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ABSTRACT 

 

Mapping settlement extents at the annual time step has a wide variety of applications in 

demography, public health, sustainable development, and many other fields. Recently, while 

more multitemporal urban feature or human settlement datasets have become available, issues 

still exist in remotely-sensed imagery due to coverage, adverse atmospheric conditions, and 

expenses involved in producing such feature sets. These challenges make it difficult to 

increase temporal coverage while maintaining high fidelity in the spatial resolution. Here we 

demonstrate an interpolative and flexible modeling framework for producing annual built-

settlement extents. We use a combined technique of random forest and spatio-temporal 

dasymetric modeling with open source subnational data to produce annual 100m x 100m 

resolution binary settlement maps in four test countries of varying environmental and 

developmental contexts for test periods of five-year gaps. We find that in the majority of 

years, across all study areas, the model correctly identified between 85-99% of pixels that 

transition to built-settlement. Additionally, with few exceptions, the model substantially out 

performed a model that gave every pixel equal chance of transitioning to the category “built” 

in each year. This modelling framework shows strong promise for filling gaps in cross-

sectional urban feature datasets derived from remotely-sensed imagery, provide a base upon 

which to create future built/settlement extent projections, and further explore the relationships 

between built area and population dynamics. 

 

Keywords 

Built, urban growth, random forest, dasymetric, population,  

 

 

 

 

 

 

 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2018                   

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2018                   doi:10.20944/preprints201812.0250.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.20944/preprints201812.0250.v1
http://creativecommons.org/licenses/by/4.0/


 

2 
 

ACKNOWLEDGEMENTS 

JJN is funded through the Economic and Social Research Council’s Doctoral Training 

Program, specifically under the South Coast branch (ESRC SC DTP). Feedback/support of 

early versions of the modelling framework from Dave Martin (University of Southampton), 

and Deborah Balk (City University of New York) was influential and much appreciated on 

the final product presented here. Many of the spatial covariates used here are the product of 

the “Global High Resolution Population Denominators Project” funded by the Bill and 

Melinda Gates Foundation (OPP1134076) (doi:10.5258/SOTON/WP00644). The authors 

acknowledge the use of the IRIDIS High Performance Computing Facility, and associated 

support services at the University of Southampton, in the completion of this work. 

 

AUTHOR CONTRIBUTIONS 

JJN, AS, JES, and AJT designed research. FRS, AEG, CL and JJN contributed to previous 

model concepts that resulted in the presented model realization. DC and AC contributed 

significant knowledge transfer on bootstrapping and growth curves. JJN carried out analyses 

and research. JJN, MB, and TE provided data and or carried out data pre-processing. JJN 

wrote the modelling script with MB providing the code framework for the larger scale data 

production. JJN wrote the manuscript with contributions and edits from all other authors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2018                   doi:10.20944/preprints201812.0250.v1

http://dx.doi.org/10.20944/preprints201812.0250.v1


 

3 
 

1. INTRODUCTION 

Many countries define urban as a function of some population density, economic 

functional area, or based upon administrative jurisdictions (United Nations, 2015), but this is 

not conducive to applications requiring global consistency in definitions (Potere & Schneider, 

2007). As a result, many studies have turned to a definition based upon the remotely sensed 

physical features of urban areas, i.e. the built environment, but even this can vary across 

space and time due to materials used, differences in urban morphology, and the surrounding 

environmental context (A Schneider, Friedl, & Potere, 2010; Annemarie Schneider & 

Woodcock, 2008; Small, 2009). Initially, remotely sensed urban definitions were optically-

based thematic classifications of land cover, typically captured the “built-environment,” 

including buildings, roads, runways, and, sometimes erroneously, bare soil (Bartholomé & 

Belward, 2005; Potere, Schneider, Angel, & Civco, 2009; A Schneider et al., 2010; 

Annemarie Schneider, Friedl, McIver, & Woodcock, 2003). Later improvements using 

supporting information about the surrounding environment and vegetation during post-

processing helped discern the true built environment from the surrounding land covers (A 

Schneider et al., 2010). Coinciding with advances in imagery, statistical methods, and 

computational resource availability, several high-resolution global datasets have combined 

optical imagery at various resolutions and utilized Synthetic Aperture Radar (SAR) data to 

refine the capture of urban features with a focus on vertical human-made structures (T Esch 

et al., 2013; Pesaresi et al., 2013, 2016). However, it remains a challenge to produce a 

consistent product while maintaining high temporal and spatial fidelity meaning most of the 

multi-temporal urban feature data sets are cross-sectional across a larger period. Further, the 

resource cost of producing these data remains relatively high and there can be pre-existing 

gaps in the data, due to selected sensor/platform characteristics or problems and adverse 

atmospheric conditions, prior to the other fidelity considerations. 

One way to address these issues is to leverage years where remotely-sensed urban 

feature extractions with high spatial fidelity and interpolate for missing time points and areas 

of interest is modelling between and/or beyond the coverage of remotely sensed data. 

Overall, urban feature/built growth models have disproportionately focused on high-income 

countries, which have different urban feature/built dynamics than low- and middle-income 

countries (Angel, Sheppard, & Civco, 2005; Linard, Tatem, & Gilbert, 2013; Seto, Fragkias, 

Guneralp, & Reilly, 2011; United Nations, 2015), and most have been limited to city or 

regionally specific models (Barredo, Demicheli, Lavalle, Kasanko, & McCormick, 2004; 

Batty & Xie, 1994; Clarke & Gaydos, 1998; Clarke, Hoppen, & Gaydos, 1997; Leao, Bishop, 

& Evans, 2004; Linard et al., 2013; Sante, Garcia, Miranda, & Crecente, 2010; White & 

Engelen, 1997, 2000). Previous methods of modelling urban land use and built land cover 

growth across space and time at the continental and global scales include land cover/land use 

transition models (Tayyebi et al., 2013; Verburg, Schot, Dijst, & Veldkamp, 2004) and 

cellular automata models (Batty, 2009; Sante et al., 2010; Verburg et al., 2002), with features 

or thematic classes extracted from remotely sensed imagery being the primary source of 

cross-sectional input for these models (T Esch et al., 2013; Patel et al., 2015; Pesaresi et al., 

2013, 2016; A Schneider et al., 2010). Of the few models predicting urban feature growth 

across the globe with a standardized framework, almost none have explicit spatial prediction 

finer than country level summaries (Angel, Parent, Civco, Blei, & Potere, 2011; Seto et al., 
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2011). Models that do provide discrete spatial predictions, do not allow local sub-national 

variation to drive the modelled changes or have not been assessed against comparable 

existing datasets (Angel et al., 2011; Goldewijk, Beusen, & Janssen, 2010; Linard et al., 

2013; Seto, Guneralp, & Hutyra, 2012). 

