or the bottom of the menu, the hidden menu items appear with
the menu scrolling up or down. Note also that to access the menu of a particular
application, the user has to position the RMG cursor into the desired application and
then proceed as depicted above. This introduces one of the conventions of RMG, the
right-hand side button of the mouse, when depressed, makes pop-up menus appear.
It is valid for each RMG application. Note that concerning the RMG cursor, its
shape can vary depending on its position on the screen; in some cases it becomes a
simple anow, a cross, etc.

The environment's main menu (see figure 4.1) is the menu from which each
application can be started, from which various parameters of the environment can be
changed, etc.

For the moment, the two most interesting menu items in this menu are :

- the'!! QUIT!!' item;
- the 'NEW>' item 16 •

The first one is the item one chooses when one wants to quit the environment17•

The second one hides a submenu, listing all the applications executable in the
environment. If one wants to run a particular application, one just has to go and see

13 : If some applications don't have any menu this is only a design decision of the programmer
14 : We call here a menu item, a line appearing in a menu and representing :i possible choice for the user. A
highlight is a menu item appearing in reverse video or in an other color
15 : Select an item in a menu to execute an action, change some parameters, etc (further details on menus will
be given in a following part)
16 : Note that when the'>' sign appears in a menu item, it means that a sub menu is hidden by this menu item
and is accessible by dragging the mouse rightward (the sub menu appears beside the current one)
17 : Nonnally this menu item is always present in a menu. If this menu item is selected by the user inside an
application's menu, the resulting effect is the 'closing' of the application's window

Chapter 4: Looking at RMG 45

in this submenu and select -like explained above- the desired menu item representing
the name of the application; this application soon appears on the screen. The menu
is a very important concept in RMG because of the user using it very often to
'communicate' with the system.

·-----------------•. ~ ~.,._ ·j'•"i/" 4't" f''f'l'l. . iti·r·~·· I 1 1 ·,; ... , ·, :r., :{;·.: ., . , : • . J :i.: , ,:, 1

Dyn Link>
!! QUIT !!

ScreenDumo
HP-UX Shell

Recad >

ReDraw
Shuffle
New>

bl<gdCobr >

Cdcr/\l'6JJ >

Fi1:ure 4.1 Pop-up menu of the
environment

We talked above of an application 'that appears on the screen', without explaining
anything on how it appears. We just want to say that if the user selects an
application to be run, in the main menu of the environment, a window appears on the
screen with the application running inside it. So each application can be run as many
times as wanted. Different applications can be run at the same time, each of them
taking place on the screen in different windows completely independent from one
another. The user is able to interact with one or the other just by positioning the
RMG cursor inside the desired window and depressing the left-hand side button of
the mouse.

Other features are often available in applications menu, among which the major
ones are:

- a 'Size' item, which enables the user to stretch or reduce the application's
window with the mouse;

- a 'lconize' item, which enables the user to reduce the application's window
to an icon18;

- a 'color>' item which enables the user to change the background color and
the text col or of the window.

18 : These two items are very often listed in a sub-menu accessible from the item 'OTHER >' in the application's
menu

Chapter 4: Looking at RMG 46

The· other items available in application menus depend highly on the kind of
application. Indeed, we see later that a programmer can build his own application's
menu and thus include in this menu any menu item useful for the application.

We can say now that as soon as the user runs an application, he is able to work
with it. 'Work with it' means that the user is able to execute a certain number of
things inside this application by selecting menu items in the application's menu or by
coping directly with different objects on the screen, among which one can find :

- buttons to click on,
- scroll bars to drag,
- graphical objects to move,
- etc.

This other way of communicating with the system is done by depressing the left
hand side button of the mouse while the RMG cursor is positioned on a screen
object; we call this 'clicking' on a screen object. Here comes a second RMG
convention: the left-hand side button of the mouse is used to click on screen objects.
For example if the user places the RMG cursor into an application's window,
depresses the left-hand side button of the mouse and drags the mouse, the user is able
to make the outline of the window follow the motions of the mouse; if the user
releases the button, the window is redrawn at the new place where the outline of the
window is situated19• This convention is also valid when an application's window
contains:

- buttons or icons designed to perform actions when clicked on with the
mouse (see figure 4.2.b and 4.2.c);

- scroll bars capable of being dragged up and down (making some text scroll
for example) (see figure 4.2.c);

- graphical objects that can be moved around in the application's window;
- etc.

Now we just want to say a few words about actions. Indeed, we talked above
of actions attached to menu items, to buttons and icons, but what is an action? An
action is something performed by the system that modifies the cu1Tent state of the
application or of the environment -we see later that this 'something' can be a
method or a C function. For example, when one selects an application to be run,
into the main menu of the environment, a window is created with the application
running inside it, thus changing the state of the whole environment. Actions can
be attached to menu items, this means that when one selects this menu item the
action linked to it is performed. They can also be attached to icons, to buttons,

19 : Note that this is only an example and that the implementation or 'not-implementation' of this type of action

in an application is the responsibility of the programmer

Chapter 4: Looking at RMG 47

etc; this means that when the user clicks20 on one of these screen objects, the
action linked to it is performed.

iJ 4.2.a

4.2.b
Button

4.2.c

Figure 4.2 Various screen objects

We just saw here a little portion of what the RMG environment and the user are
able to do together. We just saw the basic principles that one has to master to use
RMG as a Graphical User Inte1face and get accustomed to it by 'playing' around with
the different applications available. The next point analyses two RMG applications.

4.3. Getting accustomed to RMG with two applications

In this part, we analyze two traditional applications one can find and use in the
environment. This is done so that the user can get accustomed with the overall
handling of RMG applications. The first one is a graphical editor -'IconEdit'- and
the second one an application called 'Mole View'.

Note that more applications are available in the environment, we chose the first
one because it is usually available in other environments -in the shape of bitmap
editors or 'painting softwares'- so we want here to present something that is usually
found in GUis. We chose the second one because it represents a tiny fragment of
what is tried to be done in the COLOS project with RMG.

20 : We recall that from now on 'clicking' on a screen object always mean that the user positions the RMG
cursor on the screen object and depresses the Left-hand side button of the mouse

Chapter 4: Looking at RMG 48

4.3.1. IconEdit

IconEdit is a graphical editor which was designed initially to enable users of
the environment to create easily icons and images.

This application is started by selecting the menu item 'IconEdit' in the 'NEW
> '21 menu item of the main menu. When started, the application appears on the
screen in a window, if one looks at this window with attention one can see several
things.

The first thing is a large black square in the middle of the window, which is the
area where the image can be created22 . Secondly, in the lower right-hand side
corner of the window, one can see the cun-ent width and height -in pixels- of the
drawing area. Note that the drawing area has a starting width and height of 16 by
16 pixels. If the image is larger than the window, it can be scrolled using the icon
situated in the lower right-hand side corner of the window. One can see also the
cmTent position of the RMG cursor in the upper left-hand side corner, this
position is relative to the origin of the drawing area23 • The little icon in the upper
right-hand side corner is the icon one uses in order to stretch the application's
window24• Last is the sub-window situated at the bottom of the icon editor, which
displays the status of the editor and the cmTent color used in the editor.

Let us now press the right-hand side button of the mouse, with the RMG cursor
in the application's window; the main menu of the application appears (see figure
4.3). We are going to detail certain menu items.

We are familiar with the first menu item, '!! QUIT !!', that quits the
application by closing the application's window.

The user is able to specify individually the width and height of the drawing
area, using the option: 'Specify>'.

One of the menu item is: 'Gain >'. This menu item enables the user to change
the magnification of the drawing area by selecting a value in the submenu it hides.
The default magnification at creation is 8; by changing it to 1, one can see the true
size of the drawing area.

When working with IconEdit, one could like to have a grid on the drawing
area, enabling the user to see the magnified pixel size. This is possible, using the
menu item: 'Border >'. When selecting the value 1 in the submenu, a grid soon
appears in the drawing area. This grid disappears when selecting the value O in
this same submenu.

21 : The reader must recall that when the'>' sign appears in a menu item, it means that a sub menu is accessible
by dragging the mouse rightward (the sub menu appears beside the current one)
22 : We call this area the drawing area.
23 : This position is measured in pixels and is relative to the X and Y axis
24 : This is done by clicking on the icon and dragging the mouse while holding down the button

Chapter 4: Looking at RMG

II ourr II
FILL>

Draw>

DrswMode >

Flip/Rotate

Specify>

Scale >

Border>

Gain>

ClpBrd >

Edit>

UNDO

Hotapot

FILE>

OTHER>

Figure 4.3 Main
menu of the IconEdit

application

49

Another important menu item is 'Edit>'. If one selects the menu item 'ON' in
its submenu, a set of colors appears at the right of the drawing area. These colors
are the colors one can choose to work in IconEdit. One selects the desired color
by just clicking on it in the set of displayed colors. When a new color is selected,
the status subwindow displays the newly selected color and points to it with the
string: '<· current color'.

Now if one positions the RMG cursor on the drawing area and clicks once, a
pixel appears in the selected color. If one clicks and drags the mouse while
holding the mouse button depressed, a trace of pixels appears in the selected
color, following the motions of the mouse. The user notices that his actions are
reproduced in true size within the little window at the left edge of the application's
window. This little window can be enlarged by positioning the RMG cursor on
its right edge, clicking on it and dragging the mouse while holding the button
depressed.

The 'Draw >' menu item enables the user, through its submenu, to draw a
certain number of shapes, such has circles, boxes, etc. When the user selects one
of these shapes, the choice made is echoed in the status subwindow and the RMG
cursor changes from an an-ow to a pen tip. The user has just to position the RMG
cursor into the drawing area and click while dragging the mouse to see the desired

Chapter 4: Looking at RMG 50

shape being created. The user is able to draw the selected shape anywhere in the
drawing area, until he clicks once on the right-hand side button of the mouse; by
doing it the user sees the RMG cursor revert to normal. Note that the user is able
to create any desired shape by drawing lines connected to each other, thereby
creating a polygon.

The user is able to store a drawing in a temporary place, called a clipboard.
This enables him to start a new drawing while keeping the initial drawing
somewhere where he can access it immediately. This is possible going through
the sequence25 of menu items: 'ClpBrd >', 'Cut To>', 'whole image'. When this
is done, the user sees a new window appear on the screen containing the saved
drawing. The user is also able to cut out a defined portion of a drawing by
selecting 'Cut To>' in the submenu of the 'ClpBrd >' menu item. At this stage
and returning to the drawing area, the RMG cursor is replaced by two cross-hairs
whose intersection defines the upper left corner of the area which is cut out to the
clipboard. By clicking and dragging the mouse while holding down the button, a
rectangular shape is drawn, defining the area to be cut. When the button is
released, the defined area appears in the icon clipboard.

If one wants to suppress a drawing, one has just to select the black color and go
through the sequence: 'Edit>', 'ON>', 'replace>', 'all with CurColor'. Note that
this operation is valid with every color in the set of colors, except that the drawing
is not 'erased' if the selected color is not the same color as the background color of
the drawing area.

The sequence 'Edit>', 'ON>', 'replace >', 'picked with CurColor' enables the
user to replace with the selected color, each portion of the drawing colored with a
particular color. One has just to go through this sequence and then click on the
desired color in the drawing, the change is automatic.

The sequence 'Edit>', 'ON>', 'replace>', 'region with CurColor' enables the
user to change the color of a defined area into the selected color. To do this, one
goes through this sequence and goes back to the drawing area, where the RMG
cursor is changed to two cross-hairs whose intersection defines the upper left
corner of the area which has to be transformed. By clicking and dragging the
mouse while holding down the button, a rectangular shape is drawn, defining the
area to be changed.

One can also enlarge the surf ace of the drawing area by going through the
sequence: 'Edit>', 'ON>', 'enlarge >' and then select a number representing the
coefficient by which the height and width of the drawing area has to be
multiplied. The new height and width is displayed in the lower right corner of the
application's window.

As one can see, there is a 'Fill >' menu item present in the main menu. This
menu item is chosen to fill a shape or an area with a particular color. It has three
possibilities. If the menu item 'Fill>' is selected, the area pointed at by the RMG

25 : By "going through the sequence", we mean going down in the successive sub-menus, starting from the main
menu

Chapter 4: Looking at RMG 51

cursor is filled, stopping at the cmTent color boundary. If the menu item 'border
color >' is selected in the 'Fill>' submenu, everything bordered with the specified
color is filled, without paying attention to shapes or structures. Finally, if the
menu item 'Flood Fill' is selected in the 'Fill>' submenu, the shape pointed by the
RMG cursor is filled with the selected color. Note that it is always possible to
undo the last change made to a drawing by selecting the 'UNDO' menu item in the
main menu.

Now let us go back to the drawing we saved via the clipboard. By going
through the sequence: 'ClpBrd >', 'Pattern Fill>', 'border color >' and selecting a
color in the color bar hidden at the right of 'border color >', the user is able to fill
shapes delimited by the selected border color with the drawing contained in the
clipboard. Note that many drawings can be saved one after the other in the icon
clipboard, the user can skip from one drawing to another with the six tape
recorder type buttons at the bottom of the icon clipboard window. Note also that
the drawing restored with sequence 'ClpBrd >', 'Pattern Fill>', 'border color >'
is the one currently displayed in the icon clipboard.

From the clipboard, one is also able to restore a p01tion of a drawing cut out
earlier. To do this, one must go through the sequence: 'ClpBrd >', 'Paste From>'
and one of the four menu items contained in the submenu. For example if one
selects 'Replace' and returns to the drawing area, he sees the RMG cursor
replaced by a rectangle and the status window warning that the IconEditor is in
'Paste From Clipboard' mode. The above mentioned rectangle figures the
outline of the former cut out. When clicking, the cut out appears at the location
of the rectangle. One is able to do this as many times as wanted and one can stop
it by depressing the right-hand side button of the mouse. Recall that the desired
cut out must be displayed in the icon clipboard.

We just reviewed the basic possibilities of this very rich application. The user
is able to find more of the particularities of IconEdit by 'playing' around with it.

4.3.2. Mole View

Mole View is an application designed to view three-dimensional representations
of molecules26• It can be seen as "the rotation of three-dimensional objects
consisting of spheres of varied sizes and co/ors around the azimuthal and polar
axes at controllable speeds." (says [FAZARINC, 89] p.16).

The overall functionalities of this application are that :

- the displayed structures can be modified in terms of positions of the
spheres;

- the displayed structures can be zoomed, either in or out;
- the displayed structures can rotate;

26 : We call structures the 'representations of molecules'

..... ,,,,.

Chapter 4: Looking at RMG 52

- the structure's center of rotation can be chosen to be any sphere composing
it.

This application can be started by selecting the menu item 'Mole View' in the
'NEW >' menu item of the environment's main menu. When started, the
application appears on the screen in a window; if one looks at this window with
attention one can see several things.

The first thing one notices when starting the application is the presence of one
structure, constituted of six spheres connected to the seventh central one by
'straight bonds'.

The second thing is the presence of four ru.rows on the right-hand side of the

window. Two of them are placed respectively above and underneath the '0' sign

and ru.·e used to make the structure rotate around the azimuthal axis. The two

others are placed respectively above and underneath the '<l>' sign and are used to

make the structure rotate around the polru.· axis.
At the top of the application, one finds three labels. When the user clicks on

the first one -starting from the left-, 'Zoom In', the structure currently displayed is
enlru.·ged as long as the mouse button is depressed. The second is the status of the
application. The third, 'Zoom Out', enables the user to reduce the size of the
currently displayed structure.

At the bottom of the application, one finds two labels -'Remove' and 'Restore'
which are respectively used to make the spheres disappear in order to view the
center of the structure and to restore the initial state of the structure -that is with
all its spheres. Note that when the user clicks on one of the spheres, its number is
displayed in the status window.

One is also able to change the positions of the spheres by positioning the RMG
cursor on the desired sphere and by clicking and dragging while holding down the
mouse button, the sphere then follows the motions of the mouse with the bonds
stretching or shrinking accordingly.

Looking at MoleView's main menu (see figure 4.4), one can see several menu
items; 'START' is one of them. This item makes the displayed object rotate
automatically on both axis. The 'STOP' menu item stops this rotation.

One can find two other menu items, 'Connect' and 'Disconnect', that enable
the user to change the bonds between the spheres. For example, to remove a bond
between two spheres the user has to select the 'Disconnect' menu item in the main
menu and has next to click on the spheres linked by the bond, each in tum; the
bond between them will disappear. Note that this suppression is only graphical,
this process does not affect the positions of the spheres in the structure. The
'Connect' menu item works following the same principles, but for the connection
of two spheres.

Chapter 4: Looking at RMG

n aun- n
Dhloon~

Con~

Rotateetr >

Rotate >

Angle>

amp

9t.u1:

FILE ANIMA710N >

FILE>

OTHER>

Figure 4.4. Main menu
of the Mole View

application

53

The 'RotateCtr >' menu item enables the user to define the sphere that is the
center of rotation of the structure. Two menu items are present in this menu
item's submenu: 'Center Mass' and 'Atom No >'. The first one, when chosen,
specifies that the center of rotation is the center sphere. The second one enables
the user to choose, in a third level submenu, the number of the sphere he wants to
be the center of rotation.

The 'Rotate >' menu item enables the user to specify the angular velocity
around the two axes. Two menu items are present in this menu item's submenu:
'Azimuthal >' and 'Polar > '. Both can be adjusted by the user highlighting the
desired menu item and dragging the mouse to the right. A third level submenu
appears under the shape of a box containing a number -the angular velocity. This
number can be changed by the user pushing the mouse up or down. This is of
course done with the user always holding down the right-hand side button. The

menu item 'Angle >' enables the user to adjust the '0' and 'q>' angles, with the same

manipulations.
Note that other structures can be brought into MoleView, using the 'FILE >'

menu item and its submenu.

As for lconEdit, it would be too long to describe each menu item and their
possibilities in full. But we reviewed through these two traditional RMG
applications, some of the basic manipulations one finds in nearly all RMG
applications.

4.4. Summary

Our goal in this chapter was to look at an Object-Oriented environment: RMG
(Real time Measurement Graphics).

Chapter 4: Looking at RMG 54

In the first place, we saw that RMG was an environment used in a European
project: the COLOS (COnceptual Learning Of Science) project. This project's
goal is to create interactive simulation applications to be used in universities as a
pedagogical tool.

The next point showed that one could consider RMG as a GUI (Graphical User
Inte1face), because it implies among other things:

- the use of a mouse;
- the management of various windows;
- the management of icons representing programs;
- the use of menus.

Another point described RMG as an application development platform,
because it enables the user to create his applications using or not the various tools
and classes shipped with RMG.

Then we gave a little survey on how to make ones first steps in the
environment, by explaining how to use RMG's first communication means: the
menu. We saw also that the user could control the application through icons,
buttons and other screen objects.

We finished by describing more in depth two RMG applications: 'IconEdit' and
'Mole View'.

jsECOND PART: A little guide to RMG

Chapter 5: Interesting bibliography

In this chapter, we give the reader a non-exhaustive bibliography that we advise
him to consult if he wants to start programming in RMG.

As we saw in the preceding chapters, RMG is an Object-Oriented environment,
constructed with Objective-C. Therefore one has to acquire certain notions before
starting developing applications in this environment. These notions include :

- knowledge of Object-Oriented mechanisms;
- knowledge of the C language;
- knowledge of the Objective-C language;
- notions of the Unix operating system.

Concerning the knowledge of Object-Oriented mechanisms, we advise the reader
Bertrand Meyer's :

Object-Oriented Software Construction;
Prentice Hall International Series in Computer
Science, C.A.R. Hoare series editor;
Englewood Cliffs;
1988.

This provides a good introduction on Object-Orientation, with references to the
EIFFEL Object-Oriented language.
The second book we advise is Brad J. Cox' :

Object Oriented Programming, an Evolutiona,y
Approach;
Addison-Wesley Publishing Company;
Reading (Mass.);
April 1987.

This book is of great help for the user as Brad J. Cox is the creator of the Objective
C language. It provides a good introduction to Object-Orientation and to Objective
C.
If one wants a more 'language centered' approach, he can read the first part of Adele
Goldberd and David Robson's :

Smalltalk-80, the language and its implementation;
Addison-Wesley Publishing Company;
Reading (Mass.);
1988.

Chapter five: Interesting bibliography 56

This book provides a good explanation of the Object-Oriented mechanisms with the
always present concern of applying them directly to Smalltalk-80.

Concerning the knowledge of the C language, one can find a tremendous lot of
books. Among the ones we consulted, we advise :

KERNIGHAN, Brian W., Dennis M. RITCHIE;
The C Programming Language;
Prentice-Hall;

2nd ed. Englewood Cliffs;
1988.

Herbert SCHILDT;
Teach Yourself C;
Osborne McGraw-Hill;
Berkeley;
1990.

Bruce HUNTER;
Introduction a C;
Translated from English by Dominique Pitt;
Sybex;
Paris;
1986.

Concerning the knowledge of Objective-C, we already named Brad J. Cox' book,
"Object Oriented Programming, an Evolutionary Approach". We would like also to
advise the reading of the Objective-C manual that provides a very useful 'thirty
minutes tutorial' :

THE STEPSTONE CORPORATION;
Objective-C compiler with IC pack 101: Foundation
class libra,y. Objective-C 3.3 Reference Manual;
Productivity Products International Inc;
1988.

Concerning notions of Unix, the reader can go through the documentations of the
Unix language provided with the language itself, but this seems to be a very long
task indeed. So we advise Steve Bourne's :

The Unix System;
Addison-Wesley Publishing Company;
Reading (Mass.);
1982;

for a general survey on how to use the Unix operating system.
For a conceptual approach of Unix, we advise James Groff and Paul Weinberg's:

Unix, une approche conceptuelle;

Chapter five: Interesting bibliography

Translated from English by Dimitri Stoquart;
QUE InterEditions;
Paris;
1989.

57

To conclude, we would like to introduce some works concerning the RMG
environment. The first one constitutes a guide for the inexperienced user :

Zvonko FAZARINC;
RMG User's First Aid Kit;
Hewlett-Packard company;
Palo-Alto (Calif.);
1989.

The second one contains all the references to RMG basic classes :

HEWLETT PACKARD COMP ANY;
RMG, a Tool Kit For Development of Visualization
Courseware;
Reference Manuals N° 1 and 2;
Hewlett-Packard Company;
Palo-Alto (Calif.);
1989.

The two following ones can be of a certain use for a more experienced user. These
are two thesis written by two German students who worked within the COLOS
project:

Uwe HEIMBURGER;
Entwicklung zweier interaktiver
Simulationsanwendungen zu Lehr- und Lemzwecken
unter Verwendung einer objektorientierten
Graphikumgebung: Benutzerschnittstelle und
ReaNsierung physikalischer Gesetze;
Institut Filr Inf mmatik und Praktische Mathematik,
Christian-Albrechts-U niversitat;
Kiel;
Mai 1990.

Detlev WEGENER;
Entwicklung zweier interaktiver
Simulationsanwendungen zu Lehr- und Lemzwecken
unter Ve,wendung einer objektorientierten
Graphikumgebung: Konzeption und Realisierung
der grundlegenden Klassen;
Institut Filr Informatik und Praktische Mathematik,
Christian-Albrechts-U ni versitat;
Kiel;
Mai 1990.

Chapter 6: How to create a new application in RMG ?

In this chapter, we see how one has to proceed to create a new application in the
RMG environment. We first explain shortly what is an RMG application (6.1).
Then we talk of what has to be included in a class description and is different of
Objective-C (6.2). The next point encompasses the creation of an RMG application
without the use of RMG tools (6.3). And the last point takes in concern the creation
of an application using RMG tools (6.4).

6.1. What is an RMG application ?

We explain in this part, without entering implementation details, what is an RMG
application.

The interior of an RMG application is composed of one or many classes written
in Objective-C. Let us just say for the moment that these classes can be already
existing classes -RMG or Objective-C classes- or classes newly created by the
programmer.

The relations existing between classes in an application can be multiple. Among
these relations, one usually finds :

- an inheritance relation;
- a utilization relation.

The first one implies that one of the classes involved in the relation is subclass of the
other one. The second one implies that the two classes do not have any direct
inheritance relation, but they can instantiate one another and when they are
instantiated, they use one another through messaging.

In the set of classes composing an application, the programmer has to choose a
'master-class'. It is the first class instantiated when the application is started by the
user selecting its name in the 'NEW >' menu item submenu of the environment's
main menu. From this class, starts the instantiation of each class directly linked to it
by a utilization or inheritance relation in the application and necessary to the
progress of the application. We said 'directly linked' because each class instantiated
in the case of an application can also instantiate any class necessary to the good
progress of the application. Furthermore, this master-class has the responsibility of
creating the application's window on the screen. In other words, the master-class
plays the role of manager of the application, it is the black-box, the main controller
of the application. To compare it to Objective-C, it is really, in combination with the
environment, the main program we talked about in chapter 3, necessary to enable the
'testing' and the use of Objective-C classes.

Each master-class, in order to play c01Tectly its role in the environment, has to be
a subclass of a class called 'Envir'1 or of any class below Envir and linked to it in the

1 : This class is detailed in the following chapter

Chapter 6: How to create a new application in RMG ? 59

inheritance tree. As says [HP, 89] (Envir, p.1) : "This is the main environment
window. It is the background for all the additional applications that are brought
up.". This 'Envir' class, directly or through inheritance, handles the screen
management. It enables the programmer to use some already existing methods that
permits him to:

- move a window on the screen;
- enlarge a window;
- etc.

This class also handles, directly or through inheritance, the mouse management. It
enables the programmer to use some methods that permits him to :

- test the state of each mouse button;
- know the coordinates of the RMG cursor's location;
- etc.

In short, this class supplies the programmer with methods enabling him to manage
the mouse and cope with an application window. Note that it is not compulsory that
the other classes eventually composing an application be subclasses of 'Envir'; they
can be subclasses of the master-class or of any other class. Note also that the name
of the master-class has to be the same as the application's name.

We talked above of the master-class being instantiated. This is done when the
user selects the application name from the 'NEW>' menu item of the environment's
main menu. At this moment, the environment sends a message to the master-class of
the application. This message contains the name of the master-class and a selector
which is always the same: 'newln:'. This selector identifies in each master-class the
factory method that instantiates this class and thus starts the application. As says
[FAZARINC, 89] (p.76) : "This -newln:- contains the instructions for creation of a
new instance of the subclass of Envir. ". We see in a following point which are the
other additional items a class must absolutely contain in RMG and which are
different from those in an Objective-C class.

We insisted earlier on the fact that the menu is one of the important
communication means of the RMG environment. This is why nearly each
application has its own main menu. This menu is created once at the instantiation of
the master-class, through the instantiation of a menu class which is integrally part of
the set of classes composing an application.

This menu class is always subclass of the 'EnvMTree' class, which is the class
that enables the creation of a menu for the environment itself and for an application
of the environment. Further details are given about menu classes in a following
chapter.

Chapter 6: How to create a new application in RMG ? 60

The other classes composing an application can not be described precisely here.
They are entirely the programmer's creation and depend highly of the application
itself.

6.2. What to include in a new class

We see in this point which are the things one has to include in a new RMG class
description. There are few differences between Objective-C and RMG concerning
what must be included in a class description; though the overall syntax does not
change and one can always refer to chapter 3 for more precisions.

When one starts the definition of an RMG class, one has to specify, like in C, the
names of some header files necessary to RMG. Recall that a header file is a file
containing information about the standard library functions, that they all end with a
'.h' extension and that these files are included in a program using the preprocessor
directive '#include'. Three header files are compulsory in an RMG class description:

- 'objc.h';
- 'rmg.h';
- 'envir.h'.

The first one can be found in the directory /usr/local/lib/objc3.3, is supplied with the
Objective-C compiler and contains some special definitions of data types and
variables. The two following ones can be found in the directory RMG/INCLUDE
and define special RMG variables, structures, etc2• In addition to these three header
files, the programmer can include other ones depending on the application. For
example, one can include 'math.h' if one uses mathematical functions3. So this
declaration is of type :

#include "objc.h"
#include "rmg.h"
#include "envir.h"
[#include "<other header file name>"]*4

The next step involves the declaration of global and static variables, just like in C.
Usually, all the global variables are defined as static variables, this enables the
suppression of name conflicts between variables or constants included in header files
and the other ones declared in the classes description files themselves.

This is followed by the '@requires' clause. This clause lists all the classes used
in the application, other than the superclass of the programmer's class. It takes the
shape:

@requires <class name> [,<class name>]*

2 : Note that the user can directly access these files to consult their content
3 : For further informations on the available C header files, the reader can consult the C user manual
4 : Where [] means that the enclosed items are not compulsory and * means that this item can be repeated

Chapter 6: How to create a new application in RMG ? 61

Note that this line is not obligatory as long as the programmer does not make any use
of other classes than the superclass of his class.

Then follows the declaration of the class name, its superclass and the message
groups, just like in Objective-C. Note again that if the class is a master-class, the
superclass is 'Envir' or any class below 'Envir' and attached to it through inheritance.
The declaration is of type :

= <class name>: <superclass name> (Message
Groups)

Four groups are obligatory in the 'MessageGroups' list:

- 'working';
- 'Collection';
- 'Primitive';
-'RMGVW'.

The first three groups are relative to the Objective-C classes -see chapter 3. The last
one is relative to RMG base classes such has 'RMGView' for example -see chapter 7.
To these message groups must be added the user message group, as in Objective-C.

The programmer lists next the instance variables or private data of an instance.
One could declare each vaiiable used within a class as instance variables but
unfortunately this would occupy to much memory space as the whole set of variables
plus the inherited ones would have to be contained in memory for each instance.
That is why some variables :

- that are common to all instances but are not considered as private data are
declared before the require clause;

- that are considered as local vat·iables can be declared within a method itself,
just as local vai·iables can be declai·ed inside C functions.

Now comes the method definitions, both factory and instance methods. Their
syntax is exactly the same as in Objective-C. But in the case of a master-class, one
has to include special methods :

- 'newin:';
- 'delaylnit';
- 'extraNewln:'.

The first one, 'newln:', is a factory method -thus prefixed by '+'- which goal is to
create a new instance of the subclass of 'Envir'. When a call from the environment is
addressed to the class in order to instantiate itself -through the 'newln:' factory
method-, the address of the environment is passed as argument to the method in the
variable 'anEnvironment'. Note that this vatiable name is arbitrary as long as it is

Chapter 6: How to create a new application in RMG ? 62

being used consistently. The shape of the 'new In:' method is :

+ newln: anEnvironment
{
[self delaylnit]; /*1 */
self= [self <method name for window creation>];

/*2*/

return self;
}

The first thing done is '[self delaylnit]' (line 1). Recall that self, at instantiation of a
class contains the address of this class. This is thus a message sent to the class
'asking for execution' of another factory method: 'delaylnit'. This method is
described below.
The second thing done is the creation of the instance of the class as a window : 'self
= [self <method name for window creation>]' (line 2). The method identified by the
selector taking the place of '<method name for window creation>' is a method
enabling the creation of a window, a method that the class can access through
inheritance. We see in a following chapter which are the inherited methods that one
can use for this creation. The result of the creation of the instance -an address- is
stored, by convention, in the vaiiable self -see chapter 3. In short, one has just to
remember for the moment that this line is the place where the instance of the class is
really created, in the shape of a window.
The ' ... ' denotes the fact that many other things can be done in this method, among
which one can find :

- creations of subwindows;
- initialization of global or local vai·iables;
- definition of actions5;

- etc.

The second method that must be included in a master-class is 'delaylnit'. It is also
a factory method, which is called at the beginning of the 'newln:' method. Its goal is
to instantiate the only instance of the menu class, in order to create the application's
menu, if it has a menu6• Its shape is usually :

+ delaylnit
{
static BOOL beenHere = FALSE;

if (!beenHere)
{
if (self== <class name>)

5 : Explanation about actions is given in a following chapter

/*1 */

/*2*/

/*3*/

6 : Indeed it is not indispensable for an application to have a menu as long as all the actions that would have
been performed through a menu are present in the application under the shape of buttons or icons

Chapter 6: How to create a new application in RMG ?

}
return self;
}

{
[<menu class> delaylnit]; /*4*/
beenHere = TRUE; /*5*/
}
else
[<class name> delaylnit]; /*6*/

63

This method uses a static local variable (line 1) defined as a boolean, to keep track of
possible previous visits, as this method has only to be executed once per instantiation
of the master-class.
Line 2 checks if a visit has already been made. If this is the case, the method is
directly skipped; if not, it checks the 'identity' of the caller (line 3). If it is not the
class itself, the message is sent again to the class itself (line 6).
Line 4 is one of the common things one can find in this method, a message sent to a
menu class in order to create an instance of it for the application.
Line 5 sets the variable beenHere to TRUE in order to avoid other visits.

The last method is an instance method -prefixed by a '-' -, 'extraNewln:'. This
method is used whenever one wants to do special initializations. It takes the shape :

- extraNewln: anEnvironment
{
[self show All]; /*1 */
menuTree = [<menu class> getlt]; /*2*/

return self;
}

Line 1 is the message sent to the instance itself, which selector corresponds to a
method contained in Envir's superclass: 'RMGView'7• This line contributes to make
every created window appear on the screen.
Line 2 calls up the menu tree for the instance and stores its address in the valiable
'menuTree' which is an instance variable inherited from the class 'Envir'.

Of course any other factory or instance method may be added by the programmer
in addition to these three. Note that the class description ends also with the sign'=:'.

Table 6.1 gives a summary of what has to be included in a class description.

7 : The class RMGView is detailed in chapter 7

Chapter 6: How to create a new application in RMG ? 64

Header #include "objc.h"
Files #include "rmg.h"

#include "envir.h"

C variables
declaration

Declaration of
classes used

Class name
declaration

Instance variables
declaration

Methods
definition

End of class
description

[#include "<other header file name>"]*

Declaration of global variables

@requires <class name> [,<class name>]*

= <class name>: <superclass name> (
<personal message group>,
RMGVW, Primitive,
Collection, {,<other message
groups>]*)

{
Declaration of instance variables
}

+ newln: anEnvironment
{ ... }

+ delaylnit
{ ... }

Any otherfact01y method

- extraNewln: anEnvironment 8

{ ... }

Any other Instance method

Table 6.1 What has to be included in a RMG class description

8 : The three methods specified are only obligatory in the case of a master-class

Chapter 6: How to create a new application in RMG ? 65

6.3. Programming without RMG tools

We see in this part which are the different steps one has to follow to create an
RMG application without using the RMG tools described briefly in point 4.1.2.

We have isolated three different steps. The first one concerns the edition of the
class description. The second one concerns the compilation and linking of the
classes. Finally, the last one concerns the inclusion of the application in the
environment's main menu.

6.3.1. Editing

The first thing to do when one wants to create a class description file is to
'write' it or edit it, thus using an editor.

The only things we have to say is that every editor available under Unix is of
course valid, for example 'Vi' or 'Emacs'. The thing to bear in mind is that the
class description must be absolutely saved with a '.m' extension.

6.3.2. Makefiles, mainClasses and compilation

After creating a class description file, one wants to compile it. In order to
facilitate this process, one uses three paiiicular files: two 'makefiles' and a
'mainClass.m' file.

The compilation of a class description file involves the invocation of the ObjC
compiler in order to obtain a relocatable class definition. Then this file has to be
added to a library archive and linked to the other libraries. As says [F AZARINC,
89] (p.80) : "The process is quite involved and not particularly interesting, but
does require additional skills". So to make life easier, we are going to use two
makefiles. These files ai·e sorts of scripts which purpose is to compile class
descriptions and archive them in a library. They must also manage the
distribution of message declaration files and remove all unnecessary compilation
remnants.

This process is divided into two parts. The first part involves the compilation
of one's new classes in one's own directory. This involves a makefile contained in
one's individual directory. The second pa.it involves the reconstruction of a new
environment. This involves a makefile found in the RMG/ENVIR directory and
which is described later.

Table 6.2 gives a template for an individual makefile9•

9 : Note that the reader can find in the appendices a full example of each file discussed in this part

Chapter 6: How to create a new application in RMG ?

COMPILE = objcc3.3

OPT= -q -0 -N -nRetain -1../PANEL -1.. -1 . ./ . ./CP -1../ . ./INCLUDE
OPTISL = -1/usr/local/lib/ink

<message group name>.a:<message group name>.a(<class name>.o)\
<message group name>.a(<class name>.o)\

<message group name>.a(<class name>.o);
objcc3.3 $(OPT) -c $(?:.o=.m)
ar ruv <message group name>.a $?;
cp [CPL* . ./CP
/bin/rm -f $?

Table 6.2 Template of an individual makefile

66

Explanation of the total makefile presented in table 6.2 is not relevant here. We
just want to say that '<message group name>' with the '.a' extension corresponds
to the user's message group name. Eve1y class using the message group must be
listed following the scheme: '<class group name>.a(<class name>.o)', where
'<class name>' is the name of the class. Note that the '\' symbol means that the
declaration is continued on the following line. This file can be saved into a file
named 'makefile' for example.

To compile its classes, the user has only to issue the command 'make <message
group name>.a' at the unix prompt; the compiler shows on the screen which step
it is currently going through. If the compilation fails, the user has to watch
carefully the screen for the causes of this failure. Indeed, the errors -Objective-C
errors or C errors- are usually reported with the number of the line where they
occur in the class description file and the type of error. The user just has to go
and correct them in the source class description file.

The next step for the user is to notify RMG that new classes are being added
and that they must be linked into the system. All the informations concerning this
notification can be found in a file called 'mainClass.m' into the RMG/ENVIR
directory. We reproduce a portion of the mainClass.m file in order to show the
user what he needs to add to it (see table 6.3).

Chapter 6: How to create a new application in RMG ?

#define RMG_CLASSES Syslcon, RMGLine, RMGVLine,
RMGHLINE,\

#define COLOR_MAP ClrMapEdit, ClrMTree

#define <macro name> List all classes belonging to the message group
corresponding to the macro name I* 1 */

@classes(
RMG_CLASSES,
#ifdef STAGEl

COLOR_MAP,
#endif

#ifdef STAGE18
<macro name>,

#endif
PPI_CLASSES

Table 6.3 Interesting portion of the mainClass.m file

67

In table 6.3, the '<macro name>' is a name in capital letters that is usually the
same as the message group name. Line 1 corresponds to the definition of a
macro; this definition means that from now on this macro name can replace the
list of classes placed at its side.

Now that we have changed the 'mainClass.m' file it is time to change the
makefile placed in the RMG/ENVIR directory. We present a portion of this file
at table 6.4. If one looks through this file before changing anything, one notices
that its STAGE -STAGE18 in our case- has been identified with its macro name
and message group name witli a '.a' extension -see line 1. Two lines are missing
and must be added, line 2 and 3.

Now that these different files are modified, we are ready to ask the rebuild of
a new environment including our new classes and message groups. In order to do
just that, the user has to issue the two following commands at the Unix prompt
and while in the RMG/ENVIR directory :

makecp
make env.out

Chapter 6: How to create a new application in RMG ? 68

STAGE15 = PTY/pty.a
STAGE18 = <macro name>/<message group name>.a /*1 */

ALL= $(STAGE1) \

$(STAGE15) \
$(STAGE18)

ALLSTAGE = -DSTAGEl \

-DSTAGE15 \
-DSTAGE18

Table 6.4 Portion of the environment's makefile

/*2*/

/*3*/

The first command touches the mainClass.m file and forces its recompilation.
The second one causes a recompilation of modified class descriptions and the
relinking of the environment. Note that the entire process appears on the screen
with the program 'telling' the user which step it is currently going through.

6.3.3. Including the application in the RMG environment

Now that the environment is successfully recompiled including one's new
classes, one has still to include the application in the RMG environment and
particularly in the main menu of the environment.

A list of all the applications appearing in the 'NEW >' menu item of the
environment main menu is maintained in a file called 'A.menu'. This file is
situated in the directory RMG/ENVIR/CONFIG. We present a portion of this file
at table 6.5.

30 12 10
AnalogClock
BarMeter

Voltmeter
PtyApp
/*30 items;

maximum 12 characters;
display 10 items on screen */

/* note the names above must correspond to class names */

Table 6.5 Portion of the A.menu file

Chapter 6: How to create a new application in RMG ? 69

Each name in the file represented at table 6.5 is the name of an application with
the restriction that this name must c01Tespond to the name of the master-class, as
specified at the last line of the file. When one wants to add an application in the
environment's main menu, one has to add the master-class name in this file,
preferably in alphabetical order. The user must not forget to update the first
number of the first line which denotes the total number of items that appears in
the submenu of the 'NEW >' menu item.

When this is done the user can start the environment and see that his
application is contained in the main menu and can be started.

6.4. Programming with RMG tools

Programming with the tools included in the RMG environment is another
solution. Indeed, it seems less tedious to be able to work entirely from the
environment in place of getting out of the environment, getting to one's directory,
running the editor, correcting the file(s), recompiling it/them, etc.

We discussed shortly in a preceding point -point 4.1.2- some of the different tools
available in the environment. It is our purpose in this point to show the user how he
can do some traditional programming -editing, compiling, running- directly from the
environment. It is not our purpose to develop explanations about the prototyping
tool -called the 'Fast Prototyping Facility'- or the program interpreter. One of the
reasons is that we did not have the occasion of using in detail both these tools.

Three steps have been underscored. The first one concerns the edition of class
description files. The second one concerns the compilation of the classes. The last
one concerns the different browsers one can use to facilitate one's work.

Before starting our explanations, we must attract the attention of the reader on the
fact that programming directly inside RMG can only be done on an already existing
application. It is not possible for a programmer to design directly new classes and
thus a new application, from the environment itself. This is due to the fact that to
take into account new applications, the environment has to be recompiled completely
in order to take into account the changes made in certain files -'A.menu' for example
and the presence of new classes. This can not be done from the environment itself.
Thus the tools available inside the RMG environment enable only this environment
to take into account changes made to classes composing applications already present
in the environment. It is thus a process that enables the programmer to fix existing
applications but not to create them from scratch.

6.4.1. Editing

In order to do some file 'editing', RMG furnishes a very powerful tool called
'DocEdit'. This editor has a set of 'Emacs style' commands and many others
uncommon ones.

Chapter 6: How to create a new application in RMG ? 70

This application is called by the user selecting 'DocEdit' in the 'NEW >' menu
item of the environment's main menu. A window appears on the screen,
containing a certain number of important items.

The first item is the border of the window; if it is green it means that the
window is not active and that the user is not able to type-in some text. To change
this, the user just has to click inside the window; the border turns red, sign of the
window being active.
At the top left of the window one can see the position of the RMG cursor in terms
of lines and columns, in a little black box.
At the side of this box is another blue box containing the name of the file
currently being edited.
At the top right, one can see an icon which is used to enlarge the window. This is
done by the user clicking on it and dragging the mouse while holding down the
button.
At the left of this icon is another box labeled 'HELP' which, when clicked on
makes a window appear containing the description of all the text operations that
can be done from the keyboard. For example holding down the 'Control' and the
'K' keys together results on the current line being deleted.
At the bottom and at the right side of the window are placed two scroll bars which
can be used in order to make the text go up and down or left and right. This can
be done by the user just clicking on one of the arrows or by the user clicking on
the white rectangle contained in these scroll bars and dragging the mouse while
holding down the button.
Just on the top of the bottom scroll bar are placed a certain number of icons. The
first one at the left, a red arrow directed upwards towards an horizontal bar,
enables the user to go to the beginning of the currently edited text, when clicked
on. The blue arrow at its side enables the user to go to the end of the currently
edited text.
Next to these two icons is a box labeled 'FIND:' that enables the user to type10 in
words to be searched across the text being edited. The two boxes labeled 'Prev'
and 'Next' enable the user to find the 'FIND:' typed-in word respectively
preceding or following the already found one.
When a text is present in the editor two cursors can be seen. The RMG cursor
representing the mouse and a red rectangle representing the place where the text is
currently typed-in : the text cursor.

This application has also a menu (see figure 6.1). The first useful menu item is
the 'FILE >' menu item. It enables the user to browse through the Unix file
system in order to save or load files.

10 : When the user clicks on this box, the RMG cursor disappears and a little flickering white bar appears in the
blue rectangle next to the 'FIND:' box. The user has then to type-in his text from the keyboard and hit the
'return' key in order to start the search

Chapter 6: How to create a new application in RMG ?

II QUIT II

NO TAB

TO C/pBrd

FR.OM Clpllkd

Font>

Co/or>

File>

OTHER>

Figure 6.1. DocEdit's main
menu

71

One can find a lot of other menu items in the submenu hidden by the 'FILE >'
menu item. For example, by going through the submenus of the 'BROWSER >'
menu item, the user is able to travel through the Unix directory system and select
a particular one. Going through the submenu of the 'READ from DIR >' menu
item, the user is able to select a file to load into the editor. The files displayed in
the submenu are the ones contained in the cunently selected directory; this
directory can be checked with the 'RIW Direct01y >' menu item. The user is also
able to specify the name of a file he wants to load, just by typing it using the
'READ keyboard >' menu item. The 'save >' menu item enables the user to save a
file under its cunent name or by specifying a new name for it.

When one has loaded a file in the active editor window, one is able to work
with the text just as in a normal editor. The menu offers additional possibilities to
the user. By going through the set of menu items 'TO ClpBrd >', 'StrClpBrd',
then moving the RMG cursor next to the text cursor and clicking while dragging
the mouse to the right, the user can see a red highlight following the motions of
the mouse. When the button is released, a new window appears labeled 'Text Clip
Board' and containing the text the user cmrently highlighted.

By positioning the text cursor11 somewhere in the DocEdit window and
selecting the menu item 'From ClpBrd' from the application's main menu, the
user causes the appearance of the text transfened to the Text ClipBoard, at the
location of the text cursor.

One is also able to change the font of the text cunently displayed. This is done
by selecting the menu item 'FONT>' and selecting a font type in its submenu.
The characters and background col ors can be also changed using the 'Color >'
menu item.

11 : This is done by positioning the RMG cursor at the desired location and clicking once

Chapter 6: How to create a new application in RMG ? 72

6.4.2. Compilation

After editing the class description file, one needs to compile these classes and
to tell the environment that one wants the changes active in the environment; all
this without going out of the environment. One thing that the user must keep in
mind is that the environment can not be recompiled from itself. So the process
only involves the recompilation of the changed classes and a dynamic linking of
these classes in the environment.

The process of recompiling classes from the environment is called compiling
'dotrfiles', that is files with '.r' extensions. In order to do this correctly, things
must be added at the end of one's individual makefile, before entering the
environment, see table 6.6.

dotRFiles = .r

DOTRFILES = <name of class>.r ... <name of class>.r; /* 1 */

TrainingAppl : $(dotRFiles) ;
Id -dr $(dotRFiles) -o TrainingAppl ; /bin/rm $(dotRFiles)
cp [CPL* . ./CP

Table 6.6 Additions to be made to one's individual makefile

One must list at linel, each class for which one wants recompilation available in
the environment.

