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Abstract 

The formal verification process of a design with respect to temporal specifi­
cations is essential while designing (reactive) systems. 

The process we present here relies on timed Live Sequence Charts (LSCs) to 
describe properties of the system under development. The LSCs are unwound 
into timed automata and automatically verified with a fair CTL model checker. 
We describe all the transitions that take part in this completely automatic 
process. 

To obtain a more efficient verification we introduce a new class of automata, 
which is proven to be an interesting subset of the timed Büchi automata, and 
show, theoretically and algorithmically, how the efficient verification of these 
properties can be conducted using the VIS model checker. 

Keywords formal verification, model checking, reactive system, temporal re­
quirement, VIS, invariant check, timed automaton, non-failure acceptance. 



Abstract 

Il est essentiel, lors de la mise en place de systèmes réactifs, de pouvoir 
vérifier des propriétés temporelles dès les premières phases du développement. 

Le processus de vérification automatisé que nous décrivons ici se base sur 
des Live Sequence Charts (LSCs) pour décrire les propriétes attendues. Ces 
LSCs sont applatis en automates temporisés, et la propriéte est vérifiée au­
tomatiquement par un vérificateur de modèles CTL équitable. Nous décrivons 
les traductions intermédiaires qui permettent cette vérification automatique. 

Pour obtenir un processus plus efficace nous présentons une nouvelle classe 
d'automates, définie comme un sous-ensemble intéressant des automates tem­
porisés de Büchi. Nous montrons comment une vérification efficace peut être 
conduite sur ces propriétés, en théorie et par une procédure concrète. 

Mots-clés vérification formelle, vérification de modèles, système reactif, com­
portement temporel, VIS, vérification d'invariant, automate temporisé, accep­
tation sans-échec. 



Acknowledgements 

I would like to thank Prof. Pierre-Yves Schobbens, Mr. Patrick Heymans 
and Mr. Yves Bontemps for giving me the opportunity to discover the world 
of research, guided with their great insight. They were available to answer my 
questions and their (many) remarks greatly helped me in my work. 

Prof. Bernhard Josko welcomed me in his Embedded Systems departement, 
at Oldenburg. There, I collaborated with Hartmut Wittke, Jocken Klose and 
Tom Bienmüller on the subject presented here. I would like to especially thank 
them all for their help, in Oldenburg or during the writing of this thesis. They 
found place for me in their overfull agendas, and made a place for me at their 
table. Thanks to Ingo, Alexander, Thomas and Ulf for having made my stay 
and work easier. 

My friends have made my time in Oldenburg fun, thanks Christian, Céline, 
Nadine, Mad, Victor, Marina, Tomas, Karer, Celia, Rebecca, Shantala, Udo, 
Ditza, Frank, Fathi and the many others. Annika gave me her Germany, Louis 
his energy and Imke her thousands different smiles. 

I owe much of who I am to my parents. They have started me on this path, 
and have always been with me along the way. For all the support they gave 
me, I would like to thank wy whole family: Valérie, Alex, maman and papa. 
Thanks also to Opa for the funny time we spent together in Germany, and to 
nonkel Luc, for his valuable pieces of advice about my bad english. 

Finally, I would like to thank my girlfriend, Barbara. She forgave me the 
time we couldn't spend together and encouraged me every time I needed it, even 
without saying a word. 



Contents 

1 Specification basics 
1.1 Introduction to specification . 
1.2 Live Sequence Charts (LSCs) 

1.2.1 The birth of LSCs . .  
1.2.2 Formalism description 
1.2.3 Constructs of the language 
1.2.4 LSC interpretation . . . . . 

1.3 Automata theory on infinite words 
1.3.1 Finite automata on infinite words. 
1.3.2 Timed finite automata on infinite words 
1.3.3 Timed Büchi automaton . 

1. 4 Unwinding LSCs into TBAs . . 
1. 4.1 Intuitive procedure . . .  
1.4.2 Pitfalls to the intuition 

1.5 Activation modes . . . 
1. 5. 1 Initial mode . .  
1.5.2 Invariant mode 
1. 5.3 Iterative mode 

1.6 Particular TBAs . . . 
1. 6.1 Activation mode 
1.6.2 Acyclic Automata 
1. 6.3 Remark on docks . 

1.7 To conclude . 

2 Model Checking 
2.1 Introduction to formal verification 

2.1.1 Like a candle in the darlc . 
2.1.2 The candle becomes lighthouse 
2.1.3 Automatic formal verification . 

2.2 Temporal logics . . . . . . . . . . . . . 
2.2. 1 Linear Temporal Logic (LTL) . 
2.2.2 Computation Tree Logic (CTL) . 
2.2.3 FairCTL . . . . . . . . . . . . . . 

2.3 Model checking of temporal logic formulas . 
2. 3. 1 The choice between linear or branching paradigm . 
2.3.2 LTL model checking . . 
2.3.3 CTL model checking . . 
2.3. 4 Language containment . 

iii 

7 
7 
8 
8 
8 
8 

12  
1 4  
1 4  
1 6  
1 8  
20 
20 
2 1  
2 6  
2 6  
2 6  
27 
29 
29 
29 
30 
30 

31 
3 1  
3 1  
3 2  
3 2  
3 3  
3 3  
3 5  
37 
37 
37 
3 8  
40 
4 1  



2. 4 1faturation of mode! checking . 
2. 4. 1 Composition . . . . .  . 
2.4. 2 Abstraction . . . . . . . 
2. 4. 3 Symbolic mode! checking 
2. 4. 4 Efficient LTL mode! checking 

2. 5 Safety properties and invariance checking 
2. 5. 1 Underlying intuition 
2. 5. 2 Checking invariants . . . . . . .  . 3 Practical model checking 

3. 1 Madel checking tools survey . 
3. 2 The VIS mode! checker . . . 

3. 2. 1 VIS overview . ... 
3. 2. 2 Designs description . 
3. 2. 3 BLIF-MV . . . . .  . 
3. 2. 4 Language emptiness 
3. 2.5 Safety formulas .. . 

3. 3 The STATEMATE environment 
3. 3. 1 Features quick tour . 
3. 3. 2  Semantics remarks .. 

3. 4 Approximations . . . . . . . . 
3. 4.1 Specification restrictions . 
3. 4. 2 Environment approximations 4 Finite acceptance on infinite words 

4. 1 Acceptance criteria . . . . . . . 
4. 1. 1 Many criteria . . . . .  . 
4. 1. 2 Non-failure acceptance . 
4. 1. 3 Invariant check . . . .  . 

4. 2 Expressiveness theorem . . .  . 
4. 2. 1 Transitive dock constraints 
4. 2. 2 Clock algorithm . . . . . . 
4. 2. 3 New expressiveness theorem . 
4. 2. 4 Efficiency . . . . . . .  . 

4. 3 NFA on the specification level . . .  . 
4. 3. 1 NFA on TBA level . . . . .  . 
4. 3. 2 NFA on Live Sequence Charts level . 
4. 3. 3 NFA on Temporal Logic level 

4. 4 Practicability considerations . . . . . . . . . 5 Real usage 
5. 1 Verification environment 
5. 2 TBA optimizations . . .  

5. 2. 1 (non)Determinism 
5. 2. 2 Static simplifications . 
5. 2. 3 Fairness . . . .  
5.2. 4 Goal definition 

5. 3 SMI translation . . . 
5. 4 The SMI formalism . 

5. 4. 1 Syntax . . . .  

iv 

4 1  
4 1  
4 2  
4 3  
4 5  
4 5  
4 5  
4 6  

47 
47 

48 

49 

49 

5 2  
5 3  
5 4  
5 4  
5 4  

56 

5 7  
5 7  
5 8  61 

61 

61 
62 
6 4  

65 

65 

67 
70 
7 1  
7 1  
7 1  
7 1 
7 3 

74 

75 
7 5  
76 
76 
77 
77 
78 
78 
79 
79 



5.4.2 Semantics . . . . .. .. .  80 

5.4.3 Propositional architecture 81 

5.4.4 A vailable optimizations 81 

5.5 Translation of TBAs into SMI . 82 

5.5.1 Core automaton 82 

5.5.2 Activation part . . . . . 84 

5.5.3 Correctness . . . . . . .  89 

5.6 Final steps before mode! checking . 89 

5.7 Conclusion . . . . . . . . . . . . .  90 

6 Results 91 
6.1 Specification support . 91 

6.1.1 LSC . . . . . .  91 

6.1.2 LTL . . . . . .  91 

6.2 More efficient verification 92 

6.3 Iterative activation mode 92 

6.4 Witness verification 92 

7 Conclusion 93 Appendices a A LSC unwinding a 
B Statemate model certifier patterns library g 

V 



List of Figures 

1 Transformational and reactive systems 

1.1 LSC example . . . . . . . . . . . . 
1.2 Finite automaton on finite words 
1.3 Finite automaton on infinite words 
1. 4 timed automaton example . . . . 
1.5 Cuts of the unwinding procedure 
1.6 Unwinding structure . . . . . . .  . 
1. 7 TBA resulting from the unwinding procedure 
1. 8 Three activation modes . .  
1.9 Automaton in initial mode . . . . .  . 
1.10 Artifact on invariant mode . . . . . . 
1.1 1  Determining finitely accepting states 
1.12 Iterative mode loclc handling 

2.1 A binary decision tree 
2.2 An OBDD . .  

3.1 VIS overview 
3.2 Verilog code: a nondeterministic output 
3.3 Verilog code: symbolic type declaration 
3.4 The VIS model checker kernel . 

4.1 A constrained automaton . . . 
4.2 A completed automaton . . . . 
4.3 Transitive and global dock constraints 
4.4 LSC suitable for invariance check . . . 
4. 5 More general LSC suitable for invariance check 

5.1 Verification environment at CvOU 
5.2 The structure of a SMI program 
5.3 A simple TBA. . . . . . . 
5.4 SMI code: the core TBA . . .  
5. 5 Activation in initial mode . . 
5.6 Activation in invariant mode 
5. 7 Activation in iterative mode . 
5.8 Two observers, for two acceptance criteria 

A.1 A LSC property of the crossing controller 
A.2 Adding timing annotations to an LSC 

vii 

2 

1 3  
1 4  
1 5  
17 
22 

2 3  
2 5  
2 6  
27 
27 
2 8  
29 

43 
4 4  

49 
51 
51 
53 

63 
6 4  
66 
72 
73 

7 6  
80 

8 4  
8 5  
87 
87 
88 

89 

b 
C 



A.3 The unwound TBA . . . . . d 
A. 4 SMI property translation(l) e 
A. 5 SMI property translation(2 ) f 

B. l The STATEMATE activation modes h 
B.2 The automaton of a STATEMATE pattern 

viii 



Introduction 

The news group comp. risk is full of funny stories, such as the one reported 
in [Mur90), a British news paper. A runaway train went clown the London's Tube 
track, leaving its driver standing behind, on the platform. The man actually 
left the cab of his fully-automated train to check a door which had failed to 
close properly. When the door did shut an electrical circuit was completed and 
the train, with 20 passengers on board, moved off before the driver had time 
to rush back to the controls. None where killed nor injured, but the driver has 
been sacked. 

According to a U.S. Army report, a software problem contributed to dig­
ging holes at Fort Drum, in June 200 2. Two soldiers were firing artillery shells, 
relying on the output of the Advanced Field Artillery Tactical Data System. 
But if one forget to enter the target's altitude, the ·system assumes a default 
of 0, when (part of) Fort Drum is at 679 feet above sea level. The report goes 
on to warn that soldiers should not depend exclusively on this one system, and 
should use other computers or manual calculations. 

Software failures, and so are these unexpected behaviors, are a nightmare 
of many major firms. Let us just remember the paranoia we faced with the so 
called "Year 2000-Related" computer failures. 

Unfortunately many humàn lives rely on software or hardware systems, 
which control airplanes, automobiles, nuclear power plants and medical labo­
ratories, among others. These systems are called safety-critical systems. This 
designation regroups computer, electronic or electromechanical systems whose 
failure may cause injury or death to human beings. 

'Iransformational and reactive systems 

Most safety-critical systems are highly reactive, meaning they interact 
with their environment. The systems which are not reactive are transforma­
tional, we illustrate both systems behaviors in figure 1. 

Transformational systems are those which have all inputs ready when 
invoked and the outputs are produced after a certain computation period. Most 
industrial processes are transformational systems, but a simple procedure that 
computes the square root of a number is a transformational process as well. 

The reason a reactive system exists is typically to collaborate or interact 
with some entities in its environment. Sending, receiving, recognizing and sub­
jecting sequences of symbols are parts of a reactive behavior. A well understood 

1 



2 Introduction 

reactive system is a traffic-light controller. It is virtually impossible to write a 
transformational program that implements such a controller, since the inputs 
occur when the system is already running. In fact, most controllers are by 
definition reactive, with application domains ranging from process control, mili­
tary, aerospace, and automotive applications to medical electronics, and similar 
embedded systems. 

Amir Pnueli [Pnu77] calls "reactive systems" any nonterminating or con­
tinuously operating concurrent programs, such as operating systems or network 
protocols. The use of such systems is growing year after year. Graphical user 
interface based software (GUI) and embedded systems are typically reactive. 
The latter is often implemented as hardware. 

A transformational 
System 

Inputs 
Ready 

Outputs 
Ready time 

A reactive 
System 

Figure 1: Transformational and reactive systems 

Formai methods 

time 

The design error problem of life-critical (reactive) systems is a great threat 
to the human being. There are 3 basic strategies [Hol97] for dealing with design 
errors: 

1. Testing (lots of!). 
The problem with life testing is that in order to measure ultra-reliability 
one must test for exorbitant amounts of time. 

2. Design diversity (fault-tolerant software). 
The basic idea is to use separate design/implementation teams to produce 
multiple versions from the same specification. Then, non-exact threshold 
voters are used to mask the effect of a design error in one of the versions. 
The underlying hope is that the design flaws will manifest errors indepen­
dently, or nearly so. In fact, design diversity can create an "illusion" of 
ultra-reliability, without actually providing it. 

3. Fault avoidance (formai specification and verification, reusable modules) 
Formal methods may be used to specify and model the behavior of a system 
and to mathematically verify that the system design and implementation 
satisfy system functional and safety properties. 
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The often targeted 1- 10-9 reliability is beyond the range of quantification 
(for both testing and design diversity) as stated in (Hol9 7]. We have hence no 
other choice than to develop safety-critical systems in the most rigorous manner 
available to us, which is the use of formal methods. We use the term formal methods to refer to the variety of mathematical modeling techniques that are 
applicable to computer system (software and hardware) design. 

The formai specification challenge 

Designers of today's reactive systems face design challenges of enormous 
complexity due to the increase of design content, explosion of features, ambigu­
ous design parameters and evolving customer requirements. 

A high-level (formal) specification written in a language that has a well 
defined semantics is mandatory for such designs. Nevertheless many companies 
still use hand-written (informa!) specifications. Benefits of a formal specification 
compared with an informa! one are very similar to the benefits of a true, working, 
program compared with a document describing what the program should do. 
The first is a usable object, while the later is nothing but a nice piece of paper 
that needs to be used by a human. Non formal methods of communication 
often leads to costly design and debug iterations (BF 9 3]. Numerous studies 
have shown that correcting an error during integration costs over 10 to 1000 
times more than correcting it at specification time. 

The challenge of generating complete and unambiguous specifications is, of 
course, only half the battle. The other big unknown is whether the specifications 
accurately reflect user requirements (Gil 9 7]. 

The formulation of requirements into a formal specification is called syn­thesis. Traditionally, methodologies were used to produce the model, based 
on experience in industry (BP 9 4]. More recently, development environments 
provide automatic specifications synthesis, based on scenarios [I-L00b]. 

The formai verification challenge 

Once we have got a formal representation of both the design under de­
velopment and the requirements (specifications) we are excepting from it, it is 
time to check whether the first fulfills the later. This problem is called the verification, or validation process. 

Many techniques have been studied for the past twenty years, developing 
a wide range of approaches and subsequent tools. Notations and languages 
that were previously designed by and for mathematicians are now adapted to 
the engineer's needs. The user interfaces are a major concern of most of the 
publicly available tools, especially the commercial ones. One step after the other 
formal verification methods have been adopted within the hardware community. 
Increasing cooperation between industry and formal methods researchers give 
rise to practical and even more efficient formal verification approaches. 

Recent discoveries allow us to verify always larger designs with always 
more detailed properties. Complete formal verification of large complex systems 
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becomes practical at this time, and a great increase in confidence in the system 
can be obtained by the use of formal methods at key locations in the system. 

We do not assert formal methods are the silver bullet1 that can magically 
lay ail our problems to rest, citing Ftederick P. Brooks, Jr. [Bro 8 6]. Formal 
methods are rather a complement to good design methodology and testing. 

The techniques of automated verification developed widely for the past 
two decades, and we try make a contribution. Our work investigates how for­
mal proofs can be clone on designs under development, and we try to make a 
contribution by improving some steps of this complex process, focusing on the 
translation of the specification set to allow more efficient verification methods 
to be used. 

Master thesis structure 

In chapter 1 we present the formalism we use to describe the properties 
we want to verify, namely Live Sequence Charts (LSC) [DH9 8]. LSCs are used 
to describe the interactions between many components of a reactive system 
within one scenario. They provide a means to distinguish between mandatory 
and possible behaviors of the components. We translate these charts into timed 
automata, to enable the automatic verification of the specification. Therefore 
we introduce a timed automata formalism and describe the translation of LSCs 
into such automata. 

Chapter 2 describes how the problem of formal verification can be reduced 
to the problem model checking [CGP99]. We therefore describe the most widely 
used logics and techniques to automatically verify properties. Other approaches 
than model checking are evoked, as the automata-theoretic approach, for in­
stance. An overview of more recent techniques, which are currently used in the 
model-checking field, is given as well. 

Chapter 3 can be seen as the application of the previous chapter. After 
a quick survey of some well-known verification tools we apply the previously 
cited formal verification techniques into a real environment. The VIS model­
checker, developed at Berkeley and Boulder, is investigated into much more 
details. Finally a complete verification tool suite, i.e. STATEMATE , from I­
Logix Inc., illustrates the whole verification process. These tools are parts of 
the verification environment of the Embedded System department of the Carl 
von Ossietzky Universitiit, Oldenburg. 

Chapter 4 includes the most original part of our work. We define here a 
class of properties which can be verified more efficiently using invariant check 
[RS99], rather than model checking techniques. Therefore, we firstly charac­
terize a class of properties represented by timed automata that can be verified 
using this invariant check. We extend algorithmically this class of properties, 
and define on the LSC level the properties one would be able to check on this im­
proved way. Most of the properties one could want to verify in real (industrial) 
usage turn out to belong to this class. 

Chapter 5 completes the translation chain our initial LSC specification 
has to undergo in order to be checked. We hence introduce a simple imperative 

1The one crafted to kill the werewolf of our nightmares. 
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formalism, SMI, which allows us to translate the automaton of chapter 1 into a 
finite state machine understandable by the VIS model checker. This translation 
allows us, it is worth to mention, to take advantage of the improved verification 
we described in the previous chapter. 

Chapter 6 presents the improvements that were brought to our verification 
environment by the prototypical implementation of the verification tool chain 
we described. 



Chapter 1 

Specification basics 

1.1 lntrod uction to specification 

We use many different formalisms as they are all adequate for an as­
pect of the reality we want to describe, and the vocabulary of the physician is 
(hopefully) not the one of the mechanician. Besicles their differences regarding 
their field of application, formalisms can also be distinguished with respect to 
their expressiveness. One will straightforwardly describe some music piece using 
scores, whereas the same music piece will be written in chords or tabulars to 
give more room for improvisation. From these different "vocabularies", let us 
call them formalisms, each fits well a different aspect of the same reality, the 
music piece. 

Sorne formalisms are intuitive, some are not, but the latter could provide 
a more accurate description. It · is obvious that the formalisms we use heavily 
depend on the habits of our environment. The example of native languages 
speaks for itself. 

We will further use some well-known formalisms in the world of require­
ments engineering that fit our needs well, trying to describe them on both 
intuitive and formal way. They were chosen because of historical reasons, or 
after an in-depth survey of the available languages. The Symbolic Timing Di­
agrams (STDs) formalism belongs to the first category. It is used to describe 
the internal behavior of a component. Live Sequence Charts (LSCs) belong to 
the second, and are used to describe the interactions between many components 
into a reactive system. LSCs are described in section 1 .2.  Although STDs are 
not reviewed in this paper, one can refer to [F J96) for a description of this for­
malism. Temporal Logics (described in section 2.2 ) can also be used to specify 
interesting properties of reactive systems. 

As all these formalisms are used for the same purpose, to specify a require­
ment, we translate them all into a single formalism, the Timed Büchi Automata. 
This formalism is expressive and formal enough to allow to reason on it. We de­
scribe this intermediate formalism in section 1.3 , and show how to translate the 
previously cited "high-level" specifications languages into one of our automata. 