Having time series of regular observations of built settlement extents and their 

corresponding populations are significant given that forecasted growth of populations within 

dense urban areas are expected to continue through 2050, and much of that increase will 

occur within Africa and Asia (Angel et al., 2005; United Nations, 2015). Rapidly changing 

magnitudes and distributions of both settlements and populations have significant 

implications for sustainability (B. Cohen, 2006), climate change (McGranahan, Balk, & 

Anderson, 2007; Stephenson, Newman, & Mayhew, 2010), and public health 

(Chongsuvivatwong et al., 2011; Dhingra et al., 2016), amongst others. At local and regional 

levels, the availability, or non-availability, and accuracy of built and settlement extent type 

data affect measured population distributions, densities, and built type, e.g. urban, peri-urban, 

and rural, that then inform and shape policies. The 2030 Sustainable Development Goals 

(SDGs), which have a focus on accounting for and including “all people everywhere”, have 

reinforced this need for readily and globally available baseline data to guide efforts to meet 

development goals (United Nations, 2016). Further, outputs of a good model of time-specific 

urban/built growth can be used to guide training selection or post-processing of future 

remotely-sensed urban feature datasets. 

In this study, urbanization, or urban transition, is taken within a remote sensing 

context to be the physical transition of land cover from non-built-settlement, e.g. natural land 

cover, to built-settlement. We hereafter refer to areas that are comprised of habitable vertical 

structures and their immediate non-natural surroundings as “built-settlement” or BS. With 

this definition in mind, we leveraged recent advances in multi-temporal global BS feature 

datasets, global environmental datasets, subnational census-based population data, and 

computational methods to develop a globally applicable and flexible modelling framework. 

Our specific objectives were to i) determine if random forests can reasonably predict non-BS 

to BS transitions, ii) using random forests, create an automated globally applicable 

framework that can produce spatially explicit estimates of BS extent at annual steps using 

sub-nationally driven covariates and total population counts, iii) validate the model 

performance by an annual BS dataset and comparing the model predictions to the “observed” 

data. 

 

2. METHODS AND DATA 

2.1 Study Areas and Data 

 We selected four low-, middle-, and high-income countries from across the globe to 

capture a variety of BS morphologies, contexts, and evolutions as well as to demonstrate the 

flexibility of the model for various regions. The countries selected here were Panama, 

Switzerland, Uganda, and Vietnam. We also selected a “best-performance scenario” set of 

covariates, partly informed by the findings of an Africa-specific growth model by Linard et 

al. (2013), to give immediate environmental/land cover context and connectivity of areas to 

urban/built agglomerations. Ultimately, the model is not dependent on any specific 

covariates, retaining a level of flexibility for use in a wide variety of applications. For 
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example, we have also tested the model using a minimal set of globally available predictive 

covariates to provide input to other modelling efforts and avoid circular inference by end 

users. In the case presented here, chosen covariates were either time-specific or assumed to 

be temporally invariant (Table 1). All covariates were pre-processed, resampled to 3 arc 

second (~100m at the Equator) based on data type, and co-registered. All data used to restrict 

the area of modelling and inform the redistribution of transitions are also detailed in Table 1. 

Further details on pre-processing of specific covariates are provided in the Supplemental 

Material. 

 

Table 1.  Covariates used for predicting the probability of transition or in the model’s transition re-distribution 

process. 

Covariate 

Variable Name(s) in Random 

Forest Description Use 
Time 

Point(s) 

Original 

Spatial 

Resolution(s) 

Data Source(s) 

Built-

settlement 

esa_cls190 Binary BS 

extents 

Predictive, 

Restrictive, 

Redistributive 

2000 

2005 

2010 

2015 

ESA 10 arc 

sec 

(ESA CCI, 2017) 

DTE Built-

settlement 

esa_cls190_dst_<year> 

 

Distance to the 

nearest BS edge 

Predictive 2000 

2005 

2010 

2015 

ESA 10 arc 

sec 

(ESA CCI, 2017) 

Proportion 

Built-

settlement 

1,5,10,15 

esa_cls190_prp_<radius>_<year> Proportion of 

pixels that are 

BS within 

1,5,10, or 15 

pixel radius 

Predictive 2000 

2005 

2010 

2015 

ESA 10 arc 

sec 

(ESA CCI, 2017) 

Elevation Topo Elevation of 

terrain 

Predictive  3 arc seconds (Lehner, Verdin, & Jarvis, 

2008) 

Slope Slope Slope of terrain Predictive  3 arc seconds (Lehner et al., 2008) 

DTE 

Protected 

Areas Level 1 

wdpa_cat1_dst_2015 Distance to the 

nearest level 1 

protected area 

edge 

Predictive 2000, 
2012 

Vector (U.N. Enviroment 

Programme World 

Conservation Monitoring 

Centre & IUCN World 

Commission on Protected 

Areas, 2015) 

Water --- Areas of water 

to restrict areas 

of model 

prediction 

Restrictive  5 arc second (Lamarche et al., 2017) 

Subnational 

Population 

--- Annual 

population by 

sub-national 

units  

Predictive, 
Redistributive 

2000 -

2020, 

annually 

Vector (Doxsey-Whitfield et al., 

2015) 

Weighted 

Lights-at-

Night (LAN) 

---- Annual lagged 

and sub-national 

unit normalised 

LAN 

Redistributive 2000-

2016, 

annually 

30 arc second 

(2000-2011) 

15 arc second 

(2012-2016) 
 