Inside the environment, the user must select the application 'PtyApp' in the
main menu. A window appears on the screen which gives direct access to the
Unix environment. The user must go to his directory using the Unix 'cd'
command and launch the compilation of the dotrfiles by typing :

make DOTRFILES

If the compilation fails for a reason or another, the user must go back to the
editor, correct the errors, save the file and recompile them as dotrfiles again. This
must be done until no more errors are detected.

When this step is finished successfully, one needs to tell the environment that
changes have been made to some classes and that the user wants these changes to
be active. This is called dynamic linking and is done through a menu item of
RMG's main menu: 'Dyn Link>'. The user selects this menu item and accesses

Chapter 6: How to create a new application in RMG ? 73

the character box12 hidden behind it. In this box, the user must type the name of
the class that has been changed followed by the '.r' extension. This must be done
separately for each changed class. From now on, the user is able to use the newly
modified application.

There are a certain number of restrictions that the user must bear in mind. A
first one is that this process can not be used when the classes are not yet linked to
the libraries and the environment entirely recompiled with these classes, as
explained above. Indeed this could cause things to go wrong or things not to
work at all.

The second important thing not to forget is that the dynamic linking is only
valid in the current environment. That is if the user quits the environment and
restarts it, the changes are not considered as the environment has not been
recompiled completely. So we advise the user to recompile entirely the
environment at least once, when he leaves it for example, in order to avoid bad
surprises.

When linking dynamically error messages of the type:

Invalid output file

can occur. In this case the user has to return to the 'Dyn Link >' menu item and
check that the extension of the file is '.r'. In the case of other errors, the right
solution is usually getting out of the environment and recompiling it entirely. If it
still does not work, the user must look at the various makefiles and the
mainClass.m file in order to check their correctness.

The last thing is that this process must be used with precautions and we advise
the user to often quit the environment and recompile it entirely because too
frequent compilation inside RMG and dynamic linking of different classes can
lead to 'misfunctioning'.

6.4.3. Browsers

In order to help the user fix his classes, RMG furnishes a set of browsers, as
introduced in chapter 4. These browsers include :

- a class browser;
- an instance browser;
- a message browser.

12 : A character box is a menu item submenu, which displays a white cursor when it is selected and that enables
the user to type-in some text from the keyboard. The text input can be stopped by the user hitting the 'Return'
key or depressing once the left-hand side button of the mouse

Chapter 6: How to create a new application in RMG ? 74

The first one enables the user to navigate across the classes available in RMG.
This can help the user find a class and look at the different methods it implements
and the different instance variables it declares. The class browser can be run
selecting 'ClassBrowser' in the submenu of the 'New>' menu item.
The second one is a tool designed to track and graph the evolution of instances at
run time. It enables the user to display the different addresses and values of
instance variables owned by instances of classes present in the environment. The
instance browser can be run selecting 'InsBrowser' in the submenu of the 'New >'
menu item.
The last browser enables the user to find the origin and content of a given
message. The message browser can be run selecting 'MsgBrowser' in the
submenu of the 'New >' menu item.

6.5. Summary

The goal of this chapter was to explain how to create an RMG application.

First we explained what was such an application. Thus that it was composed of
several classes between which existed relations such as utilization and inheritance.
We explained that an application or set of classes with relations between them had to
have a master-class representing the application in the environment; this master-class
being obligatorily directly or indirectly subclass of an RMG class called Envir which
handles the mouse and screen management.

A second point presented concerned what had to be included in a class declaration
and that was different from Objective-C.

A third point presented the way to program applications not using the RMG tools.
That is:

- using a Unix editor to create the class description file;
- using makefiles and a file called 'mainClass.m' to compile the classes and

link them to the existing libraries;
- including the new application in the environment's main menu using the file

'A.menu'.

The last point concerned the programming of applications using the RMG
classical tools which are :

- 'DocEdit' for text editing;
- 'PtyApp' and the 'Dyn Link>' menu item for the compilation of dotrfiles;
- 'ClassBrowser' to navigate across the different classes available in RMG;
- 'InsBrowser' to track the evolution of instances in the environment;
- 'MsgBrowser' to find the origin and content of a given message.

Chapter 6: How to create a new application in RMG ? 75

We saw that this way of creating applications could be easier because of all the
tools available at hand but had to be used carefully as the inclusion of changed
classes was not permanent due to the use of dynamic linking.

Chapter 7: First useful classes

Now that we have seen what was an RMG application and how to create one, it is
time to review some of the basic and most useful classes available in RMG. We list
and explain some of their more commonly used and more interesting methods.
Other methods implemented in these classes are explained in a later chapter while
introducing new notions.

A first point concerns the class 'RMGView' (7.1). A second point concerns the
class 'Envir' (7.2). A third point describes the 'RMGString' class (7.3). Finally the
last point concerns the 'RMGicon' class (7.4).

7.1. RMGView

RMGView1 is one of the basic classes of RMG and the foundation of most
RMG classes. This class enables the management of the overall screen, while some
of its subclasses manage qn1y specificiparts of screen display. In short, it contains
the methods for the creation a.nd modification of windows.

The windows resulting of the instantiation of this class are organized in a
superview-subview hierarchy; the subviews are placed inside and on the top of the
superviews and the views created later are placed on the top of the already existing
ones.

RMGView is a subclass of the Objective-C root class: 'Object'. It includes some
instance variables enabling to store some parameters concerning the views2• For
example 'background_color' contains the color number of the view; 'subviews'
contains the address of an ordered collection3 containing the /address~ of the
subviews of the current view; etc. It also includes approximately io facto1 methods
and 130 instance methods. /

We first present the different interesting instance variables, then the most used
factory methods and finally the different instance methods.

7 .1.1. Instance variables

This class contains a lot of interesting instance variables. Note that this class
implements instance methods enabling access to nearly each of these variables.

The first instance variable is 'superview', which is of type id and is designed to
contain the address of the instance's superview. This variable must not be

1 : Note that this class is called RMGView or RMGView0, depending on the version of RMG and on the RMG

reference manual available
2 : Note that from now on we will use the tenn views. This will invariably denote an application window or any

other subwindow placed within it
3 : A collection is an Objective-C object enabling the management of an arbitrary number of objects as a unit.

In this case, an ordered collection keeps also the order in which the objects are stored. See [STEPSTONE, 88]

for further details

Chapter 7: First useful classes 77

confused with Objective-Cs pseudo-variable 'super', which enables an instance to
'access directly' its superclass.

Another one is 'viewlcon' which is also of type id and is designed to contain
the address of iconized objects. But this variable is very often used to store other
addresses, so used like a drawer where the programmer can put whatever address
he will need later.

Three other instance variables available to the programmer are: 'active',
'erased' and 'covered'. These three variables are booleans and are designed to
denote the state of a view. The first one, 'active', indicates if the view is active or
not; it is usually used in the case of the 'DocEdit' application -see chapter 6.
'erased' indicates if the view is erased or not and 'covered' if the view is partially
covered by another one.

Height other instance variables give the outer and inner bounds of a view:
'out_left', 'out_right', 'out_low', 'out_high', 'in_left', 'in_right', 'in_low',
'in_high'. The difference between the outer and the inner bounds is the width of
the colored frame which can be set around a view. Note that the origin of a view
is the lower left corner. Note also that every view measurement is given in pixels.

7 .1.2. F actmy methods

Of course among the factory methods, one can find 'newln:' which in this case
creates by default an instance of RMGView represented on the screen by a view
of 200 by 200 pixels and originated at the (0,0) location, thus at the lower left
corner of the screen. Note that from now on, when methods are presented for the
first time, the type of the arguments will be enclosed in brackets.

The more interesting factory methods are :

+ origin:(int):(int) extent:(int):(int) superview:(id) bkgd:(int)
+ relative: (int):(int) extent: (int): (int) superview: (id) bkgd: (int)
+ Type:(int) extent:(int) superview:(id) bkgd:(int)

The first one enables the creation of a view which is placed on the screen
following absolute coordinates at a location specified by the two first arguments,
with certain dimensions specified by the third and fourth arguments, within a
certain superview -the fifth argument- and with a certain background color -the
last argument. For example, if we look at a factory method 'new In:' that could be
found in a class, we could see :

+ newln: anEnvironment
{

self= [RMGView origin: 100: 100
extent: 200: 200
superview: anEnvironment

Chapter 7: First useful classes 78

bkgd: 1];

}

where a view of 200 by 200 pixels is created (see figure 7.1) at location (100,100)
on the screen and is placed in the superview anEnvironment, which is in our case
the environment itself4•

Figure 7.1 Creation of a view with the'+
origin:: extent:: superview: bkgd:'

factory method

Finally the color of this view is 1, which is orange in RMG5. (Example 7.1)
Note that with this method, the views created can not exceed the bounds of their
superviews. Note also that when a view is enlarged, all its subviews are enlarged
proportionally.

The second factory method uses the same principles with the exception that the
views are created following relative coordinates. We can extend example 7 .1 and
have:

+ newln: anEnvironment
{
id aView;

self= [RMGView origin: 100: 100
extent: 200: 200
superview: anEnvironment
bkgd: 1];

/* 1 */

/* 2*/

aView = [RMGView relative: 50: 25 /* 3 */
extent: 100: 100

4 : Thus the variable 'anEnvironment' represents the environment's address
5 : It is possible for the user to use the color names instead of numbers. In this optic, the reader can consult the
header file 'rrngColors.h' situated in the RMG/INCLUDE directory

Chapter 7: First useful classes

}

superview: self
bkgd: 2];

79

Line 1 is the declaration of a local id variable that will contain the address of the
second view we want to place on the screen.
Line 2 is the creation of the view we described in example 7.1; we will call it our
principal view.
At line 3 we find the creation of a subview of our principal view. This subview is
placed following relative coordinates at location (50,25)6 in the principal view -as
the specified superview is self which contains the principal view's address-; it has
a dimension of 100 by 100 pixels and a red color (see figure 7.2). (Example 7.2)

The last interesting factory method is used to create a view that 'sticks' to one
edge of its superview. This view sticks either to the left, right, bottom or top of
its superview, as specified by its first argument. The second argument specifies
the extent of this view and con-esponds to :

- the height of the view in the case of a view sticking to the top or to the
bottom edge of another one. The width of the view is in this case the length
of the edge to which it sticks;

- the width of the view in the case of a view sticking to the right or to the left
edge of another one. The height of the view is in this case the length of the
edge to which it sticks.

Figure 7.2 Creation of a subview of the
principal view with the '+ relative:: extent::

superview: bkgd:' factory method

6 : Its absolute coordinates being thus (150,125)

Chapter 7: First useful classes

We can extend example 7.2 to have :

+ newln: anEnvironment
{

id aView, bView;

self= [RMGView origin: 100: 100
extent: 200: 200
superview: anEnvironment
bkgd: l];

/* 1 */

I* 2*/

a View = [RMGView relative: 50: 25 /* 3 */
extent: 100: 100
superview: self
bkgd: 2];

bView = [RMGView Type: 4 /* 4 */
extent: 50
superview: a View
bkgd: 0];

}

80

Line 1 is the declaration of two local id variables which will contain the addresses
of the subviews we want to create.
Line 2 is the creation of the view we described in example 7 .1. At line 3 we find
the creation of a subview of our principal view.
Line 4 is the creation of the sticky subview (see figure 7.3.) that we place in the
view identified by aView.

Fi1:ure 7.3 Creation of a sticky subview of
a View with the '+ Type: extent: superview:

bkgd:' factory method

Chapter 7: First useful classes 81

This subview is placed at the top- ... Type: 4 ... -; it has a height of 50 pixels and is
black. (Example 7.3)

7 .1.3. Instance methods

Among the multiples instance methods implemented in this class, some are of
particular interest for a programmer. We review some of them, keeping in mind
that other ones are introduced later, together with other subjects.

The first methods are 'insideContains:(int):(int)' and 'contains:(int):(int)'.
These methods check if the location identified by the two integers passed as
arguments is contained within respectively the inner and outside bounds of the
view. If this is the case it returns TRUE otherwise it returns FALSE. For
example, we could send the instance of RMGView -created at example 7 .3- which
address is contained in aView, the message :

[aView contains: 175: 150];

The return value would be of course 'TRUE' as the point located at (175,150) is
indeed situated inside the bounds going from (150,125) to (250,225). Note that
these locations are measured in absolute coordinates. (Example 7.4)

Two other instance methods enable someone to respectively create a frame
around a view and to give it a certain color. These methods are called :
'frameWidth:(int)' and 'frameColor:(int)'. For example, if we add a red frame
to our principal view created at example 7 .1, we have :

[[self frameWidth: 10] frameColor: 2];

Note that in this case the outside bounds of our principal view are unchanged, but
the inner bounds are reduced of ten pixels. Note also that every subview of the
view to which we are adding a frame are proportionally scaled, except the sticky
views and views occupying entirely their superview.

'bkgd:(int)' is yet another method enabling the user to change the color of a
view. While 'hide' is a method that hides the view to which the message is sent
and erases its image from the screen.

'showAII' and 'show' are methods used to make views appear on the screen
while they have not yet been displayed or have been erased from the screen. The
difference between 'show All' and 'show' is that the latter shows only the view to
which the message is sent and not its subviews, to the contrary of 'show All' which
shows the view and its subviews. 'redraw' is a method that redraws the views,
their subviews and any view on top of them. This last method enables usually to
activate changes made to a view like color changes or any other graphical
changes.

Chapter 7: First useful classes 82

The user is also able to change the place of a view within its superview. This
is done with the two methods, 'move:(int):(int)' and 'moveBy:(int):(int)' which
move the lower left corner of the view respectively to a particular location or by a
certain amount of pixels.

The last RMGView method we introduce for the moment is 'size:(int):(int)'.
This method enables the user to resize the view to which the message is sent. All
the non-sticky subviews change proportionally and the lower left corner stays at
the same place. Note that if the new size of the view exceeds the size of its
superview, it is adapted to fit into the superview bounds.

Note that some methods require a 'show' or 'showall' to be sent to the instance
afterwards, in order to see the changes appear on the screen.

7.2. Envir

Envir is a class providing the background for all the new applications that are
brought up; it is really the class that implements the means to control the overall
state of the mouse.

This class is instantiated once at the start of the environment and can be seen on
the screen as a black window without frame, that covers the entire display. This
window can not be moved or reduced and in short represents "the background of the
graphical utilization swface" ([WEGENER, 90], p.34). This class enables the
management of the environment through the use of the mouse. This is why each
master-class in an application has to be subclass of the 'Envir' class, to enable the
application's window to be managed as the environment itself, thus using the mouse.

We first present the different interesting instance variables, then the most used
factory methods and the different instance methods. Finally we present some useful
C functions which are implemented in this class.

7.2.1. Instance variables

The Envir class has only two instance variables apart from the ones inherited
from RMGView. Among these two variables, the only interesting one is
'menuTree'. This variable is of type id and is designed to receive the address of
the menu of the application. Thus it enables to adjoin a menu to any application.

7.2.2. Fact01y Methods

Envir has also approximately 20 factory methods. These methods are not very
useful to the reader for the moment so we do not detail them. We just want to say
that some of these methods enable the creation of an instance of the environment
with particular dimensions and a particular origin location. Another set of them
enable to specify different RMG cursors.

The reader must know that the factory methods usually used for this class are
the ones of RMGView -as 'origin:: extent:: superview: bkgd:' for example- which
are inherited directly.

Chapter 7: First useful classes 83

7.2.3. Instance methods

Envir furnishes about 70 different instance methods on the top of the ones
inherited from RMGView. We review some of them now; other ones are
introduced in a later chapter.

One can find methods very similar to the ones in RMGView and which usually
are redefinitions of these methods. For example: 'bkgd:(int)' and 'redraw'.

A useful method is 'isld:(id)', which takes an id as parameter and returns a
boolean. The return value is 'TRUE' if the id is the address of an object in the
current environment, 'FALSE' otherwise.

'quit_app' is a method enabling to quit the application when it is sent within a
message to the master-class of the application.

'moveView:(id) whileMousels:(int)' enables the user to move the specified
view while the left button of the mouse is in a certain state. This state is specified
as argument after 'whileMousels:'; this argument is of type integer and can take
the value O for 'button up' or 1 for 'button down'.

7 .2.4. C functions

Away with these methods, various C functions are implemented in this class.
These functions can be used as in a normal C program.

Among these functions, one can find a certain number of them coping with a
timer. Other functions enable the user to move a view on the screen. These are
'moveViewWithBand(aView)' and 'moveWithBand(aView)'. The first one
moves a View while the left mouse button is depressed. The second one finds the
application containing aView and moves it while the left-hand side mouse button
is depressed.

'sprite_erase()' and 'sprite_show()' are two functions that enable respectively
to erase and to show the RMG cursor on the screen.

'sizeTopRight(a View)', 'sizeTopLeft(a View)', 'sizeBottomRight(a View)' and
'sizeBottomLeft(aView)' are four functions enabling the user to enlarge 'aView'
from respectively the top right, top left, bottom right or bottom left corner of this
view.

Note that, as for the methods, many other functions are available but are of no
particular interest at the present moment.

7.3. RMGString

RMGString is a class designed to display a string within a particular view and to
cope with different parameters concerning this string. For example, it enables the
user to change the string color or the string font. As RMGString is a subclass of
RMGView, it inherits all its methods and instance variables. To display the strings,
it uses HP-Windows fonts which can be accessed by a class called FontMngr.

Chapter 7: First useful classes 84

We first present the different interesting instance variables, then the most used
factory methods and finally the different instance methods.

7 .3.1. Instance variables

The proper7 instance variables of this class are all relative to strings. The
principal ones are two integer variables, 'dot_clr' and 'bkgd_clr' which are
designed to keep the color of respectively the characters and the background of
the string.

'myFont' is an id variable which is declared to keep the address of the object
font of FontMngr8, so to keep trace of the font used for a particular string.

'aString' is a C pointer to the memory zone containing the string itself and
'str _len' is the length of this string.

Two other instance variables, 'xoffset' and 'yoffset' are designed to contain the
coordinates of the string, in the view which contains it.

7.3.2. Factory methods

Five factory methods are available.

The preferred one is 'font:(id) superview:(id) color:(int)' which creates an
instance of RMGString in a particular specified font, in the specified superview
and in the specified color. The background color in this case is the one of the
superview. The displayed string is specified using an instance method :
'string:(char*)' which is detailed below.

The font is specified by instantiating the class 'FontMngr'. When a user
requests a font, the font manager checks to see if it has already been loaded. If
this is the case, it only returns the address of the font object to the user. If not, it
loads the appropriate font by reading the font file on disk and returns the address
of the object to the user. For example, '[FontMngr cour12x20];' returns the
address of a font of 12 by 20 of 'comTier' type. Note that this class has only
factory methods as there should be only one FontMngr instance -concerning one
particular font- present in the system.

Usually we use RMGView factory methods to create an RMGString and then
set all the parameters such as the string, the color, the font, etc, using instance
methods. Note that if no font is specified, the RMGString is not displayed. Note
also that if the string is too large for its superview, it is clipped accordingly.

7.3.3. Instance methods

RMGString implements about 30 different instance methods. Among these,
one can find, as for Envir, methods that are implemented in RMGView but which
are redefined considering the particular purposes of the class.

7 : By proper we mean instance variables not inherited through the inheritance chain
8 : This class is briefly detailed in the next point

Chapter 7: First useful classes 85

Among the principal ones, we can find 'color:(int)' which enables the user to
set the color of the displayed string itself. Note that this method does not redraw
the string after having changed the color, this is the user's responsibility.

We can also find 'font:(id)' which enables the user to set the font of a string.
As for 'color:', this method does not redraw the string after having made the
transformation.

The most important one is of course 'string:(char*)', which enables the user to
specify the string to be displayed. The argument of this method is a C pointer to a
memory zone containing the string itself. Note that this string must be a NULL
terminated string; in C that is a string terminated by the '\o' character. If the user
changes the length of this string without issuing a 'string:' method to the
RMGString instance, the displayed string keeps the original length, thus clipping
the newly displayed one. This resizing of the string can be done with the 'resize'
method, which updates the internal instance variable representing the string
length.

RMGString provides also some methods to alter the position of the string in its
superview. 'center' and 'centerV' are two of them. These two methods enable
the user to respectively center horizontally and vertically the RMGString's string
in its superview. 'scroll:(int):(int)' is yet another one which takes two integers as
parameters. These integers represent the modification of the location of the
string, in pixels, by which it will be moved to the right-hand side and upwards.
'dataOrigin:(int):(int)' specifies which is the location of the lower left corner of
the string in regard of the lower left corner of its superview.

This class implements also a method, 'erase' that enables the user to erase the
string from the screen.

'horFill:(BOOL)' is a method taking a boolean as parameter. If this parameter
is set to TRUE, the background color of the RMGString extends to the right and
left edges of its view. The default situation is that the particular background color
is only set where the characters are.

Note that as the majority of these methods do not redraw the screen after
having been used, it is necessary to use either the 'redraw', 'show' or 'update'
method. The latter being a method which purpose is to erase and redraw the
string on the screen.

As example of RMGString we can extend example 7.3:

+ newln: anEnvironment
{
id a View, b View, aString;

self= [RMGView origin: 100: 100
extent: 200: 200
superview: anEnvironment
bkgd: 1];

/* 1 */

/* 2*/

a View = [RMGView relative: 50: 25 /* 3 */
extent: 100: 100

Chapter 7: First useful classes

superview: self
bkgd: 2];

b View = [RMGView Type: 4
extent: 50
superview: a View
bkgd: 0];

aString = [RMGString origin: 325: 100
extent: 200: 200
superview: anEnvironment
bkgd: 1];

[[[[[[[[aString string: "This is an RMGString"]
font: [FontMngr cour12x20]]
color: 0]
bkgd: 2]
center]
centerV]
horFill: TRUE]
show];

/* 4 */

/* 5 *I

/* 6 */
/* 7 */
/* 8 */
/* 9 *I
/* 10 */
/* 11 */
/* 12 */
/* 13 */

86

Line 1 is the declaration of three local id variables which will contain the
addresses of the subviews we want to create and the address of the new
RMGString instance.
Line 2 is the creation of the view we described in example 7 .1. At line 3 we find
the creation of a subview of our principal view. Line 4 is the creation of the
sticky subview we place in the view identified by 'aView', as described in
example 7.3

Figure 7.4 Creation of an RMGString

Chapter 7: First useful classes 87

Line 5 creates the instance of RMGString using an RMGView factory method and
thus creating a view of 200 by 200 pixels in the environment, at location
(325,100). At line 6 we can see the specification of the string to be displayed:
'This is an RMGString'. It is displayed in a counier font of 12 by 20 pixels -line
7-, in black -line 8- and with a red background color -line9. Line 10 and 11
center this string horizontally and vertically, while line 12 specifies that the
background color as to be prolonged to the edges of its view. Finally line 13
makes all this appear on the screen (see figure 7.4). (Example 7.5)

7.4. RMGicon

RMGlcon is a class enabling the user to display icons created with the application
'IconEditor' for example -described in chapter 4.

It is a class that displays a rectangular bit map at a certain place on the screen.
This bit map has a predefined width, height and a position relative to its superview.
This class is a subclass of RMGView, thus inheriting all its instance variables and
various methods.

We first present the different interesting instance variables, then the most used
factory methods and finally the different instance methods.

7.4.1. Instance variables

There are various instance variables in this class, containing some useful
parameters concerning the icon. Among these we can find 'b_width' and
'b_height' which are both integers, designed to contain the dimensions of the
icon. 'pos_x' and 'pos_y' are yet two other variables of type double, which are
designed to contain the location of the icon in its superview.

Another interesting instance variable is 'clip'. It is a boolean which, if set to
TRUE, denotes the fact that the icon image is completely confined by its
superview. Otherwise, it is displayed partially or totally outside its superview.

7.4.2. Factory methods

This class provides the user with about ten different factory methods. These
methods are designed to cope with the creation of an RMGicon instance
containing an icon. This icon can use the same data file format as in RMG or any
other. The instances are designed to cope directly with files or with an
'IconModel' instance. IconModel9 is a class enabling the user to build a model of
an icon without displaying it; this model stores the minimum attributes of the
IconModel instance.

'makeFromModel:(id) in:(id)' is a method that creates an RMGicon instance
from an IconModel instance specifying also its superview as second parameter.

9 : Examples of use of RMGicon and lconModel are given in a following chapter

Chapter 7: First useful classes 88

Another factory method of RMGlcon is 'makelconFrom:(char*) in:(id)'
which creates an icon from a data file -passed as first argument- and displays it in
the specified view -passed as second argument. In addition to this the user has to
specify the location where the icon has to be displayed, combined with the 'show'
instance method in order to make it appear on the screen. For example:

id mylcon; /* 1 */

mylcon = [RMGicon makelconFrom: "./mylconFile.icon"
in: aView]; /* 2 */

[[mylcon dataOrigin: 10: 10]
show]; /* 3 */

Line 1 defines the variable of type id which will contain the address of the
RMGicon instance.
Line 2 is the instantiation of the RMGicon class with './mylconFile.icon' as file
name and 'aView' as superview, assuming that 'aView' is a variable containing the
address of an already existing view.
Finally, line 3 specifies the location where the icon has to be displayed in its
superview -(10, 10)- and requests the RMGicon instance to be displayed -through
the 'show' method. (Example 7.6)

7.4.3. Instance methods

Few instance methods are provided in this class, among which one can find a
certain number of them that manages the obliteration, showing, etc, of an icon.

For example, 'show' and 'erase' respectively displays and erases an icon on and
from the screen.

'overlay' is a method enabling the user to display on the screen only the non
zero data bytes of the bit map. The result is that whatever is under the icon is
seen where the bytes of the bit map are set to zero.

'clip:(BOOL)' is an instance method enabling the user to set the clip state of an
icon within its superview. This method takes a boolean as argument. This means
that if the passed argument is TRUE, the icon will be clipped to its superview
bounds.

Two methods enable to scroll the icon respectively horizontally and vertically :
'scrollx:(int)' and 'scrolly:(int)'. They both take as argument an integer which
specifies the amount of pixels by which the icon has to be moved.
'dataOrigin:(int):(int)' is the method to be used in order to specify the location -
represented by the two integer arguments- of the icon in its superview. Note that
this last method does not update the screen, so the user has to send the RMGicon
instance a message containing the 'update' selector. The method 'width:(int)
height:(int)' changes the width and height of the icon; the two arguments are of
integer type.

Chapter 7: First useful classes 89

7.5. Summary

We presented in this chapter four basic classes shipped with RMG:

-RMGView;
- Envir;
- RMGString;
-RMGicon.

We described some of their basic characteristics in order to accustom the user
with this type of class. We saw that RMGView was the foundation of most RMG
classes and that its purpose was the management of the overall screen. We saw also
that the windows resulting of its instantiation were organized in a superview-subview
hierarchy.

For Envir, we saw that it was the background for each new application being
created in the environment and that its goal was to provide the user with all the
means to control the state of the mouse.

We talked about RMGString and said that it was a class designed to display
strings within views, providing at the same time every possible means to manipulate
these strings.

Last we said that RMGicon was a class enabling the user to display icons under
the shape of bit maps.

Chapter 8: New notions about programming in RMG

In this chapter we introduce some new notions about programming in RMG.
These new notions will help the user design some actions for an application (8.1) or
build a menu (8.2). It also shows the user how to cope con-ectly with the mouse,
how to iconize an application's window and finally how to use an entirely new
concept : the active collection (8.3).

8.1. The actions

We see in this part what is hidden behind the word 'action' in RMG and what it
means in this environment.

We talked of actions earlier without explaining exactly what it was. We said that
it was something that could change the current state of the application and that
was performed when the user clicked on an icon, on a button or selected a menu item
in a menu. The 'something' that can change the cun-ent state of the application is in
fact:

- a C function defined by the user;
- a method defined by the user;
- a method contained within an RMG class;
- an already defined RMG action.

C functions are defined using the standard C syntax. This is usually done between
the part declaring the instance variables and the part defining the different methods.
Note that this order has no particular importance, it is just respected in order to keep
a certain clarity in the classes.
User methods are defined as explained above. While methods defined in RMG
classes are already present in these classes.
Along with this, RMG provides already defined actions, as for example :

- 'move View Action' which moves a view in the environment;
- 'quitProgAction' which stops the execution of an application;
- etc.

These actions can either be linked to instances of the 'RMGView' class or to
instances of subclasses of RMGView. They can also be linked to menu items, this is
analyzed in point 8.2.

8.1.1. C functions

C functions must be declared somewhere as the code to be executed when a
particular icon or button is clicked on. This process encompasses several steps.
Note that these functions are always defined as 'static' functions in order to

Chapter 8: New notions about programming in RMG 91

suppress possible name conflicts between the functions defined in the class and
other functions included through header files.

Let us first see which are the different steps involved in this process. We will
then explain why it is so.

The first step in the process is to objectify this function using the class
'RMGAction' and the 'newFuncAction:(<function name>)' factory method
within this class. This is done once and for all in the 'newln:' method. The
following lines give an example of C function 'objectivation' :

static id <variable name> = NULL; /* 1 */

if (!<variable name>) /* 2 */
<variable name> = [RMGAction

newFuncAction:
<name of C function>];

/* 3 */

Line 1 is the definition and the initialization to NULL of the variable which will
receive the address of the new RMGAction's instance; this declaration is done as a
global variable definition, so before the '@requires' clause.
Line 2 checks if the vaiiable has already a value different from NULL, if this is
the case line 3 is skipped. If not, at line 3, the vai·iable takes the value of the
RMGAction instance's address. If we take an example, we could have :

static id myFunctionAction = NULL;

if (!myFunctionAction)
myFunctionAction = [RMGAction

newFuncAction:
myFunction];

Assuming that 'myFunction' is a C function previously defined. (Example 8.1)

The second step is to store the address of the objectified C function in an
instance variable inherited from RMGView: 'myAction'. This is done using the
instance method 'idAction:(id)', which is also inherited from RMGView, at the
instantiation of the view or the icon. It is of type :

[... [RMGView origin: ...] ...
idAction: <vai·iable name>];

-in the case of a view-

Chapter 8: New notions about programming in RMG

[... [RMGicon makeiconFrom: ...] ...
idAction: <variable name>];

-in the case of an icon-

If we extend example 8.1, we have :

static id myFunctionAction = NULL;

if (!myFunctionAction)
myFunctionAction = [RMGAction

newFuncAction:
myFunction];

[... [RMGView origin: ...] ...
idAction: myFunctionAction];

-in the case of a view-

static id myFunctionAction = NULL;

if (!myFunctionAction)
myFunctionAction = [RMGAction

newFuncAction:
myFunction];

[... [RMGicon makelconFrom: ...] ...
idAction: myFunctionAction];

-in the case of an icon- (Example 8.2)

92

The explanation of all this is contained within the mechanisms of RMG
themselves and in one of RMG conventions : the left-hand side button of the
mouse is for clicking on objects. When the user depresses the left-hand side
button of the mouse, a message containing the selector 'leftButtonDown'1 is sent
to the environment, which is an instance of the 'Envir' class.
The result is that the environment tries to find the top view under the RMG cursor
and sends it a message containing the 'action'2 selector.
The view receives the message and performs the 'action' method. The result is the
sending of a message containing the 'performWith:(id)'3 selector to the
RMGAction instance which address is contained into the 'myAction' instance
variable of the view that has been clicked on; while the argument passed to this
method is the address of the view itself.

1 : This is a method implemented in the Envir class
2 : This is a method implemented in the RMGViewO class
3 : This is a method implemented in the RMGAction class

Chapter 8: New notions about programming in RMG 93

This method, when executed, calls the installed C function, causing its execution.
This C function takes as parameter, the address passed to the 'performWith:'
method as argument. The process is shown at figure 8.1 (inspired of
[WEGENER, 90] p.42).

User u

U : User request
M : Message sending
F : Function call

Environment M

leftButtonDown

I C-function I
F

~

Toi> window under
RMG CUISOl

action

M
1.

RMGAction's
ll1BtaDce

perform With:

Fi~ure 8.1 Reaction to the depression of the left mouse button
in case of an action represented by a C function

A problem appears with these C functions : the arguments. The principle of
objectified C functions in RMG is that if an argument is defined within the
declaration of the function, it can not be anything else than the address of the
view to which is linked the function; so we have :

static myFunction(aView) id aView
{

}

where 'a View' will be the variable containing the view's address to which the
function is linked.

The C functions linked to views pose another problem. It is impossible to
access directly an instance variable from inside a C function, other than the one
passed as argument.
For example, if 'a View' is an instance variable containing the address of a
subview of an application's window and that 'aView' is passed as argument to the
C function 'myFunction', it is impossible for the user to access directly, inside
'myFunction', the address of the application's window contained in the 'self
variable.
To solve this problem, the user has two possibilities. The first one is to store 'self
in aView's viewlcon instance variable and reference it by issuing the message :

[a View viewlcon];

Chapter 8: New notions about prograimning in RMG 94

or by using the C syntax :

aView->viewlcon

The second solution is to use the subview-superview hierarchy, by using the
'superview message'. In our case:

[aView superview];

8.1.2. Methods

The methods must, as the functions, be declared as the code to be executed
when a particular icon or button is clicked on.

The first step is to create an instance of a class 'RMGActionl' using its
'sel:(char*) rec:(id)' factory method. This is an instance which keeps track of the
receiver and of the selector contained in the message to be sent to this receiver,
when the instance receives the message containing the selector 'performWith:';
these two parameters are stored into two instance variables, namely 'selector!'
and 'receiver!' . As for the functions this need only be done once, therefore it is
usually done in the 'newln:' method. It takes the shape :

static id <variable name> = NULL; /* 1 */

if (!<variable name>) /* 2 */
<variable name>= [RMGActionl sel: "<selector

name>" rec: <receiver's
address>]; /* 3 */

Line 1 is the definition and the initialization to NULL of the variable which will
receive the address of the new RMGActionl's instance; this declaration is done as
a global variable definition.
Line 2 checks if the variable has ah·eady a value different from NULL; if this is
the case line 3 is skipped. If not, at line 3, the variable takes the value of the
RMGActionl instance's address.
For example :

static id myMethodAction = NULL;

if (lmyMethodAction)
myMethodAction = [RMGActionl sel:

myMethod
rec:

aView];

Chapter 8: New notions about progrrumning in RMG 95

In this case we assume that 'a View' is the instance of the class that implements the
method 'myMethod'. (Example 8.3)

The second step is the same than for the C functions, thus the storage of the
RMGActionl instance's address into the 'myAction' instance variable -see point
8.1.1.

The explanation of the mechanism is the same than for the functions except
that the RMGActionl instance sends a message containing the stored selector -
thus stored into 'selectorl '- to the instance which address is stored into 'receiverl'
(see figure 8.2 inspired of of [WEGENER, 90] p.42).

User u Environment M Top window under
RMG CUlSOI

- .
leftButtonDown acnon

M
,,.

U : User request
receivert M RMGActlon's

M : Message sending instance
~

selectod perform With:

Figure 8.2 Reaction to the depression of the left mouse button
in case of an action represented by a method

8.1.3. RMG actions

For RMG actions, the process is simpler. One has just to specify the name of
the action, using the 'idAction' method. For example:

[... [RMGView origin: ...] ...
idAction: quitProgAction];

-in the case of a view-

[... [RMGicon makelconFrom: ...] ...
idAction: quitProgAction];

-in the case of an icon-

Chapter 8: New notions about prognumning in RMG 96

8.2. The menus

As it was often said, menus are one of the basic communication mean3 between
the user and the application, in the RMG environment. The principle of a menu is to
enable the user to select a menu item in order to change the current state of the
application; this is done by 'making the application execute' an action. This implies
in our case that the menu has to send messages to the application, in order to reply to
the menu item selection made by the user. These menus are present in almost every
application under different shapes :

- pop-up menus;
- fix-menus.

The first ones are the traditional ones for which RMG provides some classes in order
to implement them. In short, they are menus appearing at depression of the right
hand side button of the mouse by the user. They can contain as many menu items as
necessary; if these items do not all appear at once in the menu, a simple mouse
motion -up or down- enables the menu to scroll, hence the hidden menu items to be
displayed. These menu items can hide submenus, appearing when the user drags the
mouse rightward. Menu items of these submenus can also hide other submenus, thus
enabling the user to combine as many submenus as desired or needed.
The second type was designed by COLOS members at Kiel's University4, namely
Uwe Heimburger and Detlev Wegener. This type of menu (see figure 8.3) is an
independent window which has as superview the environment itself and which is
linked to an application's window. These menus contain some subviews which when
clicked on activate a particular action or change a simulation's parameter value.
Note that multiple fix-menus can be linked to a paiticular application. These menus
can be created using the class 'FixMenu'.

Fii:ure 8.3 Example of fix
menu

4 : Precisely at the Institut ftir die Padagogik der Naturwissenschaften an der Christian-Albrechts Universitat zu

Kiel, under the supervision of Dr. Hermann Hartel

Chapter 8: New notions about programming in RMG 97

We only describe the creation of the first sort of menus, as it is the principal one
in RMG5.

8.2.1. The specification of a menu

The specification of a menu for an application consists in the building of a
class -the menu class- which is part of the set of classes composing this
application. So an application's menu is the instantiation of a class and is so an
object itself. As we saw in chapter 6, this class is instantiated once at the
instantiation of the master-class -in the 'delaylnit' factory method.

As for each class defined in RMG, some particular items are required in a
menu class definition. We will start by expressing one convention usually
adopted by all RMG programmers : the name of the menu class is the name of the
application -and so of its master-class- preceding 'MTree'. For example the menu
class of an application 'My App' is 'MyAppMTree'.

A menu class description begins like each other class description with the
header files. In this case the three traditional header files -'objc.h', 'rmg.h' and
'envir.h'- are still compulsory. Then follows the '@requires' clause listing all the
classes used in the menu class, except the superclass.

Then comes the declaration of global variables with an obligatory one:

static id onlylnstance;

This is the declaration of the variable which will receive the address of the only
instance of the menu class.

This is followed by the definition of the class name, of its superclass and of the
message groups:

= <application name>MTree: EnvMTree (<user message group>,
working, RMGVW,
Collection, Primitive)

As an application's master-class had to be subclass of 'Envir', the class defining
the application's menu must be subclass of 'EnvMTree' which is the class
defining the main menu associated to the 'Envir' class.

After this are defined the instance variables and the various methods. Among
these methods, one must include two factory methods called : 'delaylnit' and
'getlt'. 'delaylnit' initializes various items needed by the menu and is the place
where the menu is constructed, where the actions for each menu items are
defined. We give here a short template of this method, which is further detailed

5 : If the reader is interested in the second sort of menus, we advise the reading of [HEIMBURGER, 90] pages
39 to 52

Chapter 8: New notions about programming in RMG

later:

+ delaylnit
{
static BOOL beenHere = FALSE;

if (! beenHere)
{

beenHere = TRUE;

self= only Instance= [self new];

/* 1 */

/* 2 */

/* 3 */

rootMenu = [<creation of the root menu>]; /* 4 */

[... [rootMenu <creation of a menu items>] ...];/* 5 */

[... [rootMenu <creation of a menu items>] ...];
}

return <application name>MTree;
}

98

Line 1 declares a local variable that will be used to check that the menu has been
created once and only once; this is done at line 2.
Line 3 creates the instance of the menu, where 'self and 'onlylnstance' both
receive the address of the newly created menu.
Line 4 is the construction of the root menu where the variable 'rootMenu' is an
instance variable inherited from 'EnvMTree'.
From Line 5 and downwards, the menu items are defined. We see in point 8.2.2.
which are the classes one can use in order to construct the menu, define the menu
items and thus replace '<creation of the root menu>' and '<creation of a menu
items>' in the template above.

'getlt' is a factory method which goal is to return the variable 'onlylnstance'
which contains the address of the newly created menu. It is of type:

+getlt
{

return onlylnstance;
}

The class description is of course terminated by the'=:' sign.

Once the class as been defined, one must not forget to include it in the
makefiles and 'mainClass.m' file as explained in chapter 6.

Chapter 8: New notions about programming in RMG 99

After this, the more important stays to do. One has to link the menu to the
application itself. This is done in the master-class' 'delaylnit' and 'extraNewln'
methods -see chapter 6-, where one can find :

+ delaylnit
{
static BOOL beenhere = FALSE;

if (!beenHere)
{
if (self== <class name>)

}
return self;
}

{
[<menu class> delaylnit];
beenHere = TRUE;
}
else
[<class name> delaylnit];

In this case, the only instantiation of the menu is asked with : '[<menu class>
delaylnit];'.
'extraNewln' is of type:

- extraNewln: anEnvironment
{
[self show All];
menu Tree = [<menu class> 1:etlt];

return self;
}

where the address of the menu's instance is returned with '[<menu class> getlt]'
and stored in the instance variable 'menuTree' inherited from 'Envir'.

We said earlier that an application could have only one menu. This is entirely
true but must be claiified a little bit more by saying that a view can have only one
menu. As the application's window is a view, it can dispose of one menu for
itself; this menu is called the application's menu. But as the application's window
contains probably one or many other subviews which are independent instances of
a class, these subviews can have also their own menus.

We give in table 8.1 a summary of what has been said of a menu class.

Chapter 8: New notions about programming in RMG 100

#include "objc.h"
Header #include "rmg.h"

Files #include "envir.h"
[#include "<other header file name>"]*

C variables
declaration Declaration of global variables

Declaration of
classes used @requires <class name> [,<class name>]*

= <class name>: <superclass name> (
Class name <personal message
declaration group>, RMGVW,

Primitive, Collection,
[,<other message
groups>]*)

{
Instance variables Declaration of instance variables

declaration }

Definition of
Cfunctions Definition of functions

+ delaylnit
Methods { ... }

definition
+getit

{ ... }

End of class
description -· -.

Table 8.1 What has to be included in a menu class description

Chapter 8: New notions about programming in RMG 101

8.2.2. Which class can be used ?

We can find two interesting classes to be used to create a menu :

-RMGMenu;
-RMGMenul.

The first one, 'RMGMenu', is a subclass of RMGString, which instance is
composed of RMGStrings of same dimensions, one on top of the other and
surrounded by a border. It represents a one level menu composed of a collection
of menu items. We saw examples of these menus when describing applications in
chapter 4.

It has a certain number of instance variables among which the most interesting
are:

- 'item_number';
- 'receiver'.

The first one is an integer variable designed to store the number of menu items
that composes the menu. The second one is an id variable which is designed to
store the address of the receiver. This receiver is the instance of the class to
which the menu is linked.

RMGMenu provides also a few factory methods, among which
'char_wide:(int) items:(int) font:(id)' is the most often used. This method
creates an instance of RMGMenu which has a certain width, measured in
characters, a certain number of menu items and which is displayed in a particular
font.
For example :

root.Menu= [RMGMenu char_wide: 10
items: 3
font: [FontMngr

cour12x20]];

creates a menu of 3 menu items, this menu is of 10 characters wide and the menu
items are displayed in the 'cour12x20' font. The address of the new instance is
stored into 'rootMenu' as explained in point 8.1.1. (Example 8.4)

Once the menu has been instantiated, one must also create each menu item
using instance methods. The most 'popular' one is 'at:(int) putStr:(char*)' which
enables the user to place a string at a particular place in the new instance of
RMGMenu.

Chapter 8: New notions about programming in RMG

For example, if we extend example 8.4, we can have :

rootMenu = [RMGMenu char_ wide: 10
items: 3
font: [FontMngr courl2x20]];

[rootMenu at: 0
putStr: "!!QUIT!!"];

[rootMenu at: 1
putStr: "Start"];

[rootMenu at: 2
putStr: "Stop"]; (Example 8.5)

102

There are many other instance methods enabling the user to access the instance
variables defined in this class. And it is of course possible to utilize every
RMGString methods, RMGMenu being one of its subclasses, along with all the
other methods present in RMGMenu.

'RMGMenul' is a subclass of RMGMenu. It is a class enabling the building of
systems of hierarchical menus. It enables the creation of menus having menu
items hiding a submenu at its right, as seen in a preceding chapter. Thus the great
advantage of RMGMenul on RMGMenu is that it enables the preview of
submenus when the RMG cursor is in the right 4/5 part of the menu item.

Its use is pretty much the same as that of RMGMenu and all the methods
implemented in this last class can be of course used from RMGMenul. The only
difference is the presence of submenus whose addresses are stored in the view Icon
instance variable of the menu item -as it is an RMGString. This is possible, an
RMGMenu instance being a sort of aiTay, each slot containing the informations
concerning one menu item -thus the informations concerning one RMGString
instance. Note that the 'viewlcon' variable is aliased 'subMENU'; this is also the
case for the method enabling to access its value, 'viewlcon', which is aliased
'subMENU' or the method enabling to change its value, 'viewlcon:', which is
aliased 'subMENU:(id)'.
For example we can transform example 8. 5 to suppress the two menu items 'Start'
and 'Stop' from the main menu and transport them to a submenu hidden at the
right of a menu item 'Action >' :

aSubMenu = [RMGMenul char_wide: 10 /* 1 */
items: 2
font: [FontMngr

[aSubMenu at: 0
putStr: "Stait"];

[aSubMenu at: 1
putStr: "Stop"];

cour12x20]];
/* 2 */

/* 3 */

Chapter 8: New notions about programming in RMG

rootMenu = [RMGMenul char_wide: 10 /* 4 */
items: 2
font: [FontMngr

cour12x20]];
[rootMenu at: 0

putStr: "! ! QUIT ! ! "];
[[rootMenu at: 1

putStr: "Action>"]
subMENU: aSubMenu];

/* 5 */

/* 6 */

103

where 'aSubMenu' is a newly defined instance variable of type id which will
contain the address of the new submenu.
Line 1 defines the new submenu using the same 'principles' as for RMGMenu;
while lines 2 and 3 define the menu items of this submenu.
Line 4 defines the main menu with only two menu items -.. .'items: 2' ... - and as an
instance of RMGMenul.
Lines 5 and 6 define the two menu items of the main menu, with at line 6 the
specification of the submenu of the 'Action >' menu item. When the user 'calls'
this submenu on the screen, the menu will appear as shown at figure 8.4.

I,
II GUff II

I Aodoin > 9bu1:

-.op

Fi1:ure 8.4 Main menu with a submenu
hidden at the right of the 'Action>' menu

item

8.2.3. Actions in a menu

(Example 8.6)

In this part we talk of the actions that have to be linked to each menu item.

Each menu item is usually linked to a particular action; 'usually' because some
menu items hiding a submenu do not obligatorily need to have an action linked to
them. Now we need to know how to define these actions for a menu item.

As for the actions defined in point 8.1, actions linked to menu items can be :

- C functions;
- methods;
- RMG actions.

We are going to desclibe them one after the other.

