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Abstract: The Landsat archives have been made freely available in 2008, allowing the production of
high resolution built-up maps at the regional or global scale. In this context, most of the classification
algorithms rely on supervised learning to tackle the heterogeneity of the urban environments.
However, at a large scale, the process of collecting training samples becomes a huge project in itself.
This leads to a growing interest from the remote sensing community toward Volunteered Geographic
Information (VGI) projects such as OpenStreetMap (OSM). Despite the spatial heterogeneity of its
contribution patterns, OSM provides an increasing amount of information on the earth’s surface.
More interestingly, the community has moved beyond street mapping to collect a wider range of
spatial data such as building footprints, land use, or points of interest. In this paper, we propose a
classification method that makes use of OSM to automatically collect training samples for supervised
learning of built-up areas. To take into account a wide range of potential issues, the approach is
assessed in ten Sub-Saharan African urban areas from various demographic profiles and climates.
The obtained results are compared with: (1) existing high resolution global urban maps such as the
Global Human Settlement Layer (GHSL) or the Human Built-up and Settlements Extent (HBASE);
and (2) a supervised classification based on manually digitized training samples. The results suggest
that automated supervised classifications based on OSM can provide performances similar to manual
approaches, provided that OSM training samples are sufficiently available and correctly pre-processed.
Moreover, the proposed method could reach better results in the near future, given the increasing
amount and variety of information in the OSM database.

Keywords: openstreetmap; landsat; urban remote sensing; built-up detection

1. Introduction

The population of Africa is predicted to double by 2050 [1], alongside a rapidly growing
urbanization. In this context, reliable information on the distribution and the spatial extent of human
settlements is crucial to understand and monitor a large set of associated issues, such as the impacts
on both environmental systems and human health [2–4]. In the 2000s, the remote sensing community
took advantage of the availability of coarse-resolution satellite imagery based on the MERIS or the
MODIS programs to produce global land cover maps such as GlobCover [5] or the MODIS 500m Map
of Global Urban Extent (MOD-500) [6]. Subsequently, Landsat data have been made freely available in
2008 and dramatically reduced the operative cost of high resolution satellite imagery acquisition and
processing [7]. This enabled the production of high resolution global land cover maps based on the
Landsat catalog, such as the Global Human Settlement Layer (GHSL) [8], Global Land Cover (GLC) [9]
or the Human Built-up and Settlements Extent (HBASE) [10].
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However, land cover classification in urban areas remains a challenge because of the inherent
complexity of the urban environment which is characterized by both intraurban and interurban
heterogeneity [11,12]. Because of the complexity associated with the urban mosaic at high resolution,
supervised classification methods have been shown to provide the best results [13–15]. However,
such an approach requires a large amount of training samples to grasp the heterogeneity of the
urban environment. As a result, the process of collecting training samples for large-scaled supervised
classification becomes an unaffordable task. Additionally, studies have shown that global urban maps
suffer from higher rates of misclassifications in developing regions such as Sub-Saharan Africa or
South Asia [16] because of the lack of reference data in both quantity and quality.

The training samples collection step can be automated by using existing land cover information in
ancillary datasets. Coarser resolution global maps such as GlobCover or MOD-500 have been widely
used to identify training sites [16,17]. However, integrating such datasets leads to the introduction of
noisy samples which have been shown to decrease the performance of the classifiers. In this context,
the increasing availability of Volunteered Geographic Information (VGI) brings new opportunities.
Defined as the spatial dimension of the web phenomenon of user-generated content [18], VGI drives a
new way of collecting geographic information that relies on the crowd rather than official or commercial
organizations. Founded in 2004, OpenStreetMap (OSM) is the most famous of the VGI projects. Initially,
the objective was to provide free user-generated street maps [19]. In the following years, OSM became
a collaborative effort to create a free and editable map of the whole world which is not limited to the
road network [20]. OSM uses a data model based on three object types: nodes (points), ways (polylines
or polygons), and relations (logical connections of ways, e.g., a closed way that forms a polygon).
Each object is described by at least one key/value pair (a “tag”) [19,20]. This simple data model
allows the mapping of a large range of spatial features such as building footprints, points of interest,
natural elements, or land use. As a result, and as the database grows, OSM is increasingly used for
Land Use and Land Cover (LULC) classification [21–24]. Furthermore, the increasing data availability
and quality enable the use of OSM data to support automated supervised classifications of remote
sensing imagery. Shultz et al. successively used OSM objects to fill the data gaps in the global Open
Land Cover product based on Landsat imagery [25]. Similarly, Yang et al. used Landsat imagery and
training points from OSM to map land use in Southeastern United States with an overall accuracy
of 75% [26]. This demonstrates that OSM becomes increasingly relevant to support the training of
large-scaled LULC classifications.