DMSP (WorldPop, 

Department of Geography 

and Geosciences, 

Département de 

Géographie, & Center for 

International Earth Science 

Information Network 

(CIESIN), 2018; Zhang, 

Pandey, & Seto, 2016) 

VIIRS(Earth Observation 

Group NOAA National 

Geophysical Data Center, 

2016; WorldPop et al., 

2018) 

Travel Time 

50k 

tt50k Travel time to 

the nearest city 

centre 

containing at 

least 50,000 

people 

Predictive 2000 30 arc second (Nelson, 2008) 

Urban 

Accessibility 

2015 

urbanaccessibility_2015 Travel time to 

the nearest city 

edge 

Predictive 2015 30 arc second (Weiss et al., 2018) 

ESA CCI 

Land Cover 

(LC) Class a 

ccilc_dst<class number>_<year> Distance to 

nearest edge of 

individual land 

cover classes 

Predictive 2000 10 arc second (ESA CCI, 2017) 

Distance to 

OpenStreet 

Map (OSM) 

Rivers 

osmriv_dst Distance to 

nearest OSM 

river feature 

Predictive 2017 Vector (OpenStreetMap 

Contributers, 2017) 
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Distance to 

OpenStreet 

Map (OSM) 

Roads 

osmroa_dst Distance to 

nearest OSM 

road feature 

Predictive 2017 Vector (OpenStreetMap 

Contributers, 2017) 

Average 

Precipitation 

wclin_prec Mean 

Precipitation, 

1950-2000 

Predictive Single 30 arc sec (Hijmans, Cameron, Parra, 

Jones, & Jarvis, 2005) 

Average 

Temperature 

wclim_temp Mean 

temperature, 

1950-2000 

Predictive Single 30 arc sec (Hijmans et al., 2005) 

a  Some classes were collapsed: 10-30 → 11; 40-120 → 40; 150-153 → 150; 160-180 → 160  

 

2.1.1. Built-Settlement Data 

We chose to use the “Urban” thematic class, class 190, from the annual ESA CCI 

landcover dataset, hereafter ESA, for our study because of its annual coverage from 1992 to 

2015, allowing for the exclusion of years in the modelling process for validation of outputs. 

For our period of interest, 2000 to 2015, the ESA data creates annual 10 arc sec resolution 

(~300m at Equator) datasets by looking for thematic class changes from a baseline land cover 

map, produced using MERIS imagery, using 30 arc second (~1 km at the Equator) SPOT 

VGT imagery (1999-2013) and PROBA-V imagery (2014-2015) (UCL Geomatics, 2017). 

Starting in 2004, if there are changes detected, then the individual pixels of change detected 

at 30 arc second are further delineated using 10 arc second MERIS or PROBA-V imagery 

(UCL Geomatics, 2017). To reduce false detections, changes must be observed over two 

years or more (UCL Geomatics, 2017). Furthermore, the Global Human Settlement Layer 

(GHSL) (Pesaresi et al., 2013, 2016) and Global Urban Footprint (GUF) (T Esch et al., 2013) 

datasets are utilized in defining the extents of the ESA Urban class (UCL Geomatics, 2017). 

While still undergoing full validation, initial validation efforts estimate the 2015 Urban class 

user and producer accuracies between 86-88 percent and 51-60 percent, respectively (UCL 

Geomatics, 2017). We also test and validate a single year from an alpha version of 

forthcoming multi-temporal World Settlement Footprint (WSF) dataset, known as WSF 

Evolution (Thomas Esch et al., 2018), and present the results in the Supplementary Material. 

 

Table 2.  Summary of built-settlement transition data by country and period. Areal units here are pixels 

(~100m) as that is the unit handled by the model which looks at relative areal changes as opposed to 

absolute areal changes. 

Country Period Initial Non-Built Area (pixels) Observed Transitions 

Panama 

2000-2005 8,901,004 0.03 % 

2005-2010 8,898,679 0.09 % 

2010-2015 8,890,339 0.75 % 

Switzerland 

2000-2005 6,816,510 1.56 % 

2005-2010 6,710,069 0.08 % 

2010-2015 6,704,973 0.01 % 

Uganda 

2000-2005 28,231,555 0.07 % 

2005-2010 28,210,425 0.04 % 

2010-2015 28,200,084 0.04 % 

Vietnam 

2000-2005 40,108,425 0.11 % 

2005-2010 40,063,545 0.18 % 

2010-2015 39,990,858 0.38 % 

 

2.1.2 Population Data 

Annual population estimates from 2000 to 2020 for subnational areas were provided 

by Center for International Earth Science Information Network (CIESIN) in tabular format 

with unique IDs corresponding to a globally consistent grid containing the unique subnational 
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unit IDs and harmonized coastlines(Doxsey-Whitfield et al., 2015). Populations and their 

corresponding areas are based upon the Gridded Population of the World (GPW), version 4 

and as such follow the methods detailed in Doxsey-Whitfield et al. (2015) for the 

interpolation of population between years of official counts or estimates. 

 

2.2 Built-Settlement Growth Model (BSGM) 

2.2.1 Overview 

Here we interpolated for every year between a set of timepoints, T = {t0, t1, t2, …, t1} 

where t0 is the initial observed timepoint, t1 is the final observed timepoint, and all other 

times t are points lying between t0 and t1 for which we had observed BS extents. The time 

between any two observed time points t is referred to as a period, p. Within this study, t0 is 

2000, t1 is 2015, and we also have observed time points at 2005 and 2010, however the 

framework can handle any regularly spaced intra-period time-step if the input data 

corresponds. Therefore, in this study, for the ESA informed models we are carrying out 

modelling on three time periods, 2000-2005, 2005-2010, 2010-2015, for a total of 12 years 

interpolated. We generalize the process to determine the timing and number of transitions for 

each time step independently for each subnational unit, hereafter unit, as follows: 

 

1. Create a population map for all tobserved in T. 

2. At all tobserved, for each unit, extract the time-specific population count within the time 

specific BS extents and derive the corresponding average BS population density. 

