
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Automata oriented program verification

Grégoire, Bertrand

Award date:
2002

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 28. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/4d6ed83d-3365-43f7-85e0-d15e1abaa919

FUNDP
Institut d'Informatique

Rue Grandgagnage, 21
B - 5000 NAMUR (Belgique)

Automata Oriented
Program Verification

Bertrand GRÉGOIRE

Under the advisory of Prof. Pierre-Yves Schobbens

Institut d'Informatique
Facultés Universitaires Notre-Dame de la Paix

Namur

Septembre 2002

Abstract

The formal verification process of a design with respect to temporal specifi­
cations is essential while designing (reactive) systems.

The process we present here relies on timed Live Sequence Charts (LSCs) to
describe properties of the system under development. The LSCs are unwound
into timed automata and automatically verified with a fair CTL model checker.
We describe all the transitions that take part in this completely automatic
process.

To obtain a more efficient verification we introduce a new class of automata,
which is proven to be an interesting subset of the timed Büchi automata, and
show, theoretically and algorithmically, how the efficient verification of these
properties can be conducted using the VIS model checker.

Keywords formal verification, model checking, reactive system, temporal re­
quirement, VIS, invariant check, timed automaton, non-failure acceptance.

Abstract

Il est essentiel, lors de la mise en place de systèmes réactifs, de pouvoir
vérifier des propriétés temporelles dès les premières phases du développement.

Le processus de vérification automatisé que nous décrivons ici se base sur
des Live Sequence Charts (LSCs) pour décrire les propriétes attendues. Ces
LSCs sont applatis en automates temporisés, et la propriéte est vérifiée au­
tomatiquement par un vérificateur de modèles CTL équitable. Nous décrivons
les traductions intermédiaires qui permettent cette vérification automatique.

Pour obtenir un processus plus efficace nous présentons une nouvelle classe
d'automates, définie comme un sous-ensemble intéressant des automates tem­
porisés de Büchi. Nous montrons comment une vérification efficace peut être
conduite sur ces propriétés, en théorie et par une procédure concrète.

Mots-clés vérification formelle, vérification de modèles, système reactif, com­
portement temporel, VIS, vérification d'invariant, automate temporisé, accep­
tation sans-échec.

Acknowledgements

I would like to thank Prof. Pierre-Yves Schobbens, Mr. Patrick Heymans
and Mr. Yves Bontemps for giving me the opportunity to discover the world
of research, guided with their great insight. They were available to answer my
questions and their (many) remarks greatly helped me in my work.

Prof. Bernhard Josko welcomed me in his Embedded Systems departement,
at Oldenburg. There, I collaborated with Hartmut Wittke, Jocken Klose and
Tom Bienmüller on the subject presented here. I would like to especially thank
them all for their help, in Oldenburg or during the writing of this thesis. They
found place for me in their overfull agendas, and made a place for me at their
table. Thanks to Ingo, Alexander, Thomas and Ulf for having made my stay
and work easier.

My friends have made my time in Oldenburg fun, thanks Christian, Céline,
Nadine, Mad, Victor, Marina, Tomas, Karer, Celia, Rebecca, Shantala, Udo,
Ditza, Frank, Fathi and the many others. Annika gave me her Germany, Louis
his energy and Imke her thousands different smiles.

I owe much of who I am to my parents. They have started me on this path,
and have always been with me along the way. For all the support they gave
me, I would like to thank wy whole family: Valérie, Alex, maman and papa.
Thanks also to Opa for the funny time we spent together in Germany, and to
nonkel Luc, for his valuable pieces of advice about my bad english.

Finally, I would like to thank my girlfriend, Barbara. She forgave me the
time we couldn't spend together and encouraged me every time I needed it, even
without saying a word.

Contents

1 Specification basics
1.1 Introduction to specification .
1.2 Live Sequence Charts (LSCs)

1.2.1 The birth of LSCs . .
1.2.2 Formalism description
1.2.3 Constructs of the language
1.2.4 LSC interpretation

1.3 Automata theory on infinite words
1.3.1 Finite automata on infinite words.
1.3.2 Timed finite automata on infinite words
1.3.3 Timed Büchi automaton .

1. 4 Unwinding LSCs into TBAs . .
1. 4.1 Intuitive procedure . . .
1.4.2 Pitfalls to the intuition

1.5 Activation modes . . .
1. 5. 1 Initial mode . .
1.5.2 Invariant mode
1. 5.3 Iterative mode

1.6 Particular TBAs . . .
1. 6.1 Activation mode
1.6.2 Acyclic Automata
1. 6.3 Remark on docks .

1.7 To conclude .

2 Model Checking
2.1 Introduction to formal verification

2.1.1 Like a candle in the darlc .
2.1.2 The candle becomes lighthouse
2.1.3 Automatic formal verification .

2.2 Temporal logics
2.2. 1 Linear Temporal Logic (LTL) .
2.2.2 Computation Tree Logic (CTL) .
2.2.3 FairCTL

2.3 Model checking of temporal logic formulas .
2. 3. 1 The choice between linear or branching paradigm .
2.3.2 LTL model checking . .
2.3.3 CTL model checking . .
2.3. 4 Language containment .

iii

7
7
8
8
8
8

12
1 4
1 4
1 6
1 8
20
20
2 1
2 6
2 6
2 6
27
29
29
29
30
30

31
3 1
3 1
3 2
3 2
3 3
3 3
3 5
37
37
37
3 8
40
4 1

2. 4 1faturation of mode! checking .
2. 4. 1 Composition
2.4. 2 Abstraction
2. 4. 3 Symbolic mode! checking
2. 4. 4 Efficient LTL mode! checking

2. 5 Safety properties and invariance checking
2. 5. 1 Underlying intuition
2. 5. 2 Checking invariants 3 Practical model checking

3. 1 Madel checking tools survey .
3. 2 The VIS mode! checker . . .

3. 2. 1 VIS overview
3. 2. 2 Designs description .
3. 2. 3 BLIF-MV
3. 2. 4 Language emptiness
3. 2.5 Safety formulas .. .

3. 3 The STATEMATE environment
3. 3. 1 Features quick tour .
3. 3. 2 Semantics remarks ..

3. 4 Approximations
3. 4.1 Specification restrictions .
3. 4. 2 Environment approximations 4 Finite acceptance on infinite words

4. 1 Acceptance criteria
4. 1. 1 Many criteria
4. 1. 2 Non-failure acceptance .
4. 1. 3 Invariant check

4. 2 Expressiveness theorem
4. 2. 1 Transitive dock constraints
4. 2. 2 Clock algorithm
4. 2. 3 New expressiveness theorem .
4. 2. 4 Efficiency

4. 3 NFA on the specification level
4. 3. 1 NFA on TBA level
4. 3. 2 NFA on Live Sequence Charts level .
4. 3. 3 NFA on Temporal Logic level

4. 4 Practicability considerations 5 Real usage
5. 1 Verification environment
5. 2 TBA optimizations . . .

5. 2. 1 (non)Determinism
5. 2. 2 Static simplifications .
5. 2. 3 Fairness
5.2. 4 Goal definition

5. 3 SMI translation . . .
5. 4 The SMI formalism .

5. 4. 1 Syntax

iv

4 1
4 1
4 2
4 3
4 5
4 5
4 5
4 6

47
47

48

49

49

5 2
5 3
5 4
5 4
5 4

56

5 7
5 7
5 8 61

61

61
62
6 4

65

65

67
70
7 1
7 1
7 1
7 1
7 3

74

75
7 5
76
76
77
77
78
78
79
79

5.4.2 Semantics 80

5.4.3 Propositional architecture 81

5.4.4 A vailable optimizations 81

5.5 Translation of TBAs into SMI . 82

5.5.1 Core automaton 82

5.5.2 Activation part 84

5.5.3 Correctness 89

5.6 Final steps before mode! checking . 89

5.7 Conclusion 90

6 Results 91
6.1 Specification support . 91

6.1.1 LSC 91

6.1.2 LTL 91

6.2 More efficient verification 92

6.3 Iterative activation mode 92

6.4 Witness verification 92

7 Conclusion 93 Appendices a A LSC unwinding a
B Statemate model certifier patterns library g

V

List of Figures

1 Transformational and reactive systems

1.1 LSC example
1.2 Finite automaton on finite words
1.3 Finite automaton on infinite words
1. 4 timed automaton example
1.5 Cuts of the unwinding procedure
1.6 Unwinding structure
1. 7 TBA resulting from the unwinding procedure
1. 8 Three activation modes . .
1.9 Automaton in initial mode
1.10 Artifact on invariant mode
1.1 1 Determining finitely accepting states
1.12 Iterative mode loclc handling

2.1 A binary decision tree
2.2 An OBDD . .

3.1 VIS overview
3.2 Verilog code: a nondeterministic output
3.3 Verilog code: symbolic type declaration
3.4 The VIS model checker kernel .

4.1 A constrained automaton . . .
4.2 A completed automaton
4.3 Transitive and global dock constraints
4.4 LSC suitable for invariance check . . .
4. 5 More general LSC suitable for invariance check

5.1 Verification environment at CvOU
5.2 The structure of a SMI program
5.3 A simple TBA.
5.4 SMI code: the core TBA . . .
5. 5 Activation in initial mode . .
5.6 Activation in invariant mode
5. 7 Activation in iterative mode .
5.8 Two observers, for two acceptance criteria

A.1 A LSC property of the crossing controller
A.2 Adding timing annotations to an LSC

vii

2

1 3
1 4
1 5
17
22

2 3
2 5
2 6
27
27
2 8
29

43
4 4

49
51
51
53

63
6 4
66
72
73

7 6
80

8 4
8 5
87
87
88

89

b
C

A.3 The unwound TBA d
A. 4 SMI property translation(l) e
A. 5 SMI property translation(2) f

B. l The STATEMATE activation modes h
B.2 The automaton of a STATEMATE pattern

viii

Introduction

The news group comp. risk is full of funny stories, such as the one reported
in [Mur90), a British news paper. A runaway train went clown the London's Tube
track, leaving its driver standing behind, on the platform. The man actually
left the cab of his fully-automated train to check a door which had failed to
close properly. When the door did shut an electrical circuit was completed and
the train, with 20 passengers on board, moved off before the driver had time
to rush back to the controls. None where killed nor injured, but the driver has
been sacked.

According to a U.S. Army report, a software problem contributed to dig­
ging holes at Fort Drum, in June 200 2. Two soldiers were firing artillery shells,
relying on the output of the Advanced Field Artillery Tactical Data System.
But if one forget to enter the target's altitude, the ·system assumes a default
of 0, when (part of) Fort Drum is at 679 feet above sea level. The report goes
on to warn that soldiers should not depend exclusively on this one system, and
should use other computers or manual calculations.

Software failures, and so are these unexpected behaviors, are a nightmare
of many major firms. Let us just remember the paranoia we faced with the so
called "Year 2000-Related" computer failures.

Unfortunately many humàn lives rely on software or hardware systems,
which control airplanes, automobiles, nuclear power plants and medical labo­
ratories, among others. These systems are called safety-critical systems. This
designation regroups computer, electronic or electromechanical systems whose
failure may cause injury or death to human beings.

'Iransformational and reactive systems

Most safety-critical systems are highly reactive, meaning they interact
with their environment. The systems which are not reactive are transforma­
tional, we illustrate both systems behaviors in figure 1.

Transformational systems are those which have all inputs ready when
invoked and the outputs are produced after a certain computation period. Most
industrial processes are transformational systems, but a simple procedure that
computes the square root of a number is a transformational process as well.

The reason a reactive system exists is typically to collaborate or interact
with some entities in its environment. Sending, receiving, recognizing and sub­
jecting sequences of symbols are parts of a reactive behavior. A well understood

1

2 Introduction

reactive system is a traffic-light controller. It is virtually impossible to write a
transformational program that implements such a controller, since the inputs
occur when the system is already running. In fact, most controllers are by
definition reactive, with application domains ranging from process control, mili­
tary, aerospace, and automotive applications to medical electronics, and similar
embedded systems.

Amir Pnueli [Pnu77] calls "reactive systems" any nonterminating or con­
tinuously operating concurrent programs, such as operating systems or network
protocols. The use of such systems is growing year after year. Graphical user
interface based software (GUI) and embedded systems are typically reactive.
The latter is often implemented as hardware.

A transformational
System

Inputs
Ready

Outputs
Ready time

A reactive
System

Figure 1: Transformational and reactive systems

Formai methods

time

The design error problem of life-critical (reactive) systems is a great threat
to the human being. There are 3 basic strategies [Hol97] for dealing with design
errors:

1. Testing (lots of!).
The problem with life testing is that in order to measure ultra-reliability
one must test for exorbitant amounts of time.

2. Design diversity (fault-tolerant software).
The basic idea is to use separate design/implementation teams to produce
multiple versions from the same specification. Then, non-exact threshold
voters are used to mask the effect of a design error in one of the versions.
The underlying hope is that the design flaws will manifest errors indepen­
dently, or nearly so. In fact, design diversity can create an "illusion" of
ultra-reliability, without actually providing it.

3. Fault avoidance (formai specification and verification, reusable modules)
Formal methods may be used to specify and model the behavior of a system
and to mathematically verify that the system design and implementation
satisfy system functional and safety properties.

Introduction 3

The often targeted 1- 10-9 reliability is beyond the range of quantification
(for both testing and design diversity) as stated in (Hol9 7]. We have hence no
other choice than to develop safety-critical systems in the most rigorous manner
available to us, which is the use of formal methods. We use the term formal methods to refer to the variety of mathematical modeling techniques that are
applicable to computer system (software and hardware) design.

The formai specification challenge

Designers of today's reactive systems face design challenges of enormous
complexity due to the increase of design content, explosion of features, ambigu­
ous design parameters and evolving customer requirements.

A high-level (formal) specification written in a language that has a well
defined semantics is mandatory for such designs. Nevertheless many companies
still use hand-written (informa!) specifications. Benefits of a formal specification
compared with an informa! one are very similar to the benefits of a true, working,
program compared with a document describing what the program should do.
The first is a usable object, while the later is nothing but a nice piece of paper
that needs to be used by a human. Non formal methods of communication
often leads to costly design and debug iterations (BF 9 3]. Numerous studies
have shown that correcting an error during integration costs over 10 to 1000
times more than correcting it at specification time.

The challenge of generating complete and unambiguous specifications is, of
course, only half the battle. The other big unknown is whether the specifications
accurately reflect user requirements (Gil 9 7].

The formulation of requirements into a formal specification is called syn­thesis. Traditionally, methodologies were used to produce the model, based
on experience in industry (BP 9 4]. More recently, development environments
provide automatic specifications synthesis, based on scenarios [I-L00b].

The formai verification challenge

Once we have got a formal representation of both the design under de­
velopment and the requirements (specifications) we are excepting from it, it is
time to check whether the first fulfills the later. This problem is called the verification, or validation process.

Many techniques have been studied for the past twenty years, developing
a wide range of approaches and subsequent tools. Notations and languages
that were previously designed by and for mathematicians are now adapted to
the engineer's needs. The user interfaces are a major concern of most of the
publicly available tools, especially the commercial ones. One step after the other
formal verification methods have been adopted within the hardware community.
Increasing cooperation between industry and formal methods researchers give
rise to practical and even more efficient formal verification approaches.

Recent discoveries allow us to verify always larger designs with always
more detailed properties. Complete formal verification of large complex systems

4 Introduction

becomes practical at this time, and a great increase in confidence in the system
can be obtained by the use of formal methods at key locations in the system.

We do not assert formal methods are the silver bullet1 that can magically
lay ail our problems to rest, citing Ftederick P. Brooks, Jr. [Bro 8 6]. Formal
methods are rather a complement to good design methodology and testing.

The techniques of automated verification developed widely for the past
two decades, and we try make a contribution. Our work investigates how for­
mal proofs can be clone on designs under development, and we try to make a
contribution by improving some steps of this complex process, focusing on the
translation of the specification set to allow more efficient verification methods
to be used.

Master thesis structure

In chapter 1 we present the formalism we use to describe the properties
we want to verify, namely Live Sequence Charts (LSC) [DH9 8]. LSCs are used
to describe the interactions between many components of a reactive system
within one scenario. They provide a means to distinguish between mandatory
and possible behaviors of the components. We translate these charts into timed
automata, to enable the automatic verification of the specification. Therefore
we introduce a timed automata formalism and describe the translation of LSCs
into such automata.

Chapter 2 describes how the problem of formal verification can be reduced
to the problem model checking [CGP99]. We therefore describe the most widely
used logics and techniques to automatically verify properties. Other approaches
than model checking are evoked, as the automata-theoretic approach, for in­
stance. An overview of more recent techniques, which are currently used in the
model-checking field, is given as well.

Chapter 3 can be seen as the application of the previous chapter. After
a quick survey of some well-known verification tools we apply the previously
cited formal verification techniques into a real environment. The VIS model­
checker, developed at Berkeley and Boulder, is investigated into much more
details. Finally a complete verification tool suite, i.e. STATEMATE , from I­
Logix Inc., illustrates the whole verification process. These tools are parts of
the verification environment of the Embedded System department of the Carl
von Ossietzky Universitiit, Oldenburg.

Chapter 4 includes the most original part of our work. We define here a
class of properties which can be verified more efficiently using invariant check
[RS99], rather than model checking techniques. Therefore, we firstly charac­
terize a class of properties represented by timed automata that can be verified
using this invariant check. We extend algorithmically this class of properties,
and define on the LSC level the properties one would be able to check on this im­
proved way. Most of the properties one could want to verify in real (industrial)
usage turn out to belong to this class.

Chapter 5 completes the translation chain our initial LSC specification
has to undergo in order to be checked. We hence introduce a simple imperative

1The one crafted to kill the werewolf of our nightmares.

Introduction 5

formalism, SMI, which allows us to translate the automaton of chapter 1 into a
finite state machine understandable by the VIS model checker. This translation
allows us, it is worth to mention, to take advantage of the improved verification
we described in the previous chapter.

Chapter 6 presents the improvements that were brought to our verification
environment by the prototypical implementation of the verification tool chain
we described.

Chapter 1

Specification basics

1.1 lntrod uction to specification

We use many different formalisms as they are all adequate for an as­
pect of the reality we want to describe, and the vocabulary of the physician is
(hopefully) not the one of the mechanician. Besicles their differences regarding
their field of application, formalisms can also be distinguished with respect to
their expressiveness. One will straightforwardly describe some music piece using
scores, whereas the same music piece will be written in chords or tabulars to
give more room for improvisation. From these different "vocabularies", let us
call them formalisms, each fits well a different aspect of the same reality, the
music piece.

Sorne formalisms are intuitive, some are not, but the latter could provide
a more accurate description. It · is obvious that the formalisms we use heavily
depend on the habits of our environment. The example of native languages
speaks for itself.

We will further use some well-known formalisms in the world of require­
ments engineering that fit our needs well, trying to describe them on both
intuitive and formal way. They were chosen because of historical reasons, or
after an in-depth survey of the available languages. The Symbolic Timing Di­
agrams (STDs) formalism belongs to the first category. It is used to describe
the internal behavior of a component. Live Sequence Charts (LSCs) belong to
the second, and are used to describe the interactions between many components
into a reactive system. LSCs are described in section 1 .2. Although STDs are
not reviewed in this paper, one can refer to [F J96) for a description of this for­
malism. Temporal Logics (described in section 2.2) can also be used to specify
interesting properties of reactive systems.

As all these formalisms are used for the same purpose, to specify a require­
ment, we translate them all into a single formalism, the Timed Büchi Automata.
This formalism is expressive and formal enough to allow to reason on it. We de­
scribe this intermediate formalism in section 1.3 , and show how to translate the
previously cited "high-level" specifications languages into one of our automata.

7

8 Chapter 1 Specification basics

1 .2 Live Sequence Charts (LSCs)

1 .2 .1 The birth of LSCs

In the development of software as well as hardware systems, visual lan­
guages are becoming increasingly popular due to their graphical appeal. Espe­
cially the telecommunications domain has been using visual languages for many
years. In this field the language of Message Sequence Charts (MSCs) became
a popular means for specifying scenarios that capture information exchange in
communication systems [IT9 6, AE0l] . Such languages have been adopted to
specify messages passing between components in other fields as well. One token
of this expansion is the inclusion of an object-oriented variant of Message Se­
quence Charts, called Sequence Diagrams, in the UML standard [JRB99] used
world-wide as reference formalism.

MCS's language is known to suffer a lack of expressiveness [HP9 8]. Neither
does it provide the formai rigor which we feel is needed for sequence charts to
be useful for formal utilization. This motivated the introduction of a sequence
chart dialect which remedies these shortcomings: Live Sequence Charts (LSCs).
LSCs were introduced by Werner Damm and David Harel in 1 99 8, their major
improvement with respect to MSCs and previous sequence charts is to provide
a means to distinguish between mandatory and possible behaviors [DH9 8]. This
is clone by providing the ability to designate most LSC's elements as belonging
to either the hot or the cold category, characterizing respectively the mandatory
and provisional behaviors. This hi-modal property is called the temperature of
an object.

The next sections present the key elements of Live Sequence Charts (LSCs)
following the approach of [DH9 8]. We introduce some of the extensions to this
formalism made by its authors in 2001, and some particular features which were
first described in [KW0l].

1.2.2 Formalism description

The formalism of LSCs, as appeared in [DH9 8], provides a rich set of
features to describe scenarios, from which we will consider a few, focusing on the
core concepts. The graphical representation of this language contributes largely
to the easy understanding of LSCs specifications, hence we will illustrate many
of the concepts within the LSC shown in figure 1.1 on page 1 3.

The basic idea of LSCs, as we already told, is to allow a distinction be­
tween mandatory and possible behaviors. To do so, most objects used in the
language must be declared to belong to one of those two exclusive modes. Graph­
ically speaking, mandatory, called hot elements, are depicted in solid lines, and
possible ones (cold) in dashed lines.

1 .2 .3 Constructs of the language

Instances

Each instance represents one participant to the scenario the LSC describes.
Instances are represented by vertical lines along which the time runs, from top

1 .2 Live Sequence Charts (LSCs) 9

to bottom. The environment is often depicted as an instance, rather than the
border of the LSC, like in the MSC formalism. This allows more flexibility
regarding the environment, allowing for instance to specify assumptions on its
behavior as for any other instance.

We do distinguish between environment and regular (component) instances.
A violation of a LSC which result from a wrong behavior of the environment
need to be treated differently than those caused by the system. In the former
case we exit the LSC without an error and in the latter case consider it as a
real specification violation.

There are four instances in our example LSC on page 1 3 , three are com­
ponents and the latter is the environment.

Locations

Many locations are linked each to one event on an instance. An event
related with a location occurs be/ore any event related with a lower location on
same instance. This chronological order is relevant on a single instance only,
we cannot compare occurrence time of locations on different instances on their
relative (graphical) position. The first location of an instance is called initial
and the last maximal.

Messages

Messages are sent between the instances. Their sending or receiving are
called events. As the emission of a message must occur before its reception, we
can deduce some ordering information between locations on different instances.

We consider two kinds of messages: asynchronous and instantaneous ones,
while [DH9 8] distinguished between synchronous and asynchronous communi­
cation.

An instantaneous message means that the sending event and receiving
event happen at the same time. A synchronous message means that the sender
is blocked until the receiver has completed whatever request the sender has
made. Only the sender and receiver are concerned with this blocking issue, the
other instances may proceed along their own execution thread. Synchronous
communication thus entails a notification of its completion. In a LSCs we re­
quire the user to make the return message explicit to highlight the fact that
such a process consumes time, and to make the formalism more intuitive. Asyn­
chronous messages can take a certain time to get from the sender to the receiver,
and do not impose the sender to wait for its arriva!, like posting a letter.One
could simulate the asynchronous message mechanism using many synchronous
messages that transit through a "channel" instance.

Messages are represented by arrows, going from the location associated
with their emission event, to the location where they are received. Asynchronous
messages have an open-ended arrow, instantaneous ones a solid head. Asyn­
chronous messages are to be drawn slanted as time passes while they are on
their way. Instantaneous messages are drawn horizontally, showing the simul­
taneity of their emission and reception. AH messages shown in figure 1.1 on
page 1 3 are instantaneous ones.

10 Chapter 1 Speciflcation basics
Temperature

The temperature concept applies to many abjects, indicating how to
progress along the instances and messages. Labelling a location with the hot
temperature (solid line draw) involves the chart must progress beyond this loca­
tion. The analogy is that one can not remain forever in a hot location without
burning one's feet. The maximal locations must be cold since we cannot oblige
an instance to go further after reaching its last location.

Temperature applies to most of the concepts of LSCs including the entire
chart, hot charts are called universal charts and cold one existential charts . We
do not consider the existential charts for the moment as they are not handled
by the translation algorithm we use [KWOl]. Furthermore the universal inter­
pretation seems to be the natural choice for formal specification, focusing on
the fact that an entire system fulfills the specification. The graphical distinction
between both is shown in the box surrounding the LSC, which is thus dashed
for existential and solid for universal charts.

Combining locations, messages and temperature allows us to express all
possible communication behaviors in table 1. 1.

\ temperature 1 hot cold
locations instance run must move instance run may stay

beyond location infinitely at location
message message will be received once sent message may be lost

Table 1. 1 : Temperatures for locations and messages

Conditions

Statements about the system state can be expressed using conditions.
Conditions are boolean expressions referring to attributes or data items of the
involved components (instances), evaluated when all instances concerned reach
the location corresponding to the condition entry. They are graphically repre­
sented by an elongated hexagon. Instances which are involved in the condition
have their instance axis interrupted by the condition, whereas instances axis of
components not participating in the condition continue through the condition.
In the example LSC components 1 and 2 are involved in condition C 2, whereas
the environment and component 3 are not, see page 1 3.