However, the use of OSM data also bring new issues to consider, including: (1) its non-exhaustive
nature; and (2) the spatial heterogeneity of the contribution patterns across the regions. Indeed,
users are more likely to contribute information where they live. According to Coleman et al.,
economical interest and the “Pride of Place” are among the main factors that encourage people to
contribute [27]. Additionally, Juhàsz et al. demonstrated that users are more likely to contribute
in specific places such as natural areas and city centers [28]. Furthermore, because of the
“Digital Divide” [18] caused by inequalities in access to education and Internet, developing and
developed countries does not benefit from the same amount of contributions. As of March 2018,
the amount of information (in bytes) in the OSM database was ten times bigger for the European
continent than for Africa (http://download.geofabrik.de). Another example of such heterogeneity
is that Germany contained two times more bytes of information than Sub-Saharan Africa. However,
OSM data availability in developing regions is rapidly increasing over the lastfew years, thanks to local
contributors and initiatives such as Humanitarian OpenStreetMap Team (https://www.hotosm.org)
or Missing Maps (https://www.missingmaps.org). In fact, Africa is the continent where contributions
are increasing at the highest rate since 2014. This makes OSM increasingly relevant in developing
regions such as Sub-Saharan Africa.

This paper focuses on the use of OSM to collect training samples for the classification of built-up
and non-built-up areas in Landsat scenes of ten Sub-Saharan African urban agglomerations. To support
global urban mapping, our research aimed to answer the following questions: What information
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can be extracted from the OSM database to collect built-up and non-built-up training samples?
What post-processing must be applied? What performance loss can we expect compared to a strategy
based on a manually digitized dataset? Finally, what is the practicability of this approach in the context
of a developing region such as Sub-Saharan Africa?

2. Materials and Methods

2.1. Case Studies

As stated previously, the spectral profiles of urban areas are characterized by high interurban
variations caused by environmental, historical, or socioeconomic differences [12]. This makes the
selection of case studies a crucial step when seeking to ensure the generalization abilities of a
method. Our set of case studies is comprised of ten Sub-Saharan African cities described in Table 1.
Climate is one of the most important sources of variation among the urban areas of the world
because it determines the abundance and the nature of the vegetation in the urban mosaic and
at its borders. Urban areas located in tropical or subtropical climates (Antananarivo, Johannesburg,
Chimoio, and Kampala) can be spectrally confused with vegetated areas because of the presence
of dense vegetation in the urban mosaic. This can lead to a mixed-pixel problem and result in
misclassifications. On the contrary, cities located in arid or semi-arid climates (Dakar, Gao, Katsina,
Saint-Louis, and Windhoek) are characterized by a low amount of vegetation. Bare soil being spectrally
similar to built-up, the separation between built-up and non-built-up classes can be more difficult in
such areas [29,30], especially when construction materials are made up from nearby natural resources.
Population of an urban area impacts both the distribution of built-up and the data availability. In the
context of our study, the population is mainly used as a proxy of the spatial contribution patterns of
OSM. Highly populated urban areas (Dakar, Johannesburg, Nairobi, and Kampala) are more likely to
benefit from a high density of information in OSM. On the other hand, smaller cities (Chimoio, Gao,
Saint-Louis, and Windhoek) can suffer from a lack of OSM contributions.

Table 1. Environmental and demographic characteristics of the case studies. Climate zones are
identified according to the Köppen–Geiger classification [31]. Population numbers are estimated
according to the AfriPop/WorldPop dataset [32] for the AOI of each case study.