3. On a unit-by-unit basis, interpolate the extracted BS population count between each 

tobserved using piecewise-fit logistic growth curves and BS population density by fitting 

natural cubic splines across all tobserved.  

4. Estimate expected unit, time-step-specific, total BS extent area, in number of pixels, 

and the expected number of transitions for that time-step based upon predicted unit-

specific total BS population and BS population density.  

5. For every unit, adjust the expected transitions by the sum of all expected transitions 

across the given period, ta and tb, e.g. 2000-2005 or 2005-2010, and divide by the total 

observed changes, e.g. 2005 BS extents minus 2000 BS extents. Repeat for all 

periods. 

6. For each unit, use the adjusted predicted transitions from step five as relative weights 

within a given unit to dasymetrically redistribute observed transitions from the larger 

source period to smaller individual time-steps, i.e. years, while maintaining the 

original number of transitions when all time-steps are summed. Repeat for all periods. 

 

To spatially disaggregate the predicted transitions, we first train a Random Forest 

(RF) model (Breiman, 2001) to produce a continuous surface representing the probability of a 

given grid pixel transitioning from non-BS to BS between t0 and t1. For every time-step, 

processing each subnational unit independently, we utilized unit normalized lagged lights-at-

night (LAN) data to annually adjust the base RF-derived transition probabilities. The 

assumption behind this being that areas that underwent the largest increase in brightness, 

relative to the rest of the unit in a single time-step, have a higher probability of transitioning 

and vice versa. From the pixels that were known to have transitioned, as indicated in the input 
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BS data, we selected pixels with the nth highest probabilities for transition, where n was equal 

to the number of pixels predicted to transition for that time-step. We then converted those 

pixels to BS, recorded the new BS extents, and used those extents as the basis for the next 

time-step of transitions. This resulted in a series of regularly spaced time-specific binary 

spatial predictions of the BS extents in raster format. A full process diagram is shown in 

Figure 1. All modelling and analyses were carried out using R 3.4.2 (R Core Team, 2016) on 

the IRIDIS 4 high-performance computing cluster (see Supplemental Material for code). 

 

Figure 1.  Overview of the generalized modelling process for a case of only two observed timepoints, t0 and t1, 

with references to utilized equations.  

 

2.2.2 Random Forest (RF) Estimation of the Probability of Transition 

Given that the binary dataset of transition/non-transition constitutes an intrinsic 

"imbalanced set" (He & Garcia, 2009), i.e. there are many more non-transitions than 

transitions; we adopted a stratified random over/under-sampling method (He & Garcia, 

2009), similar to (Linard et al., 2013), as follows: (i) randomly sample 80 percent of the 

pixels that transitioned, up to 50,000 and, (ii) randomly sample an equal number of pixels that 

did not undergo transition. The choice for equal sampling of each stratum was determined by 

testing different relative proportions and samples sizes until finding the most consistent and 

best model results, balancing performance and efficiency. 
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To create a probability of transition surface for the complex and non-linear 

phenomenon of BS transition, we utilized a RF model to accurately and efficiently model 

across an entire country at the pixel (3 arc second) level in an automatable and parallelizable 

fashion. We trained the classification RF on whether a pixel had transitioned between time t0 

and t1 (1) or not transitioned (0) against the corresponding values of covariates at time t0. We 

used the constructed RF to predict for the entire given country. Rather than accepting the 

default output of the RF classifier, which outputs a single predicted class as indicated by the 

majority of the predictions of its individual constituent trees, we wanted a continuous, 0.00 to 

1.00, probability of transitioning in to discriminate between high and low probabilities. Given 

that we trained the RF as a binary classifier, we took the mean of the individual tree 

predictions for each pixel. This class probability has a value between 0.00 and 1.00 represents 

the posterior probability of a pixel being classified by the RF as transitioning between t0 and 

t1 (Breiman, 2001). 

 

2.2.3 Population Mapping of Endpoints 

To interpolate, we first needed a spatially-explicit best estimate of the subnational unit 

specific BS population at all observed timepoints in the modelling period. To get this we 

created a population surface using the available time-specific and, assumed, time-invariant 

covariates (see Supplemental Material, Table A2) using the WorldPop RF method, described 

in Gaughan et al. (Gaughan, Stevens, Linard, Jia, & Tatem, 2013) and Stevens et al. (Stevens, 

Gaughan, Linard, & Tatem, 2015), to dasymetrically redistribute the time-specific population 

totals from the subnational unit level to 3 arc second grid pixels (Mennis, 2003; Mennis & 

Hultgren, 2006; 2015).  

For any given time point in the population modelling, we included the distance to 

nearest BS edge for the t0 timepoint, i.e. 2000, as population relates to older parts of a BS 

agglomeration differently from newer ones (2016). For example, if we were to model the 

population map of 2010 we would include the distance to nearest BS edge for 2010 as one of 

the predictive covariates as well as the distance to nearest BS edge corresponding to the 2000 

BS extents. This was done to avoid centres of agglomerations being assigned artificially low 

population densities relative to the preceding modelled time point (2016). We then extracted 

and summed by unit the total populations that were spatially coincident with the BS extents 

and derived the corresponding BS population density for use in the BSGM predictive phases. 

 

2.2.4 Transition Magnitude Estimation 

To estimate the number of transitions for each time-step within the study period, we 

used the predicted BS population changes and the predicted changes in BS population density 

for every unit. We first interpolated the BS population count of each unit i for every year, 

BSPOP(t), by fitting logistic growth curves (Booth, 2006), in a piecewise manner, i.e. for 

each time-period between observed points, using the year-specific total population, Ki(t), as 

the varying carrying capacity (Meyer & Ausubel, 1999) as shown in Equation 1 

𝐵𝑆𝑃𝑂𝑃𝑖(𝑡) = 𝐾𝑖(𝑡) ∗
𝑒𝑟𝑖∗𝑡+𝐶𝑖 

1+𝑒𝑟𝑖∗𝑡+𝐶𝑖
       [Eq. 1] 

where t is the number of time steps from the given period’s origin, e.g. for period 2000-2005 

2002 corresponds to t = 2, and ri and Ci are determined by fitting a least-squares linear 
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regression to the set of observed values after having been transformed via Equation 2. 