Chapter 8: New notions about programming in RMG 104

The C functions are described in the menu class itself and must be also
objectified. This is done as explained above but in our case in the menu class
'delaylnit' factory method :

static id <variable name> = NULL;

+ delaylnit
{

if (!<variable name>)
<variable name> = [RMGAction

newFuncAction:

}

<name ofC
function>];

As we can see the process is exactly the same as for C functions representing
actions linked to views or icons.
For example :

static id myFunctionAction = NULL;

+ delaylnit
{

if (!myFunctionAction)

}

myFunctionAction = [RMGAction
newFuncAction:

myFunction];

(Example 8. 7)

The second step concerns the linkage of these objectified C functions to menu
items. This is also done through the 'idAction:' method; indeed, we must
remember that RMGMenu is a subclass of RMGString which is subclass of
RMGView. If we merge example 8.6 and example 8.7, it looks like:

static id myFunctionAction = NULL;

+ delaylnit
{

if (!myFunctionAction)
myFunctionAction = [RMGAction

newFuncAction:

Chapter 8: New notions about programming in RMG

}

my Function];

aSubMenu = [RMGMenul char_wide: 10
items: 2
font: [FontMngr

cour12x20]];
[[aSubMenu at: 0

putStr: "Start"]
idAction: myFunctionAction];

[aSubMenu at: 1
putStr: "Stop"];

rootMenu = [RMGMenul char_wide: 10
items: 2
font: [FontMngr

cour12x20]];
[rootMenu at: 0

putStr: "! ! QUIT ! ! "];
[[rootMenu at: 1

putStr: "Action>"]
subMENU: aSubMenu];

105

where the action represented by 'myFunctionAction' has been linked to the menu
item 'Start' in the submenu 'aSubMenu'. So when the user selects this menu item,
the C function 'myFunction' is executed. (Example 8.8)

For methods, the process is simpler. They are defined inside the class to which
the menu class is linked. In order to link these methods to particular menu items,
a class called 'MTreeAct' is used. If the menu item is selected, the instance of
'MTreeAct' sends a message containing the desired selector to the desired
receiver. The desired selector is specified using MTreeAct's 'sel:(char*)' factory
method.
It is of type :

[... [<menu name> at: ...] ...
idAction: [MTreeAct: "<method

name>"]]
...];

where '<method name>' is the name of the method one wants to be executed when
the menu item is selected. If we extend example 8.8, we have :

static id myFunctionAction = NULL;

+ delaylnit

Chapter 8: New notions about programming in RMG 106

if (!myFunctionAction)
myFunctionAction = [RMGAction newFuncAction:

myFunction];

aSubMenu = [[RMGMenul char_wide: 10
items: 2
font: [FontMngr

cour12x20]]
APPL: self];

[[aSubMenu at: 0
putStr: "Start"]
idAction: myFunctionAction];

[[aSubMenu at: 1
putStr: "Stop"]
idAction: [MTreeAct sel:

"myMethod"]];

rootMenu = [RMGMenul char_wide: 10
items: 2
font: [FontMngr

cour12x20]];
[rootMenu at: 0

putStr: "!!QUIT ! !"];
[[rootMenu at: 1

putStr: "Action>"]
subMENU: aSubMenu];

In this case, the reader notices that something has been added to the definition of
the submenu 'aSubMenu', for instance 'APPL: selr. This is done in order to set
up a link between the menu and its application so that the receiver of the message
defined by 'idAction: [MTreeAct sel: "myMethod"]' is correctly known; this is
required by RMG. (Example 8.9)
Note that other classes are available to the user in order to link methods to menu
items. For example 'MTreeActOne' enables the user, through the 'sel: (char*):
(char*)' factory method, to specify the method to be executed so as an argument
that has to be passed to this method6•

RMG actions are simpler to link to menu items. This is done by simply using
the 'idAction:' instance method followed by the name of the action.
For example, if we extend example 8.9, we can have:

static id myFunctionAction = NULL;

6 : For further infonnations on MTreeActOne, the reader will consult [HP, 89] p. MTreeActOne

Chapter 8: New notions about programming in RMG

+ delayinit
{

if (!myFunctionAction)

107

myFunctionAction = [RMGAction newFuncAction:
myFunction];

}

aSubMenu = [[RMGMenul char_ wide: 10
items: 2
font: [FontMngr

courl2x20]]
APPL: self];

[[aSubMenu at: 0
putStr: "Start"]
idAction: my FunctionAction];

[[aSubMenu at: 1
putStr: "Stop"]
idAction: [MTreeAct sel: "myMethod"]];

rootMenu = [RMGMenul char_wide: 10
items: 2
font: [FontMngr

cour12x20]];
[[rootMenu at: 0

putStr: "! ! QUIT ! !"]
idAction: quitProgAction];

[[rootMenu at: 1
putStr: "Action>"]
subMENU: aSubMenu];

(Example 8.10)

Note that there are paiticular things one must include in an application's main
menu under the shape of menu items. These things depend highly on the
application itself and on the wish of the programmer.

One menu item that is almost compulsory is the one enabling the user to quit
the application. In this case there are two possibilities :

- use the 'quitProgAction';
- define a new method.

The first possibility is the simplest and has been illustrated in the preceding point.
The second one is the solution the programmer chooses if he wants to do
additional things while quitting the application; for example, display something
special on the screen. Anyway in this case the programmer has to send the
master-class a message containing the 'quit_app' selector which is an instance
method implemented in Envir.

Chapter 8: New notions about programming in RMG 108

The other menu items present in a menu are entirely the choice of the
programmer. He can design his own menu items, creating new C functions or
methods.

Many classes in RMG are designed to implement menus for particular
purposes. For example 'FileMTree' is a class implementing a menu for
applications using files, it provides menu items that enable to access a file
browser, the possibility to load and save files, etc. This class is a subclass of
'EnvMTree' and can be used as superclass to design an application's menu class.

8.3. Additional features

We see in this point three additional features of RMG which are accessible to the
programmer and can be of a certain use in some cases. The first one concerns the
mouse. The second one concerns the possibility to iconize an application. Finally,
the last one concerns the active collection.

8.3.1. The mouse

This is a short tip concerning the mouse and a particular class: 'Mouse'.

The 'Mouse' class is a driver for the HP mouse, which implements only factory
methods. Among these methods two of them can be of particular interest if one
wants to get the exact location of the mouse on the screen -so the exact location of
the RMG cursor- and the state of the mouse buttons. These two methods are :
'change:(int*):(int*)' and 'getButtons'.

'change::' is a method enabling the user to store the x and y coordinates of the
RMG cursor into two integer variables. Note that the two integer arguments
which are passed to this method are pointers so that the instance can directly write
the values into them. So we could have :

int x,y;

[Mouse change: &x: &y];

or

int *x,*y;

[Mouse change: x: y];

These two versions are different only by the fact that the two variables are defined
differently 'playing' on the C syntax. (Example 8.11)

The second method, 'getButtons', returns the last button state of the mouse.
This method must be absolutely used in combination with 'change::' as the mouse

Chapter 8: New notions about programming in RMG 109

state returned will c01Tespond to the last inquiry about mouse position changes.
So if one wants to have the cunent state of the mouse buttons, he has to send the
message:

mouseState = [[Mouse change: &x: &y]
getButtons];

where 'mouseState', 'x' and 'y' are three integer variables. The final return value
of this message is an integer between O and 3 stored into 'mouseState', where:

0 = no buttons down
1 = left button down
2 = right button down
3 = both buttons down

8.3.2. Iconizing an application

Being able to iconize7 an application appears to be very useful in some cases;
mainly if one uses many applications at the same time, it enables him to 'suppress'
one of them temporaiily.

The process of enabling an application to be iconized is separated into two
parts. The first part concerns the creation of a ghost object. A ghost object is an
instance of the class 'Ghost', which is the representation of the application on the
screen when it is iconized; this representation is made of a small red rectangle
with a string inside it usually representing the name of the application8• This
instance enables the application to reappear when the icon is clicked on. Note
that this class is a subclass of RMGView so inheriting of all its features. Note
also that the instantiation of this class is usually done in the 'extraNewin:' method
and uses the 'stringGhost:(char*) In:(id)' 'Ghost' factory method. It has the
shape:

viewlcon = [[Ghost stringGhost: "<a suing>" In: <a view name>]
viewlcon: self];

where '<a string>' is the string the programmer wants to see in the icon and '<a
view name>' is the vai·iable containing the address of the superview in which the
programmer wants to see the icon appear. Usually the superview specified is the
environment itself9. 'viewlcon: self is there to specify which application must be

7 : We recall that by 'iconizing', we mean shrinking the application's window to the dimensions of an icon,
somewhere on the screen
8 : 'Usually' because this string is specified by the programmer and so can be anything wanted
9 : Recall that the environment's address is contained in the variable which is the argument of the 'extraNewln:'
method

Chapter 8: New notions about programming in RMG 110

iconized. The address of this Ghost instance is stored in the application's master
class view Icon instance variable.
For example :

viewlcon = [[Ghost stringGhost: "myApplication"
In: anEnvironment]
viewlcon: self];

(Example 8.12)

The second step is to provide for the user a button or a menu item enabling
him to launch the iconization. This has to be done by sending to the master-class
a message containing the 'iconize' selector which is a method implemented in the
'Envir' class. For example in the case of a menu, we could have :

[... [<menu name> at: <menu item number>
putStr: "Iconize"] ...
idAction: [MTreeAct sel: "iconize"];

where '<menu name>' is the name of the main menu or the name of a submenu of
this main menu.
In the case of a button we could have :

id iconizeAction = NULL;

if (!iconizeAction)
iconizeAction = [RMGActionl sel: "iconize" rec: self];

[... [RMGString origin: ...]
string: "lconize"]

idAction: iconizeAction];

8.3.3. The active collection

The active collection is the solution to a very annoying problem. When the
application enters a loop, the user can not use the mouse anymore. This is due to
the fact that when the environment is started, it enters a quasi-infinite10 loop
designed to manage the mouse; that is :

- check the RMG cursor's location on the screen and update it following the
mouse motions;

- check the state of the mouse buttons and react according to this state.

lO : Quasi-infinite because the environment can be stopped whenever the'!! QUIT ! !' menu item is selected in

the application's main menu

Chapter 8: New notions about programming in RMG 111

Then if an application enters a loop itself, the mouse loop is short-circuited
suppressing the use of the mouse for the user. This is not a great problem if the
loop is finite and stops after a short number of iterations, but if it has to stop after
the user selecting a menu item or clicking on a particular screen object, so using
the mouse, nothing will stop at all.

The solution to this problem is to use the active collection. This collection is a
list, defined as a global variable in the Envir class, which is designed to contain
instance addresses. This collection is used by the environment to send the
instances listed into it, a message containing a predefined selector: 'update'. This
method 'update' contains the operations that would have been coded inside the
loop one tries to replace.

At the start of the environment, the only instance present in this list is the
environment itself; the other instances listed depend on the needs of the
applications and the desire of the programmer. They can be placed and retrieved
from the list using the two instance methods implemented in the Envir class:
'installActive:(id)' and 'deleteActive:(id)', these two methods taking the address
of the application as argument. One can deduce that an instance receives the
'update message' as long as it is present in the active collection.

For example, if one wants to implement a loop which is entered when the user
clicks on a 'Start' button and which is quitted when the user clicks on a 'Stop'
button, it takes the shape of :

static id startAction = NULL;
static id stopAction = NULL;

id startButton, stopButton;

static id startFunc(aView) id aView
{

/* 1 */
/* 2 */

/* 3 */

/* 4 */

[[a View viewlcon] installActive: [a View viewlcon]];
/* 5 */

}
static id stopFunc(aView) id aView
{

/* 6 */

[[a View viewlcon] deleteActive: [aView viewlcon]];
/* 7 */

}

+ newln: anEnvironment /* 8 */
{

if (!startAction) /* 9 */
startAction = [RMGAction newFuncAction: startFunc];

Chapter 8: New notions about programming in RMG 112

I

}

startButton = [[[[[[[[[RMGString relative: 50: 25
* 10 */

extent: 100: 100
superview: self
bkgd: 2]
color: 0]
font: [FontMngr sysfont]]
string: "Start"]
center]
centerV]
idAction: startAction]
viewlcon: self]
show];

if (!stopAction) /* 11 */
stopAction = [RMGAction newFuncAction: stopFunc];

stopButton = [[[[[[[[[RMGString relative: 175: 25
/* 12 */

extent: 100: 100
superview: self
bkgd: 2]
color: 0]
font: [FontMngr sysfont]]
string: "Stop"]
center]
centerV]
idAction: stopAction]
viewicon: self]
show];

- update
{

/* 13 */

loop body
}

Line 1 and 2 define two global id variables initialized to NULL, which will
contain the addresses of the RMGAction instances linked to each buttons -'Start'
and 'Stop' buttons.
Line 3 is the declaration of two instance id variables which will receive the
addresses of each buttons.
At line 4 we find the declaration of one of the C functions; this function is linked
to the 'start' button -see line 9. This function contains -at line 5- the installation of
the application in the active collection. Note that the address of the application is
accessed through the 'viewicon' instance variable of the 'Start' view, in which it is
stored at creation -see line 10.
Line 6 is the declaration of the other C function, which is linked to the 'stop'
button and which contains the application retrieval of the active collection at line
7.

Chapter 8: New notions about programming in RMG 113

Line 8 starts the definition of the 'newln:' factory method, which contains at line 9
the objectivation of the 'startFunc' C function.
Line 10 creates the 'start' button which is an instance of the 'RMGString' class, in
order to insert a string in the displayed view. So it creates a red view of 100 by
100 pixels, situated at relative coordinates (50,25) in the application's window.
Within this view is displayed in black and 'sysfont' font the string 'Start', which is
centered vertically and horizontally within its view. The action 'startAction' is
then attached to this view, putting also the address of the environment into the
'viewlcon' instance variable.
Line 11 objectifies the 'stopFunc' C function and line 12 defines the 'stop' button.
It is red, 100 by 100 pixels and situated at relative coordinates (175,25) in its
superview -the application's window. It encloses a black 'Stop' string, displayed
in 'sysfont' font, centered horizontally and vertically. The action 'stopAction' is
then attached to this view, putting also the address of the environment into the
viewlcon instance variable. Line 13 begins the definition of the 'update' instance
method. (Example 8.13)

8.4. Summary

Our goal in this chapter was to introduce new notions about the programming in
RMG.

The first part concerned the actions. We said that an action was the execution of :

- a C function defined by the user;
- a method defined by the user;
- a method contained within an RMG class;
- an already defined RMG actions.

that could change the cmTent state of the application and that was launched by the
user clicking on an icon, on a button or selecting a menu item in a menu.

Next we saw that these functions or methods had to be objectified using
RMGAction or RMGActionl, in order to be linked to a view using Envir's 'idAction'
instance method.

In the second part, we analyzed the creation of applications pop-up menus, which
are the traditional menus and for which RMG provides some classes in order to
implement them.

We saw that they had to be created through the building of a menu class which
had to:

- be part of the set of classes composing the application;
- be subclass of the 'EnvMTree' class;
- contain two factory methods: 'delaylnit' and 'getlt'.

Chapter 8: New notions about programming in RMG 114

Next, we described which were the classes one could use to create a menu and to
define the menu items, namely 'RMGMenu' and 'RMGMenul'. Last, we described
how to implement actions to be linked to menu items, again using :

- C functions;
- methods;
- RMG actions.

Our last and third part concerned additional features including the mouse, the
iconization of an application and the active collection.

Concerning the mouse, we saw that a class, 'Mouse', existed and could be used to
get the exact location of the mouse on the screen -so the exact location of the RMG
cursor- and the state of the mouse buttons.

Concerning the iconization of an application, we saw that this had to be done in
two steps. The first one was the creation of an instance of the class 'Ghost', which is
the representation of the application on the screen when it is iconized; this
representation is a small red rectangle with a string inside it usually representing the
name of the application. The second step was to provide for the user a button or a
menu item enabling him to launch the iconizing action through the 'iconize' instance
method of the 'Envir' class.

Concerning the active collection, we saw that it was the solution to the 'loop
problem', that is the fact that an application enters a loop that short-circuits the
environment loop which checks and updates the RMG cursor's position and state
according to mouse movements, the mouse thus becoming ineffective.

Chapter 9: The Video application

We are going to look at an application we created in RMG for the COLOS
project: the Video application. This will enable us to see more illustrations of what
has been said until now and to discover new things about RMG programming.

The first point is a general description of the application itself (9.1). It is
followed by a description of the application as it is seen on the screen (9.2). The
third point analyses the application in deep (9.3). Next comes a description of all the
new RMG classes we used in this application (9.4). Last we list a certain number of
problems we encountered during the building of this application (9.5).

9.1. General description of the application

The general description of the application concerns three points. The first point
introduces the application itself and explains why it has been created. The second
point describes the hardware used and the hardware requirements. The third point
describes the functionalities of the application.

Note that along these points, we talk about modes, for example 'play mode' or
'still mode'. A mode characterizes the command the video player is currently
executing. So for example if we talk about the 'play mode', the player is thus
currently executing the play command which starts the reading of the disk.

9 .1.1. Introduction

We created the Video application at the Christian-Albrechts University of Kiel
for the COLOS project, under the supervision of Doctor Hermann Hartel. This
application is designed to manage, from the RMG environment, a laser video disc
player directly linked to the HP workstation on one side and to a monitor on the
other side. The pictures on the disc are thus not displayed on the workstation's
screen itself, RMG playing only the role of 'remote control' for the video player.

The underlying goal of this application is to enable teachers and learners to use
new techniques represented by new medias1, along with the power of the RMG
environment and its simulations. For example, this application enables a learner
or a teacher to use simulation applications while controlling the video player
which displays on a monitor a film of the reality illustrating the current
simulations.

9.1.2. The hardware

The hardware concerns on one side the HP workstation -HP 9000/360 model
and on the other side a laser video disc player -Pioneer 4200. This video player
has a special output port enabling its connection with a computer's serial port.

1 : Video players, video laser disc players, audio players, etc

Chapter 9: The Video application 116

The connection between these two entities -the workstation and the player
requires particular settings, mainly :

- 1200 or 4800 bauds;
- asynchronous;
- 8 bit characters;
- 1 start bit, 1 stop bit.

The communication between the two entities is done using a system of
command and reply; the user sends a command or a request and he receives
back a status or a reply from the player. For example, if the user sends the player
the play command, he receives a status telling if the command has been correctly
performed or not; now if the user sends a request to know which is the disc frame
the player is currently on, he receives a reply containing the frame number.

This command-reply system is coded using the ASCII code. Each command
which can be performed by the video player is coded with ASCII characters
ended by the can-iage return -'\r'- code. This is also the case when the player
sends data or status to the workstation. For example, if one wants to eject the
player's disc, he has to send the player the string: 'OPRJ\r' where 'OP' stands for
OPening the drawer containing the disc and 'RJ' for ReJection of the drawer. The
user receives back the 'R' character if everything is alright, an error code
otherwise.

Note that the communication between the video and the workstation is done
through a device file created in the Unix operating system environment.

9.1.3. The application's functionalities

The principal functionality of this application is of course the control of the
video player. It is designed to control it 'basically', that is :

- starting the player in play mode;
- stopping the player;
- freezing the picture on the monitor -the still mode.

Fmiher, it is possible to enter:

- a forward mode, which plays the disk forward at high speed;
- a backward mode, which plays the disk backwards at high speed.

The user is also able to select a portion2 of the disk he wants to work on, by
specifying the starting and ending frame number. It is possible for him to
navigate within this portion using the functionalities exposed above or by using a
scroll bar. This scroll bar indicates the frame the player is currently on and
enables the user to go back and forth to a particular frame number.

2 : We will call this portion: the working area

Chapter 9: The Video application 117

An editor window is available for the user if he wants to enter text or remarks
about a working area. The content of this text window as well as all the
parameters of the working area can be saved in a file for later use.

This is thus what the application cmTently does. We did not have enough time
to implement further functionalities, as :

- the possibility to determine several working areas at the same time, the user
being able to switch from one to another;

- the possibility to open more than one text window for one working area;
- the possibility to link directly this application to a simulation in order to

launch the 'disk playing' automatically when a certain state is reached in this
simulation.

The video player commands which have been used are :

- 'PL\r', which puts the video in play mode;
- 'RJ\r', which stops the video player;
- 'ST\r', which puts the video in still mode;
- 'PA\r', which pauses the video;
- '250SPMF\r', which enables the video to be put into fast forward mode;
- '250SPMR\r', which enables the video to be put into fast backward mode;
- '?F\r', which is the command used to send a request to the video asking the

current frame number;
- '1250SEPL\r' -where '1250' stands for a frame number- which is the

command used to make the video read the disk from a certain frame
number, in this case frame number 1250.

Note that if several commands have to be sent one after the other, they must be
sent one by one :

- send the first one;
- wait the reply of the video player -'R'-;
- send the following one;
- etc.

If it is not done this way, the video player is 'lost' and certain commands in the
video player's buffer are erased by other ones.

Chapter 9: The Video application 118

9.2. The application on the screen

When one looks at the application on the screen3, he sees a blue rectangular
window containing several things (the user can find a screen copy of the application
in the appendices).

The first thing is the orange title bar containing the 'Video Control' string and
situated at the top of the window. This bar enables the user, when clicked on4, to
move the application's window across the screen.

The second very noticeable thing is the set of six buttons occupying the left side
of the window. These are the buttons enabling the control and management of the
video player. One sees :

- a 'Play' button, enabling the user to start the video player in play mode;
- a 'Stop' button, enabling the user to stop completely the player;
- a 'Still' button, which freezes the cmrent picture on the monitor, so making

the video player enter the still mode;
- a 'Fwd' button, which enables the user to play the disk forward at high

speed;
- a 'Bwd' button, which enables the user to play the disk backward at high

speed;
- a 'Text' button, enabling to make the text window appear on the screen.

The still mode, forward mode and backward mode can be stopped by clicking again
on the button which makes the player enter this mode. Note that the forward and
backward modes can be entered only from the play mode and that the buttons change
color in order to indicate that they are activated. Note also that the text window can
be erased temporarily from the screen by clicking again on the 'Text' button; in this
case, the typed-in text is of course kept in the window.

At the right of the window, one can see the scroll bar which is automatically
activated in play mode, moving according to the 'player motions' on the disk. In this
scroll bar, one can spot several items :

- a graduation;
- two arrows;
- a grey vertical scroll bar between these aITows;
- a blue bar inside the grey scroll bar.

Each of these items has a particular purpose. The graduation represents a portion of
the disk frame numbers and is updated following the current position of the player
on the disk.

3 : Note that the application is started by selecting the 'Video' menu item in the 'NEW>' menu item of the
environment's main menu.
4 : When this is the case, the RMG cursor changes its shape

Chapter 9: The Video application 119

By clicking on the grey scroll bar, the user switches the player into pause mode; this
stops the player on the cun-ent disk position and makes the picture disappears from
the monitor5• The user can stop the pause mode by clicking again on the scroll bar.
While in pause mode, the user can utilize the two anows situated respectively on the
top and at the bottom of the scroll bar, to go forward or backwards on the disk. The
picture is only updated when the pause mode is stopped.
The blue bar within the scroll bar indicates the cmTently red disk frame; it follows
the player's motions on the disk and is so updated accordingly. When this bar is
moving, the user is able to pick it up -by clicking on it and holding the button down
and by dragging the mouse up or down the user is able to make the player follow the
mouse motions. During this operation, the player is set automatically in still mode
and reenters the previous mode at the new disk location when the button is released.
Note that this feature can be used while in play or pause mode.

We look now at the application's main menu (see figure 9.1).
Two of the menu items are familiar: '!! Quit !!' and 'Icon' which respectively

quits and iconizes the application. The 'Change Buttons' menu item enables the
user to change the buttons strings to icons. For example, instead of having the 'Play'
string in the play button (see figure 9.2 a), one has a button with an icon representing
the play command (see figure 9.2 b).

Bagln At>

End At >

Save>

Load>

Change Buttons

Icon

II QUIT II

Figure 9.1 The
Video application

menu

The two following menu items, 'Load>' and 'Save>', enable the user to save or
load files containing working areas parameters. The principle of these two menu
items is that the user has to select them and reveal their submenu which is in fact a
text box where the user is able to type-in the file names.

5 : Note that this mode, as for the buttons, is indicated by the scroll bar changing color

Chapter 9: The Video application

a.

b.

Figure 9.2 The effects of
the 'Change Buttons'

menu item

120

The two last menu items enable the user to specify the working area he wants to
work on; 'Begin At>' specifies the beginning of the area and 'End At>' specifies its
end. This is also done via a box hidden at the right of each of these menu items, into
which the user has to enter the numbers using the keyboard. Note about the working
area, that all the implemented video commands take place inside the specified
bounds. For example, the player starts reading the disk at the value specified by
'Begin At >' and stops6 at the value specified by 'End At >'. If no values are
specified using these menu items, the working area is set to the entire disk.

9.3. The application in deep

Now we are going to look deeper in the application as we have done in chapter 7
for RMG basic classes.

The Video application is composed of two classes :

- Video;
- VideoMTree.

where Video is the master-class and VideoMTree the menu class7•

This part presents first the different interesting instance variables. It is followed
by the presentation of the factory methods and the different instance methods. Next
comes the description of each action defined in this application. After this, we
illustrate what has been said in chapter 8 concerning the mouse, the menus and the
active collection.

9.3.1. Instance variables

There are several instance variables in the master-class which are interesting -
none are present in the menu class. Among these variables we can find six of

6 : If the user does not stop the player before
7 : Note that the reader will find the full code of these two classes in the appendices

Chapter 9: The Video application 121

them which are declared as id variables and which contain the addresses of the
different subviews of the application :

- 'topBanner' will contain the address of the title bar;
- 'scroll' will contain the address of the grey scroll bar;
- 'scrollScale' will contain the address of the view designed to contain the

graduation;
- 'bar' will contain the address of the blue bar within the scroll bar;
- 'arrowB' and 'arrowT' will contain the addresses of respectively the bottom

and top rurows of the scroll bru·.

Seven other id instance variables ru·e defined in order to contain the addresses
of the application subviews which represent the command buttons :

- 'play' will contain the address of the 'Play' button;
- 'stop' will contain the address of the 'Stop' button;
- 'still' will contain the address of the 'Still' button;
- 'inpText' will contain the address of the button enabling the text edition

window to appear;
- 'fwd' will contain the address of the 'Fwd' button;
- 'bwd' will contain the address of the 'Bwd' button;
- 'ed' will contain the address of the text edition window itself.

The other instance variables are less important for the comprehension of the
class.

9.3.2. Fact01y methods of the 'Video' class

One can find only two factory methods in the 'Video' class; these are the
classical ones: 'newln:' and 'delaylnit'. They are detailed one after the other.

'newln:' is the factory method designed to create the application's window and
all its subviews. Within this method ru·e done several things, mainly :

- the creation of the window;
- the creation of the window's subviews;
- the objectivation of C functions to be linked to particular views as actions;
- the initialization of variables;
- the setting of various parameters concerning the connection between the

player and the workstation.

The creation of the window's subviews concerns the creation of the title bar, the
scroll bar and the various buttons composing the application. The objectivation of
the C functions mainly includes the objectivation of functions implementing the
commands to be sent to the video player and functions coping with the
management of the window.

Chapter 9: The Video application 122

'delayinit', in our case is used to initialize the application's menu and initialize
two new RMG cursor for the application.

9.3.3. Factory methods of the 'VideoMTree' class

The 'VideoMTree' class implements also two classical factory methods
'delaylnit' and 'getlt'.

'delaylnit' is the factory method which initializes the menu itself, which is a
menu containing seven different menu items. Four of these menu items hide
submenus. These submenus are in fact boxes enabling the user to type-in a file
name or a frame number value from the keyboard.

'getlt' is simply a factory method that returns the address of the menu
previously created.

9.3.4. Instance methods

In this point we analyze the instance methods of the Video class one after the
other. Note that the VideoMTree class does not have any instance methods.

'extraNewln' is probably the most important instance method. In our case its
goal is multiple; it is designed to :

- get the address of the application's menu;
- create the Ghost instance in order to be able to iconize the application;
- create the instances which represent the various icons that can be displayed

in the buttons -instead of strings.

It also issues the message '[self showAll]' to the class' instance in order to make
all the views appear on the screen.

'iconify' is the method which calls the method 'iconize' in Video's superclass in
order to iconize the application.

'readDevice' is the method used to read the information sent by the video
player into the device file. In this method, two cases are separated :

- if the 'read data' is a number which is not preceded by any letter, then the
data is a frame number;

- if the 'read data' is a letter -different from a CatTiage return- or a number
preceded by a letter, then the data is an en-or message.

'moveBar' is a simple method enabling the bar within the scroll bat· to be
moved from a certain amount of pixels. This amount is contained in a global
variable; this explains that this method does not require any at·gument.

Chapter 9: The Video application 123

'update' is the method called periodically by the system when the application
is placed into the active collection. In our case it updates the position of the bar
within the scroll bar when the video is in play mode or in fast forward or fast
backward mode. Three cases are separated :

- the video is in play mode or fast forward mode and then the bar's position is
simply updated and moved of a certain amount. This amount is calculated
by subtracting the previously red frame number from the current frame
number;

- the bottom of the working area is reached, the only possibility is to stop the
player;

- the start of the working area is reached when the player is in fast backward
mode, the only possibility is to stop.

'startRun' and 'stopRun' are two methods which respectively installs and
retrieves the application from the active collection.

'buttonFace:(id) colorl:(int) color2:(int)' is a method8 that enables to create
shaded buttons on the screen, as seen in figure 9.2. This method takes three
arguments. The first one is the address of the view which has to be converted
with the method. The second and third ones are the two colors which will be the
border colors of the button.

'initScale:(id) low:(int) high: (int)' initializes the graduation of the scroll bar.
This initialization is done into the view specified as first argument. The two
following arguments specify the bounds of the scaling. Note that in this method,
eight different instance variables are used to hold the addresses of the instances
representing the graduation's numbers. This solution was chosen because we had
problems at execution when we tried to store these addresses in an indexed
variable.

'scale:(id) low:(int) high:(int)' enables to rescale the graduation. This is done
in the view specified by the first argument and the rescaling is done from the
integer specified as second argument to the integer specified as third argument.

'testScrlPnt' is a method which tests the location of the bar within the scroll
bar. Two cases can be considered:

- the bar is at the end of the scroll bar and is going down. In this case, if the
end of the working area is not reached, the scroll bar is rescaled downwards
and the bar is reset to the beginning of the scroll bar;

- the bar is at the beginning of the scroll bar and is going up. In this case, if
the beginning of the working area is not reached, the scroll bar is rescaled
upwards and the bar is reset to the end of the scroll bar.

8 : This method was designed by Uwe Heimburger and Detlev Wegener at the Kiel's University for their work in
the COLOS project and is widely used nowadays by COLOS programmers

Chapter 9: The Video application 124

'posOnDisk' enables a frame number to be transformed into a string in order to
send it to the video player with a particular command. This is used mainly to
position the player on a particular frame.

'input:(char*)' is the method used to set the starting point of the working area.
It is called from the menu after entering a string composed of numbers at the
'Begin At >' menu item; this string is passed to it as argument and is transformed
into an integer.

'output:(char*)' is the method used to set the end of the working area. It is
also called from the menu after entering a string composed of numbers at the 'End
At>' menu item; this string is passed to it as argument and is transformed into an
integer.

'saveFile:(char*)' is the method called from the menu enabling the user to save
all the parameters concerning a working area and the text linked to it, in the file
which name is passed as argument and which is typed-in at the 'Save >' menu item
of the application's menu. Note that the parameters concerning the working area
are saved into the file '<file name>.vcn' and the text into the file '<file name>.vct'.

'loadFile:(char*)' is the method called from the menu and enabling the user to
load previously saved parameters concerning a working area and the text linked to
it. These parameters and text are loaded from the file which name is passed as
argument and which is typed-in at the 'Load >' menu item of the application's
menu.

'quit_app' enables to quit the application. This method uses Video's superclass
'quit_app' method and does additional things. For example, it sends a message
containing the 'quit_app' selector to the text editor window if it exists. This
method is called after the user having selected the '! ! QUIT ! !' menu item of the
application's menu.

'videoTest' tests that a command sent to the video has been correctly executed.
This is done by checking that the 'R' character arrives into the device file, sent by
the video player.

'changeButtons' enables the buttons to be changed from strings to icons and
vice-versa. It is called after selection of the 'Change Buttons' menu item of the
application's menu.

'textWindow: (id)' is the method used to create or control -make it appear or
disappear- the text editor window on the screen. The argument passed to the
method is the address of the environment itself, so that this window can be
created independently from any other application's window and inside the
environment window itself. This text window is in fact an instance of the
'DocEdit' class, without its menu.

'viewError:(int) into:(char*)' is designed to display a box on the screen which
contains an error message9• This error message is the message which number is
passed as first argument and which is related to the file which name is passed as
second argument.

9 : These error messages concern mainly file errors

Chapter 9: The Video application 125

9.3.5. The Actions

Several actions have been defined together with the views of the application.
These actions are all represented by C functions as explained in chapter 8. These
actions are explained one by one in this point.

'actionSelf is the action attached to the application's window itself and is the
objectivation of the 'ac_Self(aView)' C function. Its goal is only to make the
application's window and all its subviews as the first of the hierarchy of views
present on the screen; this is done using the 'RMGView' instance method:
'popToTop'.

'moveAction' is attached to the title bar of the application, which address is
contained in 'topBanner' and is the objectivation of the 'ac_Move(aView)' C
function. Its goal is also to pop the application's window to the top of the view
hierarchy and to enable the user to move the application's window across the
screen. This last thing is done using an RMG predefined C function:
'move WithBand(a View)'.

'actionPause' is attached to 'scroll' which is the instance variable containing
the address of the grey scroll bar. It is the objectivation of the 'ac_Pause(aView)'
C function which goal is to send the order 'PA\r' -PAUSE- to the video player if it
is not yet in pause mode, otherwise it resets the video in play mode. Note that
this action is not available while the video player is in still mode.