Conditions can be hot or cold. Hot conditions have to hold unless the
scenario fails. Cold ones should be met for the scenario to be validated, but
expresses, when violated, that we are not considering a scenario we wanted to
talk about, thus exiting without errors. This semantics is not conform to the
definition of temperature of [D H9 8], as it is used here to describe liveness rather
than progress, but it allows interesting specification when combined with sub­
charts, like conditional behaviors or iterations. We won't detail cold locations
nor sub-charts, as they are out of our current focus, but one can refer to [DH9 8]
for more details.

1 .2 Live Sequence Charts (LSCs) 1 1

Coregions and simultaneous regions

The chronological order between events is induced by the sequence of
locations on one instance, messages and conditions ranging over more than one
instance, that can be viewed as synchronization points.

There are two possibilities to change the ordering along the instance axis,
should this total order be too restrictive: simultaneous regions and coregions.

To have unordered locations of the same instance, one can put them into
a coregion. Coregions are drawn by a dashed vertical line, parallel to the whole
concerned instance portion. Within a coregion all events become unordered, as
for the arrivais of messages m3 and m 4 on page 1 3.

A simultaneous region states that all events contained in this region must
happen at the same time. This feature has been added to the initial LSC
formalism in 2001. It allows to specify the simultaneous observation of several
events, as one can meet in the STATEMATE environment described in section
3 .3. Such a region is graphically expressed through many events occurring
on the same instance at the same height (time), like messages emissions and
synchronization through a condition. Before this construct was added to the
formalism, a LSC scenario could only describe pure interleaved behaviors, where
one instance was allowed to progress at a time. Simultaneous regions make
the formalism really adapted to describe parallel execution of communicating
devices. Simultaneous regions may not appear in coregions, because otherwise
they would imply an order (of simultaneity) to some events of the coregion.

Actions

Actions represent internai behavior of an instance and consequently no
impact of an action is observable. They are represented by a rectangle, the
border of which depends on the action temperature. Actions are treated as
mere comments, we won't consider them in the remainder of this report.

Activation conditions and modes

The range of the specification is described by an activation mode. Three
different modes, initial, invariant and iterative, allow us to tell whether the
scenario should hold for ever, or only once. A mode is coupled with an activation
condition, ranging over the state of the systems, i.e. the instances and the
environment. Activation modes are explained in section 1. 5, let's just say the
iterative mode does not belong (yet?) to the LSC formalism of [DH9 8].

Both activation mode (A.M.) and activation condition (A.C.) are simply
written above the upper-left corner of the chart. As it can be seen, the LSC
in figure 1 .1 is an INVARIANT scenario that will thus be activated every time
ActCond is evaluated to true.

Timer, timing annotations

To be able to express properties about real-time systems, as vital as toast­
ers or airplanes autopilot robots, we use timing annotations and timers. Timing
annotations depict the (finite) interval of time for a location to be traversed.

12 Chapter 1 Specification basics

They are written using the mathematical notation for an interval besicles the
concerned location. For instance, in the example LSC on page 1 3 the possible
arrival of message m 6 should occur at least one time unit, and at last five time
units after component2 left the condition Cl .

Timing annotation can be added only to hot locations. Such an annotated
location has then to be traversed within the interval.

Timers can be viewed as timing annotations ranging over more than two
successive locations of an instance. A timer is represented sometimes by an
hourglass with the wanted time values, sometimes only by the time values, with
a line going to the location corresponding to the initialization of the timer, and
another line going to the location where it runs out. Both locations are located
on the same instance.

Sub-charts

We allow a single use of sub-charts, i.e. LSCs without activation infor­
mation which are integrated into a main one, as IF-THEN-ELSE construction.
Such a sub-chart is characterized by a single condition and two integrated sub­
charts, the first of which is activated if the condition holds, otherwise the second
one is. This construct differs from the sub-charts of [DH9 8) inasmuch as differ­
ent conditions were used in the initial formalism, evaluated at different time,
hence allowing both sub-charts to be traversed by the same run of the system.
This later behavior seems far from the conduct that one could expect from a
real alternative. We thus redefined this construct to fit our needs.

1 .2 .4 LSC interpretation

We explained how most of the elements of Live Sequence Charts are to
be interpreted, at least intuitively, in the previous section. We will now sketch
a more formai formalism, i.e. timed automata (1.3), to allow us to describe
how the LSC specifications can be translated into these automata (1.4) . In the
next chapters we describe how these timed automata can be used for forma}
verification of the initial (LSC) specification. For a more complete syntax and
semantics of LSCs the reader could refer to [DH9 8).

Sorne restrictions are put in order to simplify the interpretation of LSCs.
We do not allow any other element parallel to and independent of a sub-chart.
To ensure this we require the sub-chart to cover all instances of the LSC. The
second restriction involves the setting of a timer, which has to be bound (via a
simultaneous region) to some sort of event. This is adapted to the intuition of
a timer, which is set when some event is observed, and then counts time until a
subsequent event occurs.

We already made some remarks on the combinations of features: one
cannot include a simultaneous region within a coregion, since this would imply
an ordering (of simultaneity) on some events of the coregion. The same way we
don't allow many conditions to appear in the same coregion, nevertheless many
conditions can always be merged in a single one.

1.2 Live Sequence Charts (LSCs) 13

Figure 1. 1 : LSC example

14 Chapter 1 Specification basics
1 . 3 Automata theory on infinite words

LSCs describe the communication behavior of reactive systems. Such
systems internet with their environment during their all execution, which is often
infinite. We want to translate every specification languages used into a single
formalism, as stated in 1.1 , which should hence accept infinite words, because
of the possible endless execution of the system. There exist several different
automata which satisfy this requirement. For our purposes Büchi automata
on infinite words are sufficient. We introduce them in the remainder of this
chapter. In order to be able to treat time aspects, we extend them to timed
Büchi automata (TBAs) and finally show how LSCs can be translated into these
TBAs.

1 .3 . 1 Finite automata on infinite words Formal languages are typically characterized as a set of finite words for­
mulated over a finite alphabet [HU77) as are traditional computing languages
or human languages, for instance. Such words can be recognized by finite au­
tomata and can also be characterized by mathematical regular expressions. The
expression a* (ajb) for instance, describes the finite set of ail words beginning
with a finite sequence of a's, followed by a single a or a single b .

An automaton is simply a mathematical mode! of a device that has a
constant amount of memory, independent of the size of its input [CGP99). An
automaton on finite words can be represented as a graph with labelled transi­
tions, in which the set of nodes are the different possible states of the system
and the edges are given by all evolutions possible from any state. Sorne of the
states can be accepting, meaning the system could acceptably stay forever into
one of those, without any further evolution. The automaton on finite words in
figure 1.2 defines exactly the same language as the regular expression a * (alb).

a

Figure 1.2 : The automaton on fini te words that accepts a* (ajb)

Languages of infinite words can be similarly recognized by finite automata
on infinite words, called w-automata, and are also expressible as w-regular ex­
pressions. The expression a* (ajb)w for instance, describes the finite set of ail
words beginning with a finite sequence of a's, followed by an infinite sequence
of a and b.

Many different types of finite automata on infinite words have different
acceptance conditions, such as Büchi automata, Muller automata or Rabin au­
tomata. The reader could refer to [Tho90) or [AD9 4) for a survey. We will only
discuss Büchi 's automata in this report as they are sufficient for our purposes.

1 .3 Automata theory on infinite words 15

N ondeterminism

The automaton of figure 1. 2 illustrates a major concern of the automata
formalism: when being in state s0 and next input symbol is a a, should we
remain in state s0 or go to s1 , as both are possible according to the transition
label.

This possible choice is called nondeterminism and simply means that such
nondeterministic automata can have multiple same labels on the outgoing tran­
sitions of a same state.

Any nondeterministic automaton on finite words can be translated into a
deterministic one that accepts the same language" [CGP 99], while this is not
the case for Büchi automata.

Formai deflnition

Formally a (non-deterministic) Büchi automaton (on infinite words) A is
a tuple

A = (E, S, So, --+, F), where

• E is the finite alphabet.

• S is the finite set of states.

• --+Ç S x E x S is the transition relation.

• So Ç S is the set of initial states.

• F Ç S is the set of accepting states.

A transition (s , O"i, s1
) E --+ represents the change from state s to state

s1 on input symbol O"i . We typically write a transition in the form s � s1 .
As we told, an automaton can be represented as a graph with labelled

transitions, its set of nodes is S and the edges are given by --+. In the example
shown in figure 1 . 3 we can find that E = {a, b}, S = {so, si }, S0 = {s0 } and
F = { s1 }. Initial states are shown with an incoming array whereas accepting
states are double circled.

a a l b

Figure 1. 3 : The automaton on infinite words that accepts a* (alb)w

Let O" = O"o 0"1 • . . be an infinite word over the alphabet E. A run p of the
automaton A over this word O" is defined as a sequence of states: p = s0 s1 . . . ,

such that

• so is an initial state: so E So .

• the target state of each transition is the source state of the following
transition: Vi � 0 : (si, <li , sH1) E --+, where many transitions going
out from the same state can be labelled by the same character, as the
automaton is nondeterministic.

1 6 Chapter 1 Specification basics
The run p over a can also be written p : s0 � s1 � .. .

A run p of A over a is accepting i f some accepting state appears infinitely
often in p. This criterion is called Büchi acceptance criterion.

Formally the Büchi acceptance criterion states that those runs are ac­
cepted by a Büchi automaton A = (:E, S, S0 , �, F), which visit some state s E F infinitely often. Let inf(p) := { s E S I V i : s = s ; E p : 3 j > i : s =
s J E p} denote the set of states which are visited infinitely often by a run p. A
word a = ao a1 . . . is then accepted by A iff there is a run p over a such that inf(p) n F :j:. 0. Such a run is called an accepting run.

Let 1;w be the set of all infinite words over :E, the language L (A) accepted
by A as expected consists of those words a E 1;w , for which there is an accepting
run, i.e. L (A) := {a E 1:w

1 3 p : so � s1 � . . . : inf(p) n F :j:. 0} .
The language accepted by a Büchi automaton can also be characterized

by an w-regular expression. A language is called w-regular iff it is accepted
by some Büchi automaton. The automaton shown in figure 1.3 accepts the
language a* (alb)w , where w indicates infini te repetition.

1 .3 .2 Timed finite automata on infinite words

Until now our automata allow us to express properties concerning the
sequencing of events (states) of a system. (Un)fortunately many crucial systems
depend on real-time considerations, remember the toaster, and not only on their
qualitative sequence. Rajeev Alur and David Dill [AD9 4, Alu97] developed a
theory on timed finite automata on continuous time model. We recall some
of their intuition, but rather develop a discrete time framework, since such a
context is more intuitive to the system designer and easier to check formally.
Follow the way of [AD9 4] we associate an occurrence time to each symbol of a
word, yielding timed words.

Intuitive timing

In the untimed case the behavior of an automaton depends only on the
input symbols, i.e., being in some state, the next state(s) of an automaton is
(are) determined by the current input symbol. In order for an automaton to
accept timed words it needs a means to count time, since the choice of the next
state(s) should also depend on the occurrence time of input symbols. Time is
introduced into an automaton by adding a finite set of clocks. Time passes only
when a transition is taken1

. A dock can be reset to O along any transition and
at any time the reading of a dock corresponds to the time elapsed since its
last reset. With each transition we associate dock constraints, and require the
current dock values to satisfy this constraint for the transition to be enabled.
With each state we associate a dock constraint called its invariant or stable condition, and require the time can elapse within a state, i.e., dock values can
increase, as long as its stable condition is satisfied. In that way we force the
input word to conform to certain timing requirements.

1 in this way we distinguish from the timed automata of [AD94) where transitions take no
time and time only passes within a state

1 .3 Automata theory on infi.nite words 1 7

Figure 1. 4 shows an example of a timed Büchi automaton B which has
an alphabet 1:: = { a, b, c}, a set of states S = { s0 , s1 , s2 } , a single initial state
So = { so}, a single dock C = { x}, a single accepting state F = { s1} , and whose
transition relation --+ and stable conditions are drawn.

b {x}

a

C rx<=31

Figure 1. 4 : timed automaton example

Time interpretation
Time is represented by a sequence of time values which has to satisfy

two intuitive constraints: time only advances and time never stands still. More
formally, a time sequence T = To, T1 , T2, .. . is an infini te sequence of time values
T; E N the set of positive integers, for which the following holds:

1. We begin the observation at first available instant: To = 0

2. Time is strictly increasing: Vi � 0 : T; < T;+i

3 . Time is infinite: Vt E N : 3i > 0 : Ti > t

A timed word over an alphabet 1:: is then defined as a pair (a, T), where
a = ao a1 . • . is an infinitè word and T = To T1 . . . is a time sequence. The time
value T; denotes the occurrence time of input symbol a; .

Before giving the formal definition of a timed automaton it is necessary
to explain what type of dock constraints are allowed as stable conditions and
enabling conditions, and how the value of any dock is determined. For our
purposes it is sufficient to allow comparison of dock values to constants and
conjunctions, even if [AD9 4] used many more constructors within their dock
constraints. Any value of N eau be used as a time constant. The formal defini­
tion of the set <I>(C) of clock constraints I over the set C of dock variables is
defined by the grammar:

'Y := X ::; C I X � C I Ïl /\ Ï2,

where x is a dock in C and c is a constant in JR+ .
In order to evaluate the docks a clock interpretation is needed. A dock

interpretation v assigns to each dock x E C a value of the time domain. For­
mally a dock interpretation is a mapping v : C --+ N. Let I be the set of all
dock interpretations. The truth value of a dock constraint 'Y is then given by
substituting all docks in 'Y by their interpretation:

1 8 Chapter 1 Specification basics
[.] : <I> (C) X I -+ IIB

[x � c](v) := v(x)�c
[x � c](v) := v(x)�c

h1 /\ 1'2] (v) := bd(v)Ah2](v)

We say that a dock interpretation v for C satisfies a dock constraint 1
over C iff 1' evaluates to true according to the values given by v. Regarding the
timed automaton of figure 1. 4, we can see a dock interpretation v that assigns
2 to x would satisfy the dock constraint x :S 3 on transition from 82 to 81 .

We write v + t the dock interpretation which maps every dock x to the
value v(x) + t , and we write v [Y := 0) the dock interpretation which assigns 0
to each x E Y Ç X, and agrees with v over the rest of the docks in X.

We define these timed automaton more formally in the next section.

1 .3 .3 Timed Büchi automaton

Our Büchi automaton use a more concise labelling notation than the one
used for untimed automaton. Rather than having a distinct transition labelled
with each character a of the alphabet :E = 2 AP2 , the labels consist of boolean
formulas over the atomic propositions of AP. One can compare this comprehen­
sive notation to the one used for the dock predicates cI>(C). We show easily that
this simplified representation is equivalent in expressiveness to the extended one
simply by giving a mapping from any boolean formula that appears in our TBA
to a single character, and define the set of these character as the alphabet of
our automaton. Formally we denote by IIB(AP) the set of boolean formulas over
the atomic propositions AP.

Formally a (nondeterministic) timed Büchi automaton A is then a tuple

A := (AP, S, 80, C, -+, F, SC), where

• AP is a finite set of atomic propositions

• S is a finite set of states.

• 80 E S is the single initial state.

• C is a finite set of docks.

• F Ç S is a finite set of accepting states.

• SC : S ➔ IIB(AP) x <I> (C) is a function that maps each state to its stable
condition, ranging over the predicates on atomic propositions and dock
constraints.
A stable condition SC(8) = (bs, 1's) states that the automate is allowed to
remain in state 8 as long as both the predicate b8 and the dock constraint
1's are satisfied.

2which notation is also used by [AD94]

1 .3 Automata theory on infinite words 19

• �Ç S x IIB(AP) x 2° x <I>(C) x S is the transition relation with labels
given by the more concise formulas (rather than individual characters from
:E = 2AP).
A transition (si, b;, ri , 'Yi, si+ 1) E � represents the change from state s;
to state s;+l with b; satisfied. The set r; Ç C indicates which docks are
reset when taking the transition and 'Yi is a clock constraint that specifies
when the transition is enabled, this constraint is evaluated before the clock
resets.

In the automaton of figure 1. 4 the transitions are simply labelled by the
predicate on the alphabet, the docks to be reset are indicated within braces and
the dock constraint is written between brackets.

Semantics

When dealing with timed automata the runs which are considered have
to reflect time as well. A timed run tr of a timed automaton A over a timed
word (cr, T) is an infini te sequence of pairs (so, vo) (s1 , v1) . . . where s; E S is
the i-th state visited by the automaton and v; E I is the dock interpretation in
this state, we write

• Vi 2'. 0 : Si E S, vi E I.
• so E So.
• Vx E C : vo(x) = 0, all docks are initialized to zero.
• Vi 2'. 0 either 3 (s; , bi , ri , 'Yi , s;+1) E� : [bi](cr;) = true and [l';] (v;) = true and v;+l = (11i + r;) [r; := O]

or Si = S;+1 and, if we call SC(s;) = (b; , 'Yi) we have [b;D (cr;) = true and
['Y;] (v;) = true and v;+l = (v; + r;)
The taken transition or stable condition respects its atomic proposition
and dock predicates, resets all appropriate docks and the next dock in­
terpretation is coherent with elapsed time.

To define the run we used the same "interpretation" notation for the
formulas on atomic propositions than the one we defined for docks, except the
context of interpretation is here given by the considered input.

The question of which (timed) runs are accepting ones leads to the def­
inition of acceptance criteria for timed automata. We do this analogously to
the untimed version, using the same acceptance criteria for automata on infinite
words which can be applied to bath the timed and the untimed versions.

Again we only consider Büchi acceptance here, for other definitions of ac­
ceptance criteria see [AD9 4]. Timed Büchi automata combine Büchi acceptance
with timed automata intuitively described above. As for the untimed case we
define the set inf (tr) of states of a timed run, which are visited infini tel y often: inf(tr) := {s E S I V i with s = s; , (s;, vi) E tr : 3 j > i : s = Sj , (sj , vj) E tr } .

20 Chapter 1 Specification basics

A timed word (a, ,) = (a0 , ,0) (a1 , ,1) . . . is then accepted by Â iff inf(tr) n F f. 0
holds for the corresponding timed run tr. The language accepted by a timed
Büchi automaton is correspondingly defined as

L(A) := { (a, ,) E Ew x w 1 3 tr = (so , v0) � (s1 , v1) � . . . : inf(tr)nF f. 0}.
TO Tt

As an example the automaton l3 in figure 1.4 accepts the language a*(ba*c)w

restricted to the words in which a c occurs before the 4-th time unit after a b
occurred: L(B) = {(a, ,) 1 a E a* (ba*c)w /\ 'vi 3j > i : Œi = b ===} Œj = c /\ Tj ::; ,; + 3 }. Additional definitions

We finally define an activated TBA as a tuple (mode, actCond(A) , A)
where mode is either initial, invariant or iterative, actCond(A) is the
activation condition activating A and Â is the so-called main automaton, a
TBA. Note that the activation condition could be expressed as an automaton.

By convention we can use Â to designate both the TBA and the activated
TBA, as it is clear from the context which we are talking about.

We finally define a TBA specification as a finite set of activated TBAs:
TBAspec = {Â1, Â2, .. , , Âk }

Semantical remarks

The transition relation --t does not include self-loops, thus for all i 2:
0 such that (s; , bi , ri , 'Yi , si+I) E --t we have s; f. s;+1 (destination node is
different from source node).

More practical restrictions are brought to this formalism at the end of the
chapter, resulting in a more efficient language. These restrictions are motivated
by the particular result of the translation of specifications into TBA, therefore
we detail first this translation, called unwinding, in section 1.4, and give more
details in section 1. 6 about the TBA formalism which has been described here.

1.4 Unwinding LSCs into TBAs

The translation of a Live Sequence Chart (LSC) into a Timed Büchi Au­
tomaton (TBA) is called unwinding, as we will see the LSC form is (a bit) more
compact. The algorithm we explain here has been first described by Jochen
Klose and Hartmut Wittke in [KWOI], and is based on the procedure of [FJ9 6]
to unwind Symbolic Timing Diagrams.

1 .4.1 Intuitive procedure

The purpose of the unwinding procedure is to, finally, get a timed automa­
ton in which each (reachable) state represents one possible state of the LSC,
having all the possible states of the LSC included into the automaton. Both the
TBA and the LSC should specify the same behaviors, of course.

1.4 Umvinding LSCs into TBAs 21

The possible "states" of a LSC are called cuts, they can be viewed as a
(curve) line through the chart, across (cutting) all the instances, meeting exactly
one location of each of them. Two special cuts are defined, one including all the
initial locations, the other all maximal locations. The unwound corresponding
states are the (only) initial state and an accepting state of the automaton,
labelled by a true stable condition since we are allowed to stay forever in this
state.

We begin the unwinding procedure with the initial state, at the top of
the chart, and let a "front" clown, accordingly to the meaning of each abject
encountered, every event crossed implies to create a new state in the automa­
ton. We let the eut go downwards until we reach the maximal location on all
instances, which state we declare to be acceptant.

1 .4.2 Pitfalls to the intuition

The application of this intuitive idea could be straightforward imple­
mented, but we will first clearly define some more critical concepts of the LSCs,
such as coregions, simultaneous regions and IF-THEN-ELSE sub-charts. This
is clone in the next section. The figure 1 .5 shows a simple LSC on the left sicle,
with all possible cuts drawn. We can see one critical position is the coregion on
component C2, where Msg3 and Msg4 are received: many cuts go through this
position, none should be forgotten by the unwinding procedure! More formally

We establish a total order on all interesting events of a single instance
axis: sending a message, receiving a message, the valuation of a condition,
setting a timer, expiration of a timer or the reset of a timer, considering timing
annotations are associated to timers. This total order is based on the graphical position of the event [KWOl], let's call it position : Events -+ Position.

All events belonging to the same simultaneous region have the same posi­
tion, as well as events from the same coregion. The positions of these regions are
defined as well, thus extending the definition of position : Region -+ Position ,
where Region denotes the set of all the interesting place to characterize a LSC: Region = { Events, Simultaneous regions, Coregions, Initiais locations, Maximal locations} .

We can define the set of strict predecessors of a region using this total
order along a single instance axis. This set is empty if r is an initial location,
and is the set of direct predecessors of r otherwise. Usually predecessors (r) will
contain a single event, except if a coregion or a simultaneous region is the strict
predecessor of r .

Shared conditions and instantaneous messages force some regions to be
simultaneous on different instances. We say these regions belongs to the same simultaneity class.

Using the simultaneity classes and the predecessor relation we are able
to define the set of prerequisites of any region r , the set of regions of the LSC
that must be traversed before r can be traversed. prerequisites (r) is obviously
empty if r is an initial location, otherwise prerequisites (r) is the set of regions

22

Name: Example
AC.: ActCond

AM.: Invariant

1 ENV 1 1 C1 1 1 C2 1
,

L
,

,...1 _ - - - - - - - - L \
1 Gond J

[2,4]

Chapter 1 Specification basics

C3

Figure 1.5: Cuts of the unwinding procedure

1 .4 Unwinding LSCs into TBAs 2 3

which are the predecessor of any regions belonging to the simultaneity class of
r.

With this definition we are able to formally unwind a LSC by first con­
structing the simultaneity classes, and then unwinding the regions in such an
order their prerequisites have all been unwound before they are. The transla­
tions of the resulting automaton corresponds to the successor relation for cuts,
i.e the message events that must be fulfilled to get to the next eut.

The unwinding structure obtained from the application of this procedure
to the LSC of figure 1. 5 is illustrated in figure 1. 6

Figure 1. 6: Unwinding structure

Considering timing
The depicted unwinding structure cannot express time, we will thus trans­

form it into a Timed Büchi Automaton (TBA). This formalism, described in
section 1.3.2 , handles timing through docks, that can be reset and used in clock
constraints, either on the transitions labels or within the invariants of the states.

As we told in section 1.2.3 , timing annotations can only be added to hot
locations. They specify an interval of time [n, m], with n ::::; m, both positive
integers. This interval means that the annotated location has to be traversed
(left) at least n and at most m steps after is has been reached. Let us imagine
a hot location l on instance i is annotated with the time interval [1 , 4] . This
means that when a run reaches l on i, l should remain the active location of i
for at least one step, i.e. one dock increment, since we consider discrete time.

24 Chapter 1 Speciflcation basics
Furthermore l has to be left at most at the fourth step since it has been activate,
otherwise the run is rejected and an error is generated.

To add this timing information to the unwinding structure we simply
consider every hot locations as constrained by a (different) timer (dock). The
corresponding timer is reset when the location is reached and a boolean expres­
sion constrains the dock value to be within legal range when it is traversed.
This boolean expression is simply true if there was no timing annotation to
this location, otherwise it recalls the timing.

The resulting TBA has self-loops on each state, labelled with the condition
which has to hold for the TBA to stay in the associated state. These loops are
needed since, in our formalism, time only passes when transitions are taken,
they are what we called stable conditions in the TBA dialect (see section 1.3.2).
Its transitions are the conjunction of the predicate from the unwinding structure
and adding timing constraints.