 

ln (
𝐵𝑆𝑃𝑂𝑃 𝑖𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐾𝑖𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
−𝐵𝑆𝑃𝑂𝑃𝑖𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

)        [Eq. 2] 

 

We then interpolated the unit average BS population density across all observed time points 

in the study period using natural cubic splines (McNeil, Trussell, & Turner, 1977) and the 

observed points as the knots, i.e. for ESA 2000, 2005, 2010, and 2015. The overriding theory 

behind selecting logistic growth curves and the cubic splines for interpolating comes from the 

sigmoid shape of these curves. That is, BS population and population density are assumed to 

follow the s-shaped curve by having low growth/decay rate in the beginning, a period of rapid 

change after a certain point, and then a slowing growth/decay rate as various constraints or 

carrying capacities, e.g. demographic, environmental, economic, affect the population (J. E. 

Cohen, 1995; Sibly, 2005).  

 

Using the interpolated unit BS population and the interpolated unit-average BS 

population density, we simply relate population and population density to produce areal units, 

in our case pixels, to get the expected number of transitions in Equation 3 

 

𝐵𝑆𝐶𝑁𝑇𝑖(𝑡) =
𝐵𝑆𝑃𝑂𝑃𝑖(𝑡)

𝐵𝑆𝐷𝑖(𝑡)
        [Eq. 3] 

 

where BSDi(t) is the unit, i, average BS population density at time t. See Supplemental 

Materials for how predicted “negative growth” resulting from Equations 1-3 was handled. 

 

2.2.5Dasymetric Redistribution of Transitions Across Time 

The number of predicted transitions derived from Equations 1-3 are not inherently 

constrained by the observed transitions between any two observed time points. To match the 

total number of observed transitions for the modelled period, we reweighted the transitions of 

each time-step on a unit-by-unit basis. This is essentially a temporal dasymetric redistribution 

of transitions from the larger source period, e.g. 2000-2005, to the smaller target periods of t, 

e.g. 2001,2002, etc., based upon temporal information contained in the time-specific unit 

population totals. To calculate the weight for each time-step, wt, we write the calculation in 

Equation 4 as: 

 

𝑤𝑡𝑖
=

𝐵𝑆𝐶𝑁𝑇𝑖̂ (𝑡)

∑ 𝐵𝑆𝐶𝑁𝑇𝑖̂ (𝑡)𝑘
1

         [Eq. 4] 

 

where t is again relative to the given period from 1 to the last year k and all wt for a given unit 

i sum to one. To obtain the temporally weighted transitions, 𝐵𝑆𝐶𝑁𝑇𝑖𝑡
̂ , we multiplied the 

weight of each year by the observed number of transitions in Equation 5, rounding to the 

nearest whole number for each year (see Supplemental Materials, section A4 for obtaining 

agreement with rounding differences). 
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𝐵𝑆𝐶𝑁𝑇𝑡𝑖
̂ = 𝑟𝑜𝑢𝑛𝑑(𝑤𝑡𝑖 ∗ ∆𝐵𝑆𝐶𝑁𝑇𝑖)       [Eq. 5] 

 

Where ∆𝐵𝑆𝐶𝑁𝑇𝑖 is the number of observed transitions, in pixels, from non-BS to BS for a 

given unit i. This allows the model to maintain agreement of transitions between the points 

that we interpolated. 

 

2.2.6 Spatially Disaggregating Transitions Using Annual Unit-specific LAN-weights 

For each period, we then processed the tabular predicted transitions into time-specific 

BS extent maps, i.e. spatially allocated the transitions within each subnational unit for each 

time-step. We spatially assigned the transitions within each unit using the RF-derived 

transition probability surface adjusted by time-specific weights in the form of subnational 

unit normalized LAN brightness differences, i.e. one time-step lags (see Supplemental 

Material). Given that the non-BS to BS, or “BS growth,” transition process is iterative in 

nature, we began by taking the extents of the previous time-step, or the previous observed 

extents if t was equal to one. We limited the location(s) where transitions could be allocated 

within the subnational unit to pixels where transitions were observed to have occurred, as 

defined by the input BS data. For every one of those locations, j, assuming they weren't 

transitioned in previous steps, we retrieved the transition probability as calculated in the 

transition probability surface. We took this base probability of transition for every pixel j and 

adjusted it by the spatially coincident lagged and weighted LAN data, for time-step t, using 

Equation 6: 

 

𝑃𝑎𝑑𝑗(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛)𝑖𝑗𝑡 = 𝑤𝐿𝐴𝑁𝑖𝑗𝑡 ∗ 𝑃(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛)𝑖𝑗     [Eq. 6] 

 

where 𝑃(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛)𝑖𝑗 is the RF-derived transition probability where transition was 

observed, 𝑤𝐿𝐴𝑁𝑖𝑗𝑡 is the corresponding adjusted LAN difference observed for the time-step 

t, and 𝑃𝑎𝑑𝑗(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛)𝑖𝑗𝑡 is the adjusted probability of transition for the time-step t in a 

given pixel j within the administrative unit i. Similar to previous models (Linard et al., 2013; 

Tayyebi et al., 2013), we assumed pixels with a higher probability of transition are more 

likely to transition before pixels with lower probabilities. We selected the nth highest 

probabilities from the subset of potential transition pixels, where n was equal to 𝐵𝑆𝐶𝑁𝑇𝑡𝑖
̂ , 

changed the value of those selected pixels to represent a transition to BS, and output the 

union of the new transitions and previous BS extents as the predicted BS extents for that 

time-step. We repeated this procedure using the newly produced extents for the preceding 

time-step as the base BS extent for the next time-step's transition procedure, until all time-

steps for the period were processed and then the entire procedure was repeated until all 

periods had been processed. 

 

2.3 Analyses 

 2.3.1 Validation and Comparison Metrics 

 While the RF produces its own validation estimates (Breiman, 2001), we tested the 

accuracy of the RF classifier by randomly sampling 100,000 pixels, not utilized in the 
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training of the RF, for validation. We selected this sample size as we were able to obtain 

sample prevalence rates equal to the known true prevalence rates of each country while still 

maintaining efficiency. Based on this sample, we plotted receiver operator curves (ROCs) 

and, given the imbalanced data (Haibo He & Garcia, 2009; Saito & Rehmsmeier, 2015), 

precision recall curves (PRCs) with simulated perfect and random classifier curves for 

comparison.  