City Country Climate Population

Antananarivo Madagascar Subtropical highland 2,452,000
Chimoio Mozambique Humid subtropical 462,000

Dakar Senegal Hot semi-arid 3,348,000
Gao Mali Hot desert 163,000

Johannesburg South Africa Subtropical highland 4,728,000
Kampala Uganda Tropical rainforest 3,511,000
Katsina Nigeria Hot semi-arid 1,032,000
Nairobi Kenya Temperate oceanic 5,080,000

Saint-Louis Senegal Hot desert 305,000
Windhoek Namibia Hot semi-arid 384,000

2.2. Satellite Imagery

The Landsat 8 imagery is provided by the U.S. Geological Survey (USGS) through the Earth
Explorer portal. The scenes are acquired as Level-1 data products, therefore radiometrically calibrated
and orthorectified. The product identifiers and the acquisition dates of each scene are shown in Table 2.
Calibrated digital numbers are converted to surface reflectance values using the Landsat Surface
Reflectance Code (LaSRC) [33] made available by the USGS. Clouds, cloud shadows and water bodies
are detected using the Function of Mask (FMASK) algorithm [34,35]. The acquisition dates range
from August 2015 to October 2016, because of availability issues caused by cloud cover. To reduce
the processing cost of the analysis, the satellite images are masked according to an area of interest
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(AOI), which is defined as a 20 km rectangular buffer around the city center (as provided by OSM).
As a result, all AOI have a surface of 40 km × 40 km.

Table 2. Product identifiers and acquisition dates of each Landsat scene.

City Landsat Product Identifier Acquisition Date

Antananarivo LC08_L1TP_159073_20150919_20170404_01_T1 2015–09–19
Chimoio LC08_L1TP_168073_20150529_20170408_01_T1 2015–05–29

Dakar LC08_L1TP_206050_20151217_20170331_01_T1 2015–12–07
Gao LC08_L1TP_194049_20160114_20170405_01_T1 2016–01–14

Johannesburg LC08_L1TP_170078_20150831_20170404_01_T1 2015–08–31
Kampala LC08_L1TP_171060_20160129_20170330_01_T1 2016–01–29
Katsina LC08_L1TP_189051_20160111_20170405_01_T1 2016–01–11
Nairobi LC08_L1TP_168061_20160124_20170330_01_T1 2016–01–24

Saint-Louis LC08_L1TP_205049_20161009_20170320_01_T1 2016–10–09
Windhoek LC08_L1TP_178076_20160114_20170405_01_T1 2016–01–14

2.3. Reference Dataset

Reference samples for four land cover classes are collected using very high spatial resolution
(VHSR) imagery from Google Earth (GE): built-up, bare soil, low vegetation (sparse vegetation, farms)
and high vegetation (forests). The history slider of the GE interface has been used to ensure that the
acquisition dates of the images are in a one-year range of the corresponding Landsat scenes. Even if
our classification problem is binary (built-up vs. non-built-up), the collection of reference samples
for specific land covers was preferred to ensure the spectral representativeness of the non-built-up
landscape. As shown in Figure 1, samples were collected as polygons to include the inherent spectral
heterogeneity of urban land covers. Reference built-up areas deliberately included mixed pixels
provided that they contain at least 20% of built-up.

In total, more than 2400 polygons were digitized, corresponding to more than 180,000 pixels
after rasterization. In the context of our case study, reference samples were used for: (1) assessing
the quality of the training samples extracted from OSM; (2) assessing the performance of the built-up
classifications; and (3) producing a reference classification for comparison purposes.

Figure 1. Examples of digitized samples in Dakar, Senegal: (a) Built-up; (b) Bare soil; (c) Low vegetation;
and (d) High vegetation. The grid corresponds to the 30 meters Landsat pixels. Satellite imagery
courtesy of Google Earth.

2.4. OpenStreetMap

OSM data were acquired in January 2018 using the Overpass API (http://overpass-api.de).
Four different objects were collected from the database: (1) highway polylines (the road network);
(2) building polygons (the building footprints); (3) the landuse, leisure, and natural polygons
(potentially non-built-up objects); and (4) natural=water polygons (the water bodies). Complex
geometries such as polygons with holes were not considered to simplify the processing.

As previously stated, spatial contribution patterns of OSM are not homogeneous. The evolution
of OSM data availability for each type of object for each case study is shown in Figure 2. The trends

http://overpass-api.de
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observed at the continental scale are confirmed in the context of our case studies. As suggested by its
name, OSM was initially focused on street mapping. Street mapping appears as a continuous effort
that leads to a regular increase of the number of roads in the database. Later, contributors started
to integrate building footprints, points of interest, or land use and land cover features. As a result,
the number of building footprints, natural and land use polygons more than doubled between 2016
and 2018. These trends suggest that OSM can now support large-scaled supervised classification
in developing regions. They also reveal that an increasing amount of data will be available in the
near future.
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Figure 2. Evolution of OSM data availability in our case studies between 2011 and 2018.

