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Abstract: The conversion of carbon dioxide into valuable chemicals such as cyclic carbonates is
an appealing topic for the scientific community due to the possibility of valorizing waste into an
inexpensive, available, nontoxic, and renewable carbon feedstock. In this regard, last-generation
heterogeneous catalysts are of great interest owing to their high catalytic activity, robustness,
and easy recovery and recycling. In the present review, recent advances on CO2 cycloaddition to
epoxide mediated by hybrid catalysts through organometallic or organo-catalytic species supported
onto silica-, nanocarbon-, and metal–organic framework (MOF)-based heterogeneous materials,
are highlighted and discussed.

Keywords: carbon dioxide; cyclic carbonate; heterogeneous catalysis; ionic liquids; carbon nanotubes;
fullerene; graphene; MOF

1. Introduction

1.1. Carbon Dioxide: From Waste to Feedstock

The design of new technologies able to mitigate the environmental impact of CO2 is an issue of
growing interest from both academic and industrial standpoints. CO2 is a common product of biological
processes such as aerobic respiration or the alcoholic fermentation of sugars. However, carbon dioxide
emission is also associated with the combustion of fossil fuels arising from anthropogenic activities for
the production of energy, transportation, and industrial processes.

Since the Industrial Revolution, the concentration of carbon dioxide in the atmosphere steadily
increased, becoming an environmental issue to be addressed. In this scenario, carbon dioxide capture,
utilization, and storage emerged as tangible processes moving toward sustainable development [1].
Focusing on its utilization, carbon dioxide found application in separation processes, dry-cleaning,
refrigerators, fire extinguishers, in the food or agrochemical industry, or as a solvent for several
reactions under supercritical conditions [2].

The conversion of carbon dioxide into valuable chemicals is attracting the attention of the
scientific community due to the possibility of valorizing industrial waste into an inexpensive,
available, nontoxic, and renewable carbon feedstock [3–5]. Moreover, carbon dioxide was tested
as a one-carbon (C1) building block in organic synthesis for the preparation of several chemicals
including methanol, urea, lactones, various heterocycles, biodegradable polymers, and carboxylated
structures, among others [6,7].

Scheme 1 summarizes some industrial organic syntheses using carbon dioxide as a C1 synthon.
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Scheme 1. Industrialized organic syntheses using CO2 as a one-carbon (C1) feedstock. 

All these processes make CO2 a key pillar for the sustainable and resource-efficient production 
of chemicals [8]. Independently of the specific application, the drawback of the conversion of carbon 
dioxide is mainly represented by its elevated thermodynamic stability. The carbon atom in CO2 is 
present in its most oxidized state, resulting in a low molecular reactivity. To overcome this problem, 
highly energetic starting materials such as hydrogen, epoxides, and amine, among others, are usually 
employed together with a catalyst able to properly decrease the activation energy of the selected 
reaction (Figure 1). For doing so, in the last few decades, several catalytic systems able to work under 
both homogeneous and heterogeneous conditions were developed in the perspective of greener 
chemical processes. 
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Scheme 1. Industrialized organic syntheses using CO2 as a one-carbon (C1) feedstock.

All these processes make CO2 a key pillar for the sustainable and resource-efficient production
of chemicals [8]. Independently of the specific application, the drawback of the conversion of carbon
dioxide is mainly represented by its elevated thermodynamic stability. The carbon atom in CO2 is
present in its most oxidized state, resulting in a low molecular reactivity. To overcome this problem,
highly energetic starting materials such as hydrogen, epoxides, and amine, among others, are usually
employed together with a catalyst able to properly decrease the activation energy of the selected
reaction (Figure 1). For doing so, in the last few decades, several catalytic systems able to work
under both homogeneous and heterogeneous conditions were developed in the perspective of greener
chemical processes.
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The activation of carbon dioxide is pivotal for its effective transformation. The basic features of
CO2 reactivity must be considered to reach a good conversion of this molecule into useful chemicals.
Carbon dioxide is a linear molecule, in which the carbon–oxygen bonds are polar, with a net partial
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charge on carbon and oxygen atoms. Therefore, the carbon atom, bearing a partial positive charge,
can behave as an electrophile. On the other hand, the oxygen atoms, with a partial negative charge,
can act as nucleophiles. Owing to the linear geometry of the molecule, with the two dipole moments
opposite each other, the overall molecule is apolar. From the above, the amphoteric CO2 behavior
leads to two possible activation pathways: the oxygen atoms can exhibit a Lewis base characteristic,
while the carbon atom can play the role of a Lewis acid center. As the electrophilic characteristic of
carbon is higher than the nucleophilicity of the oxygen atoms, carbon dioxide is a better acceptor than
donor of electron density.

Herein, the conversion of carbon dioxide into cyclic carbonates via reactions with epoxides is
discussed, focusing on heterogeneous hybrid materials based on catalytic active species supported
onto silica, metal–organic frameworks (MOFs), and carbon nanostructures. Several reviews on the
production of cyclic carbonates are proposed for a detailed overview covering a broad scope of catalytic
systems working under both homogeneous and heterogeneous conditions [9–16].

1.2. Carbon Dioxide Conversion into Cyclic Carbonates

One of the most interesting pathways to valorize CO2 is represented by its fixation into epoxides
for the production of cyclic carbonates [9].

Cyclic carbonates are organic compounds with interesting properties, such as low vapor pressure,
high boiling point, low toxicity, and biodegradability. Based on these features, cyclic carbonates find
widespread applications as aprotic high-boiling polar solvents, electrolytes for batteries, precursors
for polymeric materials, fuel additives, plastic materials, and intermediates for the synthesis of fine
chemicals such as dialkyl carbonates, glycols, carbamates, and pyrimidines, among others [17–19].
In industry, cyclic carbonates are traditionally prepared via synthetic methodologies involving the
use of phosgene. However, such procedures allow the production of equimolar amounts of carbonate
and chlorinated salts and large volumes of chlorinated solvents. Moreover, even if phosgene is a
versatile building block widely used in the production of plastics and pesticides, it is also hazardous,
toxic, corrosive, and difficult to handle. Exposure to phosgene may cause collateral health effects.
Therefore, its application as feedstock in industrial large-scale synthesis should be replaced with
sustainable alternative routes having a lower environmental impact. Among them, the synthesis of
cyclic carbonates from carbon dioxide and epoxide emerged as a low-toxicity alternative. For instance,
Scheme 2 shows three possible synthetic routes for the conversion of ethene into the corresponding
cyclic carbonate: (i) hydrochlorination of ethylene, followed by hydrolysis, and conversion with COCl2;
(ii) formation of ethylene oxide, subsequent hydrolysis, and reaction with COCl2; (iii) formation of
ethylene oxide and CO2 fixation. Life-cycle assessment (LCA) methodology was applied to evaluate
the ratio between the amount of CO2 emitted and ethene carbonate produced [3]. The obtained results
clearly identified the reaction between ethylene oxide and CO2 as the most sustainable route for the
production of ethylene carbonate.
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According to green chemistry principles [20], carbon dioxide fixation into epoxides for the
synthesis of five-membered cyclic carbonates is a productive catalytic process displaying an atom
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economy of 100%. In order to face the challenging thermodynamic stability of carbon dioxide, epoxides
have to be used combined with a catalyst to reduce the activation energy of the process.

1.3. Catalytic Systems for the Synthesis of Cyclic Carbonates

In this context, a growing interest toward the synthesis of cyclic carbonates via reaction of CO2

with epoxides led to the design of catalytic systems bearing Lewis acid sites for the electrophilic
activation of epoxide and/or carbon dioxide and Lewis base sites as nucleophilic species. Both sites
can be included into two different systems (e.g., the metal of a complex as a Lewis acid and the
anion of a salt as a Lewis base) or can belong to a sole bifunctional catalyst (e.g., a complex
with a cationic metal center and a labile anionic ligand). Several catalysts, working under both
homogeneous and heterogeneous conditions, were developed for the conversion of CO2 into cyclic
carbonates via reaction with epoxides. In particular, metal oxides [21], metal–organic frameworks
(MOFs) [22–24], metal salts [25], metal complexes [12,26–28], Lewis base systems [29], ionic liquids
(ILs) [30–35], and organic polymers [32,36,37] were proposed as catalysts for this reaction. Based on
the environmental impact and the cost efficiency, the overall sustainability of this process has to be
evaluated and improved according to some key criteria such as (i) the presence of solvents, (ii) the
use of metal species, (iii) the achieved yields and selectivity, and (iv) the required reaction conditions
(temperature, pressure, reaction time). The choice between metal-based or organo-catalysts for CO2

fixation brings strengths and weaknesses. Metal-based systems lead to milder reaction conditions
(e.g., lower temperature, reduced catalytic loading) owing to their ability to activate and/or stabilize
substrates or intermediates via coordination interactions. On the other hand, organo-catalysts can be
considered as suitable and safer alternative for the design of sustainable processes because of their
low cost, non-toxic nature, and good stability and inertness toward moisture and air. With the aim
to increase the catalyst lifetime, several heterogeneous organo-catalysts were developed, providing
simplified work-up procedures combined with the possibility to use them under continuous flow
conditions. It is well known that the design of heterogeneous catalysts is particularly envisaged from
industrial parties because of their simple recovery from the reaction medium and the possibility of
using them in fixed-bed reactors.