Determinism in the TBA
The activation modes will be considered later, for the moment it remains

as a comment, added to the TBA. A more worrying tapie concerns the question
of the determinism in the TBA, as it is directly related to the interpretation we
give to the LSC's elements.

Three different options can be considered regarding the determinism of
the unwound automaton, which depends on the labels we give to the self-loops
of each state.

We could completely omit any information provided by timing annota­
tions, providing a totally nondeterministic automaton, which is not efficient for
verification purposes. A strict interpretation, as considered by [DH98] , means
that each occurrence of a message has to be explicitly noted in the LSC, and
no other is allowed. This interpretation may be tao strong, as we do not care
whether v isible messages are emitted at any time, as long as the desired scenario
is fulfilled. The third interpretation, called weak, forces the TBA to react to the
first occurrence of the expected message, but doesn't restrain the same occur­
rence at any other time. In a word, unexpected events are ignored. To achieve
this mode, self-loops are labelled with the negation of the next message(s) of
considered state.

An example
A simplification of the TBA produced by adding the timing considera­

tion to the unwinding structure of figure 1 .6 is shown in figure 1. 7, with the
modifications in bold. This one is a simplification inasmuch as states were put
together to allow a better readability.

In appendix A we show a small LSC extracted from the specification
related to a light-control system used for train rails. The TBA obtained by
application of the unwinding procedure of [KWOl] is provided as well.

1.4 Unwinding LSCs into TBAs

n t Msg4

not (Msg1
AND Msg2)

Figure 1.7: TBA resulting from the unwinding procedure

25

2 6 Chapter 1 Specification basics
1 . 5 Activation modes

When describing properties we would like a system to have, it is obvious
we also want to tell about the range of this specification: if it holds for ever or
only once, for instance. This opportunity is given by adding an activation mode
to a specification, paired with an activation condition.

Two activation modes are used by [DH9 8] for the activation of a LSC: initial and invariant. We add the iterative activation mode. These three modes
are illustrated in figure 1.8. The horizontal lines symbolize the time, running
from left to right, each vertical mark represents an occurrence of the activation
condition, which results or not in an activation of the specification, i.e. the
verification of the scenario, (in dotted line) according to the activation mode.

initial --l·-···-··-···-··-··-···-i·f1-··-··-··_···_··-···-··-··-···-··-···-··-··-·· :,__-1-----------1►►

invariant 1····· ·· ······· ·· ·t::::::::::::::::::::::::::::::::; t.::::::::······························· •
interative --1-l·-···-···-···-···-···--1·f-···-···-···-···-···-···-···-···-···-···---·· :---1··-···-···-···-···-···-····-···-···-···-·· ·-···-···-··,;►··

Figure 1. 8: Three activation modes

We describe the three activation modes within the next sections and com­
pare their use within both LTL formulas (see 2.2. 1) and finite automata (see
1.3.1). Nevertheless the activation mode remain as a comment to the specifica­
tion, either in LSC or TBA format, we really integrate it into the specification
only in a further step of the process, at the SMI level, as explained in section

5.5.2.

1 .5 . 1 Initial mode

The initial mode activates the specification immediately, i.e at the first
step of the run, the activation condition has to hold and the run to be fair to
be accepted.

The specification is also accepted if the activation condition does not hold
at first step while the activation exception does. In this case the specification is
not activated, and the run immediately succeeds. If the activation condition is
not satisfied at the first step and neither the activation exception, then the run
is rejected.

Such a behavior is easily implementable with LTL formulas. If we write act
the activation condition and P the property coded by the LSC, we can represent
the initial mode by the LTL formulae (act /\ 0 P) V (,act /\ exception).

The check of the same condition with a finite automaton is straightforward
and results in the automaton which can be seen in figure 1.9.

1 .5 .2 Invariant mode

In the invariant mode the input sequence is checked any time the activa­
tion is evaluated to true.

1 .5 Activation modes

et

not(act) and exception

ot(act) and not(exception)

Figure 1.9: Automaton in initial mode

2 7

The LTL formula for such an activation mode is of the form □ (act ===>
0 P) .

The invariant mode cannot be represented graphically, as we should du­
plicate all the P evaluation automaton as many time as needed. It is possible
to build a product-automaton (see section 2.3.2), but this is hard while handling
many docks. Since our automata are complementable one could also check
the formula ,◊ (act /\ O ,P) ===> act /\ O P, but the double complement
can be expensive, as stated in [BH].Finally we could also handle this mode by
nondeterministically activate the verification of the specification each time the
activation occurs.

Nevertheless we should check only the activations which are able to lead to
some problems, as shown in figure 1 . 10, where the first occurrence (dark vertical
bar) of the activation condition doesn't lead to a check of the input sequence as
we can forecast there won't be any problem. The second occurrence activates
the automaton and provides a witness of a crash (triple vertical bar). We are
thus reducing the number of simultaneous checks, this is quite feasible with
observers (automata).

invariant '--➔1-... -... -... -.... -... -... -... -... -... -... -... -... -... -, .. tH:�ff-�::-:::---:··-···-···-···-···-···-···-···-···-···_,··ji►

Figure 1.10: Artifact on invariant mode

Instead of trying to determine whether or not we have to activate con­
current checks of the property, we could allow only one instance of this check
at a time, but accept more activations if they are not concurrent. This is the
purpose of the iterative mode.

1.5.3 Iterative mode

The iterative modes sets a Iock when an activation occurs. This Iock
prevents any reactivation of the same specification until it is released, and it is
released when we can definitely agree on the specification.

The point is now to define when we are able to agree definitely on the
specification, even if this one concerns an infinite word, as it is the case for
w-words. Let's define a finitely accepting state, which is a state s such that:

28 Chapter 1 Speci.ication basics

• s is an accepting state.
• s has no outgoing transition, except a unique self loop labelled by true.

We can obviously state that whenever the automaton representing the
specification to be verified reaches such a finitely accepting state the requirement
is (finitely) fulfilled, recalling therefore Büchi 's acceptance criteria explained in
section 1.3.1 which accepts any run as long as it infinitely often goes through
an accepting state.

We show in figure 1.1 1 the finitely accepting states for the LTL formula
p U q with the activation condition r. This automaton is composed of two parts,
the first, above the dotted line, represents the activation condition, its state will
remain active as long as the activation condition r is not met. This first part does not belong to the automaton. The second part is the main automaton, the
specification, with 1 fair states (in bold) which fulfills the second property, it is
the only finitely accepting state (hence labelled by A).

p/\(,q)

(,p)/\(,q)

0

� true
�

Figure 1 . 1 1 : Determining finitely accepting states

We want to set and release a lock during the check, enabling a new acti­
vation only when the current one can't fail anymore.

Sorne states in which we can be sure of the result, even if the input se­
quence is infinite, are the finitely accepting states. We should thus release the
lock whenever entering such a state. We could enhance this definition consid­
ering "finitely accepting strongly connected components (SCC)" , i.e. SCC with
only true labels, rather than states, this has not be clone yet.

Such a behavior, of releasing the Iock when entering any finitely accepting
state is simply clone through a modification of the transition relation.

The action of releasing the Iock actually means to corne back from any
finitely accepting state either to

• waiting for the activation condition, if is not true yet.
• getting in the initial state of the automaton, if the activation condition

already holds.

We show how ---t (using the notation described in 1.3.2) has to be modi­
fied to exhibit release lock behavior in figure 1. 1 2 , using the same LTL formula
as in the previous example. The added heavy-dotted transition releases the
Iock, while the true self-loop of the finitely accepting state is now labelled be

1 .6 Particular TBAs 29

the negation of the activation condition. Such a modification of the transition
relation should be done from every finitely accepting states if there are more
than one.

p/\(,q)

(,p)/\(,q)

0

, . · ,
,, r

1
1

1 \ w� true

r , - - A

Figure 1.1 2 : Iterative mode lock handling

1.6 Particular TBAs

The Timed Büchi Automata resulting from the unwinding procedure in
section 1 . 4 are a bit particular. In this section we describe some restrictions
that can be made on the formalism due to its particular unwound origin.

1 .6 .1 Activation mode

The activation mode is added to our (unwinding) TBA format as a com­
ment, just as we told. This mere "annotation" will be considered later on, when
we effectively check the property, but does not influence the specification at all.

1 .6.2 Acyclic Automata

The unwinding procedure builds up the automaton using a total order on
the locations, i.e. a location is unwound only when all its prerequisites have
already been unwound (we refer to section 1. 4.2). This way of doing will always
provide us with a TBA that has no back-leading transition, and thus no cycle
except self loops.

To highlight the fact that the TBA is cycle-free we remove all self-loops
on the states, transforming each of them into an annotation that characterizes
its state. This annotation is called stable condition.

Its meaning is simply it has to be fulfilled for the automaton to be allowed
to remain in the current state. The semantics of a stable condition has been
given in 1.3.3

Sin ce the TB As are acyclic, we are able to define a total order, called
weight, on all the states of the TBA A: weight : S -+ N, such that weight(si) <
weight(sj) if Si is doser from the initial state of A than Sj , We define weight(s) =
0 if s is the (only) initial state of A and weight(s) is the sum of the weight of

30 Chapter 1 Specification basics

the direct predecessors of s added to the amount of already weighted states else.
This weighting can be implemented quite efficiently using a breadth first search
procedure with a counter increased by one for every weighted state, i.e. the
amount, and hence we state that Vi 2:: 0 (s; , a; , r;, 1; , s ;+i) E --+ : weight(s;) <
weight(s;+1) - This latter assertion states also there are no self-loops within the
transition relation.

1 .6.3 Rernark on docks

The docks generated by the unwinding procedures each correspond to a
single reference point, either in the LSC or the TBA. Hence, they are always
met into the automaton with respect to the same lower and upper bounds. Even
if we could find the same dock in many dock predicates of the graph, it will
always be used within the same interval. This doesn't change anything to the
semantics nor the formalism, but is a simple practical remark.

1 . 7 To conclude

In this chapter we showed how properties (specifications) of (reactive)
systems could be described, and how the LSC specifications of section 1. 2 could
be unwound (1.4 into Timed Büchi Automata (TBA, 1.3. 2). In chapter 2 we
explain how formai verification is born, and in the remainder of this report how
it can be used to automatically verify the properties we are now able to express.

Chapter 2

Model Checking

2 . 1 Introduction to formai verification

For as long as programs have existed ones wanted to get rid of their errors.
This dream of verification was based on some deeply rooted considerations about
the simplicity of program specification, and the idea that verification is always
needed.

One can now maintain there are many other ways of obtaining software
that is sufficiently reliable for many applications. Simulations are used for a
long time to get confidence into any system, implying to run a large number of
tests cases through the design. Careful development methodologies [BP94) and
well designed testing can give good results in many cases.

On the other hand formai verification uses mathematical techniques to
ensure the design conformity, which totally eliminates uncertainty [Wol98) .

2.1 .1 Like a candle in the dark

The first attempt at proving design correctness relied upon invariant
proofs [Hoa69) , but with the limited applicability of this technique and the com­
plexity of proving both inductive steps and termination they were not usable
for most people.

Hoare is the first to introduce a formalized programming language, called
Hoare logic [Hoa69) . He sees a program P as a transformation from an initial
state to a final state, and thus works with expressions of the form

which means that if </> is true before executing P, then 'ljJ is true after its execu­
tion.

Hoare then defined some basic program operations including assignments,
sequences, alternatives and iterations. Nevertheless, his formalism runs into
trouble with more complex constructions like procedures with parameters, point­
ers, complex data structures or concurrency.

31

32 Chapter 2 Madel Checking

The concurrent composition of programs brought a new challenge to the
development of Hoare's logic. Owicki and Gries [GO7 6) tried to define a con­
current composition rule within the Hoare logic. The concurrent composition
of programs P2 and A, written

should fit the requirement

{</>i } A Nd {</>2} P2 N2}
{ </>1 /\ </>2 } A I l P2 N1 /\ VJ2}

The difficulty of such a behavior resides in the fact the two concurrent pro­
cesses can potentially internet, with shared variables for example, at any time
of their mutual execution. It is thus essential to know what happens during the
execution, and not only before and after as expressed by this formalism.

2.1 .2 The candie becomes lighthouse

Amir Pnueli describes in [Pnu77) Temporal Logic as a useful formalism
for specifying and verifying correctness of computer programs. This language
has become a widely used formalism for reasoning about nonterminating or con­
tinuously operating concurrent programs, such as operating systems or network
protocols, he calls them "reactive systems".

Temporal logics were first described by Prior, in the fifties, for the percep­
tion of time within human languages. Temporal logic is developed by Emerson
in [Eme90). Temporal logic is a modal logic, let us remember such modal logics
were initially developed by philosophers to allow expression of possibility. For
example, the assertion P may be false in the present world, and yet the assertion
possibly P may be true if there exists an alternate world where P is true.

Temporal Logic is a particular type of modal logic, allowing to reason
about how the truth values of assertions change over time. Typical temporal
operators include sometimes P which is true now if there is a future moment at
which P becomes true and always P which is true now if P is true at ail future
moments.

These ideas were thoroughly explored and Temporal Logic became an
active area of research interest. We will explain some useful temporal logics in
the next section, but let us first survey the appearance of formai verification.

2.1 .3 Automatic formai verification

Through "formai verification" we mean the proof that a system meets a
desired property by checking that a mathematical model of the system meets a
formai specification that describes the property.

The tools for automatic formai verification are mainly based upon two dif­
ferent theoretical approaches. The first is temporal logic model checking, where
the properties to be checked are expressed as temporal logic formulas, and the
systems are expressed as (in)finite state systems. An example of this approach
is the SMV tool, developed at the Carnegie Mellon University, which uses Com­
putational Tree Logic (CTL) model checking to examine whether a finite state

2.2 Temporal logics 33

system satisfies branching-time temporal CTL formulas. The CTL model check­
ing was first explained by Clarke and Emerson [CGP99]. The formalism as well
as the related mode! checking technique are described further in this chapter.

The second approach called language containment makes use of w-automata
to describe both the system and the properties, and verifies correctness by check­
ing that the language of the property contains the language of the system. An
application of this approach is the COSPAN tool, of Bell Labs.

Most current tools offer a combination of both approaches, for efficiency
reasons, as the HSIS [Bra9 4] system, from the University of California, Berkeley.

Considering many model-checking tools publicly available, we easily find
out that a key question to understand them is the choice of the temporal lan­
guage they use to specify properties, as this language is one of the primary
interfaces of the tool. In the next sections of this chapter we will briefly de­
scribe some of the most widely used temporal formalisms and algorithms to
perform formal verifications on these formalisms.

2 .2 Temporal logics

Let us remember the temporal logics where investigated for describing
properties of sequences of states, whether finite or infinite. They are an extension
of propositional logic, or first-order logic, and use temporal operators to describe
temporal (sequencing) properties. Such temporal formulas are given a meaning
in a particular state of a sequence, their interpretation context. This point of
view cornes directly from the modal logics where an assertion can be true in
some context, while false in another.

One of the major aspect in the design of ail temporal languages is their
underlying model of time. The nature of time considered induces two different
types of temporal logics [CGP99]. In linear temporal logics, time is treated as
if any moment in time has a unique possible future. Linear temporal formulas
hence describe the behavior of a single execution of a program. In branching
temporal logics each moment in time may split into various possible futures.
Accordingly, the structures over which branching temporal logic formulas are
interpreted can be viewed as infinite computation trees, each describing the
behavior of the possible computations of a nondeterministic program (nonde­
terminism has been explained in section 1.3. 1).

2.2.1 Linear Temporal Logic (LTL)

The logic LTL is a linear temporal logic, well described in [CGP99]. For­
mulas in LTL are constructed from a set AP of atomic propositions using the
usual Boolean operators and some temporal operators. These operators give
the "context" of interpretation, i.e. the state in which the formula should be
evaluated. To understand their meaning let's consider a time-line the unit of
which is a single day:

1. X (or O) is read "next time" , it refers to tomorrow on our one-day scale.

2 . U (or U) is read "until" , ip1 U <p2 means we will meet <p2 in the future,
and until then <p1 holds.

34 Chapter 2 Madel Checking

3. R (or fJ) is read "releases" , it is the dual of "until" , this operator is
sometimes written V.

Two other operators are then defined as abbreviations:

l. F (or ◊) is read "eventually" , ◊ <p = true U <p.

2. G (or D) is read "always" , D rp = false fJ cp.

The alphabetical notation was first introduced by Prior, the other one
cornes from Pnueli, they are equivalent and we will use the second one in this
report.

Formally, given a set AP, an LTL formula in a positive normal form is
defined as follows:

• true , false , p, or -,p, for p E AP.
• <p1 V <p2 , <p1 /\ <p2 , where <p1 and <p2 are LTL formulas.
• 0 <p1 , <p1 U <p2 , or <p1 fJ <p2 , where <p1 and <p2 are LTL formulas.

The sema.ntics of LTL is defined with respect to paths, or computations
1r = ao , a1 , a2 , ... , where for every j E N, O'j is a subset of AP, denoting the
set of atomic propositions that hold in the j 's position of 1r . For a path 1r, 1ri

represents its suffix starting at position i, i.e. O'i , O'i+i , ... of 1r. We use 1r I= cp
to indicate that an LTL formula rp holds in the path 1r. The rules giving the
truth of a formula in the first state of a path are the following:

• For all 1r, we have 1r I= true and 1r � false .

• For an atomic proposition p E AP, 1r I= p iff p E a0 and 1r � p iff p 't ao.

• 1r I= <p1 V <p2 iff 1r I= <p1 or 1r I= <p2.

• 1r I= <p1 /\ 7î I= <p2 iff 7î 1= <p1 and 7î I= <p2.

e 7î F Q rp iff 'Tîl F rp.
• 7î I= <p1 U <p2 iff there exists i 2:: 0 such that 'Tîi I= <p2 and 7ri I= rp1 for all

0 � j < i.

• 7î I= rp1 fJ <p2 iff for all i 2:: 0 such that 'Tîi � <p2 , there exists O � j < i such
that 7ri I= <p1 .

A linear temporal logic formula is a description of a set of infinite se­
quences, i.e. those that satisfy it. We often interpret those formulas over a sys­tem with many computations. Formally, a system M is a tuple (AP, S, S0 , R, L) ,
where S is the set of states, S0 the set of initial states, R Ç S x S is a total
transition relation (for every s E S, there is at least one s' such that R(s, s')) ,
and L : S ➔ 2AP maps each state to the set of atomic propositions that hold
in it. A computation of M is a sequence of so, s1 , ... such that so E So and for
all i 2:: 0 there is R(si , S;+1).

The model checking problem for LTL is to determine, given an LTL formula
rp and a system M, whether all the computations of M satisfy rp. This problem
is known to be PSPACE-complete [SC85) , we describe it in section 2.4.4.

2.2 Temporal logics 35

2.2.2 Computation Tree Logic (CTL)

The Computation Ttee Logic (CTL) is a propositional logic of branching
time; i.e., it is based on propositional logic and uses a discrete model of time
where, at each instant, time may split into several possible futures [CGP99]. We
introduce the syntax and semantics of CTL, less detailed than the LTL ones,
relying on the intuition of the reader to make the parallel.

CTL formulas and their Truth semantics

Branching time temporal logic are interpreted over infinite trees in which
each node is a state, assigning truth values to the atomic propositions

The semantics of a CTL formula is defined over a system M = (AP, S, So , R, L),
where AP is a set of atomic propositions, S is a set of states, R Ç S x S is a
total binary relation, S0 is a set of initial states and L : S -+ 2 AP maps each
state to the set of atomic propositions in AP that are true in that state. R is the
next-state relation of the structure. If the system is in state s at a given time
instant, it will be in any of the successors of s at the following time instant, i.e.
the states in the set { s' E Sl (s, s') E R) . R must be total since CTL formulas
have no interpretation for states without successors.

We are now able to define a path as an infinite sequence of states so, s1, . . .
such that so E So and Vi 2'. 0 : (s;, s;+1) E R.

Branching time temporal logic includes two path quantifiers: A for all
paths, and E for some paths.

Let AP be a set of atomic propositions. CTL formulas are defined recur­
sively:

• Every atomic proposition p E AP is a CTL formula.
• If <p1 and <p2 are CTL formulas, then so are •<p1 , <p1 /\ <p2, A O <p1 , E 0

<p1, A(cp1 U <p2), and E(cp1 U <p2).

Intuitively, AO means "all successors", EO means "there exists a suc­
cessor", A(cp1 U <p2) means "always <p1 until <p2" and and E(cp1 U <p2) means
"exists <p1 until <p2" •

Additional temporal operators are defined as abbreviations, in terms of
the ones above:

• A◊ cp = A(true U cp): cp must hold eventually.
• E◊ cp = E(true U cp): there is a reachable state in which <p holds.
• E□ cp = ,A◊ ,cp: there is some path on which <p ahvays holds.
• A□ cp = ,E◊ ,cp: cp must always hold on all possible paths.

Consider a CTL formula <p and a structure M = (AP, S, so, R, L), rep­
resenting the system to be checked. We denote the statement "cp holds in M
at state s0" with M, s0 I= cp, using the same notation as for LTL. We write
s0 I= <p if the underlying structure M is implicit. M, So I= cp to abbreviate
Vs E S0 Ç S : M, s I= cp, and M I= cp to abbreviate M, S I= cp. The relation I=
defines the formal truth semantics for CTL and is defined recursively as follows:

36 Chapter 2 Madel Checking

• M, so I= p iff p E L(so) .
• M, so I= ..,<p iff not (M, so I= cp) .
• M, so I= cp1 /\ cp2 iff (M, so I= cpi) and (M, so I= cp2) .
• M, so I= A O <p iff 'v't E S : (so, s1) E R ===} (M, s' I= ip) .

• M, so I= E O <p iff 3t E S : (so, s') E R /\ (M, s' I= cp) .
• M, s0 I= A(cp1 U cp2) iff for al! paths s0 , s1 , . . . there exists i 2': 0 such that

(M, Si I= cp2) and 'v'O :s; j < i : (M, Sj I= <p1) .
• M, so I= E(<p1U <p2) iff for some path so, s1 , . . . there exists i 2': 0 such

that (M, s; I= <p2) and 'v'O ::; j < i : (M, Sj I= <p1) ,

Common templates

We summarize the most common CTL templates with the corresponding
English language meaning:

1 . AD p is "nothing bad ever happens" (-,p is bad) . Used to specify an
invariant, a condition that must be true in all states. Such a formula is
helpful for partial correctness (no wrong answers are produced), mutual
exclusion (no two processors are in a critical section simultaneously) or
deadlock freedom (no deadlock state is reached) .

2 . A◊ AD p is "eventually the system is confined to states where p is always
true". It can be used to specify the property of finite number of failures
in the system.

3. A□ (p ➔ A◊ q) is "from al! reachable states where p is true, something
good (namely q) eventually happens". Such formula is used to express
total correctness (termination eventually occurs with correct answers),
accessibility (eventually a requesting process will enter its critical section)
or starvation freedom (eventually service will be granted to a waiting pro­
cessor). If p is always true, it reduces to AD A◊ q.

4. AD A◊ q is "infinitely often q" , i.e., from any reachable state one must
reach a state where q is asserted. It can be used, for instance, to enforce
a reset condition from any state.

5 . A◊ q is "something good (q) eventually happens" (this one is Jess restric­
tive than AD A◊ q) .

6. A□ E◊ p is "always p possible" . It can detect, for instance, the absence
of deadlocks, by requiring that it is always possible to reach deadlock-free
states. This is an example of a CTL property that cannot be represented
by an w-automaton on words.

7. A□ true forces a complete traversai of the states of the system.

8. E◊ p is "p is possible". This is another example of a CTL property that
cannot be represented by an w-automaton.

2.3 Mode] checking of temporal Jogic formulas 37

2.2.3 FairCTL

A path is said to be fair with respect to a set of fairness constraints if each
constraint holds infinitely often along the path. Such D ◊ p fairness formulas
are expressible in LTL but not in CTL.

To allow to use these really important properties within CTL model check­
ers too, the model checkers often provide the ability to specify fairness con­
straints separately from the property. FairC TL adds to the traditional computational tree logic formula a set of
fairness constraints, representing a set of states, each giving a fairness condition.
A fair path is a path along which each fairness condition is satisfied infinitely
often (referring to the Büchi acceptance condition).

FairCTL has the same syntax as CTL, but the semantic is modified so
that all path quantifiers only range over fair paths. As an application, let's
assume the fairness condition is p, the only paths that will be considered will be
those where p is asserted infinitely often. In the literature FairCTL is sometimes
written CTLF.

2.3 Model checking of temporal logic formulas

2.3 .1 The choice between linear or branching paradigm

The discussion relative to the merits of linear versus branching temporal
paradigm goes back to the eighties [Var9 8].

The difference in the complexity of linear and branching model checking
has been viewed as an argument in favor of the branching paradigm. In par­
ticular, the computational advantage of CTL mode! checking over LTL model
checking made CTL a popular choice over the past twenty years, for branching
CTL model-checking algorithms run in linear time of both the system size and
the property length [CGP99] while linear temporal (LTL) model checking took
a time exponential within the formula size [WV9 4]. Even if the theoretical prob­
lem of checking LTL formulas is PSPACE-complete, other algorithms provide
good results on many typically encountered formulas [GPVW9 5, SB00], a few
of those will be reviewed in the next sections.