2.5. Training Samples

2.5.1. Built-Up Training Samples

In the OSM database, the building key is used to mark an area as a building. When they are
available, the building footprints are the perfect candidates for built-up training samples collection
thanks to their unambiguous spatial definition. However, as shown in Figure 3, they are not consistently
available among the cities. Highly populated urban areas such as Nairobi, Dakar or Johannesburg
contain more than 1000 hectares of building footprints, whereas smaller cities such as Katsina and Gao
only contain a few hectares, thus reducing the representativeness of the full built-up spectral signature.
Such data availability issue implies that additional samples must be collected from another data source.
Figure 3 also reveals that the typical building footprint does not cover more than 15% of the surface
of a Landsat pixel. It means that, when going from the vector space to the 30 m raster space of our
analysis, the geographic object is not the building footprint anymore but the percentage of the pixel
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which is effectively covered by any footprint. As a result, the decision to include or exclude a pixel
from the built-up training samples relies on a binary threshold, under the assumption that, the higher
the threshold, the lower the risk is to include mixed pixels.

0 500 1000 1500 2000 2500 3000

Total surface (ha)

Antananarivo

Chimoio

Dakar
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Johannesburg

Kampala

Katsina

Nairobi

Saint-Louis
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0 200 400 600 800

Median surface (m2)

Landsat pixel surface

Figure 3. Availability and median surface of building footprints in each case study.

As previously stated, OSM building footprints are not a sufficient data source to collect built-up
training samples because of inconsistencies in data availability among cities. The road network remains
the most exhaustive feature in OSM: even the smallest cities among our case studies contain hundreds
of kilometers of roads, and new streets are being mapped each month. As illustrated in Figure 4,
built-up information can be derived from these road networks using the concept of urban blocks,
defined as the polygons shaped by the intersection of the roads. To focus on residential blocks, only
roads tagged as residential, tertiary, living_street, unclassified or with the generalist road
value were used. Major roads such as highways, express ways or national roads were avoided, as well
as service roads, tracks, and paths. In the case of Katsina and Gao, for which the building footprints
did not provide a sufficient amount of built-up training samples, the process resulted in the availability
of more than 1000 blocks. One assumption can be made regarding the reliability of such geographic
objects to collect more built-up training samples: large blocks have a higher probability of containing
mixed pixels or non-built-up areas.

Figure 4. Urban blocks extracted from the OSM road network in Windhoek, Namibia (transparent:
surface greater than 10 ha; red: surface greater than 1 ha; green: surface lower than 1 ha).
Satellite imagery courtesy of Google.

2.5.2. Non-Built-Up Training Samples

Because of the focus of the OSM database on the urban objects, the extraction of non-built-up
samples was less straightforward than the extraction of built-up samples. The OSM database includes
information on the physical materials at the surface of the earth according to: (1) the description
of various bio-physical landscape features such as grasslands or forests with the natural key;
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(2) the primary usage for an area of land such as farms, or managed forests and grasslands with
the landuse key; and (3) the mapping of specific leisure features such as parks or nature reserves with
the leisure key. Such objects are not ensured to be non-built-up and must be filtered according to
their assigned value. From the 105 available values in our case studies, the following 20 values were
selected: sand, farmland, wetland, wood, park, forest, nature_reserve, golf_course, cemetery,
sand, quarry, pitch, scree, meadow, orchard, grass, recreation_ground, grassland, garden, heath,
bare_rock, beach and greenfield.