7 



8 Chapter 1 Specification basics 

1 .2  Live Sequence Charts (LSCs) 

1 .2 .1  The birth of LSCs 

In the development of software as well as hardware systems, visual lan­
guages are becoming increasingly popular due to their graphical appeal. Espe­
cially the telecommunications domain has been using visual languages for many 
years. In this field the language of Message Sequence Charts (MSCs) became 
a popular means for specifying scenarios that capture information exchange in 
communication systems [IT9 6, AE0l] .  Such languages have been adopted to 
specify messages passing between components in other fields as well. One token 
of this expansion is the inclusion of an object-oriented variant of Message Se­
quence Charts, called Sequence Diagrams, in the UML standard [JRB99] used 
world-wide as reference formalism. 

MCS's language is known to suffer a lack of expressiveness [HP9 8]. Neither 
does it provide the formai rigor which we feel is needed for sequence charts to 
be useful for formal utilization. This motivated the introduction of a sequence 
chart dialect which remedies these shortcomings: Live Sequence Charts (LSCs). 
LSCs were introduced by Werner Damm and David Harel in 1 99 8, their major 
improvement with respect to MSCs and previous sequence charts is to provide 
a means to distinguish between mandatory and possible behaviors [DH9 8]. This 
is clone by providing the ability to designate most LSC's elements as belonging 
to either the hot or the cold category, characterizing respectively the mandatory 
and provisional behaviors. This hi-modal property is called the temperature of 
an object. 

The next sections present the key elements of Live Sequence Charts (LSCs) 
following the approach of [DH9 8]. We introduce some of the extensions to this 
formalism made by its authors in 2001, and some particular features which were 
first described in [KW0l]. 

1.2.2 Formalism description 

The formalism of LSCs, as appeared in [DH9 8], provides a rich set of 
features to describe scenarios, from which we will consider a few, focusing on the 
core concepts. The graphical representation of this language contributes largely 
to the easy understanding of LSCs specifications, hence we will illustrate many 
of the concepts within the LSC shown in figure 1.1 on page 1 3. 

The basic idea of LSCs, as we already told, is to allow a distinction be­
tween mandatory and possible behaviors. To do so, most objects used in the 
language must be declared to belong to one of those two exclusive modes. Graph­
ically speaking, mandatory, called hot elements, are depicted in solid lines, and 
possible ones ( cold) in dashed lines. 

1 .2 .3 Constructs of the language 

Instances 

Each instance represents one participant to the scenario the LSC describes. 
Instances are represented by vertical lines along which the time runs, from top 
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to bottom. The environment is often depicted as an instance, rather than the 
border of the LSC, like in the MSC formalism. This allows more flexibility 
regarding the environment, allowing for instance to specify assumptions on its 
behavior as for any other instance. 

We do distinguish between environment and regular ( component) instances. 
A violation of a LSC which result from a wrong behavior of the environment 
need to be treated differently than those caused by the system. In the former 
case we exit the LSC without an error and in the latter case consider it as a 
real specification violation. 

There are four instances in our example LSC on page 1 3 ,  three are com­
ponents and the latter is the environment. 

Locations 

Many locations are linked each to one event on an instance. An event 
related with a location occurs be/ore any event related with a lower location on 
same instance. This chronological order is relevant on a single instance only, 
we cannot compare occurrence time of locations on different instances on their 
relative (graphical) position. The first location of an instance is called initial 
and the last maximal. 

Messages 

Messages are sent between the instances. Their sending or receiving are 
called events. As the emission of a message must occur before its reception, we 
can deduce some ordering information between locations on different instances. 

We consider two kinds of messages: asynchronous and instantaneous ones, 
while [DH9 8] distinguished between synchronous and asynchronous communi­
cation. 

An instantaneous message means that the sending event and receiving 
event happen at the same time. A synchronous message means that the sender 
is blocked until the receiver has completed whatever request the sender has 
made. Only the sender and receiver are concerned with this blocking issue, the 
other instances may proceed along their own execution thread. Synchronous 
communication thus entails a notification of its completion. In a LSCs we re­
quire the user to make the return message explicit to highlight the fact that 
such a process consumes time, and to make the formalism more intuitive. Asyn­
chronous messages can take a certain time to get from the sender to the receiver, 
and do not impose the sender to wait for its arriva!, like posting a letter.One 
could simulate the asynchronous message mechanism using many synchronous 
messages that transit through a "channel" instance. 

Messages are represented by arrows, going from the location associated 
with their emission event, to the location where they are received. Asynchronous 
messages have an open-ended arrow, instantaneous ones a solid head. Asyn­
chronous messages are to be drawn slanted as time passes while they are on 
their way. Instantaneous messages are drawn horizontally, showing the simul­
taneity of their emission and reception. AH messages shown in figure 1.1 on 
page 1 3  are instantaneous ones. 
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Temperature 

The temperature concept applies to many abjects, indicating how to 
progress along the instances and messages. Labelling a location with the hot 
temperature (solid line draw) involves the chart must progress beyond this loca­
tion. The analogy is that one can not remain forever in a hot location without 
burning one's feet. The maximal locations must be cold since we cannot oblige 
an instance to go further after reaching its last location. 

Temperature applies to most of the concepts of LSCs including the entire 
chart, hot charts are called universal charts and cold one existential charts . We 
do not consider the existential charts for the moment as they are not handled 
by the translation algorithm we use [KWOl]. Furthermore the universal inter­
pretation seems to be the natural choice for formal specification, focusing on 
the fact that an entire system fulfills the specification. The graphical distinction 
between both is shown in the box surrounding the LSC, which is thus dashed 
for existential and solid for universal charts. 

Combining locations, messages and temperature allows us to express all 
possible communication behaviors in table 1. 1. 

\ temperature 1 hot cold 
locations instance run must move instance run may stay 

beyond location infinitely at location 
message message will be received once sent message may be lost 

Table 1. 1 : Temperatures for locations and messages 

Conditions 

Statements about the system state can be expressed using conditions. 
Conditions are boolean expressions referring to attributes or data items of the 
involved components (instances), evaluated when all instances concerned reach 
the location corresponding to the condition entry. They are graphically repre­
sented by an elongated hexagon. Instances which are involved in the condition 
have their instance axis interrupted by the condition, whereas instances axis of 
components not participating in the condition continue through the condition. 
In the example LSC components 1 and 2 are involved in condition C 2, whereas 
the environment and component 3 are not, see page 1 3. 

Conditions can be hot or cold. Hot conditions have to hold unless the 
scenario fails. Cold ones should be met for the scenario to be validated, but 
expresses, when violated, that we are not considering a scenario we wanted to 
talk about, thus exiting without errors. This semantics is not conform to the 
definition of temperature of [D H9 8], as it is used here to describe liveness rather 
than progress, but it allows interesting specification when combined with sub­
charts, like conditional behaviors or iterations. We won't detail cold locations 
nor sub-charts, as they are out of our current focus, but one can refer to [DH9 8] 
for more details. 
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Coregions and simultaneous regions 

The chronological order between events is induced by the sequence of 
locations on one instance, messages and conditions ranging over more than one 
instance, that can be viewed as synchronization points. 

There are two possibilities to change the ordering along the instance axis, 
should this total order be too restrictive: simultaneous regions and coregions. 

To have unordered locations of the same instance, one can put them into 
a coregion. Coregions are drawn by a dashed vertical line, parallel to the whole 
concerned instance portion. Within a coregion all events become unordered, as 
for the arrivais of messages m3 and m 4  on page 1 3. 

A simultaneous region states that all events contained in this region must 
happen at the same time. This feature has been added to the initial LSC 
formalism in 2001. It allows to specify the simultaneous observation of several 
events, as one can meet in the STATEMATE environment described in section 
3 .3. Such a region is graphically expressed through many events occurring 
on the same instance at the same height (time), like messages emissions and 
synchronization through a condition. Before this construct was added to the 
formalism, a LSC scenario could only describe pure interleaved behaviors, where 
one instance was allowed to progress at a time. Simultaneous regions make 
the formalism really adapted to describe parallel execution of communicating 
devices. Simultaneous regions may not appear in coregions, because otherwise 
they would imply an order (of simultaneity) to some events of the coregion. 

Actions 

Actions represent internai behavior of an instance and consequently no 
impact of an action is observable. They are represented by a rectangle, the 
border of which depends on the action temperature. Actions are treated as 
mere comments, we won't consider them in the remainder of this report. 

Activation conditions and modes 

The range of the specification is described by an activation mode. Three 
different modes, initial, invariant and iterative, allow us to tell whether the 
scenario should hold for ever, or only once. A mode is coupled with an activation 
condition, ranging over the state of the systems, i.e. the instances and the 
environment. Activation modes are explained in section 1. 5, let's just say the 
iterative mode does not belong (yet?) to the LSC formalism of [DH9 8]. 

Both activation mode (A.M.) and activation condition (A.C.) are simply 
written above the upper-left corner of the chart. As it can be seen, the LSC 
in figure 1 .1 is an INVARIANT scenario that will thus be activated every time 
ActCond is evaluated to true. 

Timer, timing annotations 

To be able to express properties about real-time systems, as vital as toast­
ers or airplanes autopilot robots, we use timing annotations and timers. Timing 
annotations depict the (finite) interval of time for a location to be traversed. 
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They are written using the mathematical notation for an interval besicles the 
concerned location. For instance, in the example LSC on page 1 3  the possible 
arrival of message m 6  should occur at least one time unit, and at last five time 
units after component2 left the condition Cl .  

Timing annotation can be added only to hot locations. Such an annotated 
location has then to be traversed within the interval. 

Timers can be viewed as timing annotations ranging over more than two 
successive locations of an instance. A timer is represented sometimes by an 
hourglass with the wanted time values, sometimes only by the time values, with 
a line going to the location corresponding to the initialization of the timer, and 
another line going to the location where it runs out. Both locations are located 
on the same instance. 

Sub-charts 

We allow a single use of sub-charts, i.e. LSCs without activation infor­
mation which are integrated into a main one, as IF-THEN-ELSE construction. 
Such a sub-chart is characterized by a single condition and two integrated sub­
charts, the first of which is activated if the condition holds, otherwise the second 
one is. This construct differs from the sub-charts of [DH9 8) inasmuch as differ­
ent conditions were used in the initial formalism, evaluated at different time, 
hence allowing both sub-charts to be traversed by the same run of the system. 
This later behavior seems far from the conduct that one could expect from a 
real alternative. We thus redefined this construct to fit our needs. 

1 .2 .4 LSC interpretation 

We explained how most of the elements of Live Sequence Charts are to 
be interpreted, at least intuitively, in the previous section. We will now sketch 
a more formai formalism, i.e. timed automata (1.3 ), to allow us to describe 
how the LSC specifications can be translated into these automata (1.4) . In the 
next chapters we describe how these timed automata can be used for forma} 
verification of the initial (LSC) specification. For a more complete syntax and 
semantics of LSCs the reader could refer to [DH9 8). 

Sorne restrictions are put in order to simplify the interpretation of LSCs. 
We do not allow any other element parallel to and independent of a sub-chart. 
To ensure this we require the sub-chart to cover all instances of the LSC. The 
second restriction involves the setting of a timer, which has to be bound (via a 
simultaneous region) to some sort of event. This is adapted to the intuition of 
a timer, which is set when some event is observed, and then counts time until a 
subsequent event occurs. 

We already made some remarks on the combinations of features: one 
cannot include a simultaneous region within a coregion, since this would imply 
an ordering ( of simultaneity) on some events of the coregion. The same way we 
don't allow many conditions to appear in the same coregion, nevertheless many 
conditions can always be merged in a single one. 
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Figure 1. 1 : LSC example 
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1 . 3  Automata theory on infinite words 

LSCs describe the communication behavior of reactive systems. Such 
systems internet with their environment during their all execution, which is often 
infinite. We want to translate every specification languages used into a single 
formalism, as stated in 1.1 ,  which should hence accept infinite words, because 
of the possible endless execution of the system. There exist several different 
automata which satisfy this requirement. For our purposes Büchi automata 
on infinite words are sufficient. We introduce them in the remainder of this 
chapter. In order to be able to treat time aspects, we extend them to timed 
Büchi automata (TBAs) and finally show how LSCs can be translated into these 
TBAs. 

1 .3 . 1  Finite automata on infinite words Formal languages are typically characterized as a set of finite words for­
mulated over a finite alphabet [HU77) as are traditional computing languages 
or human languages, for instance. Such words can be recognized by finite au­
tomata and can also be characterized by mathematical regular expressions. The 
expression a* (ajb) for instance, describes the finite set of ail words beginning 
with a finite sequence of a's, followed by a single a or a single b .  

An automaton is  simply a mathematical mode! of a device that has a 
constant amount of memory, independent of the size of its input [CGP99). An 
automaton on finite words can be represented as a graph with labelled transi­
tions, in which the set of nodes are the different possible states of the system 
and the edges are given by all evolutions possible from any state. Sorne of the 
states can be accepting, meaning the system could acceptably stay forever into 
one of those, without any further evolution. The automaton on finite words in 
figure 1.2 defines exactly the same language as the regular expression a *  (alb). 

a 

Figure 1.2 : The automaton on fini te words that accepts a* ( ajb) 

Languages of infinite words can be similarly recognized by finite automata 
on infinite words, called w-automata, and are also expressible as w-regular ex­
pressions. The expression a* (ajb)w for instance, describes the finite set of ail 
words beginning with a finite sequence of a's, followed by an infinite sequence 
of a and b. 

Many different types of finite automata on infinite words have different 
acceptance conditions, such as Büchi automata, Muller automata or Rabin au­
tomata. The reader could refer to [Tho90) or [AD9 4) for a survey. We will only 
discuss Büchi 's automata in this report as they are sufficient for our purposes. 
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N ondeterminism 

The automaton of figure 1. 2 illustrates a major concern of the automata 
formalism: when being in state s0 and next input symbol is a a, should we 
remain in state s0 or go to s1 , as both are possible according to the transition 
label. 

This possible choice is called nondeterminism and simply means that such 
nondeterministic automata can have multiple same labels on the outgoing tran­
sitions of a same state. 

Any nondeterministic automaton on finite words can be translated into a 
deterministic one that accepts the same language" [CGP 99], while this is not 
the case for Büchi automata. 

Formai deflnition 

Formally a (non-deterministic) Büchi automaton (on infinite words) A is 
a tuple 

A =  (E, S, So, --+, F), where 

• E is the finite alphabet. 

• S is the finite set of states. 

• --+Ç S x E x S is the transition relation. 

• So Ç S is the set of initial states. 

• F Ç S is the set of accepting states. 

A transition (s ,  O"i, s1
) E --+ represents the change from state s to state 

s1 on input symbol O"i . We typically write a transition in the form s � s1 . 
As we told, an automaton can be represented as a graph with labelled 

transitions, its set of nodes is S and the edges are given by --+. In the example 
shown in figure 1 . 3 we can find that E = {a, b}, S = {so, si }, S0 = {s0 } and 
F = { s1 }. Initial states are shown with an incoming array whereas accepting 
states are double circled. 

a a l b  

Figure 1. 3 :  The automaton on infinite words that accepts a* (alb)w 

Let O" = O"o 0"1 • . .  be an infinite word over the alphabet E. A run p of the 
automaton A over this word O" is defined as a sequence of states: p = s0 s1 . . .  , 

such that 

• so is an initial state: so E So . 

• the target state of each transition is the source state of the following 
transition: Vi � 0 : (si, <li , sH1 ) E --+, where many transitions going 
out from the same state can be labelled by the same character, as the 
automaton is nondeterministic. 
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The run p over a can also be written p : s0 � s1 � .. .  

A run p of A over a is accepting i f  some accepting state appears infinitely 
often in p. This criterion is called Büchi acceptance criterion. 

Formally the Büchi acceptance criterion states that those runs are ac­
cepted by a Büchi automaton A = (:E, S, S0 , �, F), which visit some state s E F infinitely often. Let inf(p) := { s E S I V i : s = s ;  E p : 3 j > i : s = 
s J E p} denote the set of states which are visited infinitely often by a run p. A 
word a = ao a1 . . . is then accepted by A iff there is a run p over a such that inf(p) n F :j:. 0. Such a run is called an accepting run. 

Let 1;w be the set of all infinite words over :E, the language L (A) accepted 
by A as expected consists of those words a E 1;w , for which there is an accepting 
run, i.e. L (A) := {a E 1:w 

1 3 p :  so � s1 � . . .  : inf(p) n F :j:. 0} .  
The language accepted by a Büchi automaton can also be  characterized 

by an w-regular expression. A language is called w-regular iff it is accepted 
by some Büchi automaton. The automaton shown in figure 1.3 accepts the 
language a* ( alb )w , where w indicates infini te repetition. 

1 .3 .2 Timed finite automata on infinite words 

Until now our automata allow us to express properties concerning the 
sequencing of events (states) of a system. (Un)fortunately many crucial systems 
depend on real-time considerations, remember the toaster, and not only on their 
qualitative sequence. Rajeev Alur and David Dill [AD9 4, Alu97] developed a 
theory on timed finite automata on continuous time model. We recall some 
of their intuition, but rather develop a discrete time framework, since such a 
context is more intuitive to the system designer and easier to check formally. 
Follow the way of [AD9 4 ]  we associate an occurrence time to each symbol of a 
word, yielding timed words. 

Intuitive timing 

In the untimed case the behavior of an automaton depends only on the 
input symbols, i.e., being in some state, the next state(s) of an automaton is 
(are) determined by the current input symbol. In order for an automaton to 
accept timed words it needs a means to count time, since the choice of the next 
state(s) should also depend on the occurrence time of input symbols. Time is 
introduced into an automaton by adding a finite set of clocks. Time passes only 
when a transition is taken1

. A dock can be reset to O along any transition and 
at any time the reading of a dock corresponds to the time elapsed since its 
last reset. With each transition we associate dock constraints, and require the 
current dock values to satisfy this constraint for the transition to be enabled. 
With each state we associate a dock constraint called its invariant or stable condition, and require the time can elapse within a state, i.e., dock values can 
increase, as long as its stable condition is satisfied. In that way we force the 
input word to conform to certain timing requirements. 

1 in this way we distinguish from the timed automata of [AD94) where transitions take no 
time and time only passes within a state 
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Figure 1. 4 shows an example of a timed Büchi automaton B which has 
an alphabet 1:: = { a, b, c}, a set of states S = { s0 , s1 , s2 } ,  a single initial state 
So = { so}, a single dock C = { x}, a single accepting state F = { s1} ,  and whose 
transition relation --+ and stable conditions are drawn. 

b {x} 

a 

C rx<=31 

Figure 1. 4 : timed automaton example 

Time interpretation 
Time is represented by a sequence of time values which has to satisfy 

two intuitive constraints: time only advances and time never stands still. More 
formally, a time sequence T = To, T1 , T2, .. . is an infini te sequence of time values 
T; E N the set of positive integers, for which the following holds: 

1. We begin the observation at first available instant: To = 0 

2. Time is strictly increasing: Vi � 0 : T; < T;+i 

3 . Time is infinite: Vt E N : 3i > 0 : Ti > t 

A timed word over an alphabet 1:: is then defined as a pair (a, T), where 
a = ao a1 . • .  is an infinitè word and T = To T1 . . .  is a time sequence. The time 
value T; denotes the occurrence time of input symbol a; . 

Before giving the formal definition of a timed automaton it is necessary 
to explain what type of dock constraints are allowed as stable conditions and 
enabling conditions, and how the value of any dock is determined. For our 
purposes it is sufficient to allow comparison of dock values to constants and 
conjunctions, even if [AD9 4] used many more constructors within their dock 
constraints. Any value of N eau be used as a time constant. The formal defini­
tion of the set <I>(C) of clock constraints I over the set C of dock variables is 
defined by the grammar: 

'Y := X ::;  C I  X � C I  Ïl /\ Ï2, 

where x is a dock in C and c is a constant in JR+ . 
In order to evaluate the docks a clock interpretation is needed. A dock 

interpretation v assigns to each dock x E C a value of the time domain. For­
mally a dock interpretation is a mapping v : C --+ N. Let I be the set of all 
dock interpretations. The truth value of a dock constraint 'Y is then given by 
substituting all docks in 'Y by their interpretation: 
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[.] : <I> (  C) X I -+ IIB 

[x � c](v) := v(x)�c 
[x � c](v) := v(x)�c 

h1 /\ 1'2] (v) := bd(v)Ah2](v) 

We say that a dock interpretation v for C satisfies a dock constraint 1 
over C iff 1' evaluates to true according to the values given by v. Regarding the 
timed automaton of figure 1. 4, we can see a dock interpretation v that assigns 
2 to x would satisfy the dock constraint x :S 3 on transition from 82 to 81 . 

We write v + t the dock interpretation which maps every dock x to the 
value v(x) + t ,  and we write v [Y := 0) the dock interpretation which assigns 0 
to each x E Y Ç X, and agrees with v over the rest of the docks in X. 

We define these timed automaton more formally in the next section. 

1 .3 .3 Timed Büchi automaton 

Our Büchi automaton use a more concise labelling notation than the one 
used for untimed automaton. Rather than having a distinct transition labelled 
with each character a of the alphabet :E = 2 AP2 , the labels consist of boolean 
formulas over the atomic propositions of AP. One can compare this comprehen­
sive notation to the one used for the dock predicates cI>(C). We show easily that 
this simplified representation is equivalent in expressiveness to the extended one 
simply by giving a mapping from any boolean formula that appears in our TBA 
to a single character, and define the set of these character as the alphabet of 
our automaton. Formally we denote by IIB(AP) the set of boolean formulas over 
the atomic propositions AP. 