On the other hand CTL Jacks intuition, and is not usable with composi­
tional verification which is a common way to handle big designs. In contrast,
the linear-time way is more intuitive and supports compositional reasoning well
[Varül]. LTL is also important because it allows us to express properties, such
as fairness, which are not expressible in CTL1 . A typical fairness property is "if
a process is infinitely often executable then it is infinitely often executed" , that
corresponds to the LTL formula D ◊ (executable) ==> D ◊ (executed) .

Because of its good reputation over the past decades, CTL is now served by
many efficient algorithms. We can use some of those to verify linear properties
following the fact that LTL mode! checking can be reduced to the language­
containment problem, which itself can be reduced to searching for fair paths,
which is exactly the FairCTL mode! checking problem [CGP99] . Such an ap­
proach, however, involves the translation of the LTL formula into a transition

1we detail in section 2.2.3 how to handle fairness constraints with CTL

38 Chapter 2 Mode] Checking
system whose size is exponential in the length of the initial formula. As such,
it does not enjoy the computational advantage of CTL anymore. Many present
researches are concerned in finding a practical way that would enable to use
CTL model-checking tools in order to perform efficient mode! checking on some
fragment of LTL [KV9 8]. [The tool described in chapter 5 allo11s such a 11alk-around ,

providing a means to check efficiently some LTL properties within a CTL-based modal checker .]

2.3 .2 LTL model checking

The standard approach of LTL mode! checking [WV9 4] consists in trans­
lating the negation of a given LTL formula into a Büchi automaton and checking
the product of the property with the mode! of the system for language empti­
ness.

We first show how to translate any given LTL formula into an automaton,
without going into too many details as the reader could advantageously refer to
the excellent book (CGP99] for more information, which heavily inspired this
survey. The pioneers' way LTL translation The first way of transforming an LTL formula into an au­
tomaton used Generalized Büchi automata , which have the particularity to have
several accepting sets. The runs over these automata are accepting if they in­
finitely often satisfy ail of these acceptance conditions, i.e. if they infinitely
often go through at least one state of each accepting set.

The translation of an LTL formula cp into a Büchi automaton is ac­
complished by application of the following expansion rules, known as tableau
rules (CGP99]:

</>1 U </>2 = </>2 V (</>1 /\ Ü (</>1 U </>2)) and </>1 f; </>2 = </>2 /\ (</>1 V Ü (</>1 Ü </>2))

These rules are applied to cp until the resulting expression is a propositional
formula in terms of elementary sub-formulas of cp. We call elementary formula
any constant, atomic proposition, or formula starting with O . The expanded
formula, put in disjunctive normal form (DNF) is an initial closure2 of cp. The
automaton representing the initial LTL formula is then built by the following
procedure:

1. Each disjunct of the initial closure identifies a state of the automaton.

2. The atomic propositions and their negations within any term define the
label of any incoming transition to the considered state, i.e. the condition
that the input word must satisfy in that state.

3. The remaining elementary sub-formulas of the term form the "next part"
of the term. They are LTL formulas that identify the obligations that
must be fulfilled to obtain an accepting run, hence, they determine the
outgoing transitions from the considered state.

2also called elementary closure

2.3 Mode] checking of temporal logic formulas 39

4. The same expansion process is applied to the "next part" of each state,
creating new closures until no new term is produced.

5. The state in the initial closure of <p form the initial states of the automaton.

6. Regarding the accepting conditions we need to impose that for every for­
mula of the form O </>1 U </>2 in the closure of <p, any state that contains
that formula is followed by a state that con tains </>2. It is sufficient to re­
quire that one goes infinitely often either through a state in which </>1 U cp2

does not appear, or through a state in which </>2 holds, respectively for
every existing "Until" formula.

Such a generalized Büchi automaton can easily be translated into a con­
ventional Büchi automaton expanding the size of the automaton by a factor
equals to the number of accepting sets + 1 [CGP99]. Formula negation As we told, for model checking we need an automaton that
represents the bad behaviors, the ones that are not allowed by the specification.
Therefore it is better to first negate the formula, and then translate ,<p into an
automaton, as proceeding in reverse order would lead to a double exponential
explosion, one to build up the automaton, and a second to complement it.

Product automaton The negated formula automaton (P) is then combined
with the system automaton (S) into a so-called product automaton, which rep­
resents the synchronization of the behavior of the system with the behavior
of the property. [By synchronization 110 mean that each time the system automaton executes

a transition, the property automaton should also execute one (with the same atomic proposition

formula) . If no transition is possible for the property it remains in the same state .] The
product automaton has typically a state space corresponding to the product of
the state spaces of P with S (hence its name), even if some simplifications are
possible. Checking emptiness The next steps of LTL model checking is to check
whether the product automaton describes an empty language, if it is the case
the property holds along the computations of the system. Checking emptiness
of an automaton can be quite efficient and intuitive. Let's recall that infinite
accepting runs contain infinitely many accepting states from F, the set of ac­
cepting states. Since F is finite we know that any accepting run contains a
(finite) suffix such that every state on it appears infinitely many times, thus any
state on this suffix is reachable from any other state on it, when such a cycle is
maximal it is called a strongly connected component. Going further we can say
that any strongly connected component that is reachable from an initial state
and contains at least one accepting state generates an accepting run.

Checking the emptiness of the language of an automaton is therefore re­
duced to finding a single strongly connected component reachable from an initial
state and that contains an accepting state. H there is such a cycle there is an
accepting run that can be represented by a w-regular expression to witness a
word accepted by the automaton, whose language is thus not empty.

40 Chapter 2 Madel Checking

Tarjan described an algorithm for finding strongly connected components
using depth first search, it can be used to decide emptiness of a Büchi automaton
in linear time of both the state set size and the transition relation size. More
efficient algorithms were described afterwards, most of which used embodies
double depth first searches. One can find such an algorithm in [CGP99], among
others.

Looking for efliciency

Many improvements have been introduced to this method through the
years, which initially gave quite bad results (the process of [WV9 4] always yields
the worst-case result with a number of state exponential in the size of the
formula).

A more efficient algorithm has been proposed that works on-the-fly [CGP99].
Instead of explicitly extracting a structure that represents ail the states of the
system, as previously described, this more efficient approach relies upon the
automata theory to guide the construction of the system while computing the
intersection of the system with the property. This allows to avoid constructing
the entire state space of the modeled system in many cases.

Further improvements to the translation of LTL formulas into automata
were made using syntactic simplifications [DGV99], and combinations of formula
rewriting, boolean optimization techniques and Büchi automaton simplifications
[SB00] . The LTL mode! checking is an active field of research on formai verifi­
cation. We can hence expect many more interesting results in the coming years,
even if interesting results were already found, as explained in section 2 . 4 . 4 .

2.3 .3 CTL model checking

Intuitively the mode! checking in the branching time framework is the
problem of finding the set of states in a state transition graph where the given
CTL formula is true.

[CGP99] present a model-checking algorithm for CTL. A CTL formula
cp is divided into its sub-formulas cp1 , cp2 , . . . , <pk and the states of the state­
transition graph associated with a structure M = (AP, S, s0 , R, L) are labelled
with the sub-formulas that hold for a particular state. Let the size lcpl of a
formula be one plus the number of its sub-formulas. The algorithm proceeds by
successively labelling the states with sub-formulas of size i = 1 , 2 , . . . , lf l -

Sub-formulas of size one are atomic propositions, i.e. AP, therefore L
provides the initial labelling (for i = 1) . For i > 1 and a sub-formula 'ljJ of size
j'ljJI = i, we know that the state graph has already been labelled with the sub­
formulas corresponding to the operands of the outermost operator of 'ljJ (because
its size is less than i). We can hence determine which states have to be labelled
by 'ljJ using the following rules: In the case 'ljJ = ,'ljJ1 , s is labelled with 'ljJ if
s is not labelled with 'ljJ1 , the case 'ljJ = 7Pl /\ 'ljJ2 is treated analogously. For
'ljJ = A O 'ljJ1 (respectively 'ljJ = E O 'ljJ1) , s is labelled with 'ljJ if all (some)
successors of 'ljJ are labelled with 'ljJ1 .

The case of 'ljJ = E('ljJ1 U 7P2) requires a double computation: first every
state that is labelled with 7P2 is labelled with 'ljJ. Second, any state that is

2.4 Maturation of mode} checldng 41

labelled with 'lj;1 and has a successor labelled with 'lj; is labelled with 'lj; as well.
The second step is repeated until no further nodes can be labelled with 'ljJ. This
reachability computation can be performed in O(ISI + IRI) time [CGP 99]. A
similar approach is used for 'ljJ = A('ljJ1 U '1/J2). This yields a CTL model-checking
algorithm of time complexity O (l'l/J l (ISI + IRI)).

2.3.4 Language containment

A more expressive logic than CTL (or LTL) would be interesting to model
some other properties. One would likely use CTL* [CGP 99], to specify, for
instance, that q holds "almost always" , i.e. always holds after a fini te number of
transitions (A◊ □ q expresses this, but is not a legal CTL formula). The problem
is that such logics have generally more complex model checking algorithms.
A feasible alternative is to use another verification paradigm, called language
containment, based on the theory of w-automata.

The idea underlying language containment is that a system, represented
by a w-automata S, does satisfy a property, represented by an w-automata P,
iff L(S) Ç L(P), where L is the language accepted by the automaton [CGP 9 9].

The common efficient way to check language containment is to compose
the given system with the negation of the property and check it for language
emptiness, as it is clear that L(S) Ç L(P) is equivalent to L(S) n L(P) = 0.
The language of the composition is empty if and only if the system satisfies
property P. When using this approach of language containment, one must
complement the w-automaton representing the property, and this is hard to
do if the automaton is nondeterministic: the new automaton has 0(2nlogn)
states, where n is the number of states of the automaton to be complemented
[Tho90, Var0l].

2.4 Maturation of model checking

Model checking has evolved from the described algorithms into a tool
available on an industrial level. Important milestones on this path were the
introduction of symbolic representation of the design under development (sym­
bolic model checking) [BCM+ 9o], the capability to focus on components of the
design (compositional model checking) [CGP 9 9] , and finally the use of abstraction
techniques.

Real applications of model checking requires the ability to deal with large
systems, even if the capacities of model checkers are limited by computational
limits.

2.4.1 Composition

The assume-guarantee paradigm is a well-known means for compositional
reasoning [CGP 9 9]. This technique verifies each component process in a isolated
way, and then combines the set of assumed and guaranteed properties (hence the
paradigm name) in an appropriate manner to establish properties on the entire
system resulting from the composition of the components. The major advantage

42 Chapter 2 Madel Checldng

of such a technique is that we never have to compute the whole state-transition
graph that represents the design.

Let us assume we have two processes NI and NJI, the respective behaviors
of which are dependent on each other. The user can specify some assumptions
that must be satisfied by M' in order to guarantee the correctness of process M.
Let's write it (g)M(f) , where g, f are temporal formulas and M is a process.
Since the behavior of lvI' also depends on the one of NI, the user can also
express some assumptions regarding M, which must be fulfilled by M in order
to guarantee the correctness of process M' , for instance (!) M (h). A typical
proof concludes that (g)MI IM' (h) is true, where MI IM' represents the system
obtained by the composition of both processes.

2.4.2 Abstraction Abstraction is one technique that closes the gap between the size of the
models and the capacity of the checkers by eliminating unnecessary detail from
the model.

While compositional reasoning requires the manual activity of decompos­
ing global properties into local components properties, abstraction techniques
can be applied to reduce the complexity computationally, i.e. in an automatic
way, and hence allow the verification of a design to be fully automatic.

Severa! techniques of abstraction, like structural, behavioral, temporal or
data abstraction have been investigated for long [CG P99]. Sorne of these require
a high degree of user interaction, other ones are completely automatic. Structural abstraction suppresses details about the implementation's in­
ternai structure in the specification, the well-known "black-box" view is such
an abstraction. Behavioral abstraction suppresses details about specified actions that are
never activated, i.e. what the component does under operating conditions that
never occur. Dat a abstraction relates signals in the implementation to signals in the
specification when they have different representations. For instance mapping
a specified O to 100 integer input to a possible output ranging from O to 3
within the design allows to save space, since the former values can be reduced
to coincide with the second ones.

Lastly, temporal abstraction techniques try to match the time units of the
specifications with those of the models, possibly resulting in simplifications.

One widely used abstraction technique is based on the concept of cone of influence (COI) [CGP99]. This technique attempts to reduce the size of the
transition graph by focusing on the variables of the system with respect to a
given specification P. This COI contains all parts of the system that are involved
in the validity of P, and only those. One can hence prove or refute the property
using a simplified design (in the COI) , instead of the complete one.

Such abstractions techniques achieve a further reduction of the design
complexity, permitting the checking of still larger systems.

2.4 Maturation of mode] cbecking 43

2.4.3 Symbolic model checking

Symbolic Model Checking is a particular form of model checking that
allows to analyze extremely large finite-state systems by means of symbolic
representation techniques (e.g. , Binary Decision Diagrams and propositional
satisfiability) . Symbolic model checking is the core technique for several indus­
trial verification tools and is a main research tapie in the area of hardware and
software verification.

OBDD formalism

Three independent teams discovered in the late eighties a way to represent
transition relations using ordered binary decision diagram (OBDDs) [Wol98] .
The idea underlying this representation is quite simple: assuming the behav­
ior of a reactive system is determined by n boolean variable v1 , v2 , .. . , Vn

we can express the transition relation of this system as a boolean formula
R.(v1 , v2 , .. . , Vn , v� , v� , . . . , v�) where v1 , v2 , . . . , Vn represents the cur­
rent state of the transition and v� , v� , . . . , v� represents its target state. This
boolean representation can be converted into an OBDD, a full binary tree of
depth 2n in which

• the leaves are labelled by O (false) or 1 (true) .

• the interior nodes are labelled by the variables, in a predefined order (hence
the name of the representation) .

• the outgoing edges of each interior node are labelled by O and l .

• the label o f a leaf i s the value of the fonction f for input values corre­
sponding to the labels on the path leading to that leaf.

As an example, let's build the OBDD for the boolean formula R.(a, b, c) =
(a V b) /\ (-,a V -,b V c) , the corresponding binary decision tree is shown in figure
2 .1 , where dotted lines represent a value of O for the variable labelling the node
from which they originate and solid lines represent a value of l .

, ,
� C

[TI Li] �
Figure 2 .1 : The binary decision tree representation of
R.(a, b, c) = (a V b) f\ (-,a v -,b v c)

A whole technology for efficient manipulation of OBDDs has been de­
veloped that works with reduced OBDDs. Reduced OBDDs are obtained by

44 Chapter 2 Madel Checking

eliminating redundant leaf nodes, duplicate interior nodes and redundant tests
on the full tree until no further reduction can be made. It has been shown that
the maximally reduced OBDD is unique, thus giving rise to a normal form for
propositional formulas. The OBDD of our sample formula is shown in figure
2.2.

' '
' '
' '

'
'

Œr
Figure 2.2 : The OBDD representation of R(a, b, c) = (a V b) /\ (-,a V -,b V c)

Since the transition relation can be expressed as a boolean formula in
two sets of variables, one relative to the current state and the other relative to
the next state, this makes it possible to represent predicate transformers and
fixpoints as OBDDs. Model checking using OBDDs

We assume here that the propositions AP are rich enough to distinguish
each state, so that a state is uniquely identified by a conjunction of AP formulae.
This can always be obtained by increasing AP.

One could, for instance, want to compute the states satisfying the formula
E O cp. Let cp(x) be a boolean formula on the boolean variables x, where x is
a vector of boolean state variables, i.e. an OBDD, representing the set of states
satisfying cp. The set of states satisfying E O cp can be computed as

(E O cp) (x) = 3x' . (cp(x) [x' /x] /\ R(x, x'))

Where cp(x)[x' /x] represents the simultaneous substitution in cp(x) of vari­
ables x with the corresponding variables x' . This operation, called relational
product, can be performed as atomic operation on OBDDs.

These symbolic representation techniques are also called implicit repre­
sentation of the transition system, with respect to the previous approach that explicitly generates all possible states. Propositional satisfiability techniques {SAT)

If we consider bounded model checking, i.e. considering only paths of
bounded length k , we are able to use more efficient propositional decision pro­
cedures [BCc+ggJ.

2.5 Safety properties and invariance checking 4 5

Bounded model checking is obviously concerned with finding counterex­
amples of limited length k. This can be computed quite efficiently by incre­
menting the bound k, and after a predefined number of iterations, state that no
counterexample reasonably exists, and that the specification hence holds.

Actually every counter-example (violation) found by such techniques are
really counter-example of the specification. But if no counter-example is found
for a depth k we cannot conclude with certainty in the correctness of the prop­
erty, since one could find a violation if the depth is increased. We hence suppose
that, if the specification holds for k reasonably high, it holds for greater depths
too. This reasonable limit can be computed, but is exponential for general prop­
erties. For safety properties, nevertheless, the number of iterations is bounded
by the diameter of the automaton that represents the design.

2.4.4 Efficient LTL model checking

Efficient LTL model checking algorithms are often linear within the size of
the model, even if exponential in the length of the formula. This high complexity
makes real LTL model checking quite expensive for long formulas (CGP99).

Another approach has been used by (EOK9 4] to reduce LTL model check­
ing to CTL model checking with fairness constraints.

The intuition of their method relies upon an interesting idea: once we
have build the tableau construction of the negation of the LTL property f to
be checked (see section 2 . 3 . 2), we can combine the design and the property
into the input format of a CTL model checker (thus avoiding the expensive
product automaton), coupled with fairness constraints to make sure that all
eventualities of the form cp1 U cp2 in f are fulfilled, i.e. whenever cp1 U cp2 holds,
it has to hold until cp2 holds. By checking the CTL formula ED true on the
"extended" design, with the described fairness constraints, we can find the set
of all the states s such that the formula f holds along every path that begins
at s, using a traditional FairC TL model checking algorithm. This set of states
can finally be translated in terms of the variables of the design, to find out the
set of states of the system where the formula f holds.

This approach has been made possible since symbolic, i.e. OBDDs tech­
nique are now available to depict large set of states, and in the meanwhile
compute efficiently some complex operations (see section 2 . 4 . 3).

2 .5 Safety properties and invariance checking

2.5 .1 Underlying intuition

We presented many formalisms with rather comprehensive expressiveness,
LSCs, automata, linear or branching temporal logics. In many applications,
however, it is sufficient (and often more intuitive) to specify a system in terms
of rather simple assertions.

There are two important classes of properties that one usually wants to
verify for a given system:

46 Chapter 2 Madel Checking

Safety properties These are properties that intuitively assert that "bad things
never happen" .

Liveness properties Properties in this class state that "good things happen
eventually" . They are also referred to as eventuality or progress properties.

One of the simplest forms of temporal specification is in terms of invari­
ants and safety properties. A formula p is an invariant of the system under
development if p is true in all reachable states of the design. This can be ex­
pressed in CTL, by a safety formula of the form AD p, where p is a propositional
formula.

Safety properties have been widely researched since they meet the tra­
ditional invariant-based proof mechanism: once p is identified as an invariant
of the system, one can rely on p to prove other (more complex) properties,
using p as induction step: if M I= (p ===} Prop) we can directly state that
M I= AD Prop, using a simple induction argument over reachable states.

2.5.2 Checking invariants

The traditional model checking (see 2 .3.3), even symbolic, will compute
such a safety formula using a fix point characterization, checking whether p
holds in current states and AD p holds in all next states. Such a computation
is quite inefficient, and many techniques were made to optimize the particular
check of such formulas.

If we already know which states are reachable it is sufficient to perform
a test of set inclusion between the set of reachable states (R) and the states
represented by p (CGP99], i.e. R Ç P.

Algorithms were found (RS99) to perform invariant checking on-the-fly.
This is especially efficient for falsification tests which does not need to compute
the whole reachable states space. This is performed by verifying at each step k
of the reachability analysis the following condition:

where Rk (x) is the set of states reachable in k or fewer steps. If this test
fails, then the invariant is not verified, and a counterexample leading to a state
not satisfying the property is provided. We are then allowed not to compute
the whole reachable state space.

Chapter 3

Practical model checking

3 .1 Model checking tools survey

The actual verification tools follow the path of their ancestors, looking
around for means of power and efficiency. The encountered means range from
more expressive formalisms to more efficient algorithms. Sorne approaches that
took opposite ways are now often used together, as they provide many interest­
ing, and different advantages. Sorne of these different approaches were described
in section 2.4. Let's remind the techniques of symbolic model checking (2.4.3)
handles large designs, i.e. systems with many (possibly infinitely many) states,
while composition techniques (2.4. 1) allows to consider designs with many more
components

In the remainder of this section we briefly introduce well-known model
checking tools, either of academic or commercial origin, which implement the
methods presented in the previous sections.

EMC (Extended Model Checker) was one of the first model checkers to
be implemented, in 19 8 6. It constructs an explicit representation of the state
graph from a program written in a subset of CSP and supports model checking
of formulas in CTL with fairness considerations.

Murphy is a description language proposed by David Dill in 1996, the
same name has been used to designate an explicit state model-checking system
related to this language. Specifications in Murphy are given as simple safety
properties, which are verified by explicit state space traversai. Extensions to
the Murphy system exploit techniques to reduce the size of the representation
of the reachable state space. SMV was previously developed at Carnegie Mellon University (CMU). It
is probably the most widely used symbolic model checker to date, if we associate
it with both the academic tools (SMV and NuSMV) and the commercial tool
(CadenceSMV). System descriptions in the SMV language are given in a finite
state machine fashion, using equations to determine a next-state relation. SMV
programs may be structured into parameterized modules. SMV model checks
specifications given in CTL with respect to fairness considerations. NuSMV
model checker supports LTL specifications, symbolically checked using the ap­
proach described in section 2.4.4.

47

48 Chapter 3 Practical mode] checking

CVE is an industrial verification environment developed at Siemens. It
supports model checking of designs described in VHDL or EDIF against spec­
ifications given in a temporal logic called CIL, a subset of CTL. If an error is
detected, CVE can generate a VHDL test-bench that exposes the fault. Com­
mercial extensions to this product were made that support Verilog as well. RuleBase, developed at IBM, is an industry-oriented model-checking tool
built on SMV that provides a graphical user interface, a temporal logic defined
on top of CTL, support for VHDL and Verilog, and debugging support. VIS integrates model checking with other verification techniques. VIS ac­
cepts design descriptions in a synthesizable subset of Verilog, and supports CTL
model checking with fairness constraints. Interaction with the SIS synthesis tool
is provided through a common intermediate format. The VIS model checker is
described in more details in section 3.2. SPIN is a model checker targeted at the high-level verification of dis­
tributed systems. SPIN accepts model descriptions in the model language
PROMELA, which provides high-level constructs such as communication chan­
nels. SPIN accepts LTL specifications and verifies them using language contain­
ment (introduced in section 2.1.3).

The FormalCheck tool , marketed by Bell Labs Design Automation, uses
COSPAN as verification engine, which is based on language containment.

The Mocha specification and verification environment is developed by
three American universities. The design is detailed in terms of reactive modules,
supporting modular and hierarchical structuring. Mocha recognizes Alternat­
ing Temporal Logic specifications (including CTL). Above ATL symbolic model
checking based on BDD engines developed at VIS, this tool allows invariant
check and decomposition, among other features.

Many other products are available, ranging from a single model checker
kernel to a complete tool suite, and more appear each month, since hardware
and software verification is a growing area of formai verification.

It is interesting to note that capacity and performance on one sicle and ease
of use on the other, are pointed out by most companies as strong points of their
tools. This indicates that these factors are regarded as the most competitive.

In the next sections of this chapter we will describe two real model ver­
ification environments, VIS and STATEMATE, which were used together to
support the present report, as the second integrates the first. Afterwards we
will focus on the common habits and important phases of a verification process.

3 .2 The VIS model checker

VIS is a verification and synthesis system for finite-state hardware sys­
tems, developed at Berkeley and Boulder. This integrated system allows hier­
archical definition, manipulation and verification of designs.

This tool belongs to the hybrid class of model checkers that allows both
CTL model checking and language emptiness checks (see 2.1).

3.2 The VIS mode] checker 49

3.2 .1 VIS overview

As shown in figure 3. 1, VIS is composed of three main parts, including a
front-end able to read and traverse a hierarchical system described in BLIF-MV,
possibly compiled from some high-level language like Verilog; a verification core,
concerned with model checking of FairCTL and language emptiness, and finally
a synthesis part, using the SIS tool allowing logic optimizations of designs.

Verilo

VIS

Front end
- traversai of hierarchy

Verification Synthesls
- model checking - state minimization
- equivalence checking - state encoding
- cycle-base simulation - restructurating hierarchy

Figure 3.1: VIS overview

The verification core of VIS [BHSV+ 9 6] provides tools to check whether
models fulfill FairCTL formulas (see 2.2. 3) and language emptiness checks, even
if language containment is not available yet. This system integrates a support
of fairness constraints of generalized Büchi type, i.e. sets of states that must be
visited infinitely often.

Regarding the verification facilities, VIS preserves the hierarchical struc­
tures within all the operations it provides, as state minimization or symbolic
encoding.

3.2 .2 Designs description

Specialized languages have been developed for long to describe digital
systems, called Hardware Description Languages (HDL). Such systems may be
described at a high level of abstraction, such as the architectural or behavioral level, as well as lower implementation levels, such as the switch level, describing
the layout of the wires, resistors and transistors on an integrated circuit chip,
or at the gate level through logical gates and flip flops in a digital system.

