

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Meta-analysis of the risks of arterial and venous occlusive events with new generation BCR-ABL TKIs in patients with chronic myeloid leukaemia

Haguet, Hélène; Douxfils, Jonathan; Mullier, François; Graux, Carlos; Chatelain, Christian; Dogne, Jean-Michel

Publication date: 2016

Link to publication

Citation for pulished version (HARVARD):

Haguet, H, Douxfils, J, Mullier, F, Graux, C, Chatelain, C & Dogne, J-M 2016, 'Meta-analysis of the risks of arterial and venous occlusive events with new generation BCR-ABL TKIs in patients with chronic myeloid leukaemia', 21st congress of the European Hematology Association, Copenhague, Denmark, 9/06/16 - 12/06/16.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Meta-analysis of the risks of arterial and venous occlusive events with new generation BCR-ABL TKIs in patients with chronic myeloid leukemia

BACKGROUND

High rate of arterial and venous occlusive events were reported with ponatinib during clinical development¹ and serious cases of arterial occlusive disease were also reported with nilotinib.² This led to the evaluation of the vascular safety profile of new generation BCR-ABL TKIs through a meta-analysis that confirmed the increased risk of vascular occlusive events with ponatinib and nilotinib compared with imatinib in chronic myeloid leukemia (CML). The risk was also with dasatinib.³ However, distinction between arterial of venous events was not assessed.

OBJECTIVES

- To determine the risk of arterial and venous occlusive events in patients with Ph+ CML treated with new generation BCR-ABL TKIs in randomized clinical trials.
- Stratifications by treatment are performed to provide product specific risk assessment.

METHODS

Literature search

- Screening of scientific articles (PubMed, Scopus, Cochrane library), congress abstracts (ASH, ASCO, ESMO) and clinical trial register (www.clinicaltrials.gov).
- Selection of all randomized clinical trials comparing new generation TKIs versus imatinib in patients with Ph+ CML.

Data collection

- Study and population characteristics
- Arterial occlusive events
- Venous occlusive events

Statistical analysis

- Random- (REM) and fixed-effect models (FEM) have been used to analyze the risk of arterial occlusive events and venous occlusive events respectively.
- Effect size measure: Odds ratio computing using Peto method.
- Heterogeneity assessment: Cochran's Q statistic and I² value.
- One-way sensitivity analysis was performed to assess the robustness.

<u>Hélène Haguet</u>^{*1, 2}, Jonathan Douxfils¹, François Mullier², Christian Chatelain¹, Carlos Graux³, Jean-Michel Dogné¹ ¹University of Namur, Department of pharmacy, Belgium ²CHU UCL Namur, Hematology laboratory, Belgium ³CHU UCL Namur, Department of hematology, Belgium

RESULTS

Figure 2.- Forest plots of arterial and venous occlusive events in patients with Ph+ CML treated with new generation TKIs versus imatinib. Arterial occlusive events Group by Compariso Peto odds ratio and 95% C Study nam 18.835 4.614 0.085 0.002 Dasatini NCT01460693 SPIRIT 11,705 0,056 3,365 0,967 8,012 Dasatini Nilotinil Nilotin NCT00802841 LASOR Nilotinil NCT01650805 EPI 9.496 Ponatini 9,496 0,031 5,104 0,000 Overal 3.462 2.348 **New generation TKI** Venous occlusive events Statistics for each study Study name Peto odds ratio and 95% CI Group by Compariso 5 900 0 704 7.421 0.188 Nilotinib NCT00471497 ENESTIN 1.522 0.565 36,203 0,155 294 0.145 367.611 0.320 NCT01650805 EPI Ponatini ,294 0,145 367,611 0,320 7,775 0,041 Overal 2849 1.044 Overall, new generation TKIs increase the rate of venou (FEM OR_{PFTO} : 2.85; 95%CI: 1.04 to 7.78) and arterial (RE OR_{PFTO}: 3.462; 95%CI: 2.35 to 5.10) occlusive events. Ponatinib, nilotinib and dasatinib are associated with higher risk of arterial occlusive events than imatinib. No significant difference was found with bosutinib but trend indicate an increased risk of arterial occlusive events. Stratification by treatment for venous analysis demonstrates nonsignificant results due to the low pow of the analysis. CONCLUSIONS New generation TKIs increased risk of arterial and venous occlusive events compared with imatinib. The increased risk of vascular occlusive events associated with new generation TKIs is mainly driven thrombotic events occurring at the arterial side. Additional investigations are required to assess the underlying pathophysiological mechanisms. Appropriate risk minimization measures should be taken/implemented with nilotinib, dasatinib and ponatinib.

E1096

	events in patients with CML. Venous occlusive events Arterial occlusive even			
Treatments	New	Imatinib	New	Imatir
otinib	generation TKIs 4/886 (0.45)	0/608 (0.00)	69/886 (7.79)	7/608 (1
asatinib	8/929 (0.86)	3/873 (0.34)	16/929 (1.72)	4/873 (0
Bosutinib	0/248 (0.00)	0/251 (0.00)	3/248 (1.21)	1/251 ((
Ponatinib	1/154 (0.65)	0/152 (0.00)	11/154 (7.14)	3/152 (
Overall	13/2217 (0.59)	3/1884 (0.16)	99/2217 (4.47)	15/1884
(13/2, genera imatin	ation TKIs a hib-treated	nd in 0.16% patients.	ed with new (3/1,884)	of
 Lack of Inconst literat However, decrease demonstristic s (data not 	of time-to-e sistent repo ure. the use of this hetero rate no evic pecifies no shown).	event analys ort of cardic a clinical tr geneity, an dences of p heterogen	ses ovascular ev rial register od funnel ple ublication k eity among	vents in aimed ots bias. Th studie
	R	EFEREN	CES	
. Giles FJ, N t al. Rates of hronic mye matinib, nil ohort analy . Quintás-C ascular eve 012;12(5): . Douxfils J ssociation	/lauro MJ, Hon of peripheral a cloid leukemia otinib, or non- /sis. Leukemia. Cardama A, Kar ents. Clinical ly 337-40. , Haguet H, Mu Between BCR-	g F, Ortmann rterial occlusiv in the chronic tyrosine kinas 2013;27(6):13 ntarjian H, Cor mphoma, mye ullier F, Chatela ABL Tyrosine I	CE, McNeill C, V ve disease in pa phase treated e therapy: a re 310-5. tes J. Nilotinib- eloma & leuken ain C, Graux C, Kinase Inhibito	Woodma atients v with etrospect -associat nia. Dogné J

analysis. JAMA oncology. 2016.