Formally a (nondeterministic) timed Büchi automaton A is then a tuple 

A := (AP, S, 80, C, -+, F, SC), where 

• AP is a finite set of atomic propositions 

• S is a finite set of states. 

• 80 E S is the single initial state. 

• C is a finite set of docks. 

• F Ç S is a finite set of accepting states. 

• SC : S ➔ IIB(AP) x <I> (C) is a function that maps each state to its stable 
condition, ranging over the predicates on atomic propositions and dock 
constraints. 
A stable condition SC(8) = (bs, 1's) states that the automate is allowed to 
remain in state 8 as long as both the predicate b8 and the dock constraint 
1's are satisfied. 

2which notation is also used by [AD94] 
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• �Ç S x IIB(AP) x 2° x <I>(C) x S is the transition relation with labels 
given by the more concise formulas (rather than individual characters from 
:E = 2AP). 
A transition (si, b;, ri , 'Yi, si+ 1 ) E � represents the change from state s; 
to state s;+l with b; satisfied. The set r; Ç C indicates which docks are 
reset when taking the transition and 'Yi is a clock constraint that specifies 
when the transition is enabled, this constraint is evaluated before the clock 
resets. 

In the automaton of figure 1. 4 the transitions are simply labelled by the 
predicate on the alphabet, the docks to be reset are indicated within braces and 
the dock constraint is written between brackets. 

Semantics 

When dealing with timed automata the runs which are considered have 
to reflect time as well. A timed run tr of a timed automaton A over a timed 
word ( cr, T) is an infini te sequence of pairs ( so, vo) ( s1 , v1) . . .  where s; E S is 
the i-th state visited by the automaton and v; E I is the dock interpretation in 
this state, we write 

• Vi 2'. 0 : Si E S, vi E I. 
• so E So. 
• Vx E C : vo(x) = 0, all docks are initialized to zero. 
• Vi 2'. 0 either 3 (s; , bi , ri , 'Yi , s;+1 ) E� : [bi](cr;) = true and [l';] (v;) = true and v;+l = (11i + r;) [r; := O] 

or Si = S;+1 and, if we call SC(s;) = (b; , 'Yi) we have [b;D (cr;) = true and 
['Y;] (v;) = true and v;+l = (v; + r;) 
The taken transition or stable condition respects its atomic proposition 
and dock predicates, resets all appropriate docks and the next dock in­
terpretation is coherent with elapsed time. 

To define the run we used the same "interpretation" notation for the 
formulas on atomic propositions than the one we defined for docks, except the 
context of interpretation is here given by the considered input. 

The question of which (timed) runs are accepting ones leads to the def­
inition of acceptance criteria for timed automata. We do this analogously to 
the untimed version, using the same acceptance criteria for automata on infinite 
words which can be applied to bath the timed and the untimed versions. 

Again we only consider Büchi acceptance here, for other definitions of ac­
ceptance criteria see [AD9 4]. Timed Büchi automata combine Büchi acceptance 
with timed automata intuitively described above. As for the untimed case we 
define the set inf ( tr ) of states of a timed run, which are visited infini tel y often: inf(tr ) := {s E S  I V i  with s = s; , (s;, vi) E tr : 3 j > i :  s = Sj , (sj , vj) E tr } .  



20 Chapter 1 Specification basics 

A timed word (a, ,) = (a0 ,  ,0) (a1 , ,1 ) . . . is then accepted by Â iff inf(tr) n F f. 0 
holds for the corresponding timed run tr. The language accepted by a timed 
Büchi automaton is correspondingly defined as 

L(A) := { (a, ,) E Ew x w  1 3 tr = (so , v0) � (s1 , v1 ) � . . .  : inf(tr)nF f. 0}. 
TO Tt 

As an example the automaton l3 in figure 1.4 accepts the language a*(ba*c)w 

restricted to the words in which a c occurs before the 4-th time unit after a b 
occurred: L(B) = {(a, ,) 1 a E a* (ba*c)w /\ 'vi 3j > i :  Œi = b ===} Œj = c /\ Tj ::; ,; + 3 }. Additional definitions 

We finally define an activated TBA as a tuple (mode, actCond(A) , A) 
where mode is either initial, invariant or iterative, actCond(A) is the 
activation condition activating A and Â is the so-called main automaton, a 
TBA. Note that the activation condition could be expressed as an automaton. 

By convention we can use Â to designate both the TBA and the activated 
TBA, as it is clear from the context which we are talking about. 

We finally define a TBA specification as a finite set of activated TBAs: 
TBAspec = {Â1, Â2, .. , , Âk }  

Semantical remarks 

The transition relation --t does not include self-loops, thus for all i 2: 
0 such that (s; , bi , ri , 'Yi , si+I ) E --t  we have s; f. s;+1 (destination node is 
different from source node). 

More practical restrictions are brought to this formalism at the end of the 
chapter, resulting in a more efficient language. These restrictions are motivated 
by the particular result of the translation of specifications into TBA, therefore 
we detail first this translation, called unwinding, in section 1.4, and give more 
details in section 1. 6 about the TBA formalism which has been described here. 

1.4 Unwinding LSCs into TBAs 

The translation of a Live Sequence Chart (LSC) into a Timed Büchi Au­
tomaton (TBA) is called unwinding, as we will see the LSC form is (a bit) more 
compact. The algorithm we explain here has been first described by Jochen 
Klose and Hartmut Wittke in [KWOI], and is based on the procedure of [FJ9 6] 
to unwind Symbolic Timing Diagrams. 

1 .4.1 Intuitive procedure 

The purpose of the unwinding procedure is to, finally, get a timed automa­
ton in which each (reachable) state represents one possible state of the LSC, 
having all the possible states of the LSC included into the automaton. Both the 
TBA and the LSC should specify the same behaviors, of course. 
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The possible "states" of a LSC are called cuts, they can be viewed as a 
(curve) line through the chart, across (cutting) all the instances, meeting exactly 
one location of each of them. Two special cuts are defined, one including all the 
initial locations, the other all maximal locations. The unwound corresponding 
states are the (only) initial state and an accepting state of the automaton, 
labelled by a true stable condition since we are allowed to stay forever in this 
state. 

We begin the unwinding procedure with the initial state, at the top of 
the chart, and let a "front" clown, accordingly to the meaning of each abject 
encountered, every event crossed implies to create a new state in the automa­
ton. We let the eut go downwards until we reach the maximal location on all 
instances, which state we declare to be acceptant. 

1 .4.2 Pitfalls to the intuition 

The application of this intuitive idea could be straightforward imple­
mented, but we will first clearly define some more critical concepts of the LSCs, 
such as coregions, simultaneous regions and IF-THEN-ELSE sub-charts. This 
is clone in the next section. The figure 1 .5  shows a simple LSC on the left sicle, 
with all possible cuts drawn. We can see one critical position is the coregion on 
component C2, where Msg3 and Msg4 are received: many cuts go through this 
position, none should be forgotten by the unwinding procedure! More formally 

We establish a total order on all interesting events of a single instance 
axis: sending a message, receiving a message, the valuation of a condition, 
setting a timer, expiration of a timer or the reset of a timer, considering timing 
annotations are associated to timers. This total order is based on the graphical position of the event [KWOl], let's call it position : Events -+ Position. 

All events belonging to the same simultaneous region have the same posi­
tion, as well as events from the same coregion. The positions of these regions are 
defined as well, thus extending the definition of position : Region -+ Position , 
where Region denotes the set of all the interesting place to characterize a LSC: Region = { Events, Simultaneous regions, Coregions, Initiais locations, Maximal locations} .  

We can define the set of  strict predecessors of  a region using this total 
order along a single instance axis. This set is empty if r is an initial location, 
and is the set of direct predecessors of r otherwise. Usually predecessors (r) will 
contain a single event, except if a coregion or a simultaneous region is the strict 
predecessor of r .  

Shared conditions and instantaneous messages force some regions to be 
simultaneous on different instances. We say these regions belongs to the same simultaneity class. 

Using the simultaneity classes and the predecessor relation we are able 
to define the set of prerequisites of any region r ,  the set of regions of the LSC 
that must be traversed before r can be traversed. prerequisites (r ) is obviously 
empty if r is an initial location, otherwise prerequisites (r )  is the set of regions 
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Figure 1.5: Cuts of the unwinding procedure 
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which are the predecessor of any regions belonging to the simultaneity class of 
r. 

With this definition we are able to formally unwind a LSC by first con­
structing the simultaneity classes, and then unwinding the regions in such an 
order their prerequisites have all been unwound before they are. The transla­
tions of the resulting automaton corresponds to the successor relation for cuts, 
i.e the message events that must be fulfilled to get to the next eut. 

The unwinding structure obtained from the application of this procedure 
to the LSC of figure 1. 5 is illustrated in figure 1. 6 

Figure 1. 6: Unwinding structure 

Considering timing 
The depicted unwinding structure cannot express time, we will thus trans­

form it into a Timed Büchi Automaton (TBA). This formalism, described in 
section 1.3.2 , handles timing through docks, that can be reset and used in clock 
constraints, either on the transitions labels or within the invariants of the states. 

As we told in section 1.2.3 , timing annotations can only be added to hot 
locations. They specify an interval of time [n, m], with n ::::; m, both positive 
integers. This interval means that the annotated location has to be traversed 
(left) at least n and at most m steps after is has been reached. Let us imagine 
a hot location l on instance i is annotated with the time interval [1 , 4 ] .  This 
means that when a run reaches l on i, l should remain the active location of i 
for at least one step, i.e. one dock increment, since we consider discrete time. 
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Furthermore l has to be left at most at the fourth step since it has been activate, 
otherwise the run is rejected and an error is generated. 

To add this timing information to the unwinding structure we simply 
consider every hot locations as constrained by a (different) timer (dock). The 
corresponding timer is reset when the location is reached and a boolean expres­
sion constrains the dock value to be within legal range when it is traversed. 
This boolean expression is simply true if there was no timing annotation to 
this location, otherwise it recalls the timing. 

The resulting TBA has self-loops on each state, labelled with the condition 
which has to hold for the TBA to stay in the associated state. These loops are 
needed since, in our formalism, time only passes when transitions are taken, 
they are what we called stable conditions in the TBA dialect (see section 1.3.2). 
Its transitions are the conjunction of the predicate from the unwinding structure 
and adding timing constraints. 

Determinism in the TBA 
The activation modes will be considered later, for the moment it remains 

as a comment, added to the TBA. A more worrying tapie concerns the question 
of the determinism in the TBA, as it is directly related to the interpretation we 
give to the LSC's elements. 

Three different options can be considered regarding the determinism of 
the unwound automaton, which depends on the labels we give to the self-loops 
of each state. 

We could completely omit any information provided by timing annota­
tions, providing a totally nondeterministic automaton, which is not efficient for 
verification purposes. A strict interpretation, as considered by [DH98] , means 
that each occurrence of a message has to be explicitly noted in the LSC, and 
no other is allowed. This interpretation may be tao strong, as we do not care 
whether v isible messages are emitted at any time, as long as the desired scenario 
is fulfilled. The third interpretation, called weak, forces the TBA to react to the 
first occurrence of the expected message, but doesn't restrain the same occur­
rence at any other time. In a word, unexpected events are ignored. To achieve 
this mode, self-loops are labelled with the negation of the next message(s) of 
considered state. 

An example 
A simplification of the TBA produced by adding the timing considera­

tion to the unwinding structure of figure 1 .6 is shown in figure 1. 7, with the 
modifications in bold. This one is a simplification inasmuch as states were put 
together to allow a better readability. 

In appendix A we show a small LSC extracted from the specification 
related to a light-control system used for train rails. The TBA obtained by 
application of the unwinding procedure of [KWOl] is provided as well. 
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Figure 1.7: TBA resulting from the unwinding procedure 
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1 .  5 Activation modes 

When describing properties we would like a system to have, it is obvious 
we also want to tell about the range of this specification: if it holds for ever or 
only once, for instance. This opportunity is given by adding an activation mode 
to a specification, paired with an activation condition. 

Two activation modes are used by [DH9 8] for the activation of a LSC: initial and invariant. We add the iterative activation mode. These three modes 
are illustrated in figure 1.8. The horizontal lines symbolize the time, running 
from left to right, each vertical mark represents an occurrence of the activation 
condition, which results or not in an activation of the specification, i.e. the 
verification of the scenario, (in dotted line) according to the activation mode. 

initial --l·-···-··-···-··-··-···-i·f1-··-··-··_···_··-···-··-··-···-··-···-··-··-·· :,__-1-----------1►► 

invariant 1····· ·· ······· ·· ·t::::::::::::::::::::::::::::::::; ......... t.::::::::······························· • 
interative --1-l·-···-···-···-···-···--1·f-···-···-···-···-···-···-···-···-···-···---·· :---1··-···-···-···-···-···-····-···-···-···-·· ·-···-···-··,;►·· 

Figure 1. 8: Three activation modes 

We describe the three activation modes within the next sections and com­
pare their use within both LTL formulas (see 2.2. 1) and finite automata (see 
1.3.1). Nevertheless the activation mode remain as a comment to the specifica­
tion, either in LSC or TBA format, we really integrate it into the specification 
only in a further step of the process, at the SMI level, as explained in section 

5.5.2. 

1 .5 . 1  Initial mode 

The initial mode activates the specification immediately, i.e at the first 
step of the run, the activation condition has to hold and the run to be fair to 
be accepted. 

The specification is also accepted if the activation condition does not hold 
at first step while the activation exception does. In this case the specification is 
not activated, and the run immediately succeeds. If the activation condition is 
not satisfied at the first step and neither the activation exception, then the run 
is rejected. 

Such a behavior is easily implementable with LTL formulas. If we write act 
the activation condition and P the property coded by the LSC, we can represent 
the initial mode by the LTL formulae (act /\ 0 P) V ( ,act /\ exception). 

The check of the same condition with a finite automaton is straightforward 
and results in the automaton which can be seen in figure 1.9. 

1 .5 .2  Invariant mode 

In the invariant mode the input sequence is checked any time the activa­
tion is evaluated to true. 
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Figure 1.9: Automaton in initial mode 

2 7  

The LTL formula for such an activation mode is of the form □ (act ===> 
0 P) .  

The invariant mode cannot be  represented graphically, as we should du­
plicate all the P evaluation automaton as many time as needed. It is possible 
to build a product-automaton (see section 2.3.2 ), but this is hard while handling 
many docks. Since our automata are complementable one could also check 
the formula ,◊ (act /\ O ,P) ===> act /\ O P, but the double complement 
can be expensive, as stated in [BH].Finally we could also handle this mode by 
nondeterministically activate the verification of the specification each time the 
activation occurs. 

Nevertheless we should check only the activations which are able to lead to 
some problems, as shown in figure 1 . 10, where the first occurrence (dark vertical 
bar) of the activation condition doesn't lead to a check of the input sequence as 
we can forecast there won't be any problem. The second occurrence activates 
the automaton and provides a witness of a crash (triple vertical bar). We are 
thus reducing the number of simultaneous checks, this is quite feasible with 
observers (automata). 

invariant '--➔1-... -... -... -.... -... -... -... -... -... -... -... -... -... -, .. tH:�ff-�::-:::---:··-···-···-···-···-···-···-···-···-···_,··ji► 

Figure 1.10: Artifact on invariant mode 

Instead of trying to determine whether or not we have to activate con­
current checks of the property, we could allow only one instance of this check 
at a time, but accept more activations if they are not concurrent. This is the 
purpose of the iterative mode. 

1.5.3 Iterative mode 

The iterative modes sets a Iock when an activation occurs. This Iock 
prevents any reactivation of the same specification until it is released, and it is 
released when we can definitely agree on the specification. 

The point is now to define when we are able to agree definitely on the 
specification, even if this one concerns an infinite word, as it is the case for 
w-words. Let's define a finitely accepting state, which is a state s such that: 
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• s is an accepting state. 
• s has no outgoing transition, except a unique self loop labelled by true. 

We can obviously state that whenever the automaton representing the 
specification to be verified reaches such a finitely accepting state the requirement 
is (finitely) fulfilled, recalling therefore Büchi 's acceptance criteria explained in 
section 1.3.1 which accepts any run as long as it infinitely often goes through 
an accepting state. 

We show in figure 1.1 1 the finitely accepting states for the LTL formula 
p U q with the activation condition r. This automaton is composed of two parts, 
the first, above the dotted line, represents the activation condition, its state will 
remain active as long as the activation condition r is not met. This first part does not belong to the automaton. The second part is the main automaton, the 
specification, with 1 fair states (in bold) which fulfills the second property, it is 
the only finitely accepting state (hence labelled by A). 

p/\(,q) 

(,p)/\(,q) 

0 

� true 
� 

Figure 1 . 1 1 :  Determining finitely accepting states 

We want to set and release a lock during the check, enabling a new acti­
vation only when the current one can't fail anymore. 

Sorne states in which we can be sure of the result, even if the input se­
quence is infinite, are the finitely accepting states. We should thus release the 
lock whenever entering such a state. We could enhance this definition consid­
ering "finitely accepting strongly connected components (SCC)" ,  i.e. SCC with 
only true labels, rather than states, this has not be clone yet. 

Such a behavior, of releasing the Iock when entering any finitely accepting 
state is simply clone through a modification of the transition relation. 

The action of releasing the Iock actually means to corne back from any 
finitely accepting state either to 

• waiting for the activation condition, if is not true yet. 
• getting in the initial state of the automaton, if the activation condition 

already holds. 

We show how ---t (using the notation described in 1.3.2 ) has to be modi­
fied to exhibit release lock behavior in figure 1. 1 2 ,  using the same LTL formula 
as in the previous example. The added heavy-dotted transition releases the 
Iock, while the true self-loop of the finitely accepting state is now labelled be 
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the negation of the activation condition. Such a modification of the transition 
relation should be done from every finitely accepting states if there are more 
than one. 

p/\(,q) 

(,p)/\(,q) 

0 

, .  · ,  
,, r 

1 
1 

1 \ w� true 

r ,  - - A 

Figure 1.1 2 :  Iterative mode lock handling 

1.6 Particular TBAs 

The Timed Büchi Automata resulting from the unwinding procedure in 
section 1 . 4  are a bit particular. In this section we describe some restrictions 
that can be made on the formalism due to its particular unwound origin. 

1 .6 .1  Activation mode 

The activation mode is added to our (unwinding) TBA format as a com­
ment, just as we told. This mere "annotation" will be considered later on, when 
we effectively check the property, but does not influence the specification at all. 

1 .6.2 Acyclic Automata 

The unwinding procedure builds up the automaton using a total order on 
the locations, i.e. a location is unwound only when all its prerequisites have 
already been unwound (we refer to section 1. 4.2 ). This way of doing will always 
provide us with a TBA that has no back-leading transition, and thus no cycle 
except self loops. 

To highlight the fact that the TBA is cycle-free we remove all self-loops 
on the states, transforming each of them into an annotation that characterizes 
its state. This annotation is called stable condition. 

Its meaning is simply it has to be fulfilled for the automaton to be allowed 
to remain in the current state. The semantics of a stable condition has been 
given in 1.3.3 

Sin ce the TB As are acyclic, we are able to define a total order, called 
weight, on all the states of the TBA A: weight : S -+  N, such that weight(si) < 
weight(sj) if Si is doser from the initial state of A than Sj , We define weight(s) = 
0 if s is the (only) initial state of A and weight(s) is the sum of the weight of 
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the direct predecessors of s added to the amount of already weighted states else. 
This weighting can be implemented quite efficiently using a breadth first search 
procedure with a counter increased by one for every weighted state, i.e. the 
amount, and hence we state that Vi 2:: 0 (s; , a; , r;, 1; , s ;+i) E --+ : weight(s;) < 
weight(s;+1 ) - This latter assertion states also there are no self-loops within the 
transition relation. 

1 .6.3 Rernark on docks 

The docks generated by the unwinding procedures each correspond to a 
single reference point, either in the LSC or the TBA. Hence, they are always 
met into the automaton with respect to the same lower and upper bounds. Even 
if we could find the same dock in many dock predicates of the graph, it will 
always be used within the same interval. This doesn't change anything to the 
semantics nor the formalism, but is a simple practical remark. 

1 .  7 To conclude 

In this chapter we showed how properties (specifications) of (reactive) 
systems could be described, and how the LSC specifications of section 1. 2 could 
be unwound ( 1.4 into Timed Büchi Automata (TBA, 1.3. 2). In chapter 2 we 
explain how formai verification is born, and in the remainder of this report how 
it can be used to automatically verify the properties we are now able to express. 



Chapter 2 

Model Checking 

2 . 1  Introduction to formai verification 

For as long as programs have existed ones wanted to get rid of their errors. 
This dream of verification was based on some deeply rooted considerations about 
the simplicity of program specification, and the idea that verification is always 
needed. 

One can now maintain there are many other ways of obtaining software 
that is sufficiently reliable for many applications. Simulations are used for a 
long time to get confidence into any system, implying to run a large number of 
tests cases through the design. Careful development methodologies [BP94) and 
well designed testing can give good results in many cases. 