A primary use of HDLs is the simulation of designs before the designer
must commit to fabrication. The two most widely used languages for digital
design are Verilog and VHDL, respectively based on C and ADA. The VIS
system currently supports Verilog, even if translators to its intermediate BLIF­
MV format could easily be written that accept other HDLs.

50 Chapter 3 Practical mode] dwcking

Verilog survey

As Verilog HDL (TM91, Hyd9 5) supports all of the previously described
levels, it fits well the possibility of hierarchy support supplied by VIS. This HDL
allows mixed-level description of hardware design in terms of static structures
and dynamic behaviors.

A specification in Verilog consists of a set of modules . Each of these
modules can represent pieces of software or hardware, ranging from simple gates
to complete systems such as microprocessors, and it has an interface to other
modules to describe how they internet. The top level module specifies a closed
system containing both test data and hardware models. Component modules
normally have input and output ports and are driven through events which
occurs on their input ports, causing changes on the outputs. An event can be
either a change in the value of a wire variable or in the value of a register
variable, abbreviated reg, or it can be an explicitly generated abstract event.

Modules can either be specified behaviorally or structurally, or by a com­
bination of the two. A behavioral specification defines the behavior of a digital
system (module) using traditional programming language constructs, like IF­
THEN-ELSE constructions or assignment statements. A structural specifica­
tion expresses the behavior of a digital system as a hierarchical interconnection
of sub modules. At the bottom of the hierarchy the components must be prim­
itives or specified behaviorally. Verilog primitives include logical gates as well
as pass transistors (switches).

AU the modules of a design run concurrently and communicate with each
other through a set of channels, actually wire variables declared in the modules
to which these channels belongs. Different access modes are considered depend­
ing on the channel type: through wire ports we assume a module can input and
output to a channel instantaneously, while through a register port it takes one
unit time and therefore gets a storage element to remember the channel's value.

The top level module invokes instances of other modules. Within each
module we can find many legal operations as continuous assignments and pro­
cedural blocks which run in parallel with all module instances. The execution
of each continuous assignment, basic block in a procedural block and module
instance in one procedural block in the same module is assumed to be atomic
within each instant. If there is more than one procedural block in the same
module and outputs of one are inputs to another, then the simulated result may
depend on how expressions from different blocks are interleaved by the Verilog
simulator.

Subset of the Verilog elements supported by VIS

The front-end to Verilog used in VIS, called VL2MV , extracts a set of
interacting finite state machines from the Verilog source code into the VIS in­
termediate format BLIF-MV. Sorne extensions to Verilog are also supported by
BLIF-MV (BHSV+9 6, Che91), including a particular nondeterministic construc­
tion and a way to deal with symbolic variables.

The assignment statements are distributed in two categories, continuous
and procedural (Hyd9 5). Procedural assignments can be either blocking or non­
blocking. Continuous assignments (written assign) drive wire variables and are

3.2 The VIS mode] checker 51

always active, i.e., they are evaluated and updated instantaneously whenever
any input changes. Such assignments describe the combinatorial behavior of a
circuit. Blocking procedural assignments (written = within a procedural block)
acts much like assignments of traditional programming languages: the whole
statement is executed before control passes on to the next statement. Non­
blocking procedural assignments (written <=) evaluates all the right-hand sicles
for the current time unit and assigns all the left-hand sicles simultaneously at
the very beginning of next time slot, thus deferring the assignment without
blocking the execution of statements in a block. Even if this mechanism is
supported in VIS its usage should be avoided since it might introduce unwanted
nondeterminism if, for instance, two non-blocking assignments allow different
values to the same variable, the final value will then depend on the scheduling
of the operations.

A nondeterministic construct ($ND) has been added to Verilog [BHSV +9 6,
Che91], allowing to assign nondeterministically many values to a single wire
variable, and it is the only legal way to introduce nondeterminism in VIS. For
example one can output nondeterministically the values GO or NOGO at a
particular state using the Verilog code fragment showed in figure 3.2.

assign r=$ND{GO , NOGO} ;

alYaysQ(posedge clk) begin

state = r ;

end

Figure 3.2 : Verilog code: a nondeterministic output

VL2MV extends Verilog to allow users to declare symbolic variables using
an enumerated type mechanism. It can be regarded as declaring a named set
consisting of all possible values for the symbolic variable. As an example let us
assume a state of a man could be working , eating , playing or sleeping,
we are then allowed to declare a symbolic type status_t which ranges over the
possible states of a man in figure 3.3 , and further use this type in the declaration
of wire or reg variables.

typedef enum status_t {working, eating, playing, sleeping} ;

Figure 3.3 : Verilog code: symbolic type declaration

Verilog code execution

A Verilog simulator is an event-driven scheduler, events generated by mod­
ules are scheduled for discrete time and placed on a wait queue. The simulator
coordinates between the modules that produce or consume them but it does

52 Chapter 3 Practical mode] checking

not generate any event by itself. We call it therefore a passive scheduler. The
earliest events are at the front of the wait queue and the later events are behind
them. The simulator removes all the events for the current simulation time
from the queue and processes them. During the processing, more events may be
created and placed in the proper place in the queue for later processing. When
all the events of the current time have been processed, the next clocking event
is chosen by the simulator and simulation time is advanced accordingly to the
time stamp of next scheduled event.

The clocking discipline concerning events can either be implicit or explicit[TM9 1,
Hyd 9 5].

When all the transitions of the system are synchronized by an implicit time
it is called implicitly clocked system. For such systems no hardware resources are
to be allocated for synchronization, one just allocates a symbolic latch for each
reg variable and drops all synchronization variables. This implicitly clocked
semantic is default in VIS.

For some designs the operation of a system depends explicitly on several
phases of many synchronization signais (clocks). The Verilog language provides
some types of explicit timing contrais over when procedural statements are to
occur for such explicitly clocked systems, considering that the synchronization
has to be completely implemented into hardware. The first type of available
control is a delay control in which an expression specifies the time duration
between initially encountering a statement and when it is actually executed. The
second type of timing control is the event expression, which allows statement
execution. There are also ways to wait for a variable to take some defined value,
quite similar to the well-known wai t statement in C.

3.2 .3 BLIF-MV

BLIF-MV is a low-level language designed for describing hierarchical se­quential systems, it supports nondeterminism [Kuk 9 6]. A BLIF-MV system can
be composed of interacting seqliential subsystems, each of which can be again
described as a collection of communicating subsystems. The original hierar­
chy specified in BLIF-MV is preserved within the VIS internai data structure,
allowing true hierarchical synthesis and verification.

Moreover, this language allows nondeterministic gates, that generate some
output from a set of predefined outputs, and hence makes it possible to model
nondeterministic systems. Such designs are crucial in formai verification since
designs in early stages are likely to contain non-determinism. Lastly, BLIF-MV
supports multi-valued variables, which can be used to simplify system descrip­
tions.

We can describe the semantics of this language as a simple extension of
the standard semantic of synchronous single-clocked digital circuit. At every
time point, the system is in some state where each latch has a value. An initial state of the system is a state where every latch takes a value from its set of initial
values. A system can have more than one initial state, in general. At every dock
tick, all the latches update their values. These values then propagate through
tables until all the wires have a consistent set of values, until stabilization. A
latch that could be encountered during the propagation, because an output of

3.2 The VIS mode] checker 53

a table can be an input of a latch, act as a one-time-unit memory, stopping the
propagation process on this channel and remembering the channel value until
next dock tick. Because of nondeterminism, given a single state, there may be
several consistent sets of values.

A design in BLIF-MV is composed of several Finite State Machines (FSM).
The interaction of some of these FSMs during the model checking computing is
shown in figure 3.4. The different FSMs depicted are

• IsValidinp Observer which checks whether the provided inputs are in
valid ranges, with respect to their domain.

• Behavior which is the FSM representation of the design
• Properties Observer which is actually many FSM running in parallel,

each representing one specification to be checked.
• Assumptions Observer which is the FSM that verifies that the fairness

constraints are respected.

----- '•,,,_ _________ ...
f Falmess Constralnt ! ' ' , ... _ ---- ---------- __ .. ,

Figure 3.4: The VIS model checker kernel

3.2.4 Language emptiness

� j
� l
...... !

t3 !
--- ___ .,

We introduced in 2.3.4 the automata-based approach of model checking,
that actually checks whether the language of the intersection L(S) n L(P) = 0,
where S is the automaton of the system and P the one of the property to be
checked.

Vis currently does not support language containment, since the comple­
mentation of a nondeterministic FSM is bard (see 2.3.4) . But if the user is
able to supply the model checker with the complement of the property to be
checked, VIS is able to do the emptiness check. Actually this check is reduced
to a CTL check of the formula ED true , which gives an infinite path satisfying
the appropriate fairness conditions if there is some.

54 Chapter 3 Practical mode] cliecking

3.2.5 Safety formulas

The particular CTL formulas of the form AD f, where f is a quantifier-free
formula, are called safety formulas, they express that f is true in all reachable
states, as we already explained it in section 2. 5. VIS implements a specialized
(hence expected to be more efficient) algorithm for these formulas, working by
forward reachability analysis.

3.3 The Statemate environment

STATEMATE is a widely used graphical specification tool. lt is developed
by 1-Logix Inc., since 19 87, and is mainly used for the development of embedded
systems [I-L00b).

The STATEMATE tool-set captures the phases of specification, analysis,
design and documentation of complex designs. A system under development
may be described from three different points of view, covering respectively the
structural, functional and behavioral aspects of the design, through different
formalisms.

For the verification of designs, STATEMATE uses the technique of mode!
checking through two integrated mode! checkers. The first one, called SVE, is
made by Siemens. It accepts symbolic representation of the system as a finite
state machine and (branching time) temporal logic requirements. The second
one, the VIS mode! checker, has been previously described in section 3.2.

A set of tools is included within the tool-set in order to translate the
designs into the finite state machines required by both mode! checkers. In
our environment we mainly use Symbolic Timing Diagrams [F J9 6] and Live
Sequence Charts (section 1.2) for the specification of the expected behaviors.

If a design does not meet the requirement specification the mode! checker
generates a counterexample. This counterexample can be translated by STATE­
MATE into a timing diagram or a stimulus for the STATEMATE simulator, such
a visualization is a convenient help to the designer.

The next sections describe some key features of the STATEMATE verifica­
tion environment, including some of the supported languages and related tools.
We then point out some semantic remarks, more details on semantics can be
found in [HP9 8, HN9 6).

3.3.1 Features quick tour

We won't describe all the features of this enormous environment, as it is
concerned with many related problems, but will focus on the verification aspect
with the initial requirements, the specification set that expresses them, help
to model the design, verification and correction means, and finally the help
provided by STATEMATE for the development of the real system. Drawing the model

A designer can create a model of a system under development with Module­
Charts to describe the physical components and their interconnections, Activity-

3.3 The STATEMATE environment 55

Charts to specify the activities, data and data-control flows between activities.
And finally, activities that are not refined into other ones can be depicted using Statecharts.

Statecharts can be viewed as finite state machines (FSM) enhanced with
hierarchy and other mechanisms like broadcasting between all the charts [HP9 8].
Many state machines are included into a statechart, possibly activated by one
of their active parents FSM. Statecharts describe when and how activities of
the design react to stimuli, i.e. they implement the behavior of the specified
controller. Timing considerations are added through actions scheduling and
events generation, both paired with an occurrence time. Within STATEMATE
the real-time behavior of a system is evaluated with respect to a virtual dock.

Data types

STATEMATE supports most of the common data types as bit, integer,
real, array, record, union, queue. All the elements of the charts formalisms we
cited corresponds to one of theses data-types, and are referenced within three
categories that specify how they are handled. Events are considered as instan­
taneous elements, conditions are the STATEMATE variant of boolean variables
and data-items are the memory elements.

Obtaining the right specification

The specifications made may be executed, or graphically simulated, so
the system engineer can explore scenarios to determine if the behavior and
the interactions between system elements are correct. These scenarios can be
captured and included in tests to be run on the embedded system, ensuring that
what gets built meets what was specified. All these operations are implemented
through different tools within STATEMATE . The executable specification is also
an interesting medium between the developer and the end user, confirming the
specification meets his requirements.

Statemate as a simple interface for the mode! checker

All the design information can be automatically translated into the input
language of the model checker kernel by the tool. On the other hand the user
has to define the properties to be checked, we mostly use STDs or LSCs to
describe these properties.

An even more interesting approach of STATEMATE is to help the user to
build up the more interesting (often more complicated too) specifications, this
is clone by the so-called mode} certifier.

Correction of the design

A model certifier is included within STATEMATE that helps the user in
defining the properties to be checked. Properties can be expressed by using pre­
defined property patterns. Knowing the semantics of these patterns, the user
can sometimes define very complex properties very easily, combining them to­
gether and instantiating the pattern parameters with expressions corresponding

56 Chapter 3 Practical mode] checking

to his design. Sorne patterns available in the model certifier are illustrated in
appendix B.

The model certifier also allows the definition of very complex assumptions
by using the same pattern library. A further extension of this tool is the ab­
straction capability, which makes it possible to handle relatively large designs
for the certification. We described abstraction methods in section 2. 4 .2 .

The errors shown by the model certification phase often provide a coun­
terexample, which can be translated into (more) understandable graphical for­
malisms to allow the user to detect the error within its design. Valuable addi­
tional information is provided, relying on all available information, such as the
types of the involved variables or counters.

Regarding the properties that can be verified we want to mention some au­
tomatically verified robustness properties, what STATEMATE ca.lls "debugging"
the model. These debugging facilities cover amongst other simultaneous activa­
tion of conflicting transitions, several write accesses to a single data-item in the
same step and parallel read- and write-access to the same object.

The verification environment offers simple reachability mechanisms to
drive the simulation to some user provided state or property, too. One can
use such an analysis to verify, for instance, that states indicating fatal errors
are not reachable, or to achieve simulation prefixes.

Code generation

STATEMATE allows the user to convert the formal design into C or ADA
code (for software developers) and VHDL or Verilog code (for hardware en­
gineers) . By creating these virtual prototypes both the developers and the
engineers are able to present a prototype to the end-user in the very first stage
of the development, ensuring the design is what the user wants.

and many more

Besicles the key features highlighted above, STATEMATE provides many
more tools, as useful as automatic documentation generator, requirement trace­
ability or revision management interfaces. A more complete documentation can
be found at I-Logix.

3.3.2 Semantics remarks

The semantics of STATEMATE i.e. the one of Statecharts, has been
heavily controversed, since this "unofficial" language was used by many, who
all gave it their own interpretation, sometimes pretending it was the official
semantics of Statecharts, even if there is none.

In the remainder of this section we quickly sketch the way the STATEMATE
environment considers time, i.e. the way it should be implemented, more details
can be found in [HN9 6] or in chapter 6 of [HP98].

3.4 Approximations 57

Time nature
Combinations of the three charts of STATEMATE describe scenarios con­

sisting of steps triggered by external changes and the advance of time. The
execution of such a scenario may also generate a chain of steps to be clone, so
could any internai module.

This illustrates the main concern of the present semantics: the definition
of a step, and the way time passes. Time is measured into some unit, common
to a whole chart, but different charts can have different time units. A problem
is thus to handle time.

Two different time schemes are proposed by [HP 9 8] to face the problem.
They only assume no external change occurs within a step, whichever it is, and
time only advances at the end of the current step, the execution of which took
0 time unit.

The synchronous time scheme assumes the system executes a single step
every time unit. Each step of a design, in this semantics, corresponds to exactly
one discrete time unit. Time increases uniformly and the environment can
influence the valuation of variables between two successive steps. The execution
of a scenario using this semantics proceeds in cycles composed of: step execution
- time increment - external changes collect - next step execution -.. . Such a
behavior fits well electronic designs for instance, where the real execution is
synchronized with a clock signal. This semantics is called step semantics.

The asynchronous time scheme allows several steps to take place within
the same time unit. In general, external changes can occur at any moment
between steps, and several such changes can occur simultaneously. This "super­
step" performs a chain of internai steps, initiated by an external change, until
reaching a stable state, i.e no more internai steps are queued. Then only time ad­
vances and the system accepts new stimuli, defining new changes to be queued.
This semantics is known as super-step semantics.

STATEMATE supports the synchronous (step) semantics, as well as the
so-called asynchronous (super-step) semantics.

3.4 Approximations

Many important approximations or language restrictions where made along
the history of model checking. Such simplifications were essential to allow for­
mal verification to progress, as they made the faced problems smaller, simply
by putting aside some (less interesting) parts of the complete problem.

We describe the approximations we make within our model checking en­
vironment in the next sections, regarding our particular TBA format in section
3. 4. 1, and in the model checking steps we use in section 3. 4. 2

3.4.1 Specification restrictions

As we previously explained, we do use a set of existing properties (pat­
terns) which are reused to define the specifications to be checked on designs un­
der development. To allow such a modularity we dissociate the finite character

58 Chapter 3 Practical mode] checking

of a specification which belongs to our library of properties and provide, besicles,
a means to characterize the "un-finite" character of the property, through the
activation modes (see 1 . 5) .

This way of doing is quite intuitive since all infinite behaviors of a system
that one could want to verify can reasonably be expected to show a cycle,
i.e. the same succession of states, which we describe only once, and reactivate
accordingly to our needs, through the activation modes (see section 1 . 5) .

To express the finite part of the property is one of our real challenges, and
this is clone using the formalisms we described previously: Live Sequence Charts
(see section 1 .2), timed automaton (see section 1 .3 .2), sometimes Linear Tem­
poral Logic formulas (see section 2 .2 . 1) or Symbolic Timing Diagrams (STD) .
We don't describe the latter formalism in this report as it doesn't provide any
new element to the topic covered, one could refer to (FJ9 6] for such information.

As we are only interested in expressing finite properties we restrain the
used formalisms. LSCs (and STDs) intrinsically match our purpose, actually
they both use exactly the concept of activation mode and finite property. There­
fore no adjustment has to be made.

TBAs resulting from the unwinding procedure have been shown to be
acyclic in section 1 . 6.2 , even if we allow to stay in the current state while time
goes on. Since this particularity is quite interesting on the efficiency level (as
explained in chapter 4), we impose it as a formalism restriction.

To be checked, LTL properties have to be translated into automata (see
2 .3 .2), but the automata formalism we use is cycle-free. This restriction deter­
mines some LTL properties we are able to handle, i .e. the ones that guarantee
cycle-freedom and finiteness of their corresponding TBA. Formally, the LTL for­
mulas our environment accepts cannot have any nested □ (Globally) operator,
as it would be unwound into a cycle.

3.4.2 Environment approximations

Finite state formal verification cannot, at the present time, deal with infi­
nite data types. Such types are used to declare design variables, e.g. unbounded
integer or reals. It is worth mentioning that the verification tool set of VIS of­
fers abstraction and approximation techniques in order to be able to apply finite
state verification methods to these designs. Such techniques were introduced in
section 2 . 4 .

We specify our properties using different linear time formalisms because
such an intellectual process is easier for the designers. The linear time framework
is more natural for anyone rather than trying to think "branchingly" . The
experience of IBM with the RuleBase system gives evidence about the difficulty
for most users to understand non trivial CTL formulas, as it is simply much
harder to reason about computation trees than about linear properties.

The VIS model checker is a branching time model checker, as we presented
it in section 3 .2 . Hence the properties are approximated into their branching
counterpart before being checked.

We transform the LTL formula into a CTL property by adding A be­
fore any temporal operator, thus checking the target formula on any possible
path. It is obvious this changes the meaning of the property, for instance the

3.4 Approximations 59

LTL equivalence O (p V q) = O p V O q does not hold anymore in our approxi­
mated CTL: A O (p V q) =t. A O p V A O q which is stronger. When the CTL­
approximated model checking fails we are not always able to guess whether it
failed because of the models that does not fulfill the requirement, or because of
our approximation being too restrictive with respect to the initial specification.

Chapter 4

Finite acceptance on

infinite words

The habit in formal verification is to define an interesting class of lan­
guages and study it to find its properties. This chapter is written the other
way round. We first define interesting properties, and then characterize the
language for which these properties hold. Indeed, we had a good intuition from
the beginning of the expected result, which turns out to be effectively of interest
for model checking.

In section 4.1 we define possibly interesting acceptance criteria and eval­
uate their strength. The second of these criteria seems to be of interest and we
compare it with the acceptance condition of Büchi in a theorem in section 4.2.
We extend the range of the theorem (4.2.2) and finally define a class of speci­
fications, in section 4.3, that can be verified efficiently using state reachability
techniques instead of traditional (fair) model checking ones. A small conclu­
sion is given in 4.4 that situates our propositions within the current formal
verification context.

4.1 Acceptance criteria

4.1 . 1 Many criteria

We explained in section 1.3 .1 the acceptance criterion of Büchi on finite
automata running over infinite words: any run p of the automaton A over the
word a is accepting iff some accepting state of A appears infinitely often in p.

We could offer other acceptance criteria, easier to check than the one
of Büchi . A property expressed by a nondeterministic TBA takes at least a
time 0(2n 109 n) to be checked, where n is the size of the set of states (see
2.3.4). Many other acceptance conditions are described in [Tho90] , such as the
1-acceptance which accepts a word o: E :Ew iff o: belongs to an open w-language.

61

62 Chapter 4 Finite acceptance on inflnite words

Finite acceptance

A possibly interesting new acceptance criterion relies on the definition of
a finitely accepting state, defined in section 1.5.3. Such a state is au acceptiug
state with no outgoing transition, and its stable condition is simply true.

We say that an infinite run p on a finite automaton A is finitely accepted
iff p reaches a finitely accepting state of A.

More formally let A be the TBA (AP, S, so , C, -t, F, SC) and (a-, r) =
(a-o, To) (a-1, T1) . . . a timed word with a-; E AP. We say that A finitely accepts
(a-, r) iff there exists a run tr : (s0 , vo) � (s1, v1) � . . . where, for some

TO Tt

j 2: 0 : 8j E F /\ 'v'(8k, bk, rk , 'Yk, 8k+1) E -t: 8k =/:- 8j /\ SC(sj) = true .

Evaluation

The language defined by the finite acceptance on an automaton A is dearly
a subset of the language defined by the Büchi acceptance condition on A, since
any finitely accepting state belongs by definition to F, the set of accepting states
of A. Nevertheless this finitely acceptance criterion seems not to be powerful
enough to be of any use. For instance, it does not accept a single word on the
timed automaton of figure 1. 4 on page 17, since there is no finitely accepting
state in this automaton.

On the other hand the model checking of a property represented by a
Büchi automaton on words is quite hard to compute: it implies an exponential
blow up using language containment (see 2 .3. 4). We describe in section 4 . 1 .2
another acceptance criteria, which turns out to be strong enough to be of inter­
est, especially on some particular TBAs, allowing the represented property to
be computed in a time linear of the state space 4.1.3.

4.1 .2 Non-failure acceptance

Let us figure a timed w-automaton such that all its unfair (not accepting)
states have to be left within a finite (bounded) time. We say that such a
state is constrained by a dock, i.e. its stable condition is labelled by a dock
predicate which sets an upper bound on (at least) one dock, and this bound is
not a.rbitra.ry big. The same way, we call an automaton constrained iff all its
unfair states are constrained.

Figure 4 . 1 exhibits such an automaton, all the unfair states (so and 81) of
which are constrained.

Lemma 1 One ca.n assert that, if a.Il the unfair states of an automaton are
constrained, a.ny a.ccepting run will finitely reach and stay in an accepting state.
This holds because there are no backleading transitions in the automaton. In
our exa.mple a fair state (82 or 83) is reached within at most 8 steps (2 before
reaching s1 and 6 from 81 to s3).

We now introduce a "sink state" in our automaton of figure 4 .1 to make it
complete. An automaton on :E is complete if it has a run on every word in :Ew .
The sink state is such that we are always able to take at least one transition
or stay in the current state, whatever the input ma.y be. It should not change

4.1 Acceptance criteria 63

Figure 4 . 1 : A constrained automaton

the language of the automaton and is therefore not accepting. Moreover, it is
labelled by a true stable condition, has no outgoing transitions and is reachable
from any state of the graph through a transition labelled with the negated
disjunction of all outgoing transitions and stable condition of the considered
state, as illustrated in figure 4.2 .

We certify that this added sink-state does not change the language recog­
nized by the Büchi automaton since this state is not accepting and cannot be left
once reached. Therefore any run that goes into it could not pass infinitely often
into an accepting state and thus not recognize new words, referring to the Büchi
acceptance criteria. It is obvious that the addition of states and transitions does
not either restrict the language of the modified automaton.

It is now clear that every run of this completed automaton which never
goes into the sink state will finitely reach an accepting state (because of lemma
1) , and is therefore an accepting run. We notice that this automaton is not
constrained anymore, because of the introduction of the sink state, the stable
condition of which is true. Such an automaton is called a completed constrained
automaton.

We express the above observations by the non-failure acceptance criteria:

Non-failure acceptance criteria We say that an infinite run p on a com­
pleted constrained (timed} automaton A is non-failure accepted iff p never
reaches the failure state of A.

Formally
To be accurate let us remember all the hypotheses that are made on any

completed constrained automaton A:

• A is complete,

64 Chapter 4 Finite acceptance on infinite words

F igure 4 .2 : A completed automaton

• the transition relation of A has no backleading transitions, i .e. V(si, ui, r;, 1;, s;+1)
belonging to its transition relation we have: weight(B;) < weight(B;+1) ,
using the total order on states defined in 1 . 6.2.