However, the availability of non-built objects was not consistent among the case studies.
Antananarivo, Johannesburg, Kampala, or Nairobi contained more than 1000 non-built-up objects
according to the previously stated definition. On the contrary, smaller cities such as Chimoio or
Katsina benefited from less than 50 objects. Given the spectral and spatial heterogeneity of the
non-built landscape which may consist of different types of soil and vegetation, a low amount of
non-built-up objects may induce a lack of representativeness in the training dataset. However, a large
amount of urban information is available through the road network or the digitized building footprints.
In the case of low OSM data availability, this information allows for the discrimination of areas with a
low probability of being built-up. The underlying assumption is that the areas which are distant from
any urban object, such as roads or buildings, have a low probability of being built-up, thereby making
potential candidates for being used as non-built-up training samples. Under the previous assumptions,
we define the urban distance as the distance from any road or building:

durban = min(droads, dbuildings) (1)

2.5.3. Quality Assessment of Training Samples

To assess the quality of the training samples extracted from the OSM database, we measured the
distance between their spectral signatures and those of the reference land cover polygons. The spectral
signature of an object is the variation of its reflectance values according to the wavelength. In the six
non-thermal Landsat bands, the spectral signature S of an object can be defined as:

S = (x̄1, . . . , x̄n , . . . , x̄6) (2)

with x̄n being the mean pixel value of the object for the band n. Therefore, the euclidean spectral
distance d between two objects x and y can be defined as:

d(x, y) =

√√√√n=6

∑
i=1

(x̄i − ȳi)2 (3)

More specifically, the optimal value of four parameters was investigated: (1) the minimum
coverage threshold for the building footprints; (2) the maximum surface threshold for the urban blocks;
(3) the accepted OSM tags for non-built-up objects; and (4) the minimum distance threshold for random
selection of supplementary non-built-up samples from the urban distance raster.

2.6. Classification

Relying on crowd-sourced geographic information to automatically generate a training dataset
implies that the resulting sample will be more noisy compared to a manual sampling strategy.
Therefore, a larger amount of samples may be required to compensate the mislabeled points and the
lack of representativeness. Consequently, the binary classification task (built-up vs. non-built) was
performed using the Random Forest (RF) classifier, which has been shown to be computationally
efficient and relatively robust to outliers and noisy training data [36,37]. The implementation
was based on a set of Python libraries, including: NumPy [38] and SciPy [39] for scientific
computing, Rasterio [40] for raster processing, Shapely [41] and Geopandas for vector analysis,
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and Scikit-learn [42] for machine learning. The code used to support the study is available on Github
https://github.com/yannforget/builtup-classification-osm.

To remove errors and ambiguities caused by variations in acquisition conditions, the eight
input Landsat bands were transformed to a Normalized Difference Spectral Vector (NDSV) [43]
before the classification. The NDSV is a combination of all normalized spectral indices, as defined in
Equations (4) and (5). In the case of Landsat, this leads to a vector of 28 normalized spectral indices.

f (bi, bj) =
bi − bj

bi + bj
(4)

NDSV =


f (b1, b2)

. . .
f (bi, bj)

. . .
f (b7, b8)

 (5)

To assess the ability of OSM for training supervised built-up classification, a comparative
approach was adopted. Three distinct classifications were carried out using different training datasets,
as described in Table 3. A reference classification (REF) was performed using the reference land cover
polygons as training samples to assess the relative performance of OSM-based approaches. In this
case, reference polygons were randomly split between a training and a testing dataset of equal sizes.
The procedure was repeated 20 times and the validation metrics were averaged. Training samples of
the two other classifications (OSMa and OSMb) were exclusively extracted from OSM. The first one
used first-order features from OSM: building footprints as built-up samples, and land use, natural
and leisure polygons as non-built-up samples. The second one was designed to tackle the OSM data
availability issue which may be encountered in less populated urban areas. It used second-order
features derived from first-order objects such as urban blocks and urban distance.

Table 3. Training samples data sources for each classification scheme.

Built-Up Non-Built-Up

REF Reference built-up polygons Reference non-built polygons
OSM1 Building footprints Non-built features
OSM2 Building footprints & urban blocks Non-built features & urban distance

In all three cases, RF parameters were set according to the recommendations of the
literature [36,37]. RF decision tree ensembles were constructed with 100 trees, and the maximum
number of features per tree was set to the square root of the total number of features. Imbalance issues
between built-up and non-built-up training datasets sizes were tackled by over-sampling the minority
class [44]. Additionally, fixed random seeds were set to ensure the reproducibility of the analysis.

2.7. Validation

Classification performances were assessed using the manually digitized reference land cover
polygons as a testing dataset. Three validation metrics were computed: F1-score, precision and recall.
The metrics were computed for the three classifications, as well as for two existing Landsat-based
urban maps: the GHSL and the HBASE datasets.