2. Hybrid Catalysts for the Synthesis of Cyclic Carbonates

2.1. Silica-Based Hybrid Catalysts

Silica gel and ordered mesoporous silicas display useful features, e.g., high surface area, narrow
range of pore sizes (microporous to mesoporous), good thermal and mechanical stability, widespread
availability, and easy covalent functionalization strategies covering a broad range of organic or
organo-metallic moieties. The huge variety of chemical modifications onto the silica surface is linked
to the presence of silanol groups. The covalent functionalization of the silica surface is usually
performed via condensation reactions between the silanol groups and a selected organo-silane [38,39].
Therefore, silylating coupling agents such as chlorosilanes, alkoxy-silanes, and silyl-amines found
widespread application. Their reaction with surface silanol functionalities usually occurs on free
and geminal silanol groups, whereas hydrogen-bonded silanol moieties are less reactive owing to
the local hydrophilic networks. Silicas are employed as supports for the covalent grafting of organic
salts in order to improve their applicability and reusability the conversion of carbon dioxide into
cyclic carbonates. In this scenario, several heterogeneous catalytic systems based on alkylammonium,
imidazolium, pyridinium, and phosphonium salts were developed.

2.1.1. Ammonium-Functionalized Silica

In recent years, ammonium salts were grafted onto silica-based supports in order to be tested
as organo-catalysts, as well as bifunctional catalytic systems endowed with Lewis acids sites, for the
synthesis of cyclic carbonates via reaction of carbon dioxide with epoxides.
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In 2015, Werner and Kort [40] reported silica-supported ammonium iodide salts as a recyclable
heterogeneous organo-catalyst able to work even at reaction temperatures lower than 100 ◦C.
As reported in Scheme 3, the synthesis of the above material was carried out by reacting
aminopropyl-functionalized silica gel 1 with 2-iodoethanol under argon at 60 ◦C. The catalytic
tests were run under solvent-free reaction conditions at 90 ◦C with a CO2 pressure of 1 MPa.
The solid 2 showed much higher activity if compared with tetrabutylammonium iodide as
a homogeneous catalyst. The co-catalytic role of the hydroxyl functionalities in the epoxide
activation was highlighted by comparing the performance of tetrabutylammonium iodide with
that of tri-n-butyl-(2-hydroxyethyl)ammonium iodide in the conversion of butylene oxide into the
corresponding carbonate (19% vs. 96%). Catalyst 2 was tested at 2 mol.% for 13 cycles affording
full conversion and excellent isolated yields of butylene carbonate (≥93%). Under the same reaction
conditions, a broad range of epoxides were converted with selectivity toward the corresponding
carbonates of ≥98% and isolated yields in the range 67–99%.
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In the same year, Hajipour and co-workers [41] grafted onto a pre-functionalized silica 3
1,4-diazabicyclo[2.2.2]octane (DABCO)-based ammonium salts (4, Scheme 4). The reaction of styrene
oxide with CO2 was chosen to investigate the influence of the anionic species leading to the order of
activity of Br− > Cl− > CrO3Cl− > Cr2O7

2−.
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Carbon dioxide conversion was carried out at 100 ◦C, under solvent-free conditions for 24 h,
using 0.6 g of catalyst for 10 mmol of epoxide with 0.4 MPa CO2. Styrene carbonate was obtained with
yields from 19% to 91% and selectivity in the range 25–99%. The most active catalyst was tested for four
consecutive cycles showing a decreased efficiency from 94% styrene carbonate yield to approximately
72% upon the fourth use due to the leaching of the catalyst under the heating regimes.

A couple of years later, SBA-15 and MCM-41 were used by Fontaine et al. as supports for the
grafting of an active ammonium salt 5 modified with a trimethoxysilane as the linker [42]. The surface
of the obtained hybrids was passivated with 1,1,3,3-tetramethyldisiloxane (TMDS) leading to the solids
6 and 7 (Scheme 5).
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Scheme 5. Grafting of ammonium iodide salts 5 onto silica supports.

Both materials were employed for the conversion of styrene oxide and hexene oxide, whereby
the MCM-41-supported catalyst was more active than the analogous ammonium salt supported onto
SBA-15. In particular, the conversion of carbon dioxide was performed using a catalyst loading of
10 mol.%, at room temperature for 24 h and with a CO2 pressure in the range 0.1–0.3 MPa. Furthermore,
the reusability of 6 and 7 was investigated over three catalytic cycles of styrene oxide. The catalyst
7 displayed higher recyclability over four cycles with preservation of high styrene carbonate yield
(99–92%) whereas the efficiency of the ammonium salt grafted onto SBA-15 decreased after three cycles
providing from 86% to 20% yield of the final product owing to some leaching of the catalyst from
the support.

More recently N,N,N-tributyl-N-propylammonium iodide-functionalized mesoporous silicas were
proposed as catalysts for the solvent-free synthesis of cyclic carbonates from epoxides and CO2 [43].
SBA-15 and a silica gel were used as support for the synthesis of the solids 8 and 9, respectively
(Scheme 6). Styrene oxide and 1,2-butylene oxide were selected as target substrates to evaluate the
performance of the solids, using a catalytic loading of 2 mol.% under mild conditions (1 MPa CO2,
100 ◦C and 4–6 h).

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 30 

 

 

Scheme 5. Grafting of ammonium iodide salts 5 onto silica supports. 

Both materials were employed for the conversion of styrene oxide and hexene oxide, whereby 
the MCM-41-supported catalyst was more active than the analogous ammonium salt supported onto 
SBA-15. In particular, the conversion of carbon dioxide was performed using a catalyst loading of 10 
mol.%, at room temperature for 24 h and with a CO2 pressure in the range 0.1–0.3 MPa. Furthermore, 
the reusability of 6 and 7 was investigated over three catalytic cycles of styrene oxide. The catalyst 7 
displayed higher recyclability over four cycles with preservation of high styrene carbonate yield (99–
92%) whereas the efficiency of the ammonium salt grafted onto SBA-15 decreased after three cycles 
providing from 86% to 20% yield of the final product owing to some leaching of the catalyst from the 
support. 

More recently N,N,N-tributyl-N-propylammonium iodide-functionalized mesoporous silicas 
were proposed as catalysts for the solvent-free synthesis of cyclic carbonates from epoxides and CO2 
[43]. SBA-15 and a silica gel were used as support for the synthesis of the solids 8 and 9, respectively 
(Scheme 6). Styrene oxide and 1,2-butylene oxide were selected as target substrates to evaluate the 
performance of the solids, using a catalytic loading of 2 mol.% under mild conditions (1 MPa CO2, 
100 °C and 4–6 h). 

 

Scheme 6. Preparation of N,N,N-tributyl-N-propylammonium iodide-functionalized mesoporous 
silicas and their catalytic performances. 

The reusability of the catalysts was found to be dependent on the nature of the support and the 
substrate. In the presence of 1,2-epoxybutane as substrate, the SBA-15-based catalyst (8) exhibited a 
constant catalytic activity for five reaction cycles (yield > 96%). Conversely, in the presence of styrene 
oxide, a gradual decrease in yield was observed. Based on textural properties and 13C cross-
polarization magic-angle spinning (CP-MAS) NMR measurements, such decline was ascribed to the 
adsorption of solid reaction product (styrene carbonate) onto the catalyst surface. Using a silica gel 
as support and an improved catalyst recovery step gave rise to a more efficient and reusable catalyst. 
Furthermore, by comparison with the homogeneous tetrabutylammonium iodide salt, both 8 and 9 
showed improved catalytic activity owing to the synergistic effect of the silanol groups of the solid 
supports. 

Turning to bifunctional catalytic systems based on the presence of Lewis acid sites, in 2012, silica-
supported bimetallic aluminum(salen) complexes bearing pendant quaternary ammonium groups 

Scheme 6. Preparation of N,N,N-tributyl-N-propylammonium iodide-functionalized mesoporous
silicas and their catalytic performances.