• except its sink state (sometimes called failure state) , whose stable con­
dition is true, every unfair state of A is constrained by a dock, i.e. its
stable condition defines a not arbitrary big upper-bound on a dock. Let A be the TBA (AP, S, Bo , C, --t, F, SC) and (u, r) = (u0 , ro) (u1 , r1) . . . a timed word with u; E AP. We Bay that A non-failure accepts (u, r) iff there existB a run tr : (Bo , vo) � (B1 , v1) � ... where, for all j 2: 0 : Bj i F ===>

TQ Tt 3(Bk , bk , rk , Ïk , Bk+i) E --t: Bk = Bj , Notations
The same way a Büchi automaton designates a finite automaton on in­

finite words accepting runs accordingly to the Büchi acceptance criterion, we
define a NFA automaton as a finite automaton on infinite words accepting runs
accordingly to the non-failure acceptance (NFA) criterion.

4.1.3 Invariant check

The last formulation of the NFA criterion highlights that it is actually a
safety condition. It states that "something bad (i.e. reaching the sink state)
never happens" . As we told in section 2 . 5 such properties are some of the easiest
formulas to be checked by a model checker, since they express an invariant
property, and hence reduce to checking the reachability of a state.

4.2 Expressiveness theorem 65

Computing the reachability of the sink state can be clone on-the-fly, as ex­
plained in section 2 . 5 .2 . Such a verification is far more efficient than a complete
model checking procedure. [A property translated into an IIFA automaton can be verified

by simply checking D (�failure) . If ve let failure represents the fact to enter the sink state .

Therefore , ve do not need to check a formula vith fairness constraints , vhich vould be expressed

as □ ◊ (constraint} .] If the same property can be expressed using NFA or Büchi
acceptance, one should use the NFA since its verification can be implemented
on a more efficient way.

In the next section we describe a class of automata the expressiveness
of which remains the same, whether they are considered as NFA automata or
Büchi automata.

4.2 Expressiveness theorem

We propose the following theorem:

Expressiveness theorem Completed constrained (timed) automaton have
the same expressiveness whether they are considered as NFA automata or as
Büchi automata.

To prove this theorem we find first that any run accepted by the condition
of Büchi condition is also accepted by the NFA criterion. The criterion of Büchi
states that any run is accepting iff it passes infinitely often through an accepting
state. Because there is no cycle in the transition relation of a completed con­
strained automaton, the only way to reach infinitely often an accepting states
does never passes through the sink state, which cannot be left once reached.
Therefore the second criteria holds for any such run.

Secondly, we show that any run accepted by the NFA criterion is accepted
in the sense of Büchi too. The NFA states that every accepting (infinite) run
never goes into the sink state. We are able to ensure it will finitely reach and
stay into an accepting state, thanks to lemma 1 (on page 4 . 1 .2), since any other
(unfair) state has to be left finitely. Therefore Büchi 's criterion is satisfied as
well. D

The completed constrained automata are only a subset of the complete
TBA formalism, since their requirements are severe. We show in the next sec­
tions they are nevertheless sufficient to express most the properties one could
want to verify.

4.2.1 'Iransitive dock constraints

Binding docks and paths

A dock constraint, or dock predicate, is expressed either on a transition or
on a stable condition, but it actually constrains a whole run. In fact, an upper­
bound on a dock, either labelling a transition or a stable condition, constrains
the length of the path portion between this transition and the earlier resets of
this dock, or the initial state if there is no reset before it. We say that a state
(or a transition) belonging to such a path portion is transitively constrained by
a dock.

66 Cbapter 4 Finite acceptance on infinite words

The automaton 1 of figure 4.3 highlights all the transitively constrained
transitions and states in dotted lines. We consider there's only one dock c in
this automaton. The R tag symbolizes a reset of the dock c, and the U (as
"use") a constraining predicate (upper-bound) on c. The number in each state
represents its weight, using the weighting fonction of 1.6.2. Other weighting
fonctions can obviously be used, as long as they define a total order on the
states. Explicit transitive constraints

We propose to constrain (explicitly) any label that is transitively con­
strained by a dock upper-bound. We consider only upper-bound predicates since
our purpose is to broaden the use of NFA automata, defined in 4.1.2. [lie could

transitively repeat the lower-bounding predicates as well, but choose not to do since the overhead

is heavy for only a few interesting results . The lower-bound transitivity is actually almost

erased by the stable conditions allowing time to pass while remaining in a state . The reader

could nevertheless adapt the considerations on upper-bounds to lower ones .]

Figure 4.3 : The states and transitions which are transitively (1) and globally
(ibis, 2) constrained by docks

A first idea to highlight the transitivity of dock bounds is to constrain
(explicitly) any transitively constrained stable condition or transition of the
automaton. Therefore, we propagate any dock upper-bound, going backwards
from this bound up to a reset of this dock or to the initial state, as shown in
the first automaton of figure 4.3.

The constraint on c in the label of the transition from 41 to 50 constrains
transitively ail the states and transitions leading from O to it, except those in
grey since a reset is met between 2 an 6, that prevents all previous elements of
this path from being constrained.

Sorne portion of the newly constrained paths also belongs to (other) non­
constrained paths as the dark grey path in automaton ibis. We hence restricted
the language the automaton recognizes with these explicit constraints. To pre­
serve the language of the automaton we should constrain a label only when

4.2 Expressiveness theorem 67

every path that indudes this label is transitively constrained on the portion
indu ding this label. Such a transition (or state) is called globally constrained.
This is applied in the automata ibis and 2 of figure 4.3 .

In automaton ibis (as in 1), the state weighted 1 cannot be constrained
since it belongs to the path in dark grey, in which the state 1 is not transitively
constrained by c. In the last automaton (2) the dark grey path sets an upper­
bound on c in state 1 as well as any other path that indudes this state, it
can therefore be explicitly constrained without changing the language of the
automaton.

In the next section we give a procedure that handles this dock manipula­
tion.

4.2.2 Clock algorithm

Hypotheses

• We consider the automaton is weighted. This means that we can easily
see between two states which is farthest from the initial state. We use the
weight fonction described in section 1 . 6, which assigns to each state the
sum of the weight(s) of each of its parent(s)-state(s) plus the amount of
already weighted states, and assigns O to the initial state.

• There is no transition in the automaton which can be statically evaluated
to false. This ensures not to constrain too much labels, hence reducing
the language of the automaton.

Notations

We explained in the semantics of the TBAs (see 1 . 6.3) a dock c will
always be used with the same lower and upper bounds, let's call the upper
bound predicate of these bounds upbound(c) . If it was not the case, we would
have define upbound(c) as the predicate defining an upper bound on c which is
the supremum of all upper bounds on c in the automaton.

To constrain a label explicitly it is sufficient to add this upbound(c) pred­
icate to its dock predicate. As a possible optimization the upbound(c) added
could be decreased by one, as one transition is taken to reach the original bound.

The range of a dock predicate is defined as the set of docks constrained
by this predicate, for p E <I>(C) it is written r ange(p) . The same way, we define
the set of docks on which the predicate puts an upper bound, for p E <I>(C) it
is written uprange(p) .

uprange : cI>(C) -t 2°

uprange(c :::; b) = {c}

uprange(c � b) = 0
uprange(p1 /\ pz) = uprange(p1) U uprange(p2)

Where c is a dock in C and b is a constant in N. Of course c E uprange(upbound(c)).

68 Chapter 4 Finite acceptance on inEnite words
We abbreviate the set of transitions which emerge from a state s E S with outgoing(s) , and the set of transitions that reach this state with incoming(s) .

For the sake of readability we associate the stable conditions to usual transitions,
like self-loops on their state, hence the stable condition of s belongs to bath outgoing(s) and incoming(s) .

The information contained in a label (either of a transition or a stable
condition) can be partially accessed using the following predicates: Reset (t)
gives the set of docks which are reset when the transition t is taken, Cpred(t) is
the dock predicate of t and origin(t) gives the state from which the transition t emerges, of course origin(t) = s iff t E outgoing(s) .

Finally we define formally the notations we already used. We say a tran­
sition t is constrained by a clock c if c E uprange(Cpred(t)) and that a state s is
constrained by a dock c if its stable condition is. A transition or a state is simply constrained if it is constrained by at least one dock. Given a TBA we define the
fonction constraining_paths : S x C -+ 1$, such that constraining_paths(s , c)
is true iff for all t E outgoing(s) we have that c constrains t , so that the dock c constrains any path that indudes s . If constr aining_paths (s , c) holds we say
that s is globally constrained by c.

Clock algorithm version 1

The following procedure, called dock algorithm, constrains explicitly all
the transitions and stable conditions that are globaUy constrained by any dock.
Such an automaton is called globally constrained after this transformation.

We give this algorithm as if there was only a single dock c in the TBA's
dock set, as it is more readable. We can easily extend it to more docks simply
using an adapted data format as the set of docks is finite, or by rerunning
the procedure for any dock c E C if one does not care for efficiency, which is
nevertheless one of our key tapie in this report . Optimized := 0 GloballyC onstrained := { s E S lconstraining_paths (s , c) }

(inv) While (GloballyC onstrained =j, 0) do
Choose s' E GloballyC onstrained with the maximal weight

(I) V t E incoming(s')
(2) if c </. Reset (t) then

(3) C pred(t) := C pred(t) I\ upbound(c)
if (constraining_paths (origin(t) , c)) then

(4) 1 GloballyC onstrained := GloballyC onstrained U {origin(t)}
(5) GloballyC onstrained := GloballyC onstrained\ { s'} Optimized := Optimized U { s'}

Proof

To prove the automaton recognizes the same language after being globally
constrained by the above procedure we propose an invariant on the while loop
("inv" label). A state is called optimized if all its incoming transitions are
constrained by each dock that constrains this state, in this case by c.

4.2 Expressiveness theorem 69

Invariant
• Gl obal lyConstrained = { s E S lconstraining_paths (s , c)/\s (j. Optimized} , Gl obal lyConstrained contains all the states which are globally constrained

by c and have not been optimized (yet).
• Optimized = { s E S lconstraining_paths (s , c)/\ Vt E incoming(s) : c (j. Reset (t) : c E uprange(Cpred(t)) } , Optimized contains all the states

which are globally constrained by c and have already been optimized.

This invariant is quite simple to prove: at the first step these two con-
ditions hold, since it is exactly the initialization definition. At each next step Optimized growths with the newly optimized state, which was globally con­
strained at the previous step, as it belongs to GloballyConstrained. This state
fits the Optimized invariant statement since the (1) loop in procedure fulfills the
requirement. Regarding Global lyConstrained we find that each procedure step
adds to this set all the globally constrained states that are not yet optimized
(4), and removes from Global lyConstrained the (newly) optimized state (5),
this is what the invariant asks for.

Using this invariant we prove that the language of the automaton A is
not modified by the procedure. We use an proof by induction on the number of
optimized states, the induction step is made at (inv) in the procedure, where
the invariant holds. Language preservation proof Let us consider i as the number of already
optimized states by the dock algorithm, and prove the optimization of the ith

state did not change the language of the automaton.
i = 0 : the language of the automaton is obviously the same since no

changes were made
i > 0 : let's call s' the state that has just been optimized,

for any transition t that has been modified within this step: c (j. Reset (t) from (2) c E uprange(Cpred(t)) , c constrains t from (3) c E uprange(Cpred(k))Vk E outgoing(s ') from invariant

- For all runs satisfying upbound(c) in Cpred(t) the language is the same.
- For a run that does not satisfy upbound(c) in Cpred(t) it cannot satisfy it in an
of Cpred(k) , Vk E outgoing(s ') and will hence be rejected at next step,
rejecting this run at current step won't change the words recognized by
the automaton. This holds since there are no reset on stable conditions, see 1 .3 .3

The globally constrained automaton hence accepts the same words as it
did before applying the dock algorithm. Definition

If the globally constrained automaton A' of an original automaton A is
constrained, then we say that A was completely constrainable. Remember that
A' is constrained iff the stable condition of its unfair states are labelled by a
dock predicate which sets an upper bound on (at least) one dock, and this
bound is not arbitrary big.

70 Chapter 4 Finite acceptance on infinite words

In other words, a completely constrainable automaton can be translated
into its corresponding constrained automaton simply by globally constraining. Clock algorithm version 2

One can add two optimizations to the above procedure. Firstly, as we
already told, we could decrease upbound(c) by 1 when adding it to the dock
predicate of the newly constrained transition, we denote this by upbound(c)-1

Secondly one could constrain any unfair states by a dock c such that all
its outgoing transitions are constrained by c, except its stable condition. For
instance, let us imagine the state s1 of the timed automaton on page 63 is not
constrained by y. One could add the constraint (y < 7] to its stable condition
without changing the language of the automaton since this predicate has to be
satisfied on any of the outgoing transitions of s1 , except its stable condition.
It is obvious this modification does not change the language of the automaton
since such a state cannot lead to an accepting state without being left, and
whenever it is left the timing constraint has to hold. In practice this second
optimization is really interesting, since it allows to (explicitly) constrain many
more states.

We denote the stable condition of a state s E S by S C(s) and write the
fact a state is accepting through the predicate fair(s) that maps any s E S to
true if s is accepting and to false otherwise. Optimized := 0

{

(fair (s') /\ constraining_paths (s ' , c) V
} GloballyConstrained := s' E S (1 . (,) /\ /\ (C d(t))) 'J air s c E uprange pre

tEoutgoing(s')\SC(s')

While (GloballyConstrained =/- 0) do
Choose s1 E GloballyConstrained with the maximal weight '<:/ t E incoming(s 1)

if c <f. Reset (t) then Cpred(t) := Cpred(t) /\ (upbound(c)_ i)
let s be origin(t)
'f ((fair(s) /\ constraining_pat hs (s , c)) V) th 1 (,fair(s) /\ c E uprange(Cpred(t)) , '<:/t E out going(s)\SC(s)) en

1 GloballyConstrained := GloballyConstr ained U { s} Globally Constrained := GloballyConstrained\ { s1} Optimized := Optimized U { s 1}
This procedure can be proved using the same reasoning as the previous

one, we won't do it here for the sake of brevity, relying on the reader's intuition
to bind the two situations.

4.2.3 New expressiveness theorem

The expressiveness theorem in 4. 2 states that any constrained automaton
has the same expressiveness whether it is considered as a NFA automaton or as
a Büchi automaton.

4.3 NFA on the specification level 7 1

Using the definition of a completely constrainable automaton in 4.2.2 , we
propose to extend this equivalence to many more TBAs, and thus to the many
more specifications they represent:

New expressiveness theorem Completely constrainable automata have the same expressiveness whether they are considered as NFA automata or as Büchi auto mata.
This new version of the theorem is proved through (1) the definition of a

completely constrainable automaton, which can be translated into a constrained
automaton and (2) the fact a TBA can be completed with a sink state. These
two transformations have been proven to preserve the language of the automa­
ton, respectively in 4. 2.2 and 4.1.2.

4.2.4 Efficiency

As we told in 4. 1.3 , a property expressed by a non-failure accepting timed
automaton can be verified efficiently, using state reachability techniques. There­
fore any property that is translated into a completely constrainable automaton
should be expressed as an NFA automaton rather than a TBA, since the equiv­
alence has been proved in the above section.

In the next section we focus on the description of the set of properties that
can be translated into such (completely constrainable) automata, and hence into
NFA automata as expressive as the TBA automata corresponding to these spec­
ifications. We notice that this class of properties includes most of the properties
one could want to verify.

4.3 NFA on the specification level

4.3.1 NFA on TBA level

Regarding timed Büchi automata the expressiveness theorem holds iff the
TBA is completely constrainable. This means all its unfair states are globally
constrained by at least one clock . In the remainder of this section, we illustrate
the same requirements on higher-level specification formalisms.

4.3.2 NFA on Live Sequence Charts level

Every state of the unwound automaton corresponds to exactly one eut of
the original LSC, as explained in section 1 . 4. Such a state is labelled by a clock
predicate iff there is any timing annotation or timer added to one of the location
of this eut. This location can be either cold or hot.

For a state to be constrained it is sufficient to have one timed location
in its corresponding eut. For every state of the unwinding automaton to be
constrained it would hence be sufficient to have one timed location on each eut.
Said otherwise, the eut should cross the line of a timer whenever it crosses a
hot line (location) . By "timed" location we mean either a location annotated
with a timing annotation, or a location located between the set and the run out

72 Chapter 4 Finite acceptance on infinite words

of a timer on the same instance. For instance, the LSC in figure 4. 4, whose hot
locations are all timed, does fit this requirement and will thus be unwound into
a completely constrainable timed automaton. checking.

Corn 1 Com 2

[3,4) ------1

[O, 1) ------•

Figure 4. 4: LSC suitable for invariance check

Sorne more considerations have to be taken into account: the cold and
maximal locations are accepting, thus if a eut is composed only of cold or maxi­
mal locations its corresponding state will be accepting. Such states need not to
be constrained. Therefore we should not consider the timing of cold locations
into our requirements, only each eut that contains a hot location must contain
a timed location.

Finally, the same consideration as the transitivity of dock constraints
holds for LSCs. Locations are sometimes depending on each other, because
they belong to the same message, condition or simultaneous region, we can hence
rely on timing annotations of other instances to deduce information about the
occurrence of locations on untimed instances.

Figure 4. 5 shows such an LSC, were the hot locations of instance COM 1
are indirectly covered by the timer of COM 2, since the locations on both instance
are simultaneous (because the messages are).

More formally one could detail this notion of time cover using the simul­
taneity classes of locations, used in section 1. 4.2.

• A location is directly time covered either iff (a) it is annotated by a timing
annotation, or if (b) it is located between a (re)set and the expiration of
a timer related to its instance

4.3 NFA on the specitication level 73

Corn 1 Com 2

Figure 4.5: More general LSC suitable for invariance check

• A simultaneity class C is time covered ifI there exists a location l E C
such that 1 is directly time covered.

• A location is time covered iff or it belongs to a time covered simultaneity
class.

And therefore we straightforwardly know that any LSC with ail hot loca­
tions time covered can be translated into a completely constrainable automaton.
Allowing an efficient verification of the property it expresses.

4.3.3 NFA on Temporal Logic level

We can use a similar reasoning about temporal logics, but neither LTL
nor CTL allow us to easily describe finite-timed properties. [AH9 4) introduced
some annotations, slightly modifying the ◊ (eventually) operator, for it to
accept lower and upper bounds. We write that a property p must eventually
hold within 2 and 10 steps from here by ◊ [2 ,rnJP· The same notation is used
for the U (until) operator where the bounds specify the deliverance time, e.g.
cp1 U[2,5icp2 stands for cp1 Ucp2 and <p2 must hold within 2 to 5 steps from now.

Once these notations are introduced we can express the class of completely
constrainable automaton on the temporal logic level simply by saying that ail
◊ and U operators of the formula to be checked have to be upper bounded for
this formula to be translated into such an automaton.

The explanation is quite intuitive since any fairness constraint in the gen­
erated TBA cornes from an until operator. Constraining it will meet the theorem

74 Chapter 4 Finite acceptance on infinite words

requirement. The same holds for ◊ since it is an abbreviation of U.

4.4 Practicability considerations

In this chapter we shown how some particular specifications could be
verified efficiently using invariant checking methods, provided that they meet
some timing requirements, i.e. if they do not include reaI (unbounded) fairness.

In the design verification of reactive systems one could almost always
have an idea of the reaction times of the system under development. Using real
(unbounded) liveness could be avoided most of the time, as any designer who
knows his system well should be able to express a reasonable time bound on a
sequence of events. Actually unbounded liveness can be found at the first stages
of the design, but one can define, i.e. bound, them when the design evolves.

The success of SAT-checkers in the recent time, for instance, which cannot
deal with real fairness and approximate infinite behavior on finite observations,
shows that in practice one can describe all properties within a finite (bounded)
framework. We introduced SAT-based model checking in section 2 . 4 .3 .

For this reason we believe that the non-failure criterion is useful since it
allows many convenient specifications to be checked using invariant check . This
check, it is worth mentioning, improves mainly falsification verifications.

In the next chapter we detail how these improvements were successfully
implemented at CvOU. The unwinding automaton we characterized in chapter
1 is optimized and translated into SMI code to be given to the model checker.
We therefore review the SMI formalism, and explain our translation.

Chapter 5

Real usage

5 . 1 Verification environment

We already introduced and described most of the formalisms that are
integrated in the verification environment of the Computer Science Department
of Carl von Ossietzky Universitat, Oldenburg (CvOU). The way they interact
is illustrated in figure 5.1 where a new formalism, SMI, is used as intermediate
between the already lmown "high-level" formalisms and the "low-level" model
checker finite state machines. SMI is a simple imperative programming language
that implements the behavior of (reactive) models by describing the relation
between current values and next values of a set of variables. It is explained is
section 5. 4 .

Two situations are depicted in figure 5. 1. The current one, in white, differs
from the initial one, in light grey, which could not yet handle LSCs.

First, specifications were described using Symbolic Timing Diagrams (STDs) ,
a diagram based language that allows a concise and intuitive formulation of
timed properties using collections of (waveform) diagrams [FJ9 6]. These STDs
were unwound into TBAs [Fey9 6] using a procedure similar to the one for un­
winding of LSCs. Actually it is this procedure that inspired [KW0 l] for han­
dling LSCs. This unwinding procedure also relies on the concept of eut, here
called phases, which exhibits any possible state of the (STD) property, and
are straightforwardly translated into states of the resulting automaton. These
TBAs were then transformed into TCTL, a timed variant of CTL, before be­
ing finally rewritten into SMI and given to the VIS model checker, after some
optimizations.

The figure 5.1 illustrates the current situation of the verification envi­
ronment, including the support for Live Sequence Charts (LSCs) specifications
which has been added recently. Among other improvements, this language al­
lows to distinguish between possible and mandatory behaviors in the require­
ments (see 1.2). LSCs are translated into optimized TBAs using the unwinding
procedure described in section 1. 4. The TBAs are then translated into SMI
code (5. 5), and in BLIF-MV (5. 6) , the internai VIS formalism.

To generate SMI code we propose, in section 5.2 , to optimize the TBAs
resulting of the unwinding procedure. We then present the SMI formalism (5. 4 ,

75

76 Chapter 5 Real usage

Model checker

Figure 5 . 1 : Verification environment at CvOU

and detail the translation process in 5.5. We did not reuse the translation from
TBAs to SMI via TCTL that already exists for STDs (in light gray) to handle
the LSC way, since the non failure acceptance criterion defined in the previous
chapter could not be integrated with this former approach. It is worth to men­
tion that this new translation option can be used for STDs specifications as well,
as shown in figure 5. 1, enabling the same optimizations for these specifications
as for LSCs.

5 .2 TBA optimizations

Both the LSC and the STD unwinding procedure, respectively described in
[KW0l] and [Fey 9 6] produce an automaton that exactly represents the scenario
described in the specification, but which is not optimal. We describe the output
of these procedures and give some optimizations that could be made.

5.2 .1 (non)Determinism

In TBAs which are unwound from LSCs, nondeterminism arises when iso­lated conditions are found. A condition is called isolated if there is no reference
point for the valuation of this condition, i.e. no other event (message sending or
reception), which we can use to refer to. Since there is no observable reference
point, which tells us when to èvaluate the condition, the state just before the
condition is unwound is simply annotated with true, the most nondeterministic
label.

No more (explicit) nondeterminism is generated. It is still possible to
have "hidden" nondeterminism due to overlapping proposition mappings, e.g.
if msgl and msg2 are both mapped to the same design event e .

5.2 TBA optimizations 77

In general, nondeterministic Büchi automata are more powerful (expres­
sive) than deterministic ones, this is why we will not try to determinize the
automaton. Such optimizations are nevertheless already available at the SMI
level.

5.2.2 Static simplifications

We can encounter some unwinding automaton with inefficient transition
(or stable condition) label. We should hence apply the well known logical simpli­
fications, for instance (a/\.b) V (-,af\b) should be replaced by b. Such propositional
reductions are made possible thanks to the concise representation we choose for
the transition labels, we should obviously apply them to stable conditions as
well.

The automaton generated by the unwinding procedures does never link
two states by more tha.n one transition, as cuts are all different. Therefore we
do never have to merge many transitions into a single one.

Nevertheless, some transitions could have been labelled by false after sim­
plifications, possibly generating non-reachable states which should be removed
to reduce the automaton's size.

5.2.3 Fairness

The latter and most important consideration involves fairness. When
unwinding a timing diagram or a sequence chart into a TBA, the algorithm
determines which cuts must finally be left again, the corresponding states are
indeed not fair, not accepting.

As explained in 1. 4.1 the unwinding algorithm moves a front through the
chart in order to determine its cuts. Exactly one location of each instance
belongs to such a eut. For each of these cuts a state of the TBA is generated.
Such a eut may be stable forever iff it is composed only of cold locations or
maximal locations. If a eut may not be stable forever it implies a following eut
to happen finally. Therefore we mark all the states in the TBA which must be
left finally as un/air, all the other states are fair states, in the sense that we can
stay forever in such a state.

Fairness considerations are a key topic when considering CTL model
checking since these model checkers do not support fairness within the given
properties. One have to give the fairness constraints beside the specification.
They are individually translated into an automaton, running in parallel with
the model checking process (see 2.2.3).

In the TBA resulting from unwound LSCs or STDs a lot of fairness is
actually bounded, i.e. one expect a fair behavior to occur within a bounded time.
This results from the transformation of any timer into a fairness constraint. This
bounded fairness is simpler than real fairness. Thus, one could possibly get rid
of it.