Here, for the ESA models, we are comparing the predicted extents to all withheld 

extents between 2000 and 2015. For every year of prediction, we determined whether a pixel 

was True Positive, False Positive, False Negative, or True Negative, TP, FP, FN, TN, 

respectively. We calculated contingency table-based metrics to evaluate classification 

accuracy based primarily on the F1 score (Table 3) which is the harmonic mean of recall and 

precision, the quantity disagreement (Pontius & Millones, 2011), and the allocation 

disagreement (Pontius & Millones, 2011). We aggregated the pixel level results, to the unit 

level and calculated the same metrics since precision, and by extension F1, is sensitive to the 

corresponding prevalence and is subject to the modifiable areal unit problem (MAUP) 

(Openshaw, 1984).The MAUP not only reduces variance in value distributions the more the 

data are aggregated from their original resolution (Openshaw, 1984), but will result in 

different prevalences with different subnational area, i.e. zonal, configurations. The equations 

of the metrics calculated are listed in Table 3. 

 

Table 3.  Classification agreement metrics utilized and a brief description of each. The F1-score is interpreted as 

the harmonic mean of precision and recall. TP is “True Positive”, FP is “False Positive”, FN is “False 

Negative”, and TN is “True Negative.” 

Metric Equation Range and Interpretation 

Recall (Sensitivity) 

(Rogan & Gladen, 

1978) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

0 (no recall) – 1 (perfect recall) 

Specificity 

(Rogan & Gladen, 

1978) 

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

0 (no specificity) – 

1 (perfect specificity) 

Quantity 

Disagreement 

(Pontius & 

Millones, 2011) 

|
𝐹𝑁 − 𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
| + |

𝐹𝑃 − 𝐹𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

|

2
 

0 (no disagreement) – 

1 (complete disagreement) 

Allocation 

Disagreement 

(Pontius & 

Millones, 2011) 

2 ∗ min (
𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
,

𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
) 

0 (no disagreement) – 

1 (complete disagreement) 

F1 score 
2 ∗

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

∗
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
+

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 

0 (worst) – 1 (best) 

 

Additionally, to assess whether the modelling is worth the effort, we constructed a null model 

that randomly assigns the transitions to a year within the given period, with every year having 

an equal likelihood, and carried out predictions for each year within pixels that were known 

to have transitioned for comparability with our model. Again, we determined for each pixel 

whether it was a TP, FP, FN, or TN and calculated metrics to compare the BSGM and the 

null model at the across each country at the pixel level, and at the unit level. The null model 
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was bootstrapped 500 times based upon resource limits and prediction stability, for each year 

and was specific to each country. 

 

 

3. RESULTS 

 Across all study areas, two-thirds of the modelled years correctly predicted between 

85-99 percent of transition pixels. For all years, again at the pixel level, the BSGM displayed 

low quantity and allocation disagreement in both absolute and relative terms. Similarly, the 

pixel level F1 score, with few exceptions, was higher than the null model, yet had more 

variance in absolute terms of performance. Comparable results were found at the unit level, 

with particularly good results in the middle and later years of the study period.  

 

3.1 RF Performance  

 The ROC plots in Figure 2 show that the RFs approach the performance of the 

theoretical perfect model. However, given the imbalanced data, the PRC plots (Figure 2) 

show a more nuanced picture of performance where a maximum level of precision is quickly 

achieved, remains steady up to a certain value of recall that varies by study area, and then 

precision quickly decreases with increasing recall.  

Figure 2.  Receiver Operator Curve (left plots) and Precision Recall Curves (right plots) with the RF model 

performance, blue lines, against a random model, red lines, and a perfect model, green lines, for each 

modelled country and input dataset. 

 

Of the covariates informing the RFs of the models, we consistently saw that the most 

important predictors of a pixel transitioning from non-BS to BS were covariates related to 

distance (“esa_cls190_dst_2000”) and local density (“esa_cls190_prp_5_2000”, 

“esa_cls190_prp_10_2000”, and “esa_cls190_prp_15_2000”) of BS established at the 

beginning of the overall study period, i.e. 2000, and connectivity of BS extents at the 
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beginning ("tt50k_2000") or end ("urbanaccessibility_2015" and "osmroa_dst") of the study 

period  (Figure 3). 

Figure 3. Random forest covariate importance as measured by the average log decrease in the Gini impurity 

when the covariate is used as the splitting criteria at nodes; higher values indicate better performance 

of covariate. Model for Swizerland (CHE) ESA, Panama (PAN) ESA, Uganda (UGA) ESA, and 

Vietnam (VNM) ESA, are shown. Refer to Table 1 for covariate names. 

 

3.2 Pixel Level Results 

 Examining the proportion of pixels known to transition that were predicted correctly 

in Table 4, we show that out of 49 model years predicted, 33 of those years had correctly 

predicted proportions between 0.85 and 0.99. The ESA based modelled years ranged from 

0.57 to 0.99 of pixels predicted correctly (Table 4). Note that one minus the proportion 

correct is equal to the total disagreement of the predicted pixels, i.e. the sum of the quantity 

and allocation disagreement (Pontius & Millones, 2011). 