The reusability of the catalysts was found to be dependent on the nature of the support and the
substrate. In the presence of 1,2-epoxybutane as substrate, the SBA-15-based catalyst (8) exhibited
a constant catalytic activity for five reaction cycles (yield > 96%). Conversely, in the presence of
styrene oxide, a gradual decrease in yield was observed. Based on textural properties and 13C
cross-polarization magic-angle spinning (CP-MAS) NMR measurements, such decline was ascribed
to the adsorption of solid reaction product (styrene carbonate) onto the catalyst surface. Using a
silica gel as support and an improved catalyst recovery step gave rise to a more efficient and reusable
catalyst. Furthermore, by comparison with the homogeneous tetrabutylammonium iodide salt, both 8
and 9 showed improved catalytic activity owing to the synergistic effect of the silanol groups of the
solid supports.

Turning to bifunctional catalytic systems based on the presence of Lewis acid sites, in 2012,
silica-supported bimetallic aluminum(salen) complexes bearing pendant quaternary ammonium
groups were used by North [44] in the synthesis of cyclic carbonates from epoxides and carbon dioxide
in both batch and gas-phase flow reactors (Scheme 7).
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The influence of particle and pore size of the silica support on catalyst activity was investigated
with smaller particle sizes (<80 mm) being advantageous to catalyst activity, whereas the silica pore
size had little effect on the catalytic performance. The nature of the silica support also affected catalyst
stability, and the Fluorochem LC301 silica gave a catalyst with both the highest intrinsic activity and
the lowest rate of deactivation. The catalysts were attached to the silica through a linker containing
three or eleven carbon atoms (10, 11). The longer linker allowed obtaining a catalyst loading three
times higher than the shorter linker, but this was offset by a threefold lower activity for the catalyst
with the longer linker. After a reaction time of 24 h, the ethylene carbonate production in a flow reactor
at 100 ◦C gave rise to turnover frequency values up to 1.38 h−1. In a batch reactor at 26 ◦C, the most
active catalyst (2.35 mol.%) led to a 60% conversion of styrene oxide after 24 h, corresponding to a
turnover number of 25.5.

Jianmin Sun et al. [45] developed a series of bifunctional Zn/SBA-15-supported ammonium salts
as single-component heterogeneous catalysts for the coupling of CO2 with epoxides. The catalytic
activities of bifunctional solids 12a–d were tested on the reaction of propylene oxide and carbon
dioxide at 150 ◦C and 3 MPa CO2 for 12 h (Scheme 8). Based on the nature of the nucleophilic species,
the catalytic activity increased in the order I− > Br− > Cl− > CH3COO−. In particular, the most
performing catalyst 12a led to almost quantitative conversion and 99% propylene carbonate yield
with a turnover frequency (TOF) of 326 h−1. It is worth mentioning that TOF values were calculated
as moles of propylene carbonate produced per mole of zinc ion per hour, whereas zinc content was
based on X-ray photoelectron spectroscopy (XPS) elemental analysis. The overall versatility of 12a was
verified with five substrates bearing both electron-withdrawing and electron-donating substituents.
The recyclability of 12a was studied for five runs showing a loss in the catalytic conversion of about
20% probably due to a partial leaching of alkyl ammonium moieties, as well as a structural collapse.
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2.1.2. Imidazolium-Functionalized Silica

Imidazolium salts represent one of the most investigated active species for the design of
heterogeneous catalysts based on silica supports for the synthesis of cyclic carbonates from CO2

and epoxides. In this context, several catalysts able to work under solvent-free reaction conditions
were prepared as both metal-free systems and bifunctional hybrids endowed with co-catalytic species.
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In 2006, Xia et al. reported the first example of carbon dioxide conversion into cyclic carbonates
using a novel heterogeneous catalyst based on silica-supported imidazolium bromide ionic liquid
and different metal salts as co-catalytic species [46]. Material 13 was prepared via the sol–gel method
by reacting 1-(triethoxysilylpropyl)-3-n-butylimidazolium bromide in the presence of tetraethyl
orthosilicate (TEOS) under acidic conditions. Once characterized, the hybrid was tested using
propylene oxide as the target reagent (Scheme 9). The catalytic performance was evaluated using
several Lewis acids. Among them, zinc-based salts proved to be the most active, whereas no reaction
occurred when ZnCl2 was used as the sole catalytic species. Then, such a catalytic system composed
of an imidazolium-based solid and ZnCl2 was investigated with different epoxides and used for
three consecutive runs, showing a modest decrease in catalytic activity, probably due to the loss of
zinc chloride.

Catalysts 2019, 9, x FOR PEER REVIEW 8 of 30 

 

epoxides. In this context, several catalysts able to work under solvent-free reaction conditions were 

prepared as both metal-free systems and bifunctional hybrids endowed with co-catalytic species. 

In 2006, Xia et al. reported the first example of carbon dioxide conversion into cyclic carbonates 

using a novel heterogeneous catalyst based on silica-supported imidazolium bromide ionic liquid 

and different metal salts as co-catalytic species [46]. Material 13 was prepared via the sol–gel method 

by reacting 1-(triethoxysilylpropyl)-3-n-butylimidazolium bromide in the presence of tetraethyl 

orthosilicate (TEOS) under acidic conditions. Once characterized, the hybrid was tested using 

propylene oxide as the target reagent (Scheme 9). The catalytic performance was evaluated using 

several Lewis acids. Among them, zinc-based salts proved to be the most active, whereas no reaction 

occurred when ZnCl2 was used as the sole catalytic species. Then, such a catalytic system composed 

of an imidazolium-based solid and ZnCl2 was investigated with different epoxides and used for three 

consecutive runs, showing a modest decrease in catalytic activity, probably due to the loss of zinc 

chloride. 

 

Scheme 9. Preparation of a silica-supported imidazolium salt via the sol–gel method and its catalytic 

performances. 

Imidazolium-based ionic liquids were easily synthesized and immobilized onto commercial 

silica by Park and co-workers [47]. Typically, several imidazolium salts were grafted as organo-

silanes onto a silica surface under inert reaction conditions. The catalytic performance of the obtained 

materials was deeply studied considering both the influence of the alkyl chain length, the nature of 

the nucleophile (Cl−, Br−, and I−) as active species, and the co-catalytic effect in the epoxide activation 

promoted by zinc chloride. In particular, the activity of these catalytic systems was examined by 

considering the coupling reaction of CO2 with allyl glycidyl ether. Collected data proved that longer 

alkyl chains and higher nucleophilicity of the anions led to improved allyl glycidyl ether conversion. 

Moreover, these catalysts were stable for up to five consecutive runs without any considerable loss 

of their initial activities. 

Then, a few years later, the same research group further explored the catalytic performance of 

those catalysts incorporating different metal chlorides (CoCl2, NiCl2, CuCl2, ZnCl2, and MnCl2) into 

silica-grafted 1-methyl-3-[(triethoxysilyl)propyl]imidazolium chloride [48]. Furthermore, a series of 

imidazolium-based ionic liquids functionalized with carboxyl moieties was prepared and grafted 

onto a silica gel [49]. The catalytic activity of the obtained hybrids was studied by considering the 

effect on the imidazolium structures focusing on the nature of the anionic species (Cl−, Br−, I−) and on 

the reaction parameters. The synergistic effect of the carboxylic group with the halide anions was 

evidenced by comparison with the analogous material based on imidazolium-salt-functionalized 

alkyl moieties. Then, in order to investigate the recyclability and the applicability of this type of 

catalyst, material 14, based on imidazolium bromide salts modified with carboxyl units, was tested 

for deeper studies (Scheme 10). In particular, the solid was successfully used for five runs in the 

reaction between carbon dioxide and allyl glycidyl ether at 110 °C for 3 h with a CO2 pressure of 0.83 

MPa in the absence of solvents. Then, the applicability of the catalysts was verified with other 

epoxides (five substrates) affording high yields and selectivity corresponding to TOF values ranging 

from 8–73 h−1. 

 

Scheme 9. Preparation of a silica-supported imidazolium salt via the sol–gel method and its
catalytic performances.

Imidazolium-based ionic liquids were easily synthesized and immobilized onto commercial silica
by Park and co-workers [47]. Typically, several imidazolium salts were grafted as organo-silanes onto a
silica surface under inert reaction conditions. The catalytic performance of the obtained materials was
deeply studied considering both the influence of the alkyl chain length, the nature of the nucleophile
(Cl−, Br−, and I−) as active species, and the co-catalytic effect in the epoxide activation promoted
by zinc chloride. In particular, the activity of these catalytic systems was examined by considering
the coupling reaction of CO2 with allyl glycidyl ether. Collected data proved that longer alkyl chains
and higher nucleophilicity of the anions led to improved allyl glycidyl ether conversion. Moreover,
these catalysts were stable for up to five consecutive runs without any considerable loss of their
initial activities.