3. Results and Discussion

3.1. Built-Up Training Samples

The extraction of built-up training samples from the OSM building footprints required the
selection of a minimum coverage threshold. The impact of this threshold has been assessed by

https://github.com/yannforget/builtup-classification-osm
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measuring the spectral distance of the resulting samples to the reference built-up samples. As shown
in Figure 5a, the assumption that increasing the threshold would minimize the spectral distance
to the reference built-up is not verified. Indeed, the highest spectral distances are reached when
only fully covered pixels are selected. As shown in Figure 5b, the optimal threshold appears to be
reached when a minimum of 20,000 samples are available. This reveals the importance of maximizing
the representativeness of the sample by ensuring that a sufficient amount of samples is available.
Furthermore, given the non-exhaustive nature of the OSM database, a pixel that contains a building
footprint of any size have a high probability to contain additional unmapped built-up structures.
However, low threshold values (between 0 and 0.2) appear to effectively increase the spectral similarity
with the reference built-up samples by eliminating pixels covered by small and isolated buildings.
Overall, a minimum coverage threshold of 0.2 appears to maximize both samples quality and quantity.
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Figure 5. Quality and quantity of built-up training samples extracted from OSM building footprints
according to the minimum coverage threshold in the 10 case studies: (a) mean spectral distance to the
reference built-up samples; and (b) mean number of samples (in pixels).

Urban blocks enabled the collection of built-up training samples where buildings footprints were
lacking. Figure 6 shows the impact of the maximum surface threshold on both samples quality and
quantity. As expected, excluding large blocks increases the spectral similarity with the reference built-up
samples by avoiding highly mixed pixels and bare lands. The highest similarity is reached when only
including the blocks with a surface lower than 1 ha. However, this conservative threshold dramatically
reduces the sample size in small urban agglomerations such as Katsina, Gao, or Saint-Louis. Therefore,
a maximum surface threshold of 3 ha was selected to ensure a sufficient amount of samples while
minimizing the spectral distance to the reference built-up samples.
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Figure 6. Quality and quantity of built-up training samples extracted from OSM urban blocks according
to maximum surface threshold in the 10 case studies: (a) mean spectral distance to the reference built-up
samples; and (b) number of samples (in pixels) in the five case studies with the lowest data availability.
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3.2. Non-Built-Up Training Samples

The non-built-up landscape is spectrally complex due to its irregular spatial patterns and the
variations of soils and vegetation types. Figure 7 shows the most similar land cover of each OSM
non-built-up tag in terms of spectral distance. The analysis reveals the spectral variability of OSM
non-built-up objects across the case studies. Urban features such as garden, recreation_ground,
pitch or park can have a spectral signature closer to built-up than to bare soil or lowly vegetated
areas. The small surface covered by these features can lead to a high proportion of mixed pixels.
Additionally, their urban nature makes highly probable the presence of human-constructed elements.
On the contrary, natural features such as orchard, meadow, forest or wood are more consistently
close to the spectral signature of vegetated areas. Generally, most of the features providing bare soil
samples may be confused with built-up areas because of their urban nature (pitch) or their spectral
similarity (beach). However, the decision boundary between built-up and bare soil pixels being
the most prone to errors in urban areas, we choose to not exclude them in order to maximize the
representativeness. Overall, these inconsistencies also highlight the fact that a supervised multi-class
land cover classification based on OSM would be difficult to set up as of today.
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Figure 7. Most similar land cover of each OSM non-built-up object according to its tag. Circles are
logarithmically proportional to the number of pixels available.

In case studies where OSM non-built-up objects were not sufficiently available, an urban distance
raster was used to randomly collect supplementary training samples in remote areas. Figure 8 shows
the relationship between the remoteness and the spectral distance to the reference built-up samples.
As expected, the spectral distance increases with the urban distance. However, the spectral variations
become inconsistent and are mainly caused by changes in the non-built-up landscape (e.g., forests,
mountains, or bare lands). In highly urbanized agglomerations such as Johannesburg or Dakar,
the road network covers the whole area of interest, leading to a very low amount of remote pixels.
Consequently, a minimum distance threshold of 250 m was used.
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Figure 8. Quality and quantity of non-built-up training samples extracted from the OSM-based
urban distance raster: (a) mean spectral distance to the reference built-up samples according to the
urban distance; and (b) number of samples (in pixels) in the five case studies with the lowest sample
availability.