 

Table 4.  Proportion of transition pixels predicted correctly by the BSGM by year. Note that 1 – the proportion 

correct is equal to the overall disagreement, i.e. the sum of the quantity and allocation disagreement. 
Model 2001 2002 2003 2004 2006 2007 2008 2009 2011 2012 2013 2014 

CHE 

ESA 
0.718 0.573 0.628 0.975 0.987 0.979 0.975 0.983 0.999 0.998 0.997 0.997 

PAN 

ESA 
0.952 0.935 0.934 0.960 0.806 0.771 0.816 0.920 0.905 0.838 0.801 0.818 

UGA 

ESA 
0.814 0.787 0.803 0.929 0.912 0.877 0.877 0.909 0.940 0.893 0.865 0.878 

VNM 

ESA 
0.942 0.918 0.923 0.951 0.923 0.872 0.866 0.916 0.879 0.777 0.738 0.790 

 

 Examining the year-specific study area F1 scores in Figure 4, we show that the 

BSGM had low performance between 2001 to 2003, in absolute terms, and relatively near 

null model performance, across all ESA study areas. The F1 score for all modelled years after 

2003 increases to quite good performance, with values approaching 1.0 in some cases, and 

the difference between the BSGM and null model performance increases even more 

dramatically (Figure 4).  
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Figure 4.  Pixel-level F1 score by year for Switzerland (CHE), Panama (PAN), Uganda (UGA), and Vietnam 

(VNM) as compared to a null model. Full annual contingency data and metrics in supplementary 

material 

 

 Examining the source of the disagreement further, we display the observed quantity 

and allocation disagreement as well as the corresponding disagreements under the null model 

in Figure 5. We show that for all modelled years using the ESA data, the total disagreement is 

substantially less than that of the null model and predominantly, the disagreement produced 

by the BSGM model is predominantly due to allocation error (Figure 5). However, there does 

appear to be a pattern of increasing disagreement due to quantity error after 2010.  

Figure 5.  Pixel-level quantity and allocation disagreement of BSGM and null models for Switzerland (CHE), 

Panama (PAN), Uganda (UGA), and Vietnam (VNM) as compared to a null model, given in red. Full 

annual contingency data and metrics in supplementary material 
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3.3 Subnational Unit Level Results 

 Overall, at the unit level, we found results similar to the pixel-level results, including 

poor performance in absolute terms between 2001 to 2003, but some units were obviously 

performing worse than others as compared to the null model. Plotting the ESA-informed 

model distributions of unit-level F1 scores by study area and year against the corresponding 

null model performance, we show that the BSGM generally performs better in the majority of 

subnational units from which the transitions were disaggregated from (Figure 6). At worst, 

e.g. Vietnam 2002, approximately half of the units were still performing better than the null 

model (Figure 6). For quantity disagreement (Figure 7) and allocation disagreement (Figure 

8), results similar to pixel level results were found.  

 

Figure 6.  Unit level F1 score box plots, by dasymetric period, of Switzerland (CHE), Panama (PAN), Uganda 

(UGA), and Vietnam (VNM) ESA informed models as compared to a null model, given by a red 

“x”. Number of units exhibiting any transitions for each period and a defined metric value is given 

above the x-axis. 
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Figure 7.  Unit level quantity disagreement box plots, by dasymetric period, of Switzerland (CHE), Panama 

(PAN), Uganda (UGA), and Vietnam (VNM) ESA informed models as compared to a null model, 

given by a red “x”. Number of units exhibiting any transitions for each period and a defined metric 

value is given above the x-axis. 

 

Figure 8.  Unit level allocation disagreement box plots, by dasymetric period, of Switzerland (CHE), Panama 

(PAN), Uganda (UGA), and Vietnam (VNM) ESA informed models as compared to a null model, 

given by a red “x”. Number of units exhibiting any transitions for each period and a defined metric 

value is given above the x-axis. 

 

Plotting the unit-level metrics for all models as choropleth maps (see Supplementary 

Material for select maps and shape files containing contingency data), shows that years of 

generally good performance, the units of lesser performance are those that correspond to 

areas of less densely settled areas and the peripheries of established urban areas. Other years, 
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such as Uganda 2001, performed poorly across many units with no apparent pattern. Identical 

analyses for the WSF Evolution data are given in the supplementary materials as well. 

 

4. DISCUSSION 

The 2030 SDGs, have reinforced the importance of data to being able to account for “all 

people everywhere (United Nations, 2016). Differences in the dynamic spatial distributions 

of hazards (Carrão, Naumann, & Barbosa, 2016; Oliveira, Oehler, San-Miguel-Ayanz, 

Camia, & Pereira, 2012), the spatial variation of the effects of climate change (Ericson, 

Vorosmarty, Dingman, Ward, & Meybeck, 2006; Hanjra & Qureshi, 2010; Stephenson et al., 

2010), spatially allocating services to ensure sufficient coverage (Eckert & Kohler, 2014; 

Sverdlik, 2011), and targeting interventions and planning (Linard, Alegana, Noor, Snow, & 

Tatem, 2010; Utazi et al., 2018) based upon local context with limited resources requires 

more accurate mapping of BS and mapping of populations, both large and small (United 

Nations, 2016). Here we have shown a flexible modelling framework constructed from open-

source methods and covariates to produce a framework that can be scaled to global extent 

across a variety of study areas and input data. This model approximates patterns of BS 

growth through time with good agreement for most years at the pixel and the units used in 

disaggregation (Table 4, Figures 4 and 6). Here we have shown the BSGM framework is 

capable of filling gaps of imagery-derived urban feature datasets by estimating the extents in 

between observations. This emphasizes the strength of using an interpolative model, such as 

BSGM, as opposed to more imagery dependent annual feature extraction methods that may 

encounter adverse atmospheric conditions, limited sensor revisits, or the need for more 

resource intensive imagery-based interpolation methods. This framework, and resultant 

output data, can be used for better modelling of population through time, inform future urban 

feature extraction from imagery, help facilitate intervention/planning/monitoring of 

development goals, and potentially serve as a platform for simulating different transition 

paths through time and investigating correlates of BS spatial growth. 

However, the BSGM is neither without error not a total replacement for urban 

feature extractions. Given that the BSGM is interpolative, its predictions are limited by the 

accuracy, the spatial quality, and the temporal quality of its input urban feature dataset, the 

input time-specific subnational population data, and the input population surfaces. For 

example, the poorer model performance seen from 2001 through 2003 (Figures 4-8) are likely 

due to the fact the ESA data did not delineate changes, detected at 30 arc sec resolution, at 10 

arc second resolution due to the MERIS and PROBA V imagery not being available (UCL 

Geomatics, 2017). With regards to total disagreement of the model (Figure 5), the relatively 

high contribution of allocation disagreement prior to circa 2010 and corresponding decrease 

in contribution post-2010 is likely due to the switch from using coarser DMSP-based LAN 

data to VIIRS-based LAN data at the 2012 time point.  