'scrollBarAction' is attached to the bar within the scroll bar and is the
objectivation of the 'ac_ScrollBar(aView)' C function. This function enables the
~~~~~~~~~it~~~~~~~~~~ 
forward or backward on the disk. It can only be used in play or still mode. 

'scrollBarUp' is attached to the arrow -which address is contained in 'arrowB'
situated at the top of the scroll bar and is the objectivation of the 
'ac_ScrollBarU(aView)' C function. This function enables the user to make the 
player go backward on the disk. 

'scrollBarDown' is attached to the bottom an-ow -which address is contained in 
'anowT'- and is the objectivation of the 'ac_ScrollBarD(a View)' C function. 
This function enables the user to make the player go forward on the disk. 

'actionPlay' is attached to the 'Play' button -which address is in the 'play' 
instance variable- and represents the 'ac_Play(aView)' C function. Its goal is to 
send the video the PLAY command -'PL\r'- if the video is not cunently in the 
play mode. The video will begin reading the disk at the frame number O if no 
other frame number is specified with the 'Begin At >' menu item of the 
application's menu. 

'actionStop' is attached to the 'Stop' button -which address is in the 'stop' 
instance variable- and is the objectivation of the 'ac_Stop(aView)' C function, 
which goal is to send the video the STOP command -'RJ\r'- in order to stop it 
completely. 

'actionStill' is attached to the 'Still' button -which address is in the 'still' 
instance variable- and is the objectivation of the 'ac_Still(aView)' C function, 



Chapter 9: The Video application 126 

which goal is to send the STILL command -'ST\r'- to the video player. Note that 
this C function can not be pe1f 01med in pause mode. 

'actionFwd', attached to the 'Fwd' button -which address is in the 'fwd' instance 
variable-, is the objectivation of the 'ac_Fwd(aView)' C function. This function 
sends the video player the FAST FORWARD command: '250SPMF\r'. Note that 
'250SP' is to change the reading speed and 'MF' to specify that it has to read in 
'Multi-speed Forward' mode. It is not available in still mode. 

'actionBwd' is attached to the 'Bwd' button -which address is in the 'bwd' 
instance variable- and is the objectivation of the 'ac_Bwd(a View)' C function. 
This function is designed to send the video player the FAST BACKWARD 
command: '250SPMB\r'. It is not available in still mode. 

'actionlnpText' is attached to our last button: 'Text', which address is 
contained into the 'inpText' instance variable. This action is the objectivation of 
the 'ac_text(aView)' C function which goal is to call the 'textWindow:' instance 
method in order to create the text editor window if it does not exist or to make it 
appear or disappear if it already has been created. 

The last action is 'superAction' which is attached to the outline around a 
button -created with 'buttonFace: colorl: color2:'. This action represents the 
'superAct(aView)' C function which executes the action linked to the superview 
of the view which address is passed as argument to the function. This is done so 
that the button's action is also executed when the user clicks on the colored 
surround of the button. 

9.3.6. The mouse 

We use the mouse parameters -location, state of the buttons- in several cases. 
In particular we use the 'Mouse' class, as explained in the preceding chapter, via 
its 'change::' and 'getButtons' methods. For example, in the 'ac_ScrollBar' C 
function, we use 'getButtons' to detect if the left button is still depressed and if it 
is so, we calculate the new position of the bar in the scroll bar using the 'change::' 
method and its second argument which is the change in the Y axis. This gives : 

while ([[Mouse change:&changex:&changey]getButtons] == 1) 
{ 
calculate new position of the bar with variable 'changey' 
} 

In this case, the first thing done is to get the changes of the RMG cursor's location 
and put them into the two variables 'changex' and 'changey' -with the 'change::' 
method-; note that these two variables are already defined in the RMG header 
files. After this, the state of the buttons is 'asked' -with the 'getButtons' method-, 
if it equals 1 then it means that the left button is depressed and that the 'while 
loop' must be entered thus calculating the new position of the bar with the 
variable 'changey'. 



Chapter 9: The Video application 127 

9.3.7. The menu 

The menu is defined classically as explained previously. 
It is an instance of 'RMGMenu 1' and is composed of seven menu items. 

The first one is '! ! QUIT ! !', to which is linked the method 'quit_app' of the 
Video class : 

[([rootMenu at: 0 putStr: "!!QUIT!!"] 
center] 
idAction: [MTreeAct sel: "quit_app"]; 

The second menu item is 'Icon' to which is linked the method 'iconify' of the 
Video class : 

[[[rootMenu at: 0 putStr: "Icon"] 
center] 
idAction: [MTreeAct sel: "iconify"]; 

The next menu item is 'Change Buttons' to which is linked the method 
'changeButtons' of the Video class : 

[[[rootMenu at: 0 putStr: "Change Buttons"] 
center] 
idAction: [MTreeAct sel: 

"changeButtons"]; 

'Load >' is the next menu item, to which is linked a submenu called 'entryPad'. 
This submenu is only a text box in which the user can enter text; in this case, the 
entered text will be file names. These two items look like : 

entryPad = [[[EntryPad char_wide: 12 
max_wid: 12 
font: aFont] 
action: ac_load] 
viewicon: rootMenu]; 

[[[rootMenu at: 0 putStr: "Load >"] 
center] 
subMENU: entryPad]; 

This entryPad is an instance of an RMG class: 'EntryPad', which is in fact an 
RMGMenu with one menu item; this menu item is modifiable by the user and 
enables him to enter text strings. It is instantiated with EntryPad's 
'char_wide:(int) max_wid:(int) font:(id)' factory method. The first argument of 
this method specifies the number of characters that the entry pad displays on the 
screen, in other words the number of characters the user sees at once. The second 
argument specifies the maximum number of characters that the entry pad can 



Chapter 9: The Video application 128 

contain. The third argument specifies the font in which these characters are 
displayed. 
This method creates the entry pad but does not attach any action to it, this is why 
we use the 'action:' instance method10 to specify the C function which has to be 
executed when the entry pad is selected in the menu. In this case the function is 
'ac_Load(a View)' which enables the user to enter a string into the entry pad and 
then sends a message to the instance of Video containing the 'loadFile:' selector 
with the entered string as argument. 
The three last menu items -'Save >', 'End At>' and 'Begin At>'- follow the same 
principle as for 'Load>'. Each of them has a submenu which is in fact an instance 
of EntryPad to which is attached a C function by which the user is able to enter a 
string, this string being passed as argument to a method of the Video instance. 
This functions and methods are : 

- 'ac-Save(aView)' and 'saveFile:' for the 'Save>' menu item; 
- 'ac_lnput(aView)' and 'input:' for the 'Begin At>' menu item; 
- 'ac_Output(aView)' and 'output:' for the 'End At>' menu item; 

9.3.8. The active collection 

The active collection is used in our case for the scroll bar. Indeed, in order to 
make the scroll bar follow the 'reading' of the player on the disk, one must 
continually send frame requests -'?F\r'- to the video. This can be done by entering 
a loop which sends the frame request, reads the result, updates the scroll bar and 
so on. The problem with this is that it does not stop, as the mouse loop -see 
chapter 8- is short-circuited by the loop described above; the user is not able to 
click on the stop button to stop the video and the loop. 

This is a problem which can be resolved by using the active collection. We 
place the application in the active collection whenever the video player is started, 
using the 'startRun' method. We retrieve the application from the active 
collection whenever the video player is stopped, using the 'stopRun' method. So 
when the application is placed into the active collection, the system sends the 
master-class a message containing the 'update' selector. In our case, the 'update' 
method: 

- sends a frame request to the video player; 
- reads the reply of the video player, for instance a number if no error occurs; 
- updates the position of the bar within the scroll bar; 
- makes tests about the position of the player within the working area. 

lO: Owned by RMGView, to which EntryPad is linked by inheritance 



Chapter 9: The Video application 129 

9.4. The classes used 

In this part, we describe briefly the various RMG classes used in this application. 
This enables us to introduce new tips about RMG programming which can be of a 
certain use for the reader. 

We start by describing the Fixturl 7 class, then comes the ModStrI class, followed 
by the RMGLine class. A last point considers the problem of using ones own icons 
in a program with the IconModel, RMGicon and Syslcon classes. 

9 .4.1. Fixturl 7 

We used, apart from the traditional classes described in chapter 7, several 
classes accessible to the user in the RMG environment. The first of these classes 
is 'Fixtur17' which enables the user to use RMG predefined 17 by 17 pixels 
icons in their own program, these icons representing arrows pointing right, left, 
etc. This class is composed of factory methods, each of these representing the 
display of a particular icon. 

For example, if one sends the message : 

[Fixturl 7 topRtlcon: self extent: 17 type: 2]; 

where 'self contains the address of a view, an arrow pointing diagonally to the top 
right is created in 'self with an extent of 17 pixels and sticking to the right of the 
view. 

In our case we used this class to display the two arrows respectively on the top 
and at the bottom of the scroll bar. This was done by using two factory methods: 

- 'up_arrow:(id) extent:(int) type:(int)'; 
- 'down_arrow:(id) extent:(int) type:(int)'. 

Note that this class helps only the user display icons, it does not attach any 
actions to them. This is done by the programmer as for buttons -this is explained 
in chapter 8-, using the methods defined in RMGView, as Fixtur17 is linked to it 
through inheritance. 
For example, in the case of the top a.J.Tow, we have in the 'new In:' method: 

if(!scrollBarUp) 
scrollBarUp = [[RMGAction newFuncAction: ac_scrollBarU] 

myCursor: icon Cursor]; 
aJ.TowB = [[[[[Fixtur17 up_aiTow: scroll extent:17 type: StickTop] 

viewlcon: self] 
bkgd: BLUE] 
idAction: scrollBarUp] 



Chapter 9: The Video application 130 

show]; 

In this case the first thing done is the objectivation of the C function to be 
attached to the arrow, in this case 'ac_scrollBarU'. 
The other instance method used, 'myCursor:(id)', is a method of the 'RMGAct' 
class which is the superclass of RMGAction. This method sets the RMG cursor 
associated with this action to the icon which address is contained in the variable 
passed as argument -see point 9.4.4. and 'Syslcon' class for more precisions. 
Next comes the instantiation of Fixtur 17, which in this case displays an arrow 
pointing upwards, sticking to the top of the scroll bar identified by the 'scroll' 
instance variable, in a blue background, to which is attached the 'scrollBarUp' 
action. Note that 'StickTop' and 'BLUE' are two constants defined in the RMG 
header files and both c01Tespond to the integers identifying respectively the fact 
that a view sticks to the top of another one and the blue color. 

9.4.2. ModStrl 

'ModStrl' is another class we use in our program. This class has been 
developed by Uwe Heimburger and Detlev Wegener at Kiel's University11 and is a 
specialization of the RMG class 'RMGModStrl'. The advantage of ModStrl is 
that it has certain methods which are simplified compared to RMGModStrl. 
Anyway its goal is to write a modifiable long integer in a view. 

We use this class to display the numbers composing the graduation of the 
scroll bar. We instantiate ModStrl using the 'font: superview: color:' factory 
method of the RMGString class, as these two classes are linked by inheritance. 

We use also instance variables among which one can find 'string: (char*): 
(char*)' which is a method implemented into RMGModStrl. This method enables 
the user to specify two strings which are displayed respectively in front and after 
the integer. 

'dataOrigin:(int):(int)' is used to specify the location where the integer has to 
be displayed, in our case at the right of the scroll bar. This is a method inherited 
from RMGString. 

We use 'setIValue:(int)' to specify the value of the integer to be printed. Note 
that after using this method, one has to issue a message to the ModStrl instance 
containing a 'show' selector, as using the 'setIValue:' changes the number in the 
instance variable designed to contain it but does not update the screen. 

'setRJust:(int)' is a method that enables to specify the size of the number in 
order to have right justification of the decimal point. 

For example, one of the integers composing the graduation was defined in the 

11 : Precisely at the Institut fiir die Padagogik der Naturwissenschaften an der Christian-Albrechts Universitat 
zu Kiel, under the supervision of Dr. Hermann Hartel for the COLOS project 



Chapter 9: The Video application 131 

'initScale: low: high:' method as: 

strl = [[[[[[ModStrl font: aFont superview: a View color: BLACK] 
string: "": "-"] 
dataorigin: 0: 346] 
setIValue: temp] 
setRJust: 5] 
show]; 

where 'strl' is an instance variable which contains the address of the ModStrl's 
instance; where 'aFont' identifies an instance of FontMngr; where 'a View' 
identifies the view where the graduation has to be displayed; where 'temp' is the 
integer to be displayed. 

9.4.3. RMGLine 

'RMGLine' is the next class we use, that draws a line between two points 
which are specified by the user. 

We instantiate this class using its factory method: 'superview: (id) color: (int)' 
and the instance method: 'relPl: (int): (int) length: (int): (int)'. This last method 
determines in relative coordinates the location of the two points between which 
the line has to be drawn. The two first arguments -let us say x and y- determine 
the location of the first point, relative to the inner bounds of the line's superview. 
The two last arguments -let us say IX and lY- determine the value to be added to 
the location of the first point to find the second point's location. In other words, 
the first point's location in absolute coordinates relative to the whole screen is 
determined as : 

(x+superview's inner left bound, y+superview's inner low bound) 

The second point's location in absolute coordinates relative to the whole screen is 
determined as : 

(x+superview's inner left bound+lX, y+superview's inner low 
bound+lY) 

For example, if one wants to draw an horizontal black line 100 pixels long at 
location (10,10) into a view -let us call aView the variable containing the address 
of this view- which lower left corner is at location (10, 10) on the screen, he has to 
issue the message : 

[[[RMGLine superview: a View color: 0] 
relPl: 10: 10 length: 100: 0] 
show]; 



Chapter 9: The Video application 132 

Which causes the first point to be at absolute coordinates' location (20,20) -
(10+10,10+10)- and the second point at (120,20) -(10+10+100,10+10). 
Note that RMGLine is a subclass of RMGView, enabling the user to utilize any of 
this class methods. 

9.4.4. Displaying personal icons 

In order to display personal icons, one has to do a certain number of things 
and use a certain number of classes. In our case, we do these different things in 
order to display icons on the different buttons controlling the video player and in 
order to change the application cursors. 

The first thing we do is to create the icon itself using the lconEdit application -
see chapter 4- and saving it in a file. 

The second thing we do is to create an instance of the class 'IconModel' which 
stores some attributes concerning an icon, such as its dimensions or the file 
name in which it is stored. We do just this in the 'extraNewin:' method, for 
example: 

modelPlay = [[lconModel readFile: "/usr/RMG/DATA/ICONS/Play.icon"] 
hotSpot: 0: 0]; 

where modelPlay identifies the IconModel instance of the icon which has to be 
displayed in the 'Play' button. In this case, we use the 'readFile:(char*)' factory 
method and the 'hotSpot:(int):(int)' instance method. The first one just creates an 
instance of IconModel with the specified file, while the second one sets the 
reference point of the icon. This reference point being relative to the upper left 
corner of the icon. For example, when the icon is shown at a location (x,y), it is 
the reference point that is put on the top of this location (x,y). 
This creation of an instance of IconModel is required by RMGicon or any other 
RMG class enabling to use user-defined icons. 

The third thing we do is use these instances of iconModel to define RMGicon 
instances or Syslcon instances. The first ones are the icons displayed in the 
buttons, while the second ones are icons used as RMG cursors in the application. 

In the case of RMGlcon, we have for example in the 'changeButtons' method : 

iconPlay = [[[RMGicon makeFromModel: modelPlay 
in: play 
at: 25: 4] 
idAction: superAction] 
show]; 



Chapter 9: The Video application 133 

where the factory method 'makeFromModel: in: at::' is used in order to create the 
instance of RMGicon by specifying the IconModel to be used, the view in which 
it has to be displayed and the location in this view. We use also 'idAction:' to 
attach to this icon the 'superAction' action, which enables the action of the icon's 
superview to be executed when the icon is clicked on. 

In the case of Syslcon, we have for example in the 'delaylnit' method: 

iconCursor = [[Syslcon newln: NULL] 
icon: modelCursor mask: modelCursor]; 

where 'newln:(id)' is used as factory method and has NULL as argument. This is 
done this way because we want this cursor to appear only when the user clicks on 
the desired screen object, to make the user notice that a particular action is 
currently performed by him clicking on this screen object. The instance method 
'icon:(id) mask:(id)' is used to specify the icon which has to be used as RMG 
cursor, in our case 'modelCursor'. 

9.5. Problems encountered 

We are going to talk about the main problems we encountered in the creation of 
this application. The first one is the problem of creating and setting up an accurate 
device file. The second problem is the one of quitting the application without 
problems. The third point is a short critique of our application. 

9.5. I. Creating and setting a device file 

One of the great problems of this application was to create a device file for the 
video player and to set the correct parameters concerning the connection between 
the video player and the workstation. 

The creation of the device file was done using the Unix 'mknod' command 
with a certain number of arguments, this is not explained as it is not our purpose 
in this work. 

The greatest problem was to find the way to change the different default 
parameters of the device file in order to satisfy the requirements about the 
connection between the player and the workstation. This is done mainly at the 
beginning of the 'newln:' method using the C function: 'ioctl()' : 

#include "sys/termio.h" 

fp = open("/dev/ttyd00,O_RDWR); 

errflag = ioctl(fp,TCGETA,&param); 
param.c_cflag I= CLOCAL; 
param.c_cflag &= HUPCL; 

/* 1 */ 

/* 2 */ 

/* 3 */ 
I* 4 */ 
I* 5 */ 



Chapter 9: The Video application 

param.c_cflag "= 0000011; 
param.c_iflag I= IXON; 
param.c_iflag I= IXOFF; 
param.c_iflag &= ECHO; 
param.c_cc[VMIN] = 0x0; 
param.c_cc[VTIME] = 0xff; 
errflag = ioctl(fp, TC SET A,&param); 

/* 6 *I 
/* 7 */ 
/* 8 */ 
/* 9 *I 
/* 10 */ 
/* 11 */ 
/* 12 */ 

134 

Line 1 specifies a header file to be included, this file defining certain variables 
and constants required by the ioctl() function. 
Line 2 opens the already created device file which is situated in the '/dev' 
directory. This file is open in read and write mode. 
Line 3 loads in the 'pa.ram' variable which is defined in the 'termio.h' header file, 
the various parameters of the device file, this is specified by the second argument: 
'TCGETA'. 
With line 4 starts the setting of the various parameters. At line 4, a field of the 
'pa.ram' variable which represents the control modes -'c_cflag'- for the device file 
is set to 'CLOCAL' which means that the communication is done on a local line, 
not on a dial-up line via modem. 
Line 5 specifies by default that the connection must be closed after the last close 
of the device file. Line 6 sets the baud rate to 4800 bauds. 
Line 7 starts the setting of the parameters in a field -'c_iflag'- which represents the 
various input modes. Line 7 and 8 sets this field to enable start/stop of output 
control -'IXON'- and start/stop of input control -'IXOFF'. Line 9 enables an echo 
when a character is received. 
Line 10 represents the minimum number of characters that should be received 
when the read operation is satisfied, so when the characters are returned to the 
user. In our case we set it to 0. 
Line 11 represents a timer that is used to timeout data transmissions. In our case 
it is set to 255. 
Finally line 12 rewrites the new settings contained in the 'pa.ram' variable into the 
device file using the 'TCSET A' request. 
The new parameters are then active on the connection and this until the closing of 
the device file which is done in the 'quit_app' method. 

9.5.2. Problems while quitting the application 

We had problems while quitting the application. 

Usually, when one sends a message containing the 'quit_app' selector to an 
application, it is quitted freeing each instance variable, each variable and all the 
space occupied by the application itself. 

Our problem was mainly due to the fact that certain id variables containing the 
addresses of some instances of classes were not liberated when the application 



Chapter 9: The Video application 135 

was left, thus not liberating the space occupied by the instances they were 
identifying. 

We discovered that these variables were the ones containing the addresses of 
the instances of IconModel, of RMGicon and the instance variable containing the 
address of the text editor window. 

In order to solve this problem, we redefined the 'quit_app' method in which we 
do several additional things : 

- quit the text editor window; 
- free different variables; 
- quit the application itself. 

Quitting the text editor window is done by sending the instance of DocEdit we 
created, a message containing the selector 'quit_app' : 

[ed quit_app]; 

where 'ed' contains the address of the instance of DocEdit. 
Freeing the different variables is done by sending the instances they represent a 
message containing the 'free' selector, for example : 

[modelPlay free]; 

The application is quitted by sending its superclass the message containing the 
'quit_app' selector : 

[super quit_app]; 

We are insisting on this point so that future programmers pay enormous 
attention to the variables they define and the fact that many errors at execution 
can come only from the fact that instances and variables have not properly been 
freed. 

9.5.3. Critique 

We would like in this point to make a short critique of the video application. 

This application was the first serious one we realized under RMG and is far 
from being perfect. It is the case specially for the scroll bar which is far from 
being accurate in certain cases. It is also the case with the video player. Indeed, 
this application is only adapted to one video player, the Pioneer 4200. This is due 



Chapter 9: The Video application 136 

to the fact that the set of commands varies from video to video and that we had 
direct access to only one of them. Anyway, this problem can be easily solved by 
changing the constants representing the different commands at the beginning of 
the Video class. 

Concerning the video player again, a very restricting point is that this 
application works properly only with a plugged in and powered Video player and 
if the proper device file exists in the Unix file system. 

We probably could have done things faster and better by using more existing 
RMG classes, but the fact is that these classes are not very easy to use at the first 
approach, due to the fact that a lot of methods are implemented into one class, 
causing the user to be a little confused when it comes to using them as sometimes 
their use is not very well explained. 

9.6. Summary 

In this point, we looked at an application we created under RMG for the COLOS 
project, the Video application. 

First we gave a general description of the application itself, seeing that it was 
designed to control from the RMG environment a laser video disc player. We saw 
also that it was designed to enable teachers and learners to use new techniques 
represented by new medias, along with the power of the RMG environment and its 
simulations. We saw also that the hardware consisted in an HP workstation and a 
video player, which were linked together using the workstation's serial port and the 
video player's special compatible output port; this connection required also particular 
settings in order to work properly. 

The communication between these two entities was done using a command and 
reply system, using the ASCII code, through a device file. 

We saw further that this application was designed to control the video player 
basically, that is sending play, stop or still commands to the player. It was also 
designed to enable the user to control the video player in fast forward or fast 
backward mode. The user could also : 

- specify a working area which bounds the video player could not exceed; 
- use a text editor window in order to type-in text concerning a working area; 
- save and load the parameters and text concerning a working area. 

A second point described what the user could see on the screen while using the 
application. 

The third point tried to describe the application a little deeper. We saw that it was 
composed of two classes : 

- the master-class: Video; 
- the menu class : VideoMTree. 



Chapter 9: The Video application 137 

We then described the interesting instance variables, factory methods, instance 
methods and actions declared or implemented in these classes. This was followed by 
an illustration of what had been said in chapter 8 about the mouse, menus and the 
active collection, all this applied to our application. 

The fourth point concerned the description of the new RMG classes we used in 
our program. We could find : 

- 'Fixturl 7' which enables the user to use RMG predefined 17 by 17 pixels 
icons in their own program, these icons representing arrows pointing right, 
left, etc; 

- 'ModStrI' which displays a modifiable long integer in a view; 
- 'RMGLine' which draws a line between two points which are specified by 

the user. 

We also described how we had used icons designed with the RMG IconEdit 
application, to be displayed in views or to be defined as RMG cursors. This 
involved the three classes: IconModel, RMGicon and Syslcon. 

Our last point talked about problems we encountered while designing our 
application. This involved : 

- the creation of the device file and the setting of the various parameters 
concerning the connection; 

- the 'freeing' of various variables and instances; 

This point was terminated by a short critique concerning our application. 



THIRD PART: Illustrating telecommunication principles under RMG 

Chapter 10: Representing computer telecommunication under RMG 

This chapter is mainly centered on the presentation of the university of Namur's 
task in the COLOS project: representing computer telecommunication under RMG. 

Telecommunication is a subject taught at Namur's university to many students, 
these courses mainly touching the 0S11 model of the 1S02• This model is not at all 
easy to understand for students, specially as it is a matter where practical works and 
real simulations are very difficult to build. That is the reason why Namur wants to 
build RMG simulations for the CO LOS project3, concerning different aspects of the 
OSI model, in order to help students perceive this subject more easily. 

We start by presenting shortly the OSI model by giving OSI basics (10.1). We 
end by giving the different steps and projects which are germinating in Namur's 
COLOS team, concerning the representation of the OSI model under RMG (10.2). 

10.1. OSibasics 

We are going to underline briefly the basics of the OSI model. (From 
[TANENBAUM, 89] and [HENSHALL, 88]). 

OSI is a standard which has been developed by the ISO which is responsible for 
developing a wide range of standards covering a lot of technical matters. The aim of 
OSI "is to provide communication-based user services that operate between 
heterogeneous computer systems" ([HENSHALL, 88]). This is done by helping the 
user in two ways : 

- suppressing his dependency towards a commercial supplier; 
- offering wide possibilities and services concerning communications 

between people : the exchange of files, electronic mail, etc. 

We try now to describe this model in a few words. 
In order to communicate with each other, two users on different computers utilize 

on their own computer the services of OSI stacks. Each stack is divided into seven 
layers (see figure 10.1) and was created by ISO as a reference model -the ISORM
in order to simplify the understanding of the OSI model. 

1 : Open Systems Interconnection 
2 : International Standard Organization 
3 : Under the supervision of Professor Philippe van Bastelaer 



Chapter 10: Representing computer telecommunication under RMG 

Layer 7 

Layer 6 

Layer 5 

Layer 4 

Layer 3 

Layer 2 

Layer 1 

Application 

Presentation 

Session 

'Ilansport 

Network 

Link 

Physical 

Figure 10.1 The seven layers 
of the OSI reference model 

139 

Each layer has an active element -a process, a piece of hardware, etc- which is 
called an entity; entities in the same layers but on different machines are called 
peer entities. For example, the layer 4 -transport layer- entities are called transport 
entities. 

The purpose of an entity is to offer and implement services for the upper 
layers. At this stage the advantage is that the layer using a lower layer's service is 
completely unaware of how this service is implemented. An entity offering services 
to another upper entity is called the service provider, while the user of the services 
is called the service user. The services offered are accessible at SAPs or Service 
Access Points, in the interface between two layers. 

Further, a stack's layer entity in one machine has a conversation with the same 
layer entity in the stack of the other machine. This conversation is ruled by 
conventions and principles known as the protocol, these entities exchanging 
messages known as PDUs or Protocol Data Units. For example, two Transport 
layers exchange T-PDUs -or Transport Protocol Data Units. In reality, in a 
conversation between two entities no data is directly transferred from a layer to its 
correspondent in the other machine. The data is passed with inte1face control 
informations to the lower layer through one of the interface's SAP, the upper layer 
requesting thus a service from the lower layer. The set constituted by the data and 
the control information is called an IDU or Inte1face Data Unit and is composed of a 
SDU or Service Data Unit and an ICI or Interface Control Information (see figure 
10.2, inspired of [TANENBAUM, 89] p.22). The process described above is 
performed until the lowest layer is reached, where is situated the physical 
communication medium through which actual communication occurs. 

In the seven layers, the top one, the Application layer, differs slightly from the 
other ones in that it makes OSI services available to the users of the computer system 
on which it resides. This layer includes a lot of system-independent applications 
enabling the user to do file transfer, E-mail, remote job management, etc. 

The Presentation layer performs certain particular functions among which it is 
concerned with the solving of problems concerning the syntax and the semantics of 
the transmitted informations. 



Chapter 10: Representing computer telecommunication under RMG 

IDU 

Layer N+1 
ICI SOU 

SAP 
Interface 

Layer N 

140 

◄ )lo 

Layer N entitities 
exchange N-PDUs 
in their layer N 
protocol 

Figure 10.2 Relations and activities between layers at an interface 

The Session layer's main goal is to allow users to establish a session between 
themselves. 

The Transport layer is designed to accept data from the session layer, possibly 
split them into smaller pieces, pass them to the lower layer which is the Network 
layer and finally ensure that all the pieces an-ive correctly at the other end. 

The Network layer is mainly designed to manage the operations of the subnet. 
The Data Link layer tries to make a transmission facility appear like a 

transmission line free of errors. 
Finally the Physical layer is concerned with transmitting raw bits on a 

transmission media. 

10.2. The different steps in representing the OSI model under RMG 

We are now going to stress the different steps which can be seen in representing 
the OSI model under RMG, for the COLOS project. Two of these steps or part of 
them are already started, the other ones are projects that Namur's COLOS team tries 
and will try to realize. 

The two applications which have already started are : 

- 'OSI on X-25'; 
- 'Ftam'; 

The first application was realized by Veronique Nachtergaele and ourselves. It 
concerns the simulation of the opening and closing of a connection in the OSI model, 
between two machines, both of them linked to the X-25 network. This application is 
explained in length in the following chapter. 



Chapter 10: Representing computer telecommunication under RMG 141 

The second application was realized by Dominique Corbugy and Joel Denis. It is 
a simulation which enables the user to ''familiarize himself with certain FTAM4 

primitives in combination with a simple state machine enabling to nwre easily 
understand the system5" ([CORBUGY, 90]). 

Namur's COLOS team has several projects concerning OSI simulation under 
RMG; this can be divided into several steps. 

The first step consists in the adaptation of the OSI on X-25 application in order to 
be able to present the various primitives used when a connection is opened or 
closed. A second step will make the different PDUs appear but without the detail of 
their composition. The third step will enable the user to make a zoom on the PDU in 
order to see its composition. 

A following step will consider the proper functionalities and the protocols of 
the second, third and fourth layer of the OSI model. This will be followed by the 
development of the Session and Presentation layers. Yet another step will develop 
illustrations through different applications like X-400 for example. 

The COLOS team would like also to consider the OSI model implemented on a 
LAN (Local Area Network), consider the interconnection of networks and the 
routing problems. This could also be deepened by the simulation of specific 
applications like EDI (Electronic Data Interchange). But also by the simulation of 
disciplines as different as N-ISDN (Narrow Band Integrated Service Digital 
Network) and B-ISDN (Broad Band Integrated Service Digital Network) or network 
management. 

These are few of the projects which are germinating in Namur and which can be 
of a great interest for the educational world and the COLOS project. 

10.3. Summary 

This chapter's main goal was to present the task of Namur's University in the 
COLOS project: representing computer telecommunication under RMG and 
specially representing the OSI model. 

We started by describing briefly the OSI model and its principles. We saw that it 
was a standard designed by ISO and that its goal was to provide communication
based user services that operate between heterogeneous computer systems. We saw 
also that this model 'operated' through seven layer stacks, the layer's entities 'talking' 
to each other using special protocols and implementing some services for the layer 
entities situated above themselves. 

We ended by giving few of the projects that are in the minds of the COLOS team 
members in Namur. 

4 : File Access, Transfer and Management 
5 : For further informations on the 'Ftam' application, the reader will consult the thesis presented by 
D.Corbugy and J.Denis: [CORBUGY, 90] 



Chapter 11: The OSI on X-25 application 

This chapter presents the 'OSI on X-25' application which was created by Namur's 
COLOS team. This application was created following the principle of a scenario and 
was programmed in the RMG environment, building new classes and using already 
existing ones. Note that this application is still a prototype and has still to be 
perfected. 

The first point presents the principles of a scenario (11.1). The second point 
presents the 'OSI on X-25' scenario (11.2). In the third point we see some details 
concerning the application's implementation (11.3). Point 11.4 to 11.9 describe the 
various classes composing the application. Finally point 11.10 makes a brief critique 
of the 'OSI on X-25' application. 

11.1. The principles of a scenario 

To build our application we used the principles of a scenario. This method can be 
compared to the method followed by Kel Crossley and Les Green presented in 
[CROSSLEY, 90]. 

This method has to be divided into three different steps : 

- deciding what the application does; 
- deciding what the application is composed of on the screen; 
- designing the scenario, by specifying the linking of different screens. 

The first step is to build a document specifying what the application does and its 
various functionalities. This must be done thoroughly to suppress any possibilities 
of mistakes or misunderstandings which can lead to obsolete work in the future. In 
the case of simulations designed to help CAL -Computer Assisted Learning-, we 
think that the best way to do this is that teachers and programmers discuss the matter 
in length, in order to design the best primary specifications, eventually asking 
students to participate in order to have a user point of view. 

The second step is to design the application graphically, that is decide of the 
screen objects which composes the application -for example using menus, buttons, 
etc. This is a very important step as we are building simulations in a graphical 
environment and as the perception of the subject by the student depends highly on 
the graphical presentation of this application. 

The third step involves the results of the two preceding ones and intends to build 
a 'film' of what happens when the student is using the application. This film uses 
the graphical design made at the second step as basis· and the specifications made at 
the first step as goal to achieve and as line of conduct for the progress of the 
simulation. 

Though we lack references on this subject, we think that this is a good outline for 
a method intended to design simulation applications, specially in a graphical 



Chapter 11: The OSI on X-25 application 143 

environment like RMG. It enables one to see what are the approximate results 
appearing on the screen, before the programming is done. 

11.2. The 'OSI on X-25' scenario 

In this point, we present the 'OSI on X-25' scenario. 

We start by presenting the goal of the application. This is followed by the 
presentation of the screen composition. Finally, the evolution of the simulation is 
presented in a last point. 

11.2.1. Goal of the application 

The application's goal is to simulate the opening or closing of a connection 
between two layer entities situated in two different machines, following the 
principles of the OSI model; both machines are thus working as an ISO reference 
model -see chapter 10. These machines are linked to a network via an entry node 
which works also following the OSI model principles, but is implemented as an 
ISO reference model containing only the three lower layers1 -Physical, Link and 
Network. Note that this application is designed to be used by the teacher as a 
support and illustration for his course and not by the learners themselves. 

Several hypothesis are made concerning the application, in order to simplify 
the subject : 

- the simulated connections are based on the X-25 network; 
- the connections can not be initiated from the Physical layer, from the 

Session layer and from the Presentation layer; 
- the connections initiated between a machine and its entry node can not be 

initiated between layer 3 entities; 
- the closing of a connection -or disconnection- can only be initiated from the 

highest layer connected; 
- the opening of a connection can not be stopped or aborted during its 

negotiation; 
- the Application layer -layer 7- is divided into two parts the SASE -Specific 

Application Service Element- and CASE -Association Control Service 
Element. 

In this application no primitives nor PDUs are shown; the only goal is to show 
the user what happens when two users try to open or close a connection between 
their machines while using the OSI standards. 

The user is able to choose either to open a connection, either to close a 
connection. In any case, any of these possibilities can be chosen, the application 

1 : For more informations or details the reader can consult [TANENBAUM, 89] or [HENSHALL, 88] 



Chapter 11: The OSI on X-25 application 144 

reacting accordingly. For example, the user can ask to close a connection though 
there is no connection opened; in this case an en-or message is displayed. 

If the user chooses to open a connection and if it is possible, he is requested to 
choose two layers, each one part of one of the two machines or entry nodes 
included in the connection 'opening'. Note that the user can choose between two 
modes for this opening : continuous or step by step. In the first case, no 
interaction is required between the user and the application. In the second case, 
the opening is done one step after the other and the user has to ask the application 
to 'activate' the following step. 

If the user chooses to close a connection and if it is possible, he is requested to 
choose one layer only, from which he wants the disconnection to be initiated. 
The disconnection is only available in step by step mode. 

Each step of the process is explained via messages or warnings displayed in a 
'message box'. Questions can also be asked to the user concerning the evolution 
of the simulation. 

11.2.2. Screen composition 

The screen composition is made of six different objects : 

- four stacks; 
- an ellipse; 
- a message box. 

A stack is a rectangle representing a machine or an entry node. It is itself 
composed of smaller rectangles, each of them representing a layer which has its 
own color. In particular, the machines are represented by stacks composed of 
seven layers, where the Application layer is divided in two parts -the SASE and 
the CASE-; the entry nodes are represented by stacks composed of three layers. 

Between the layers are placed smaller rectangles which represent the interfaces 
between the layers (see figure 11.1). 

Machine 
Stack 

Entry Node 
Stack 

Figure 11.1 The different stacks 



Chapter 11: The OSI on X-25 application 145 

A layer's color is in pastel shade when this layer is not involved in a 
connection; otherwise, its color turns to be brilliant. 

The ellipse is there to represent the X-25 network and has no other utility for 
the moment. 

The message box is there to receive messages, warnings or questions designed 
to help the user utilize the application. The application window can be seen in 
figure 11.22, where the box in the lower right corner is the message box. Note 
that the names of the layers are displayed at the left-hand side of the application 
window. 

SASE-> 
CASE-> 

Presentation -> 
Session -> 

Transport -> 
Network-> 

Data-> 
Phystcal -> 

OSI on X-25 

X 25 

Figure 11.2 The 'OSI on X-25' application's screen 

11.2.3. Designing the scenario's evolution 

We give here the different steps and explanations concerning the design of the 
scenario's evolution. We do not give any hints about the implementation, this is 
done later; specially we do not specify if a user-application interaction is done 
using a menu or using a button. This is done so that the reader can follow this 
step without thinking about RMG implementation. 

When the application is started, no connection is established, thus each layer is 
in its pastel color. 

Three possibilities are always offered to the user at any moment : 

- quit the application; 
- open a connection; 
- close a connection. 

If the first possibility is chosen, the application is closed. 

2 : The reader can also find a screen copy of the application's window in the appendices 



Chapter 11: The OSI on X-25 application 146 

In the second case, if it is possible for the user to open a connection, a message 
appears in the message box : 

Select the Source Layer 

and the user has to select the layer from which the connection has to be initiated. 
After selecting the source layer, a second message appears in the message box : 

Select the destination layer 

Here, the user has to select the layer which has to be the layer answering the 
connection request. 
If the two selected layers can not be connected, a message is displayed in the 
message box : 

These layers can not be connected 

When the two layers are selected and can be connected, a rectangle with a red 
outline appears between the two selected layers and at the same time they start to 
flicker; all this is done to indicate that the connection opening is in progress. A 
message is also displayed in the message box : 

Opening <layer name> connection by layer <layer number N> 
entities, between layer <layer number N+ 1> entities 

where '<layer name>' is the name of the layer cun-ently involved in the connection 
opening; where '<layer number N>' is the number of the layer cun-ently involved 
in the connection opening; where '<layer number N+ 1>' is the number of the 
upper layer for which the connection is opened at the cml'ent level. This goes on 
with the rectangle with a red outline going down progressively until the bottom 
layer is reached or the first layer where a connection is already established. 
For example, if the user chooses to open a connection between layer five entities -
assuming that no connection is already opened-, the 'initiating' side being the left 
hand side machine stack and the 'responding' side being the light hand side 
machine stack, the first step in the simulation is that a rectangle with a red outline 
appears between the layer five entities, the two layers begin to flicker and the 
stling: 

Opening session connection by layer 5 entities, 
between layer 6 entities 

appears in the message box (see figure 11.3). 



Chapter 11: The OSI on X-25 application 

SASE-> 
C.ASE -> 

Presentation -> 
Session-> 

Transport-> 
Network -> 

Data-> 
Phystcal -> 

OSI on X-25 

X 25 

Opening session connection by layet 5 entities, 
between layer 6 entities 

Ficure 11.3 Opening connection between layer 5 entities 

147 

The next step involves layer four. The rectangle with a red outline disappears 
between the layer 5 entities and appears between layer four entities, the two layers 
begin to flicker and the string : 

Opening Transport connection by layer 4 entities, 
between layer 5 entities 

appears in the message box (see figure 11.4). 

SASE-> 
C.ASE -> 

Presentation -> 
Session-> 

Transport-> 

Network -> 
Data-> 

Phystcal -> 

OSI on X-25 

Opening transport connection by layer 4 entities, 
between layer 5 entities 

Ficure 11.4 Opening connection between layer 4 entities 

This keeps on until layer one is reached and thus until a connection opening is in 
progress between the layer one entity situated in the machine stack and its entry 
node stack (see figure 11.5). (Example 11.1) 



Chapter 11: The OSI on X-25 application 

SASE-> 
CASE-> 

Presentation -> 
Session-> 

Transport -> 
Network-> 

Data-> 
Phystcal -> 

OSI on X-25 

X 25 

Opening left physical oonnection by layer 1 entities, 
between layer 2 entities 

Fi1:ure 11.5 Opening left physical connection 

148 

When a connection is opened at each level in the stacks, starting from the two 
selected layer entities, various things change on the screen : 

- the color of the layers involved in a connection turn to brilliant; 
- the rectangle with a red outline disappears; 
- a white vertical bar appears in the middle of the layers involved in a 

connection, symbolizing the fact that a communication means is available 
for the upper layers. 

Fmther, when a connection is opened between layer one entities, a white bar 
appears between the machine stack and its entry node stack, symbolizing the fact 
that a connection is established between them. A white bar also appears on the 
top of the entry node stack between itself and the X-25 network, when a 
connection is established between layer three entities. This symbolizes the fact 
that a connection is established through the X-25 network. 
A string is also displayed into the message box, explaining the current step. It is 
of type: 

<layer name> connection opened by layer <layer number N> entities, 
between layer <layer number N+ 1> entities 

where '<layer name>' is the name of the layer where the connection is opened; 
where '<layer number N>' is the number of the layer where the connection is 
opened; where '<layer number N+ 1>' is the number of the upper layer for which 
the connection is opened at the current level. 

If we extend example 11.1, we see the creation of a white bar between the left 
hand side machine stack and its entry node stack. We see also that the two layer 
one entities change color and that a vertical white bar appears in their middle. 



Chapter 11: The OSI on X-25 application 

The string: 

Physical connection opened by layer 1 entities, 
between layer 2 entities 

149 

is displayed in the message box (see figure 11.6). The same thing happens with 
the layer two entities. 

SASE-> 
CASE-> 

Presentatlon -> 
Session-> 

Transport -> 
Network -> 

Data-> 
Physical -> 

OSI on X-25 

X 25 

Left Physical connection opened by layer 1 entities, 
between layer 2 entities 

Figure 11.6 Left physical connection created 

When the simulation reaches layer three, the connection is not immediately 
opened at that level, it must first be opened between the right hand side machine 
stack and its entry node stack. This is done exactly the way described above (see 
figure 11. 7). 

SASE-> 
CASE-> 

Presentatlon -> 
Session-> 

Transport -> 
Network-> 

Data-> 
Physlcal -> 

OSI on X-25 

X 25 

Opening right physical connection by layer 1 entities, 
between layer 2 entities 

Figure 11.7 Opening right physical connection 

The connections are opened normally as described above until the simulation 
reaches layer three, where the four layer three entities are opened simultaneously, 



Chapter 11: The OSI on X-25 application 150 

creating also the white bar linking each entry node stack to the X-25 network (see 
figure 11.8). 

SASE-> 
CASE-> 

Presentation -> 
Session-> 

Transport-> 

Network -> 
Data-> 

Phystcal -> 

OSI on X-25 

X 25 

Network connection opened by layer 3 entities, 
between layer 4 entities 

Figure 11.8 Network connection created 

The simulation goes on until the final state is reached, that is the entire connection 
is opened from the layer 5 entities (see figure 11.9). (Example 11.2) 

SASE-> 
CASE-> 

Presentation -> 
Session-> 

Transport-> 

Network -> 
Data-> 

Phystcal -> 

OSI on X-25 

X 25 

Session connection opened by layer 5 entities, 
between layer 6 entitles 

Figure 11.9 Connection completely opened for layer 5 entities 

If it is impossible to open any connections when the user requests it -because a 
connection is opened using each layer of each stack-, the following warning 
message appears in red in the message box : 

Nothing is disconnected, connection impossible 



Chapter 11: The OSI on X-25 application 151 

The third case listed above concerns the closing of a connection or 
disconnection. If it is possible for the user to close an existing connection, a 
message appears in the message box : 

Select the source layer 

At this stage, the user has to select the layer from which he wants the 
disconnection to be initiated. 
If the selected layer is a layer from which a disconnection can not be initiated, a 
message appears in the message box : 

These layers can not be disconnected 

When the layer is selected and when the disconnection is possible, a rectangle 
with a red outline appears between it and its counterpart in the other machine 
stack or entry node stack3• At the same time they start to flicker, all this to 
indicate that the disconnection is in progress. A message is also displayed in the 
message box : 

Closing <layer name> connection by layer <layer number N> 
entities, between layer <layer number N+l> entities 

where '<layer name>' is the name of the layer currently involved in the 
disconnection; where '<layer number N>' is the number of the layer currently 
involved in the disconnection; where '<layer number N+ l>' is the number of the 
upper layer for which the disconnection is made at the cmTent level. 
This goes on until layer 5 is reached, if the source layer entity is above layer 4 
entities. At this moment, the layer entities above layer 4 entities which are 
concerned by the disconnection, change their colors back to pastel shade, the 
white bar representing the connection is erased and the string : 

<layer name> connection closed by layer <layer number N> entities, 
between layer <layer number N+ 1> entities 

is displayed in the message box, where '<layer name>' is the name of the layer 
currently disconnected; where '<layer number N>' is the number of the layer 
currently disconnected; where '<layer number N+ 1>' is the number of the upper 
layer for which the disconnection is made at the current level. 
When the concerned layer entity is underneath layer 5, a confirmation is asked to 
the user by the inte1mediary of a message : 

Disconnection of <layer name> connection by layer <layer number N> 
entities, between layer <layer number N+ 1> entities ? 

3 : This depends on the chosen layer 



Chapter 11: The OSI on X-25 application 152 

appearing in the message box, where '<layer name>' is the name of the layer 
cun-ently involved in the disconnection; where '<layer number N>' is the number 
of the layer cun-ently involved in the disconnection; where '<layer number N+ 1>' 
is the number of the upper layer for which the disconnection is made at the 
cun-ent level. 
Note that if layer three is concerned by the disconnection, the white bar between 
the entry node and the X-25 ellipse is erased. Note also that if layer one is 
concerned by the disconnection, the bru· between the stack and the entry node is 
erased. 
For example, if one wants to disconnect the connection made in example 11.1 and 
11.2, one has first to choose the source layer. Once this is done, the layer five 
entities begin to flicker and a rectangle with a red outline appears between them. 
The string: 

Closing session connection by layer 5 entities, 
between layer 6 entities 

is displayed in the message box (see figure 11.10). 

SASE-> 
C.ASE -> 

Presentatlon -> 
Session-> 

Transport-> 
Network -> 

Data-> 
Phys1cal -> 

OSI on X-25 

X 25 

Closing session connection by layer 5 entities, 
between layer 6 entities 

Fii:ure 11.10 Disconnecting from layer five entities 

The connection is then closed for the layer 5 entities, reverting their colors to 
pastel shade and erasing the white rectangle in their middle. A message is also 
printed inside the message box : 

Session connection closed by layer 5 entities, 
between layer 6 entities 

In the next step, the user is prompted with a question displayed in the message 
box (see figure 11.11) : 

Disconnection of transport connection by layer 4 



Chapter 11: The OSI on X-25 application 153 

entities, between layer 5 entities ? 

If the user replies affirmatively, layer four entities are disconnected like explained 
above. Otherwise the disconnection is stopped at this stage. 

SASE-> 
CASE-> 

Presentation -> 
Session-> 

Transport -> 
Network-> 

Data-> 
Physical -> 

OSI on X-25 

X 25 

Disconnection of transport connection by layer 4 
entities, between layer 5 entities ? 

Figure 11.11 The user is prompted with a question concerning the 
disconnection of layer 4 

At this stage, the disconnection keeps on, depending on the user's wish. If 
everything has to be disconnected, the final result is that each layer's color is 
reverted to pastel shade; the white bars linking the machine stacks to their entry 
node stacks and the white bars linking the entry node stacks to the X-25 network 
are erased, so as the white bars in the middle of each layer. (Example 11.3) 

If no connection is opened when the user requests a disconnection, a warning 
message appears in red in the message box : 

Nothing is connected, disconnection impossible 

and nothing happens further. 

11.3. The implementation 

In this point, we touch the problem of the application's implementation in RMG, 
based on what has been said so far through the scenario. 

11.3.1. User-application interaction 

We omitted in the preceding part to speak of the user-application interaction. 
We speak of the user selecting layers or asking for a connection, etc, but we do 
not tell how this is represented within the application. To specify this, we base 



Chapter 11: The OSI on X-25 application 154 

ourselves on what can be seen in several RMG applications, that is pop-up menus, 
buttons, icons, etc. 

We can distinguish 4 different interactions : 

- selecting a connection opening or closing; 
- selecting the layers; 
- passing from one step to the other; 
- replying questions. 

For the first interaction, we choose to create a pop-up menu for the application. 
This menu contains at least two new menu items, concerning a connection 
opening or closing : 

- 'Connection >'; 
- 'Disconnection'. 

The first menu item enables the user to make the application simulate a 
connection opening. It hides a submenu which enables the user to select one 
mode between : 

- continuous; 
- step by step; 

In the continuous mode, no interaction between the user and the application is 
required during the simulation. To the contrary, in the step by step mode an 
interaction between the user and the application is required in order to jump from 
one step to the other in the simulation. 
The second menu item, 'Disconnection' enables the user to make the application 
simulate a disconnection in step by step mode only. 
For these functionalities the solution of the menu is chosen so that the user can 
constantly access them and so that the screen representation of these 
functionalities do not hamper the user perception of the simulation by being 
constantly present on the screen. 

The second interaction concerns the selection of the different layers involved 
in a connection or a disconnection. This is done by the user clicking directly on 
the desired layer when the message asking him to do so appears on the screen4• 

The third interaction involves the fact that the user has to ask the simulation to 
'execute' the next step. This concerns of course the step by step mode discussed 
above. This is done using a button labeled 'Continue' which appears in the 
application's window whenever it is necessary. The user has only to click on this 
button in order to make the application 'execute' the next step of the simulation. 

4 : Recall that this message is: 'Select source layer' or 'Select destination layer' 



Chapter 11: The OSI on X-25 application 155 

The fomih and last interaction involves replies to be given to the application 
concerning questions of the type : 

Disconnection of transport connection by layer 4 
entities, between layer 5 entities ? 

during a disconnection. These questions require only negative or positive replies 
which are represented on the screen by two buttons, on which the user has to 
click, displayed only when a reply is needed and respectively labeled 'Yes' and 
'No'. 

11.3.2. The application's classes 

Now that we have our scenario; now that the interactions are determined, we 
must decide which are the classes composing our application. 

Several classes are designed in order to represent the different screen objects of 
the application. A class is created for the stacks, 'OsiStack', enabling them to be 
at instantiation seven layer stacks or three layer stacks. 

A class is designed to represent the layers, 'Layer'; so each layer contained in a 
stack is the instantiation of this class and thus an independent object. Each 
interface between the layers is the instantiation of a class : 'Interface'. 

The white bar representing the connection and which is situated in the middle 
of a layer when a connection is opened, is an instance of a class 'Pipe'. 

Of course we find also the master-class, 'Osil', which manages the whole 
application and the menu class, 'OsilMTree', which enables the creation of the 
application's menu. 

The hierarchy of these classes is represented at figure 11.12, where classes are 
represented underneath there superclass. 

EnvM'Ilee 

Layer Interlace 

Figure 11.12 Hierarchy of the classes 
composing the 'OSI on X-25' application 



Chapter 11: The OSI on X-25 application 156 

We decided to create so many classes for this application in order of being able 
to reuse easily these classes in the future applications that are to come in Namur's 
COLOS team. 

11.4. The 'Osil' class 

We are going to look at the 'Osil' class which is the master-class of this 
application. 

This part first presents the different interesting instance variables. It is followed 
by the presentation of the factory methods and the different instance methods. Next 
comes the description of each action defined in this application. Finally we detail 
briefly the new classes we used in our class. 

11.4.1. Instance variables 

This class is composed of several instance variables, among which some of 
them are more interesting than others. 

A first one is an id instance variable: 'topBanner'. This variable is designed to 
contain the address of the title bar placed in the application's window and 
containing the string: 'OSI on X-25'. 

'stackColl' is an id instance variable which is designed to contain the address 
of the collection5 containing the addresses of every stack appearing in the 
application; each of these stacks being an instance of the 'OsiStack' class. 

'sourceStack' and 'destStack' are two id instance variables which are designed 
to contain the addresses of the stacks which are involved in the opening or closing 
of a connection. 

Three other id instance vaiiables are designed to contain addresses of other 
screen objects appearing in the application's window. 'textWin' contains the 
address of the message box; 'x25Net' contains the address of the ellipse figuring 
the X-25 network; finally, 'x25Str' contains the address of the string appearing 
inside this ellipse. 

The three last instance variables we talk about here are also id variables and are 
designed to contain the addresses of the buttons which enable the user to jump 
from one step to another in the simulation or reply to a question -see point 11.3. 
These variables are : 

- 'stepButton' which contains the address of the 'Continue' button; 
- 'idButtonOk' which contains the address of the 'Yes' button; 
- 'idButtonNot' which contains the address of the 'No' button. 

5 : Recall that a collection is a sort of indexed variable which in this case contains addresses. For further detail, 

the reader will consult [S1EPSTONE, 1] 



Chapter 11: The OSI on X-25 application 157 

11.4.2. Fact01y methods 

We find two factory methods in this class: 'newln:(id)' and 'delaylnit'. 

'newln:' is the factory method designed to create the application's window and 
all its subviews. Within this method are done several things, mainly the: 

- creation of the window; 
- creation of the window's subviews; 
- objectivation of C functions to be linked to views as actions; 
- initialization of variables; 

The creation of the window's subviews concerns the creation of : 

- the title bar; 
- the X-25 ellipse and string; 
- the various layer names situated on the left-hand side of the application's 

window; 
- the two machine stacks; 
- the two entry node stacks; 
- the message box. 

The objectivation of the C functions mainly includes the objectivation of 
functions to be linked to the application's window itself. 

'delaylnit' is again used to instantiate the application's menu. 

11.4.3. Instance methods 

In this point we analyze the instance methods of the Osil class, one after the 
other. 

The first one is 'extraNewln:(id)' which in this case gets the address of the 
application's menu and creates the Ghost instance in order to enable the user to 
iconize the application. It also issues the message '[self showAll]' to the class' 
instance in order to display on the screen all the created views. 

'iconify' is the method which calls the method 'iconize' in Osil 's superclass, in 
order to iconize the application. 

'startDiscStep' is an instance method which sets the application into the active 
collection if a simulation is not cunently performed and if a connection is already 
established. The application is set into the active collection in order to enable the 
user to select the source layer from which a disconnection is initiated; it is done 
by calling the method 'startRun'. It is necessary to use the active collection at this 
stage, in order to enable the RMG cursor's location and the mouse buttons state to 
be checked permanently until the user clicks on one of the layers. This method is 
'called' from the 'OsilMtree' instance when the appropriate menu item is selected. 



Chapter 11: The OSI on X-25 application 158 

If a disconnection can not be initiated because no connection is established, a 
warning message -'Nothing connected, Disconnection impossible'- is displayed 
into the message box. 

'startCon' is a method which sets the application into the active collection if a 
simulation is not currently performed and if a connection is possible. The 
application is set into the active collection in order to enable the user to select the 
source and destination layers from which a disconnection is respectively initiated 
and responded to; it is also done by calling the method 'startRun'. This method 
concerns the continuous mode and is directly 'called' from the application's menu 
instance when the appropriate menu item is selected. If no connection is possible 
a warning message -'Nothing is disconnected, Connection impossible'- is 
displayed into the message box. 

'startConStep' is very like the 'startCon' method, except that it concerns the 
step by step mode. It is also directly 'called' from the application's menu instance 
when the appropriate menu item is selected. 

'startRun' displays the string 'Choose the source LAYER' into the message box 

and installs the application into the active collection. 'stopRun' is the method that 
removes the application from the active collection. 

'update' is the method 'executed' when the application is in the active 
collection. In this case, it sends a message to the instance of the Osi 1 class 
containing one of the selectors : 

- 'selectOne' in the case of a disconnection; 
- 'selectTwo' in the case of a connection; 
- 'selectChoiceD' in the case of a reply to a question involving the 'Yes' or 

'No' buttons. 

'selectTwo' enables the user to select the source and destination layers for a 
connection opening. This is done by controlling the mouse buttons state. If the 
left mouse button is depressed, each instance of the Layer class is tested in order 
to see if the location of the RMG cursor at the 'depression moment' is contained 
within the bounds of one of them. If this is not the case nothing happens. If this 
is the case and that : 

- only one layer is selected, the message 'Choose the Destination LA YER' is 

displayed in the message box and the user has to select the second layer; 
- two layers are already selected, the application is retrieved from the active 

collection using the 'stopRun' method and the 'connect' method is 'called' 
next. 

'selectOne' enables the user to select the source layer for the closing of a 
connection. This method follows the same principles as for the 'selectTwo' 
method. 

'selectChoiceD' is the method enabling the user to click on one of the two 
buttons -'Yes' or 'No'- in order to reply to the questions asked when a 
disconnection is performed -see point 11.3. Note that when the disconnection 



Chapter 11: The OSI on X-25 application 159 

reaches layer three entities and the lower ones, the question is asked for the 
connection of each machine stack with its entry node stack. This method follows 
the same principles as for 'selectOne' or 'selectTwo' except that no layers are 
tested in this case but only the two buttons present on the screen. If the 'Yes' 
button is clicked on the simulation is continued nmmally. If the 'No' button is 
clicked on the disconnection is stopped at the stage of the concerned layers. 

'connect' tests if the connection is possible between the two chosen layers and 
if it is possible to initiate a connection from this layer level6• If a connection is 
possible and that the step by step mode has been requested, the 'Continue' button 
is created, displayed on the screen and the simulation is launched by sending the 
source stack7 a message containing the 'openConStep' selector. If a connection is 
possible and that the continuous mode has been requested, the source stack is 
placed into the active collection in order to enable the simulation to be carried on 
without any user-application interactions. If the connection is impossible, a 
warning message -'These layers can not be connected'- is displayed into the 
message box. 

'disconnect' tests if the disconnection is possible from the selected layer. If the 
disconnection can be performed, the 'Continue' button is created, displayed on the 
screen and the simulation is launched by sending the source stack a message 
containing the 'openDiscStep' selector. If the disconnection is impossible, a 
warning message -'These layers can not be disconnected'- is displayed into the 
message box. 

'buttonFace: colorl: color2:' is a method8 that enables to create shaded 
buttons on the screen, as seen in figure 9.2. This method takes three arguments. 
The first one is the address of the view which has to be converted with the 
method. The second and third ones are the two colors which will be the border of 
the new button. 

11.4.4. The actions 

We analyze briefly the different objectified C functions one can find inside this 
class. 

'actionSelf is the action attached to the application's window itself and is the 
objectivation of the 'ac_Self(aView)' C function. Its goal is only to make the 
application's window and all its subviews as the first view of the hierarchy of 
views present on the screen; this is done using the RMGView method : 
'popToTop'. 

'superAction' is attached to the outline around a button -created with 
'buttonFace: colorl: color2:'. This action represents the 'superAct(aView)' C 

6 : See point 11.2 for the restrictions concerning the opening of a connection 
7 : The source stack is the stack which contains the layer entity from which the connection must be initiated. Its 
address is contained in the 'sourceStack' instance method 
8 : This method was designed by Uwe Heimburger and Detlev Wegener at the Kiel's University for their work in 
the COLOS project and is widely used nowadays by COLOS programmers 



Chapter 11: The OSI on X-25 application 160 

function which executes the action linked to the superview of the view which 
address is passed as argument to the function. This is done so that the button's 
action is also executed when the user clicks on the colored surround of the button 
itself. 

'actionStep' is the action attached to the 'Continue' button. This actions can be 
the objectivation of either 'ac_StepC(aView)' in the case of a connection opening, 
either 'ac_StepD(aView)' in the case of a connection 'closing'. The first of these 
C functions enables the user to pass to the following step of the connection 
simulation. The second of these C functions enables the user to pass to the 
following step of the disconnection simulation. In this case, if the concerned 
layer is inferior to five, it displays also in the message box a question of the type : 
'Disconnection of transport connection by layer 4 entities, between layer 5 entities 
?', creates the 'Yes' and 'No' buttons and sets the application into the active 
collection in order to enable the user to reply to the question by clicking on one of 
the buttons. 

11.4.5. The classes used 

Classes which have not yet been presented have been used in this class : 

- 'OrdCltn'; 
- 'RMGEllipse'. 

The first of these classes is an Objective-C class. It enables the management 
of an arbitrary number of objects as a whole, these objects being maintained in 
the order in which they were added to the collection. 

We use two different factory methods: 

- 'with:(int)'; 
- 'new'. 

The first is a factory method inherited from its superclass : 'Cltn'. It enables the 
creation of an instance of OrdCltn composed of values. The number of values is 
passed as argument. It is thus used as : 

[OrdCltn with: 8, "Physical->", "Data->", "Network->", 
"Transport->", "Session ->", "Presentation ->", "CASE -
>","SASE->"]; 

The second factory method is also inherited from its superclass : 'Cltn'. It enables 
the creation of an empty instance of OrdCltn. 

We also use two instance methods : 

- 'add:(id)'; 
- 'at:(int)'. 



Chapter 11: The OSI on X-25 application 161 

The first one enables the user to add an object which address is passed as 
argument, at the end of the already existing collection. For example : 

[aCollection add: anAddress]; 

where 'aCollection' contains the address of an instance of OrdCltn and 'anAddress' 
contains the address of any instance. 
The second one returns the object's address situated in the collection at the 
location passed as argument -an integer. For example : 

anAddress = [aCollection at: 0]; 

where the address located in the first slot of the collection is placed into the 
'anAddress' variable. 
Note that for this class, many other methods are available enabling the user to 
cope with the different values stored into the collection. 

The second class -'RMGEllipse'- is an RMG class which enables the user to 
draw an elliptical shape inside a view. This class is a subclass of RMGView 
and so inheriting all its methods and instance variables. 
This class defines some instance variables mainly in order to contain various 
arguments concerning the ellipse itself. This is the case of 'xRadius' and 
'yRadius' for example, which are of type integer and are designed to contain 
respectively the horizontal and vertical radius of the ellipse. 
To instantiate this class, the user can utilize RMGEllipse 'new' factory method 
which creates an instance with default parameters. But the user can also utilize 
RMGView factory methods. We did just that and used the 'relative:: extent:: 
superview: bkgd:' factory method. 
This class provides also many instance methods enabling the user to fix various 
parameters concerning the ellipse. Among these we can find 'xRadius: (int) 
yRadius: (int)' which sets the half width and the half height of the ellipse to the 
values passed as arguments. 
'origin: (int): (int)' sets the center of the ellipse to the location identified by the 
two values passed as arguments. 'circleSolid: (BOOL)' enables the user to 
specify if the ellipse has to be drawn as a solid or as an outline only. 
We used this class in the 'newln:' method, to create the X-25 network 
representation : 

x25Net = [RMGEllipse relative: 550: 50 
extent: 400: 500 
superview: self 
bkgd: BLUE]; 

[[[[[x25Net xRadius: 190 yRadius: 110] 
origin: 150: 210] 
circleSolid: TRUE] 
show]; 

/* 1 */ 

/* 2 */ 
/* 3 */ 
/* 4 */ 



Chapter 11: The OSI on X-25 application 162 

Line 1 creates an instance of RMGEllipse using RMGView's factory method. 
This creates a view in which the ellipse is placed. 
Line 2 sets the dimensions of the ellipse, while line 3 sets its center at the location 
(150,210). 
Line 4 specifies that the ellipse has to be drawn as a solid. 

11.5. The 'OsilMTree' class 

We look at the 'OsilMTree' class, subclass of 'EnvMTree', which is the menu 
class of this application. This class implements only two classical factory methods : 
'delaylnit' and 'getlt'. It does not have any proper instance variables, nor any 
instance methods. 

'delaylnit' is the factory method which initializes the menu itself. It is a menu 
containing four different menu items : 

- '" Qu1·t "'· . . . . ' 
- 'Icon'; 
- 'Connection >'; 
- 'Disconnection'. 

The first menu item enables the user to quit the application, while the second one 
enables him to reduce the application's window to an icon. 
The third menu item enables the user to start the simulation of a connection opening. 
It hides a submenu which contains the two menu items 'Step by step' and 
'Continuous' enabling the user to start a connection opening respectively in step by 
step mode -by the instance of OsilMTree sending a message to the instance of the 
Osil class containing the 'startConStep' selector- and in continuous mode -by the 
instance of OsilMTree sending a message to the instance of the Osil class 
containing the 'startCon' selector. 
The fourth menu item enables the user to start a disconnection in step by step mode 
only. This is done by the instance of OsilMTree sending a message to the instance 
of the Osil class containing the 'startDiscStep' selector. 

'getlt' is simply a factory method that returns the address of the menu previously 
created. 

11.6. The 'OsiStack' class 

We look at the 'OsiStack' class, subclass of Osil, which is the class implementing 
methods and declaring instance variables characterizing each stack of the 
application. 

This part first presents the different interesting instance variables. It is followed 
by the presentation of the factory methods and the different instance methods. Next 



Chapter 11: The OSI on X-25 application 163 

comes the desctiption of each action defined in this application. Finally, we present 
briefly a new class we used in 'OsiStack'. 

11.6.1. Instance variables 

This class has several instance variables, among which we can find 
'clColorArray' and 'opColorArray' which are two id instance variables designed 
to contain the addresses of two instances of the Objective-C class 'IntArray'9• 

These arrays contain the numbers identifying the different pastel colors of the 
layers in the case of clColorAn-ay and the numbers identifying the different 
btilliant colors of the layers in the case of opColorAffay. 

'layerColl' and 'interfaceColl' are two id instance variables designed to contain 
the addresses of instances of the 'OrdCltn' class. These ordered collections 
contain the addresses of each layer10 composing a stack in the case of layerColl 
and the addresses of each interface11 included in a stack in the case of 
interfaceColl. 

'nameColl' is an id instance variable designed to contain the address of an 
instance of the 'OrdCltn' class, this instance containing the various names of the 
layers to be displayed at the left-hand side of the application's window. 

'destiStack' is an id instance variable which contains the address of the stack 
with which a connection opening or a disconnection has to be made. It has a 
value only after the user asks for a connection opening or a disconnection and 
selects the layers accordingly -as explained above. 

'entryNode' is an id instance variable which contains the address of a machine 
stack entry node stack. 

'aLink', 'ellLink' and 'phyLine' are three id instance variables which contain 
the addresses of respectively : 

- the rectangle with a red outline which is created between the two stacks 
involved in a connection opening or closing; 

- the link between an entry node stack and the X-25 ellipse; 
- the link between a machine stack and its entry node stack. 

Vatious instance variables are declared to be used internally for 'ptivate' use, 
like: 

- 'work' which is a boolean instance variable denoting the fact that a 
simulation is cun-ently going on or not; 

- 'actionType' which is an integer instance variable identifying the type of 
simulation going on : connection opening or disconnection; 

9 : This class is briefly explained in point 11.6.4 
10 : Thus instance of the 'Layer' class 
11 : Thus instance of the 'Interface' class 



Chapter 11: The OSI on X-25 application 164 

- 'skip' and 'back' which are respectively a boolean and an id instance 
variable used in order to enable the opening or closing of a connection 
between a machine stack and its entry node stack, on both sides; 

- 'winTextl' and 'winText2' which are instance variables containing the 
addresses of the two subwindows composing the message box 12; 

- 'curLayer' which is an id instance variable containing the address of the 
layer currently concerned with the connection opening or closing, so the 
layer where something is currently 'happening'; 

- 'workLayer' which is an id instance variable containing the address of the 
layer from which the connection opening or closing is initiated. 

Finally, 'stackType' is an integer instance variable which contains the number 
of layers which characterizes a stack. For example, the value of stackType is 7 in 
the case of a machine stack. 

11.6.2. Factory methods 

This class has two factory methods : 

- 'new: (id) at: (int): (int) type: (int) strings: (id)'; 
- 'new: (id) at: (int): (int) type: (int) multiplex: (int): (int)'. 

The first factory method enables the user to create an instance of OsiStack in 
which some strings are displayed. This is the case with the different layer names 
appearing on the left-hand side of the application's window. 
This stack is placed in the view which address is passed as first argument, at the 
location identified by the two integers passed as second and third arguments. The 
fourth argument is the type of stack needed, thus it specifies the number of layers 
desired. Finally, the last argument is the address of the collection which contains 
the strings to display inside this stack. 

The second factory method enables the user to create an ordinary instance of 
OsiStack, like the machine or entry node stacks. This stack is placed in the view 
which address is passed as first argument, at the location identified by the two 
integers passed as second and third arguments. The fourth argument is the type of 
stack needed, thus it specifies the number of layers desired. The two last 
arguments are not currently used but are designed to pass as argument the layer 
numbers between which multiplexing is possible in order to make some changes 
to the layers appear on the screen. 

11.6.3. Instance methods 

We review now each instance method implemented in the OsiStack class. 

12 : Indeed the message box has to be separated in two parts as the messages to display are very long and in 

order to limit the length of the message box itself. This enables the displaying of two strings, one on top of the 

other 



Chapter 11: The OSI on X-25 application 165 

'loadColor' is an instance method which 'builds' the instances of the 'lntArray' 
class with the different layer colors. The addresses of these instances are put into 
the 'clColorArray' and 'opColorAtrny' instance variables. 

'loadLayerNames' is an instance method which 'builds' the instance of the 
'OrdCltn' class with the different layer names. The address of this instance is put 
into the 'nameColl' instance variable. 

'(int)layerContains: (int): (int)' is a method which checks if the location 
identified by the two values passed as arguments is inside the bounds of one of 
the instances of the Layer class composing the stack. This method returns an 
integer which has the value zero if the location is not situated inside any of the 
stack layers. In case the location is situated inside one of the stack's layers, the 
number13 of this layer is returned. 

'update' is the method 'executed' when the instance of the OsiStack class is in 
the active collection14• In this case it sends a message to itself containing the 
selector 'openConnect' in the case of a connection opening. The type of 
simulation to be performed in continuous mode is known by the 'actionType' 
instance variable. This system is adopted in case the active collection is required 
for other purposes. 

'openConnect' is the instance method which starts the simulation of a 
connection opening in continuous mode. It is separated into two phases. 
The first phase concerns the downward progression of the connection opening. 
That is creating the rectangle with a red outline between the two stacks involved 
in the connection, if it is not yet created; otherwise, displaying it at the level of 
the current layers15 concerned with the connection opening. It makes also the 
current layers flicker and displays a message of type: 'Opening Transport 
connection by layer 4 entities, between layer 5 entities', in the message box. 
The second phase concerns the upward progression of the connection opening, 
when the rectangle with a red outline has reached the lowest layer of the stack or 
the highest layer already connected. It suppresses the rectangle with a red outline 
linking the two stacks involved in the connection, stops the flickering of the 
current layers and changes their color to brilliant shade. It displays also a 
message of type: 'Physical connection opened by layer 1 entities, between layer 2 
entities', in the message box and creates the white bar which is situated in the 
middle of each layer where the connection is already opened. It creates also the 
white bars between the machine stack and its entry node stack, if the current 
layers are the Physical layers. It creates the white bar between the entry node 
stack and the X-25 network, if the current layers are the Network layers. 
Note that the message containing the 'openConnect' selector is only sent to the 
source stack, thus the stack from which the connection is initiated. 

'openConStep' is the method which starts the simulation of a connection 
opening in step by step mode. Its functionalities are the same than for 

13 : By number we mean the level of the layer inside the ISO reference model. For example 7 is the number of 
the Application layer 
14 : An instance of the OsiStack class is put into the active collection by the instance of the Osil class 
15 : By current layers, we mean the layers where something is currently happening in the simulation 



Chapter 11: The OSI on X-25 application 166 

'openConnect', except that this method is 'executed' independently from the active 
collection. As for the 'openConnect' method, the message containing the 
'openConStep' selector is only sent to the source stack, thus the stack from which 
the connection is initiated. This method returns an integer which identifies the 
cunent status of the connection simulation. 

'replyConnect' is a method which makes an instance of the Layer class flicker 
or change its color, depending on the case. A message containing the 
'replyConnect' selector is sent by the source stack of the connection opening to the 
destination stack of the connection opening. This method returns the address of 
the concerned instance of the Layer class. 

'openDiscStep' is the method which starts the simulation of a disconnection. If 
the cunent layers are superior or equal to 5, the message '[self discStepUp]' is sent 
by the instance of OsiStack to itself. If the cunent layers are inferior to 5, the 
message '[self discStepLowOk]' is sent by the instance of OsiStack to itself. This 
process is separated in two, as the three top layers of the ISO reference model do 
not need any confirmation to be disconnected. 

'discStepUp' is the method which simulates the disconnection of the three top 
layers of the ISO reference model. 
The first phase concerns the downward progression of the disconnection. That is 
creating the rectangle with a red outline between the two stacks involved in the 
connection, if it is not yet created; otherwise, displaying it at the level of the 
cunent layers concerned with the disconnection. It makes also the cunent layers 
flicker and displays a message of type: 'Closing Transport connection by layer 4 
entities, between layer 5 entities', in the message box. 
The second phase concerns the upward progression of the disconnection, when 
the rectangle with a red outline has reached the layer 5. It suppresses the 
rectangle with a red outline linking the two stacks involved in the disconnection, 
stops the flickering of the cunent layers and changes their color to pastel color. It 
displays also a message of type: 'Physical connection closed by layer 1 entities, 
between layer 2 entities', in the message box and suppresses the white bar which 
is situated in the middle of each layer where the connection is opened. It 
suppresses also the white bar between the machine stack and its entry node stack, 
if the cunent layers are the Physical layers. It suppresses the white bar between 
the entry node stack and the X-25 network, if the cunent layers are the Network 
layers. 
This method returns an integer which identifies the cunent status of the 
disconnection simulation. Note that a message containing the selector 
'discStepUp' is only sent to the source stack. 

'discStepLowOk' is the method which simulates the disconnection of the four 
lower layers of the · ISO reference model. This is made by taking in count the 
choices of the user himself. 
The user replies to the question of type: 'Disconnection of transp01t connection by 
layer 4 entities, between layer 5 entities ?' -see point 11.3. If the reply is positive, 
the cunent layers are disconnected by changing their color to pastel shade, 
suppressing the white bar which is situated in the middle of each layer where the 
connection is opened and displaying in the message box the message of type: 



Chapter 11: The OSI on X-25 application 167 

'Physical connection closed by layer 1 entities, between layer 2 entities'. Possibly, 
it suppresses also the white bars between the machine stack and its entry node 
stack, if the current layers are the Physical layers; it suppresses the white bar 
between the entry node stack and the X-25 network, if the current layers are the 
Network layers. 
This method returns also an integer which identifies the current status of the 
disconnection simulation. Note that a message containing the selector 
'discStepLowOk' is only sent to the source stack. 

'replyDiscStepLowOk' is a method which makes an instance of the Layer 
class change its color, following the situation. A message containing the 
'replyDiscStepLowOk' selector is sent by the source stack of the disconnection 
process to the destination stack of the disconnection process only if the four lower 
layers are concerned. It returns an integer which identifies the current status of 
the disconnection's simulation. 

'replyDisconnect' is a method which makes an instance of the Layer class 
flicker or change its color, following the situation. A message containing the 
'replyDisconnect' selector is sent by the source stack of the disconnection process 
to the destination stack of the disconnection process only in the case of the three 
upper layers of the ISO reference model. It returns the address of the concerned 
instance of the Layer class. 

In this class are also implemented series of methods which goal is to store a 
value into certain instance variables : 

- 'sEntryNode: (id)' which stores the address of the entry node passed as 
argument into the 'entryNode' instance variable; 

- 'setCurLayer: (int)' which stores the number passed as argument into the 
'currentLayer' instance variable; this represents the initiating layer number; 

- 'setWorkLayer: (int)' which stores the number passed as argument, as the 
current layer number into the 'workLayer' instance variable; 

- 'setSkip: (BOOL)' which stores the boolean passed as argument into the 
'skip' instance variable; 

- 'back: (id)' which stores the address passed as argument into the 'back' 
instance variable; 

- 'setDestiStack: (id)' which stores the address of the destination stack into 
the 'destiStack' instance variable; 

- 'setTextWin: (id): (id)' which stores the addresses of the two subwindows 
composing the message box into the 'textWinl' and 'textWin2' instance 
variables; 

- 'setAction: (int)' which stores the integer passed as argument, representing 
the type of simulation to be performed, into the 'actionType' instance 
variable; 

- 'setWorking: (BOOL)' which stores the boolean passed as argument into 
the 'work' instance variable. 



Chapter 11: The OSI on X-25 application 168 

In this class are also implemented some methods which goal is to return the 
value of certain instance vatiables : 

- 'askEntryNode' which returns the address of the enuy node stored into the 
'enuyNode' instance variable; 

- 'askCurLayer' which returns an integer which is the number of the 
initiating layer which is stored into the 'currentLayer' instance variable; 

- 'askLayerColl' which returns the address of the collection containing the 
addresses of each instance of the Layer class composing the stack; this 
address is stored into the layerColl instance variable; 

- 'working' which returns the boolean stored into the 'work' instance variable, 
specifying if the stack is currently involved in a simulation or not; 

- 'askSkip' which returns the boolean stored into the 'skip' instance variable; 
- 'askStackType' which returns an integer which is the stackType instance 

variable; 
- 'askldNameColl' which returns the address of the collection containing the 

names of the different layers, contained into the 'nameColl' instance 
variable; 

- 'askDestiStack' which returns the address of the destination stack of the 
connection opening or closing, stored into the 'destiStack' instance vatiable. 

'testConnect' is an instance method which tests if a connection is already 
established at the current layer. It returns a boolean which is TRUE if the 
connection is already established and FALSE otherwise. 

'testConUp' is an instance method which tests if a connection is established at 
any level. It returns a boolean which is TRUE if a connection is already 
established and FALSE otherwise. 

'searchWidthLink: (id)' is a method which calculates the width of the 
rectangle with a red outline appearing between two stacks at a connection opening 
or closing. This width is calculated between the stack to which the message is 
sent and the stack which address is passed as argument. The width is returned as 
an integer. 

'searchXOriginLink: (id)' is a method which calculates the x coordinate 

where the rectangle with a red outline has to be located. This coordinate is the 
right edge of the leftmost stack involved in a connection opening or closing. The 
coordinate is returned as an integer. 

'searchYOriginLink: (id)' is the same method as 'sea.1·chXOriginLink:' except 
that it returns the Y coordinate. 

'connectionDone' is a method which tests if a connection is opened using 
every layer in the stack, thus preventing an other connection opening. The 
returned value is a boolean which is TRUE if all the layers are involved in a 
connection, FALSE otherwise. 

'deConnectionDone' is the same method as 'connectionDone' except that it 
checks if each layer is disconnected, thus suppressing the possibility of another 
disconnection. 



Chapter 11: The OSI on X-25 application 169 

'createLink: (int): (int) length: (int): (int)' is the method that creates a white 
bar between an entry node stack and the X-25 ellipse or between a machine stack 
and an entry node stack. This bar is placed at the location identified by the two 
first arguments; its width is specified by the third argument and its height by the 
fourth one. It returns the address of the created bar. 

'freeEIILink' hides and frees the link between an entry node stack and the X-
25 ellipse. 

'freePhyLine' hides and frees the link between a machine stack and an entry 
node stack. 

'flickering' is a method which makes the current layer flicker and sets various 
parameters concerning this instance of the Layer class -see point 11.7. 

11.6.4. The classes used 

A class has been used in this class which has not yet been presented 
'lntArray'. 

It is a class which enables to manage indexed variables of integer type. We 
used the 'with: (int)' factory method to instantiate it. This method is inherited 
from its superclass: 'Array'. It enables the creation of an instance of OrdCltn, 
composed of values which number is passed as argument. For example : 

anArray = [IntArray with: 4, 1, 2, 3, 4]; 

which creates an instance of the 'IntA:rray' class, containing the four integers: 
1,2,3,4; where 'anArray' is an id variable which contains the address of the newly 
created instance. 

We used also the 'intAt: (int)' instance method in order to access the values 
stored into the 'IntArray' instance. This method returns the value which is stored 
at the location passed as argument. For example : 

anlnteger = [anArray intAt: 0]; 

which stores the value situated at the position O in the array identified by 'anArray' 
into the integer vruiable 'anlnteger'; so in this case the value 1. 

11.7. The 'Layer' class 

We look at the 'Layer' class, subclass of OsiStack, which is the class 
implementing methods to create and manage the different layers composing a stack. 

This part first presents the different interesting instance variables. It is followed 
by the presentation of the factory methods and the different instance methods. 

11. 7 .1. Instance variables 

This class declares four different instance vru·iables. 



Chapter 11: The OSI on X-25 application 170 

The first of them is 'conWith' which is an id instance variable designed to 
contain the address of the other instance of the 'Layer' class with which the layer 
is connected. 

'aPipe' is an id instance variable which is designed to contain the address of the 
white bar which is created in the middle of a layer when this layer is concerned by 
an opened connection. 

'closeColor' and 'openColor' are two integer instance variables. The first one 
is designed to contain the number identifying the pastel color of the layer, while 
the second one is designed to contain the number identifying the brilliant color of 
the layer. 

The last instance variable is 'flickering' which is a boolean variable taking the 
value TRUE if the layer is currently flickering or FALSE otherwise. 

11.7.2. Fact01y method 

The only factory method implemented in the 'Layer' class is: 'new: (id) at: 
(int): (int) colorl: (int) color2: (int) height: (int) width: (int)'. This method 
creates the instance of the 'Layer' class in the view which address is passed as first 
argument; it is created at location identified by the second and third arguments. 
The two arguments introduced by 'colorl:' and 'color2:' are the numbers 
identifying respectively the pastel color and the brilliant color of the layer, while 
the two last arguments are the height and the width of the layer. 

11.7.3. Instance methods 

We review each instance method implemented in this class. 

'flicker' is an instance method which installs the layer into the active collection 
in order to make it flicker. 'flick' is an instance method which returns the value of 
the 'flickeling' instance variable. 

'update' is the method 'executed' when the layer is in the active collection. It 
hides the layer from the screen if it is currently shown and vice versa, thus 
producing a flickering of the layer. 'stopRun' retrieves the layer from the active 
collection. 

'changeColor' changes the color of the layer from pastel to blilliant and vice 
versa depending on the case. 

'connectionState' is an instance method which tests the state of a layer to see if 
a connection is opened using this layer or not. It returns a boolean which is 
TRUE if a connection is opened using this layer, FALSE otherwise. 

'inConnectWith: (id)' stores into the 'conWith' instance variable, the address 
passed as argument which is the address of the layer with which the layer is 
connected. 'inConnectWith' returns the address contained into the 'conWith' 
instance variable. 



Chapter 11: The OSI on X-25 application 171 

'createPipe' is the instance method which creates the white bar in the middle 
of the layer when this layer is concerned by an opened connection. 'deletePipe' is 
the instance method which deletes this white bar. 

11.8. The 'Interface' class 

The 'Interface' class is a small class, subclass of OsiStack, which manages the 
creation of an interface between two layers. It was created as a stand-alone class in 
order to enable future developments of the application. 

This class has only one instance variable: 'aPipe', which is designed to contain the 
address of the white bar which is created in the middle of the interface when it is 
concerned by an opened connection. This white bar is also created across the 
interfaces in order to notify the user that some communication means is installed 
between the layers separated by the interface. 

This class implements one factory method: 'new: (id) at: (int): (int) color: (int) 
height: (int) width: (int)'. This method enables the creation of an instance of the 
'Interface' class in the view which address is passed as first argument and at the 
location within this view identified by the second and third arguments. It is created 
in the color passed as fourth argument and has as height and width the two last 
arguments. 

Two instance methods are implemented in this class : 

- 'createPipe'; 
- 'deletePipe'. 

The first one is the instance method which creates the white bar in the middle of the 
interface when it is concerned by an opened connection. The second one is the 
instance method which deletes this white bar. 

11.9. The 'Pipe' class 

The 'Pipe' class is a small class, subclass of Envir, which manages the creation of 
the white bar which is created in the middle of an interface or a layer when they are 
concerned by an opened connection. 

This class has no instance variables and implements only one factory method: 
'new: (id) at: (int): (int) color: (int) height: (int) width: (int)'. This method enables 
the creation of an instance of the 'Pipe' class in the view which address is passed as 
first argument and at the location within this view identified by the second and third 
arguments. It is created in the color passed as fourth argument and has as height and 
width the two last arguments. 



Chapter 11: The OSI on X-25 application 172 

Two instance methods are implemented in this class : 

- 'modifyHeight: (int)'; 
- 'modifyHeight2: (int)'. 

The first one is the instance method which modifies the overall height of the pipe 
and sets it to the integer passed as argument. The location of the pipe is not changed. 
The second instance method modifies also the overall height of the pipe and sets it to 
the integer passed as argument, while it changes also the location of the pipe on the 
Y axis, setting it to the value computed from the difference of the current height of 
the pipe and the new one passed as argument. 

11.10 Critique 

We would like here to make a small critique of this application. 

This application is not perfect at all, as it is only a first prototype. Many errors 
and details must be changed. These errors concern the simulation of the OSI 
standard and also details concerning the progress of the simulation. For example, 
when the user has to select one of the layer entities in order to specify from which 
layer entity the connection or disconnection has to be initiated, the message : 

Select the source layer 

is displayed into the message box. In fact this message should be : 

Select the source layer entity 

This application has been presented to the COLOS members at a COLOS meeting 
and several constructive remarks have been made concerning the presentation : 

- the source and destination layer entities should not behave in the same way; 
- the flickering is tiring; 
- the message box should be separated from a 'question box' and a 'warning 

box'; 
- a fix-menu would be more agreeable than a pop-up menu; 

Other remarks concerned also the functionalities of the application : 

- it could be interesting to let the user do some 'mistakes' while using the 
application, in order to see what happens; 

- it could be interesting to illustrate the connection-less 'orientation'; 

In short, this application is a good start for the Namur COLOS team, but must be 
improved on many points of view. 



Chapter 11: The OSI on X-25 application 173 

11.11. Summary 

The goal of this chapter was to present the 'OSI on X-25' application which was 
created by Namur's COLOS team following the principle of a scenario. It was then 
programmed in the RMG environment, building new classes and using already 
existing ones. 

A first point presented the principles of a scenario which can be divided into few 
different steps : 

- deciding what the application will do; 
- deciding what the application will be composed of on the screen; 
- designing the scenario 'by hand'. 

The second point applied these principles to our case to build the 'OSI on X-25' 
scenario. We saw that the goal of this application was to simulate the opening or 
closing of a connection between two layer entities situated in two different machines, 
following the principles of the OSI model. All the functionalities of the future 
application were also stated one by one. 
We saw also that the screen composition was to be made of: 

- four stacks; 
- an ellipse; 
- a message box. 

where a stack is a rectangle representing a machine or an entry node and the ellipse 
represents the X-25 network. 
We tried afterwards to describe the scenario's evolution. 

The third point described the implementation of the scenario. We saw what the 
user-application interaction was of four kinds : 

- selecting a connection opening or closing; 
- selecting the layers; 
- passing from one step to the other; 
- replying questions. 

Next we saw which were going to be the classes of the application. We saw that six 
classes were designed : 

- 'Osil ', the master-class; 
- 'OsilMTree', the menu-class; 
- 'OsiStack', representing a stack of the application; 
- 'Layer', representing a layer within a stack; 
- 'Interface' representing the interface between two layers; 



Chapter 11: The OSI on X-25 application 174 

- 'Pipe', which instance represents an opened connection and is situated in the 
middle of a layer under the shape of a white bar. 

The following points described these classes, in terms of instance variables, 
factory methods, instance methods, actions and new RMG classes used. 

Finally we made a brief critique of this application. 



Chapter 12: Conclusion 

The RMG environment is a very powerful tool enabling the creation of highly 
interactive simulations and programs. The problem is that the lack of books, 
references and works concerning this environment makes its apprenticeship very 
difficult and very slow to anyone wanting to develop applications with it. We hope 
that this thesis constitutes a step towards easier comprehension and mastering of the 
RMG mechanisms. We do not pretend to impose it as an absolute reference but only 
as a contribution to the work done by many programmers in the COLOS project. 

We tried to give a simple and general approach to Object-Oriented mechanisms, 
insisting on the Objective-C language, in order to enable the user to get accustomed 
to the principles and language on which RMG is built. We tried also to give a brief 
description of RMG, in order to introduce this environment to the reader. 

We then tried to describe the basic RMG programming principles and supply the 
future RMG programmer with a guide which can be of a certain help when he starts 
programming applications in RMG. This guide is far from being complete and is in 
fact only an introduction to the very rich world of the RMG environment and of 
RMG programming. It is only, in our case, the result of our working experience. 
For clarity and concision purposes, we did not want to introduce and give an 
explanation of each RMG class; this is why we introduced only the basic ones. 
Further, we had to give certain informations concerning 'advanced' programming in 
RMG, though this work is only designed to be a beginner's guide to RMG. We tried 
also to give an illustration of what can be made in this environment by presenting an 
application we realized for the COLOS project : the 'Video' application. 

We wanted to present the plans of the university of Namur for the COLOS 
project, concerning the telecommunication field. We presented also one of these 
plans which became an application: 'OSI on X-25'. This application is of course far 
from being perfect as it is in fact a first prototype; many things are not yet settled 
and many errors subsist. 

The COLOS project seems to be a very good and useful experience. It enables 
teachers to dispose of high quality simulation applications which are not intended to 
replace the teacher or the teacher's course but to help him in his task. 

This project regroups a small but international 'board' of programmers and 
teachers. This enables to develop applications whose creation is the grouped work of 
both these categories of people, thus joining the pedagogical experience of some of 
them to the programming skills of the others. Thanks to a nice internal organization 
of the project each member is aware of the works of every other members. This 
enables the exchange of advices, of programming tricks, of classes. It enables also a 
coordination on the user-application interfaces, on the subjects treated by each 
members, etc. 

The environment used in the project -RMG- is a very powerful tool indeed. We 
think that the only black spot is the difficulty of apprenticeship and the time required 
to master it. Once this gate has been jumped over and that one masters sufficiently 
the environment, one is able to construct very powerful applications. But we think 



Chapter 12: Conclusion 176 

that this environment keeps on being difficult to handle, even for an experienced 
user. 

We think that the use of an Object-Oriented environment for the creation of this 
type of graphical simulations is a good solution. The object-Oriented approach 
enables to module the applications as they are really seen on the screen, each screen 
object really being an individual and independent object in the system. Of course 
this does not show for the teacher or the learner using the simulation, but it does 
make a difference for the programmer which is confronted with the creation of these 
applications. 

A problem is that the requirements towards the project are numerous, specially on 
a graphical point of view. More and more complicated graphics are used, requiring 
more and more speed. This is in part the explanation of two choices made for the 
future by the COLOS project in collaboration with the Hewlett-Packard company: 

- use of new HP RISC machines; 
- use of the X-Window environment together with existing software 

development kits, to create applications. 

The already existing applications will be translated and migrated to the new 
environment by COLOS programmers. We hope that RMG will keep on being used 
because we think that apart from the problems it leads to, it keeps being a very 
powerful environment. 



I Bibliography 

[BOURNE, 82] Steve BOURNE; 
The Unix System; 
Addison-Wesley Publishing Company; 
Reading (Mass.); 
1982; 

[CORBUGY, 90] Dominique CORBUGY and Joel DENIS; 
Contribution a l'enseignement assiste par ordinateur dans le 
cadre des telecommunications. Etude du transfert, de l'acces et 
de la gestion de fichiers par FTAM; 
Namur; 
Annee academique 1990 - 1991. 

[COX, 87] Brad J. COX; 
Object Oriented Programming, an Evolutionary Approach; 
Addison-Wesley Publishing Company; 
Reading (Mass.); 
April 1987. 

[CROSSLEY, 90] Kel CROSSLEY and Les GREEN; 
Le design des didacticiels; 
Translated from English by Alain PERRAUDIN; 
ACL-Editions; 
Paris; 
1990. 

[DUFF, 90] Chuck DUFF and Bob HOW ARD; 
"Migration Patterns. Moving to object-oriented technology is 
more involved than simply buying a compiler"; 
BYTE; 
Volume 15 Number 10; 
October 1990; 
pp. 223 - 232. 

[FAZARINC, 89] Zvonko FAZARINC; 
RMG User's First Aid Kit; 
Hewlett-Packard Company; 
Palo Alto (Cal.); 
July 1989. 

[GOLDBERG, 88] Adele GOLDBERG and David ROBSON; 
Smalltalk-80, the language and its implementation; 
Addison-Wesley Publishing Company; 
Reading (Mass.); 
1988. 



Bibliography 

[GROFF, 89] James GROFF and Paul WEINBERG; 
Unix, une approche conceptuelle; 
Translated from English by Dimitri STOQUART; 
QUE InterEditions; 
Paris; 
1989. 

178 

[HEIMBURGER, 90] Uwe HEIMBURGER; 

[HENSHALL, 88] 

[HP, 89] 

[HUNTER, 86] 

Entwicklung zweier interaktiver Simulationsanwendungen zu 
Lehr- und Lemzwecken unter Verwendung einer 
objektorientierten Graphikumgebung: Benutzerschnittstelle und 
Realisierung physikalischer Gesetze; 
Institut Ftir Inforrnatik und Praktische Mathernatik, Christian
Albrechts-U niversitat; 
Kiel; 
Mai 1990. 

John HENSHALL and Sandy SHAW; 
OSI EXPLAINED. End-to-end Computer Communication 
Standards; 
Ellis Horwood Limited; 
Chichester (England); 
1988. 

HEWLETT-PACKARD COMPANY; 
RMG, a Tool Kit For Development of Visualization 
Courseware; 
Reference Manuals N° l and N° 2; 
Hewlett-Packard Company; 
Palo-Alto (Calif.); 
1989. 

Bruce HUNTER; 
Introduction a C; 
Translated from English by Dominique PITT; 
Sybex; 
Paris; 
1986. 

[KERNIGHAN, 88] KERNIGHAN and Brian W. and Dennis M. RITCHIE; 
The C Programming Language; 

[MASINI, 89] 

2nd Edition; 
Prentice-Hall; 
Englewood Cliffs; 
1988. 

G.MASINI and A.NAPOLI and D.COLNET and D.LEONARD 
and K. TOMB RE; 
Les langages a objets: langages de classes, langages de frames, 
langages d'acteurs; 



Bibliography 

Intereditions; 
Paris; 
1989. 

[MEYER, 88] Bertrand MEYER; 
Object-Oriented Software Construction; 

179 

Prentice Hall International Series in Computer Science, C.A.R. 
Hoare series editor; 
Englewood Cliffs; 
1988. 

[SCHILDT, 90] Herbert SCHILDT; 
Teach Yourself C; 
Osborne McGraw-Hill; 
Berkeley; 
1990. 

[STEPSTONE, 88] THE STEPSTONE CORPORATION; 
Objective-C compiler with IC pack 101: Foundation class 
library. Objective-C 3.3 Reference Manual; 
Productivity Products International Inc; 
1988. 

[TANENBAUM, 89] Andrew S. TANENBAUM; 
Computer Networks; 

[TELLO, 89] 

[PUGH, 90] 

[WEGENER, 90] 

2nd Edition; 
Prentice-Hall International Editions; 
Englewood Cliffs; 
1989. 

Ernest R. TELLO; 
Object-Oriented programming for A.I.: A guide to tools and 
system design; 
Addison-Wesley Publishing Company; 
Reading (Mass.); 
1989. 

John PUGH and Wilf LALONDE; 
"Object-Oriented Programming in Smalltalk (Basics)", 
Technology of Object-Oriented languages and systems: 
PROCEEDINGS; 
TOOLS '90; 
CNIT; 
La Defence Paris; 
Novembre 1989. 

Detlev WEGENER; 
Entwicklung zweier interaktiver Simulationsanwendungen zu 
Lehr- und Lernzwecken unter Ve1wendung einer 
objektorientierten Graphikumgebung: Konzeption und 
Realisierung der rundlegenden Klassen; 



Bibliography 

Institut Ftir Informatik und Praktische Mathematik, Christian
Albrechts-Universitat; 
Kiel; 
Mai 1990. 

180 



I Appendices 

Appendix 1 : Video application listing 
Appendix 2: OSI on X-25 application listing 
Appendix 3 : Example of mainClass.m file 
Appendix 4 : Example of individual makefile 
Appendix 5 : Example of the environment's makefile 
Appendix 6 : Screen copy of the Video and OSI on X-25 applications 
Appendix 7: RMG directory structure 
Appendix 8 : Example of A.menu file 



Appendix 1 : Video application listing 

In this appendix, we give the listing of the Video application. It encompasses the 

'Video' class and the 'VideoMTree' class. 



/ 1,: = -L l. h 

- pe-:- h 1' 

, '.:.-'-·=-

~·'. >·1 G ·.; :; '= ~· , F: ;•;:; ?-, ;: t_ 

['~•, •=' ::. t. T r:;-.1::;__: ~! 2 • 

.-. ~ .. - .-. , -
l;; -.,OJ!._,= 

i + if ~at1t io :hanse lhe~~ comm~~~- _ .2r-1~ 

, c- t_. h ,:--, d ;:· : = [: t: := : :: ~· 

r,:, i=; a , , , t:. ,__r,; 

~c2f~n~ ~~OP 1'~J\ 

~cEf~•~2 sTI~L ·•sT 

: tat 1 C 

St 2t C 

. ·----=::. 

1·1L:L:...; 
~~U ~ L ; 

~~ m,Jv2Act~on NULL; 
d actionPlay NULL: 
d act.ionSt.op :_NULL1-
d act. ionEall.$11/1_,-~,.:acc~i~-~ • 

F ,:1 ··, t ~-1 tt s, :--· 
~ /::.: l c. ,:1 ;-·: : 

;: ,: :i1rr;an'...J:: t 
*/ 

,ji;-/ 



,:,ri 

s t ,.:, l C e-n (;pie Li... 

1_. 2 1 C .:·n '.-cl,: 

UfiJ: : ; ._··-i... 

:: ,:: r , c- :· r; I :: on M .:.- j e 

2 +_ .. 

cn2n9 

S 1_ ~. T_. , ._ 

,.* D'=:r.: l-~.r 

:: t.at. l c 1 n 

fp; 
er 1··f 1 a.9; 
::.crol lpoint; 
oei::.1 t.~ ,:in; 

st2t~c t1nsigned ~nl length: 
st.21.t.lc )n:, framenurn; 

US- 2d 

/+ Declar. of var. used to test the ct~rrent mode ot the Video player 
st.a.tlc 1nt. pl 
static int pa 
static 1nt. st 
st_atic int scb 
::.tat 1 c 1nt. savest.r 
static 1nt load::.tr 
static int. r'or··w 
::.tat i c 1 nt bd.ck 

static int inputval; 
stat~c ~nt outputval; 
::.tatlc int butt.; 

O; 
0; 
0; 
01 
0; 

f* Structure u~ed to chan9e the different parameters of the connect~on 
slrL:ct term~c param; 

static char resultat[5J; 
static char strSave[12J; 
slallc ch~r 5trload[12J; 

} 

V~deo: Envlr(barchl,worklng1RMGVW,Prim~tive,Collect~on) 

/'le var. used in the layout ,:,f the app\. window *I 
id tooB2.nner1 !:.cr.:1 1 l 1 =·cr::1l lScaler bar,arrowB, a.rr.:!wH; 

'* v2r. representing the action buttons of the appl. •I 
~d p1ay, stop, still, inpText, ed, fwd, bwd; 

I* var. representing the scaling numbers of the scroll-bar * 1 

id str1, s.t.r-2, st.r3, str4, st.r5. str6, str7, str3; 
1d aFernt; 

i nt b,1ttonStr; 
int te::tOn; 

l n 

!******************************************************************************* 
* Define a func. assigned to the appl. window and others to get the app\. 
* to the first level of windows, if hidden 
******************************************************************************* 

static id ac_Se\f(aView} id aView; 
{ 

if (([aView covered)) II ([aView hidden))) 
{ 

return aView; 
} 

[aView popToTopJ; 
} 

!**~********~*~****~****~**********************~~***~*************************** 
* Same as above blit ass~gned to topBanner and en~ble; also l0 move the * 

~- i:; :• 1. • :3. ~· C, Ur·! C * 

1 '=" ·.,_ - ~- '= -· ' ::: ..,. ~ ·- \, :.; '=" ,_. 

. r:: ., [ : ~ 



1-

r I--, 

c3t; u·::.c:: 11.- •:tnly in play 
.,,, :·· 1 t ';;'. ,: f ~' · '.:, T i i.... L._ : ,.::. , 

I[~Vje~ ~~1pe~v~e~Jv~deoTestJ; 

1 > / / wh i 
// upd 

frame~um = frar~enum - cha~se}· 

~f ((fraGenum > outpulval) I l (framenum 
{ 

inputval)) // 

} 

framenum 
} 

else 
{ 

c,ldfr; 

scrollpo~nl = scrollpoint + changey; 
[bV~ew->superview l2stScrlPntJ; 

//framenl1m = framenum - c}1a~2ey; 
[bV~ew->s~:perv~2w moveBarJ; 
} 

if (~nit:0ory != scrollpo~nt) // ~f place of bar as changed 
{ 

1 f { =· t 
..... ,,, !! posit~on on d~sk & ~eep still mode 

{ 

length= 10; 
[bVle~->supervie~ pos □ nDiskJ; 

2lse 

length= 8; 
[bV~ew->superv~ew pos □ nD~skJ; 
} 

• : 0 ~- 'F · ,. f• ,-• • ~ - e. ~ -~ ,__ _· •: - , · .Je' • ,• • ." ,C , - -- _• r / '.' -,.--- - ~ - ••.. - T"" - - .._ .,.--- -- .,_ - -, - ..,_ - , ~ • . · · · , ~ -Ji:- ;: f •.• * . + _-
; -- - -- .. - - ~ :_ --, --, , , 2 a::-.1, :: . .,. w , ,_., 1 r 

els1= 

' . . ' 

;._;. : ~ • ? ,.._ , ;;,- C '._.j-;::: • 

t.h2 d 

\... - :: 



s0 b~ckward en the d~s 

' [ [ 

·-::"IV l ,::· '-!-.' 

} 

2r:3t.h = 8 7 
aV~ew-> ✓ ~ewicon p,~s □ nD~s~J; 

} 

* Def~r,e a ft~nctjon to send 
* 

order -Pl2y- to v~deo 
ASCII alpha characters) 

stat~c ~d ac_Play(aV~ew) ~d aV~ew; 
{ 

1 d '=· ') 12 1.,;; 

1 ) 

* 
* 

lf(pl == D) // send PL~,V i:,nly 1f player not 1n that mode 

update color of button 

scb = ~nputval; // redscale scroll-bar 
[sV~ew scale: (sV~ew-~scrollScale) low: scb h~2h~ (scb + 340) J; 

~f (inputval == 0) // play from begin~ing 
{ 

:..1rll2 (fp1 PL.t.;Y, 3) 
EsV~ew videoTestJ; 
} 

e \ ,. e 
{ 

length= (12 * (sl:2 1:(f(char))); 
[sV1~w posOnD~;kJ; 
} 

scrollpoint = ((sV~ew->scroll v~ewLo~J + 363) 
[sView moveBar]; 

// 1 e + 363 ??? 

[sView startRt,nJ; // posil1on appl, in act~veCollect~on so that 
// update scroll-bar 

pi 1; // play mode on 
pa O; // pause & still mode off 
st O; 
} 

return al../iew; 
} 

!************************************************************************** 
* Deflne a funct~on to send order -Pause- lo video * 
* -> order is : PA (in /I.SCI I alpha characters) * 
* this action can't be used if PLAY has not been activated first* 
***************~*****~*~**************************************************! 

static id ac_Pause(aViewl id aView; 
{ 

id bView; 

if ((pi== 1) M, (sl != 1)) // able lo pause only in play mode f, noUsti 
{ 

if(pa == 0) II switch lo pause mode else restart play mode 
{ 

[[aView bkgd: GREYMAGENTAJ redraw); 

bV~ew = aV~ew->v~ewicon; 
pa= i; // pause mode on 

w, 0 ite (fp, P/',USE, 3); 
[[aView SLlpervlewJ vide0TestJ: 

else 
{ 

[[a 1•1 ~2~ bkgd: GREYJ r~dr2~J; 

/f: p,oint. 



~;;us t:: r:; ,::-, Co:::: ,·, _[· f' 

h 
;=. : ~- \, 

t:,L· ?'°J: 
'.:, ~ ~-' d; 

t.0.r S'..Jlt..ch n 
:·ed~-2.wJ; / 

;: ik; ;.: r .- .·. 

:: -l:..a. l 1 c 

. · :· :. - ;. ... - -·· ,. _· -_. ·. ~- _. ~- -·, .- ~ -

~- \} i 2· ... ; 

sV~e~ = 2V~ew- superv~ew; 
[sView v~d20T2stJ; 

,- t:' draw J ; / I 

,_ .. ' . _· ~- ~ ; ' . 

[[sV~ew->play bk9d: GREY 7JredrawJ; /! resett~ng all butlons to 
[[sV~~w-;•still bkgd: GREY_7JredrawJ; 

r- r .. 1, · 
Li. o ·.,- '-:::: 

[[sV~ew->scroll bkgd: GREY] redraw]; 
[[sV~ew-)fwd b~gd: GREY 7J redraw]; 
[[sV~ew-;b~d bkgd: GREY 7J redraw]: 

,-,j 
, .. • + 

p.:=, 

forw = O; 
back = O; 
fr2.rn2num 

b(;d~ GREY 7J redra~J; 
~' ') ~ E- !.,) ~ 

* Define a fun~tion to send order -SLi\1- to video * 
* orde.-· is ST (in ASCII alpfB ch2.r'2cte,·s) * 
f***********~**•*******•********~***********•~~**~*******I 

static ld ac_Still laVlew) id aView; 
{ 

if (\pl == 1) &t, \pa~= 1)) // cinly 1n play~.,, not(pau~-e) modes 
{ 

+ .: :· _,., ..::,,· 

if (st, 0) 

- :. 2, ·,, 

{ 

[ [ a View bV-.gd: GF:E\'MP.GENT P., J r_,1;=.•-dra"'1 J; 
st. = 1 ~ 

write(fp,STILL,3l 
[[aVlew superviewl videoTestJ; 
} 

else 

[[aV~ew bkgd: GREY 7JredrawJ; 
v.1 rlt2(fp,PLAY,3) ~ 

[[~V~ew superv~e~J ;~d20TestJ; 

. .,,. ~ ~- . . . - .. ' .- ..... , 



} 

} 

_, 
': ,_. 

( bac. L: 

} 

ir: -· ' - '. l rc,,:,d 2 

:- , .... ::.. . r 1.r! :...., 

:[~\•i~~ ~~~e~v12w~ v~jeoT~sLJ; 
[[2V~2~ ~~gct: ~R~iM~GENTAJ r~drawJ; 

} 

e ls 2 

' ordi2r = PL;.,y; 
} 

1.Jril.e(fpr orde~··, 3); 
c:a~~2w 5~1p~r~~e~J v~d20TestJ; 

redraw]; 
fc,rJ,... n: 
} 

* Define a Fun:r to send order -Fast Backward- to Video * 
* .i.:. order 1 s : 250SPNR 

**~~~**~~*~~*·*~***~*~**~~~*************************~*~*+~*****' 
static Id ac Bwd(aVlewl Id aView; 

{ 

char -t.-order; 

if ( ( p l == 1) t,& ( s t == 0 l ) 
{ 

If (forw != !l 
{ 

if (back Ol 

} 

{ 

write (fp, FASTBWD, 8); 

[l:aVle.w supervlewJ vLdec,_TestJ; 
[[aV~ew bkgd: GREYMAGENTAJ redraw]; 
back 1; 
} 

._r, ': ! 

wri:.:{fp. c~·.Jt=~··~ 2} 
[[aV~2w su~2~v,e~~ \'~de0Te~tJ; 

- , , J 



.: La r-!.... t:, 1 t. 

=: .. -~ ~t"l:?,s· 1- 1XiJf-.J~ 
:, ::-Jo ~ i, • c ~ r -l a 2 i = I X Li FF ; 
~~- ~ .. -.c ~flag~,= ~~HLl, 
~~~-2 .c cc[VNINJ = OxQ; 
;;2~2 .c cc[VTIMEJ = 01ff;
f:rrf1c>.9 = l,:,c:tl (-rp,TCSETf:.,y~(param)