On the other hand formai verification uses mathematical techniques to 
ensure the design conformity, which totally eliminates uncertainty [Wol98) . 

2.1 .1  Like a candle in the dark 

The first attempt at proving design correctness relied upon invariant 
proofs [Hoa69) , but with the limited applicability of this technique and the com­
plexity of proving both inductive steps and termination they were not usable 
for most people. 

Hoare is the first to introduce a formalized programming language, called 
Hoare logic [Hoa69) . He sees a program P as a transformation from an initial 
state to a final state, and thus works with expressions of the form 

which means that if </> is true before executing P, then 'ljJ is true after its execu­
tion. 

Hoare then defined some basic program operations including assignments, 
sequences, alternatives and iterations. Nevertheless, his formalism runs into 
trouble with more complex constructions like procedures with parameters, point­
ers, complex data structures or concurrency. 

31 
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The concurrent composition of programs brought a new challenge to the 
development of Hoare's logic. Owicki and Gries [GO7 6) tried to define a con­
current composition rule within the Hoare logic. The concurrent composition 
of programs P2 and A,  written 

should fit the requirement 

{</>i } A Nd {</>2} P2 N2} 
{ </>1 /\ </>2 } A I l  P2 N1 /\ VJ2} 

The difficulty of such a behavior resides in the fact the two concurrent pro­
cesses can potentially internet, with shared variables for example, at any time 
of their mutual execution. It is thus essential to know what happens during the 
execution, and not only before and after as expressed by this formalism. 

2.1 .2 The candie becomes lighthouse 

Amir Pnueli describes in [Pnu77) Temporal Logic as a useful formalism 
for specifying and verifying correctness of computer programs. This language 
has become a widely used formalism for reasoning about nonterminating or con­
tinuously operating concurrent programs, such as operating systems or network 
protocols, he calls them "reactive systems". 

Temporal logics were first described by Prior, in the fifties, for the percep­
tion of time within human languages. Temporal logic is developed by Emerson 
in [Eme90). Temporal logic is a modal logic, let us remember such modal logics 
were initially developed by philosophers to allow expression of possibility. For 
example, the assertion P may be false in the present world, and yet the assertion 
possibly P may be true if there exists an alternate world where P is true. 

Temporal Logic is a particular type of modal logic, allowing to reason 
about how the truth values of assertions change over time. Typical temporal 
operators include sometimes P which is true now if there is a future moment at 
which P becomes true and always P which is true now if P is true at ail future 
moments. 

These ideas were thoroughly explored and Temporal Logic became an 
active area of research interest. We will explain some useful temporal logics in 
the next section, but let us first survey the appearance of formai verification. 

2.1 .3  Automatic formai verification 

Through "formai verification" we mean the proof that a system meets a 
desired property by checking that a mathematical model of the system meets a 
formai specification that describes the property. 

The tools for automatic formai verification are mainly based upon two dif­
ferent theoretical approaches. The first is temporal logic model checking, where 
the properties to be checked are expressed as temporal logic formulas, and the 
systems are expressed as (in)finite state systems. An example of this approach 
is the SMV tool, developed at the Carnegie Mellon University, which uses Com­
putational Tree Logic (CTL) model checking to examine whether a finite state 
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system satisfies branching-time temporal CTL formulas. The CTL model check­
ing was first explained by Clarke and Emerson [CGP99]. The formalism as well 
as the related mode! checking technique are described further in this chapter. 

The second approach called language containment makes use of w-automata 
to describe both the system and the properties, and verifies correctness by check­
ing that the language of the property contains the language of the system. An 
application of this approach is the COSPAN tool, of Bell Labs. 

Most current tools offer a combination of both approaches, for efficiency 
reasons, as the HSIS [Bra9 4] system, from the University of California, Berkeley. 

Considering many model-checking tools publicly available, we easily find 
out that a key question to understand them is the choice of the temporal lan­
guage they use to specify properties, as this language is one of the primary 
interfaces of the tool. In the next sections of this chapter we will briefly de­
scribe some of the most widely used temporal formalisms and algorithms to 
perform formal verifications on these formalisms. 

2 .2  Temporal logics 

Let us remember the temporal logics where investigated for describing 
properties of sequences of states, whether finite or infinite. They are an extension 
of propositional logic, or first-order logic, and use temporal operators to describe 
temporal (sequencing) properties. Such temporal formulas are given a meaning 
in a particular state of a sequence, their interpretation context. This point of 
view cornes directly from the modal logics where an assertion can be true in 
some context, while false in another. 

One of the major aspect in the design of ail temporal languages is their 
underlying model of time. The nature of time considered induces two different 
types of temporal logics [CGP99]. In linear temporal logics, time is treated as 
if any moment in time has a unique possible future. Linear temporal formulas 
hence describe the behavior of a single execution of a program. In branching 
temporal logics each moment in time may split into various possible futures. 
Accordingly, the structures over which branching temporal logic formulas are 
interpreted can be viewed as infinite computation trees, each describing the 
behavior of the possible computations of a nondeterministic program (nonde­
terminism has been explained in section 1.3. 1 ). 

2.2.1 Linear Temporal Logic (LTL) 

The logic LTL is a linear temporal logic, well described in [CGP99]. For­
mulas in LTL are constructed from a set AP of atomic propositions using the 
usual Boolean operators and some temporal operators. These operators give 
the "context" of interpretation, i.e. the state in which the formula should be 
evaluated. To understand their meaning let's consider a time-line the unit of 
which is a single day: 

1. X ( or O ) is read "next time" , it refers to tomorrow on our one-day scale. 

2 .  U (or U ) is read "until" , ip1 U <p2 means we will meet <p2 in the future, 
and until then <p1 holds. 
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3. R ( or fJ ) is read "releases" , it is the dual of "until" , this operator is 
sometimes written V. 

Two other operators are then defined as abbreviations: 

l. F (or ◊ ) is read "eventually" , ◊ <p = true U <p. 

2. G (or D ) is read "always" , D rp = false fJ cp. 

The alphabetical notation was first introduced by Prior, the other one 
cornes from Pnueli, they are equivalent and we will use the second one in this 
report. 

Formally, given a set AP, an LTL formula in a positive normal form is 
defined as follows: 

• true , false , p, or -,p, for p E AP. 
• <p1 V <p2 , <p1 /\ <p2 , where <p1 and <p2 are LTL formulas. 
• 0 <p1 , <p1 U <p2 , or <p1 fJ <p2 , where <p1 and <p2 are LTL formulas. 

The sema.ntics of LTL is defined with respect to paths, or computations 
1r = ao , a1 , a2 , ... , where for every j E N, O'j is a subset of AP, denoting the 
set of atomic propositions that hold in the j 's position of 1r .  For a path 1r, 1ri 

represents its suffix starting at position i, i.e. O'i , O'i+i , ... of 1r. We use 1r I= cp 
to indicate that an LTL formula rp holds in the path 1r. The rules giving the 
truth of a formula in the first state of a path are the following: 

• For all 1r, we have 1r I= true and 1r � false . 

• For an atomic proposition p E AP, 1r I= p iff p E a0 and 1r � p iff p 't ao. 

• 1r I= <p1 V <p2 iff 1r I= <p1 or 1r I= <p2. 

• 1r I= <p1 /\ 7î I= <p2 iff 7î 1= <p1 and 7î I= <p2. 

e 7î F Q rp iff 'Tîl F rp. 
• 7î I= <p1 U <p2 iff there exists i 2:: 0 such that 'Tîi I= <p2 and 7ri I= rp1 for all 

0 � j < i. 

• 7î I= rp1 fJ <p2 iff for all i 2:: 0 such that 'Tîi � <p2 , there exists O � j < i such 
that 7ri I= <p1 . 

A linear temporal logic formula is a description of a set of infinite se­
quences, i.e. those that satisfy it. We often interpret those formulas over a sys­tem with many computations. Formally, a system M is a tuple (AP, S, S0 , R, L) , 
where S is the set of states, S0 the set of initial states, R Ç S x S is a total 
transition relation (for every s E S, there is at least one s' such that R(s, s') ) ,  
and L : S ➔ 2AP maps each state to the set of  atomic propositions that hold 
in it. A computation of M is a sequence of so, s1 , ... such that so E So and for 
all i 2:: 0 there is R(si , S;+1 ). 

The model checking problem for LTL is to determine, given an LTL formula 
rp and a system M, whether all the computations of M satisfy rp. This problem 
is known to be PSPACE-complete [SC85) , we describe it in section 2.4.4. 
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2.2.2 Computation Tree Logic (CTL) 

The Computation Ttee Logic (CTL) is a propositional logic of branching 
time; i.e., it is based on propositional logic and uses a discrete model of time 
where, at each instant, time may split into several possible futures [CGP99]. We 
introduce the syntax and semantics of CTL, less detailed than the LTL ones, 
relying on the intuition of the reader to make the parallel. 

CTL formulas and their Truth semantics 

Branching time temporal logic are interpreted over infinite trees in which 
each node is a state, assigning truth values to the atomic propositions 

The semantics of a CTL formula is defined over a system M = (AP, S, So , R, L), 
where AP is a set of atomic propositions, S is a set of states, R Ç S x S is a 
total binary relation, S0 is a set of initial states and L : S -+ 2 AP maps each 
state to the set of atomic propositions in AP that are true in that state. R is the 
next-state relation of the structure. If the system is in state s at a given time 
instant, it will be in any of the successors of s at the following time instant, i.e. 
the states in the set { s' E Sl (s, s') E R) . R must be total since CTL formulas 
have no interpretation for states without successors. 

We are now able to define a path as an infinite sequence of states so, s1, . . . 
such that so E So and Vi 2'. 0 : (s;, s;+1) E R. 

Branching time temporal logic includes two path quantifiers: A for all 
paths, and E for some paths. 

Let AP be a set of atomic propositions. CTL formulas are defined recur­
sively: 

• Every atomic proposition p E AP is a CTL formula. 
• If <p1 and <p2 are CTL formulas, then so are •<p1 , <p1 /\ <p2, A O <p1 , E 0 

<p1, A(cp1 U  <p2), and E(cp1 U  <p2). 

Intuitively, AO means "all successors", EO means "there exists a suc­
cessor", A(cp1 U  <p2) means "always <p1 until <p2" and and E(cp1 U  <p2) means 
"exists <p1 until <p2" • 

Additional temporal operators are defined as abbreviations, in terms of 
the ones above: 

• A◊ cp = A(true U cp): cp must hold eventually. 
• E◊ cp = E(true U cp): there is a reachable state in which <p holds. 
• E□ cp = ,A◊ ,cp: there is some path on which <p ahvays holds. 
• A□ cp = ,E◊ ,cp: cp must always hold on all possible paths. 

Consider a CTL formula <p and a structure M = (AP, S, so, R, L), rep­
resenting the system to be checked. We denote the statement "cp holds in M 
at state s0" with M, s0 I= cp, using the same notation as for LTL. We write 
s0 I= <p if the underlying structure M is implicit. M, So I= cp to abbreviate 
Vs E S0 Ç S :  M, s I= cp, and M I= cp to abbreviate M, S I=  cp. The relation I= 
defines the formal truth semantics for CTL and is defined recursively as follows: 
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• M, so I= p iff p E L(so) .  
• M, so I= ..,<p iff not (M, so I= cp) . 
• M, so I= cp1 /\ cp2 iff (M, so I= cpi ) and (M, so I= cp2) .  
• M, so I= A O  <p iff 'v't E S :  (so, s1) E R  ===} (M, s' I= ip) . 

• M, so I= E O <p iff 3t E S : (so, s') E R /\ (M, s' I= cp) .  
• M, s0 I= A(cp1 U cp2 )  iff for al! paths s0 ,  s1 , . . .  there exists i 2': 0 such that 

(M, Si I= cp2 )  and 'v'O :s; j < i : (M, Sj I= <p1 ) .  
• M, so I= E(<p1U <p2)  iff for some path so, s1 , . . .  there exists i 2': 0 such 

that (M, s; I= <p2) and 'v'O ::; j < i : (M, Sj I= <p1 ) , 

Common templates 

We summarize the most common CTL templates with the corresponding 
English language meaning: 

1 .  AD p is "nothing bad ever happens" (-,p is bad) . Used to specify an 
invariant, a condition that must be true in all states. Such a formula is 
helpful for partial correctness (no wrong answers are produced), mutual 
exclusion (no two processors are in a critical section simultaneously) or 
deadlock freedom (no deadlock state is reached) . 

2 .  A◊ AD p is "eventually the system is confined to states where p is always 
true". It can be used to specify the property of finite number of failures 
in the system. 

3. A□ (p ➔ A◊ q) is "from al! reachable states where p is true, something 
good (namely q) eventually happens". Such formula is used to express 
total correctness (termination eventually occurs with correct answers), 
accessibility ( eventually a requesting process will enter its critical section) 
or starvation freedom ( eventually service will be granted to a waiting pro­
cessor). If p is always true, it reduces to AD A◊ q. 

4. AD A◊ q is "infinitely often q" , i.e., from any reachable state one must 
reach a state where q is asserted. It can be used, for instance, to enforce 
a reset condition from any state. 

5 .  A◊ q is "something good (q) eventually happens" (this one is Jess restric­
tive than AD A◊ q) . 

6. A□ E◊ p is "always p possible" . It can detect, for instance, the absence 
of deadlocks, by requiring that it is always possible to reach deadlock-free 
states. This is an example of a CTL property that cannot be represented 
by an w-automaton on words. 

7. A□ true forces a complete traversai of the states of the system. 

8. E◊ p is "p is possible". This is another example of a CTL property that 
cannot be represented by an w-automaton. 
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2.2.3 FairCTL 

A path is said to be fair with respect to a set of fairness constraints if each 
constraint holds infinitely often along the path. Such D ◊ p fairness formulas 
are expressible in LTL but not in CTL. 

To allow to use these really important properties within CTL model check­
ers too, the model checkers often provide the ability to specify fairness con­
straints separately from the property. FairC TL adds to the traditional computational tree logic formula a set of 
fairness constraints, representing a set of states, each giving a fairness condition. 
A fair path is a path along which each fairness condition is satisfied infinitely 
often (referring to the Büchi acceptance condition). 

FairCTL has the same syntax as CTL, but the semantic is modified so 
that all path quantifiers only range over fair paths. As an application, let's 
assume the fairness condition is p, the only paths that will be considered will be 
those where p is asserted infinitely often. In the literature FairCTL is sometimes 
written CTLF. 

2.3 Model checking of temporal logic formulas 

2.3 .1  The choice between linear or branching paradigm 

The discussion relative to the merits of linear versus branching temporal 
paradigm goes back to the eighties [Var9 8]. 

The difference in the complexity of linear and branching model checking 
has been viewed as an argument in favor of the branching paradigm. In par­
ticular, the computational advantage of CTL mode! checking over LTL model 
checking made CTL a popular choice over the past twenty years, for branching 
CTL model-checking algorithms run in linear time of both the system size and 
the property length [CGP99] while linear temporal (LTL) model checking took 
a time exponential within the formula size [WV9 4 ]. Even if the theoretical prob­
lem of checking LTL formulas is PSPACE-complete, other algorithms provide 
good results on many typically encountered formulas [GPVW9 5, SB00], a few 
of those will be reviewed in the next sections. 

On the other hand CTL Jacks intuition, and is not usable with composi­
tional verification which is a common way to handle big designs. In contrast, 
the linear-time way is more intuitive and supports compositional reasoning well 
[Varül]. LTL is also important because it allows us to express properties, such 
as fairness, which are not expressible in CTL1 . A typical fairness property is "if 
a process is infinitely often executable then it is infinitely often executed" , that 
corresponds to the LTL formula D ◊ ( executable) ==> D ◊ ( executed) . 

Because of its good reputation over the past decades, CTL is now served by 
many efficient algorithms. We can use some of those to verify linear properties 
following the fact that LTL mode! checking can be reduced to the language­
containment problem, which itself can be reduced to searching for fair paths, 
which is exactly the FairCTL mode! checking problem [CGP99] . Such an ap­
proach, however, involves the translation of the LTL formula into a transition 

1we detail in section 2.2.3 how to handle fairness constraints with CTL 
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system whose size is exponential in the length of the initial formula. As such, 
it does not enjoy the computational advantage of CTL anymore. Many present 
researches are concerned in finding a practical way that would enable to use 
CTL model-checking tools in order to perform efficient mode! checking on some 
fragment of LTL [KV9 8]. [The tool described in chapter 5 allo11s such a 11alk-around , 

providing a means to check efficiently some LTL properties within a CTL-based modal checker . ]  

2.3 .2 LTL model checking 

The standard approach of LTL mode! checking [WV9 4 ]  consists in trans­
lating the negation of a given LTL formula into a Büchi automaton and checking 
the product of the property with the mode! of the system for language empti­
ness. 

We first show how to translate any given LTL formula into an automaton, 
without going into too many details as the reader could advantageously refer to 
the excellent book (CGP99] for more information, which heavily inspired this 
survey. The pioneers' way LTL translation The first way of transforming an LTL formula into an au­
tomaton used Generalized Büchi automata , which have the particularity to have 
several accepting sets. The runs over these automata are accepting if they in­
finitely often satisfy ail of these acceptance conditions, i.e. if they infinitely 
often go through at least one state of each accepting set. 

The translation of an LTL formula cp into a Büchi automaton is ac­
complished by application of the following expansion rules, known as tableau 
rules (CGP99]: 

</>1 U </>2 = </>2 V ( </>1 /\ Ü ( </>1 U </>2 )) and </>1 f; </>2 = </>2 /\ ( </>1 V Ü ( </>1 Ü </>2)) 

These rules are applied to cp until the resulting expression is a propositional 
formula in terms of elementary sub-formulas of cp. We call elementary formula 
any constant, atomic proposition, or formula starting with O . The expanded 
formula, put in disjunctive normal form (DNF) is an initial closure2 of cp. The 
automaton representing the initial LTL formula is then built by the following 
procedure: 

1. Each disjunct of the initial closure identifies a state of the automaton. 

2. The atomic propositions and their negations within any term define the 
label of any incoming transition to the considered state, i.e. the condition 
that the input word must satisfy in that state. 

3. The remaining elementary sub-formulas of the term form the "next part" 
of the term. They are LTL formulas that identify the obligations that 
must be fulfilled to obtain an accepting run, hence, they determine the 
outgoing transitions from the considered state. 

2also called elementary closure 
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4. The same expansion process is applied to the "next part" of each state, 
creating new closures until no new term is produced. 

5. The state in the initial closure of <p form the initial states of the automaton. 

6. Regarding the accepting conditions we need to impose that for every for­
mula of the form O </>1 U </>2 in the closure of <p, any state that contains 
that formula is followed by a state that con tains </>2. It is sufficient to re­
quire that one goes infinitely often either through a state in which </>1 U cp2 

does not appear, or through a state in which </>2 holds, respectively for 
every existing "Until" formula. 

Such a generalized Büchi automaton can easily be translated into a con­
ventional Büchi automaton expanding the size of the automaton by a factor 
equals to the number of accepting sets + 1 [CGP99]. Formula negation As we told, for model checking we need an automaton that 
represents the bad behaviors, the ones that are not allowed by the specification. 
Therefore it is better to first negate the formula, and then translate ,<p into an 
automaton, as proceeding in reverse order would lead to a double exponential 
explosion, one to build up the automaton, and a second to complement it. 

Product automaton The negated formula automaton (P) is then combined 
with the system automaton (S) into a so-called product automaton, which rep­
resents the synchronization of the behavior of the system with the behavior 
of the property. [By synchronization 110 mean that each time the system automaton executes 

a transition, the property automaton should also execute one (with the same atomic proposition 

formula) . If no transition is possible for the property it remains in the same state . ]  The 
product automaton has typically a state space corresponding to the product of 
the state spaces of P with S (hence its name), even if some simplifications are 
possible. Checking emptiness The next steps of LTL model checking is to check 
whether the product automaton describes an empty language, if it is the case 
the property holds along the computations of the system. Checking emptiness 
of an automaton can be quite efficient and intuitive. Let's recall that infinite 
accepting runs contain infinitely many accepting states from F, the set of ac­
cepting states. Since F is finite we know that any accepting run contains a 
(finite) suffix such that every state on it appears infinitely many times, thus any 
state on this suffix is reachable from any other state on it, when such a cycle is 
maximal it is called a strongly connected component. Going further we can say 
that any strongly connected component that is reachable from an initial state 
and contains at least one accepting state generates an accepting run. 

Checking the emptiness of the language of an automaton is therefore re­
duced to finding a single strongly connected component reachable from an initial 
state and that contains an accepting state. H there is such a cycle there is an 
accepting run that can be represented by a w-regular expression to witness a 
word accepted by the automaton, whose language is thus not empty. 
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Tarjan described an algorithm for finding strongly connected components 
using depth first search, it can be used to decide emptiness of a Büchi automaton 
in linear time of both the state set size and the transition relation size. More 
efficient algorithms were described afterwards, most of which used embodies 
double depth first searches. One can find such an algorithm in [CGP99], among 
others. 