The fairness optimization is clone by application of the dock algorithm (of
section 4.2.2)to the automaton. If the globally constrained resulting automaton
is constrained we are allowed to verify the property using invariant check, as

78 Chapter 5 Real usage

stated by the expressiveness theorem of 4.2 .3 . This verification does not take
care of the fairness constraints, since they are all bounded fairness constraints.

5.2 .4 Goal definition

Regarding the initial situation depicted in 5.1 and the strength and weak­
nesses of the unwinding procedures, the following aims were defined to improve
the former verification environment at CvOU (in light grey in figure 5 . 1).

• Allow the use of LSC specifications to be used as design properties to be
checked.

• F ind a solution as deterministic as possible, e.g. using existing SMI tools.
• Get rid of fairness constraints whenever possible.
• Allow real LTL model checking, not ACTL approximation anymore (see

3 . 4.2).
• Enable iterative activation-mode support
• Extend the witness possibility of the environment, to get a positive witness

of the traversai of the automaton, such a purpose is also called existential
verification.

The creation of the targeted optimizations on the SMI level would have
made them available on a wide scale, since SMI is an intermediate language
used in many other fields at CvOU. But because SMI is an imperative language
there are many different ways to represent the same situation, resulting from
implementation choices. Particular optimizations like fairness considerations
are hence impossible on this level. This is the major reason why we chose to
make them on the TBA level.

After the above described optimizations, including statical simplifications
and fairness optimization, we are able to translate the automaton into SMI code.

5 .3 SMI translation

In order to perform timed verification using the VIS model checker (see
3 .2) both the design and the specification set have to be translated into a for­
malism interpretable by the model checker, i .e. BLIF-MV (3 .2 .3).

The model of the system under development is initially specified in the
STATEMATE environment using module-, activity- and state-charts (see 3 .3 . 1).
Th ose charts are translated into Fini te State Machines (FSM), expressed in the
BLIF-MV formalism, directly understandable by the VIS model checker.

The translation of the specification set, which is a main tapie of this report,
is clone in three steps. The initial specifications, in Live Sequence Charts, are
translated into optimized timed Büchi automata, this was the issue of chapters
1 and 4. The optimized automata are then first translated into an intermediate
language called SMI, a language for the translation of high-level formalisms into
FS:rvls. In the last phase the generated SMI code is translated into a FSM for
model-checking, namely BLIF-MV.

5.4 The SMI formalism 79

In the remainder of this chapter we describe the SMI formalism, in sec­
tion 5. 4, well served by many optimizations, such as determinization. These
optimizations are not possible on the BLIF-MV level. We detail in section 5. 5 .1
the SMI code structure and how our timed automata (of 1. 6) optimized by the
dock algorithm (of 4.2 .2) can be used for invariance checking, since it can be
expressed by a NFA automaton (4. 1.3). The SMI step gives us the ability to
(finally) handle the activation modes (see 1. 5), which are introduced into the
produced code in section 5. 5.2 . We finally show in section 5. 5.2 how the imple­
mentation we choose gives the opportunity of an explicit witness verification[,
a s suggested by the targets of the verification environment a t CvOU in section 5 . 2 . 4) .

5 .4 The SMI formalism

The System Modeling Interface (SMI) can be considered as a general lan­
guage for describing behaviors. SMI is a simple imperative programming lan­
guage, containing concepts to model hierarchy, parallelism and nondeterminism.

5.4.1 Syntax

Language constructs

One SMI program, also called module, represents the behavior of a design.
It is composed of one code black containing a single non terminating loop to
figure the cyclic behavior of a design [Bieüla]. As pictured in figure 5.2 1 the code
black of the while loop contains statements. This formalism offers statements for
assignments, null operations, deterministic branches, nondeterministic branches,
"while" loops, breaks and sequential and parallel compositions (not illustrated) .
No fonction call nor recursive mechanism are provided.

The branches, or cases, can be either deterministic (DCASE) or nondeter­
ministic (NDCASE). The different branching possibilities are given by guarded expressions, which are constrained (guarded) by an expression. The expres­sion language contains common boolean and numeric operators, and selection
on arrays and records. A deterministic branch allows no overlapping between
the guards of its guarded expression and activates the expression whose guard
is evaluated to true. A nondeterministic one chooses between all true valued
expressions .

Typology and variable definition

The supported data types include bit, integer (bounded or unbounded),
real (bounded or unbounded), string, and enumeration.

These basic types can be used within aggregated types like records, unions,
arrays or queues. Besicles these, a special type, called reference, can be used to
declare aliases to existing types.

Any variable in SîvII code is characterized by its name, type, group, mode,
initial value, and some additional information we do not detail here, as an in­
terna! name and the method it (possibly) uses to access memory [Bieülb]. The

1This picture is inspired from (BieOla]

80

prograrn

�,-----------, MODULE example
CODE

WHILE true DO
� @(a$$, 1]

DCASE
[] X = 1 :

SKIP

[] x = 2:
@[b$$, 1]

DESAC
OD

END

Chapter 5 Real usage

prograrn
codeblock

loop
codeblock

first guarded
expression

codeblock of
flrst guarded
expression

second guarded
expression

codeblock of
second guarded
expression

Figure 5.2 : The structure of a SMI program

group of a variable depicts the role of the variable within the FSM, these roles
include data items, events, conditions and timers. The mode ranges between
input, output, local, observer and constant, among others. A local variable is
particular to the concerned module, while an observer variable could be con­
sidered as a token of a defined behavior. The other modes are self-explaining.
These additional variable information are not really constraining, but refine the
way produced counter-examples are interpreted.

5.4.2 Semantics

Step semantic

SMI implements the behavior of (reactive) models and (timed) properties
by describing the relation between current values and next values of a set of
variables, using a synchronous step-semantics idea.

In SMI ail control information, variables and events of the design are
encoded into variables. SMI provides two versions of all the var.iables present
within the code, the primed and the unprimed. The primed variables are used
to express the values of these variables in the next step, while the unprimed
ones carry the value of the variable at last step. There is an implicit copy­
action when the complete SMI-Program has been executed, where the unprimed
versions get the current values of the primed one in order to get a "stepping
system". Assignments are allowed to primed variables only.

The cyclic behavior of a design is expressed as a non-terminating loop in
SMI code, following Misra and Chandy's Unity mode! [C1v1 8 8). One execution of
this loop corresponds to exactly one step of the design, whether considering step
semantics or the super-step semantic defined on STATEMATE designs (see section

5.4 The SMI Eormalism 81

3.3 .2). Both of these semantics are supported by the verification environment
we use here. Conventions

By convention, actually to allow an easy portability with other tools of
the environment, the na.me of variables representing docks must be of the form
znumber, e.g. z00 or z312. Similarly we rename all the states so that their
names begin with X.

5.4.3 Propositional architecture

One purpose of the SMI environment is to allow a great modularity of
each of its components. Therefore the information of a single specification (or
model) is split into many parts, each corresponding to a particular information
type . We hence distinguish

• The type definitions and variable declarations, which are put together into
a symbol table.

• The SMI program, the real finite state machine, as described above, any
variable used within the code should be defined in the symbol table.

• The mapping of each variable of the program (declared within the symbol
table) to the corresponding item (event, proposition, trigger, ...) of the
real STATEMATE design. This mapping is written into a proposition table.

This high modularity allows specific optimizations and enhance the reusability of
partial information. One could for instance reuse the same proposition mapping
for many specifications, or, at contra, reuse the same specification with different
variable definitions and/or propositional mapping.

In the remainder of this chapter we don't distinguish anymore between
the SMI code, the symbol table or the propositional table, as it is clear form the
context which part we're considering. For instance variable declaration always
belongs to symbol table, including all the mentioned additional information,
whereas guarded expressions and code block always refer to the SMI program.

5.4.4 A vailable opthnizations

The SMI format is well served by manipulations and optimization tools,
the tools within parentheses provide some valuable optimizations on SMI code
including

• making it more deterministic (smidet)
• computing the cone of influence (smicoi). Such abstractions achieve a

further reduction of FMS complexity, permitting the checking of still larger
designs. The cone of influence abstraction is described in section 2.4.2.

Besicles these exact optimizations there are also approximations that can
be made. Over-approximations include abstraction, freeing variables, fixpoint

8 2 Cliapter 5 Real usage

approximations. Under-approximations indude freezing inputs to a constant
value and removing nondeterminism, among other, and are used mainly for
witness-based model checking.

5 .5 'franslation of TBAs into SMI
The translation process performs several tasks. It maps used data-types

onto the types of SMI. The state configurations of the chart are encoded into
SMI variables. Therefore the TBA2SMI tool defines variables to encode data,
boolean variables, events, and the control information of the automaton. With
these variables we keep some additional information for traceability information
(data-type, mode and group), which are used by the model-checker to darify a
counterexample for a given property.

Time consideration

To cope with timing aspects of a specification the translation process
introduces dock variables, all running synchronously. Because we require all
time expressions to evaluate to a constant at compilation time finite domains
for the docks can be determined.

Details on generated SMI

Three specification activation modes are supported: initial, invariant and
iterative. None of these modes influences the TBA optimizations applied in
section 4. 2. 2, they simply express the range of the specification, depending on
their meaning we explained in section 1. 5. As the SMI code should express the
whole specification, induding its activation condition, we detail their handling
in section 5. 5 . 2.

We refine the SMI output into two main parts: an activation part, that
handles the activation mode, followed by the core automaton, that represents
the TBA's transitions.

5 .5 .1 Core automaton

Generation mode

One single run on the automaton has one single active state at the time.
We can represent this behavior by mapping one boolean variable to each state,
one of each can be active at a time, and the only active state (variable) can
possibly change at each step. This way of implementing an FSM is called one­
hot encoding, since one state is active (hot) at a time.

On the other hand one could mode} this behavior of "one state active at
a time" using a single integer variable, whose value could change accordingly
to the active state. This logarithmic encoding sets an "active state" counter
to the value of the current state, which is simply an integer bounded by the
number of states in the automaton. This latter approach is more efficient than
the one-hot encoding since fewer variables are allocated, nevertheless it provides

5.5 Translation of TBAs into SMI 8 3

a less readable result. Therefore we will illustrate our examples using only the
one-hot code generation mode, even if both are available in the TBA2SMI tool.

Before giving the complete translation of a TBA let us first review how
its constituting elements should be handled, according to the possibilities given
by SMI (in 5.4) on one hand and the semantics of TBAs (in 1. 6) on the other.
All these elements are illustrated in the SMI code of figure 5.4, on page 85.

State space

Depending on the chosen code generation mode we dedare either many boolean variables, or one bounded integer one to represent the state space. These
variables are actually control variables of the FSM, which should only be mod­
ified within the module. They are thus dedared within the symbol table (see
5.4. 3) as local data items since their values are allowed to change in time, refer­
ring to the typology we gave in 5.4.l.

The state variables in figure 5.4 are X1 and X2.

Atomic propositions

Any atomic proposition of the automaton to be translated is dedared as
a input boolean event. This means the value of an atomic proposition can be
either true or false, and is determined at any moment by a factor external to
the specification, i.e. the model. This behavior is exactly what we are expecting
from an atomic proposition.

The atomic propositions variables in figure 5.4 are p1 and p2.

Clocks

Clocks are internal to the FSM, which should be allowed to modify their
values, therefore we consider local bounded integer data item variables to repre­
sent them. The bound on their domain can be computed statically relying on
the hypothesis of (non arbitrary big) upper-bound that stands for any dock of
the TBA.

In bath modes all the docks are increased by one before each step (at
least while they remain within their domain), at the very beginning of the body
while loop, and possibly reset by a transition after this one has been taken. The
only dock variables in our sample code is z00.

Fairness

A run is fair (accepting) in Büchi's sense if it infinitely often passes through
an accepting state (see 1. 3. 1). We represent this by creating an observer variable
which is true iff the actual state is accepting, checking for acceptance is then
reduced to check whether this variable is infinitely often true. Because we
defined it as an observer it can be accessed from outside the FSM, i.e. by the
model checker, to verify its value.

We call this observer the fairness observer, since its true evaluation states
the current state is fair, as shown in figure 5.4 with variable fairness_observer.

8 4 Chapter 5 Real usage

Sink state
We showed in section 4. 1. 2 that the addition of a non-accepting sink state,

reached at any step is any other transition is taken, does not change the expres­
siveness of the automaton.

We introduce this sink state explicitly at the SMI level, rather than before
(at the TBA level), because we can use an efficient implementation artifact,
saying the sink state is always active (or reached), except if any other one is.
The corresponding variable, failure, is initialized to true, and set to false if
any transition is taken. Transition relation

We call the encoding of the transition relation the core automaton, or
core TBA, with respect to the activation part, which we detail below. The core
automaton depends highly on the SMI generation mode chosen.

The figure 5.4 shows the SMI code of the sample TBA given in figure 5. 3
in one-hot encoding mode.

Each guarded expression represents exactly one transition of the automa­
ton. For a transition t of the automaton we can find exactly one guarded ex­
pression whose guard is the conjunction of the origin state of t, stating it is the
current state, and the transition label. The codeblock of a transition updates
the active state variables of both the left and the reached states, and asserts we
are not in the sink state, by setting the (primed) value of failure$$ to false.

p1

p1J\7p2 (zOO}

true

Figure 5. 3 : A simple TBA.

5 .5 .2 Activation part

The three different activation modes we consider were defined in section
1 . 5. These activation modes describe the range of the property expressed by

the core TBA, e.g. whether it should hold immediately (initial mode), forever
(invariant mode) or forever with no overlapping (iterative mode) .

One can consider that if the activation condition is not met (and thus
the TBA never activated), one can accept the run as fulfilling the specification.
This is implemented by setting the fairness observer to true by default, as show
in figures 5. 5, 5 . 6 and 5. 7 for each of the activation modes. One can also want
to force the property to be verified, this behavior is called healthiness in (DH9 8].
One could for instance require healthiness of a specification on the assumption

5.5 Translation of TBAs into SMI

MODULE sample_lsc
CODE
WHILE true do
DCASE

[] zOO < 7 :
© [z00$$, zOO + 1]

DESAC
© [failure$$, true]
NDCASE

[] (X1$$) and (pl) :
© [failure$$, false]
© [Xi$$, false]
© [X1$$, true]

[] (X1$$) and (pl and not p2 and (z00$$ < 7))
© [failure$$, false]
© [X1$$, false]
© [X2$$, true]
© [z00$$, 0]

[] (X2$$) and (true)
© [failure$$, false]
© [X2$$, false]
© [X2$$, true]

NDESAC
© [fairness_observer$$, false]
DCASE

[] X2 :
© [fairness_observer$$, true]

DESAC
OD

Figure 5.4: SMI code: the core TBA

8 5

86 Chapter 5 Real usage

sicle, to prevent the model checker from never activating the specification, sat­
isfying it on the easiest way. Therefore the TBA2SMI tool provides the ability to
rather initialize the fairness observer to false.

Whatever the code generation mode, one-hot or logarithmic, we intro­
duce two new control variables to handle the activation modes. One is called
tba_started, it allows us to distinguish between an initialization pass through
the body loop or a step on the core automaton. Since this variable is internal to
the FSM and has to be updated we declare it in the symbol table as a local data
item boolean variable, using the topology of section 5. 4 .1. We put the core tba
within a guarded expression guarded by the true evaluation of tba_started,
while the activation part needs it to be false to be traversed. The second vari­
able is the activation condition variable, declared as a boolean input event, just
like any atomic proposition, it is called ActivationCondition in our example
code.

The remainder of this section explains how the different activation modes
are integrated within the SMI code, by adding a code fragment at the very
beginning of the body while loop, before the clock's increment DCASE of figure
5. 4.

Initial mode
A run on an initial TBA has to fulfill immediately, i.e at the first step of

the run, the activation condition and be fair to be accepted. It is also accepted if
the activation condition does not hold at first step while the activation exception
does. In this case the core TBA isn't even activated, and the run immediately
succeeds (see 1 . 5 .1). If the activation condition is not satisfied at the first step,
and neither the activation exception is, then the run is rejected.

The "exception" mechanism leads us to the definition of a corresponding
new acceptance token, which states explicitly that the exception has been used.
In practice we could also use the same observer than for the Büchi criteria (i.e.
fairness_observer). We introduce a trigger (a local data item boolean) to
ensure the evaluation of bath activation condition and exception occurs only
at first step, it is called first_step in figure 5. 5, and is initialized to true.
Obviously, once the core automaton activated, the acceptance of the run relies
on infinitely many true evaluations of the fairness observer, as stated in section
5. 5 .1 .

Invariant mode
An invariant activation mode means the run has to satisfy the automaton

any time its activation condition holds.
This invariant mode can be handled in different ways, from which the

worse is perhaps building its product automaton. The TBA2SMI tool produces
a non-deterministic activation of the core tba2 as shown in figure 5. 6

2This way of handling multiple activations is adapted to the VIS mode) checker, which is
used to check the mode) later on.

5.5 Translation of TBAs into SMI

DCASE
[] not (tba_started) and (first_step) :

\O [fairness_observer$$, true]
\O [f irst_step$$, false]
DCASE

[] ActivationCondition
© [tba_started$$, true]
© [Xi$$, true]
© [z00$$, 0]

[] not (ActivationCondition
DCASE

[] ActivationException :
© [initiaLaccept$$, true]

[] not (ActivationException
©[failure$$, true]
© [f airness_{)bserver$$, false]

DESAC
DESAC

DESAC

Figure 5. 5: Activation in initial mode

DCASE
[] not (tba_started) :

© [f airness_observer$$, true]
NDCASE

[] ActivationCondition
SKIP

[] ActivationCondition
© [tba_started$$, true
© [Xi$$, true]
© [z00$$, 0]

llDESAC
DESAC

Figure 5.6: Activation in invariant mode

87

88 Chapter 5 Real usage

Iterative mode

The iterative activation mode provides multiple activation of the TBA in
the same run, but only one at the time. It uses a lock mechanism, described in
section 1.5.3, to allow the TBA to be reactivated when its previous activation is
completed, even when considering infinite runs. Let us just remember that if a
run reaches a so-called finitely accepting state it can be considered as complete
and hence allow the TBA to be reactivated.

The first activation of the TBA occurs when the activation condition is met
for the first time, if it is never the case the specification is accepted. Regarding
the possible re-activations, the TBA2SMI tool introduces back-leading transitions
from any of these true fair states (X2 in the sample TBA of figure 5.3) to the
initial node, and modifies the transitions predicates accordingly, as explained in
1.5.3 . The first activation and the modified transitions can be found in figure
5.7.

DCASE
[) not (tba_started)
© [fairness_observer$$, true]

DCASE
[] not (ActivationCondition) :

SKIP
[] ActivationCondition :

© [tba_started$$, true]
© [X1$$, true]
© [z00$$, 0]

DESAC
DESAC

[] (X2$$) and (ActivationCondition
©[failure$$, false]
© [X2$$, false]
© [Xi$$, true]
© [z00$$, 0]

[] (X2$$) and (not (ActivationCondition))
© [failure$$, false]
© [X2$$, false]
© [X2$$, true]

Figure 5.7: Activation in iterative mode: first activation and reactivation from any true fair state

Non-failure acceptance criteria

The run of the automaton is fair if it evaluates infinitely often the fairness observer to true, recalling the Büchi acceptance criterion.
The non-failure state acceptance (see 4.1.2) eventually holds. This criteria

accepts the same runs than Büchi's does iff all unfair states of the automaton are
constrained by at least one clock. A property represented by a NFA automaton
can be computed efficiently using invariant check methods (see 4.1 .3).

If the hypotheses of this criterion hold, i.e. if the automaton to be trans­
lated is constrained, we define a non-failure acceptance observer in the generated
SMI code, which becomes false whenever the sink state (failure) becomes ac­
tive. The once false value of this non_failure_observer is sufficient to reject
a run.

The two fairness mechanisms are illustrated on the sample TBA in figure
5.8, where fairness_observer is true whenever the active state is accepting,
while the non_failure_observer becomes false if we reach the failure state.

5.6 Final steps before mode] checking 89

We are allowed to illustrate both criteria since the TBA of figure 5.3 meets the
requirements of the non failure acceptance condition.

© [fairness_observer$$, false]
DCASE

[] X2 :

© [fairness_observer$$, true]
DESAC
DCASE

[] failure$$ = true :
© [X1$$, false]
© [X2$$, false]
© [non..failure_acceptance$$, false]

DESAC

Figure 5.8: Two observers, for two acceptance criteria

Witness mode

To provide an existential verification of any property we rely on the finitely
accepting states concept (in 4.1.2).

Sin ce any run that reaches such a state in the TBA is (definitely) accepting
we can, for instance, introduce a new observer that evaluates to true whenever
any finitely accepting state is reached, let's call it witness_observer. An ex­
istential verification would then simply consist of a falsification of the formula
□ (,witness_observer) that would provide a counter-example of a complete
traversai of the automaton.

5.5.3 Correctness

Since the translation of TBA into the corresponding SMI code is quite
intuitive, thanks to both formalisms, and highly detailed in the above sections,
we won't prove more formally the correctness of our implementation choices.

5 .6 Final steps before model checking

We now sketch the translation of SMI into BLIF-MV, the internai formal­
ism of VIS (see 3. 2.3) . This translation entails BDD manipulations, which we
do not want to detail in this report, hence we only sketch the guide lines of this
final step.

The translation generates BDDs, a characteristic function (see 2. 4.3) is
computed for every bit of the state space, i.e. the variables defined in the
SMI code. No additional variable is needed to represent the locations since we
use a step semantics (one step of the FSM is one complete run through the
nonterminating outermost loop of the SMI program).

90 Chapter 5 Real usage

Sorne additional input variables have to be added to cope with nondeter­
minism. These "choice" inputs are actually chosen between the possible runs
through the SMI program, and hence resolve the nondeterminism.

The loops can be handled either by computing a fixed point for the loop
(very slow) or by unrolling the loop. The latest method does not fit endless
loops, but is faster whenever usable. We cannot state in advance wether the
body while loop will belong to one or the other of these two categories, since it
depends on the code it executes.

Because after the translation of a design and properties into SMI, all
necessary docks are represented by a finite number of bounded variables (see
5. 5) , one can generate untimed FSMs from the SMI code. The constructed

FSM is such that one step of the FSM corresponds to one execution of the
complete while-loop of the SMI code. Thus, in step semantics the FSM timers
are increased by one in each state of the FSM. In super-step semantics timers
are increased only in certain states, while they remain unchanged in all other
states.

5. 7 Conclusion

In this chapter we presented the SMI formalism and a possible way of
translating TBAs into programs of this language. Many other possibilities are
allowed since SMI is a simple imperative program, allowing the same behavior
to be represented on many different ways.

In the next, and last chapter, we highlight the improvements brought
to the CvOU verification environment through the introduction of this new
translation.

Chapter 6

Results

The prototypical development and integration of the translation tool de­
scribed in chapter 5 has been conducted from September 2001 until December
2001 at the Carl von Ossietzky Universitiit, Oldenburg, Germany (CvOU).

We detail in this last chapter some improvements this new verification
"option" brought to our Embedded Systems department verification environ­
ment. One should compare them with the goals that were identified to enhance
our environment, on page 7 8.

6 .1 Specification support

6 .1 .1 LSC

Live Sequence Charts specifications can be used as well as STDs to specify
properties one could want to verify. We detailed in this report how such a
specification is first unwound into a timed automaton (chapter 1) , translated
into SMI code (chapter 5), represented as a BLIF-MV finite state machine (5. 6)
and given to the VIS model checker to be tested on a design under development
modeled with STATEMATE (chapter 3).

This translations chain allows any LSC specification to be verified on a
design under development using symbolic CTL model checking with fairness
constraints, based on BDDs techniques (chapter 2).

Nevertheless some approximations are made (3 . 4 . 2) which sometimes pre­
vent us from being able to endorse a design, since some properties can be inval­
idated because of the approximations rather than because of the design errors.

6 .1 .2 LTL

Linear temporal logics can be checked the same way as LSCs, as long as
the automaton corresponding to the formula fits the requirements of our TBA
format.

We cannot hence offer support for the whole LTL formalism, but detailed
in section 3. 4.1 the subset of LTL we can verify. Actually we don't allow any

91

92 Chapter 6 Results

nested D (Globally) operator, to guarantee the acyclicity of the corresponding
automaton.

The translation of LTL into automaton is an active field of research in
formai methods, as the state explosion problem described in 2 .3 .2 is still a
challenge. [SB00], among others, gave one way to generate a reasonably small
Büchi automaton from an LTL formula. This translation is not implemented
yet in our verification environment, but will be soon since it is part of the next
VIS release (VIS 2 .0) .

The choice between a linear or a temporal framework, sketched in 2 .3 . 1 ,
remains a current issue. Our choices, i.e. a linear specification framework on a
branching-time verification core meets our present needs. Mixed solutions, as
the one we describe here seem to be one path through this tapie.

6 .2 More efficient verification

Many specifications are accurate enough to be verified on a more efficient
way than fair CTL mode! checking.

We integrated the non-failure acceptance criterion (defined in chapter 4)
in the new verification chain. Properties represented by a NFA automata can be
verified efficiently using invariant check techniques, i.e. on-the-fly state reacha­
bility analysis.

Actually not ail properties can be verified using this technique, since heavy
requirements are needed for a property to be represented as a NFA automaton.
But we suggested in 4.3 that many "real" specifications could meet them.