"/ E:-

-i'i-/

// b~1ttons are set to stri02s
If no t2xl w,ndsw created

~2w for the appl~cat~on*/

}

not icons

self= [self or~9~n: 200: 200 e::tent: 200: 400 s0perv~ew: anEnvlr bkgd:

[[L[s.2:r frarn£>Width: 5]
frameColor: CYAN)
idAclion: actionSelfJ
v1ewicon: sE-1fJ;

[FontMngr sysfontJ;

I* Define tl12 i,Gp bannEr of the application, where the t~tle
w11l take place and ~he enlars~ng ~con

if ff;;:,ve/.-,ction)
{

moveAction = [[RMGAct~on newFuncAct~on: ac_Move] myCursor
}

t.opE:2.nn er [[[[[[[[[RMGStrlng Type: StlckTop extent: 17 supervlew: self
string: '1 V~deo Control 11]

font: aFontJ
coli::ir! BLACK]
iiorF ill: TRIJEJ
cent.er]
centerVJ
show]
~dAction: moveAct~onJ;

I• Define the scroll bar of the application •I

if (~act~onPause)
actionPause = [[RMGAction newFuncAction: ac_PauseJ myCurso~: ico

scroll= [[[RMGl.'iew relative: 173 :o extent: 17: 380
superview: self
bkgd: GREY]
~dAct~on: act~onPat~seJ
show];

I• Define the area within self where thw scaling numbers will be printed
scrollScale = [[[[RMGView relatlve: 126: 0 extent: 47: 380 superview: se

idAction: actionSelfJ ·
viewlcon: self]
show]l

[self initScale: scrollScale low: scb high: lscb + 340)];

'* Deflne the bar in the scroll-bar
if l'scrollB rActionl

scro lBarAct~on = [(RMGA=lion newFuncAction:
bar= [[[[RM View ,~elat~ve:Q:370 extent:17:10

st~p2rv~ew: ~croll
bi;5d: DARkELJEJ

r-

fr·amt?nurr. = 0;

s~~c113~r t 1Jo arrowf- sc• that lh~ us2r can go forw

; =--:~--•::l lB~.:Up)

2 ~-- r ,:· '. ..
=·: r ::! ·, : Ba :<J p ::::: [~ R ·~~A;:~- 1 c n :·1 ~!.,.,IF u ~!c.,:.. c t ~ :, t' :

[~L[[Fi~:t.url/ Ut='_2rri:1~: scrol·i t.:::,t.en~~
v12-.;:l.:c:n; =21fJ

3C Scr0llBarUJ myCursor
17 iypE: StickTopJ

~ f ('. =· c ;-- ,:1 1 1 Bo,- D,:. Wt,)

scrollBarDo~n = [[RMGAct,on ~ewFuncAct~o~: ac ScrollBarDJ myCurs

~rro~7 = [[[[[F,~tur17 dow0_arrow: scroll extent: 17 type: St~ckSottomJ
vie 1..:Icon: self]
b~~9d: BLUEJ
idAction: scrollBarDownJ
sho 1..,;J;

'* Def~nE ~c~~on buttons and act~ons attach to them *I

1f(!s~per~:tion)
SL, per-Action [[RMGAct1on newFuncAct1on: superActJ myCursor: icon

iT (!o=:lionF'l2.y)
{

play

actionPlay = [[RMGAction newFuncA=lion: ac_PlayJ myCursor: ~cone
}

[[([[[[[[[[RMGStrin9 relat1ve: 15: 3~7 extent: 70: 30
superviet.,i:se1f
bkgd: GREY_7J
frameWidth: 2]
frameColor: BLACKJ
string: "Play "J
font: aFontJ
color: BLACIO
vie•,1lcon: self]
center]
cer,terV]
idAct~on: act,onPlayJ
shoi,.,i J;

[self buttonFace: play colorl: GREY_2 color2: GREY_15J;

lf (~acticnStop)
{

stop

actlonStop = [[RMGAction newFuncActlon: ac_StopJ myCursor: iconC
}

[[[[[[[[[[[RMGStrlng relative: 15: 297 extent: 70: 30
super-view:self
bkgd: GREY_7J
frameWidth: 2]
frameColor: BLACK]
string: "Stop "]
font: aFont]
cc,lor: BLACt\J
viewicein: £.elf]
~enter]
centerVJ
idAcl~on: a~tionStooJ
sh.:1w J;

1f \ ~act1onSti11)

s t 111 [[[[[[[[[[RMGString relative: 15: 267 2~ten~: 70: 30
sup2rvi2:,.,::5elf

: r,;: c.: E- :

bi:~d: GREY_ 7J
r"rameW1dth: :2J
fYEmc:0lc·~: B~As~:J
s~~~~g: 1• Still 1·J
C :: ~·1 t_ : ;, :: ::1 •: ~- J

·ie1 .. .-::cir,: =e:t~

·; :. ,..., ·= · ... ' :. ~- -. - . ~ -.... - -o. _,,,,_,_'

- - .. - - - - -
;_ :.. ' ~ :.. '.. :. ~

Ft,.1~J myCursc,r:

: [h";MG~it.r ~ i· ~! r2 -l ~~-t~.1 VE-: 15: l 1:., -. i---=-:--::: 70: JC
:: 14 ~; E: r \: 1 2 w : = E· ~ f
bt9d: CF,E\·_7j
f f':?,rn2~,: 1 d t Y-i: :: J
rra1n2S0lcY·: 8~~c~zJ
.:tr1~·,:.: u Fi,...•d 1

· t. : s F :· -·· -~ ...