Then, a few years later, the same research group further explored the catalytic performance of
those catalysts incorporating different metal chlorides (CoCl2, NiCl2, CuCl2, ZnCl2, and MnCl2) into
silica-grafted 1-methyl-3-[(triethoxysilyl)propyl]imidazolium chloride [48]. Furthermore, a series of
imidazolium-based ionic liquids functionalized with carboxyl moieties was prepared and grafted onto
a silica gel [49]. The catalytic activity of the obtained hybrids was studied by considering the effect
on the imidazolium structures focusing on the nature of the anionic species (Cl−, Br−, I−) and on
the reaction parameters. The synergistic effect of the carboxylic group with the halide anions was
evidenced by comparison with the analogous material based on imidazolium-salt-functionalized alkyl
moieties. Then, in order to investigate the recyclability and the applicability of this type of catalyst,
material 14, based on imidazolium bromide salts modified with carboxyl units, was tested for deeper
studies (Scheme 10). In particular, the solid was successfully used for five runs in the reaction between
carbon dioxide and allyl glycidyl ether at 110 ◦C for 3 h with a CO2 pressure of 0.83 MPa in the absence
of solvents. Then, the applicability of the catalysts was verified with other epoxides (five substrates)
affording high yields and selectivity corresponding to TOF values ranging from 8–73 h−1.
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Scheme 10. Silica-supported imidazolium bromide salts modified with carboxyl units for the synthesis
of cyclic carbonates.

In 2015, a heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica was proposed as
an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides [50]. In this
study, the preparation of a novel nanocatalyst, based on core–shell ionic liquid-modified dandelion-like
fibrous nano-silica (KCC-1/IL/HPW), was applied for the synthesis of cyclic carbonates and easily
separated from the reaction mixture for reuse up to 10 cycles with an overall leaching of 3.6%.

More recently, several zwitterionic imidazolium-urea derivative framework bridged mesoporous
hybrid silica materials were prepared by Arai and co-workers [51]. The materials displayed
hydrogen-bond donor capability and nucleophilicity (Scheme 11). The solid 15d bearing iodide
as anionic species emerged as the most active catalysts showing a high structural stability. Compound
15d was tested with different epoxides under solvent- and metal-free conditions. Moreover, the material
was separated by simple filtration and used four times without significant loss of activity. This type of
hybrid represents an alternative to Lewis acid activation and avoids the use of transition metal ions.
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Scheme 11. Silica-supported zwitterionic imidazolium-urea derivative frameworks.

Recently, novel heterogeneous catalysts with a silica architecture were proposed by Aprile et al.
as bifunctional systems endowed with imidazolium chloride salts and tin or zinc inserted within the
solid support [52]. The synthetic route started from the preparation of the solid support bearing a
metal element incorporated as a single site within the silica framework, followed by the grafting of
an imidazolium chloride salt. Both Sn- and Zn-based solids (16a,b) displayed improved performance
compared to the analogous metal-free material (Scheme 12). The solids showed promising features for
catalytic applications including good surface area, reduced particle size, and acid properties estimated
via microcalorimetry analysis. The chemical fixation of CO2 into epoxides was carried out using Sn-
and Zn-based catalysts with a reaction temperature below 150 ◦C and a pressure of 4 MPa.
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Scheme 12. Bifunctional catalysts endowed with imidazolium salts and tin or zinc inserted within
silica supports and their performance in CO2 conversion.
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In the framework of our interest in carbon dioxide conversion, highly cross-linked imidazolium
networks were immobilized onto silica supports for the design of heterogeneous metal-free
hybrids bearing chloride and bromide as nucleophilic active species [53]. Such materials were
prepared by grafting different bis-vinylimidazolium salts on thiol-functionalized silica. In particular,
two bis-vinylimidazolium salts having the p-xylyl as organic linker were grafted on the silica support
through a thiol-ene coupling reaction between the thiol groups of the modified silica and the double
bond of the bis-vinylimidazolium salts, in the presence of 2,2′-azobisisobutyronitrile (AIBN) as a
radical initiator. This reaction offered all the envisaged features of a “click reaction”, being highly
efficient and simple to perform. The synthetic protocol allowed obtaining a series of materials showing
good thermal stability combined with high catalytic loadings of around 3 mmol/g. These features
are of paramount importance in terms of both catalyst recyclability and productivity (calculated as
the ratio between the amount of cyclic carbonate produced and the amount of catalyst used). Such a
study was performed under supercritical carbon dioxide at 150 ◦C, using a catalyst loading of 1 mol.%
to compare the activity of each solid with three substrates, such as propylene oxide, styrene oxide,
and cyclohexene oxide. The catalytic tests were run in a high-throughput unit that allowed reactions
to be performed simultaneously in parallel batch reactors. The best catalyst identified in this work was
prepared by supporting a bis-imidazolium bromide salt onto SBA-15 with p-xylyl as an organic linker
between the imidazolium units.

In order to further investigate the catalytic behavior of this type of material, an additional series of
hybrids [54] was designed using bis-vinylimidazolium salts having different lengths and bulkiness of
the organic linker connecting the two imidazolium units. Considering the previous results, the nature
of the halide counterion was studied, focusing on bromide and iodide organic salts (Scheme 13).
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Scheme 13. Multilayered supported imidazolium salts for the synthesis of cyclic carbonates.

The materials with iodide as the nucleophilic species displayed higher activity in terms of
conversion, productivity, and turnover number compared to their counterparts with bromide as the
counterion. A second catalytic trend was observed based on the specific organic linker; ranging from
ethyl to octyl alkyl chains, the activity of the solids increased with the length of the linker. The material
prepared by supporting a bis-vinylmidazolium iodide salt with the p-xylyl as the linker 17g was
identified as the most active catalyst in the reaction between CO2 and styrene oxide with a turnover
number of 237. The appealing features of this class of materials were also evaluated in terms of
versatility with different substrates using catalytic loadings in the range 0.6–0.4 mol.%, whereas the
reusability of a selected catalyst at 0.1 mol.% was verified for five consecutive runs.

More recently [55], we reported a series of hybrid materials based on silica-supported
imidazolium-modified polyhedral oligomeric silsesquioxanes (POSS-Imi) as heterogeneous
organo-catalysts for the conversion of epoxides and CO2 into cyclic carbonates in solvent-free reaction
conditions. All solids 19 were easily prepared following tailored procedures (Scheme 14) designed
to study the influence of the solid support (SiO2 vs. SBA-15) and the effect of both nucleophilic
species (Cl−, Br−, I−) and imidazolium alkyl side chain length. Such new hybrid materials were easily
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recyclable, as well as highly active toward the formation of cyclic carbonates, even with the less reactive
oxetane, showing higher performance in terms of turnover number, productivity, and selectivity.
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Scheme 14. Silica-supported imidazolium-modified polyhedral oligomeric silsesquioxanes for
CO2 conversion.

High turnover numbers (TON) and productivity values up to 7875 and 740, respectively,
were reached for the conversion of CO2 into cyclic carbonates using hybrid materials based on
imidazolium-modified polyhedral oligomeric silsesquioxanes (POSS-Imi) grafted on amorphous silica
(SiO2) and mesostructured SBA-15. The heterogeneous organo-catalysts were easily prepared via
a straightforward synthetic procedure allowing the generation of high local concentration spots of
imidazolium active sites surrounding the POSS core.

POSS nanocages were also employed for the design of imidazolium-based catalytic systems by
Koo and co-workers [56]. They introduced a new methodology for the preparation of inorganic–organic
hybrid ionogels and scaffolds through the cross-linking and solution extraction of POSS nanostructures
modified with vinyl-imidazolium or alkyl ammonium salts. The hybrid scaffolds with well-defined,
interconnected mesopores were used as heterogeneous catalysts for the CO2 conversion into several
cyclic carbonates at 110 ◦C, 0.76 MPa for 10 h using an epoxide concentration of 400 mM in MeCN.
The obtained TOF values were calculated from the moles of ionic groups to be in the range of 16–21 h−1.
The material recyclability exhibited good performance with minimal to no depreciation in the catalytic
conversion of ethylene oxide to ethylene carbonate, as the total catalytic conversion degree of decrease
was only about 5%.