3.3. GHSL and HBASE Assessment

The assessment metrics for the GHSL and HBASE datasets in the context of our case studies are
shown in Table 4. They are provided as an indication of their relevance in the context of our case
studies and our definition of a built-up area. They also reveal which case studies may be problematic
for an automated built-up mapping method. For example, the arid urban area of Gao suffers from low
recall scores because of the spectral confusion that occurs between the buildings materials and the bare
surroundings areas. This leads to the misclassification of large built-up areas as bare lands. To a lesser
extent, the semi-arid urban areas of Saint-Louis, Windhoek, and Katsina present the same issue. On the
contrary, subtropical urban areas such as Antananarivo or Chimoio are characterized by an abundant
vegetation in the urban mosaic. Thus, high rates of misclassifications are observed in the peripheral
areas where built-up is less dense. A similar phenomenon is also noticed in the richest residential
districts of Johannesburg. Overall, both datasets reach a mean F1-score of 0.82 when excluding Gao.

Table 4. Assessment metrics of the GHSL and HBASE datasets. F1-scores lower than 0.80 are in red.

GHSL HBASE

F1-Score Precision Recall F1-Score Precision Recall

Antananarivo 0.83 0.82 0.83 0.79 0.67 0.96
Chimoio 0.47 0.98 0.31 0.82 0.94 0.73
Dakar 0.85 0.74 0.99 0.81 0.69 0.98
Gao 0.35 0.98 0.21 0.72 0.94 0.59
Johannesburg 0.92 0.86 0.99 0.90 0.82 0.99
Kampala 0.96 0.95 0.96 0.95 0.93 0.97
Katsina 0.90 0.92 0.88 0.64 0.76 0.56
Nairobi 0.84 0.96 0.75 0.88 0.81 0.97
Saint Louis 0.76 0.95 0.63 0.81 0.97 0.70
Windhoek 0.81 0.92 0.73 0.78 0.65 0.99

Mean 0.77 0.91 0.73 0.81 0.82 0.85
Standard dev. 0.20 0.08 0.28 0.09 0.12 0.18

3.4. Classification Results

Assessment metrics of the three classification schemes are presented in Table 5. The reference
classification, which has been trained with manually digitized samples, reached a mean F1-score of
0.92 and a minimum of 0.84 in Gao. Such results suggest that high classification performances can
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be achieved in most of the case studies provided that the training dataset is sufficiently large and
representative. The first OSM-based classification scheme (OSMa) made use of first-order OSM objects:
buildings footprints and objects associated with a non-built up tag. Therefore, a limited availability in
either of the aforementioned objects was highly detrimental to the classification performance. Katsina,
Windhoek, and Johannesburg suffered from a low availability in building footprints with, respectively,
110, 2636, and 6724 objects. This led to an unrepresentative built-up training sample consisting mainly
of large administrative structures or isolated settlements. In Chimoio, more than 150,000 building
footprints were available. However, only 12 non-built-up polygons have been extracted from the
OSM database, all related to forested areas. As a result, the lack of information regarding the spectral
characteristics of the heterogeneous non-built-up landscape did not enable the separation between
built-up and bare areas. A similar issue was also encountered in Antananarivo, where most of the
non-built-up training samples were located in natural reserves and forests.

The second OSM-based classification scheme (OSMb) was designed to tackle the aforementioned
issues by deriving second-order features from the road network. The addition of built-up and
non-built-up training samples collected from urban blocks and remote areas solved the data availability
and representativeness issues in all the case studies, leading to better scores in 9 out of 10 cases. Overall,
OSMb reached scores that were comparable to those of the reference classification. More specifically,
OSMb had the highest recall scores, suggesting that the model was more successful in the detection
of isolated, informal or peripheral settlements. Additionally, the use of larger training datasets (from
30,000 to 500,000 samples per case study) led to higher consistencies in the classification performance
with a standard deviation of 0.02.

Table 5. Assessment metrics for the three classification schemes. F1-scores lower than 0.80 are in red.