·= e ,- t.- !::' ~-· ': j

{

act,onBwd = [[RMGA~t~on n8wFun=Act~on; ~c_BwdJ myGl~rsor:
}

b~d [[[[[:::[[[RMGStr~~S relat~ve: 15: 1S7 ex~e~t: 70: 30
=-uper-·/lE.- 1,.,i: s~lf
bV.9d: GREY_7J
fra~ne\.,Jidth: 2J
frameColor: BLACK]
:.iring: 11 Bwd ii J
font: aFontJ
color: BLACK]
viewicon: self)
centerl
center'.'J
idAct,cn: act~onBwdJ
showJ;

(s~lf butlonFace: bwd_color1:. GREY 2 color2: GREY 15];

~f !actioninpTextl
{

actioninpText = [[RMGAction newFuncAction: ac_Text] my
}

[[[[[[[[[[[RMGString relative: 15: 137 extent: 70: 30
superview: self
bl-:gd: GREY_7J
frameWidth: 2J
frameColor: BLACK]
string: • Text "J
fcin t,: aF 1:,n t J
color: BLACK}
v~ewlcon: anEnv,r]
centerJ
centerVJ
idAction: actioninpTextl
show J;

[self buttonFace: inpText colorl: GREY_2 color2: GREY_15J;

'* Print warning window to ensure that the video is ON
[self viewError: 4 into: • VIDEO is ON "];

return self;
}

- extraNewin: anEnvir
{

menuTree = [VideoMTree 9etitJ;
[self shc,wAllH

viewicon = [[Ghost strin9Ghost: "'.'idea• In: anEnvirl
viewicon:selfJ;

I* Define all the IconModels for the icons used in the buttons *'

}

modelPlay = [[IconModel readFile: "/usr/RMG/DATA/ICONS/Play.icon"l
hotspot: o: OJ; ,.

modelStill = [[IconModel readFile: "/usr/RMG/DATA/ICONS/Still.i~on"l
hotspot: o: OH

modelStop = [ClconModel readFile: "/usr/RMG/DATA/ICONS/Stop.icon"J
hotspot: o: OJ;

modelFwd [[IconModel readFile: "/usr/RMG/DATA/ICONS/Fwd.icon"l
hotspot: O: OJ;

modelBwd [CiconModel readFile: "/usr/RMG/DATA/ICONS/Bwd.lcon"l
hotspot: o: OJ;

return self;

de1ay!n1t

stat~c BOOL beenhere FALSE;

if (1 beenhere)

'~JN?/SY31CON/barM0us

'.=' Y SIC C N ,' d l ~-- 4 b c1

' i- * ~ ·f- +- .. ~ _ .. : ... - > .. ' -- ;· ' '- ::

... ~- ,.- ':--E~f~

* Methe~ l0 re~d ~nlo l~ie d2v~c2 f~le1 the ~nformati0ns com~ng from the video
****+***·~**~***~*~*********~~*~**~*****************~***************************

- readDevlce

}

char d2t,a;

1 nt i;
i = ·J;

d2,t.;inum = 0;
data = 1 0 1 1

while((data~= 1 \r 1))

{

}

re2.d(fp,~,dat.2_.1)
if((data >= 48) P, (d,;L; '.=

{datanum (datanum*
if((((data < 4,3i) l (dat.a

{ /

}

resultat[iJ=data;
res.ullat[1+1J='\O~;
i += 1;

return self;

f.,~,. \ l == 0 if data is a num

iv.~ (d3t.,a '\r')) ii ({data>=
data letter & not CR, or-~ number

f*****************t·*~~*****~*~******~**********************~***
* Method to move thF ba~ w~th~n the scro11Bar to scr0llp9~nt *

{

}

~~*********~~~~*
moveBar

[[bar move:o:scrc,llp~;~t~sno~:;
return 5elf;

* Method that updates the posllion of
* when the v~deo ~s ~n play mcide

- update
{

int diff;

i f ((p l = = 1) t, '., (pa = = 0 i P, (s t
{

wr~~e(fp,FRAMEREG13)
[self re2jDev~~eJ;

; r -

*

}

ifldalanum >= outputvall // if bottom end of working area reached
{

if(dat.amim

}

return self;

write(fp,STILL,3); // switch le, still m;;:,de (c,nly possi
(self videoTestJ;

[self stcipRunH

pl = o; II reset all mcides lo off so that can't gc, ove
pa = 0;
fc,rw = 0;
ba!k = ();

st = 1;
}

inputval) // if slart.ing point. of working area reached
{

write(fp, STILL, 3);
[self videoTestJ;

[self st.opRunJ;

pl = O;
pa= o;
forw = o;
back= o;
st = 1;
}

!***
* Method that. places the application in the active collection*

{

}

** **** ** ** *** * **** * ******* * * ********·******* * *** **** *** * *** *****I
start.Run

[superview inst.al lActive:s·eH'l;
return self;

'***·
* Method that removes ~he application from the active collection *·
*******************'***/

- stopRun
{

}

[supervieW d~leteActive:selfJ;
return self;.