Looking for efliciency 

Many improvements have been introduced to this method through the 
years, which initially gave quite bad results (the process of [WV9 4] always yields 
the worst-case result with a number of state exponential in the size of the 
formula). 

A more efficient algorithm has been proposed that works on-the-fly [CGP99]. 
Instead of explicitly extracting a structure that represents ail the states of the 
system, as previously described, this more efficient approach relies upon the 
automata theory to guide the construction of the system while computing the 
intersection of the system with the property. This allows to avoid constructing 
the entire state space of the modeled system in many cases. 

Further improvements to the translation of LTL formulas into automata 
were made using syntactic simplifications [DGV99], and combinations of formula 
rewriting, boolean optimization techniques and Büchi automaton simplifications 
[SB00] . The LTL mode! checking is an active field of research on formai verifi­
cation. We can hence expect many more interesting results in the coming years, 
even if interesting results were already found, as explained in section 2 . 4 . 4 . 

2.3 .3  CTL model checking 

Intuitively the mode! checking in the branching time framework is the 
problem of finding the set of states in a state transition graph where the given 
CTL formula is true. 

[CGP99] present a model-checking algorithm for CTL. A CTL formula 
cp is divided into its sub-formulas cp1 , cp2 , . . .  , <pk and the states of the state­
transition graph associated with a structure M = (AP, S, s0 , R, L) are labelled 
with the sub-formulas that hold for a particular state. Let the size lcpl of a 
formula be one plus the number of its sub-formulas. The algorithm proceeds by 
successively labelling the states with sub-formulas of size i = 1 ,  2 ,  . . .  , lf l -

Sub-formulas of size one are atomic propositions, i.e. AP, therefore L 
provides the initial labelling (for i = 1 ) .  For i > 1 and a sub-formula 'ljJ of size 
j'ljJI = i, we know that the state graph has already been labelled with the sub­
formulas corresponding to the operands of the outermost operator of 'ljJ (because 
its size is less than i). We can hence determine which states have to be labelled 
by 'ljJ using the following rules: In the case 'ljJ = ,'ljJ1 , s is labelled with 'ljJ if 
s is not labelled with 'ljJ1 , the case 'ljJ = 7Pl /\ 'ljJ2 is treated analogously. For 
'ljJ = A O 'ljJ1 (respectively 'ljJ = E O 'ljJ1 ) ,  s is labelled with 'ljJ if all (some) 
successors of 'ljJ are labelled with 'ljJ1 . 

The case of 'ljJ = E( 'ljJ1 U 7P2) requires a double computation: first every 
state that is labelled with 7P2 is labelled with 'ljJ. Second, any state that is 
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labelled with 'lj;1 and has a successor labelled with 'lj; is labelled with 'lj; as well. 
The second step is repeated until no further nodes can be labelled with 'ljJ. This 
reachability computation can be performed in O(ISI + IRI) time [CGP 99]. A 
similar approach is used for 'ljJ = A('ljJ1 U '1/J2). This yields a CTL model-checking 
algorithm of time complexity O (l'l/J l (ISI  + IRI)). 

2.3.4 Language containment 

A more expressive logic than CTL (or LTL) would be interesting to model 
some other properties. One would likely use CTL* [CGP 99], to specify, for 
instance, that q holds "almost always" , i.e. always holds after a fini te number of 
transitions (A◊ □ q expresses this, but is not a legal CTL formula). The problem 
is that such logics have generally more complex model checking algorithms. 
A feasible alternative is to use another verification paradigm, called language 
containment, based on the theory of w-automata. 

The idea underlying language containment is that a system, represented 
by a w-automata S, does satisfy a property, represented by an w-automata P, 
iff L(S) Ç L(P), where L is the language accepted by the automaton [CGP 9 9]. 

The common efficient way to check language containment is to compose 
the given system with the negation of the property and check it for language 
emptiness, as it is clear that L(S) Ç L(P) is equivalent to L(S) n L(P) = 0. 
The language of the composition is empty if and only if the system satisfies 
property P. When using this approach of language containment, one must 
complement the w-automaton representing the property, and this is hard to 
do if the automaton is nondeterministic: the new automaton has 0( 2nlogn) 
states, where n is the number of states of the automaton to be complemented 
[Tho90, Var0l]. 

2.4 Maturation of model checking 

Model checking has evolved from the described algorithms into a tool 
available on an industrial level. Important milestones on this path were the 
introduction of symbolic representation of the design under development ( sym­
bolic model checking) [BCM+ 9o], the capability to focus on components of the 
design ( compositional model checking ) [CGP 9 9] ,  and finally the use of abstraction 
techniques. 

Real applications of model checking requires the ability to deal with large 
systems, even if the capacities of model checkers are limited by computational 
limits. 

2.4.1 Composition 

The assume-guarantee paradigm is a well-known means for compositional 
reasoning [CGP 9 9]. This technique verifies each component process in a isolated 
way, and then combines the set of assumed and guaranteed properties (hence the 
paradigm name) in an appropriate manner to establish properties on the entire 
system resulting from the composition of the components. The major advantage 
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of such a technique is that we never have to compute the whole state-transition 
graph that represents the design. 

Let us assume we have two processes NI and NJI, the respective behaviors 
of which are dependent on each other. The user can specify some assumptions 
that must be satisfied by M' in order to guarantee the correctness of process M. 
Let's write it (g)M(f) ,  where g, f are temporal formulas and M is a process. 
Since the behavior of lvI' also depends on the one of NI, the user can also 
express some assumptions regarding M, which must be fulfilled by M in order 
to guarantee the correctness of process M' , for instance (!) M (h). A typical 
proof concludes that (g)MI IM' (h) is true, where MI IM' represents the system 
obtained by the composition of both processes. 

2.4.2 Abstraction Abstraction is one technique that closes the gap between the size of the 
models and the capacity of the checkers by eliminating unnecessary detail from 
the model. 

While compositional reasoning requires the manual activity of decompos­
ing global properties into local components properties, abstraction techniques 
can be applied to reduce the complexity computationally, i.e. in an automatic 
way, and hence allow the verification of a design to be fully automatic. 

Severa! techniques of abstraction, like structural, behavioral, temporal or 
data abstraction have been investigated for long [ CG P99]. Sorne of these require 
a high degree of user interaction, other ones are completely automatic. Structural abstraction suppresses details about the implementation's in­
ternai structure in the specification, the well-known "black-box" view is such 
an abstraction. Behavioral abstraction suppresses details about specified actions that are 
never activated, i.e. what the component does under operating conditions that 
never occur. Dat a  abstraction relates signals in the implementation to signals in the 
specification when they have different representations. For instance mapping 
a specified O to 100 integer input to a possible output ranging from O to 3 
within the design allows to save space, since the former values can be reduced 
to coincide with the second ones. 

Lastly, temporal abstraction techniques try to match the time units of the 
specifications with those of the models, possibly resulting in simplifications. 

One widely used abstraction technique is based on the concept of cone of influence (COI) [CGP99]. This technique attempts to reduce the size of the 
transition graph by focusing on the variables of the system with respect to a 
given specification P. This COI contains all parts of the system that are involved 
in the validity of P, and only those. One can hence prove or refute the property 
using a simplified design (in the COI) , instead of the complete one. 

Such abstractions techniques achieve a further reduction of the design 
complexity, permitting the checking of still larger systems. 
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2.4.3 Symbolic model checking 

Symbolic Model Checking is a particular form of model checking that 
allows to analyze extremely large finite-state systems by means of symbolic 
representation techniques (e.g. , Binary Decision Diagrams and propositional 
satisfiability) .  Symbolic model checking is the core technique for several indus­
trial verification tools and is a main research tapie in the area of hardware and 
software verification. 

OBDD formalism 

Three independent teams discovered in the late eighties a way to represent 
transition relations using ordered binary decision diagram (OBDDs) [Wol98] . 
The idea underlying this representation is quite simple: assuming the behav­
ior of a reactive system is determined by n boolean variable v1 , v2 , .. . , Vn 

we can express the transition relation of this system as a boolean formula 
R.( v1 , v2 , .. . , Vn , v� , v� , . . .  , v�) where v1 , v2 , . . .  , Vn represents the cur­
rent state of the transition and v� , v� , . . .  , v� represents its target state. This 
boolean representation can be converted into an OBDD, a full binary tree of 
depth 2n in which 

• the leaves are labelled by O (false) or 1 (true) .  

• the interior nodes are labelled by the variables, in  a predefined order (hence 
the name of the representation) .  

• the outgoing edges of each interior node are labelled by O and l .  

• the label o f  a leaf i s  the value of  the fonction f for input values corre­
sponding to the labels on the path leading to that leaf. 

As an example, let's build the OBDD for the boolean formula R.(a, b, c) = 
( a V b) /\ ( -,a V -,b V c) , the corresponding binary decision tree is shown in figure 
2 .1 ,  where dotted lines represent a value of O for the variable labelling the node 
from which they originate and solid lines represent a value of l .  

, , 
� C 

[TI Li] � 
Figure 2 .1 :  The binary decision tree representation of 
R.(a, b, c) = (a V b) f\ (-,a v -,b v c) 

A whole technology for efficient manipulation of OBDDs has been de­
veloped that works with reduced OBDDs. Reduced OBDDs are obtained by 
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eliminating redundant leaf nodes, duplicate interior nodes and redundant tests 
on the full tree until no further reduction can be made. It has been shown that 
the maximally reduced OBDD is unique, thus giving rise to a normal form for 
propositional formulas. The OBDD of our sample formula is shown in figure 
2.2. 

' ' 
' ' 
' ' 

' 
' 

Œr 
Figure 2.2 : The OBDD representation of R(a, b, c) = (a V b) /\ (-,a V -,b V c) 

Since the transition relation can be expressed as a boolean formula in 
two sets of variables, one relative to the current state and the other relative to 
the next state, this makes it possible to represent predicate transformers and 
fixpoints as OBDDs. Model checking using OBDDs 

We assume here that the propositions AP are rich enough to distinguish 
each state, so that a state is uniquely identified by a conjunction of AP formulae. 
This can always be obtained by increasing AP. 

One could, for instance, want to compute the states satisfying the formula 
E O cp. Let cp(x) be a boolean formula on the boolean variables x, where x is 
a vector of boolean state variables, i.e. an OBDD, representing the set of states 
satisfying cp. The set of states satisfying E O cp can be computed as 

(E O cp) (x) = 3x' . (cp(x) [x' /x] /\ R(x, x')) 

Where cp(x)[x' /x] represents the simultaneous substitution in cp(x) of vari­
ables x with the corresponding variables x' . This operation, called relational 
product, can be performed as atomic operation on OBDDs. 

These symbolic representation techniques are also called implicit repre­
sentation of the transition system, with respect to the previous approach that explicitly generates all possible states. Propositional satisfiability techniques {SAT) 

If we consider bounded model checking, i.e. considering only paths of 
bounded length k ,  we are able to use more efficient propositional decision pro­
cedures [BCc+ggJ. 
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Bounded model checking is obviously concerned with finding counterex­
amples of limited length k. This can be computed quite efficiently by incre­
menting the bound k, and after a predefined number of iterations, state that no 
counterexample reasonably exists, and that the specification hence holds. 

Actually every counter-example (violation) found by such techniques are 
really counter-example of the specification. But if no counter-example is found 
for a depth k we cannot conclude with certainty in the correctness of the prop­
erty, since one could find a violation if the depth is increased. We hence suppose 
that, if the specification holds for k reasonably high, it holds for greater depths 
too. This reasonable limit can be computed, but is exponential for general prop­
erties. For safety properties, nevertheless, the number of iterations is bounded 
by the diameter of the automaton that represents the design. 

2.4.4 Efficient LTL model checking 

Efficient LTL model checking algorithms are often linear within the size of 
the model, even if exponential in the length of the formula. This high complexity 
makes real LTL model checking quite expensive for long formulas (CGP99). 

Another approach has been used by (EOK9 4] to reduce LTL model check­
ing to CTL model checking with fairness constraints. 

The intuition of their method relies upon an interesting idea: once we 
have build the tableau construction of the negation of the LTL property f to 
be checked (see section 2 . 3 . 2), we can combine the design and the property 
into the input format of a CTL model checker ( thus avoiding the expensive 
product automaton), coupled with fairness constraints to make sure that all 
eventualities of the form cp1 U cp2 in f are fulfilled, i.e. whenever cp1 U cp2 holds, 
it has to hold until cp2 holds. By checking the CTL formula ED true on the 
"extended" design, with the described fairness constraints, we can find the set 
of all the states s such that the formula f holds along every path that begins 
at s, using a traditional FairC TL model checking algorithm. This set of states 
can finally be translated in terms of the variables of the design, to find out the 
set of states of the system where the formula f holds. 

This approach has been made possible since symbolic, i.e. OBDDs tech­
nique are now available to depict large set of states, and in the meanwhile 
compute efficiently some complex operations (see section 2 . 4 . 3). 

2 .5  Safety properties and invariance checking 

2.5 .1  Underlying intuition 

We presented many formalisms with rather comprehensive expressiveness, 
LSCs, automata, linear or branching temporal logics. In many applications, 
however, it is sufficient (and often more intuitive) to specify a system in terms 
of rather simple assertions. 

There are two important classes of properties that one usually wants to 
verify for a given system: 



46 Chapter 2 Madel Checking 

Safety properties These are properties that intuitively assert that "bad things 
never happen" . 

Liveness properties Properties in this class state that "good things happen 
eventually" . They are also referred to as eventuality or progress properties. 

One of the simplest forms of temporal specification is in terms of invari­
ants and safety properties. A formula p is an invariant of the system under 
development if p is true in all reachable states of the design. This can be ex­
pressed in CTL, by a safety formula of the form AD p, where p is a propositional 
formula. 

Safety properties have been widely researched since they meet the tra­
ditional invariant-based proof mechanism: once p is identified as an invariant 
of the system, one can rely on p to prove other (more complex) properties, 
using p as induction step: if M I= (p ===} Prop) we can directly state that 
M I= AD Prop, using a simple induction argument over reachable states. 

2.5.2 Checking invariants 

The traditional model checking (see 2 .3.3 ), even symbolic, will compute 
such a safety formula using a fix point characterization, checking whether p 
holds in current states and AD p holds in all next states. Such a computation 
is quite inefficient, and many techniques were made to optimize the particular 
check of such formulas. 

If we already know which states are reachable it is sufficient to perform 
a test of set inclusion between the set of reachable states (R) and the states 
represented by p (CGP99], i.e. R Ç P. 

Algorithms were found (RS99) to perform invariant checking on-the-fly. 
This is especially efficient for falsification tests which does not need to compute 
the whole reachable states space. This is performed by verifying at each step k 
of the reachability analysis the following condition: 

where Rk (x) is the set of states reachable in k or fewer steps. If this test 
fails, then the invariant is not verified, and a counterexample leading to a state 
not satisfying the property is provided. We are then allowed not to compute 
the whole reachable state space. 
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Practical model checking 

3 .1  Model checking tools survey 

The actual verification tools follow the path of their ancestors, looking 
around for means of power and efficiency. The encountered means range from 
more expressive formalisms to more efficient algorithms. Sorne approaches that 
took opposite ways are now often used together, as they provide many interest­
ing, and different advantages. Sorne of these different approaches were described 
in section 2.4. Let's remind the techniques of symbolic model checking (2.4.3 ) 
handles large designs, i.e. systems with many (possibly infinitely many) states, 
while composition techniques (2.4. 1 )  allows to consider designs with many more 
components 

In the remainder of this section we briefly introduce well-known model 
checking tools, either of academic or commercial origin, which implement the 
methods presented in the previous sections. 

EMC (Extended Model Checker) was one of the first model checkers to 
be implemented, in 19 8 6. It constructs an explicit representation of the state 
graph from a program written in a subset of CSP and supports model checking 
of formulas in CTL with fairness considerations. 

Murphy is a description language proposed by David Dill in 1996, the 
same name has been used to designate an explicit state model-checking system 
related to this language. Specifications in Murphy are given as simple safety 
properties, which are verified by explicit state space traversai. Extensions to 
the Murphy system exploit techniques to reduce the size of the representation 
of the reachable state space. SMV was previously developed at Carnegie Mellon University (CMU). It 
is probably the most widely used symbolic model checker to date, if we associate 
it with both the academic tools (SMV and NuSMV) and the commercial tool 
(CadenceSMV). System descriptions in the SMV language are given in a finite 
state machine fashion, using equations to determine a next-state relation. SMV 
programs may be structured into parameterized modules. SMV model checks 
specifications given in CTL with respect to fairness considerations. NuSMV 
model checker supports LTL specifications, symbolically checked using the ap­
proach described in section 2.4.4. 

47 
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CVE is an industrial verification environment developed at Siemens. It 
supports model checking of designs described in VHDL or EDIF against spec­
ifications given in a temporal logic called CIL, a subset of CTL. If an error is 
detected, CVE can generate a VHDL test-bench that exposes the fault. Com­
mercial extensions to this product were made that support Verilog as well. RuleBase, developed at IBM, is an industry-oriented model-checking tool 
built on SMV that provides a graphical user interface, a temporal logic defined 
on top of CTL,  support for VHDL and Verilog, and debugging support. VIS integrates model checking with other verification techniques. VIS ac­
cepts design descriptions in a synthesizable subset of Verilog, and supports CTL 
model checking with fairness constraints. Interaction with the SIS synthesis tool 
is provided through a common intermediate format. The VIS model checker is 
described in more details in section 3.2. SPIN is a model checker targeted at the high-level verification of dis­
tributed systems. SPIN accepts model descriptions in the model language 
PROMELA, which provides high-level constructs such as communication chan­
nels. SPIN accepts LTL specifications and verifies them using language contain­
ment (introduced in section 2.1.3). 

The FormalCheck tool , marketed by Bell Labs Design Automation, uses 
COSPAN as verification engine, which is based on language containment. 

The Mocha specification and verification environment is developed by 
three American universities. The design is detailed in terms of reactive modules, 
supporting modular and hierarchical structuring. Mocha recognizes Alternat­
ing Temporal Logic specifications (including CTL). Above ATL symbolic model 
checking based on BDD engines developed at VIS, this tool allows invariant 
check and decomposition, among other features. 

Many other products are available, ranging from a single model checker 
kernel to a complete tool suite, and more appear each month, since hardware 
and software verification is a growing area of formai verification. 

It is interesting to note that capacity and performance on one sicle and ease 
of use on the other, are pointed out by most companies as strong points of their 
tools. This indicates that these factors are regarded as the most competitive. 

In the next sections of this chapter we will describe two real model ver­
ification environments, VIS and STATEMATE, which were used together to 
support the present report, as the second integrates the first. Afterwards we 
will focus on the common habits and important phases of a verification process. 

3 .2  The VIS model checker 

VIS is a verification and synthesis system for finite-state hardware sys­
tems, developed at Berkeley and Boulder. This integrated system allows hier­
archical definition, manipulation and verification of designs. 

This tool belongs to the hybrid class of model checkers that allows both 
CTL model checking and language emptiness checks (see 2.1). 
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3.2 .1  VIS overview 

As shown in figure 3. 1, VIS is composed of three main parts, including a 
front-end able to read and traverse a hierarchical system described in BLIF-MV, 
possibly compiled from some high-level language like Verilog; a verification core, 
concerned with model checking of FairCTL and language emptiness, and finally 
a synthesis part, using the SIS tool allowing logic optimizations of designs. 

Verilo 

VIS 

Front end 
- traversai of hierarchy 

Verification Synthesls 
- model checking - state minimization 
- equivalence checking - state encoding 
- cycle-base simulation - restructurating hierarchy 

Figure 3.1: VIS overview 

The verification core of VIS [BHSV+ 9 6] provides tools to check whether 
models fulfill FairCTL formulas (see 2.2. 3) and language emptiness checks, even 
if language containment is not available yet. This system integrates a support 
of fairness constraints of generalized Büchi type, i.e. sets of states that must be 
visited infinitely often. 

Regarding the verification facilities, VIS preserves the hierarchical struc­
tures within all the operations it provides, as state minimization or symbolic 
encoding. 

3.2 .2 Designs description 

Specialized languages have been developed for long to describe digital 
systems, called Hardware Description Languages (HDL). Such systems may be 
described at a high level of abstraction, such as the architectural or behavioral level, as well as lower implementation levels, such as the switch level, describing 
the layout of the wires, resistors and transistors on an integrated circuit chip, 
or at the gate level through logical gates and flip flops in a digital system. 

A primary use of HDLs is the simulation of designs before the designer 
must commit to fabrication. The two most widely used languages for digital 
design are Verilog and VHDL, respectively based on C and ADA. The VIS 
system currently supports Verilog, even if translators to its intermediate BLIF­
MV format could easily be written that accept other HDLs. 
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Verilog survey 

As Verilog HDL (TM91, Hyd9 5) supports all of the previously described 
levels, it fits well the possibility of hierarchy support supplied by VIS. This HDL 
allows mixed-level description of hardware design in terms of static structures 
and dynamic behaviors. 

A specification in Verilog consists of a set of modules . Each of these 
modules can represent pieces of software or hardware, ranging from simple gates 
to complete systems such as microprocessors, and it has an interface to other 
modules to describe how they internet. The top level module specifies a closed 
system containing both test data and hardware models. Component modules 
normally have input and output ports and are driven through events which 
occurs on their input ports, causing changes on the outputs. An event can be 
either a change in the value of a wire variable or in the value of a register 
variable, abbreviated reg, or it can be an explicitly generated abstract event. 