In 2017, a novel strategy for immobilizing a water-soluble oligomeric ionic liquid by coating the
ionic liquid with mesoporous silica was presented by Ghiaci and Akbari [57]. The selected imidazolium
halide oligomer trapped into mesoporous silica showed increased catalytic activity compared to the
reaction carried out with the unsupported ionic liquid (Scheme 15). This behavior was ascribed to a
synergistic effect between the ionic liquid and the silica support due to the hydrogen bonding between
the oxygen of the epoxide and the silanol groups of the solid support. The catalyst 20 was tested with
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five epoxides with TOF values in the range 70–341 h−1. The reusability of the material was studied in
the coupling of CO2 with styrene oxide for five consecutive runs at 120 ◦C for 5 h without losing its
activity and selectivity.
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Then, one year later, Zhang et al. proposed another example of confined imidazolium-based ionic
liquids [58]. Different amounts of 1-ethyl-3-methyl imidazolium bromides (EmimBr) were tailored and
confined via one-step assembly of mesoporous silica using a fixed amount of silicon source (Scheme 16).
The confined ionic liquid retained the advantages of both homo- and heterogeneous catalysts, showing
improved performance compared to bulk EmimBr under the same reaction conditions, owing to the
cooperative effect of the silanol groups. The catalytic suitability of this type of hybrid was investigated
with four different epoxides at 120 ◦C and with a pressure of 2.0 MPa, exhibiting TOF values (based on
the amount of imidazolium units) from 115 to 127 h−1. The recyclability of the most active material
was examined in the reaction of CO2 with propylene oxide for five cycles, showing a slight decrease in
catalytic activity resulting in a reduction from 99% to 83% propylene carbonate yield. This trend was
attributed to the leaching of the confined ionic liquids from the first to the fourth cycle.
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Scheme 16. Reproduced from Reference [58]. Copyright (2018) Royal Chemical Society.

In Table 1, we summarize the adopted reaction conditions for the coupling between CO2 and
styrene oxide for selected catalytic systems based on alkyl-ammonium and/or imidazolium salts
supported onto silica. It is worth mentioning that the catalytic performance of these systems was
found to be not comparable owing to the different reaction parameters employed, including the nature
of the nucleophilic species, the use of co-catalysts, the temperature, the CO2 pressure, the reaction
time, etc.
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Table 1. Literature comparison for the synthesis of styrene carbonate. r.t.—room temperature.

# Catalyst Catalyst
Loading Conversion/Yields Temperature CO2

Pressure Time Reference

(mol%) (%) (◦C) (MPa) (h)

1 2 2 85 (Y) 90 1.0 6 [40]
2 4 0.93 94 (Y) 100 0.4 24 [41]
3 6 10 86 (Y) r.t. 0.1 24 [42]
4 7 10 99 (Y) r.t. 0.1 24 [42]
5 8 2 61 (Y) 100 1.0 4 [43]
6 9 2 98 (Y) 100 1.0 4 [43]

11 14 0.45 96 (Y) 115 1.62 5 [49]
12 15d 0.5 82 (Y) 110 2.5 4 [51]
13 16b 0.3 39 (C) 125 4.0 3 [52]
14 18g 0.43 99 (C) 150 8.0 3 [54]
15 19 0.14 53 (C) 150 4.0 3 [55]
17 20 0.25 98 (C) 120 2.0 5 [57]
18 ILs@mSiO2 0.26 89 (C) 120 2.0 8 [58]

2.1.3. Phosphonium- and Pyridinium-Functionalized Silica

In 2006, the catalytic activity of phosphonium halides toward the synthesis of propylene carbonate
was highly improved via their immobilization onto silica [59]. Sakakura et al. introduced an
example of a synergistic organic–inorganic hybrid material where the inorganic support simplified
the catalyst separation and promoted the catalytic activity of the organic sites at 100 ◦C and
10 MPa CO2. A few years later, Sakai et al. prepared a hybrid material via the coupling of
3-(triethoxysilyl)propyltriphenylphosphonium bromide and mesoporous silica [60]. Here again,
the organic and inorganic moieties showed a synergistic effect on catalytic activity. The pore size of
silica was found to influence the overall performance of the catalyst; mesoporous silica with a mean
pore size of 19 nm displayed higher activity than silica with a mean pore size of 6 nm. The catalytic
tests were carried out under solvent- and metal-free conditions at 90 ◦C, 1 mol.% loading of catalyst,
for 6 h. Furthermore, the hybrid catalyst was tested with several epoxides (TOF values lower than
2 h−1) and recycled in the reaction between CO2 and 1,2-epoxyhexane up to 10 times, still retaining
its activity.

Silica-supported pyridinium salts were proposed as heterogeneous catalysts for the synthesis
of cyclic carbonates. In 2009, Baba et al. reported silica-supported 4-pyrrolidinopyridinium iodide
prepared via quaternization of 4-pyrrolidinopyridine with silica-supported alkyl iodide [61].
This material was employed in the coupling of CO2 with epoxides under solvent-free conditions
and atmospheric pressure of carbon dioxide at 100 ◦C. The solid retained its catalytic activity for four
cycles for the synthesis of styrene carbonate. The versatility of this material was examined with five
different epoxides affording TOF values of 4–14 h−1.

In a more recent study, Yang and co-workers proposed for the first time the efficient immobilization
of cationic zinc porphyrin complexes on mesoporous SBA-15 via a simple one-pot route by refluxing
5,10,15,20-tetrakis(4-pyridyl)porphyrin zinc(II) (Zn-TPy), SBA-15, and 3-(trimethoxysilyl)propyl
bromide in toluene, dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), or tetrahydrofuran
(THF) [62]. The bifunctional solid material with both a Lewis acid site and nucleophile (bromide or
iodide) catalyzed the CO2 conversion into cyclic carbonates under solvent-free conditions at 120 ◦C
and 1.5 MPa. Compared with its homogeneous counterpart, the solid catalyst resulted more active
than the homogeneous system with Zn-TPy as a Lewis acid and tetra-n-butylammonium bromide
(TBAB) as a nucleophile (TOF = 927 h−1 vs. 370 h−1). This suggests that the closely connected Lewis
acid and Br− in the solid material could enhance their cooperation during the catalytic process.

2.2. Metal–Organic Framework (MOF)-Based Catalysts

Metal–organic frameworks (MOFs) are a class of structured solids obtained via coordination
among transition metal cations or clusters (called secondary building units—SBU) and organic
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linkers (OL) often endowed with carboxylic or amino groups. By varying the combination of the
selected OL/SBU, as well as the synthesis conditions, different crystalline porous networks can
be obtained [63,64]. These solids possess a series of interesting features such as extremely high
specific surface area, large pore volume, ordered three-dimensional (3D) structure and elevated
adsorption properties, making them interesting candidates for applications in materials science [65–68].
Some examples of MOF systems, together with their specific surface areas, are reported in Figure 2 [69].
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bromide (CTABr) as co-catalysts for the conversion of the challenging substrate styrene oxide. Their 
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Figure 2. Schematic representation of some metal–organic framework (MOF) structures. BDC =
1,4-benzenedicarboxylate; BTB = 1,3,5-benzenetribenzoate; BBC = 4,4′,4”-[benzene-1,3,5-triyltris(benzene-
4,1-diyl)]tribenzoate; NTEI = 4,4′,4”-nitrilotris(benzene-4,1-diyl)tris(ethyne-2,1-diyl)triisopthalate.
Reproduced from Reference [69]. Creative Commons Attribution 3.0 License.

All the abovementioned characteristics, together with the possibility of fine-tuning the metal
organic architecture, allow explaining the use of MOF structures in fields ranging from gas adsorption
and storage to drug delivery, magnetism, and luminescence, among others. Moreover, the interaction
between the organic linker and the metal clusters or ions is not always perfect. The defects generated
in the MOF structure do not constitute a drawback since they can act as Lewis acid sites paving the
way to a broad window of applications in catalysis.

Within the frame of the conversion of CO2 for the synthesis of cyclic carbonates, MOFs are largely
employed as co-catalysts, often in combination with ammonium or imidazolium salts [24,70]. Their use
allows decreasing the reaction temperature, usually below 125 ◦C, and generally working under mild
reaction conditions.

Zalomaeva et al. [71] explored the use of Cr-MIL-101 in the presence of tetrabutylammonium
bromide (CTABr) as co-catalysts for the conversion of the challenging substrate styrene oxide.
Their investigation covered a temperature range between room temperature (25 ◦C) and 125 ◦C.
Improved carbonate yields (33%) compared to analogous experiments performed only in the presence
of TBABr (2% conversion), as well as of Cr(acac)3/TBABr (3% conversion), were achieved in the
presence of the Cr-MIL-101/TBABr catalytic couple at room temperature after 24 h. Scheme 17
describes one possible reaction mechanism in which the Cr centers of the Cr-MIL-101 play the role of a
Lewis acid, coordinating the oxygen of the epoxide which subsequently undergoes ring opening via
nucleophilic substitution of the Br− at the less-hindered carbon.
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Scheme 17. Proposed reaction mechanism over MIL-101/ tetra-n-butylammonium bromide (TBABr)
catalysts [71].