!***
• Method that d~signes, a shaded button for aView, using aColor and bColor as sh
~~~******************************

-bLittc,nFace:i aView cc,lorl: (ir,t)aColor ::olor2: (ir,t)bColor
{

register int i;

for (i=O; i < BUTTON LINE_NO; i++)
{

}

[[[RHGLine superview: aView color: aColorl
relPl: o: i length: [aVlew in_widthJ: OJ
show);

[[[RMGLine superview: aView color: aColorl
relP1: [aVie11 in widthl-1-i: O_.lengtQ: o: [aView in h
shc,.i];

for (i =O; i < BUTTDN_L I NE_NO; i ++)
{

}

[[CRMGLine supervie11: aView color: bColorJ
relPl: o: [aView in_height.l-i length: CaView in width
show];

[[[[RMGLine superview: aView color: bColorl
re l P 1: i : i
length: o: CaView in_he\ghtJJ
idAction: superActionl
shc,wJ;

return self:

,-~~·· ,. --~--.~•··••**
* ~11=1.,.~•~ 'c.,c.lise the scalin9 of lhe scrc,llBar from aLowScale t.o aLowSca
~*~***t~~i7r~~•~f½~•*~*~**

lnltScale: aVlcw ,u•• tlntla~c~Scale high: (intlaH19hScale // no indexed var.

int temp;

temp= aLowScale;

st..r1 :rc:crModStrl font: aFonl iuperv1e~~ ~. ~~~ c0lor: BLACK]
:t.rin9: 1111: ,1_11]

dataOrigin: o: 346]
setI\/aluE": ti:mpJ
set..F:Just.: 5]

temp+= 5C;
str2 = [[[[[[ModStrl font: aFont superview: aView color: ELACKl

str,ng: "'': 11 -"]

data □ rigin: o: 296]
setIValue: ternp]
setRJList: 5]
show];

t.er~1 p += 50;
!~~ = :[[[[[ModStrI font: aFont superview: aView color: BLACK]

temp+== 50;

s t r l n g : II II : ,1 - " J
d2taOrl9in: Q: 246]
,2t I 'Je llie: temp]

.. ~:, : 5 J

str4 = [[[[[[ModStrI foth' J: "'iie\J color:,BLACKl
string:
dat.a □ rtgin: Q: li6~
set.IValue: temp]
setRJust: 5]

.·:show]:
ternp += 50; 11 . ·
s t-r5 = -L [CC [[ModSt.r I ~n-t..L..aF.ont-.s.u_pel'.view :_ aV i ew-co Lor :1.BLACKL..,..

str~ng: IIH: II~"]
dataOrigin: Q: 1461
setIValue: t.ernpl
set.RJust: 5] ·
show];

t.ernp += 50:
str6 = CCCCCCModStrl font.: afonisupiivl

~··.h) -s t,_~'.ih9 : .. _-~. ~}') _-: ·.'~--;-__ ;µ•;·_ :·.
-:·-~,.:t:: .. d_a ta_O_r i_ g ~ n· =· .. : 9 :.~/16·]

l-:mp
str7

·· ifJ(::u~~!~;-:::~~t:/f
show J;

+- 5:J '1 "" •

[[[([[ModSt.r°I font: aFc,nt.' supervie~·:
str-lng: ·1111: .,_"]. -... ~·}.,.

data0rlgin: o: '46]:'
.<'set.IValue: temp]
, ·-set.RJust.:. 5l ·

show];-

,. ~ ,';::'
~r···

temp += -,.,;
st.r8 C[[UUM,:i-:s:,:~:. r,'2nt'i ,~Font superv'i:w:,;,_aV}ew col~r!,. BLACK]

· .·(tr-1:---.s=: ~,-~: "-~•] .-, -·· .. <--· .::~:.: .· ::'1.4 ,. •

dat.a0,•i;,ir,: Q: 15) · iv
set.IValue: ts~pJ ·

·,: ''.' >s e-tR'Ju st.: 5 l
.,,idAc:t.ion: actionSelf:i· J

·. > . ;;~:;,·~:~:~J,'.~,~~rti~ic:::,.:0·: ?hi',Ju,~iif t~l~,'
1 ***************!,•tJt:'!'JJ:t-••~t:.l~.*-~*!~.,.~t~~~***tll:*.t.*_****tl!*-~tt: . ·.· t*t**t**~t.:!t**t*l-1*,:. * Method that,: ,:e.s.ca,l,ef~tjie-!t.~r:_oJ,,.Batn ri>aV_1 ew •:~'from,;.al_o~~-ca le)'ito_0:af l,SbJlf a\,:}!,{,

****************,l_~.1•~~!,,~f**-t~~fr;l'.lt,*.*-*.Jf~*-*****..*}t}*.~},*t.•t:!.t*!*i**!~•
scale: aView·low:r1<1nti-);'aLowScal,e h1gh:- (.ri;it.>a1l19tfS.cate..-;-;--. j ,,~ t,

{ l nt. t.';~';:t •· . . t %'-'•:,~;-,,., . . . '.· '~~~:(fr,;.· y tf't-~':t Jif

}

:, '., ~

temp += 40; ·'

. t
temp] redr_awl;

[[str8 setlValue: temp] redraw]:

scb = aHighScale;
return self;

?{~~J

>.'!1.-.1.-

r -~ ·: ~~~: :~;\\(;·.[~lft1~(,:;IkJ~i\Wt~t:·~ ,f:;l~},
l*************lE:.lf*itiHfJ1,lHf*'lf* ***** . , .. ii::*******
* Method that; lest?[he/plkc'l;;' ·or the: bar in"; (he
* and prac:e of bar in scrollBar' .: . "· .. · . >t; ..
*******************i*************************i*******~***i~~-~•ii~•*

~ testScrlF'nt ! .-. '. · · ,•:;'· ·

}

if (scrollpoint < ([scroll viewLowJ+17)) // if bar at end of
{

if (framenurn < ENDDISKl // if disk not at end
{

}

else
{

[self scale: ,crollScale l,:,w: scb high: (scb + 340)]; //
scrollpolnt = ([scroll vlewlowl + 3581; // reset bar to
}

else
{

::.crollpoint.
}

([scroll viewLowJ + 171

if (scrc<llpc,int > ([scroll viewLc,wJ + 358)) // if bar at beginni
{

}

return self;

if (frarnenum > 0) // if disk not at beginning
{

}

scrollpoint = ([scroll viewLowJ + 17); II I don't
[self scale: scrollScale low: (scb - 680) high: (
}

else
{

scrollpoint = ([scroll viewLow] + 358);
}

!•**•***•••••••******* * Meth,)d to transfc,rm the framenumber into a string, so that it can be send -·i::o.'//·.
* the -SEARCH- (SE) order, though mc,ving on the disk to the right place~: (-~~:
** * * * ** * * * * ** * ** * **** *** ** * *** * * *. * **** * * ** ** * * * ** * * * * *. **. * * * ** ** **** *********~':::'

.
'

; po,DoD;;;,t'::;:;;,~; J• J .. h "\~,:r;t.:tt-(tftf"""'·' ,·.~:•· .•

char adrcar[13];

}

adresse = framenum:

i = 5;
j = ,O;
adr2ar[5J ~ •s•;·
adrcar[b] 'E';
adrcar[7l = '\r';
adrcar[SJ = '\0'; I

whl '''.' ,.~;Ii':iiri~~;;f :f ~;t!11tilJf ti
~;.<·- adre's.sef;' = (aiiressef, -, ad~~rs'e\~-:;;10'i~~r·

~->?:-?:.~~. ad~cait)J_ = ~ad~_es~sef,, + 48,-{t, ~-i:_~;:,}7!:· ii,~~: ff".~-..
·.i1,._*~1- F.~,r"~~ _-_-:.· __ !',_ • - • - _1~.:__ :· ~ .. __ ·_:.,:- , -~~.., - :_,,·

if (length == 12) // if order is PLxxxxxSEPL\r
{ i·
write(fp, PLAY, 3l; L
[self videoTestJ;
}

write(fp,adrcar,8); // send SEARCH order
[self videoTestJ;

if ((length== 10) II (length== 12ll // if order is (xxxxxSEPL\rl
{

return self;

write(fp, PLAY, 3);
(self videoTestJ;
}

'******••·········•**••··········••*•*•*••······································
* Method that receives a number string (aStrl entered via the menu and after
* controlling sets it as the starting point of the work~n9 area
*~******•*•*********~**********~**¥*************~******~***********************

- input: (char •) aStr
{

int oldin;

}

oldin = inputva\;

if (pi == 0) Ii chan:,ed only if not in play mode
{

inpL,tval = atoi iaSlr); // conversion •int,:, inle9er

if (inputval > oulpulvall
{

}

return ::.e1f;

inputval = oldin;
}

else
{

ft•amenum
}

in ptitva 1;

}***
* Method that receives a number string laSlr) entered via the menu and after
* controllin9 sets it as the starting point of the working area
f*********~************

- 1:,utput: (char *) aSlr
{

}

inl c,\dout;

o\dc,ut = outputva\;

if (pl Oi
{

outputval = atoi (aStr);

if loutputva l < inputval)

}

return self;

{

c,ulputva l
}

oldqut; ~

,_·,:-'.">-:-·. ,;-:,._;.-;::~.

I**************** *lH•**********,******************* ** * * 1-'lff-lH·f.-* **** ***** **,•'*****,**'* * Method that saves the. paramete~~ of the work in9 are~ (for the ·moment o·nTy'ijeh•,;;.(;
* and end ,:,f working area) and.the·text related to. i\ in two file.~ aStr,vcn.:,ana,;,\;;,'\:, .. •."
* a S t r . v et . ; · . . ·.· . ??,\c~.'(t,: .' .".;~t ..
* * ******¼f.-* f.-*********************************** f.-*******************************;;~,.:· ',:C '.,,'. ,,

saveFile: (char *l aStr · · · · · · .'.',[;;\~; { . .~ • .. ·<r>
i nt i;
FILE Hd;
int erreuri

cha) str[13J;
char.fileDotVCTC1024l

'char fileDotVCN[1024H

'/'

if (fwri~e(&inputval,
{

s i zeof inputval, 1, fd) == 1)

if lfwrite(&outputval, sizeof outputval,
{

[self viewError:
erreur = 1:
}

else
:"{

II if fi

•ctc·:.
.,,

.-.- .

>/;;:! t,:,:i\r>e

•
,
, . ,·:

t

,

'
,
I)

if (erreLir

erreur = o;

return self;
}

}

else
{

[self viewError: 2
erreur = 1;
}

fclose(fdl;
}

else// openin9 error
{

t self_ v i ewErr:--0r_: _-1 _; n-to:
}

·,_
ll ii errc,r writin9 in file, n6t all numbers written =J· de

{

unlink(fileDotVCNJ;
}

':;·--;:• ;!_
,• -·;• I

: .:·- "':. . ::.~~f ~~~~,:.·_.t '.<-:~ ''.~\.<:~·-'·~~-:;~,,-._ . .: ··. .•

I**********************************,****-**** *·*•-Ji:** **ii-**************************** * Methc,d that loads the number and t,e~t file\/(ast}.vcn Sc aStr.vct) into the ap

******** ** ** ** ** * * ** **** **** **** ***-•**,***.********** * * * * *** * * * ** * ** * ***** ** ** * **
{

loadFile: (char *) aStr · · :\,:f. ~; ·
int i, oldint; ;'-' ,i{)\f ''
FILE *fd;

char strC13J; i
char fileDotVCTCI024J;
char fileDotVCNC1024l(-·

strcpy(fileDotVCT,"./");
strcpy!fileDotVCN,";t•>

oldint inputval;

i ;,, 0;

if (text.On ==-0) //~~f te~t
{

[self
}

if (fread(~outputval, sizeof outputval,
{

}

else
{

//printf(" ld ld ",inputval, outputvall;
}

else
{

inputval = oldint;
[self viewError: 3 into: fileDotVCNJ;
}

[self viewError: 3 into: fileDotVCNJ;
}

fclose(fdl;
}

else
{

return self;
}

[self viewError: 1 into: fileDotVCNJ;
}

'/**'*~~ * Methc,d to quit the application, that frees certain variables .. ·0 ·-.. _. • i,
**~-:

{ qu i t_app · (;:;:}\\. ,,c··,

~ } 0 ~:t~ ~ \uLU f~J?,/f:',\,; "',,
. 1 ~- ·_ ("

[ed quit.._appJ; , >f:.
if (iconP1ay == NULL)

{

[iconPlay free];
[iconStop free];
[iconStill free];
[i cor,Fwd free];
[iconBwd free];
y

//[iconCursor free];

[modelPlay free];
[modelStop free];
[modelStlll free];
[modelFwd free];
[modelBwd free];
[modelCursor free];
[mode\ArrowCur free];

[super quit_app]; -_ •'. -;-_;<

; :·~: :~:;:;;:;:~;::~:: ·:: ·:;::;·::·:~:'.r: ::Jf ~{~if ~{i:,I~:d:~::Jt~~ ·
:*:::!::!.~~*:::.!:.~::!~:.~!!:.~····**•*••t~*·J:it}itJ:t~i:tI~•it~ ·

{ v;dooT,;::.:·m ... v\ceJo . " .. fi!l£~ljf i~i~~!t .
. , ' ~~

·while,((strcrnp(resultat,"R"l) != Ol ·.;
(,'. .i'(·':' ' { '" '.

,·"'. Vi-. [self readDevice];
}

!**
• Method called to change the string of the buttons into icons and vice-versa•
**!

- changeButtons
{

if (butt 1) // buttons have string on them
{

[[play string: ""] showJ; //./sup.ress all strings
[[still string: ""J show];
[[stop string: ""l show];
[[fwd string: ""J showJJ
[[bwd string: ""l -showl: "

butt= o;
buttonStr = o;

't ,-

// create the icons ·on-buttons
iconPlay = [[[RMGicon makeFromModel: modelPlay

in: play
at: 25: 4J
idAction: superAct
showJ;

iconStill = ([[RMGicon makeFromMod•l= modelStill
in: stlll·
at: 25: 4J
idActlon: superAc
showJ;

i=onStop [[[RMGicon makeFromModel: modelStop

iconFwd

in: stop
at: 25: 4J
idAction: superAct
show];

[[(RMGicon makeFromModel: modelFwd
in: fwd
at: 25: 4J
idAction: superAct
show];

--' :: ~'. :; i ,.
~-------·-_

ret.urri Eelf;
}

llL~MGlc011 ma~eFr0r~~0jel: @ode!Bwd

}

else

[[~tonPlay erase] it·eeJ;
r:~~o:~st~ll erase] ~reeJ:
[[~:c~Stop er~seJ free];
=~~=c~F~d ~r;;e} fr•ee:~

::.t..t ~LS: ll Pl~y
~ c::nti::'r J
.::Er';Ler')J

[[[[s~~ll str~n9:
c:enterJ
cent.er\/]
show];

[[[[stop string: " Stop "J
center·J
centerVJ
show J;

::::r~d string: • Fµd "J
cent.er]
cent.i?rVJ
'=how];

[[[[bwo s~r~n9: '1 Bwd 11 }

centE:r~J
center')J
showJ:

butt= 1;
but.tc•riStr = 1?
[self redraw];
}

in: b•,;d
2+_: 25: 4]
~dAct~on: 5tJpe~Acti
show];

sti~re;s ~c0t1s on buttons

I***~************~**~************
* Me hod used to create or manage the text window in the environment laEnvl
~**~ ~***~***********~*************

- t.e1'.t..\.'Jind::1w: {id) aEnv
{

}

if (le::t.On == 0) ii ; f nc,t been created
{

return ed; :

ed = [[DocEdil newln: aEnvJ extraNewin: aEnvll Ii crea
[[ed acliveTerm: edJ menuTree: [DummyEdMT getllJJ; //

// create a Dummy menu
[[ed move: 400: 300] show];
[[lnpText b~gd: GREYMAGENTAl redraw];

text.On= 2;
}

else
{

If (text.On

}

1) // if hidden
{

[ed show];
[[inpText bkgd: GREYMAGENTAJ redraw];

text.On 2;
}

else
{

[ed hide];
[[inpText bkgd: GREY_7J redraw];

text.On= 1;
}

. . .
!***·

* Met.hod used to print an error message related lo aReason and to the aFlle'
* in the application
~

- viewErrc,r: (int)aReason into: (char +)aFile

id errorView, errorSt.ickB, errorStickT;
char errorType[1024];
int large,;

sprite_er~se();

:. w itch ta R 2 as on}
{

}

case .i. • s l r c ;:, v _(err o ~~ T v p E , " err ,:1 r CJ pen 1 n 9 Fi 1 e 11)

I~ f i l E:)))

' -~Lt'Cpyterror~!yp~r

·: !:' s-::.: ! : -;; t. 1---: p ·~· (f.,;·~-- o: 7 / ~-' 2 , . C r E ->~ "'L h c-, t_. t_ ~-, 2 1'

~' r-· E: 2, ~~ ;

cc,lc,r: FEDJ
horF~1l! Tr:UEJ
c2n1...erJ

:::.howJ;

\l~,~-SE + 4)

[[[[~[[[RMGSlring Type: Stict:Toc e tent: (FONT HEIGHT(a
SLlpe~v~~~~ ~~rorV~2w b~gd: DARKB~UE
str~ng: Erro T;pe]
font.: !3.Fi:1nt..J

horF ill: TRUEJ
centerJ
cent.er\/]
::.how];

[::[[[[[t[RMGStr~ns T;pe: St~ckBottom extEnt~ (FONT HEI
superv~ew: errorView bkgd: DARKBLUE
frameWidt.h: 1]
frameColc:r: WHITE]
'=:.trln9: 11 F-'r·;=:::=- l"!c.use Button HJ

font.: aFcin-t..J
cc1leir: WHITE]
horF 111: TF:UEJ
centerJ
centerVJ
showJ:

:,.;r·!1le ([[l"1ous.2 change: tc:hange};! ;:.:changeyJ ~t::'tPt1ttons.J 0)

'
[!errorStickB h~deJ free];
[[errorStjckT hide] free];
[[errorV~ew h~deJ free);

[self redraw];

spri te_shc,., ();

return self;

linclude "obJc.h"
#include "rmg.hu
linclude "envir.h"
,nclude '1 sldio.h 11

@requires FontMngr,RMGMenul, MTreeAct, MTreeActOne, EntryPad;

static id onlylnstance;

= VideoMTree: EnvMTree(barchi,working,RMGVW,Collection,Primitivel

static id ac_Sive(aView) id aView;
{

id selected, bView;
char *aStr;

s~lec~ed = [aV~ew p~ItmUnder: spr,te u~lh: Mouse];

~f (~e-lected)
{

= prit.e_erase ();
aStr = [[aVlew showAl\J key!nSLrJ;
[aVlew hldeAllPrev];
}

if \~·:tr::mp(aSlr, 11 ")} ~= 0)
{

bVle~ = [[[aView viewiconJ APPL] receiverJf
rt-,\.'i;;.,:...r c:..:.v.:.f:"~lp:. .:1:~t.rl: -;.._.

}

:;. ;: r 11-E-· S:-ho·..; ~ J ;
!'€:. tL.! 1-~•n st: 12ct2C:;

i ~ (sele::t-ed)
{

~-prite_2re.::s·\);
aStr = [[a.\l1e·d shc1wP.~lJ t:eylriSt.rj;
[aView h~deAllPrevJ;
}

:;-r (\st.rcmp(aSlr1 111l)) '= c::
{

sprite_show();
ri:turn selected;
}

bV~ew [[[aV~e~ v~ewI=onJ
[bV~ew loadF~1e: aStrJ;
}

static id ac_Ir,put(aViewi id aView;
.{

~d selected, bV,ew;
ch2,r *BStr;

APF'LJ recei verJ;

selected= Eav,ew pkltmUnder: spr~te w,th: Mouse];

if (selected)
{

sprlte_erase();
aStr = [[aView showAllJ keyinStrJ;
[aView hideAl\Prev];
}

! = 01 if ((strcmpl.aStr,""))
{
bView = [[[aVlew viewiconl APPLJ receiverll
[bView input: aStr);

sprite_show ();
return selected;
}

}

)

•

static id ac_Output(aView) id aView;
{

id selected, bView;
char *aStr;

s2lected = [aView pv.ItmUnde,•: sprite \iith: Mouse];•

if (selected)
{

sprite_erase();
aStr = [[aView showAl\] key!nStrJ;
[aView hideAllPrev];
}

if ((strcmp(aStr,"")) != Ol
{

bView = [[[aView viewicon] APPL] receiver];
[bView output: aStrJ;
}

sprite_show();
return selected;
}

+. set.It. < ·•• .. _:,.
r•t.11rk
} . ·-:'.~,?'

._.:5;.:;.
·'.(Yi~~-

!d

St.at;\ C

entryPad3;

if!' beenhu·•l

bt=-enr·: eri= = TRUE;
acont = [FontMngr ~jsfontJ;
,.. - 1 r ~ ,:, ··1 l Y I (I $ t d :°f C !? = (Se i f

rootMe~u = [[[RM~~e~u! char
Li~', g d :

new];

wlde: 15
GOLD}

.~PPL: self J;

items: 7 font: aFontJ

-., ·· ' ~- , · ~ = = [[[E :"i ~- ~-- y :=· 6.,:; ::: h 2. r w i de : 1 2 m c :: \,,! i d : 1 2 f c, n t : a Font, J act.. i ci t1

2ntr =2dl [[[~rtryPad cha; ~ide: 1: rnax_wij: 12 font: aFontJ aclio
~ntr~Pad: ::rE~~ryPad char:w~de: 5 max wid: ~ font: aFontJ act~0n:
2n~r}~~d~ [[[E~tryP2d char w~de: 5 ma}: w~d: 5 rc~t= aF0ntJ action:

cent.er]
~dAct~on: [MTreEAct sel:··qu~~ app'•JJ;

[[[rootMenu at: 1 putStr: 11 Icon 11 J
cent.er]
~dAcl~on: [MTreeAct sel: 1!~con~f~2 1!JJ;

[[[r0otMenu at: 2 putStr: 1!Chanq2 Button~ 11 J
centerJ w

~dAct~on: [MTreeAct sel: 11 changeButlons'lJJ;

[[[rootMenu at: 3 putStr: "Load)'!]

cer,terJ
subMENU: entryPadJ;

[[[rootMentf at: 4 putStr: ''Save >"J
cent.er]
subMENU: entryPadl];

[[[rootMenu at: 5 putSLr: 1'End Al) 1!]

cent.er)
subHENU: entryPad3J;

[[[roolMenu at: 6 putStr: 11 Begin At) 11]

center]
subMENU: entryPad2J;

}

retur~ VldeoMTree;
}

Appendix 2 : OSI on X-25 application listing

In this appendix, we give the listing of the OSI on X-25 application. It

encompasses the following classes:

- 'Osil';

- 'OsilMTree';

- 'OsiStack';

- 'Layer';

- 'Interface';

- 'Pipe'.

~ ~nc1ude 1'objc.h'1

~ncludE 1'rm5.h 1'

1 n::: l LJ de.- 11 en v i r. h 11

#- in c l u o e '1 st.. d 1 o ~ h 11

@reqt,~re; RMGV~ew,RMGAcl~on,OsilMTree,RMGSlr~ng, RMGSlr~ng, FontMn9t~,Fi~lL1r17,
Ghost, 0 r d Cl t r . 0 ~ i St 21 c k. • RM G C i r: l e , Vii GE l l i p s e , R t·1 G L i n e ;

Id str_appAclion;

static
static
static
static

id actionStep
i d a c t i ,:, n 5 e l f
id idSource
1 d super~.cl 1 Cin

NULL
NULL
NULL
r,HJLL;

#define BUTTON LINE NG
#define dStrO~;a.
#define dSt.rOt·',b
#define dSlrOV,c:
#define dStrOkd

'' Disconnect~on of 11

11 connection for layer
11 entities, by layer 11

!I entities? !I

!*******************~***¼**~**
* Class created for the OSI on X-25 appl~cat~on *
* By: V ronique Nachtergaele and Dominique de Paul *
* This ls the master-class of the application which manages it all *
i·**********I

= Osi!: Envirlosi,workin9,RMGVW,Primitive,Collectionl
{

id topBanner, stackColll I* contain the address of the title bar and
of the collection containing the addresses
of the four stacks present In the application •I

id sourceStack, destStack, idStack; I• contain the addresses of the stacks
involved ina connection opening or
closing *f ~

id text.Win, }:25Net, x25str, inTexU.linl, inTextWin2; I* cont.ain the addresses·.
of the different views composing the messag~ box·
and of the different views composing the X-25
el 1 ipse •I

id aFont, aBigFont; I* contain the addresses of the two fonts used in this
appl !cation •I

id aLine2L, alinelL, aline3L, aline!R, aline2R, aLine3R; I* contain the addres
of the lines placed at the bottom of the window and
representing the links between the stacks

id stepButton, idButton □ k, idButtonNot; !•contain the addresses of thebutt.'ons ..
used by the user to Jump from one step to another
or to reply to a question.

int sourceLayer, destlayer; f* contain the addresses of the
between which a connection has to be

int choice;
BOOL okStep;
BDDL okDis'CCon, response;
BODL stopDisCon; } s~

static id ac_ self (a View) id aV i e;wf,\,"'.,.;,/(?• ·-: • .. · ., ·.·•··. ;_ . . c•i•' \{fJ'f{\0 :~, ,,-;.

I *******************************l:f!!:**,*·**t************.~******,§**H*, ;,~:;ri ,? r/·: ? .. '·· .· .· ·A-:

:_I~~~~~~~~:~~.~~~ ~t~tJftr:!f}~}l~~l}~i?i;1.:~~t~!;i~~z:_b~.(!~!~ti;JJtl~j~lsi&;~fJ:l1t
***! ., '.,. . . .,..... ' ',,

{

if ll[aView covered]) II ((aView hidden]))
{

}

(aView popToTopJ;
}

static id ac_StepC(aView) id aViewl
/****~***
* Enables the user to pass to the next step of the connection *
* opening simulation. *
**'

{

id bView;
i nt. cc,nt;

[[aView bkgd: WHITE] redraw];
bView= [aView viewicon];
cont= [bView openConStepJ;

if (cont == 2 l

cont= [bView openConStepJ;
}

[[aView bkgd: GREY_lOJ redraw];
If i cont== 0)

{

[aVle\ii h1deJ;
[aView freeAllJ;
actionSlep = NULL;
}

}

static id ac_SlepD(aVie•,1) id aView;
'**•~*****•~**•**•*********************~****************************
• Enables the user lo pass to lhe next step of a disconnection *
* simulatlon. If the concerned layer is inferior to 5, it displays•
• a question in the message box, of type: 'Disconnection of *
* transport connection by layer 4 entities, between layer 5 *
* entities ?'. After that, it creates the 'Yes' and 'No' buttons *
* and sets the application into the active collection in order to *
* enable the user to reply to the question by clicking on one of *
* them. *
~**********~~*********************~****************************!

{

id bViewr cView;
int CCtnt.1 i, J;
int idCurlayer;

char curlayChar[2)f
char curlayStr[256l:
char curlayStrB[256)r

BOOL okOther = FALSE:

bView [aView viewicon];
cView = [bVlew superview);

If (cV I ew->okStep)
{

bV i ew=-Ia\lieW--\Li e.wl.conJJ_ .. _______ .
idCurLayer = [bView askCurlayer]; · -~.,
if (idCurlayer >= 5 >
{

}

else
{

cont= [bView discStepUp];

if ((idCurlayer 0 &&
{

cont = O;
}

if (((i dCurLayer_
{

cView = [bView

(([bView

else
{

as kSk i pJ,> -- FALSE) l

~

--. TRUE> l

. "
"Right-•>;

11 (idCur

., ":j

}

strcat(cLu-LayStr, "Left");
}

else
{

if (([[[bView askDestiStackl askEntryNode

}

.{

strcat(curlayStr, "left ");
}

else
{

slrcat.(curLaySlrr 11 Rl9hl 11);

}

strcal(curL2yStr, [[bV~ew askldNameColl] a
}

else

strcat(curlayStr, [[bView askidNameCollJ at:
}

strcat(curlayStr, dStrOkbl;
if (([bView askSkipll == FALSE)

{

strcat(curlayStr,(iloa((idCurLayer+l), ctH'LayChar)));
}

else
{

strcat (cti rLayStr, (i tc,a ((i dCurLayer+2l , ctirLayCh arl) l ;
}

strcpylcurLaySlrB,dStrOkcll
if (([bView askSkip]l == FALSE)

{

s,trcat(curLayStrB, (itoa (idCurLayer, etirLayCharl I);
}

else
{

s treat (cu rLayStrB, (i toa ((i dCtu-Layer+ 1) , cu rLayCharl) l;
}

strcat(curLayStrB,dStrOkd);

[[[[[cView->inTextWin2 strin9: curLaySt~)
color: WHITE)
cent.er]

· centerVJ
show J;

[[[[[[cView->inTextWinl str1ng: curLayStrBJ
cc,lor: WHITEJ
centerl

cView->idButtonOk

centerVJ
. redraw]

sho•,1];

C[[[[[[[[RMGString

frameWidth: 21
frameC.olor: BLACK1
string~ 11 No 11

)

font: cVlew->aFontJ
color: BLACK]
cent.er]
centerVl
show];

[cView buttonFace: cView->idButtonNot colorl: GREY_2 color2:

idSource = bView;
[cView installActive: cView];

}

it (i:Crnt == O)
{ // printf(" fin de decon. ");

[aView h1de];

}

}

}

[aVie•, f,•eeAllJ;
actionStep = NULL;
for (i = o; < 4; i++)
{

[[cView->stackColl at• i] setWorking: FALSE];

}

[[cView->inTextWin2 string: ""]
show];

[[[cView->~nTextW~nl string: 11 ' ']

show]
,·edrawJ;

static id superAct(aView) id aView;
!************************************~**********~*****~*************
* This function enables to execute the action linked to the *
* superview of the view passed as argument. *
***!

{

[aView->superview action];
ret,irn a Vi ... ,i;
}

+ newln : anEnv~r
!•***
* Designed to create the application's window and all its *
* subviews. It objectifies also the functions to be linked to *
* these subvlews and intlalizes some variables. *
**!

{

i nt i;
id nameColl;

[self delay!nit];

if (!ac:tlonSelfl
{

ac:tl~~Self = [RMGActlon newFuncAc:tion: ac_self];
}

selfc_:.._.[_se-H'--cwi-gi-i-,:__100:.100.;;,;:tent: !200:600- superview:anEtivir bkgd: PERI

[[[self frameWldth: 2l
frameColor: CYAN]
idAction: actionSelf];

aFont = [FontMngr lp10x20_bJ;
aBigFont = (FontMngr cour12x2Q];
c,kStep = TRUE;
okDiscCon = FALSE;
response= FALSE;

topBanner=[[[([[[[[RMGString Type: StlckTop
extent: 17
sLiperview: self
bv.gc!: DARKBLUEJ
string: " OSI on X-25"] ,/
font: aFontJ
color: WHITE]
horFitt: TRUE]
centerJ
centerVJ
idActic,n: mc!,veWithBandActionJ
show];

if l'superActionl
superAc:tion = [RMGActic,n newFuncAction: superActJ;

x25Net = [RMGE1lipse relative: 550: 50
extent: 400: 500
superview: self
bkgd: BLUEJ;

[[([[x25Net xRadius: 190 yRadius: 110]
c,rigln: 150; 2101
clrcleSolid: TRVEJ

x25str

colc,r: WHlTEJ
show J;

[[([[[[(RMGString relative:645:225 extent:100:70 superview:self
strlns:• X 25 "J
font:[FontMngr plca18x30JJ
color:BLACKl
centerl
cent.er\/.]_;
,dAct.\on ionSelfl_

..
}

[OrdCl tn r,e'..,i] ~ st.ac~·,Co1 l
n2.rn,~Col l [OrdCltn w~th: 81 11 Phys~cal -> 11 , 1'Data ->","Network -> 11 ,

11 Transport -> 11 ,'1 Sesslon -) 11 ,"Presentat~on -
"SASE ->"J;

[Os\Stack new: self
at.: 50: 200
type: 7
strjn5s: nameCollJ;

[stackColl add: [OslSlack new: self
at: 250: 200
l y pe: 7
multiplex: o: OJJ;

[stackColl add: [OsiStack new: self
at: 425: 200
type: 3
multiplex: _Q:_ O.JJ;_

[stackColl add: [OsiStack new: self
at: 1025: 200
type: 7
multiplex: Q: OJJ;

[stackColl add: [OsiStack new: self
at.: 850: 200
type: 3
multiplex: o: OJ];

[[stackColl at: OJ
[[stackColl at: 2)
[[stackColl at: 1]

[[stackColl at: 3]

sEntryNode:
sEntryNode:
sEntryNode:
sEntryNode:

[s.tackCol l
[stackColl"
[staclJ.Col l
[staclJ.Col l

at: 1]];
at:'3]];
'at: ·OJ];
at:.,21]: : .,,..,-' ~.-,. "

text.Win = [RMGView relative: 450: 25_ exte.nt:i:.}oo:. 100 superview: self bk
[[[text.Win frameWidth: 1)

frameColor: CYAN]
show];

inTextWin1 = [RMGStrin9 relative: o:o ext~ntt 700: ~50~supervlew: text.Win
[[[[[[inTextWinl string: ""]

font: aB i gFontJ
color: WHITE]
centerl
centerVJ
show];

lnTextWin2 = CRMGStri~g relative: Q:50
[[([([inTextWin2 string: ""J

font: aBi9FontJ
color: WHITE]
cent.er]
centerVJ
show];

- ex traNei.i In: anEnv fr

. +.

/ * lflf i<l>l>l>if lHdHf fcl> lHHHHi<lf l>l>iHf l> ************* * **** * ** * *** fc *** ***\!·** ***
* Get.s the-addtoe>-s-of: the application's menu and- ere.ates the *
• Ghost instance In order lo enable the user to iconize the *
* application. *
*******•*******~*****~***~******~*·*****~+~*~++*~ ➔ +*~*~*********!

menL,Tree=[Os~lMTree 9etilJ:

textWi

(self showAllJ;

vlewlcon = ([Gho5t strin9Ghost:• OSI • Jn: anEnvirJ
vie 1..,1Icon: self];

return self;
}

+ delaylnit
!********************************~******~~**~¥*****~****¥****~*~*******
* Initializes the application's menu *
**********~******************************~*** ► •**~**~*~~*********~****/

{

static BOOL beenhere FALSE;

if('beet1here)
if(self == Osil)

{

[OsllMTree delaylnit];
beenhere TRUE;
}

else [Osil delaylnit];

return self;
}

- iconifle
!**
* Calls the iconlze method In Osil superclass, in order to iconize the*
* application. *
**'

{

}

[self iconize];

return self;

- star-tDiscStep
!***
* Sets the application in the active collection if a simulation is *
* not currently performed and if a connection is already established*.
* This is done In order to enable the user to select the source layer•
* from which a disconnection is initiated. *
***!

{

int i;
BOOL work= FALSE;
BOOL conDone = FALSE;

choice
for (i

{

I

= 12;
o·; < 4; i++l

if (l[tstackColl at: il working])
wc,rk = TRUE;

}

·----i.f (work
{

i = O;
while (Ii

{

FALSE>-.

41 && (conDone == FALSE))

TRUE)

conDone = [[stackColl at: il connectionDoneJ:
i += 1;
}

if lconDone == TRUE)
{

[self startRunJ;
}

else
{

[[[[[[inTextWinl string: ""]
color: WHITE]
centerl
centerVl
redraw]
show];

/

[[[[[inTextWin2 string: "Nothing is Connected, Deconnection impossible
color: RED]

}

}

return self;
}

centerl
centerV]
shc,w];

- start.Con
.'~*~*~***•·~~***•*•******½•****~•·*~****~+•*•~**•~***•*'~*********~~~**
* Sets the application Into the active collection if a simulation Is *

* not currently erform2d ad ~fa connection ~s possible. This ls *
* done ~n order G enable t e u~er to select the source and deslinal~on*
* layers from wh eh respect vely a connect~on ~s ~n~t~a~ed and *
* responded to. *
************~~*~***~~*****~~f***'

{

i nt i;
BOOL work= FALSE:
BOOL deConDone = FA~SE;

choice 21;

for (i
{

(l; 4; 1 ++)

~f (([[stackColl at: ~J work~ngJ)

}

if (work
{

wor~1• = 1RUE;

FALSE)

i = o;

TF:\JE)

while ((i < 4) && (deConDone FALSE))
{

deConDone = [[stackCol1 at: il deConnectionDoneJ;
+= 1;

}

if (deConDone == TRUEl
{

[self startRunJ;
}

teise _'.:. ,.c:__ ·
< ·
([[[([inTextWinl string:

cc,lc,r: WHITE]
cent.er]
centerVJ
redraw]
show]:

[[[([inTextWin2 string: " Nothing is Disconnected, Connection
color: RED]

}.
}

return self;
}

{

i nt i;
BOOL work~ FALSE;
BOOL deConDone = FALSE;

choice= 22;

for (i
{

fr

:}

0; i

< ([t stack Col L·at
. work :=.TRUE;.
'~ . :-·,,~ .. : '"

·. ·,_. __ ,
,_ .i(.;.,- ~-/ '~-~- ..•

if. (work "f= FALSE>;?
C,,.
· t:::t ·· .:: cf;
while ·,.: . {

deConDone·
T += 1;

., .•,,l!l!f ~{1~1.
£"self startRunl.,,:
} '
e 1 se:

centerJ
centerVJ
show);

{ ... ,.. ,.
[[[[[[i nTextW in 1' st):-ihg;;:;t",,

col or: WHITEJ ,;.d;, 'r<JJ(
cent.er} ,~,,~:t;/
centerVJ
redraw]
show];

[[[[[inText.Win2

}
}

return self;
}

c:enl..erJ
cerjterVl
sh.ow);

- starlRun
!**********~*********************************·*************************
* Displays the string 'Chose the Source Layer' into the message box *
* and ~nstalls the appl~cat~on ~nto the act,ve collecl~on. *
******f******~**I

[[[[[~nTextWin2 str~ng: H Choose the source LAYER 11]

color: t,JHITEJ
cenlerJ
center\.i]
show]:

[[r[[[inTextWinl string: ""]
col or: t..lHITE]
centerl
centerV]
redraw]
show];

[self installActive: self];

retLH't1 self;
}

- stopRun
!**
* Removes the application.from the active collection · *
**!

{

[self deleteActive: self];

return self;
}

- update ~

!**
* Is the method e,:ecuted when the application is into the ·a~tive *
* collection. *
**************;***i***f

{

switch (c~oice)
{

cas• 11: case 12:
[self select □ne]:
break;

case 21: case 22:
·c self select Two];
break;

return
}

case 3:

}

- select.Two
!*********************
* Enables the ~i~r to ~e
* connection opening. This
* state and the pos~t~on on the

by controlling the mouse
RMG cursor on the screen. *

**************************~***•******~*******************************!
{

in t, i , j ;

BOOL found= FALSE;

if ([[Mouse cf,ange: t,change,:: &changeyl gelBLd,tonsl 1)
{

i = o;

while ((i < 4) && (fc,Lrnd == FALSE)l
{

J = [[stackColl at: ~J layerCont~~ns: crossx: crossyJ;
1 f (j I= Q)

{

if (sourceStac~ == NULLI
{

sot~rce ~a~k = [tackCo1l at: iJ;
s ;:• ~; r c e aye r = ._i
[~ [[[[n: e 1: lW i :-1 slrin9: ""J

}

}

f'ctund
}

else

+= 1 7
}

TF:1._!E r

if idestStaclt. ! = NULL)
{

return s,e l f;
}

[[inTextWin2 string: ""J
show]:

[[self stopRunJ
connect];

[self setChoice: OJ;
}

colo,,: ~JHITEJ
center]
cente,,,1]

rsd ra 1..i J
showJi

[[[E[~nTextW~n2 str~n9: 11 Choose th2 d
colot': WHITE]

}

else
{

destStacu,

center]
cenlerVJ
show];

[slacv,Coll at: iJ;
destLByer J;
}

- selectOne
!**
* Enables the user to select the source layer for the closlng of a *
* connection. •·
**!

{

int l ,j;
BODL found= FALSE;

~f ([[Mot~se chan9e: &chan92x: &ch~r1gey] getBultonsJ 1)
{

i = o:

•,;hi le i (i
{

J = [[stackColl at: ~J layerConla~n;: crossx: crossyJ;
j f (j I= Q)

{

s1:iurceSlack [stackColl at: ~J;
sourceLayer J;
fc,und = TF:UE;
}

else
{

i += 1;
}

}

}

if (sourceStack '= NULL)
{

return self;
}

[[inTextWin2 string: ""J
show J;

stopDisCon = FALSE;

[[self stopRLrn]
disconnect];

[self set.Choice: OJ;
}

- selectChoiceD
'********************•*****•t***********~*************~•***************
* Is the method enabling the user to click on one of the buttons 'Yes'*
* or 'No' when he is prompted to reply a questjon concerning a *
* disconnection. *
********************~*~********~************~*************½***********!

i nt i, j;
int cont;
BDDL found FALSE, o~Dther FALSE;

~f ([[Mouse change: &cha09ex: &ch&n9ey] 9elBultonsJ == 1)
{

okDiscCon = (~dButlonOk cc,ntains: crossx: crossyJ;
response= [idButtonNol cot1ta~ns: crossx: crossyJ;

}

if (o~',DiscCon)
{

}

[self setCho1ce: OJ~
ov,Step = TRUE:

[idButlon □ k hideJ;
[idButton □ k freeAllJ:
[idButtonNot hide];
[idButtonNot freeAllJ;
[[inTextWin2 string: ""J

show];
[self stc,pRunJ;

cont= [idSource discStepLow □ kJ;

if (cont 0)
{

for (i = O; < 4; i++)
{

([stackColl at: iJ set.Working: FALSEJ;

}

[stepButton hide];
[stepButton freeAllJ;
actionStep = NULL;
response= FALSE;
} ' .

oli.DiscCon FALSE;

if (response)
{

}

[self set.Choice: OJ;
oli.Step = TRUE;

(idButlon □ k hidel:
[\dButton □ k freeAllJ;
[idButlonNot hide];
[idButtonNot freeAl\J;
[[inTextWin2 slrin9: 111']

show];
[[[inTextW~n1 str~ng: 1111 J

redraw]
sho:...1 J;

[self selChoice: OJ;
okStep TRUE;
f,)r (i = O; i < 41 i++l
{

[[stackCc,11 at: iJ setWc,rkin2: FALSEJ;

}

[self stopRunJ;
[stepButton hide];
[stepButton freeA11J;
actionStep = NULL;

j [\dSource askCurlayerJ;
// printf(" valeur de j! i.d", j);

okOther = [[idSource iskDestiStackJ testConnect];

if ((j == 1 11 j == 2) t,& (ok □ ther) &~, ('stopDi sCon)
{ II printf("ch9t de source ••• "i;

}

else
{

}

slopDisCon = TRUE;
idStack = idSource;
//sourceStack = (ldSource askDestiStack];
//soyrcelayer = [sourceStack askCurLayerJ;
//[sourceStack setDestiStack: (sourceStack askEntryNodel];
//[sourceStack discSleplowOkJ;

actionStep NULL;

response= FALSE;

return self;
}

- C ,:,:-1n 1:;,,: l
1~+~~~*~*-~~+~*~~~f•-~~*-~~~-•~~~~~~~~*~*~~~**k*~~~~~~~~~~{~+~~*~r+~~~+~r

s. ,:, ~! r c 2 L y £" •. · ~·-

lse

f

l I

{

b~e ~etwe2n L~e ~~ :~c·~e~; ~;y~r~~
~t : ::·t1~·11="=t.l .:,·- f'r;::,m t..~~ ~ ~ ~ a>''='~~ 1 evi:: l.

l 2 · ~ ~~rr~~9 10E~s~3~ ~~222•·:
p0s;ibl2 3~2 tt,~t l~- ;~~p ~/

tuttor ~s :r~~t~~ ~nd thE
~· .:; *

1 .. h 2 :. 1:, :-1 r •= 2 ·=· t.. -=- c

.:..- ~- ~ . - . ' ' .. ,-

{ ([sotJrceSta:~ te:tCo

i'.d2;t.s~~~C~-: == [st.ackC,:-11 at: 1J) ~i~((d
1'rl,:;.-c+ e;.:. 2 ,~ .. == [:;.t.acl.:.Ccrl 1 at.; 2J)

= 3)))}

[st.2.c~·.Cc.ll

fc, r (i
{

4; l++)

[[stac~Coll at: ~J setAct~on: lJ;
}

[sourceSlack setDest~Slacl: dest.Stac~J;
[sourceSt~c~ setWork~n9: TRUEJ;
l t (c h c, 1 c 2 = = 2 1)

{

[~elf ~nstallAct~~~= sc,urc2St~c~ 7 ~

}

else

if {!act...ii:rnStep)
{

act~onStep = [~MGA:t~cin n~~FuncActjon: ac_StepC
}

stepButton = [[[[~==~E:rRM~Str~n5 relat~vE: 50: 50
·=.ur.-er\,,~2 1H: ::.elf
b,30: GREY lOJ
f'r-a:rneW1d7.-h~ 2.J
framaColor: BLACK]
slr~ng: 11 Cont~nLie 11]

font: af="ontJ
colot': E:LACf,J
v~e~Icon: sourceStack
cent.er]

~dAct~on: act~onStep]
shc.wJ;

[self bLlttc,nFace: stepBt1tton colorl: GREY_2 co1or2

}

] J)
[stackColl at: OJ)

tt, (G2~-t.Layer
:s~~:lCol1 2L: 1J~ &~

-=:ourcest~ci ':-E~_J..}c,t· 1nf·: Th'UEJ:
r 1.~hc1::.e === =: .. :,

• !:; ·- ;__ .- ::. :

: ~-'-" =· ;_ ·_

3))))

::,,,.""'.t

1~ ntinue 11]

• ' ::. ,., -~ C ·~. ,:. u r;: e.St. 2,c k

c:c~ 1 cnStc=pJ

C:-~:EY 2 col

des t&c~· r2~etFram2J;

[[[[[inTextW~n2 str~ng: 11 These layers =an not be CONNEC
c-:i1or: F:EDJ

}

}

else
{

~. h (:, w J ;

[sourceStack re;etFrameJ;
[destSlack res~t~rameJ;
[[[[[[inTextWlnl string: ""J

ccl.:ir: ~JHITEJ
cent.er]
cent.er\/]
redra:,,;J
'=-how J;

[[[[[inTextWin2 string: " These layers can not be CONNECTED "]
col or': RED]

}

so:.Ar::2Layer O;
source,Stack NULL;

destlayer O;
destStack NULL;

t'eturn self;
}

- disconnect

cente,r]
centerVJ
show];

!*** *************
* Test if a disconnection is possible from the selected ayer. If it*
* is impossible, a message appears in the message box. f the *
* disconnection is possible, the 'Continue' button 1=· ct~_e2,ted and the*
* simulation is lauched. *
**************************~*************************~*~f**~**********I

{

int i;

if (((sc,urceStack == [stacv.Coll at: OJ) ~,& (sourceLayE:r
{

3) l I I (sotn'cE:Stack

destStack = [stackColl at: 2J;
}

else
{

if ((sourceStack == [st.ackCol l at: OJ) ~,~, (sourcE:Layer < 4))
{

}

destStack = [stackColl at: 2J;
}

if (((sourceStack == [stackCol l at: 2)) && (sourcE:Layer > 3)) 11 (sourceStack
{

destSt.ack = [stackColl at: OJ;
}

t? 1 se
{

if' ((s,:,urceStac\:. == [ste.ckCol l at: 2Jl P, (sourceLayer 4))
{

dE:stStack = [stackColl at: OJ;

LSCtJrceSlac~ testCc,~n2ctJ == TRUE) &&
\ sc.1urceLa/2r

for (~ = o; ~< 4: ~++

([stac~Coll at: iJ setAct~on: ~J;

~~2=tStac~ s~tc~rL~~·21~: s-)t,f:~LayerJ;
:-- = --. - :. . =-+ _ ~- - ~, ::. c t. :,,.1 ;:, r l•, L 2_ ':' e ~- : -= c ,., ,· : ~ L c,. y-=: ~~ J ;

0tir=2Stack ~~lDest~S~~c~: ~2;~3t2c~J;

'=· e , l n s ta 1 1 /., c t. i v c- : :: ,-,

ectionStep

:[[[[[[[[[[RMGStr1ng r~:at~ 11e: so: 50 E~:tent: 100: 30
s.upervie·~: s.2lf

bt,c:id: GREY_lOJ
frar!-12l-J 1 dt..h: 2]
frameColor: BLACK]
str~ng: 11 Continue 11]

font: aFontJ
color: BLACt·\J
v~ewicon: sourceStack
center]
c nter\,1 J

Act~on: actionStepJ
ow];

[self bl1tt.onFace: stepB~tton colorl: GREY col or GREY 15J;

}

}

else
{

[sourceSlack 0penD~scSlepJ;

[sourceSlack resetFrameJ:
[destStack resetFrameJ;
[[[[[[lnTextWinl string: ""]

color: WHITEJ
centerJ
centerVJ
redraw]
show];

[[[[[inTextWln2 string: " These layers can not be DISCONNECTED 'J
color: REDJ
cent.er]
centerVJ
show];

}

sourceLaye-r
sc,u.rceStack

o;
NULL;

destlayer = O;
destStack NULL:

return self; . }

- set.Choice: (intla'.'alue
!+***************************~*********************•*****•*************
*-Sets. the. eh o ice _ _j n stance var jab le to. a Va ltie _ .. *
****************~**¼****'

{

choice= aValue;

return selft
}

- buttonFace: aVlew colorl: (intlaColor color2: (lntlbColor
!~*********~~~*•***********~****~**********~**~~**~~*****
* c~~ales shaded buttons on the screen. The f~rst parmeter
* ~ddre~s 0f the view concerned by the 1 \~ft~ng~. Th~ two
~ p~ra~2ters are the ~dent1fiers of the colors which ~~ll su
➔ the c~ns~dered v~ew.
•+~'~*~**4-~~~•*+••****~•***•**~***~****•~***~~ ➔ ····••*****

t

•

+i:·r (1 = o:
{

[[[RMGl-~ne ~up2~v~e~= aV~e~ color: aColorJ
rE- l P 1: ():
shr:iw J;

[[[RMG~~ne s0perv~e~: 2\·~e~ color: aColorJ

fcrr

[[[RMG~~~~ sup~ v1e~= aV~~~ col0r: bColorJ

}

r12turn self~
}

r2lP : n: E~V~e~ ~~ helshtJ-~ l2rat~: [~\1 ;ew ~n w~dthJ-~: OJ

#~ncl~Jde 11 obJc.h 11

#include "rrn9.~1 11

#~nclude 11 env~r.h 1'

@raqu~res F0nlM09r1RMGMenu1,MTreeAct;

slal~c ~d onlyinslance;

f***•*·*~~~~~~~~~~~+~~+~~~~~·~~~t++~~*~~·~~~~**•~**~*~~**~~t~**••**~****

• Class =r~a~ed ~0-· tl~E JS: :,~ X-2~ appl~cat~on *
* Bv: V ron~oue N~cht2rsaele and Dominique d2 P~ul *
* Its _goal ~s to cre2le e~ ~~sta~cE of the appl~cat~on 1 s rnent~ *
*~**********~~~***~+*~~~****+~*~*****~•***•~*~***~*+*~•~~~*****~*~*****!

~ set.It
:*~*+•¥•~~~*~~~·~~~~~*~~~~.~~*+*•~+~~·*••t~~•*+~+~~~+~~***~~~~~¥+++*•*~

*'***~***************!

retl~rn onlyinstance;
}

+ delaylnit
I**
* Creates the application's menu having 4 items. •'' QUIT 1 ' ' quits *
• the application. 'icon' iconizes the application. 'Connection' *
* starts a connection either in continuous or step by step mode (this*
* is chosen in its sub menu). 'Disconn.:,ction' enables to start a *
• disconnection in step by step mode. *
**'

{

id aFc,nt;
id sub_Menul, sub_Ment,2;
static BOOL beenhere = FALSE;

if ('beenhere)
{

beenhere = TRUE;
aFont = [FontMngr sysfontJ;
self= onlylnstance = [self new];

stib Menul [[[RMGMenul char wide: 16 items: 2 font:
bkgd: GOLD]
APPL: self];

[[[sub Menul at: 0 putStr: "Step by Step"]'
cent.er]
idAction: [MTreeAct sel: "startConStep"J];

[[[sub Menul at: 1 putStr: "Continuous"].
center)
idAction: [MTreeAct sel: "startCon"JJ;

rc1 otMenu [[ERMGMem, 1 ::ha.r r,.,iide: 15
bkgd: GDLDJ

items: 4

\

[[[[root.Menu
APPL: ::-elfJ .:

at:o putSt..r: 1111 Quit~ 1 l1J

center]
subMENU: Menu_emph]
idAction: quitProgActionJ;

[[(rootMenu at:1 putStr:''Icon 11 J
center]
~dActlon: [MTreeAct sel: 1'~conifie 11 JJ;

[[[[rootMenu at: 2 putStr: "Connection >"J
cent.er]
subMENU: sub_Menu1J

font:aFontJ

idAction: [MTreeAct se\: "startConS-tep"JJ;
[[[rootMent~ at: 3 putStr: HD~sconnect~on 1!]

}

return OsilMTree;
}

center]
idAction: [MTreeAct sel: "startDiscStep"J];

#~nclude 11 objcsh 1'

#include "rm9.h"
#~nclude 11 env~r~h'1

@requires RMGView, RMGStrlng, FontMn9r, □ rdCltn, IntArray, Layer, Interface, RMG

#define aLayerHeight 35
#define ainterfaceHeight 10
#define aWidth 125

#define oStrla u Opening "

#define assoStr " assoclat,on .
#define connStr . connect~on .
#define byStr . by layer .
#define betwStr . entitiesr between layer .
#define entiStr . entit~es

/

#define oStr2 . opened by layer .
#define cStr1a " Closing "

#define cStr2 " closed by layer "

#define dStrOk . Disconnection belYe2n layers "

'************~**
* This class was created for the OSI on X-25 application *
* By: V ron~que Nachtergaele and Dom~n~que de Paul *
* It enables the creation and management of a stack within this *
* application. It is not well explained and detailed as it is *
• still under development. *
~*****•****************!

{

,d clColorArray, opColorArray; f* conta~n the addresses of two
cclleclions containing the pastel and brilliant
colors of the different layers composing a stack*'

~d layerColl, ~nterfaceColl, nameColl; f* co~ta~n the addresses
c1f collect,on conlai:1,n9 the addres;es of each layer

composlng a stack~ cf ea~~ ~nterface compos,n9 a
stack and the names of a~h layer to be displayed
at the left of the app cEt~on 1 s w~ndow *I

~d desl~Stack• entryNode~ back1 ~~nT2x , ~~.nText2; /, conta~n the
address of the st~ck w~ ~f,~=h the connect~on open~ng

,::,~- c t ,:,; ·+ ng r1
n,:,de sl2.re. o

/ *
-, r·

·; t. c1 t• e rn .~ o ·;:. n e c-. •'J cir t-::> :::. ·= 1.. 1 1 ,__ ~1 e e ri L, 1
a st.2c~; t e ?ddr2sse~ 0f v2r·ious

- \... : - . = , : . ,:::: = C :, n t_. C', 1 ~·,

--, 1 ', -~ □ -,~ 2~~~1~~ clc,s~n9;

+/

~c,d~ ~ta:L a~~d tt1e X-25

..... c::•~':=.::.1::::d ='·=· ;;:.t:.-c,:1;--:~ c.nc.: +_.~-i l rd -~.; .. -:=,:"·12(,~.-:::.,

~ specif~es the n~:nb2r)f lay2r~ ~2~d2~. -)!:,

* ls the address of lhe colle:tlrn :onts1n1n~ l~s slrl~?S lo *
* d~splay ,nto the st2c~.

[[[[[[[RMGStrin? relati

:: = •·; '!_.~ -·

, f (i bi

v + 35;
}

e l =-e
{

[2.

2 ~-, 15 ,=· ;:. L~ p e r v i e w : a\,' i ew bv.

+ new: a\l1Ew e.-t..: ,;1~·1t-):,;: :··:t..,v t pe: =1nt.)a~-t!:'.c~- F,u-~t..i;:-le1;: \~nt)alevel: (int.)b
f**~t*****~*~f~*~~~~~~~r*~+~~~~+~~~~~*~*~~~~~~~~~*~~~**•******

* E02bles the user ta c1-22t2 6n ord~~ ~nst;~ce of Os~Stack*
~ Th~~ slack ,~ p1aced in t~~e v~~~ ~~~c ~.dcir-c:·-; = 1 s pas ·;ed as*
* f~rst ar9um2nt, at the 1ocat~on ~d2~t~f~2d ~y the second *
* and t.h i rd e,rqurnent.s o The fcurt,r- 2,r•3;Jrr;2(:t.. , :. t..h2 t.ype of *
* st2ck r1eed2d: thus ~t spec~f~es the nu:nb2r of layers *
* des~red. The lwc last arguments ~r~ des~9n2d to pass the *
* layEr numbers betw2en which th~ ~ult~p1&xing is poss~ble *
****+*********~**+*•*~********++1·*~~~~~**4**~+*~****+********1

{

~nt i, xpos, ypos, st2ckHe~ghl;

//layerColl = [OrdCltn new];

if (aStack == 7)

xpcis
ypos
self

dc,wn
=· ~; 1 p
Sen:::

o;
o:

{

s.lackHei9ht
}

else
{

0. u,

stackHeight J;
}

[self relative: x: y

TRUE;
FALSE;
FALSE;
~ALSE;

e):Lent: aWidth: ((stackHeight * aLayerHeight) -+
superv~ew: aView
bkgct: E:LACfO;

l~verColl = [OrdClt~ :12~J:
~nterfa=eColl ~OrdCl~~ ~~w];

~ :::.e;'" s.c:1-Ct~~·-Lays- •~: J ~

L ::. e l ,:1 c1 ::l C. ;: , ;:::., r·

:a3tac~·, - 1))

- - .:-; p ,:, :;. : y p CS

C Ci l Ct r: [;_r:,,s·r,ELU
~e~2ht: alnt2r 2ceHe~3hl
1.-J 1 G t.r- : 2 lJ ~ d t }-! .;

~f stackType == 8)

1ayerCo11 add:[Layer new: self
at: 1:pos: ypos
co1or1: [clColorArray intAt: 6]
c ci 1 or 2 ; [op Co l or P. r ray 1 r: t. At : b J
h~~ght: aLay2rHe~grt
width: a~J1dthJ J;

[1nt2rfac2Cc1l 1 2dd! [Int2rf~.:2 r:ew: SE: cl

}

at.: :-~pos: ypos + aL~yerHe~9hl)

he~ght: aint~rfaceHe~9ht
1-H1dth: aWidthJJ;

[self loadlayerNamesJ;

return se1f;
}

- l ,:iadCo 1 or
!******~********~~***~******+**********~****~************
~ Bullds the ~~stance 0f the OrdCltn class w~th the *
* d~fferent layers colors~ The addresses of these *
* ~nstances ar~ put lnto clColorArray and opColorArray *
* instance variables. *
f- * ~ t- 1H-t~ ** ****-* * *%·iHt ** 1:" * it:Jt-k *f.-_**·* -It*~**** if*-**-**i" j:-_* -ft~**-*-****_/_

{

clColorArray

opCc,lorArray

return self;
}

[lntArray with: 7, BRICKRED, BEIGE, LIGHTYELLOW,
LIGHTGREEN, LIGHTBLUE, PINK, M

[IntArray with: 7, ORANGE, BURNTORANGE, YELLOW, DA
BLUE, DARKPINK, GREYMAGENTAJ;

- loadLayerNames
'*****************************~****************************
* Builds the instance of the O~dCltn class with the names*
* c,f the different layers. -Hsiaddress is placed into the*
• nameCol l instance method. · *
**!

{

nameColl [OrdCltn with: 3,"Physical","Data","Network",
''Transporl'', 1'Sess1on 11 , 1'Presentatlon"
"Application's CASE", "Application's

return self;
}

(inUlayerContains: (int)x: (intly
!*******~*****************************~****~******************
* Checks if the loc-ation identified by the '..\.IC< vc.lL,es pa,sed *
• as arguments ~s ~ns~de the bounds of one of the stack's *
* layers. It returns an lnteger which has the value zero if*
* the location ~s n0t ~ns1de the sl~ck; the layer number *
~ c,the~~~se. *
•~~~••~******** ➔ **~~•*~~****~**~*+*~•~+~~~~++****~*********'

{

i nt. 1;
BJOL fc<1_ind;

; = O;

,~·. . .::

~ :·:. - ... c.\/\:::;-"'

-= :!

' J ;

>= ,._:: i

[2~try~!0de s2tCur~2~2~: 2}:
[211tryN0d~ s2tWc1rkL~;et· ~1:
}-

e l :.e
{

[~nt.ryN,:;de setCt~rL3yer: 1 j;
[entryNode selWorkLay2r: ~J;
}

return i;
}

}

- update
/******~**********~**~**************+-**********~*****************
* Is executed when the ~nstance of the OsiStack class ~s ,n the*
* active collection. •
*****~*~*******************~** ➔**~*****~~*~**~+*~***~***********!

switch (actionType)
{

case 1: [self openConnectJ;
break;

}

return self;
}

- openConnect
!**********************+******~******~***~** ➔ **************
* Starts lhe s,mulat~on of a connect~o~ apen,n9 ~n *
* continuous mcde. The first phase concerns the downward •
• progression of the opening. The second phase concerns •
* the upward progression of the ,:,pening. •
***********••···············••*****************••·······••!

{

char curLayChar[2];
char curLayStr[256J;
char curLayStrB[256J;
static int compt = 500;
static freeLink = FALSE;
i cl idCurLayer;
id destinatic,n;
int curlnterface;

if (compt 500)
{compt = o;
if (skip FALSE>

{

if (down == TRUE>
{

if (currentLayer >= ll
{

idCurLayer = [layerColl at: (currentLayer - l)J;
if (currentLayer <= 31

{

destlnat~on = entryNode;
}

= ~ ~ = :: ,,. .. -.

: •. :=-,i , e~.

,

J

I

L;::-=;

r ~ ,-.

::t.r-cp/i::,.1rLaySi-r, ,:1St.t~ia):
:. t. ~- c 2, t \cur L ?. ·y S ~-- r · [n 2 rr: 2 :: ,:, at : (current Le.. ye r - 1)
1t ((= r~,ent.La 2r" == 2,J l ! ~cu~--r2nlLay2r· == 7))

{

;trc2t{curLayst~·,bvStr
~f{currentlayer == 8)

'r·irre~-

{

CUl"'LayChar):
st.rc2trcurL~vStr~ct,rLayChar)
-~ t_. ~-- c: p y \cur L.. 2 y St r B.• '1 en t. l t. i e s ! for l he u ~-er 11)

·c

oa(currentlayer1 CllrLayChar)
rcat(curLaySlrrcurLayChar)

(currentLayer 7)

:t.rcpy {curLe..ySt.~--:::, b2~-wStr·-);
llr:1a ((cur~·-E.-ntL2.·/er + 1 J 7cL~rLayChar)
st~cat(curL~yStrB,curLayChat,)
;:tr~cat(curlayStr31ent~Str)

strcpy(curLayStrB, 1' for Appl~cat~on Layer's

; 2, -..- ;:.t.rl t-~:Si ~ curLayStrJ
:,:i1::it: WHITE]
::e:!ter J
:. F--n :. ~'

,-, ,:, 'H _-

s t ,-

:-- 2G t 2, '.J •·

: .:..• ',./ r,

~~,. :___ == St.. r- F J
W:-l l !~ =

1; r-.'.... St:\

;:.__:i=. == T;=::_)E_;
C: :c::-;...~~;~_-:~c~;

-(

[ci1=;;t..ln2.l1c!n c--.+_;-·u~-• -?.\--?r: f[dc::t..1n.=;_t1c;n c:s~~CurLa.·;-·

f i curi"'2nt.L!:,yer 3)

}

([desl~t1at~on v~ew

strcpy(c~rLayStry !! Right 11)

else
{

strcpy (curLo.yS-t.r
}

11 Left. ii)

else

1f (sla.ckType 3)

}

{

- st. r"' c p y (cur Lay St r ,. _ 11 Le f l 11
)

else

st.rcpy(curLayStr., 11 Right ll);
}

=-trcat..(curla/Str1 ([nameCol l at: (currenlla

else
{

slrcpy(cu,·LayStY, ([narneColl al: (current.Laye
}

if ((currentl.=eyer == 8) 11 (current.Layer
{

strcatlcurlavStr,assoStrl;
} .

else
{

strcat(curlayStr,connStrl;
} .

strcat(curLayStr, oStr2l
if(currentlayer == 3)

{

itc,a(7 , curlayChar);
strcat(curlayStr,curLayCharl;

• strcpylcurlayStrB," entities, for the user
}

else
{

itoa(currentlayer, curlayCharl
strcat(curLayStr,curlayCharl
if (currentlayer < 71

{

strcpy(curlayStrB,betwStrl
itoa((currentlayer + ll,curlayCharl; __ ·
strcal(curLayStrB,curlayCharl;
strcatCcurLavStrB,ent~Str);
} ,

else
{

slrcpy(ct~rL~yStrB, 11 for

[[[[[wlnText2 string:
c::ileir: WHITE]
center--J
C nle-rVJ
s ow];

[(([[[win exll string:

}

:..:: -:, 1 ,:, r : ~! ;---1 : I ::_
: .,-,-, t,c ,-

}

e L

{

,, 1 l Lin,;

}

else

l nt 1 X;

: .. i

~ C•···; V 1 ~:,.JLeft. J)

-=s:t- ,:~--~c.+_.2EllL1n~!,: [sE:
4 J ;

_se~f createEllL~n~: ([se
len:-·:h: -1 7 t.,: SJ;

:, --= ,_. '- = ~-.,.
([oest~nat~on ·,~ewleftJ))

[self createEl1L~nk: ([se
:en5th: 70: 5];

[self createElllink: ([se
1en~d .. ~-:: 70: 5];

~f (([self v~ewL2itJ)

{

lX =
}

e 1 l ~ink

([dE;t~nat~on v~ewleftJ))

~de~t~nat~on createEll~~~~
length: 70: 5];

[idCurLayEr cre~leP~peJ;

- ~~-! -=-.
=-· = t·, ! -

. --- . ·-
=. ! - ,::, '=

ect, (stackType == 8)
\c1.irrentlayer ~= 3

·-• -· 2 T·· t. ~ 2. v e r ~ 1)

•

E;

}

of; = tt=" ~- {i, : .. -;: '

* •:: ;.:.<::r.Cc-n-- c-::i...
:-~12 activ~ :0112ct 1:-

·_ ;_ + _.. ·, '.. F : . -~ + + ;: :.: . V ' - - * ; ~ -'i· - + : ~ -~- 1-" • -- ~ ~ • .. ' .- .- .,... ;. ·, ~ ' ~- >:.; ~ .,'

c~ar CL~rL~;Chrr[2];
char cur~avSLr[25~J;
char curL3y2trB[256];
;t.2,t-ic i~1t.. compt.. = SOC.i;
id 1dC;.Jri...2ye!---;
id d 2 s l. 1 •·1;; t.1,:,n;

int cont.= 1;
int curinterface;
BOQL fre2L~nk = FALSE;

if tdown == TRUE)
{

_if {curre-ntlayer :-= 1)
{

idCurLayer = [laysrColl at: (currentLayer - 1)];
if (currentLayer ·<= 3)

destinat~on = ~ntryNode;
}

else
{

dest.ine,tii:ir,
}

if (currentLayer == workLayer)
{

aLink [[(CRMGView ori3in: [self searchX □ r~ginL~n

}

else
{

extent: [self sea~chWidlhlink: de
superview: [self superv,ewJ
bk9d: PERIWINKLE]
frameWidth: 1]
frameCclor: HEDJ
s.h ow J;

[[[allnk move: [self searchXOriglnLink:destlnation
size: [self searchWldthLlnk: destination
s ho1,,.• J ;

[aLink
}

move: [self searchX1fri::1lnLlnv.: destination];:;

if l[ldCurlayer connectlonStatel == FALSE)
{

[idCurLayer flicker];

if I (currentlayer == 3) && (stackType !== J))
{

[[dest!Stack askEntryNode] flickering];
}

tldCurLayer inConnectWlth: [destination replyConn

strcpy(curLayStr,
strcat(curLayStr,
if (lcurrentLayer

{

oStrla);
(tnarneCol l at: (currentlayer-1) l
== 8) I I lc:urrentLayer == 7) l

strc:at lc:urLayStr, assoStrl;
}

else
{

strcatlcurLaySlr,connSlrl
}

strc:atlcurLaySlr,byStrl:
if(c:urrentlayer == 81

{

ltoal7 , c:urLayCha~J;
~trcat(curLaySlr1curL&yChar);
strcpy(curLayStrP,'1 entit~es, for the user 11)

}

}

tL2.v-=r1 -::L:~"L=-.yCnar};
i:c.~12LrrcurLayCh!:'r);
;_ C'\ ~,er < 7)

for Ap;l~cat~on layer'

==~[:~~0T2::t~ str~~~= C~lrL~yStr]
c·:1lor: l·J~IT~J
cet1terJ
cE-nt.erVJ
show]; [~ =~ ~[:-H)nTe-:-~tl st..r1n5: r;,~-1 -·yS+.~--.r..:J
coli:ir: ~:4ITEJ
cent.er]

redraw]
shi:i'Y J;

[s~lf setCurLayer: (currenlLayer - 1)];
[destlnat.lon set.Curlayer: l[destinatlon askCurLay

else {down= FALSE;

}

s ~; i p
}

freeL i t1 k = TRUE;
sit.ip =FALSE;}

FALSE;

if (down== FALSE)
{

,r (currentLayer < workLayer)

if (current.Layer== 0 I I freeLink
{

(aLink free];

[self sEtCurlayer: (currentLayer + 1)];
ldCurLayer = [layerColl at.: (~urrentLayer - 1)];

if (currentLayer <= 3)
{

destination= ent.ryNode;
}

else
{

destination
}

dest.iSt.ack;

if ((current.Layer== 3) && (skip== FALSE} && (back=
{

[[destiSt.ack ~skEntryNc,deJ back: self); ::>J1/~JL
cont = [[dest.1Stack askEntryNode) openConSteP,~,J.;,:j;:,ry:
[self setCurLayer: (current.Layer - l)J; ' .. '.' .. \:·;:~ r,

!1se . •t\ftt
{ ~

[destination setCurLayer: l[destlnation

lf l[ldCurLayer connectlonStatel --
{

lf (current.Layer< 31
{

lf (([self viewLeftJ} <
{

lf lstackType == 3)
{

• i,.-

~ !'.,1-•.•/ .· :.-,to'-_;./
·~,- .:.,/_~

strcpylcurLayStr, " Rig-ht "}; ,. ·,.

}

}

else
{

strcpy(curLayStr, " Left "};
}

11 Left. ")

else

R 1 9ht '1)

~t: (current.Le .

. : ,-, :.-c..~. - ::..

-' ::-. :;. = ,::, s t ~-) :

strcat(ctirLayStr. 0St~:,
~f(currentLayer == 8)

strcpy(curLa>'3trB,·

el~e
{

1toa (current~ayer1 curla'/Char);
strcat(curLayStr,curLayChar)
if (currenlLayer < 7)

{

strcpy(curLayStrB,betwStr)

the user

itoa((ct~,--:··entL.ayer + 1) ,curLayChar)
strcat(curLayStrBrcurLayChar}
strcat(cL,rLayStrBrent~Str);
}

else
{

strcpy(curLayStrB, 11 for Applicat~on laye
}

}

[[[[[w~nText2 str~ng~ cur~ayStr]
col or: WHIT:::J
cent.er]
cenlerV]
show];

[(([[[wlnTextl slrlng: curLaySlrBJ
color: WHITi::J
cent.er]
centerV]
redraw)
show];

[[ldCurLayer stopRun)
chan9eColorJ;

if (currentLayer == 1)
{

if l([self viewLeftll
((destination viewleftlll

if

{

phyLine [self createEllLink: ([se
_len9.i.h: ~17.6 :_4_J L

}

else
{

phyLine [self createElllink: ([se
length: -176: 5];

}

}

(currentlayer 3)
{

if (slackType 3)
{

if (([self viewleftJ)

{

ell L. ink·.

}

e1s2
{

e11Lin~'.

}

eLSE

([destination viewleft])l -

[self createElllink: ([se

[s~lf cr<eat.eElllinl,,: ([se
:engt.h: 70: 5J:

}

{

int lX:

if (([self vie:.•Left]l <
([destination viewLeft]lJ

{

1X 55;

}

else
{

\X = -5;
}

ellL\nk [destination createEl\Link:
l en9th: 70: 5 J;

}

[idCurLayer createPipeJ:

jf (((current.Layer != 71
l(stackType == 3) &&
{

&& (stackType == 8)
lcurrentLayer != 3.

if (current.Layer== 8
{ curlnterface = 6:
}

else
{ curlnterface =
}

(""'"'""''' I ''''"'l~'·'fil?f~t
•. tciesti~atic,n replyCo..rnecU;'._.

}..''·'" .,·,;, ' "'·
} . <· < } -·- ''"'.!·-:·.,-,.,.,,

, , : ; ,: ;:;: ;;,;;;;fk~ftf ib~iHj:tq
, -~ tbaciCJ}e;tS!4-fl:1J~:n~.IJEl . _

t self, .. ,setWork'lng t·•: FALSE] , i~w~1ii::~:1 !~, .
[sel r ··setWo"rktng;_-'.FALSEJ :,J

:.::;_. ~-.- ·
[self 7/: (/' .•

{"·- ~ .!-,;_"":

i'"
_/-.\~

. I ********!'f,~*,f*.:!l'**,*f*,*t*~*,**f**!******.:*.**.*t~~~'~:!t':J:*!,*,*.f,
* _Makes a!'l1{ij1;sfallce.',i?fi~-ti'e:,~ayef.~;FJa5.~·ii.fJ ;,-· !:'~~~a~g~'.t-· * its colpr:,,clependirig_~ori-•,.the :case;h ---- · · ddre~s<·
* of. the,·~~?.!i~~tn,ed\,-iay_!!,f~~/':,: "'."'.""'' ..

. ***:**it***,,,f,,' . *Jt*,~*,*,J,t*ifJ~t*,jt~lf:c*

, ::;:i~i•1 !;•\~rr~j,~l{?;f ',
· - . i dCu rlayer = Cl ayerCo ll~:

. ~ . -_ :.:·~ .. ·}_:<'_.;,·:~1;(£:~}
([idCurLayer,,J\. ·

-~_;. .~'

,:;.<

}

[[interfaceColl at:curlnterfacel
}

}

return idCurLayer;
}

- (intlopenDiscStep
/**~*~****~******~******~********~***************************
* Starts the simulation of a disconnection. If the layers *
* >= 5 the d1s=onnect~on ~s performed normaly through *
* dl~cSle~Up. □ therw~se qLiest~ons have to be asked and it ~
* ~ s perf,:,r-rned thr_o~~3r1- cij_s_cStepLow.Ok..- __ *-
*********~*~**~**~+**~************~******~******~***********!

{

int cont= 1;

if (curn,ntLayer >= 5 l
{

cont= [self discStepUpJ;
}

else
{

cont [self dlscStepLowOkJ;
}

retllrn cc,nt;
}

(intldiscStepUp
'**
* Simulates the disconnection of the three top layers of the*

·*.ISO reference model. The first phase concerns 'the *.
:¼ downwards pro9ression of the disconnection. The second *
·*,phase concerns the upward progression of the disconnection•

**!
{

char curLayChar[2J;
char curLayStr[256J;
char curLayStrB[256J;
id idCurLayer;
id destination;
int curlnterfacel

int cont= 1;
static BOOL freelink

(down== TRUE>

idCurLayer
destination=

if
{

aLink =

FALSE;

strcpy(curlaysit,
strcat(curLayStr,
if ((currentlayer

{

~.treat (curLayS·tr 1 a£.s,:1St.
}

else
{

(currentlayer

strcaL(curLavStr,connStr)

I ,'.

}

if(currentlayer == 31
{

itoal7 , curlayCharl;
slrcatlcurLaySlr,curlayCharl;
slrcpyl.curlayStrB," entities, for the tiser "l;
}

else
{

itoa(currentlayer, curlayCharl;
strcat(turlayStr,curlayChar);
if (ctirrentlayet- < 7l

}

{

strcpy(curlayStrB,belwSlrl;
itoa I lcurrentlaye,· + 11 ,cL1rlayCharl;
strcatlcurLayStrB,curlayCharl;
strcat(curlayStrB,entiStrl;
}

else
{

strcpy(curlayStrB," for Application layer's
}

[[[[[winText2 strin9: curlayStrJ
color: WHITE]
center]
centerVJ
show];

[[[[[[winTextl strin9: curLayStrBJ
cc,lor: WHITE]
center]
centerV]
redraw]
show];

if I currentLayer > 5 l
{

[self setCurLayer: (currentLayer
[destination setCurLayer:
}

else
{

}

}

else
{

down;= FALSE;
freeLlrik =-TRUE;·

if (currentLayer < workLayerl
{

if (freelinkl
{

[al1nk fre!::'Li
freel~nk = FALSE;
[self setCurlayer: (currentlayer - 11];
[destination setCurLayer: ([destination
}

(self setCurlayer: (currentlayer + 1)];
idCurlayer = [layerColl at: lcurrentLayer - 1)];
destination= destiStack;
[destination setCurlayer: 1c-tfestination askCurLayerJ

if ([idCurlayer connectionSlale] == TRUE)
{

strcpy (curlaySt.r, tenameCol l at: (current.Layer-ll
if (lcurrentLayer == 81 11 I current.Layer == 7l l

{

strcatlcurlayStr,assoStrl;
}

else
{

strcal(curLaySt.r,connStrl;
}

strcat (curLayStr, cStr2);
if(currenLLayer == 81

{

\toa(7 , curlayCharl;
st.rcat(curLayStr,curlayCharl;
strcpy(curLayStrB," entities, for the user
}

else
{

lt..oa,:current'....ayer-, curLayChar);
st.rcat.(curlayStr,cu~LayChar);
if (currenlLayer < 7l

{

strcpy(ct~rLayStrB,bEtwSlr);
iloa (1_cur t=nt..Lay·er + 1) 1Cl◄ rlayChar) 1

strcat(cur ayStrB,curlayCharl;
slrcallcur aySt.rB,ent.lSt.rl;

}

else
{

i

slrcpylcurlaySlrB," for Application laye
}

}

}

[[[[[winTexl2 string: curlaySlrl
color: WHITE]
centet'l
centEr\/J
show];

[[[[[[winTextl string: curlayStrBJ
color: WHITE]
center]
centerVJ
redraw]
show];

[ldCurlayer inConneclWith: NULL];
[[idCurLayer slopRun]

changeColorJ;

[idCurLayer deletePipel:

if (currentLayer != 7 I
{

jf_.(currentLayer == 8
{ curlnterface = 6;
}

else
{ curinterface = currentLayer

- }

-[[interfateColl. at:curinterfaiel
} .

[destination replyDisconnectJ;

if (currentlayer >= workLayer)
{

}

return cont;
}

}

cont= 2;
[self setcJrLayer: 4];
[destination setCurLayer: 4];
down = TRUE}. .

if l[idCurLayer connectlonStatel
{

if lcurrentLayer < 3n
{

·., ...

if (([self viewLeftJ) < ([destination1 viewLe"
£ .1-· ::i-' . · .·,.c· ,_ .-
if (stackTvpe == 31

{

strcpy (Cln·LayStr, " Right ");
}

else
{

strcpy (cLirLayStr, " Left "l;
}

}

else
{

if (stackType == 3)
{

}

strcpy(nn·LayStt·, " Left ");
}

else
{

strcpy(curLayStr, "Ri9ht ");
}

strcat(curLayStr, ([nameCol l at: (currentlaye
}

else
{

strcpy(curLayStr, ([nameCol l at: (current.Laye
}

strcat(curLayStr, cStr2l;
if(currentlayer == 8)

{

itoa(7 , turLayCharJ;
strcat(curLayStr,curLayChar);
strcpy(curLayStrB," entities, for the use~
} .
else
{

itoa(currentlayer, curLayCharl;
strcat (curLayStr,cL1rLayCharl;

,.jf (ci,rrentlayer < 7l
{ . .

strcpy(curLayStrB,betwStrl:
i toa I {curren tla yer + 1) , cu rLay,Ch ar I
strcat(~~rLayStrB,curLayCharl;
strcatl~~rL~yStrB,entiStr);
} - <-~- ' -;~} {~;· ', ' ' .
else
{ ,.,

• for Application

if (currentlayer == 3)
{

if (elllink 1 = NULU
{

}

[self freeEllLinkJ;
}

else
{

[entryNode freeEllLink];
}

if (currentlayer == 1)
{

if (phyline '= NULL)
{

}

[self freePhylineJ;
}

else
{

[destination freePhyLineJ;
}

i
\

. I

►

•

[idCurlayer deletePipeJ;

if (((currentlayer != 7l &:~, (stackType == Sll 11
((stackType == 3) && (currentlayer != 3
{ '

if (currentlayer == 8
{ curinterface = 6;
}

else
{ curlnterface = currentlayer - 1;
}

[[lnterfaceColl at:curlnterfacel delete
}

[destination replyDiscSteplowOkJ;
1f currentlayer == 3 I
{

}

if (! skip l
{

[[[destiStack askEntryNodel setSkip: FA
}

else
{

skip FALSE;
}

if ((currentl~yer <= 21 &&: lworklaye~.>= 31~
{

skip =·TRUE;
} .

[se ~- f setCurlayer :. _t;/~rrentlayer 1~ J;
[destinati'on setCurlayer: ,<[destination
} ..
else
{

}

return cont;
}

. }

replyDlsconnect.
!***********+**~********** ► •***•******~***********~************
* Makes an instance 0f lhe Layer class flicker or change its *
* color follow~ng ti,e s~tual~on. *
******~***********************w·*******************~********~**f

{

id i dCLl rlay2r:
int curlnlerface;

idCttrLayer = [1ayerCo11 at: (currentLayer - 1)];

1f l[idCurLayer fllckJ == FALSE)
{

[idCurLayer flic!,;erJ;

else
{

[[idCurLayer slopRun]
changeColorJ;

[1dCurLayer deleteP1peJ;

if (((cLirr·entLayer 1 = 7l && (stackType 3)) 11

}

return jdCurlayerJ
}

((stack Type == 31 ~,::, (CLirrentlayer != 3
{

If (currentlayer == 31

else

{ curlnterface = 6;
}

< curinterface = currentlayer.
}

[[interfaceCc,l l
} .

askEntryNode
!**
* Returns the address of the entry node, contained in the *
• entryNode Instance variable. · · •
~*********!

{

return entryNode;
}

- sEntryNode: aStack
!***
* Stores the address passed as argument into the entryNode *
* iJstance variable.
*****·•···••************************************;**************'

{

entryNode = aStack; '-, ~

;''"'" self< _,,,,;}}t~ir
setCurlayer: (lntlaValue.<>. , _ . .·,,,•: ":''· . .. _ __ ,,_ ..,~,. ,,,

I**************** ******••·**f******/*i******** ******•********•*** ·.··•: - ,,Jf,,,, * Stores the number:'passed'as argi.qf!ent,·as the.w(itjat.ing: layer:•?/
* number into the'..currenlLayer:,insJance-variable:,>, .. i;;_,, i ··_,_.~,
****************'if¼lfil-***•*Hii-•-lf.*itll-if.ll-i*'*****•******•**•******if*l!-ift.'.~~•

setwoekLSyO]!tri~~ t:•:~\f !;~1(it>,::~)!;,J,]~~;~~1~i:i;rf f ;;
1•••***i-***.*l{*i*************i}h**:..;**************•*******i•*'**;c * Stores· the :numbe:;._• passed 'as "'argurn,eh't,(as 'th'e currei:it layer·•· ,,{:,:'.-~It_
* number inf,o,' the, work Layer i r1 s ta,nc'.e var-i able .. _· . .. >i \'. • iJ,t,;?;;,,t:,
*•**************·*¼ilflf¼¼¼¼lflflf¼lf••-•lflHH•¼l!-iHHl!-¼if•**lH•*•*•••l!-•iFt-'-1t¼J/: ., ,.

)l.:.;.,\.·.•_t:··_;_',_ir.!_~tf ;W{f ~t~ !~~~ t ~~ : , . . · · -•?Lf"
- ,. ~-- . . -,,-~::c;~:'i/.

(intl askCurrayeiz . , .. , . '' ., _ . . , .•· _ . . .·_ . . ,
!••••••••**************************•****•••••••******•**********
• Returns"an integer which is the number of the initiating layer•
* which is contained Into the currentlayer instance variable *
*************•***!

{

return currentlayer;
}

- a~.kldy>?rCc11

l*******~~*~*+*******************************•*********~k~***~**
* Returns the address of the colleclio~ conlain~r19 the addresses*
* of each ~nslance of the Layer class compos~ng l~,e slack~ It*
* i s cc, n la i n e ct i n l he \ aye r Co\ l i n s lance v a r i a til e . ..
*******~~***~****~********************************t************I

{

return layerColl;
}

- setS~~p: 1 S~CL, ?Value
i**~ ~1-~~f~-~~~********+*********~*************+****************
* SeL tt~~ s~~2 ~~3tance var~able to the boolean value pass~d as*
* argument. ..
+***~*******~~*****~***************************~*~*************!

{

sV,ip aValue;

return se-lf;
}

- back: a\./1 e:,...1

!***
• Sets the back instance variable to the address passed as *
• argument. *
***!

{

back aView;

return self;
}

- selDesliStack: aView
; i••·••i• .. ••••• .. ••• .. •••
* Sets the the desliSt.ack instance var_fable lo.the address ..
• passed as argument. . ,, ;

{

destiSlack aView;

return self;
} -~

set.Text.Win: aView: bView
1 ; .. .

• Stc,res the, addresses passed as ·arguments .intc, the_ wi~T.extl ai;id•
* winTexl2 instance ~aria~le. _The~_e ~~gume.nts rep-~eseit~the •
* addresses of the views 1n which· strings can be d1spltyed •
.................................... ii~ ~ ¼ •• , •••••• ,.

{

winTei:t.1
winTe,:l2

aView;
bView;

return self;
}

- setAction: \int)aValL-1eA
!***~~**************
* Sets the aclionType instance variable lo the int;9ef passed as ..
• argument. •
***/

{

ast!onTyp~ = aValue;

return self;
}

- rnoou wc,rldng
; * .. *** .. •**** .. •*•*** *
.. Returns the value of the work lnstance variable. ..
... ,

{

return work;
}

- setW6rkin9: (BOOLlaBool
!*****~***~*****~*************************~***********************
* Sets lhe wc1 rk ~nstance variable lo the boolean passed as ..
~ argument. *
*******~**~*~*~**~*****************~**~*~***~**~*+*~*~***********!

{

work aE:oei l;

return se\f;
}

- (BOOLl test.Connect.
, ••• i ••••••••••
• Tests If a connection is already established at the •
* current layer. It returns a boolean which is TRUE If the•
* connect.ion Is already established and FALSE otherwise. *

··•·t
{

BDDL ok;

1 f ([[layerColl at:
{

ok = TRUE;
}

else ok = FALSE;
return ok;
}

lcurrentLayer - 1)1 connectlonStatel

(BO □ Llt.estConUp _ .

'********••····················•****************************** * Tests if a connection is. establi~hed anyware· in the stack. *
* It returns TRUE if this ls:the case, FALSE otherwise. .. *
• • * • * •• • * *** ** * ••-•• *** ***:l!:***·•••••li-°i'** •·••••·• ** **** ***** ** *****I

{

BDDL ok = FALSE;
. I n.t, __ L;

for
{

if'

}

if
{

ok
}

ok
}

=

--

TRUE;

• '· < •

return ._ok·;J1;,:
}

lnt.

xS =
. xD =
if

.; '~

,.•

._.

< i nth searchYDr I 9 I nL ink · ';\ :"' .. { :, ';, f;~~:',? ••':;_ifJ-; .. , , ,;,
I•******************•·••*********·-***•·•***********•.~~**********

.. J· -:.~-' :,.

TRUE

* Calculates the Y coordinate whet'e the red :rectangle has Lo*
* be located. ' *
*** *** * * **** ****** *** * * * ** ** ** ** * * * * * *** *~ *~*4\'.\f ***·*,** *"****.*}

{

int origin;

if (cllrrentlayer <= 7)
{

origin= ([self viewlc,wl) + ((currentlayer - 1) * (alayerHeig
}

else
{

Ot'igin = ([self vie\.llowl) + (((cLirrentLayer - 2) * (alnterfac
}

return origin;
}

- (BOOU as,•,Sk i p

I**
* Returns the boolean stored ~nto the sk~p instance var~able*
**'

{

return skip;
}

- resetFrame
'**
* Resets the frame of the initiating layer Lo white *
**'

{

[[layerColl at: (wor\l.Layer - lll frameColor: WHITE];
return selfl
}

- (BOOLlconnectionDone
!***
* Tests if a connection is opened using every layer in the *
* stack. TRUE is returned if this is the case, FALSE *
* otherwisec *
**********************************~***i**********************'

{

int i;
BDOL conDone FALSE;

i = O;
while ((i < ([layerColl size))) &&

{

if (([[layerColl at:
{

c:onDone
}

i += 1;
}

retii rn
}

- c reateL ink: (i ~;:::*!!:;~r*!::;;~:*!!iff!!LI'itfl!!~**********;:~~:~".:0:'~:•i\-c 1'J· ~ ,.~,,~~~¥~~-~-~~;,
* Creates a white bar between an entry node stack and the*
* X-25 ellipse. Its place is identified by the two first•
* arguments and its width and height by the two last ones*
***'

{

id line;

line= [[RMGView origin: x: y extent: lX: lY superview: [self su
show];

return line;
}

freeEllLink
!***********************~***~*******~**~******•*~***~*******
* Hides and frees the link between an entry node stack and*

:+~:: + :-~~~+:~ ~::! :: +.++++++ * * + ** +¼+* ** ++~~ •+ *. +. ++ •*** * ~ ****;

:re11Lin~, ~~id2J

:··_ '_.•-~• ... ,! :2lf;

(int>askSt~ckTfpe
!***'~7~~~~~~*~*~*~~**~*+•*•**~~+•***~**~.~~*~~~~~~*•*~**~~**
* Retur~s an ~ntEger wh~ch ~s the value stored ~nlo the *
* ~tackType ~nstancE var~able and wh~ch ~dEnt~fles the type*

*
:*::*~~=*:~:~~:~~~½**+************~*~*~~~*++~+**~~**~~******;

return st2ckTyp2;
}

* Returns the addr2ss of the collection conl2inin2 the names ~

* of the different layers, contained into lh~ nameColl
* instance variable. *

*

* Returns the addr2ss of the destinat~on ~t~ck of the connection*
* open~ns or closing. It is contained in the dest~Stack
* instance variable. *

{

rett~rn dest~Stac~

- F·1 l:ker:1ng

!***~**~**~*******
* Makes the current layer flicker and sets var~ous parameters ~

* concerning t.hsi instance of the Layer cl2,ss. *
~**********!

{

id idCurlayer;

i dCurlayer = [layerCol l at: (ctn"rentlayer - 1) J;
if ([idCurlayer c~nnectionStateJ == FALSE)

relLirn self;
}

{

[idCurlayer flicker];

[ldCurlayer inConnectWith: [entryNode replyConnec

[self setCurlayer: (currentlayer - l)J;
[entryNode setCurLayer: ([entryNode askCurlayer]
}

#include "objc.h"
#include "rm9.h"
#include "envir.h"

@requires RMGView, Pipe;

'** ·: * Class created for the OSI on X-25 application ., ·
• By: V ronique Nachter9aele and Dominlque de Paul
* This class implements met.hods to create and manage the different.
* layers composlng a stack .
* ** * * *** *** * * **** * * ** * •••••••••••• ******** * ** li-*** * * **t.* ** *

{ Layer: □ siSt.ack(osi,working,RMGVW,Pri'mitive,Collect.ionl .·.·._::)'.tii: '"
id conWit.h; I* contains the address of the other instance. of',tfte";.j:

Layer class with which this layer is conne·c'ted>t{•/.~'.
I* contains the address of the white bar rep~esetitjngJ(·:f:. .

an opened connection .- ..;:1:.: 0 -/i*f..-;:,_ ·.;,
int closeCc•lc,r, openColorl I* contains the pastel an __ d;brit.J:,_ian1:;_ 1:·.i,\.} .. ,,.-· ...

~ ~. ! r :~ i ! een t. if i.e r ::. ~f {::i1~~{(l?11::-~~1 {~t~~~!::\('
BDDL flickering; I* contains TRUE if Uie Layer·,.inst.arice/.flickers"f.t,.;•y;,j;: ···;;::

id aPipel

}

FALSE otherwi<e,:.. . ,t·~;r:,t>t<:\ ·<"¼ ... I.r~.".~.:.1:.··· ... ···.' .. ·· .. :· .. ~ ... :;·•,~-;.:.;:i.;:··;.;;_:.~.-.:.;·~';.•.:.1: ... ' ... ::·

+ new: aView at: (int.)x: (intly col~rl: (int)'aCoior.1·· !-,;:'''1:;}?.i,/··. ·> ... - .· .. ~- .. ,·
color2: (intlaColor2 h~.ight.: (int>aHii.ght w.i_dth.r/t)nt.)aW5dt.n • · e;,,,;:;;-~

l**************** .. ****il-****c****•*********:l,*-1:*****·**·***-f;****•******: * er-rates the ins t.ance of, Layer in t.hei~fe'l.i' -,,iii 'i i:h/aqdr~s s is '"· •' .
* passed as first. argument.~:::·The>second ·a.'ni:t 'third arguments ., ,*:•

· * id~nt.ify t~e lo~a~io_n;, 0,11 the:if~,:,{e_n}>:{~,,U.:~\~:.;fari,?:'.!'Jf~h · :,~ .. •~ ', •. ·
· * • arg:ument.s 1 dent.1 f.J>t.h~ ,.E)il.~_t;e J,c.and, .)'!P.J,\,,JJll!}hr-.Co te•1-.~r.,1~h_e tay~r,, '>·

* The; two la st. argumept.s$are:l · 1H h ,it ·- t.h.!:.Qft;the., layer.•:;:;.. ***********'******* .. , ,• . ·•t.•·t"t*f**********

'Ti':•lf • tse\f !tii ;'.li'
[[self

return'.: Jel r·; ~,\
} ,. . •·;'

""l l i ck~/,,l;:i ,.• .• ~***" · :.> '.; -,·:~a·::,I·n s'

{

if (flickering== FALSE)
{

[self installActive: self]~
flickering= TRLJE;
}

return se1f;
}

- (BO □ Ll flick

·'.

!••••••••••••******•****••••• .. ••••••••••* .. ********** .. • .. •** *
.. Returns the value of the flickering instance variable ..
********•+•••**************~***********************•*~******•*!

{

return flickering;
}

- update
f************~***************~i*~**~*****~***~***************
* Th 1 s method is e1:ecut2d when the 1 aver 1 s i ti lhe act 1 ve *
* c:oll2ct.icin.It enables the layer to flici:er. *
********************•~*+~+*~*****~•~********~~***~***~******!

stat~c ~nt ~ = 10;
if (([s.elf f,·2.1:·,eColc,1··J) == RED)

{

[self frameColor: WHITE];
}

if (i == 10)
{ i = 0;
if([self hidden])

{

[self show];
}

else
{

[self hide];

}

else i+=1;

return self;
}

- stopR,rn
!***
* Removes the Layer instance from the active collection. Thus *
* slopping the flickering motion. *
***!

{

[self deleLeActive: self];
flickering= FALSE;

return self;
}

- changeColor
'***~******************j**
• Ch~nges the color of the Layer instance from pastel to •
* brilliant or vice versa depending on the case. · *
t******'

{

if([self connectionStaiell

{"

BDDL

{ - -- - - --
[[self bkgd: closeColorl show];
}

else
{

ifl[self bkgdl == 6p~nc;;JJr)
{

state
}

else
{

state
}

return slate;
}

TRUE;

FALSE;

- inConnectWith: aLayer
!***********~***~********************** ♦ *******~***********~****
* Stcres ~nto the conW~th ~nstanc2 var~able the address of the*

\

* Layer instance to which the current one Is connected. This *
* address ls passed as argument. *
***!

{

conWlth = aLayer:

return self;
}

- inConnectWith
!**********+********************•***********~********************
* Returns the address contained in the conWith instance variable•
**************~*****~~****+******~***********~+*+*************f*/

{

return c:c,n~Jith;
}

- createPipe
!•**
* Creates the white bar in the middle of the layer when this *
* layer is concerned by an opened connection *
***!

{

int middle:

middle= (([self in_widthJ) / 2) - 5;
aPipe [Pipe new: self

return self;
}

at:_ mi d d le:. 0
color: WHITE
height: [self viewHeight]
width: 10];

- deletePipe
!***
* Deletes the white bar situated in the middle of a layer when*
* when it is concerned by an opened connection. *
***!

{

[aPipe free];
[self redraw];
return self;
}

#include "objc.h"
#include 11 rm9ah 11

#~nclt,de 1'2nv\r.h 1'

* Class created for the OSI on X- 5 applicat~on *
*

layers of an OSI•
~ By! V ron~que Nachtergaele and om~n~que de Paul
* It manages the creat~on of an ~nterface between two
* sti:,cv .. *
***********~******~***!

Interface: OsiStack(osi,working,RMGVW,Primitive,Collectionl

id aPlpe; '* contains the address of the white bar (the pipe) which
is created In the middle of an interface *'

}

+ new: aView at: (Intl>:: lint)y color: (int)aColor hei9ht: (int)aHei9ht width:
!***
* Enables the creation of an instance of Interface in the view*
* which address is passed as first ar9ument. The location is *
• ldentified by the second and third ar9uments. It will be *
* ln the color identified by the fourth ar9ument and the two *
• last arguments are the height and the width of the Interface*
***'

{

self [self relative: x: y
extent: aWldth: aHeight
supervlew: aVlew
bkgd: aColorJ;

[self showAllJ;

return self:
}

- createPipe
'***
* Creates the Pipe Instance In the middle of the interface when*
• It Is concerned by a opened connectlon. *
****;*****·** ******** **** * *** *** ** * *** *** ** ** * * ** *** ***** *********I

{

lnt inidd\e;

in width] / 2) -:- 5;
new:-self
at: middle: 0
colorJ WHITE
he;i gh:t. i' (self

.. i!?.Xf {j~ ••.f MA',;;:Aw "2.u;:s
- ·deletePi,if

·. /t:1ffe"f lt:r:.,m,, ...
{

[aPlpe free];
[self redraw];
return self;
}

nc tJde il0b Ceh'1

-# n c u d ~ ,. rrr1 . h n

nc Ude "r~t~I ir.ht>

@requ~res RMGV~ew;

* Class created for the OSI on X-25 applicat1on *
* By: V ron,qLJ2 Nacht2r9aele and Dom~n~que de Patil *
* It manages the creat1on of th2 wh~te bar w}1~ch is created ;n the *
* m~dd1e of an ,nterface or a layer ~hen they are c0nc2rnEd by ~n *
* opened connection

Plpe-: Envir(ci=.i ,wori~ins!F.:MGV~JrF'r1rLJ~t1v2;Co1 lecl1cn)
{

}

+ new: aV~ew at: (~nt)x: (int)y color: (int)aC0lor he~gb (int)aHeight.. width:

!*********************~*************************~*~*************
* This method enables the creat~on of an instance of Pipe *
* ~n the vie~ wh~ch address is passed as first argument. *
* The locat,on is identjf~ed by the second and th~rd arguments *
* It.s cclor , ~ ldentlfled by lhe fourth arsunenl and the lwo *
* lo:=.t, cn2s represent its height and w1dlh. *
~~***************!

{

i nt i;

self= [self relative: x: y
ed,ent: aWidth:
stiperview: aView
bkgd: aColorJ;

[self showAl lJ;

for(l=2; <= aHei9ht; i++)
{

[self size: aWidth: iJ;
[self show];
}

[sE'.lf showAllJ;

rE'.lurn self;
}

- modifyHei9ht: (inllaValue
!**************************************~***~~*~*~*********~*****
• Modifies the overall height of the Pipe Instance and sets lt *
* to the height passed as argument. •
*******************~*******************************~*********+*!

{

[[self size: 10: aValueJ
redraw);

return self;
}

- mod1fyHe:·i9"ht2: (inl)c-!.Va.1ue:
'**~+~+*~~*~*~~+~~~*·~~•+~¼f~*•~*-*~~~~~~~~**~~~+~~-~~~~**~*+~•·

or thE P~o~ ln~ta~ce on the~·_::~~ ~t1t se~~
~ : i:, ·~. ;::, 'A ~- e Ci ;- ~-· .:, rr t 1·. ~ d 1 r t 2 r·· ~ n c '=" :, f :. ~-. ? : 1_.r •· :,-· €:- ~·, : : ,:; l- ~ ~-- h E

~- ~ ., • • • •• • . . . -'- + ~ '. "" . . • ' -1- ,• . C ,. ... - ,:- •• ... • - ·,· •· • • -'- • ~ •• L. - .· -'- • •. - •,'A.•• .. ••••'.,. C,

t. 21'.i; ~

:;, .L ~· 2 J

Appendix 3 : Example of mainClass.m file

In this appendix, we give an example of mainClass.m file.

#~ncl~de i,Gb c~h 11

#~nclude '1 rm .h 11

#,nclt1de ''en ~r~hu

#defjnE RMG_CLASSES Sysicon1RM Line,RMGVL~ne,RMGHL~ne,\
RMGRect,RMGA:t onl,RMGAct~onS,\
ScrlBar,XY_lnd c,JoyStlck,RMGZaxls,\
Fi}·tur11,F,xtur171Fixtur21,RMGHisl,\
RMGXYPlot,RMGGrid,RMGCirBox,Dial,RMGBall,RMGBall2,\
RMGPattern,RMGStrlp,RMGAxls,\
IconMn9r,IconSModel,\
Strin9Model,DlamondModel,CircleModel,ElllpModel,RectModel,\
MTreeActOne,MTreeActPad,MTreeActGrp,Menu1_1,Menu1_2,Menu1_3

ldefine PP! CLASSES ObjGraph,Set,Dictionary,Point, Dlctlonary,SortCltn,Assoc,\
AscliFller,Stack,Strlng,Sequence,IdArray,IntArray,BytArray

#define ENVIR RMGModStrD,RMGModStrl,RMGModStrE,RMGModStrS,RMGSpacStr,\
CFunctlon,Envir,Resource,FileApp,\
DlrBrowser,FlleMTree,DlrMTree

#define COLOR MAP ClrMapEdlt,ClrMTree

#define IMAGES IconEdlt,IconMTree

#def~ne CLIP BOARD IconClpBrd,ICBMTree

#define MORE IMAGES SunRaster,PatrnEdlt

#define DOCVIEW

#define CLOCK

#define TERMINAL
#define BROWSER

#define VALUES

DocEdit,DocVlewer, Do=VMTree,DocEMTree

Analo9Clock, AClkMTree ,Dl9iClock, DClkMTree

FlleSBwsr,FSMTree
ClsBrowser,ClsBSMTree,\
Ms9Browser,Ms9BSMTree,\
ClsTree2,ClsMTree,InsVXtract,InsBrowser,InsBSMTree, \
Mess,MessMTree,PtrBrowser, PtrBSMTree

Voltmeter, VoltMTree

#define DEPENDENTS ScrlStripE,ScrlSMTree,ScrlStrip,\
ListBox,ListMTree

#define JOHN RMGXBar, RMGNumLab, BarMeter,VertBarMet, BarXMTree

ldefin2 VIP Calc,warnlng,pr4,NetPanel,MMEdlt, RMGHplb,RMGGpio,\
PanelMTree, Thumbwheel,ThumbMTree

,.,, ~~:

~ .: ~-- :
.. ;t~r·:~~l-Pr09r25,\
~~~ ~bl~, C~3:~str~n9 