Modules can either be specified behaviorally or structurally, or by a com­
bination of the two. A behavioral specification defines the behavior of a digital 
system (module) using traditional programming language constructs, like IF­
THEN-ELSE constructions or assignment statements. A structural specifica­
tion expresses the behavior of a digital system as a hierarchical interconnection 
of sub modules. At the bottom of the hierarchy the components must be prim­
itives or specified behaviorally. Verilog primitives include logical gates as well 
as pass transistors (switches). 

AU the modules of a design run concurrently and communicate with each 
other through a set of channels, actually wire variables declared in the modules 
to which these channels belongs. Different access modes are considered depend­
ing on the channel type: through wire ports we assume a module can input and 
output to a channel instantaneously, while through a register port it takes one 
unit time and therefore gets a storage element to remember the channel's value. 

The top level module invokes instances of other modules. Within each 
module we can find many legal operations as continuous assignments and pro­
cedural blocks which run in parallel with all module instances. The execution 
of each continuous assignment, basic block in a procedural block and module 
instance in one procedural block in the same module is assumed to be atomic 
within each instant. If there is more than one procedural block in the same 
module and outputs of one are inputs to another, then the simulated result may 
depend on how expressions from different blocks are interleaved by the Verilog 
simulator. 

Subset of the Verilog elements supported by VIS 

The front-end to Verilog used in VIS, called VL2MV , extracts a set of 
interacting finite state machines from the Verilog source code into the VIS in­
termediate format BLIF-MV. Sorne extensions to Verilog are also supported by 
BLIF-MV (BHSV+9 6, Che91), including a particular nondeterministic construc­
tion and a way to deal with symbolic variables. 

The assignment statements are distributed in two categories, continuous 
and procedural (Hyd9 5). Procedural assignments can be either blocking or non­
blocking. Continuous assignments (written assign) drive wire variables and are 
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always active, i.e., they are evaluated and updated instantaneously whenever 
any input changes. Such assignments describe the combinatorial behavior of a 
circuit. Blocking procedural assignments (written = within a procedural block) 
acts much like assignments of traditional programming languages: the whole 
statement is executed before control passes on to the next statement. Non­
blocking procedural assignments ( written <=) evaluates all the right-hand sicles 
for the current time unit and assigns all the left-hand sicles simultaneously at 
the very beginning of next time slot, thus deferring the assignment without 
blocking the execution of statements in a block. Even if this mechanism is 
supported in VIS its usage should be avoided since it might introduce unwanted 
nondeterminism if, for instance, two non-blocking assignments allow different 
values to the same variable, the final value will then depend on the scheduling 
of the operations. 

A nondeterministic construct ($ND) has been added to Verilog [BHSV +9 6, 
Che91], allowing to assign nondeterministically many values to a single wire 
variable, and it is the only legal way to introduce nondeterminism in VIS. For 
example one can output nondeterministically the values GO or NOGO at a 
particular state using the Verilog code fragment showed in figure 3.2. 

assign r=$ND{GO , NOGO} ; 

alYaysQ(posedge clk) begin 

state = r ;  

end 

Figure 3.2 : Verilog code: a nondeterministic output 

VL2MV extends Verilog to allow users to declare symbolic variables using 
an enumerated type mechanism. It can be regarded as declaring a named set 
consisting of all possible values for the symbolic variable. As an example let us 
assume a state of a man could be working , eating , playing or sleeping, 
we are then allowed to declare a symbolic type status_t which ranges over the 
possible states of a man in figure 3.3 , and further use this type in the declaration 
of wire or reg variables. 

typedef enum status_t {working, eating, playing, sleeping} ; 

Figure 3.3 : Verilog code: symbolic type declaration 

Verilog code execution 

A Verilog simulator is an event-driven scheduler, events generated by mod­
ules are scheduled for discrete time and placed on a wait queue. The simulator 
coordinates between the modules that produce or consume them but it does 
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not generate any event by itself. We call it therefore a passive scheduler. The 
earliest events are at the front of the wait queue and the later events are behind 
them. The simulator removes all the events for the current simulation time 
from the queue and processes them. During the processing, more events may be 
created and placed in the proper place in the queue for later processing. When 
all the events of the current time have been processed, the next clocking event 
is chosen by the simulator and simulation time is advanced accordingly to the 
time stamp of next scheduled event. 

The clocking discipline concerning events can either be implicit or explicit[TM9 1, 
Hyd 9 5]. 

When all the transitions of the system are synchronized by an implicit time 
it is called implicitly clocked system. For such systems no hardware resources are 
to be allocated for synchronization, one just allocates a symbolic latch for each 
reg variable and drops all synchronization variables. This implicitly clocked 
semantic is default in VIS. 

For some designs the operation of a system depends explicitly on several 
phases of many synchronization signais ( clocks ). The Verilog language provides 
some types of explicit timing contrais over when procedural statements are to 
occur for such explicitly clocked systems, considering that the synchronization 
has to be completely implemented into hardware. The first type of available 
control is a delay control in which an expression specifies the time duration 
between initially encountering a statement and when it is actually executed. The 
second type of timing control is the event expression, which allows statement 
execution. There are also ways to wait for a variable to take some defined value, 
quite similar to the well-known wai t statement in C. 

3.2 .3 BLIF-MV 

BLIF-MV is a low-level language designed for describing hierarchical se­quential systems, it supports nondeterminism [Kuk 9 6]. A BLIF-MV system can 
be composed of interacting seqliential subsystems, each of which can be again 
described as a collection of communicating subsystems. The original hierar­
chy specified in BLIF-MV is preserved within the VIS internai data structure, 
allowing true hierarchical synthesis and verification. 

Moreover, this language allows nondeterministic gates, that generate some 
output from a set of predefined outputs, and hence makes it possible to model 
nondeterministic systems. Such designs are crucial in formai verification since 
designs in early stages are likely to contain non-determinism. Lastly, BLIF-MV 
supports multi-valued variables, which can be used to simplify system descrip­
tions. 

We can describe the semantics of this language as a simple extension of 
the standard semantic of synchronous single-clocked digital circuit. At every 
time point, the system is in some state where each latch has a value. An initial state of the system is a state where every latch takes a value from its set of initial 
values. A system can have more than one initial state, in general. At every dock 
tick, all the latches update their values. These values then propagate through 
tables until all the wires have a consistent set of values, until stabilization. A 
latch that could be encountered during the propagation, because an output of 
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a table can be an input of a latch, act as a one-time-unit memory, stopping the 
propagation process on this channel and remembering the channel value until 
next dock tick. Because of nondeterminism, given a single state, there may be 
several consistent sets of values. 

A design in BLIF-MV is composed of several Finite State Machines (FSM). 
The interaction of some of these FSMs during the model checking computing is 
shown in figure 3.4. The different FSMs depicted are 

• IsValidinp Observer which checks whether the provided inputs are in 
valid ranges, with respect to their domain. 

• Behavior which is the FSM representation of the design 
• Properties Observer which is actually many FSM running in parallel, 

each representing one specification to be checked. 
• Assumptions Observer which is the FSM that verifies that the fairness 

constraints are respected. 

----- '•,,,_ _________ ... 
f Falmess Constralnt ! ' ' , ... _ ---- ---------- __ .. , 

Figure 3.4: The VIS model checker kernel 

3.2.4 Language emptiness 
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We introduced in 2.3.4 the automata-based approach of model checking, 
that actually checks whether the language of the intersection L(S) n L(P) = 0, 
where S is the automaton of the system and P the one of the property to be 
checked. 

Vis currently does not support language containment, since the comple­
mentation of a nondeterministic FSM is bard (see 2.3.4) .  But if the user is 
able to supply the model checker with the complement of the property to be 
checked, VIS is able to do the emptiness check. Actually this check is reduced 
to a CTL check of the formula ED true , which gives an infinite path satisfying 
the appropriate fairness conditions if there is some. 
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3.2.5 Safety formulas 

The particular CTL formulas of the form AD f, where f is a quantifier-free 
formula, are called safety formulas, they express that f is true in all reachable 
states, as we already explained it in section 2. 5. VIS implements a specialized 
(hence expected to be more efficient) algorithm for these formulas, working by 
forward reachability analysis. 

3.3 The Statemate environment 

STATEMATE is a widely used graphical specification tool. lt is developed 
by 1-Logix Inc., since 19 87, and is mainly used for the development of embedded 
systems [I-L00b). 

The STATEMATE tool-set captures the phases of specification, analysis, 
design and documentation of complex designs. A system under development 
may be described from three different points of view, covering respectively the 
structural, functional and behavioral aspects of the design, through different 
formalisms. 

For the verification of designs, STATEMATE uses the technique of mode! 
checking through two integrated mode! checkers. The first one, called SVE, is 
made by Siemens. It accepts symbolic representation of the system as a finite 
state machine and (branching time) temporal logic requirements. The second 
one, the VIS mode! checker, has been previously described in section 3.2. 

A set of tools is included within the tool-set in order to translate the 
designs into the finite state machines required by both mode! checkers. In 
our environment we mainly use Symbolic Timing Diagrams [F J9 6] and Live 
Sequence Charts (section 1.2) for the specification of the expected behaviors. 

If a design does not meet the requirement specification the mode! checker 
generates a counterexample. This counterexample can be translated by STATE­
MATE into a timing diagram or a stimulus for the STATEMATE simulator, such 
a visualization is a convenient help to the designer. 

The next sections describe some key features of the STATEMATE verifica­
tion environment, including some of the supported languages and related tools. 
We then point out some semantic remarks, more details on semantics can be 
found in [HP9 8, HN9 6). 

3.3.1 Features quick tour 

We won't describe all the features of this enormous environment, as it is 
concerned with many related problems, but will focus on the verification aspect 
with the initial requirements, the specification set that expresses them, help 
to model the design, verification and correction means, and finally the help 
provided by STATEMATE for the development of the real system. Drawing the model 

A designer can create a model of a system under development with Module­
Charts to describe the physical components and their interconnections, Activity-
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Charts to specify the activities, data and data-control flows between activities. 
And finally, activities that are not refined into other ones can be depicted using Statecharts. 

Statecharts can be viewed as finite state machines (FSM) enhanced with 
hierarchy and other mechanisms like broadcasting between all the charts [HP9 8]. 
Many state machines are included into a statechart, possibly activated by one 
of their active parents FSM. Statecharts describe when and how activities of 
the design react to stimuli, i.e. they implement the behavior of the specified 
controller. Timing considerations are added through actions scheduling and 
events generation, both paired with an occurrence time. Within STATEMATE 
the real-time behavior of a system is evaluated with respect to a virtual dock. 

Data types 

STATEMATE supports most of the common data types as bit, integer, 
real, array, record, union, queue. All the elements of the charts formalisms we 
cited corresponds to one of theses data-types, and are referenced within three 
categories that specify how they are handled. Events are considered as instan­
taneous elements, conditions are the STATEMATE variant of boolean variables 
and data-items are the memory elements. 

Obtaining the right specification 

The specifications made may be executed, or graphically simulated, so 
the system engineer can explore scenarios to determine if the behavior and 
the interactions between system elements are correct. These scenarios can be 
captured and included in tests to be run on the embedded system, ensuring that 
what gets built meets what was specified. All these operations are implemented 
through different tools within STATEMATE . The executable specification is also 
an interesting medium between the developer and the end user, confirming the 
specification meets his requirements. 

Statemate as a simple interface for the mode! checker 

All the design information can be automatically translated into the input 
language of the model checker kernel by the tool. On the other hand the user 
has to define the properties to be checked, we mostly use STDs or LSCs to 
describe these properties. 

An even more interesting approach of STATEMATE is to help the user to 
build up the more interesting ( often more complicated too) specifications, this 
is clone by the so-called mode} certifier. 

Correction of the design 

A model certifier is included within STATEMATE that helps the user in 
defining the properties to be checked. Properties can be expressed by using pre­
defined property patterns. Knowing the semantics of these patterns, the user 
can sometimes define very complex properties very easily, combining them to­
gether and instantiating the pattern parameters with expressions corresponding 
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to his design. Sorne patterns available in the model certifier are illustrated in 
appendix B. 

The model certifier also allows the definition of very complex assumptions 
by using the same pattern library. A further extension of this tool is the ab­
straction capability, which makes it possible to handle relatively large designs 
for the certification. We described abstraction methods in section 2. 4 .2 .  

The errors shown by the model certification phase often provide a coun­
terexample, which can be translated into (more) understandable graphical for­
malisms to allow the user to detect the error within its design. Valuable addi­
tional information is provided, relying on all available information, such as the 
types of the involved variables or counters. 

Regarding the properties that can be verified we want to mention some au­
tomatically verified robustness properties, what STATEMATE ca.lls "debugging" 
the model. These debugging facilities cover amongst other simultaneous activa­
tion of conflicting transitions, several write accesses to a single data-item in the 
same step and parallel read- and write-access to the same object. 

The verification environment offers simple reachability mechanisms to 
drive the simulation to some user provided state or property, too. One can 
use such an analysis to verify, for instance, that states indicating fatal errors 
are not reachable, or to achieve simulation prefixes. 

Code generation 

STATEMATE allows the user to convert the formal design into C or ADA 
code (for software developers) and VHDL or Verilog code (for hardware en­
gineers) . By creating these virtual prototypes both the developers and the 
engineers are able to present a prototype to the end-user in the very first stage 
of the development, ensuring the design is what the user wants. 

and many more 

Besicles the key features highlighted above, STATEMATE provides many 
more tools, as useful as automatic documentation generator, requirement trace­
ability or revision management interfaces. A more complete documentation can 
be found at I-Logix. 

3.3.2 Semantics remarks 

The semantics of STATEMATE i.e. the one of Statecharts, has been 
heavily controversed, since this "unofficial" language was used by many, who 
all gave it their own interpretation, sometimes pretending it was the official 
semantics of Statecharts, even if there is none. 

In the remainder of this section we quickly sketch the way the STATEMATE 
environment considers time, i.e. the way it should be implemented, more details 
can be found in [HN9 6] or in chapter 6 of [HP98]. 
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Time nature 
Combinations of the three charts of STATEMATE describe scenarios con­

sisting of steps triggered by external changes and the advance of time. The 
execution of such a scenario may also generate a chain of steps to be clone, so 
could any internai module. 

This illustrates the main concern of the present semantics: the definition 
of a step, and the way time passes. Time is measured into some unit, common 
to a whole chart, but different charts can have different time units. A problem 
is thus to handle time. 

Two different time schemes are proposed by [HP 9 8] to face the problem. 
They only assume no external change occurs within a step, whichever it is, and 
time only advances at the end of the current step, the execution of which took 
0 time unit. 

The synchronous time scheme assumes the system executes a single step 
every time unit. Each step of a design, in this semantics, corresponds to exactly 
one discrete time unit. Time increases uniformly and the environment can 
influence the valuation of variables between two successive steps. The execution 
of a scenario using this semantics proceeds in cycles composed of: step execution 
- time increment - external changes collect - next step execution -.. . Such a 
behavior fits well electronic designs for instance, where the real execution is 
synchronized with a clock signal. This semantics is called step semantics. 

The asynchronous time scheme allows several steps to take place within 
the same time unit. In general, external changes can occur at any moment 
between steps, and several such changes can occur simultaneously. This "super­
step" performs a chain of internai steps, initiated by an external change, until 
reaching a stable state, i.e no more internai steps are queued. Then only time ad­
vances and the system accepts new stimuli, defining new changes to be queued. 
This semantics is known as super-step semantics. 

STATEMATE supports the synchronous (step) semantics, as well as the 
so-called asynchronous (super-step) semantics. 

3.4 Approximations 

Many important approximations or language restrictions where made along 
the history of model checking. Such simplifications were essential to allow for­
mal verification to progress, as they made the faced problems smaller, simply 
by putting aside some (less interesting) parts of the complete problem. 

We describe the approximations we make within our model checking en­
vironment in the next sections, regarding our particular TBA format in section 
3. 4. 1, and in the model checking steps we use in section 3. 4. 2 

3.4.1 Specification restrictions 

As we previously explained, we do use a set of existing properties (pat­
terns) which are reused to define the specifications to be checked on designs un­
der development. To allow such a modularity we dissociate the finite character 
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of a specification which belongs to our library of properties and provide, besicles, 
a means to characterize the "un-finite" character of the property, through the 
activation modes (see 1 . 5) . 

This way of doing is quite intuitive since all infinite behaviors of a system 
that one could want to verify can reasonably be expected to show a cycle, 
i.e. the same succession of states, which we describe only once, and reactivate 
accordingly to our needs, through the activation modes (see section 1 . 5 ) .  

To express the finite part of the property is one of our real challenges, and 
this is clone using the formalisms we described previously: Live Sequence Charts 
(see section 1 .2 ), timed automaton (see section 1 .3 .2 ), sometimes Linear Tem­
poral Logic formulas (see section 2 .2 . 1 )  or Symbolic Timing Diagrams (STD) . 
We don't describe the latter formalism in this report as it doesn't provide any 
new element to the topic covered, one could refer to (FJ9 6] for such information. 

As we are only interested in expressing finite properties we restrain the 
used formalisms. LSCs (and STDs) intrinsically match our purpose, actually 
they both use exactly the concept of activation mode and finite property. There­
fore no adjustment has to be made. 

TBAs resulting from the unwinding procedure have been shown to be 
acyclic in section 1 . 6.2 , even if we allow to stay in the current state while time 
goes on. Since this particularity is quite interesting on the efficiency level (as 
explained in chapter 4), we impose it as a formalism restriction. 

To be checked, LTL properties have to be translated into automata (see 
2 .3 .2 ), but the automata formalism we use is cycle-free. This restriction deter­
mines some LTL properties we are able to handle, i .e. the ones that guarantee 
cycle-freedom and finiteness of their corresponding TBA. Formally, the LTL for­
mulas our environment accepts cannot have any nested □ (Globally) operator, 
as it would be unwound into a cycle. 

3.4.2 Environment approximations 

Finite state formal verification cannot, at the present time, deal with infi­
nite data types. Such types are used to declare design variables, e.g. unbounded 
integer or reals. It is worth mentioning that the verification tool set of VIS of­
fers abstraction and approximation techniques in order to be able to apply finite 
state verification methods to these designs. Such techniques were introduced in 
section 2 . 4 . 

We specify our properties using different linear time formalisms because 
such an intellectual process is easier for the designers. The linear time framework 
is more natural for anyone rather than trying to think "branchingly" . The 
experience of IBM with the RuleBase system gives evidence about the difficulty 
for most users to understand non trivial CTL formulas, as it is simply much 
harder to reason about computation trees than about linear properties. 

The VIS model checker is a branching time model checker, as we presented 
it in section 3 .2 .  Hence the properties are approximated into their branching 
counterpart before being checked. 

We transform the LTL formula into a CTL property by adding A be­
fore any temporal operator, thus checking the target formula on any possible 
path. It is obvious this changes the meaning of the property, for instance the 
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LTL equivalence O (p V q) = O p V O q does not hold anymore in our approxi­
mated CTL: A O (p V q) =t. A O p V A O q which is stronger. When the CTL­
approximated model checking fails we are not always able to guess whether it 
failed because of the models that does not fulfill the requirement, or because of 
our approximation being too restrictive with respect to the initial specification. 



Chapter 4 

Finite acceptance on 

infinite words 

The habit in formal verification is to define an interesting class of lan­
guages and study it to find its properties. This chapter is written the other 
way round. We first define interesting properties, and then characterize the 
language for which these properties hold. Indeed, we had a good intuition from 
the beginning of the expected result, which turns out to be effectively of interest 
for model checking. 

In section 4.1 we define possibly interesting acceptance criteria and eval­
uate their strength. The second of these criteria seems to be of interest and we 
compare it with the acceptance condition of Büchi in a theorem in section 4.2. 
We extend the range of the theorem ( 4.2.2) and finally define a class of speci­
fications, in section 4.3, that can be verified efficiently using state reachability 
techniques instead of traditional (fair) model checking ones. A small conclu­
sion is given in 4.4 that situates our propositions within the current formal 
verification context. 

4.1  Acceptance criteria 

4.1 . 1  Many criteria 

We explained in section 1.3 .1  the acceptance criterion of Büchi on finite 
automata running over infinite words: any run p of the automaton A over the 
word a is accepting iff some accepting state of A appears infinitely often in p. 

We could offer other acceptance criteria, easier to check than the one 
of Büchi . A property expressed by a nondeterministic TBA takes at least a 
time 0(2n 109 n) to be checked, where n is the size of the set of states (see 
2.3.4). Many other acceptance conditions are described in [Tho90] , such as the 
1-acceptance which accepts a word o: E :Ew iff o: belongs to an open w-language. 

61 
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Finite acceptance 

A possibly interesting new acceptance criterion relies on the definition of 
a finitely accepting state, defined in section 1.5.3. Such a state is au acceptiug 
state with no outgoing transition, and its stable condition is simply true. 

We say that an infinite run p on a finite automaton A is finitely accepted 
iff p reaches a finitely accepting state of A. 