Above this, the invariant check gives us a possibility, again for the same
specifications only, to verify them even if the approximated fair ACTL mode!
checking fails. Hence, we are sometimes able to assert or reject a property which
we could not verify before the NFA criterion integration.

6.3 Iterative activation mode

We gave in 1. 5.3 the definition of the iterative activation mode, and showed
in 5. 5.2 how we implemented it within the design verification process.

This activation mode is new within our verification environment. We
believe it to be useful since it provides a determinis tic activation of the property
check, and permit many (successive) activations in addition. The fact it is
deterministic is quite interesting since nondeterminism is hard to handle in the
mode! checking process.

6.4 Witness verification

We allow witness verification tests to be conducted. This generates a
positive witness of the traversai of the automaton. We explained in section
5. 5.2 how we implemented it. Such a verification is reduced to an invariant

check, hence as efficient as the on-the-fly reachability states computation we
already talked about.

Chapter 7

Conclusion

One of our goals was to introduce the reader to the field of formal ver­
ifications, as well theoretical as practical, since the first would make no sense
without the latter, whereas the second could not progress that much with no
theoretic fundamentals.

In particular we defended the use of timed Live Sequence Charts as for­
mal specification language. We believe the graphical appeal of this formalism
coupled with its intuitive syntax and interesting features make it user-friendly
and powerful. Temporal behaviors of reactive systems are especially the kind of
scenario this formalism is suitable to describe.

We then detailed how these specifications could be verified on modeled
designs, using either fair CTL model checking or automata-theoretic related
techniques. We first sketched the intuitions beyond these approaches, giving
some related current issues and optimizations as well. We then showed how
such a verification can be conducted in practice, using the VIS model checker
and STATEMATE designs.

On our way towards efficient validation we defined a property class that
can be verified efficiently, using invariant check, i.e. an efficient state reacha­
bility analysis. To formally define this class of specifications we introduced a
new acceptance criterion on timed automata. We proved that, under certain
circumstances, the expressiveness of a timed automaton is the same whether
considered with the Büchi acceptance condition or with the non-failure accep­
tance one. We admitted that the requirements for this equivalence to hold are
quite constraining, but we also showed that most properties one could want to
verify in real design development usage should meet them, hence our interest in
this improvement.

Moreover, we gave in this master thesis both theoretical and practical
justifications to these considerations. Giving a formai hierarchy of the dock
constraints on the theoretical hand and an intuitive algorithm to implement
the new acceptance criterion on the practical hand. We proved the algorithm
preserves the language of any automaton it optimizes.

The field of formai verification is currently focussed on some major topics,
one of which is the choice between a linear or a branching time framework. Many
initiatives are taken to compose with the advantages of both approaches, and

93

9 4 Chapter 7 Conclusion

our works situates itself on the same path. We motivated our choices for a linear
time specification framework coupled with a branching time model checker.

We are aware our notion of time is far more simple than some real-time
considerations [AD 9 4] which actually impassion many formai verification re­
search groups. Nevertheless we showed interesting things could be clone using
a (simplified) discrete-time framework, which often suffices to model the target
design.

One could pretend that some of our requirements are quite constraining,
as, for instance, the obligation for our TBAs to be acyclic. We explained why we
use them and our reason are, almost always, empirically justified. Nevertheless
from a theoretical point of view many new problems could arise if we remove
some. We pretend that, even if a problem seems interesting on the theoretical
point of view, there is only few interest in resolving it if we know in advance
our solution won't be used by anyone, i.e. industrially speaking.

Sorne interesting researches could be conducted to further investigate the
possibilities we described here. For instance one could improve the iterative
activation mode, as sketched in 1. 5. 3 . Another further-work topic would be the
looking for better explicit dock constraints definition, which would constrain
more labels without modifying the language of the automaton.

Bibliography

[AD9 4]

[AE0l]

[AH9 4]

[Alu9 7]

[Bcc+ 9 9J

[BCM+ 9o]

[BF 9 3]

[BH]

Rajeev Alur and David Dill. A theory of timed automata. Theo­retical Computer Science, 1 9 9 4.

Amyot and Eberlein. Evaluation of scenario notations for telecom­
munication systems development. In Proceedings of 9th Interna­tional Conference on Telecommunication Systems {9IC TS), Dallas,
USA, mar 2001 . ICTS.

Rajeev Alur and Thomas A. Henzinger. A really temporal logic.
In IEEE Symposium on Foundations of Computer Science, 1 9 9 4.

Rajeev Alur. Timed automata. In NATO, 1 9 9 7.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, M. Fujita,
and Y . Zhu. Symbolic model checking using SAT procedures in­
stead of BDDs. In Proceedings of Design Automation Conference (DAC '99), 1 9 9 9.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic Model Checking: 1020 States and Beyond. In Proceedings of the Fifth A nnual IEEE Symposium on Logic in Com­puter Science, pages 1- 3 3, Washington, D.C., 1 9 90. IEEE Com­
puter Society Press.

Ricky W. Butler and George B. Finelli. The infeasibility of quan­
tifying the reliability of life-critical real-time software. In IEEE Transactions on Software Engineering, volume 1 9, pages 3-1 2.
IEEE, Jan 1 9 9 3.

Yves Bontemps and Patrick Heymans. Turning high-level live se­
quence charts into automata. In Proc . of the 24th International Conference on Software Engineering (ICSE 2002): Scenarios and State Machines : algorithms, models and tools .

[BHSV+ 9 6] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli,
F . Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri,
Y . Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary,
T.R. Shiple, G. Swamy, and T. Villa. VIS: a system for verifica­
tion and synthesis. In Rajeev Alur and Thomas A. Henzinger,
editors, Proceedings of the Eighth International Conference on Computer Aided Verification CAV, volume 110 2, pages 4 2 8- 4 3 2,
New Brunswick, NJ, USA, 1 9 9 6. Springer Verlag.

95

96

[Bie0la]

[Bie0lb)

[BP94]

[Bra94)

[Bro86]

[CGP99]

[Che91]

Bibliography

Tom Bienmüller. Simlib referenz, v0.7. Technical report, Carl von
Ossietzky Universitat, Oldenburg, Germany, Sep 2001.

Tom Bienmüller. Symlib referenz, v0.7. Technical report, Carl von
Ossietzky Universitat, Oldenburg, Germany, Oct 2001.

François Bodart and Yves Pigneur. Conception assistée des
systèmes d'information. Méthodes informatiques et Pratiques des
systèmes. Masson, Paris, 2 edition, 1994.

R.K. Brayton. HSIS: A BDD based system for formal verification.
In Proc. of Design Automation Conference, 1994.

Brooks, Frederick P., Jr. No Silver Bullet: Essence and Accidents
of Software Engineering. Number ISBN No. 0444--7077-3. Elsevia
Science Publishers B.V., North-holland, 1986.

Clarke, Jr., Edmund M., Orna Grumberg, and Doron A. Peled.
Model Checking. The MIT Press, Massachusetts Institute of Tech­
nology, Cambridge, Ma 02142, 1999.

Szu-Tsung Cheng. Compiling verilog into automata. Master's the­
sis, Computer Science Division, Departement of Electrical Enge­
neering and Computer Sciences, University of California, Berkeley,
CA 91720, 1991.

[CM88) r K.M. Chandy and J. Misra. Parallel program design: A foundation.
Addison- Wesley, 1988.

[DGV99) M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata
generation for linear time temporal logic. In N. Halbwachs and
D. Peled, editoi:s, Eleventh Conference on Computer Aided Veri­
fication {CAV'99}, number 1633 in LNCS, pages 249-260, Berlin,
1999. Springer-Verlag.

[DH98) Werner Damm and David Harel. LSCs: Breathing life into Message
Sequence Diagrams, 1998.

[Eme90] E. Allen Emerson. Temporal and Modal Logic, volume B, chap­
ter 16, pages 997-1072. MIT Press and Elsevier Science Publishers,
Cambridge, Massachusetts, 1990. ISBN 0-262-72015-9.

[EOK94] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look
at LTL model checking. In David L. Dill, editor, Proceedings of
the sixth International Conference on Computer-Aided Verifica­
tion CAV, volume 818, pages 415-427, Standford, California, USA,
1994. Springer-Verlag.

[Fey96] Konrad Feyerabend. Real time Symbolic Timing Diagrams. Tech­
nical report, Carl von Ossietzky Universita.t Oldenburg, 1996.

[FJ96] Konrad Feyerabend and Bernhard Josko. A visual formalism for
real-time requirement specifications. Technical report, Carl von
Ossietzky Universitat Oldenburg, 1996.

Bibliograpby 97

[Gil97] Tom Gilb. Towards the engineering of requirements. Requirements
Engineering, (2):165-169, 1997.

[GO76] Gries and Owicki. An axiomatic proof technique for parallel pro­
grams. Acta Informatica, pages 319-340, 1976.

[GPVW 95} Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Sim­
ple on-the-fly automatic verification of linear temporal logic. In
Protocol Specification Testing and Verification, pages 3-18, War­
saw, Poland, 1995. Chapman & Hall.

[HN96] David Harel and Amnon Naamad. The STATEMATE Semantics of
Statecharts. ACM Transactions of Software Engineering Methods,
5(4):1-36, Oct 1996.

[Hoa69] Hoare. An axiomatic basis for computer programming. A CM,
12(10):576-580, 583, 1969.

[Hol97] C. Michael Holloway. W hy engineers should consider formai meth­
ods. In 16th AIAA/IEEE Digital Avionics Systems Conference,
volume 1, October 1997.

[HP98] David Harel and M. Politi. Modeling Reactive Systems With Stat­
echarts: The Statemate Approach, 1998.

[HU77] J. E. Hopcroft and J. D. Ullman. Introduction to Automata The­
ory, Languages, and Computation. Addison-Wesley, Reading, MA,
USA, 1977.

[Hyd95] Daniel C. Hyde. CSCI 320 Computer Architecture Handbook on
Verilog HDL. Bucknell University Lewisburg, PA 17837, 1995.

[I-L00a] I-Logix, Inc. Certifier user guide: Pattern library. part from the
STATEMATE Magnum help, I-Logix Inc., 3 Riverside Drive, An­
dover, MA 01810, 2000.

[I-L00b] I-Logix, Inc. Statemate MAGNUM brochure. I-Logix Inc., 3 River­
side Drive, Andover, MA 01810, 2000.

[IT96] ITU-T. Itu-t recommandation Z.120 : Message Sequence Chait
(MSC), 1996.

[JRB99} Ivar Jacobson, James Rumbaugh, and Grady Booch. The Unified
Modeling Language reference manual. Object Technology Series.
Addison-Wesley, 1999.

[Kuk96] Yuji Kukimoto. BLIF-MV. The VIS Group, University of Califor­
nia, Berkeley, 1996.

[KV98] Orna Kupferman and Moshe Y. Vardi. Relating linear and branch­
ing model checking. Technical Report TR98-301, 1998. To Appear
In Proc. IFIP Working Conference on Prograinming Concepts and
Methods (PROCOMET'98), Shelter Island, NY, USA, June 1998.
Chapman & Hall, 1998.

98

[KW0l]

[Mur90]

[Pnu77]

[RS99]

[SB00]

[SC85]

[Tho90]

[TM91]

[Var98)

[Var0l)

[Wol98)

[WV94)

Bibliog.raphy

Jochen Klose and Hartmut Wittke. An automata based interpreta­
tion oflive sequence charts. TA CAS, 2001. University of Oldenburg,
OFFIS.

Dick Murray. Tube train leaves ... without its driver. London
Evening Standard, Apr, 12 1990.

Amir Pnueli. The temporal logic of programs. In Proc. 18th Ann.
IEEE Symp. on Foundations of Computer Science, pages 46-57,
1977.

K. Ravi and F. Somenzi. Efficient fixpoint computation for invari­
ant checking. In iccd, pages 467-474, Austin, TX, oct 1999.

Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from
LTL formulae. In Springer Verlag, editor, Twelfth Conference on
Computer Aided Verification, number LNCS 1633, pages 247-263,
2000.

A.P. Sistla and E.M. Clarke. The complexity of propositional linear
temporal logic. Journal ACM, (32):733-749, 1985.

Wolfgang Thomas. Automata on infinite objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol­
ume B, pages 133-191, Amsterdam, 1990. MIT Press and Elsevier
Science Publishers.

D.E. Thomas and P.R. Moorby. The Verilog Hardware Description
Language. Kluwer Academic Publishers, Nowell, Massachusetts,
1991.

Moshe Y. Vardi. Sometimes and not never re-revisited: On branch­
ing versus linear time. In International Conference on Concurrency
Theory, pages 1-17, 1998.

Moshe Y. Vardi. Branching vs. linear time: Final showdown, 2001.

Pierre Wolper. The algorithmic verification of reactive systems,
1998. Université de Liège, Francqui Chair Lectures Given at the
FUNDP.

Pierre Wolper and Moshe Y. Vardi. Reasoning about infinite com­
putations paths. Information and Computation, 115(1):1-37, 15
1994.

Index

w-automata, 33
STATEMATE

model certifier, 55
statechart, 55

STATEMATE, 54

abstraction, 42
activation, 11

initial, 82
invariant, 82
iterative, 82

Alur, 16
automaton

w-automaton, 14
Büchi acceptance, 16
Büchi automaton, 15
finite acceptance, 62
finite words automaton, 14
generalized Büchi automata, 38
NFA automaton, 64
non-failure acceptance, 63
stable condition, 29
timed Büchi automaton, 18, 19,

29
timed automaton, 16

dock algorithm, 68
concurrency, 32
constraint

completed constrained automa­
ton, 63

completely constrainable automa-
ton, 69

constrained automaton, 62
constrained label, 68
constrained state, 62
globally constrained state, 68
transitively constrained label, 65

CTL, 35

Damm, 8

99

Dill, 16, 47

Emerson, 32

FairCTL, 37
fairness, 77
finitely accepting state, 88
forma! methods, 3
forma! verification, 31

Gries, 32

Harel, 8

HDL, 49
Hoare, 31

invariant, 36

Klose, 20

language containment, 33
LSC,8

time cover, 72
LTL, 33

mode! checking, 38
tableau rules, 38

mode! checking, 32
assume-guarantee, 41
CTL, 37, 40
implicit, 44
invariant, 46
LTL, 37, 45
on-the-fly, 40, 46
safety property, 46
tools, 47

MSC, 8

nondeterminism, 15, 76

OBDD, 43
Owicki, 32

100

Pnueli, 2, 32

run, 15

safety-critical systems, 1
SMI, 75, 79

activation mode, 84
core tba, 84
existential verification, 89
fairness, 88
fairness observer, 83
generation mode, 82
intial mode, 86
invariant mode, 86
iterative mode, 88
logarithmic, 82
non failure acceptance, 88
one-hot, 82

Tarjan, 39
temporal logic, 33
Temporal Logic , 32

unwinding, 20

Verilog, 50
assignments, 50
module, 50
nondeterminism, 51
scheduler, 51

VIS, 48
BLIF-MV, 52
HDL, 49

VL2MV, 50

Wittke, 20

Index

Appendix A

LSC unwinding

This appendix illustrates the complete translation chain we defined in this
master thesis. We refer here to a train crossing control system. This system is
composed of lights, barriers, and sensors to detect the arrival and the departure
of a train.

The specification given by the LSC of figure A.1 describes the first part
of a communication, which should take place when a level crossing is secured,
so that an approaching train can safely pass it. The LSC is activated when the
train announces its arrival, i.e. by sending the message activate, which is the
activation condition.

The crossing controller (instance XingCtrl) reacts by sending an acknowl­
edgement (message ack) to indicate that it has received the request and simul­
taneously it initiates the securing procedure by first ordering the sub-controller
for the traffic lights (instance Lights) to turn on the lights (message turn on).

The lights controller does just that and first switches on the yellow light
(message switch2yellow), which has to be on for some seconds, before the
light changes to red (message switch2red), indicating that the car traffic must
stop. We model this through the sending of these messages to the environment
(instance XingEnv). If all this has happened, the lights controller informs the
crossing controller that the lights are now on (i.e. red, with the message lights
on). This communication sequence can of course only happen this way, if the
lights are not broken or malfunctioning. This is ensured by the local invari­
ant no__red_err. We didn't introduce local invariants in the LSC formalism
described in section 1.2.2, since it can also be seen as a triggering message sent
by the environment (or any other component), stating the assertion is met.

After completing the behavior shown in this LSC the crossing controller
starts a similar interaction with the controller for the barrier in order to lower
the barrier, which completes the securing procedure.

The property expressed by the LSC of figure A.l hence states that every
time a train arrives the lights are turned on, since the LSC mode is INVARIANT.

We declared in 4.3.2 most interesting properties could be timed "enough"
to allow an efficient verification of the property they express. This "enough"
means that all hot locations have to be time covered. We hence refine this
specification, stating the light should stay yellow for 2 or 3 steps, and the whole

a

b

Name: securing_lights
Activation: activate
Mode: Invariant

�
I

ack

XingCtrl Llghts

turn_on

--�1
(no_red_err)

1

Llghts_on

Appendix A LSC unwinding

1 Xla
�

Ea, 1

1
switch2yellow 1

switch2red

1

1

Figure A.l: A LSC property of the crossing controller

C

securing process should take at most 10 steps to be completed. The resulting
LSC is shown in figure A.2.

Name: securing_lights
Activation: activate
Mode: Invariant

�
I

ack

,?JngCtrl

11 .1ôr

........

tum_on

Lights 1 Xia
�
Ea, 1

,----� 1 switch2yellow
(no_red_err)i 12,31

1
switch2red

1
1
1
1

1
Lights_on 1

1
1

1 1

••

Figure A.2: Adding timing annotations to an LSC

This scenario is unwound into the corresponding TBA (figure A.3) by a
strict application of the unwinding procedure of [KW0l] which has been de­
scribed in section 1.4.

The initial state of the unwound TBA is XL The only acceptant one is
the double cirded X5. The three remaining X2, X3 and X4states are neither
initial, nor accepting.

As explained in section 1.2.2 the cold locations, depicted in dotted por­
tions of the instances lines, represent a state of the instance were the system is
allowed to stay forever. We hence see on picture A.3 the only accepting states
corresponds to the eut which contains all maximal locations. Since no other eut
is composed only with cold and maximal locations.

Recalling the notions of dock constraining a state and a transition we
can say the dock z0 constrains globally all unfair states, or, said otherwise, this
TBA is completely constrainable.

The application of the translation procedure described in 5.5 to the spec­
ification represented by this TBA generates the SMI code given in figure A.4.
One can easily remark the way the invariant activation mode is handled.

d Appendix A LSC unwinding

Figure A.3: The unwound TBA

MODULE lsc_securing_lights

CODE
WHILE true DO

DCASE
[] not (tba_started) :

©[fairness_observer$$, true]
NDCASE

[] activate
SKIP

[] activate
©[tba_started$$, true]
©[Xi$$, true]
©[z0$$, 0 J
©[z1$$, O J

NDESAC
DESAC
DCASE

[] tba_started$$
DCASE

[] zO < 11
©[z0$$, zO + 1]

DESAC
DCASE

[] z1 < 4 :
© [z1$$, z1 + 1]

DESAC
©[failure$$, true]
NDCASE

[] (X3$$) and (not switch2red and no_red_err)
and (z0$$ <= 10)

©[failure$$, false]
©[X3$$, false]
©[X3$$, true]

[] (X3$$) and (not no_red_err) and (z0$$ <= 10)
©[failure$$, false]
©[X3$$, false]
©[X5$$, true]

[] (X3$$) and (switch2red and no_red_err) and
(z0$$ <= 10) and (z1$$ >= 2) and (z1$$ <= 3)

©[failure$$, false]
© [X3$$, false]
©[X4$$, true]

[] (X5$$) and (TRUE) and (z0$$ <= 10)
©[failure$$, false]
© [X5$$, false]
©[X5$$, true]

[] (X4$$) and (lights_on and no_red_err)
and (z0$$ >= 10) and (z0$$ <= 10)

©[failure$$, false]
©[X4$$, false]
©[X5$$, true]

[] (X4$$) and (not no_red_err) and (z0$$ <= 10)
©[failure$$, false]
©[X4$$, false]
©[X5$$, true]

Figure A.4: SMI property translation(l)

e

f

0D

END

Appendix A LSC unwinding

[] (X4$$) and (not lights_on and no.xed_err)
and (z0$$ <= 10)

©[failure$$, false]

©[X4$$, false]
©[X4$$, true]

[] (Xi$$) and (not no_red_err) and (z0$$ <= 10)
©[failure$$, false]
©[Xi$$, false]
©[X5$$, true]

[] (Xi$$) and (not ack and not turn_on and
no.xed_err) and (z0$$ <= 10)

©[failure$$, false]
©[Xi$$, false]
©[Xi$$, true]

[] (Xi$$) and (ack and turn_on and no_red_err)
and (z0$$ <= 10)

©[failure$$, false]
©[Xi$$, false]
©[X2$$, true]
©[z0$$, 0]

[] (X2$$) and (switch2yellow and no_red_err)
and (z0$$ <= 10)

©[failure$$, false]

©[X2$$, false]
©[X3$$, true]

©[z1$$, 0]
[] (X2$$) and (not no_red_err) and (z0$$ <= 10)

©[failure$$, false]

© [X2$$, false]
©[X5$$, true]

[] (X2$$) and (not switch2yellow and no_red_err)
and (z0$$ <= 10)

©[failure$$, false]

©[X2$$, false]
©[X2$$, true]

NDESAC
©[fairness_observer$$, false]
DCASE

[] X5 :

©[fairness_observer$$, true]
DESAC
DCASE

[] failure$$ = true
©[Xi$$, false]
©[X2$$, false]

©[X3$$, false]
©[X4$$, false]
©[X5$$, false]

©[non...failure acceptance$$, false]
DESAC

DESAC

Figure A.5: SlVII property translation(2)

Appendix B

Statemate model certifier

patterns library

The STATEMATE model certifier helps the user to construct complex spec­
ifications simply by instancing or combining patterns. The present description
is based on [I-L00a].

A pattern consists of a main part, called the kernel pattern, which defines
the main property to be checked. For example, (System...mode = RUNNING)
implies (out1 = 1) after two steps. This pattern is of the form Condition

implies Condition after Step-Count.

We use the letters P, Q, R as place holders for conditions and X, Y, N
for counters. Hence the property above is based on the kernel pattern called
P _implies_Q.J(_steps_later. Using this pattern the placeholders P and Q are
respectively instantiated with System...mode = RUNNING and out1 = 1 and X is
instantiated with 2.

Besicles the kernel part a pattern is further determined by its mode and
its start-up phase.

The start-up phase can be defined either by giving a fixed number of steps
or a predicate (e.g. raising a signal). Often the start-up phase is given by one
single step where all initializations of the system are clone. In STATEMATE this
may correspond to the execution of the initial default transition.

The mode specifies when the kernel pattern should be valid. We distin­
guish four modes: initial, first, invariant, and iterative. Three of them were
already defined in section 1.5, all are illustrated in figure B.1.

• Initial patterns define properties which should be valid for the initial part
of a computation, i.e. when reaching a stable state after the start-up
phase.

• The First pattern is an implication where the second part should be valid
when the first part is true for the first time after the start-up phase.

• Invariant patterns should be valid again and again. Whenever the activa­
tion condition of a pattern is satisfied the specification of a pattern should
be valid from that point onwards.

g

h Appendix B STATEMATE mode] certifier patterns library

Initial

Activation condition

lterative

First

Activation condition Activation region

Figure B.1: The STATEMATE activation modes

• Iterative mode is similar to the invariant pattern in the sense that the
pattern should be valid again and again. The difference with regards to
the previous one is that this pattern will only be activated if the previous
active region has been completed.

All the patterns

All the patterns available in the STATEMATE model certifier library are
presented in table B.1, based on their kernel pattern and activation mode. A X
means this patterns exists in this activation mode, a 0 states this combination
does not exists, a 1 means this combination results in the same pattern as the
one in initial mode and a 2 is the same as in invariant mode.

One should add the suffix _afterN_steps or _after ..reaching..R to these
kernel patterns to express the start-up-phase, hence obtaining the complete
pattern. We notice that a final ..B in the kernel pattern is a (finite) bound on
the occurrence of the finally operator.

We can for instance build the complete pattern ini t...P _implies_f inally _Q..B_after ..reaching..R
using an initial activation mode and a start-up phase triggered by the rise of a
signal. The automaton corresponding to this property can be found in figure
B.2.

All the patterns cited above are expressed in both TBA and timed tem­
poral logics formalisms in [I-L00a].

initial first invariant iterative

X 1 X 2
P JmpliesJinally _QJ3 X X X 2
Finally _p J3 X 1 X 2
P Jmpliedinally _globally _QJ3 X X X 2
Finally _globally _p J3 X 1 1 2
P Jmplies_globally _Q X X X 2
P Jmplies_Q...X..stepsJater X X 0 X

P Jmplies_Q_during..next...X..steps X X 0 X

P Jmplies_Q_atleast...X..steps_after _p X X 0 X

P ..stable...X..stepsJmplies_afterwards_Q X X 0 X

P ..stable...X..stepsJmpliesJinally _QJ3 X X 0 X

Q_while_F X 1 X 2
Q_while_F J3 X 1 X 2
Q_only after _p X 1 0 2
Q..not before_F X 1 0 2

Table B.l: patterns of the STATEMATE model certifier library

nol P or Q

Figure B.2: The automaton of ini t_F _implies..f inally _Q....B_after ...reaching...R