t•C2f ~ ~H:- SC.~ t:t•~ .: 2 :::;~_:,: ~· -··-;_ '::: ~,::: · F'c-.rL.F=-"t·: ~- s 1;: s • :="2r·, chi l i., r,·;. ?;;:rt_ F·t~- ;·"'t=-e, 
i,.., .:. ~ t-;' - .:: -1 - •·:;:. l i=- ;''.1 t·-~ c 

tr d 1=- f l n t= S 1 rn u 1 ::-. 1., ~ ,: ;·: ;=;; ;- ~: ~i ~- r L. Er 

#define F'HASOF; 
#define SMITH 

-~M:~~~- Se~~~cdel-D~ffus~o~ ~:~fi~.7res,Latt~ce 

~2nM0c~l-VN~tM~,d~l,NullM0jel~\ 
:c~0d~l,~1f2M0d~l,~~feDja5 

!cDes,3n,!:DMTreE,IcN~twor~,!cNelwMTree,IcNode,IcConnect 
~cSt~cks,IcStMTree,Iclayout,IcLtMTree,IcMessArea,IcMesMT 
lcBox-IcD2srul2s,IcNet~orkAr 2 a,IcSt~ckArea,IcLayoutArea, 
IcMas~Area,IcMask,IcDesrArea,IcElmntArea,IcElmntMTree,\ 
1:Elmnt,IcLine 

'***********************¼***~*~***~•**************½********~******** 
* Classes of COLDS Member FUNDP Namur BELG1UM * 
*~****~***********+**++*****1~**k*******~*****************~********i 

#deflne DCO Flam, Ftametat 

!***********~~*****~*•***~***~~******************+**+*************** 
* Classes of COLDS Member FUNDP Namur 2 BELGIUM * 
f*****~*********~**~*********~****************~********~***********I 

#def~ne □ Sil P~pe, L~yerl Interface, OsiStackJ Osi1, Osi1MTree 

!****~*****~*~*******+****~**+****•************ ➔ ******************** 
* Classes of CO~OS Member Ecole Cenlrale de Lyon * 
**~*********************~***t~*************************************I 

#def~n2 TROTE~~ Sho~C0l1 Trst~kMTree, Trotek 

#define ECLT □□LS EclModStrl, EclVMTree, EclView, Ecllcon, \ 
EclStrip, EclButton, Ec1Plot 

#define PONTMONO PontMono, PoMoMTree, PoMoCalc, PoMoDes 

#define TD TDlines,TDlinesMTree,RMGActionPar,TDtestMTree,TDwheels,TDspring,TDfun 

#define POT Potentiel,PotMTree 

#define AMPLI GeneBF,GBFMTree,XGeneBF,XGBFMTree,MaskMTre~,Masque,\ 
ModStr-D, Scope, OscMTree, Amp l i, AmpMTree, XAmpn, Inv Amp 1, \ 
Electron, EGMTree 

'**~**'*********************************************4*************** * Classes of COLDS Member IPN !Kiell. * 
******** * •~ *** * ** ** * • • *** ** ** * * * ** * ******·***.****it****************** I 

#define LEGS LEGS_Dummy, \ 
Graphix, Buffer, ModStrD,~ModStrl, ModStrS, LegsActO, \ 
PolntDoub, RMGNewLlne, LineView, RegionView, \ 
BounceBall, BouncPartic, FieldPartic, \ 
Hello, HelloMTree, Latte, LatteMTree 

#define FIXMENU FM_Dummy, FMView, \ 
ButtonView, ButtonEnvlr, Controller, FixMActl, \ 
!= ~ ::• ~'! ;-\ c t 2 , F 1 x t-1 F. c t. 3 , Up d ate I t em , U pd T,:; 9 8' l e ! \ 

=- l ::'t--1:=~*,L; It-er~ .• ;";::g9· l 2 I tern. Fi F:M2~HJ 'j F 1 x~1r~Tret::, Tool !I, 1 t.., \ 
:.:,1 c•sAp~ ls 

~oef~n~ ELST~- E~_DtJ~~yi 
Icc,:··,~Ti,,ct3r IcQnMTt.,ci..4- 0:")MTP.ci.Sr 1ccn~~T.l.~t6~ \ 
Gt!,_!~\":;:.,_::::1...:-.:. l.:c:··,·<-f!:~1..-:::'.• lcc,n:<:-~:t.::,~. :cot"ir~;,ct7, 

I:":=.: :r-•-;:...:::-_~:_; !";~~---::i=:,::_:tl,_:-

'~ 
LU! 

~ ~ :_: :_ :.:.:: 1::', :· 1 a•'. :. ·:::: i: i_, = .-::, t·1 F ~ \ 
::. .. :;-_I::·- ::-c. 1,,,. ·:· .. ; :: = 1\-~ • =- ~ =- C r: ~~ ! yJ P.. D p \ 

. • r:. ~. L :_, ,_. ~• ,-.., T, \ 
- €.- -· :··:,.: ._ • ;""!~ : : • 

~::.::. ,-, 



~--· .[ 

e E ,•·· F: e p . S y :::. t.. e rn \.' i ~ ;~· - ·=: '.-" '=· E ,~ ; -t..;' ~ 1.,., , -.; ~- 1-... 1 i 2 "'' 1·1-:- ~ 

,.::.; -~ 2 ~ l Sy=· l t:" ~L - t, :=: 2 l l :::· ';' ; ;::- r·1 - ·::. ;"1 D. p C t_. n . ,:~ '::' 1 · .. 1~' i c: :,.,: :-1 T . 
1 ' - :=· r t. -:= • C ·; f= i t ~ !'i r", 8 r 1 l :·, -r -:1 t1 n :i r· , '..... ~ ,·1 h: 2 c t, s. . L 1 ti ·.,..! i t:' w ·:, _. 

:._-1 .. '._.e: 

+- ;_ r , .. -- .· - ~ ..,.- ..,.. ~ ,-. _;_ -'-, - .- .-. - . ~ ·-. ,. . ~ ; .. : :: .- . ; ·, ' ~ . :. ,, .... - . ~ -· 

#define ~!~URCONT NellrCont, NeurCMTree 

#def~ne MODELS Net~rModels, ModelMTree 

#def~n~ TR~INING couchetJ 

#define Crystal 

#if LIN~< 

' ... - -- ,.: ·_ ~ 

C: . 3. 1' 

* 

#d2flne INh 
#end if 

Aout,In~Appl,InkMa~n,IniObjc,InkSym~OrdC0ll~OrdCollt 

• _Ur. r,1::,,;::.. 

#end 

::.!_ 1...· '._. 

~~-reef :;.:l~.C:'.=:"; 
DOC's/IEW, 

EROi.-!SC:F .• 

Jr, 0,GES, 

-= ·-· .. ;:::..::·.:E, 
-:; '=."'1 G 



lien d, r 
#1fdef STi',GE11 

USR_F'RDG1 
#2nd1f 
#1fdef STJl,GE!lA 

F'ROGMATRIX, 
#endlf 
#ifdef STAGE12 

Slrnulal-ionJ 
#end1f 

#1fdef ST,\GE14 
NETl-JOF:K 1 

#2ndif 

#ifdef STAGE15 
FTY, 

#end1f 

#ifdef STAGE18 
TRAINING, 

#end if 

#ifdef STAGEED 
PHASDR, SMITH, 

#end if 

#ifdef STAGEDE 
-ICDESIGN, -

#end if 

#ifdef STAGELY 
TROT EK, ECLTOOLS, 

#et1dif 

#ifdef STAGEMU 
TD, 

#end if 

#ifdef STAGEPA 
AMPL I, POT, 

#end if 

#ifdef STAGEKI 

PONTMONO, 

LEGS, FIXMENU, ELSTAT, CELLSYSTEM, 
#end if 

#ifdef STAGEMI 
SIMAUTOMI, NDAUTOMI, TURING, AUTOMI, 
NLNET, NEURBIN, NEURPROB, NEURCDNT, BIO, MODELS, 

!lend if 
I 

#ifdef STAGENA 
DCO, a 

ltendif 

llifdef 

#end if 

#if 

#endif .. , 

\ 
\ 



Appendix 4 : Example of individual makefile 

In this appendix, we give an example of individual makefile. 



OF!= -q -u -N -nReta~n +ffpa 

= • ! . " 

.,/.,/.r/SCI N C \ 

DF'TISL = -l/L-1~ . ..-./ :oc:.::, l/1 it,/ lnV. 

cp [CPJ_* .. ! .. /. ~!CF 
o.r ruv osi.a $?; 
/bin/rm -f $? 

os~.oL~t:; cd .~/ . . /.p/; make os~ .out 
.SUFFIXES 
.SUFFIXES .m .a 
.SUFFIXES 
.. SUFFIXES 

. m • o 

. m • r 

f ---:::, 

.m.o: $(COMPILE) $(OPT) $(0PTISLl -c $( ;cp C $* .. / •. / .. /CP ;cp P_* .. / .. ! .• 

• rn. a: 

.. m. r: $!COMPILE) S(OPTl -c $( 
/usr/loca1/l~b/~nk3.3/~nkstamp ~$*~c > $*1.c 
cc -c S*I.C 
mv $lfl.o $lf.r 
/bin/nr, -f S*l.c 
/bln/rm -f $*.c 

clean : ; /bin/rm *-o C_• P_• Ce11SystemApp1 

dot..RF1les = .r 

DDTRFILES : □ si!.r Os\lMTree.r OsiStack.r Layer.r Interface.r Pipe.r 

CellSy;temAppl : $ldotRFlles) 
ld -dr -N $(dolRFlles) -o CellSyslemAppl 

cp [CPJ * 



Appendix 5 : Example of the environment's makefile 

In this appendix, we give an example of the environment's makefile. 



COMP I LE=obJcc:i: 3; 

.PRECIOUS: envlr~a osl.out\ 
CLRMAP/clrmap.~ CLOCK/clock.a DOCVIEW/d~cvlew.a\ 
BROW,;SER/browser. a I CONS/ l con. a'. ICONS/icon 1. a SC I ENCE/science._ a\ 
PANEL/panel.a METERS/meters.a US_RPROG/prog.·a SEMI/seml.a \ .. 
NETStnet.wo:rk.a.NETS/net.1.a SHAPE,/.Shf!pe.a PT)'/pty.a TRAINING/training.a \ 

. COLOS/NAMURJOSI 1 / os i. a , COLOS/NAMUR/DCO/ corbygy ~·a c\'~ 
, •, ~,~: '. < ~2 ;.: t • '. ~.·:•· '~. :: . .. ~;fi:£;,i~\:.::~:f~~~-:.~• -~•:· .. ~•·'.:--''"• '.:;_~•.·. •>:._••,_.."•~'.r;<= 

OPT -q ,, ~t.i, ,f:-:}::11).N~LUDE --:I•.:.tc;:J:>,/ ,.;;.p · . · toc,a1(t_!blo_bjc3:~,,1i;,; .. , ,, -

~i~!~!I!'.f ;;:;:!ii1!1~!iiillttilit{:~i\if f ;:: . 
LIBISL :;/~:~r ·· ;\;J,bJobj~3:3- 1s . _al(J1bllnk3.3/1nk.a 

·~-•,;·-~c':'k· ,·cf.?c.' ,Xgttt 

. ::~~:~:~~iiY,.", ijf~~f~i ii,r~t~R~~~tit~i(i'~:t"1iE\···· 
. •:.:c: .. _,enyjr.·~ aJJU'IG.ModSt.rF.o),: .:enyJr_,;aJRMGl1odSt.r.E_. o L \ -; 

'_'.:;:_,:,:,~~lr '<a~tRMGModSt:FS.ol \ ... -/.,_·-~/}',,>,- ;':',;:s•;c: ,·-•· :· :· _.· 
.. ,, .. ,_, . r~_eeAc~:,'or ' . ,/n'~ir>{a.,'!MTreeAdl3ar.o) \,. 

Tree~ct.Pad.o)"envir;a(MTreeAct.Grp.o) 

•. _- 1:~t;t~~:-1i~t:·:~~-~t{i:(~r.:t1iir~'~\-~i~:tt}i' 
:/rBr~wser. o> env i r; a< Di rMTree ~ ci >~1) 1,i;f>: 

. ,lleApp.ol envir~a(FileMTree.o>·- · .:1~~{/;tii:~!:;f};~? ~? ~c· $ <?: .o·=.m>·· 't:t<- -

# ************"stage 2 ************** uses P_colormap 
CLRMAP/clrmap.a : CLRMAP/*,DI ; ( cd CLRl'IAP; make clrmap,,a);·:' 

-~ ·-'~ 

:L:::::::::~:: :~:::/:, :::::::::~:::: ::: : ': ~ :::~: :t.~} :f tf Jj,¥ 
DOCViEW/docview.a: DOCVIEW/*.m ; ( cd DOCVIEW;'make docview~_a).;',.j:,,.~i,,,.· 

# ************ stage SA *****.*********~ ~s~} P_b~iws~i---?ff~~i {:'};~f~~;'~:;it}\:t 
BROWSER/browser.a: BROWSER/*.m ; - (cd BROWSERt make browser:·.aT ·,·c. -_:,_·. i, ,.: <-'•; 

#************stage 6 ************** use 
ICONS/icon.a: ICONS/•.m; (cd ICONS: make 

-~-"·:·~ " - . .; .: ~.:/ ... ' . 

P_icons 
con.a> 



I************ stage 6A ************** uses P icons 
ICONS/icon1.a: ICONS/•.m; led ICONS; make ico;.a icon1.a 

#************stage 7 ************** uses P science 
SCIENCE/science.a:SCIENCEJ•.m ; led SCIENCE:-make science.a 

I************ stage S ************** uses P_diagram 
PANEL/panel.a: PANEL/•.m ; led PANEL; make panel.a I 

#************stage 10 ************** uses .P_indicator and p-Nu.Lab 
METERS/meters.a:METERSl•.m; led METERS; make meters.a I 

I************ stage 11 ************** uses P_userProg 
USRPROG/prog.a: USRPROGl•.m ; led USRPROG; make prog.a I 

#************stage 12 ************** uses P_diff and P simul 
SEMI/seemi .a : SEMI/•.m; (cd SEMI; make se;mi .a I 

I************ stage 14 ************** uses P_network 
NETS/network.a:NETS/•.m; led NETS; make network.a I 
NETS/net1.a:NETS/•.m; led NETS; make network.a I 

SHAPE/shape.a:SHAPEl•.m; led.SHAPE; make shape.a 

# *************** stage 15'.******-********************* 
PTY/pty.a:PTY/•.m: led PTYI •ake pty.a I 

• •'. .• C 

# ****************stag, 18 -*********• uses P training , 
TRAINING/training.a: TRAININ_G/;*•m; led TRAINING; make trainins:_:>. 

#****************stage ED <Heriot-Watt, Edinburgh} ******* 
#COLOS/EDINBURGH/PHASOR/phasor.a: CDLDS/EDINBURGH/PHASOR/•.m; (cd COLOS/EDINBURG 
#COLDS/EDINBURGH/SMITH/smith.a: COLDS/EDINBURGH/SMITHl•.m; led COLOS/EDI~BURGH/S 

# **************** stage DE. <De lftl · ****;·-,,,,• -- _ - . . : ; , ;:f'_': iL; f .... _ 
#COLDS/DELFT/ ICDESI GN/ i c:des i gn. a: COLDS/DELFT /1 CDESI GN/ *. m; < cd CO(OS~/j)ELFTfI COE 

ll **************** stage i. Y (Lyon l ****~:* 1''.. :-t~~:(:rJ!1:i:<:; ,. 
#CDLOS/L YDN/TROTEK/trotek. a: COLDS/L YON/TROTEK/ *~ m; ( cd COLOS/lYON/_TROlE!(:,:{ll!ake , ,,, · -
#COLOS/L YON/ECL TOOLS/ ec l tools. a: COLDS/L YON/ECL TOOLS/*. m; ( cd COLOS/LNOtf/ECt.. TOOL.-:,' 
#COLOS/LYON/PONT.MOND/pontmono. a: COLDS/L YON/PDNTMOND/ *. m; ( cd COLOS/L:Y°ON/P0 0NTMON 

:~;~;;;~t~~~:;;;;td !;~9~~~gs)~~~~~ :~T;;:::7* I cd COL OS/MURCIA/TD;'. maktZI0tr -~ 

; 1'0,~,.:;;·;l~**A*~>t:!~)jt.-~se. PA ;·iP:~; s > ~****!f* · _ . :::'?}-~-;._.~_.,. 

k I Lg~?·:•i~~g~1 /,~!!' ,;;.~~~~:::~:::~·~~~: ;·~'.: ~[~~::~:i~~~f i~i~t~~:::, f ;i~t·· 

OPTS"" 

STAGE! 
STAGE2 
STAGE3 
STAGE5 
STt>.C:E5A 
STAGE6 
ST 1\GE6A 
STAGE7 
STAGE8 

$ WORM ALI 

= en•.,rir.a 
CLRMAF'/clrmap.a 
CLOCK/clock. a 
DOCVIEW/docview.a 
BROWSER/browser.a 
ICONS/icon.a 

= ICONS/icon1.a 
SCIENCE/science.a 

= PANEL/panel.a 

l.;□SlKIEL'/FI XMENUI•. m;, (cd COlDS/t(tEG'iF:fXMENUi;;'m-"i~\}._•L;; l 
L'/F!-STAT /•-."m:; ( c:d COLOS/K.~J.i'iELSTATt{ri(aJie);:)?'fl£'kl,: 

OSj~IEf/CELLSY_SJE"M/_~._m;,~_,<cd :c □L~?/K_IELIF'.i A\~:J.,~ 
.i\;;tl!H~H;;~* ,, 0{' ,· · '. _';t .:: · : \:t~\f\}~ 

·.s1,HAUTO.MI"ff..m-- ;c(cd COLOS/MILAN/S .' :),,-
, /,,jl:~.m_,.;_ (cd~ COLOS(MILAN(NDAl,J.•,io, ·'!;? :,; 

. tc: d :.coLOS /.!'I I LAN/ JU~_I,N(H~ 1·• , ,+,- • 
' . frK-eot::os_ /MlCAN~:.:o;rtil'i . 

i' .. ·-lt.:AN)J,4t•1_-~.,k\.,,.; 

·o.s').-11:f'c"\'I 
-ti~ 'a'" 



STi'.G 10 
STAG 11 
STf,G 1 ~· ~ 
STA,G 14 
STAG ·~ l ..J 

ST P,G 13 
STAG ED 
STAG DE 
STAG LY 
STAG MU 
STAG PA 
STAG hI 
STAG Ml 

METERS/meters.a 
USRPROG/pro9.a USRPROG/PROGMODEL/Pro9Mode\.a 
SE:'"11/seroi.a 
NETS/network.a SHAPE/shape.a 
PTY/pty.a 
TRAINING/tralnln9.a 
COLOS/EDJNBURGH/PHASOR/ph2sor.a COLOSIEDINBURGH/SMITH/smlth.a 
COLOS/DELFT/ICDES!GN/lcdesl9n.a 
COLOS/LYON/TROTEK/trotek.a COLOS/LYDN/ECLTOOLS!ecltoo\s.a COLDS/LYON/ 
COLOS/MURCIA/TD/td.a 
COLOS/PARIS/AMPLl/amp\l.a COLOS/PARJS!POT/pot.a 
COLDS/KIEL/LEGS/legs.a COLOS/K!EL/FIXMENU/f~xmenu.a COLOS/KIEL/ELSTAT 
COLDS/MILAN/SIMAUT □ Ml/slmautoml.a \ 
COLOS/MILAN/NDAUT □ MI/ndautom~.a \ 
COLDS/MILAN/TURING/turln9.a \ 
COLOS/MILAN/AUTOMI/automata.a \ 
COLDS/MILAN/NLNET/neura\.a \ 
COLOS/MILAN/NEURBIN/neurbin.a \ 
COLOS/MILAN/NEURPROB/neurprob.a \ 
COLOS/MILAN/NEURCONT/neurcont.a \ 
COLOS/MILAN/BIO/blo.a \ 
COLDS/MILAN/MODELS/model.a 

STAGENA2 = COLOS/NAMUR/OSI!/osl.a 
STAGENA = COLOS/NAMUR/DCO/corbugy.a 

ALL $ (STAGE!) \ 
$(STAGE2)\ 
$ (STAGE3l \ 
$ (STAGES) \ 
$(STAGE5A) \ 
$(STAGE6l \ 
$ CSTAGE6A) \ 
$ (STAGE7) \ 
$(STAGES) \ 
$(STAGE10) \ 
$(STAGE11) \ 
$ CSTAGE!2) \ 
$ (STAGE!4) \ 
$ (STAGE!5l \ 
$(STAGE13) \ 
$(STAGENA2) \ 
$CSTAGENA) 

ALLSTAGE -DSTAGE1 \ 
-DSTAGE2 \ 
-DSTAGE3 \ 
-';DST AGE5 \ 
-DSTAGE5A \ 
-DSTAGE6 \ 
-DSTAGE6A \ 
-DSTAGE7 \ 
-DSTAGE3 \ 
-DSTAGE!O \ 
-DSTAGEl 1 \ 
-DSTAGE12 \ 
-DSH.GE14\ 
-DSTAGE!5\ 

-DSTAGElB\ 
-DSTAGENA2 \ 
-DST AGENA 

~ALLSTAGE Is used to swlLch mainCl~ss.m 

ALLLIB = $(ALL> $(LIBRMG) $ClIBISU $(LIE:) 

osi.out $(All) CFunctlon.o Resource.o main.o malnClass.o 
objcc3.3 $(OPT!) $(0PTISL) CFunctlan.o Resource.a main.a malnClass.o S 

env 
abjcc3.3 $(OPT!) $(0PTISL) CFunction.o Resource.a main.a mainClass.a $1 

maln.o: main.m I objcc3.3 $IOPTALL1l -c maln.m 
malnClass.a: mainClass.m CP/[CPl_* 

objcc3.3 $IOPTALL1l $IALLSTAGEl -c -cc □ pt:Nt60000 -as □ pt:NslOOOO malnC 

.SUFFIXES 

.SUFFIXES 

.SUFFIXES 
.m • a 
.m . o 

.SUFFIXES .m .r 

.m.o: $IC □ MPILEl $(OPT) S( □ PTISL> -r S( 

. m. a~ 
$ (COM"ILE> $ <OPT) -c $( 
/usr/local/1~b/lnk3.3/~nkslamp ($*.c > S*l.c 
cc -c $+I.c 
mv $+--1.c, $*.r 



/bi n/rm -f $•I. c 
/bin/rm -f $•.c 

clean :; touch •.m •l•.m; /bin/rm [CP]_* */[CPJ_• 

cp :; touch mainClass.m 

E : osl.out; os,.out 
Z • , /bin/rm core 
t : ; /bin/rm osi.c,ut; make osi .,:,Lit 

allClean:; touch •.m •l•.m 

, ..... {. 



Appendix 6 : Screen copy of the Video and OSI on X-25 applications 

We give in this appendix a screen copy of the Video application and a screen 

copy of the OSI on X-25 application. 



. ·---- - -· ~-- . ~- ·--- --- - - .. 

Video Control 



X 25 



Appendix 7 : RMG directory structure 

We give here the RMG directory structure (from [FAZARINC, 89]). This will 

enable the reader to find easily the directories we talk about in this work. 



[_!_~~~~ 

l_ NOLE/ t 

l HETMORK/ I 

_DORTA/ 1 ..• 

~a] 
~!fTTERMI J 

I SENI/ ! 

I L U~R!~~~~tt/ t ... 

I DATA/ l L UB/ l 

[ BROUSE~~ 



Appendix 8 : Example of A.menu file 

We give here an example of the A.menu file. 



51 12 10 
Ana\c,gC\ock 
Auti:imata 
BarMeter 
Cale 
CellNet 
Circuit 
ClrMapEdit 
C\sBrowser 
C1sTree2 
COLlCheN 
Diffusion 
DigiC\ock 
DocEdit 
Doc Viewer 
Electron 
ElStat 
Ftam 
1 c ,:.r-,C l pBrd 
lccr,Edil 
InsBrowser 
Latte 
LifeDiag 
List.Box 
Mess 
Mc,\eVie•,_1 
MsgBrowser 
Net.Panel 
Neural Net 
Neu rMc,d e \ s 
0s i 1 
PanelDia9 
Part.Physics 
PatrnEdit 
Pendt~ lum 
Phasor 
Potentiel 
ProgEdit2 
PtrBrc,wser 
PtyApp 
ScrlStripE 
Sun Raster 
TDfunction 
TDiso 
TDlines 
TDspring 
TDwave 
TDwheels 
Toolk it 
Trotek 
VertBarMet 
Voltmeter 
I* 34 items; 

maximum 12 characters; 
display 10 items on screen*' 

I* note the names above must correspond to class names *I 

,, 
·' 