Ma and co-workers [23] reported the use of MOF-like structures as versatile catalysts for the
syntheses of propylene and other mono-substituted cyclic carbonates. In this work, the authors
presented a crystal engineering approach in which the synthesis of a Cu(II)-based metal–macrocyclic
framework (MMCF-2) as a novel MOF (Figure 3) was successfully achieved. An almost total conversion
of propylene oxide was obtained after 48 h at room temperature and under 1 atm CO2 in the presence
of the MMCF catalyst and 6.5 mol.% (with respect to the epoxide) of tetrabutylammonium bromide.
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the left) and the cuboctahedral cage of the corresponding metal–macrocyclic framework (on the right).
Adapted from Reference [23]. Copyright (2014) Wiley-VCH.

Another highly efficient catalyst at room temperature [72] was described by Park et al.
A Zn-glutamate-based MOF was synthesized and used in the reaction between CO2 and both propylene
oxide (PO) and methylaziridine (MeAz). As the authors mentioned in the manuscript, the addition
of an ammonium salts to the reaction mixture was needed since MOF structures alone never show
activity at low temperature. Almost quantitative conversion and full selectivity were obtained with
both PO (92% conversion) and MeAz (94% conversion) at room temperature and in the presence of
TBABr (up to 10 mol.%).

With the objective of further increasing the affinity through CO2, various MOF-bearing
nitrogen-rich compounds were reported. Zhao and co-workers prepared a highly porous MOF,
incorporating both nitrogen-rich triazole functionalities and exposed Lewis acid metal salts. In this
case, Cu(II) ions were chosen, together with an octacarboxylate ligand (Figure 4a), for the design of an
MOF structure made up of two neighboring Cu(II) bridged by four carboxylate groups from the OLs
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to give paddle-wheel Cu2 clusters (Figure 4b). Single-crystal X-ray analysis was employed to identify
the structure and to prove the presence of Cu2 paddle-wheel clusters [37]. As claimed by the authors,
the obtained MOF displayed a size-dependent reactant selectivity, resulting as extremely active in
the presence of small-sized epoxides such as propylene oxide (96% carbonate yield after 48 h at room
temperature in the presence of 10 mol.% TBABr). On the other hand, the carbonate yield dropped
dramatically when epoxides such as 1,2 epoxyoctane, 1,2-epoxydodecane, or 2-ethyl-hexyl glycidyl
ether were used as starting materials. The authors attributed the decreased catalytic performance to
the large size of the latter epoxides.
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coordination of the organic linker (OL) with unsaturated Cu2 paddle-wheel centers (b) together with a
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and blue) are evidenced. Adapted from Reference [37]. Copyright (2016) American Chemical Society.

The synthesis of various Zr-based MOFs (UiO-66) bearing different groups (–NH2, –NO2,
–OH, –Cl, –Br, –OH, –OMe, –naphtyl) was successfully achieved employing properly functionalized
terephthalic acids and ZrCl4 [73]. The catalysts were compared by selecting the conversion of propylene
oxide as a benchmark reaction. The UiO decorated with hydroxyl moieties (UiO-OH) showed the best
performance at high temperature (140 ◦C). However, when the reaction temperature was lowered to
50 ◦C, the non-substituted UiO-66 displayed the highest carbonate yield. All the catalytic tests were
performed in the presence of an ammonium halide (1 mol.%). The proposed reaction mechanism for
the reaction catalyzed by UiO-OH involves a synergic activation of the epoxide via coordination of
the oxygen of the three-membered ring with the Zr center, together with the formation of a hydrogen
bond with the –OH group in close spatial proximity, as reported in Scheme 18.
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Scheme 18. Possible synergic activation mechanism for the synthesis of cyclic carbonates in the
presence of UiO decorated with hydroxyl moieties (UiO-OH) catalyst [73].
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Other more complex MOF structures prepared employing Zr-based SBUs and displaying both
Zn porphyrin (having four carboxyphenyl extremities) and imidazolium moieties incorporated in
the structure were obtained by Huang, Cao, and co-workers (Scheme 19) [74]. While the importance
of having imidazolium functionalities in the structure is clear, the incorporation of Zn porphyrin as
an additional source of Lewis acid (together with the Zr clusters) may be questionable. However,
a comparison between similar catalysts bearing or not bearing Zn in the structure allows evidencing a
comparable carbonate yield but better selectivity than the former catalyst. The versatility of the best
catalyst was tested using various epoxides as reactants. Good conversions were achieved after 14 h at
140 ◦C. Despite the relatively high temperature compared to the abovementioned examples, it should
be noted that, in this case, no additional ammonium salts were added as catalysts under homogenous
conditions. The reaction was catalyzed by one bifunctional heterogeneous catalyst.
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Scheme 19. Schematic step-by-step synthesis approach for the preparation of the final ZnTCPP ⊂ (Br−)
Etim-UiO-66 catalyst. ZnTCPP refers to the [5,10,15,20-tetrakis(4-carboxyphenyl)-porphirinato]Zn(II)
units, while Etim stands for ethyl imidazolium. In the figure, Im-Zr6 and (Br−) Etim-Zr6

represent, respectively, the imidazole- and imidazolium-functionalized Zr6 clusters. Reproduced
from Reference [74]. Copyright (2018) American Chemical Society.
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Another interesting class of MOF is represented by the structures prepared from chiral organic
linkers. Jiang, Ren, and co-workers reported the preparation and catalytic activity of a chiral
salen-based MOF obtained using CuI and the properly designed Ni-salen moiety [75] (Figure 5a).
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dicarboxyphenyl (b) moieties.

The crystal structure of the novel MOF was also achieved. The solid proved to be active in
the conversion of styrene oxide, as well as epichlorohydrin and other monosubstituted epoxides
such as 1,2-epoxyhexane and 1,2-epoxyoctane. In the presence of a challenging substrate such as
styrene oxide (SO), good conversions (84%) were achieved after a 12-h reaction and employing TBABr
(0.5 mol.%) as a homogeneous co-catalyst at the temperature of 100 ◦C. Importantly, the catalytic
tests were also performed using carbon dioxide contaminated with water and with a mixture of
SO2/H2O, with no evident lowering of the catalytic performance. Unfortunately, despite the use of a
chiral linker, no enantiomerically enriched mixture of cyclic carbonate was obtained. The versatility
of the solid was further proven in the presence of other epoxides such as epichlorohydrin (ECH),
1,2-epoxyhexane, and 1,2-epoxyoctane, which, under the previously mentioned reaction conditions,
gave 99%, 65%, and 42% conversion, respectively. The same authors recently published the synthesis
of a similar chiral MOF in which the salen-based linker display a higher number of coordination
sites (Figure 5b). This synthesis was performed with the objective of improving the stability and,
subsequently, the reusability of the final solid [76]. Moreover, this last catalyst displayed improved
performance, giving rise to higher yields at lower temperature (80 ◦C) in a 12-h reaction with
0.5 mol.% TBABr as a co-catalyst. In this case, carbonate yields superior to 90% were obtained
in presence of SO and EHC, whilst 1,2-epoxyhexane and 1,2-epoxyoctane produced 89% and 82%
cyclic carbonates, respectively.