More formally let A be the TBA (AP, S,  so ,  C, -t, F, SC) and (a-, r) = 
( a-o, To) ( a-1, T1 ) . . . a timed word with a-; E AP. We say that A finitely accepts 
(a-, r) iff there exists a run tr : (s0 , vo) � (s1, v1) � . . .  where, for some 

TO Tt 

j 2: 0 :  8j E F /\ 'v'(8k, bk, rk , 'Yk, 8k+1 ) E -t: 8k =/:- 8j /\ SC(sj) = true . 

Evaluation 

The language defined by the finite acceptance on an automaton A is dearly 
a subset of the language defined by the Büchi acceptance condition on A, since 
any finitely accepting state belongs by definition to F, the set of accepting states 
of A. Nevertheless this finitely acceptance criterion seems not to be powerful 
enough to be of any use. For instance, it does not accept a single word on the 
timed automaton of figure 1. 4 on page 17, since there is no finitely accepting 
state in this automaton. 

On the other hand the model checking of a property represented by a 
Büchi automaton on words is quite hard to compute: it implies an exponential 
blow up using language containment (see 2 .3. 4). We describe in section 4 . 1 .2 
another acceptance criteria, which turns out to be strong enough to be of inter­
est, especially on some particular TBAs, allowing the represented property to 
be computed in a time linear of the state space 4.1.3. 

4.1 .2 Non-failure acceptance 

Let us figure a timed w-automaton such that all its unfair (not accepting) 
states have to be left within a finite (bounded) time. We say that such a 
state is constrained by a dock, i.e. its stable condition is labelled by a dock 
predicate which sets an upper bound on (at least) one dock, and this bound is 
not a.rbitra.ry big. The same way, we call an automaton constrained iff all its 
unfair states are constrained. 

Figure 4 . 1  exhibits such an automaton, all the unfair states (so and 81) of 
which are constrained. 

Lemma 1 One ca.n assert that, if a.Il the unfair states of an automaton are 
constrained, a.ny a.ccepting run will finitely reach and stay in an accepting state. 
This holds because there are no backleading transitions in the automaton. In 
our exa.mple a fair state (82 or 83) is reached within at most 8 steps (2 before 
reaching s1 and 6 from 81 to s3). 

We now introduce a "sink state" in our automaton of figure 4 .1  to make it 
complete. An automaton on :E is complete if it has a run on every word in :Ew . 
The sink state is such that we are always able to take at least one transition 
or stay in the current state, whatever the input ma.y be. It should not change 
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Figure 4 . 1 : A constrained automaton 

the language of the automaton and is therefore not accepting. Moreover, it is 
labelled by a true stable condition, has no outgoing transitions and is reachable 
from any state of the graph through a transition labelled with the negated 
disjunction of all outgoing transitions and stable condition of the considered 
state, as illustrated in figure 4.2 . 

We certify that this added sink-state does not change the language recog­
nized by the Büchi automaton since this state is not accepting and cannot be left 
once reached. Therefore any run that goes into it could not pass infinitely often 
into an accepting state and thus not recognize new words, referring to the Büchi 
acceptance criteria. It is obvious that the addition of states and transitions does 
not either restrict the language of the modified automaton. 

It is now clear that every run of this completed automaton which never 
goes into the sink state will finitely reach an accepting state (because of lemma 
1) ,  and is therefore an accepting run. We notice that this automaton is not 
constrained anymore, because of the introduction of the sink state, the stable 
condition of which is true. Such an automaton is called a completed constrained 
automaton. 

We express the above observations by the non-failure acceptance criteria: 

Non-failure acceptance criteria We say that an infinite run p on a com­
pleted constrained (timed} automaton A is non-failure accepted iff p never 
reaches the failure state of A. 

Formally 
To be accurate let us remember all the hypotheses that are made on any 

completed constrained automaton A: 

• A is complete, 
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F igure 4 .2 :  A completed automaton 

• the transition relation of A has no backleading transitions, i .e. V(si, ui, r;, 1;, s;+1 )  
belonging to its transition relation we have: weight(B; ) < weight(B;+1 ) ,  
using the total order on states defined in 1 . 6.2. 

• except its sink state (sometimes called failure state) , whose stable con­
dition is true, every unfair state of A is constrained by a dock, i.e. its 
stable condition defines a not arbitrary big upper-bound on a dock. Let A be the TBA (AP, S, Bo , C, --t, F, SC) and (u, r) = (u0 , ro) (u1 , r1 ) . . .  a timed word with u; E AP. We Bay that A non-failure accepts (u, r) iff there existB a run tr : (Bo , vo) � (B1 , v1) � ... where, for all j 2: 0 : Bj i F ===> 

TQ Tt 3(Bk , bk , rk , Ïk , Bk+i ) E --t: Bk = Bj , Notations 
The same way a Büchi automaton designates a finite automaton on in­

finite words accepting runs accordingly to the Büchi acceptance criterion, we 
define a NFA automaton as a finite automaton on infinite words accepting runs 
accordingly to the non-failure acceptance (NFA) criterion. 

4.1.3 Invariant check 

The last formulation of the NFA criterion highlights that it is actually a 
safety condition. It states that "something bad (i.e. reaching the sink state) 
never happens" . As we told in section 2 . 5 such properties are some of the easiest 
formulas to be checked by a model checker, since they express an invariant 
property, and hence reduce to checking the reachability of a state. 
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Computing the reachability of the sink state can be clone on-the-fly, as ex­
plained in section 2 . 5 .2 . Such a verification is far more efficient than a complete 
model checking procedure. [A property translated into an IIFA automaton can be verified 

by simply checking D ( �failure) .  If  ve let failure represents the fact to enter the sink state . 

Therefore , ve do not need to check a formula vith fairness constraints ,  vhich vould be expressed 

as □ ◊ (constraint} . ]  If the same property can be expressed using NFA or Büchi 
acceptance, one should use the NFA since its verification can be implemented 
on a more efficient way. 

In the next section we describe a class of automata the expressiveness 
of which remains the same, whether they are considered as NFA automata or 
Büchi automata. 

4.2  Expressiveness theorem 

We propose the following theorem: 

Expressiveness theorem Completed constrained (timed) automaton have 
the same expressiveness whether they are considered as NFA automata or as 
Büchi automata. 

To prove this theorem we find first that any run accepted by the condition 
of Büchi condition is also accepted by the NFA criterion. The criterion of Büchi 
states that any run is accepting iff it passes infinitely often through an accepting 
state. Because there is no cycle in the transition relation of a completed con­
strained automaton, the only way to reach infinitely often an accepting states 
does never passes through the sink state, which cannot be left once reached. 
Therefore the second criteria holds for any such run. 

Secondly, we show that any run accepted by the NFA criterion is accepted 
in the sense of Büchi too. The NFA states that every accepting (infinite) run 
never goes into the sink state. We are able to ensure it will finitely reach and 
stay into an accepting state, thanks to lemma 1 (on page 4 . 1 .2 ), since any other 
(unfair) state has to be left finitely. Therefore Büchi 's criterion is satisfied as 
well. D 

The completed constrained automata are only a subset of the complete 
TBA formalism, since their requirements are severe. We show in the next sec­
tions they are nevertheless sufficient to express most the properties one could 
want to verify. 

4.2.1 'Iransitive dock constraints 

Binding docks and paths 

A dock constraint, or dock predicate, is expressed either on a transition or 
on a stable condition, but it actually constrains a whole run. In fact, an upper­
bound on a dock, either labelling a transition or a stable condition, constrains 
the length of the path portion between this transition and the earlier resets of 
this dock, or the initial state if there is no reset before it. We say that a state 
( or a transition) belonging to such a path portion is transitively constrained by 
a dock. 
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The automaton 1 of figure 4.3 highlights all the transitively constrained 
transitions and states in dotted lines. We consider there's only one dock c in 
this automaton. The R tag symbolizes a reset of the dock c, and the U (as 
"use" ) a constraining predicate (upper-bound) on c. The number in each state 
represents its weight, using the weighting fonction of 1.6.2. Other weighting 
fonctions can obviously be used, as long as they define a total order on the 
states. Explicit transitive constraints 

We propose to constrain (explicitly) any label that is transitively con­
strained by a dock upper-bound. We consider only upper-bound predicates since 
our purpose is to broaden the use of NFA automata, defined in 4.1.2. [lie could 

transitively repeat the lower-bounding predicates as well, but choose not to do since the overhead 

is heavy for only a few interesting results .  The lower-bound transitivity is actually almost 

erased by the stable conditions allowing time to pass while remaining in a state . The reader 

could nevertheless adapt the considerations on upper-bounds to lower ones . ]  

Figure 4.3 :  The states and transitions which are transitively ( 1 )  and globally 
( ibis, 2) constrained by docks 

A first idea to highlight the transitivity of dock bounds is to constrain 
( explicitly) any transitively constrained stable condition or transition of the 
automaton. Therefore, we propagate any dock upper-bound, going backwards 
from this bound up to a reset of this dock or to the initial state, as shown in 
the first automaton of figure 4.3. 

The constraint on c in the label of the transition from 41 to 50 constrains 
transitively ail the states and transitions leading from O to it, except those in 
grey since a reset is met between 2 an 6, that prevents all previous elements of 
this path from being constrained. 

Sorne portion of the newly constrained paths also belongs to ( other) non­
constrained paths as the dark grey path in automaton ibis. We hence restricted 
the language the automaton recognizes with these explicit constraints. To pre­
serve the language of the automaton we should constrain a label only when 
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every path that indudes this label is transitively constrained on the portion 
indu ding this label. Such a transition ( or state) is called globally constrained. 
This is applied in the automata ibis and 2 of figure 4.3 . 

In automaton ibis (as in 1), the state weighted 1 cannot be constrained 
since it belongs to the path in dark grey, in which the state 1 is not transitively 
constrained by c. In the last automaton (2) the dark grey path sets an upper­
bound on c in state 1 as well as any other path that indudes this state, it 
can therefore be explicitly constrained without changing the language of the 
automaton. 

In the next section we give a procedure that handles this dock manipula­
tion. 

4.2.2 Clock algorithm 

Hypotheses 

• We consider the automaton is weighted. This means that we can easily 
see between two states which is farthest from the initial state. We use the 
weight fonction described in section 1 . 6, which assigns to each state the 
sum of the weight(s) of each of its parent(s)-state(s) plus the amount of 
already weighted states, and assigns O to the initial state. 

• There is no transition in the automaton which can be statically evaluated 
to false. This ensures not to constrain too much labels, hence reducing 
the language of the automaton. 

Notations 

We explained in the semantics of the TBAs (see 1 . 6.3 ) a dock c will 
always be used with the same lower and upper bounds, let's call the upper 
bound predicate of these bounds upbound(c) .  If it was not the case, we would 
have define upbound(c) as the predicate defining an upper bound on c which is 
the supremum of all upper bounds on c in the automaton. 

To constrain a label explicitly it is sufficient to add this upbound(c) pred­
icate to its dock predicate. As a possible optimization the upbound(c) added 
could be decreased by one, as one transition is taken to reach the original bound. 

The range of a dock predicate is defined as the set of docks constrained 
by this predicate, for p E <I>(C) it is written r ange(p) . The same way, we define 
the set of docks on which the predicate puts an upper bound, for p E <I>(C) it 
is written uprange(p) . 

uprange : cI>(C) -t 2° 

uprange(c :::; b) = {c} 

uprange(c � b) = 0 
uprange(p1 /\ pz) = uprange(p1) U uprange(p2) 

Where c is a dock in C and b is a constant in N. Of course c E uprange( upbound( c)). 
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We abbreviate the set of transitions which emerge from a state s E S with outgoing(s ) ,  and the set of transitions that reach this state with incoming(s ) .  

For the sake of readability we associate the stable conditions to  usual transitions, 
like self-loops on their state, hence the stable condition of s belongs to bath outgoing(s) and incoming(s ) .  

The information contained in a label ( either of a transition or a stable 
condition) can be partially accessed using the following predicates: Reset (t) 
gives the set of docks which are reset when the transition t is taken, Cpred(t ) is 
the dock predicate of t and origin(t) gives the state from which the transition t emerges, of course origin(t) = s iff t E outgoing(s ) .  

Finally we  define formally the notations we already used. We say a tran­
sition t is constrained by a clock c if c E uprange(Cpred(t ) )  and that a state s is 
constrained by a dock c if its stable condition is. A transition or a state is simply constrained if it is constrained by at least one dock. Given a TBA we define the 
fonction constraining_paths : S x C -+  1$, such that constraining_paths(s , c) 
is true iff for all t E outgoing(s ) we have that c constrains t ,  so that the dock c constrains any path that indudes s .  If constr aining_paths (s , c) holds we say 
that s is globally constrained by c. 

Clock algorithm version 1 

The following procedure, called dock algorithm, constrains explicitly all 
the transitions and stable conditions that are globaUy constrained by any dock. 
Such an automaton is called globally constrained after this transformation. 

We give this algorithm as if there was only a single dock c in the TBA's 
dock set, as it is more readable. We can easily extend it to more docks simply 
using an adapted data format as the set of docks is finite, or by rerunning 
the procedure for any dock c E C if one does not care for efficiency, which is 
nevertheless one of our key tapie in this report . Optimized := 0 GloballyC onstrained := { s E S lconstraining_paths (s , c) } 

(inv) While (GloballyC onstrained =j, 0) do 
Choose s' E GloballyC onstrained with the maximal weight 

(I) V t E incoming(s') 
(2 ) if c </. Reset (t ) then 

(3) C pred(t) := C pred(t )  I\ upbound(c) 
if (constraining_paths (origin(t ) ,  c)) then 

(4) 1 GloballyC onstrained := GloballyC onstrained U {origin(t )}  
( 5) GloballyC onstrained := GloballyC onstrained\ { s'} Optimized := Optimized U { s'} 

Proof 

To prove the automaton recognizes the same language after being globally 
constrained by the above procedure we propose an invariant on the while loop 
("inv" label). A state is called optimized if all its incoming transitions are 
constrained by each dock that constrains this state, in this case by c. 
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Invariant 
• Gl obal lyConstrained = { s E S lconstraining_paths (s , c)/\s (j. Optimized} , Gl obal lyConstrained contains all the states which are globally constrained 

by c and have not been optimized (yet). 
• Optimized = { s  E S lconstraining_paths (s , c)/\ Vt E incoming(s ) : c (j. Reset (t ) : c E uprange(Cpred(t) ) } ,  Optimized contains all the states 

which are globally constrained by c and have already been optimized. 

This invariant is quite simple to prove: at the first step these two con-
ditions hold, since it is exactly the initialization definition. At each next step Optimized growths with the newly optimized state, which was globally con­
strained at the previous step, as it belongs to GloballyConstrained. This state 
fits the Optimized invariant statement since the (1 ) loop in procedure fulfills the 
requirement. Regarding Global lyConstrained we find that each procedure step 
adds to this set all the globally constrained states that are not yet optimized 
( 4), and removes from Global lyConstrained the (newly) optimized state ( 5), 
this is what the invariant asks for. 

Using this invariant we prove that the language of the automaton A is 
not modified by the procedure. We use an proof by induction on the number of 
optimized states, the induction step is made at (inv) in the procedure, where 
the invariant holds. Language preservation proof Let us consider i as the number of already 
optimized states by the dock algorithm, and prove the optimization of the ith 

state did not change the language of the automaton. 
i = 0 : the language of the automaton is obviously the same since no 

changes were made 
i > 0 : let's call s' the state that has just been optimized, 

for any transition t that has been modified within this step: c (j. Reset (t) from (2 ) c E uprange(Cpred(t) ) ,  c constrains t from (3 ) c E uprange(Cpred(k))Vk E outgoing(s ') from invariant 

- For all runs satisfying upbound(c) in Cpred(t) the language is the same. 
- For a run that does not satisfy upbound(c) in Cpred(t ) it cannot satisfy it in an 
of Cpred(k) , Vk E outgoing(s ' )  and will hence be rejected at next step, 
rejecting this run at current step won't change the words recognized by 
the automaton. This holds since there are no reset on stable conditions, see 1 .3 .3 

The globally constrained automaton hence accepts the same words as it 
did before applying the dock algorithm. Definition 

If the globally constrained automaton A' of an original automaton A is 
constrained, then we say that A was completely constrainable. Remember that 
A' is constrained iff the stable condition of its unfair states are labelled by a 
dock predicate which sets an upper bound on ( at least) one dock, and this 
bound is not arbitrary big. 
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In other words, a completely constrainable automaton can be translated 
into its corresponding constrained automaton simply by globally constraining. Clock algorithm version 2 

One can add two optimizations to the above procedure. Firstly, as we 
already told, we could decrease upbound(c) by 1 when adding it to the dock 
predicate of the newly constrained transition, we denote this by upbound(c)-1 

Secondly one could constrain any unfair states by a dock c such that all 
its outgoing transitions are constrained by c, except its stable condition. For 
instance, let us imagine the state s1 of the timed automaton on page 63 is not 
constrained by y.  One could add the constraint (y < 7] to its stable condition 
without changing the language of the automaton since this predicate has to be 
satisfied on any of the outgoing transitions of s1 , except its stable condition. 
It is obvious this modification does not change the language of the automaton 
since such a state cannot lead to an accepting state without being left, and 
whenever it is left the timing constraint has to hold. In practice this second 
optimization is really interesting, since it allows to ( explicitly) constrain many 
more states. 

We denote the stable condition of a state s E S by S C(s ) and write the 
fact a state is accepting through the predicate fair(s) that maps any s E S to 
true if s is accepting and to false otherwise. Optimized := 0 

{ 

(fair (s') /\ constraining_paths (s ' ,  c) V 
} GloballyConstrained := s' E S ( 1 . ( ,) /\ /\ (C d(t) )) 'J air s c E uprange pre 

tEoutgoing(s' )\SC(s' ) 

While (GloballyConstrained =/- 0) do 
Choose s1 E GloballyConstrained with the maximal weight '<:/ t E incoming(s 1) 

if c <f. Reset (t )  then Cpred(t) := Cpred(t) /\ (upbound(c)_ i )  
let s be origin(t) 
'f ( (fair(s) /\ constraining_pat hs (s , c) )  V ) th 1 (,fair(s) /\ c E uprange(Cpred(t) ) ,  '<:/t E out going(s)\SC(s) )  en 

1 GloballyConstrained := GloballyConstr ained U { s} Globally Constrained := GloballyConstrained\ { s1} Optimized := Optimized U { s 1} 
This procedure can be proved using the same reasoning as the previous 

one, we won't do it here for the sake of brevity, relying on the reader's intuition 
to bind the two situations. 

4.2.3 New expressiveness theorem 

The expressiveness theorem in 4. 2 states that any constrained automaton 
has the same expressiveness whether it is considered as a NFA automaton or as 
a Büchi automaton. 
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Using the definition of a completely constrainable automaton in 4.2.2 , we 
propose to extend this equivalence to many more TBAs, and thus to the many 
more specifications they represent: 

New expressiveness theorem Completely constrainable automata have the same expressiveness whether they are considered as NFA automata or as Büchi auto mata. 
This new version of the theorem is proved through (1) the definition of a 

completely constrainable automaton, which can be translated into a constrained 
automaton and (2 ) the fact a TBA can be completed with a sink state. These 
two transformations have been proven to preserve the language of the automa­
ton, respectively in 4. 2.2 and 4.1.2. 

4.2.4 Efficiency 

As we told in 4. 1.3 , a property expressed by a non-failure accepting timed 
automaton can be verified efficiently, using state reachability techniques. There­
fore any property that is translated into a completely constrainable automaton 
should be expressed as an NFA automaton rather than a TBA, since the equiv­
alence has been proved in the above section. 

In the next section we focus on the description of the set of properties that 
can be translated into such (completely constrainable) automata, and hence into 
NFA automata as expressive as the TBA automata corresponding to these spec­
ifications. We notice that this class of properties includes most of the properties 
one could want to verify. 

4.3 NFA on the specification level 

4.3.1 NFA on TBA level 

Regarding timed Büchi automata the expressiveness theorem holds iff the 
TBA is completely constrainable. This means all its unfair states are globally 
constrained by at least one clock . In the remainder of this section, we illustrate 
the same requirements on higher-level specification formalisms. 

4.3.2 NFA on Live Sequence Charts level 

Every state of the unwound automaton corresponds to exactly one eut of 
the original LSC, as explained in section 1 . 4. Such a state is labelled by a clock 
predicate iff there is any timing annotation or timer added to one of the location 
of this eut. This location can be either cold or hot. 

For a state to be constrained it is sufficient to have one timed location 
in its corresponding eut. For every state of the unwinding automaton to be 
constrained it would hence be sufficient to have one timed location on each eut. 
Said otherwise, the eut should cross the line of a timer whenever it crosses a 
hot line (location) . By "timed" location we mean either a location annotated 
with a timing annotation, or a location located between the set and the run out 
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of a timer on the same instance. For instance, the LSC in figure 4. 4, whose hot 
locations are all timed, does fit this requirement and will thus be unwound into 
a completely constrainable timed automaton. checking. 