 Further, models are limited by their conceptual and mathematical assumptions. In this 

framework, we are assuming a certain relationship between relative population and 

population density changes and drive demand for temporally coincident settlement growth. 

This is not to say the assumed relationship is correct; here we assume BS population grows 

logistically with a time varying capacity that is temporally coincident, i.e. not lagged, and we 

assume BS population density follows a natural cubic spline across all observed points. This 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2018                   doi:10.20944/preprints201812.0250.v1

http://dx.doi.org/10.20944/preprints201812.0250.v1


 

19 
 

is further predicated upon the assumption that the BS growth is predominantly driven by 

changes in population and or population density and the resulting demand is instantaneously 

filled as opposed to being delayed temporally. While there is support for population change 

being an empirical and theoretical driver of urban/BS growth (Angel et al., 2011; Dyson, 

2011; Linard et al., 2013; Seto et al., 2011, 2012), there is also evidence for the use of other 

covariates, not used here because of their unavailability at subnational levels globally through 

time, such as Gross Domestic Product and arable land per capita (Angel et al., 2011; Seto et 

al., 2011). Furthermore, there are other “intangibles” such as local, regional, and national 

land use or development policies, which almost certainly shape BS growth, but are typically 

not in an accessible format, if available at all. The value of using population data to predict 

growth of settlement, shown here in a semi-independent model framework, and the value of 

using urban/settlement feature data sets to predict population distribution (Nieves et al., 

2017), raises the question of whether it is worthwhile or proper to try to fully separate 

population and settlement given their reciprocal causal links, i.e. population begets built 

environment and settlement, settlement, typically, begets more population. 

The modelling assumptions here are preceded by the assumption of exponential 

interpolation of annual population totals by the GPWv4-based data (Doxsey-Whitfield et al., 

2015) and that the RF-informed dasymetric redistribution of those population totals are 

correctly locating the population in a manner which leads to correct BS population estimates 

for the BSGM to utilize. We already know that the RF population model tends to 

underestimate populations in BS and overestimate populations outside of urbanized areas 

(Stevens et al., 2015). Since the BSGM allocates transitions based upon relative changes in 

BS population, this last point should not affect prediction timings, assuming the RF-informed 

population modelling biases are consistent between the two times. Alternatively, any spatially 

explicit population datasets can be used as inputs for the BSGM, even the base GPW4, 

removing the need to use a modelled population input. With any area-based metric the 

Modifiable Areal Unit Problem (Openshaw, 1984) must be considered, as the total number of 

pixels in each unit is typically larger in the less settled areas resulting in less variation of 

aggregated metric values in those areas. With dasymetric redistribution methods, the size and 

configuration of the source units, spatially or temporally, can also affect the quality of the 

disaggregation with the larger relative differences between source unit and target unit sizes 

introducing more uncertainty to the output (Mennis, 2003; Mennis & Hultgren, 2006). As the 

concept of urban growth can be thought of as an incremental process, with future outcome 

dependent upon previous growth, the gridded outputs of the BSGM can be aggregated across 

years to decrease uncertainty of the interpolated extents should annual datasets not be needed. 

 

5. CONCLUSIONS 

 As urban feature dataset producers such as ESA, MAUPP, GHSL, GUF and others 

continue to improve and release datasets with higher temporal resolution, models such as the 

BSGM will likely still have utility due to imagery/extraction issues and a need to smooth or 

fill-in time periods where difficulty was experienced (ESA CCI, 2017; T Esch et al., 2013; 

Forget, Linard, & Gilbert, 2018; Pesaresi et al., 2016). By the time annual urban feature 

extractions have filled the current demand and become the standard, there will have grown a 

demand for quarterly, monthly, and so on, feature extractions and an interpolative model will 
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attempt to fill the need, data permitting, until the imagery and computational resources can. 

This is not to say that interpolative models and imagery-extracted features are oppositional, 

but rather are complementary. Should the time come where high-resolution annual feature 

datasets become the norm, this would offer a wealth of information from which to improve 

the model assumptions the BSGM currently makes. Further, the predictions of the BSGM 

could serve as a comparative check in the production of future urban feature extractions and a 

platform to explore population and BS dynamics.  

As informative as urban feature extraction datasets are, imagery will never see into 

the future and we plan on extending this framework to allow for projection of BS growth, 

both in a predictive manner as well as allowing scenarios to be input. We found that the 

primary predictors of growth BS extents were related to connectivity, i.e. road networks, and 

local, i.e. ~0.5-1.5km, settlement density (Figure 3) both giving support to work in attempting 

to define “urban” base on contiguity, connectivity, and spatial density (Dijkstra & Poelman, 

2014; T Esch et al., 2014; Pesaresi & Freire, 2016) and implying that investment in 

detecting/simulating new road network data would be beneficial to better predicting urban 

feature extents. Still mostly unknown is how the BSGM would perform for smaller 

settlements, not captured by coarser datasets such as the ESA land cover, and we are looking 

to test this with forthcoming feature data sets with resolutions below 3 arc seconds. Lastly, 

we plan to validate the utility of these dataset in an applied manner by comparing the effects 

of including the BSGM derived extents in annual population modelling.  

Here we have presented an open source framework for interpolating a binary BS or 

urban feature dataset using a limited covariate dataset that can be used to further population 

mapping by filling a current gap in annual global urban feature datasets. This framework is 

scalable globally, but also allows for sub-study area variation in transition probability, 

population changes, and lights-at-night changes to drive the overall study area model. 

Further, the model can be adapted to run at other scales, both spatially and temporally, either 

by modifying the provided code or in many cases, simply by modifying the input data. The 

annual global interpolative and projected datasets from 2000 to 2020, produced with an early 

version of this model with a reduced covariate set, is freely available on the WorldPop 

website (worldpop.org) with the up to date model production code hosted on the WorldPop 

GitHub repository (github.com/wpgp/BSGMi_alpha). The specific model code used in 

producing this work is included in the supplementary material. 
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