Within the MOF family, an interesting subclass is constituted by the zeolitic imidazolate
framework (ZIF), in which the metal typically used in MOF structures plays the role of silicon and
the imidazolate mimics the role of oxygen [77] in the well-known zeolite solids. ZIF structures
recently attracted considerable interest due to their large surface area and high porosity combined
with exceptional mechanical, thermal, and chemical stability [78]. It is considered that the difference
between ZIF- and MOF-based architectures stands in the combination of all these different features.
The high affinity of the ZIF solids toward CO2 motivated various researchers to test the activity of
these materials in the conversion of carbon dioxide. Park et al. described the use of ZIF-95 as a catalyst
in the chemical fixation of CO2 into propylene oxide to give the corresponding cyclic carbonate [79].
Good conversions were achieved at 80 ◦C in the presence of TBABr as a co-catalyst after a 2-h reaction.
In the absence of a co-catalyst, a drastic drop in conversion was observed. However, a high propylene
carbonate yield was achieved in the absence of ammonium salts, raising the reaction temperature
and employing a longer reaction time (24 h). The same group reported the preparation of a ZIF-90
structure incorporating aminopyridinium iodide (IL-ZIF-90) units (Figure 6) which were subsequently
employed as catalysts in the synthesis of cyclic carbonates [77]. The activity of ZIF-90 and Il-ZIF-90
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was compared, choosing the reaction between CO2 and propylene oxide. As expected, the novel
IL-ZIF-90 solid displayed better performance (97% conversion) than the corresponding ZIF structure
without the aminopyridinium iodide moiety (51% conversion). More interestingly, the IL-ZIF-90
showed higher activity compared to a catalytic mixture containing ZIF-90 and aminopyridinium
iodide separately (65% conversion). Despite the reaction temperature being higher than the previously
reported examples (120 ◦C), it is important to underline that the reaction time was 3 h, and no
ammonium or imidazolium salts under homogeneous conditions were added to the reaction mixture.
IL-ZIF-90 constituted the sole (bifunctional) heterogeneous catalyst. A study concerning the activity
of the novel catalyst under different conditions in terms of pressure, temperature, catalyst loading,
and reaction was also performed. The solid resulted as stable after four consecutive cycles.
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Figure 6. Schematic representation of the secondary building unit (SBU)/OL building unit of the
ZIF-90 structure incorporating aminopyridinium iodide (IL-ZIF-90) in which the imidazole moieties
coordinate the Zn centers and the aminopyridine iodide functionalities are incorporated as pendant
(a). Scanning electron microscopy images of the IL-ZIF-90 solid (b). Adapted from Reference [77].
Copyright (2016) Royal Chemical Society.

Some attempts to construct different MOF-based architectures can be also found in literature.
As an example, Duan et al. [80] reported the preparation of Ni-based single-walled metal–organic
nanotubes using a tetrakis(4-carboxyphenyl)ethylene (TCPE) unit as a backbone (Scheme 20). The final
assembled structure displays a tubular morphology with an exterior wall diameter of 3.6 nm and an
internal section of 2.1 nm. Two tubular assemblies were obtained depending on the equivalent of
L-proline (L-Pro) added in the synthesis mixture.

Catalysts 2019, 9, x FOR PEER REVIEW 19 of 30 

 

the novel IL-ZIF-90 solid displayed better performance (97% conversion) than the corresponding ZIF 
structure without the aminopyridinium iodide moiety (51% conversion). More interestingly, the IL-
ZIF-90 showed higher activity compared to a catalytic mixture containing ZIF-90 and 
aminopyridinium iodide separately (65% conversion). Despite the reaction temperature being higher 
than the previously reported examples (120 °C), it is important to underline that the reaction time 
was 3 h, and no ammonium or imidazolium salts under homogeneous conditions were added to the 
reaction mixture. IL-ZIF-90 constituted the sole (bifunctional) heterogeneous catalyst. A study 
concerning the activity of the novel catalyst under different conditions in terms of pressure, 
temperature, catalyst loading, and reaction was also performed. The solid resulted as stable after four 
consecutive cycles. 

  
Figure 6. Schematic representation of the secondary building unit (SBU)/OL building unit of the ZIF-
90 structure incorporating aminopyridinium iodide (IL-ZIF-90) in which the imidazole moieties 
coordinate the Zn centers and the aminopyridine iodide functionalities are incorporated as pendant 
(a). Scanning electron microscopy images of the IL-ZIF-90 solid. Adapted from Reference [77]. 
Copyright (2016) Royal Chemical Society. 

Some attempts to construct different MOF-based architectures can be also found in literature. 
As an example, Duan et al. [80] reported the preparation of Ni-based single-walled metal–organic 
nanotubes using a tetrakis(4-carboxyphenyl)ethylene (TCPE) unit as a backbone (Scheme 20). The final 
assembled structure displays a tubular morphology with an exterior wall diameter of 3.6 nm and an 
internal section of 2.1 nm. Two tubular assemblies were obtained depending on the equivalent of L-
proline (L-Pro) added in the synthesis mixture. 

 

Scheme 20. Synthesis conditions and view of the two Ni-based single-walled metal–organic 
nanotubes. Adapted from Reference [80]. Copyright (2015) American Chemical Society. 

The final solids displayed excellent catalytic activity in the conversion of carbon dioxide 
employing various epoxides as reactants, with Ni-TCPE-1 showing slightly better performances. All 
the catalytic reactions were performed at 100 °C in presence of 1.5 mol.% (with respect to the 
substrate) TBABr. Almost quantitative conversion and elevated turnover number (TON) were 
afforded for the synthesis of styrene carbonate after 12 h in presence of the best Ni-TCPE-1 catalyst. 
Moreover, the stability of the solid was proven in consecutive cycles. The slight loss of carbonate 

Scheme 20. Synthesis conditions and view of the two Ni-based single-walled metal–organic nanotubes.
Adapted from Reference [80]. Copyright (2015) American Chemical Society.

The final solids displayed excellent catalytic activity in the conversion of carbon dioxide
employing various epoxides as reactants, with Ni-TCPE-1 showing slightly better performances.
All the catalytic reactions were performed at 100 ◦C in presence of 1.5 mol.% (with respect to the
substrate) TBABr. Almost quantitative conversion and elevated turnover number (TON) were afforded
for the synthesis of styrene carbonate after 12 h in presence of the best Ni-TCPE-1 catalyst. Moreover,
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the stability of the solid was proven in consecutive cycles. The slight loss of carbonate yield (99% at
the first cycle and 85% at the fourth cycle) was attributed to the small amount of catalyst used.

2.3. Nanocarbon-Based Catalysts for CO2 Conversion into Cyclic Carbonates

Carbon nanoforms (CNFs), or nanocarbons, represent a class of recent allotropes of carbon having
nanometric dimensions whose functional properties strongly depend on the kind and tridimensional
arrangements of their carbon atoms [81,82]. These nanomaterials can arrange into zero-, one-, two-,
and three-dimensional (0D, 1D, 2D, and 3D) nanoobjects such as fullerene, carbon nanotubes, graphene,
nanohorns, and nanodiamonds [83]. In the past few years, they were extensively studied in applications
spanning photonics and optoelectronics, advanced electrodes, nanomedicine, etc. [84–88]. In recent
years, CNFs emerged as suitable support for heterogeneous catalytic materials, due to their high
chemical inertness, thermal stability, and mechanical resistance, along with an unconventional
lightness [89]. In addition, CNFs are nanoobjects with well-defined structure and dimensions often
displaying sharp size distribution, which allows for a homogeneous dispersion of the functionalities
and active sites all over their surface, giving rise to reproducible properties. Furthermore, in given
processes, CNFs participate in the catalytic cycle through specific interactions between the active
catalyst or the substrates and the solid matrix via surface functionalities (e.g., acidic groups or other
oxygenated groups) or by means of electronic interactions (e.g., π–π interactions) [90]. In this section,
examples regarding the use of hybrid nanocarbons as catalysts in the chemical fixation of CO2 to
epoxides are highlighted, ordered from 0D to 3D CNFs.

In 2014, Cao, Song, and co-workers reported the synthesis of the fullerenol C60(OH)17O5·28H2O,
prepared via oxidation of C60 with ozone/hydrogen peroxide [91]. The fullerenol at ~0.06 mol.%
was used as a heterogeneous catalyst for the synthesis of a series of cyclic carbonates, running the
reactions at 120 ◦C with a CO2 pressure of 2 MPa employing 1 mol.% KI as a co-catalyst for 5–24 h
(Scheme 21). It is worth noting the synergetic effect of the two co-catalysts, since fullerenol or KI alone
were not able to promote the title reaction, whereas their combination led to almost quantitative yields.
TOFs of up to 1576 were obtained although without taking into account the presence of KI. The catalyst
was easily recovered by centrifugation and reused in ten consecutive cycles with quite unchanged
yields, showing high thermal and mechanical stability. A tentative mechanism was proposed in
which fullerenol provides Lewis acid sites to activate the oxygen atom in the epoxide ring through
hydrogen bonds, and the I− anion operates a nucleophilic attack on the less sterically hindered carbon
of the epoxide, resulting in ring opening. Then, the interaction between the alkoxy anion and CO2

forms the corresponding alkyl carbonate anion, which gives rise to the cyclic carbonate through the
intramolecular substitution of I−.
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Carbon nanotubes possess high chemical and thermal stability, surface area, and tensile strength,
and they are recently finding application in catalysis. In 2012, Park et al. employed oxidized
multi-walled carbon nanotubes (MWCNTs) as support for immobilizing a series of imidazolium-based
ionic liquids with different anions and alkyl chains through esterification of the carboxylic groups
present on the nanotubes (Scheme 22) [92]. All the prepared hybrid materials featured high loading in
ionic liquid (1.59–2.40 mmol/g) and showed good activity toward the cycloaddition of CO2 to allyl
glycidyl ether. Catalyst 21c resulted as the most active and was applied for the conversion of a series
of epoxides, being easily recycled five times with just a little loss in conversion.
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An analogous synthetic strategy was followed by Baj and co-workers for the preparation of
MWCNTs endowed with quaternary ammonium salts, which displayed minor activity with respect to
21a–e [93].