OSMa OSMb REF

F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall

Antananarivo 0.78 0.99 0.65 0.93 0.91 0.96 0.92 0.97 0.87
Chimoio 0.77 0.63 0.97 0.92 0.90 0.95 0.85 0.93 0.79
Dakar 0.95 0.98 0.92 0.96 0.94 0.98 0.94 0.98 0.90
Gao 0.81 0.96 0.69 0.90 0.94 0.86 0.84 0.84 0.86
Johannesburg 0.60 0.98 0.43 0.92 0.99 0.86 0.96 0.98 0.94
Kampala 0.98 1.00 0.97 0.98 0.99 0.96 0.98 0.99 0.96
Katsina 0.20 0.84 0.11 0.91 0.95 0.87 0.94 0.99 0.90
Nairobi 0.91 0.94 0.89 0.94 0.97 0.92 0.93 0.97 0.89
Saint-Louis 0.95 0.98 0.93 0.94 0.92 0.96 0.92 0.98 0.88
Windhoek 0.68 0.98 0.52 0.95 0.93 0.98 0.93 0.96 0.90

Mean 0.76 0.93 0.71 0.94 0.95 0.93 0.92 0.96 0.89
Standard dev. 0.23 0.11 0.29 0.02 0.03 0.05 0.04 0.05 0.05

With OSMb, three case studies still had recall scores lower than 0.9: Gao, Johannesburg and
Katsina. This suggests that the model did not effectively detect built-up in some areas. Figure 9
shows some examples of such areas. In Katsina, higher rates of misclassifications were observed in the
northeast part of the city, where urban vegetation was denser that in other parts of the agglomeration.
Furthermore, because of a less dense road network and the unavailability of building footprints,
no training samples were available in this area. Likewise, the richest neighborhoods in Johannesburg
are characterized by isolated buildings in a denser urban vegetation, leading to a higher rate of
misclassification. In Gao, errors were mainly caused by the spectral confusion which occurred between
built-up and bare soil areas. The phenomenon was exacerbated by the arid climate and the buildings
materials made off nearby natural resources.
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Figure 9. Areas with high rates of misclassifications in: (a) Katsina; (b) Johannesburg; (c) Gao;
and (d) Dakar. Satellite imagery courtesy of Google Earth.

Generally, as shown in Figure 10, the classification scores increased with the number of training
samples. Because of the introduction of noise and mislabaled samples inherent to automated
approaches, large training datasets were required to make sense of the heterogeneous spectral
characteristics of the urban environment. Figure 10 suggests that between 10,000 and 20,000 samples
are necessary to fit the classification model depending on the spectral complexity of the urban mosaic.
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Figure 10. Relationship between the number of training samples and the classification F1-score
(the outlier Johannesburg is excluded from the graph).

4. Conclusions

This study provided important insights regarding the automatic collection of training samples to
support large-scaled or rapid supervised classification of built-up areas. The proposed method
made use of the growing amount of information in the OSM database to automatically extract
both built-up and non-built-up training samples. This automated approach can reach classification
performances similar to manual sampling strategies, provided that a relevant set of pre-processing
routines are applied. In some less populated urban areas, first-order urban features—such as building
footprints—can be too scarce. The issue of data scarcity can be tackled by a spatial analysis of the
road network to derive second-order features such as urban blocks or urban distance. The proposed
approach reached a mean F1-score of 0.93 across our case studies, while the manual approach reached
0.92. Case studies located in arid climates suffer from higher misclassification rates because of the
spectral confusion that occurs between the building materials and the bare soil. The issue could be
addressed by using a higher resolution imagery such as Sentinel-2. Likewise, the use of Synthetic
Aperture Radar (SAR) to extract textural features should lead to a better separation between built-up
and bare soil.
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Automatically generated training datasets contain more noise than manually collected samples.
Additionally, the reliance on crowd-sourced geographic information introduces its own share of errors
and inconsistencies. Previous studies have shown that the RF classifier can handle up to 20% noise
in the training dataset, provided that the sample size is large enough [37]. Overall, these previous
findings are confirmed by our results. In our case studies, maximizing the size of the training dataset
was more advantageous than minimizing the noise.

Land use and land cover mapping in the OSM community is a relatively new phenomenon,
especially in developing regions. In fact, 77% of the building footprints and 50% of the land
use polygons used in this study have been mapped after January 2016. The growing amount of
available data suggests that the proposed approach will provide better results in following years.
More importantly, the mapping of land use and natural elements could enable multi-class supervised
land cover classifications in the near future.
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