Another approach in order to immobilize ionic liquid like moieties onto carbon nanotube surfaces
was recently reported by Gruttadauria, Aprile, and co-workers [94]. The direct radical polymerization
of bis-vinylimidazolium chloride 22 and styryl imidazolium chloride 23 in the presence of single-walled
carbon nanotubes (SWCNTs) gave rise to highly loaded SWCNT–polyimidazolium salt hybrids
(Scheme 23) [94]. Raman spectra confirmed the covalent linking of polymer chains onto the nanotube
surface and the Brunauer–Emmett–Teller (BET) specific surface area values were 100 m2·g−1 and
360 m2·g−1 for 24 and 25, respectively. The hybrids were applied as catalysts in the conversion of
carbon dioxide and a series of epoxides to the corresponding cyclic carbonates with a TON of up to
1184 and a TOF of 395 h−1 with no need for additional Lewis acid co-catalyst. Although both catalysts
displayed analogous activity, 24 was easily reused for four runs with no deactivation, whereas 25
suffered significant leaching of polymer during the recycling.
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In 2017, Yang and co-workers followed a similar approach, supramolecularly coating MWCNTs
with polyimidazolium bromide polymers, reacting 5,10,15,20-tetrakis(4-pyridyl)porphyrin zinc(II)
26, 1,4-bis(bromomethyl)benzene 27, and di(1H-imidazol-1-yl)methane 28 in the presence of CNTs
(Scheme 24) [95]. In such a way, the obtained catalysts 29–31 displayed nucleophile bromide anions
cooperatively working with the zinc(II) porphyrin as Lewis acids in the cycloaddition of epoxides
and CO2 under solvent-free conditions. The bifunctional materials showed enhanced catalytic activity,
especially in comparison with the corresponding homogeneous counterpart, affording a TOF of up to
2602 h−1 with a substrate/catalyst ratio of 7100. Furthermore, after seven cycles, just minor loss of
activity was shown with no leaching of Zn.
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Scheme 24. Cationic porphyrin-based polymer-coated multi-walled carbon nanotubes (MWCNTs) 29
and 30 and MWCNT-free polymer 31 used for the synthesis of cyclic carbonates from CO2 and epoxides.

Graphene oxide (GO) represents an ideal support material for catalysts thank to its 2D structure,
which confers a high surface area. Moreover, once functionalized, GO may provide access to all
the catalytic centers, avoiding mass transfer problems of the substrates. In addition, the presence in
its structure of several oxygen-containing groups (–OH, –COOH, etc.) leads to a synergistic effect
activating the CO2 chemical fixation process by means of the instauration of hydrogen bonds with
epoxide substrates. This fact was clearly demonstrated by Qu and co-workers, who used commercially
available GO as a carbocatalyst (in the presence of DMF) for cyclic carbonate synthesis [96]. They found
a direct correlation between the number of oxygenated groups and the catalytic activity of GO.

On the other hand, the oxygenated groups can be used as reactive species for the modification
of GO with proper silanes. Condensation between 3-aminopropyltrimethoxysilane and GO gave the
3-aminopropyl-grafted GO 32, which was used as a catalyst with the tetrabutylammonium iodide as
a co-catalyst (TBAI) for the fixation of CO2 into cyclic carbonates (Scheme 25) [97]. The presence of
both oxygenated groups of GO and amine moieties afford several hydrogen-bonding donor sites able
to provide a synergistic effect for the activation of CO2 and epoxides. This robust and recyclable (up
to seven cycles) heterogeneous catalytic system (32/TBAI 1 mol.%) allowed obtaining good results
in terms of conversion into the corresponding cyclic carbonates using atmospheric pressure of CO2

(0.1 MPa) at 100 ◦C in 27 h, although increasing CO2 pressure up to 1 MPa permitted reducing the
temperature and reaction time down to 70 ◦C and 12 h, respectively. Under these conditions, almost
quantitative yields were obtained for a series of epoxides.
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Yi, Yin, et al. reported the preparation through silylanization of two multi-functionalized
catalysts 33 and 34 possessing quaternary ammonium iodide moieties (Scheme 25). These catalysts,
characterized by the co-existence of quaternary ammonium salts, silanol groups, and primary (33)
or tertiary amines (34), were designed for maximizing the synergistic effects between silanol groups
and halide ions in activating the ring opening of the epoxides, while ensuring a good adsorption
of CO2 thanks to the action of amine groups with no need for supplementary co-catalysts [98,99].
Both catalysts allowed converting carbon dioxide into cyclic carbonates with an apparent similar
catalytic activity within 4 h, using 2 MPa CO2 at 120 ◦C for 33 and at 90 ◦C for 34, and they were
reused for five consecutive catalytic cycles without significant loss of activity.

Li et al. reported the preparation of a series of imidazolium-based IL grafted onto the surface of
GO, used as active and recyclable catalysts for CO2 cycloaddition to produce cyclic carbonates [100].
Hybrid material 35 endowed with iodide counteranions (Scheme 26) resulted as the best-performing
catalyst (2 MPa pressure of CO2 at 140 ◦C for 4 h), although 600 mg of modified GO were used for
15 mL of epoxide. It is worth noting that the fundamental role played in the co-catalytic process by
the residual hydroxyl groups of GO acting as hydrogen-bond donors was highlighted, since their
silylation resulted in a marked drop in the catalytic activity. The synergistic effect in accelerating
the ring opening of epoxides by hydroxyl groups was further confirmed with the use of catalyst 36,
in which a hydroxyl functionalized IL was grafted onto GO (Scheme 26) [101]. In this case, higher
conversions of propylene oxide into the corresponding carbonate were obtained with 0.35 mol.%
catalyst at 140 ◦C in 4 h, showing the beneficial effect of hydroxyl groups in the imidazolium tag.
Furthermore, it was possible to recycle catalyst 36 up to seven times without loss of activity.
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Carbon nanohorns (CNHs) are an exotic nanocarbon constituted by graphene tubes closed with
a horn-shaped tip with good thermal stability, micro- and mesoporosity, internal pore accessibility,
and semiconducting properties. CNHs aggregate in a dahlia-like shape and they are very intriguing
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materials that share some features and chemistry resembling both that of fullerenes, due to the presence
of the closed tips, and that of SWCNTs, thanks to their elongated shape [102].

The importance of the nanocarbon support of choice on the catalytic activity of the resulting
hybrid was greatly evident when a series of polyimidazolium-functionalized CNHs was employed
for the conversion of CO2 and epoxides into cyclic carbonates [103]. These hybrid materials based on
CNHs/cross-linked imidazolium salts were easily prepared using the direct radical polymerization
of bis-vinylimidazolium salts 37a–d in the presence of pristine CNHs (Scheme 27). CNH-based
catalysts 38a–d resulted as extremely active materials displaying an unprecedented increase in catalytic
activity from the first to the sixth cycle in the reaction with styrene oxide (catalyst 0.22 mol.%, 4 MPa
CO2 at 150 ◦C for 3 h). In addition, a seventh cycle with epichlorohydrin resulted in an increased
catalytic activity with respect to the first cycle with the same epoxide reaching a TON of up to
2819. The same behavior was not observed with the self-condensed polymer nor with the analogous
SWCNT-based catalysts [94]. This finding was ascribed to the higher percentage of porosity of the
reused catalyst that was probably caused by an additional cross-linking of residual double bonds
during the catalytic reaction.
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3. Conclusions

In the present review, we surveyed the development of heterogeneous catalytic systems
for the conversion of carbon dioxide into valuable chemical products, namely cyclic carbonates.
The environmental and societal impact of CO2 emissions is receiving a lot of interest from both
academia and industry. In this context, we gave a brief overview of an issue of paramount importance
focusing on the one-pot reaction between carbon dioxide and epoxides. In particular, we report selected
examples of hybrid materials based on mesoporous silicas, metal–organic frameworks, and carbon
nanostructures as promising catalytic supports. Considering CO2 mitigation as a global challenge,
we hope that this work will encourage the development of novel ideas for the design and the application
of recyclable catalytic systems with improved performance, leading to an optimization of the process.
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