Corn 1 Com 2 

[3,4) ------1 

[O, 1 ) ------• 

Figure 4. 4: LSC suitable for invariance check 

Sorne more considerations have to be taken into account: the cold and 
maximal locations are accepting, thus if a eut is composed only of cold or maxi­
mal locations its corresponding state will be accepting. Such states need not to 
be constrained. Therefore we should not consider the timing of cold locations 
into our requirements, only each eut that contains a hot location must contain 
a timed location. 

Finally, the same consideration as the transitivity of dock constraints 
holds for LSCs. Locations are sometimes depending on each other, because 
they belong to the same message, condition or simultaneous region, we can hence 
rely on timing annotations of other instances to deduce information about the 
occurrence of locations on untimed instances. 

Figure 4. 5 shows such an LSC, were the hot locations of instance COM 1 
are indirectly covered by the timer of COM 2, since the locations on both instance 
are simultaneous (because the messages are). 

More formally one could detail this notion of time cover using the simul­
taneity classes of locations, used in section 1. 4.2. 

• A location is directly time covered either iff (a) it is annotated by a timing 
annotation, or if (b) it is located between a (re)set and the expiration of 
a timer related to its instance 
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Corn 1 Com 2 

Figure 4.5: More general LSC suitable for invariance check 

• A simultaneity class C is time covered ifI there exists a location l E C 
such that 1 is directly time covered. 

• A location is time covered iff or it belongs to a time covered simultaneity 
class. 

And therefore we straightforwardly know that any LSC with ail hot loca­
tions time covered can be translated into a completely constrainable automaton. 
Allowing an efficient verification of the property it expresses. 

4.3.3 NFA on Temporal Logic level 

We can use a similar reasoning about temporal logics, but neither LTL 
nor CTL allow us to easily describe finite-timed properties. [AH9 4) introduced 
some annotations, slightly modifying the ◊ (eventually) operator, for it to 
accept lower and upper bounds. We write that a property p must eventually 
hold within 2 and 10 steps from here by ◊ [2 ,rnJP· The same notation is used 
for the U (until) operator where the bounds specify the deliverance time, e.g. 
cp1 U[2,5icp2 stands for cp1 Ucp2 and <p2 must hold within 2 to 5 steps from now. 

Once these notations are introduced we can express the class of completely 
constrainable automaton on the temporal logic level simply by saying that ail 
◊ and U operators of the formula to be checked have to be upper bounded for 
this formula to be translated into such an automaton. 

The explanation is quite intuitive since any fairness constraint in the gen­
erated TBA cornes from an until operator. Constraining it will meet the theorem 
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requirement. The same holds for ◊ since it is an abbreviation of U. 

4.4 Practicability considerations 

In this chapter we shown how some particular specifications could be 
verified efficiently using invariant checking methods, provided that they meet 
some timing requirements, i.e. if they do not include reaI (unbounded) fairness. 

In the design verification of reactive systems one could almost always 
have an idea of the reaction times of the system under development. Using real 
(unbounded) liveness could be avoided most of the time, as any designer who 
knows his system well should be able to express a reasonable time bound on a 
sequence of events. Actually unbounded liveness can be found at the first stages 
of the design, but one can define, i.e. bound, them when the design evolves. 

The success of SAT-checkers in the recent time, for instance, which cannot 
deal with real fairness and approximate infinite behavior on finite observations, 
shows that in practice one can describe all properties within a finite (bounded) 
framework. We introduced SAT-based model checking in section 2 . 4 .3 .  

For this reason we believe that the non-failure criterion is useful since it 
allows many convenient specifications to be checked using invariant check . This 
check, it is worth mentioning, improves mainly falsification verifications. 

In the next chapter we detail how these improvements were successfully 
implemented at CvOU. The unwinding automaton we characterized in chapter 
1 is optimized and translated into SMI code to be given to the model checker. 
We therefore review the SMI formalism, and explain our translation. 
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Real usage 

5 . 1  Verification environment 

We already introduced and described most of the formalisms that are 
integrated in the verification environment of the Computer Science Department 
of Carl von Ossietzky Universitat, Oldenburg (CvOU). The way they interact 
is illustrated in figure 5.1 where a new formalism, SMI, is used as intermediate 
between the already lmown "high-level" formalisms and the "low-level" model 
checker finite state machines. SMI is a simple imperative programming language 
that implements the behavior of (reactive) models by describing the relation 
between current values and next values of a set of variables. It is explained is 
section 5. 4 .  

Two situations are depicted in figure 5. 1. The current one, in white, differs 
from the initial one, in light grey, which could not yet handle LSCs. 

First, specifications were described using Symbolic Timing Diagrams (STDs) , 
a diagram based language that allows a concise and intuitive formulation of 
timed properties using collections of (waveform) diagrams [FJ9 6]. These STDs 
were unwound into TBAs [Fey9 6] using a procedure similar to the one for un­
winding of LSCs. Actually it is this procedure that inspired [KW0 l] for han­
dling LSCs. This unwinding procedure also relies on the concept of eut, here 
called phases, which exhibits any possible state of the (STD) property, and 
are straightforwardly translated into states of the resulting automaton. These 
TBAs were then transformed into TCTL, a timed variant of CTL, before be­
ing finally rewritten into SMI and given to the VIS model checker, after some 
optimizations. 

The figure 5.1 illustrates the current situation of the verification envi­
ronment, including the support for Live Sequence Charts (LSCs) specifications 
which has been added recently. Among other improvements, this language al­
lows to distinguish between possible and mandatory behaviors in the require­
ments (see 1.2 ). LSCs are translated into optimized TBAs using the unwinding 
procedure described in section 1. 4. The TBAs are then translated into SMI 
code ( 5. 5), and in BLIF-MV ( 5. 6) ,  the internai VIS formalism. 

To generate SMI code we propose, in section 5.2 , to optimize the TBAs 
resulting of the unwinding procedure. We then present the SMI formalism ( 5. 4 , 
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Model checker 

Figure 5 . 1 :  Verification environment at CvOU 

and detail the translation process in 5.5. We did not reuse the translation from 
TBAs to SMI via TCTL that already exists for STDs (in light gray) to handle 
the LSC way, since the non failure acceptance criterion defined in the previous 
chapter could not be integrated with this former approach. It is worth to men­
tion that this new translation option can be used for STDs specifications as well, 
as shown in figure 5. 1, enabling the same optimizations for these specifications 
as for LSCs. 

5 .2  TBA optimizations 

Both the LSC and the STD unwinding procedure, respectively described in 
[KW0l] and [Fey 9 6] produce an automaton that exactly represents the scenario 
described in the specification, but which is not optimal. We describe the output 
of these procedures and give some optimizations that could be made. 

5.2 .1  (non)Determinism 

In TBAs which are unwound from LSCs, nondeterminism arises when iso­lated conditions are found. A condition is called isolated if there is no reference 
point for the valuation of this condition, i.e. no other event (message sending or 
reception), which we can use to refer to. Since there is no observable reference 
point, which tells us when to èvaluate the condition, the state just before the 
condition is unwound is simply annotated with true, the most nondeterministic 
label. 

No more (explicit) nondeterminism is generated. It is still possible to 
have "hidden" nondeterminism due to overlapping proposition mappings, e.g. 
if msgl and msg2 are both mapped to the same design event e .  
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In general, nondeterministic Büchi automata are more powerful ( expres­
sive) than deterministic ones, this is why we will not try to determinize the 
automaton. Such optimizations are nevertheless already available at the SMI 
level. 

5.2.2 Static simplifications 

We can encounter some unwinding automaton with inefficient transition 
(or stable condition) label. We should hence apply the well known logical simpli­
fications, for instance ( a/\.b) V (-,af\b) should be replaced by b. Such propositional 
reductions are made possible thanks to the concise representation we choose for 
the transition labels, we should obviously apply them to stable conditions as 
well. 

The automaton generated by the unwinding procedures does never link 
two states by more tha.n one transition, as cuts are all different. Therefore we 
do never have to merge many transitions into a single one. 

Nevertheless, some transitions could have been labelled by false after sim­
plifications, possibly generating non-reachable states which should be removed 
to reduce the automaton's size. 

5.2.3 Fairness 

The latter and most important consideration involves fairness. When 
unwinding a timing diagram or a sequence chart into a TBA, the algorithm 
determines which cuts must finally be left again, the corresponding states are 
indeed not fair, not accepting. 

As explained in 1. 4.1 the unwinding algorithm moves a front through the 
chart in order to determine its cuts. Exactly one location of each instance 
belongs to such a eut. For each of these cuts a state of the TBA is generated. 
Such a eut may be stable forever iff it is composed only of cold locations or 
maximal locations. If a eut may not be stable forever it implies a following eut 
to happen finally. Therefore we mark all the states in the TBA which must be 
left finally as un/air, all the other states are fair states, in the sense that we can 
stay forever in such a state. 

Fairness considerations are a key topic when considering CTL model 
checking since these model checkers do not support fairness within the given 
properties. One have to give the fairness constraints beside the specification. 
They are individually translated into an automaton, running in parallel with 
the model checking process (see 2.2.3 ). 

In the TBA resulting from unwound LSCs or STDs a lot of fairness is 
actually bounded, i.e. one expect a fair behavior to occur within a bounded time. 
This results from the transformation of any timer into a fairness constraint. This 
bounded fairness is simpler than real fairness. Thus, one could possibly get rid 
of it. 

The fairness optimization is clone by application of the dock algorithm (of 
section 4.2.2 )to the automaton. If the globally constrained resulting automaton 
is constrained we are allowed to verify the property using invariant check, as 
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stated by the expressiveness theorem of 4.2 .3 . This verification does not take 
care of the fairness constraints, since they are all bounded fairness constraints. 

5.2 .4 Goal definition 

Regarding the initial situation depicted in 5.1 and the strength and weak­
nesses of the unwinding procedures, the following aims were defined to improve 
the former verification environment at CvOU (in light grey in figure 5 . 1 ). 

• Allow the use of LSC specifications to be used as design properties to be 
checked. 

• F ind a solution as deterministic as possible, e.g. using existing SMI tools. 
• Get rid of fairness constraints whenever possible. 
• Allow real LTL model checking, not ACTL approximation anymore (see 

3 . 4.2 ). 
• Enable iterative activation-mode support 
• Extend the witness possibility of the environment, to get a positive witness 

of the traversai of the automaton, such a purpose is also called existential 
verification. 

The creation of the targeted optimizations on the SMI level would have 
made them available on a wide scale, since SMI is an intermediate language 
used in many other fields at CvOU. But because SMI is an imperative language 
there are many different ways to represent the same situation, resulting from 
implementation choices. Particular optimizations like fairness considerations 
are hence impossible on this level. This is the major reason why we chose to 
make them on the TBA level. 

After the above described optimizations, including statical simplifications 
and fairness optimization, we are able to translate the automaton into SMI code. 

5 .3 SMI translation 

In order to perform timed verification using the VIS model checker (see 
3 .2 )  both the design and the specification set have to be translated into a for­
malism interpretable by the model checker, i .e. BLIF-MV (3 .2 .3).  

The model of the system under development is initially specified in the 
STATEMATE environment using module-, activity- and state-charts (see 3 .3 . 1 ). 
Th ose charts are translated into Fini te State Machines (FSM), expressed in the 
BLIF-MV formalism, directly understandable by the VIS model checker. 

The translation of the specification set, which is a main tapie of this report, 
is clone in three steps. The initial specifications, in Live Sequence Charts, are 
translated into optimized timed Büchi automata, this was the issue of chapters 
1 and 4. The optimized automata are then first translated into an intermediate 
language called SMI, a language for the translation of high-level formalisms into 
FS:rvls. In the last phase the generated SMI code is translated into a FSM for 
model-checking, namely BLIF-MV. 
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In the remainder of this chapter we describe the SMI formalism, in sec­
tion 5. 4, well served by many optimizations, such as determinization. These 
optimizations are not possible on the BLIF-MV level. We detail in section 5. 5 .1 
the SMI code structure and how our timed automata (of 1. 6) optimized by the 
dock algorithm ( of 4.2 .2 ) can be used for invariance checking, since it can be 
expressed by a NFA automaton ( 4. 1.3). The SMI step gives us the ability to 
(finally) handle the activation modes (see 1. 5), which are introduced into the 
produced code in section 5. 5.2 . We finally show in section 5. 5.2 how the imple­
mentation we choose gives the opportunity of an explicit witness verification[ ,  
a s  suggested by the targets of the verification environment a t  CvOU in section 5 . 2 . 4) . 

5 .4 The SMI formalism 

The System Modeling Interface (SMI) can be considered as a general lan­
guage for describing behaviors. SMI is a simple imperative programming lan­
guage, containing concepts to model hierarchy, parallelism and nondeterminism. 

5.4.1 Syntax 

Language constructs 

One SMI program, also called module, represents the behavior of a design. 
It is composed of one code black containing a single non terminating loop to 
figure the cyclic behavior of a design [Bieüla]. As pictured in figure 5.2 1 the code 
black of the while loop contains statements. This formalism offers statements for 
assignments, null operations, deterministic branches, nondeterministic branches, 
"while" loops, breaks and sequential and parallel compositions (not illustrated) . 
No fonction call nor recursive mechanism are provided. 

The branches, or cases, can be either deterministic (DCASE) or nondeter­
ministic (NDCASE). The different branching possibilities are given by guarded expressions, which are constrained (guarded) by an expression. The expres­sion language contains common boolean and numeric operators, and selection 
on arrays and records. A deterministic branch allows no overlapping between 
the guards of its guarded expression and activates the expression whose guard 
is evaluated to true. A nondeterministic one chooses between all true valued 
expressions .  

Typology and variable definition 

The supported data types include bit, integer (bounded or unbounded), 
real (bounded or unbounded), string, and enumeration. 

These basic types can be used within aggregated types like records, unions, 
arrays or queues. Besicles these, a special type, called reference, can be used to 
declare aliases to existing types. 

Any variable in SîvII code is characterized by its name, type, group, mode, 
initial value, and some additional information we do not detail here, as an in­
terna! name and the method it (possibly) uses to access memory [Bieülb]. The 

1This picture is inspired from (BieOla] 
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Figure 5.2 : The structure of a SMI program 

group of a variable depicts the role of the variable within the FSM, these roles 
include data items, events, conditions and timers. The mode ranges between 
input, output, local, observer and constant, among others. A local variable is 
particular to the concerned module, while an observer variable could be con­
sidered as a token of a defined behavior. The other modes are self-explaining. 
These additional variable information are not really constraining, but refine the 
way produced counter-examples are interpreted. 

5.4.2 Semantics 

Step semantic 

SMI implements the behavior of (reactive) models and (timed) properties 
by describing the relation between current values and next values of a set of 
variables, using a synchronous step-semantics idea. 

In SMI ail control information, variables and events of the design are 
encoded into variables. SMI provides two versions of all the var.iables present 
within the code, the primed and the unprimed. The primed variables are used 
to express the values of these variables in the next step, while the unprimed 
ones carry the value of the variable at last step. There is an implicit copy­
action when the complete SMI-Program has been executed, where the unprimed 
versions get the current values of the primed one in order to get a "stepping 
system". Assignments are allowed to primed variables only. 

The cyclic behavior of a design is expressed as a non-terminating loop in 
SMI code, following Misra and Chandy's Unity mode! [C1v1 8 8). One execution of 
this loop corresponds to exactly one step of the design, whether considering step 
semantics or the super-step semantic defined on STATEMATE designs (see section 
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3.3 .2 ). Both of these semantics are supported by the verification environment 
we use here. Conventions 

By convention, actually to allow an easy portability with other tools of 
the environment, the na.me of variables representing docks must be of the form 
znumber, e.g. z00 or z312. Similarly we rename all the states so that their 
names begin with X. 

5.4.3 Propositional architecture 

One purpose of the SMI environment is to allow a great modularity of 
each of its components. Therefore the information of a single specification ( or 
model) is split into many parts, each corresponding to a particular information 
type . We hence distinguish 

• The type definitions and variable declarations, which are put together into 
a symbol table. 

• The SMI program, the real finite state machine, as described above, any 
variable used within the code should be defined in the symbol table. 

• The mapping of each variable of the program ( declared within the symbol 
table) to the corresponding item (event, proposition, trigger, ... ) of the 
real STATEMATE design. This mapping is written into a proposition table. 

This high modularity allows specific optimizations and enhance the reusability of 
partial information. One could for instance reuse the same proposition mapping 
for many specifications, or, at contra, reuse the same specification with different 
variable definitions and/or propositional mapping. 

In the remainder of this chapter we don't distinguish anymore between 
the SMI code, the symbol table or the propositional table, as it is clear form the 
context which part we're considering. For instance variable declaration always 
belongs to symbol table, including all the mentioned additional information, 
whereas guarded expressions and code block always refer to the SMI program. 

5.4.4 A vailable opthnizations 

The SMI format is well served by manipulations and optimization tools, 
the tools within parentheses provide some valuable optimizations on SMI code 
including 

• making it more deterministic ( smidet) 
• computing the cone of influence (smicoi). Such abstractions achieve a 

further reduction of FMS complexity, permitting the checking of still larger 
designs. The cone of influence abstraction is described in section 2.4.2. 

Besicles these exact optimizations there are also approximations that can 
be made. Over-approximations include abstraction, freeing variables, fixpoint 
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approximations. Under-approximations indude freezing inputs to a constant 
value and removing nondeterminism, among other, and are used mainly for 
witness-based model checking. 

5 .5  'franslation of TBAs into SMI 
The translation process performs several tasks. It maps used data-types 

onto the types of SMI. The state configurations of the chart are encoded into 
SMI variables. Therefore the TBA2SMI tool defines variables to encode data, 
boolean variables, events, and the control information of the automaton. With 
these variables we keep some additional information for traceability information 
( data-type, mode and group), which are used by the model-checker to darify a 
counterexample for a given property. 

Time consideration 

To cope with timing aspects of a specification the translation process 
introduces dock variables, all running synchronously. Because we require all 
time expressions to evaluate to a constant at compilation time finite domains 
for the docks can be determined. 

Details on generated SMI 

Three specification activation modes are supported: initial, invariant and 
iterative. None of these modes influences the TBA optimizations applied in 
section 4. 2. 2, they simply express the range of the specification, depending on 
their meaning we explained in section 1. 5. As the SMI code should express the 
whole specification, induding its activation condition, we detail their handling 
in section 5. 5 . 2. 

We refine the SMI output into two main parts: an activation part, that 
handles the activation mode, followed by the core automaton, that represents 
the TBA's transitions. 

5 .5 .1  Core automaton 

Generation mode 

One single run on the automaton has one single active state at the time. 
We can represent this behavior by mapping one boolean variable to each state, 
one of each can be active at a time, and the only active state (variable) can 
possibly change at each step. This way of implementing an FSM is called one­
hot encoding, since one state is active (hot) at a time. 

On the other hand one could mode} this behavior of "one state active at 
a time" using a single integer variable, whose value could change accordingly 
to the active state. This logarithmic encoding sets an "active state" counter 
to the value of the current state, which is simply an integer bounded by the 
number of states in the automaton. This latter approach is more efficient than 
the one-hot encoding since fewer variables are allocated, nevertheless it provides 
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a less readable result. Therefore we will illustrate our examples using only the 
one-hot code generation mode, even if both are available in the TBA2SMI tool. 

Before giving the complete translation of a TBA let us first review how 
its constituting elements should be handled, according to the possibilities given 
by SMI (in 5.4) on one hand and the semantics of TBAs (in 1. 6) on the other. 
All these elements are illustrated in the SMI code of figure 5.4, on page 85. 

State space 

Depending on the chosen code generation mode we dedare either many boolean variables, or one bounded integer one to represent the state space. These 
variables are actually control variables of the FSM, which should only be mod­
ified within the module. They are thus dedared within the symbol table (see 
5.4. 3) as local data items since their values are allowed to change in time, refer­
ring to the typology we gave in 5.4.l. 

The state variables in figure 5.4 are X1 and X2. 

Atomic propositions 

Any atomic proposition of the automaton to be translated is dedared as 
a input boolean event. This means the value of an atomic proposition can be 
either true or false, and is determined at any moment by a factor external to 
the specification, i.e. the model. This behavior is exactly what we are expecting 
from an atomic proposition. 

The atomic propositions variables in figure 5.4 are p1 and p2. 

Clocks 

Clocks are internal to the FSM, which should be allowed to modify their 
values, therefore we consider local bounded integer data item variables to repre­
sent them. The bound on their domain can be computed statically relying on 
the hypothesis of (non arbitrary big) upper-bound that stands for any dock of 
the TBA. 

In bath modes all the docks are increased by one before each step ( at 
least while they remain within their domain), at the very beginning of the body 
while loop, and possibly reset by a transition after this one has been taken. The 
only dock variables in our sample code is z00. 

Fairness 

A run is fair (accepting) in Büchi's sense if it infinitely often passes through 
an accepting state (see 1. 3. 1). We represent this by creating an observer variable 
which is true iff the actual state is accepting, checking for acceptance is then 
reduced to check whether this variable is infinitely often true. Because we 
defined it as an observer it can be accessed from outside the FSM, i.e. by the 
model checker, to verify its value. 

We call this observer the fairness observer, since its true evaluation states 
the current state is fair, as shown in figure 5.4 with variable fairness_observer. 
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Sink state 
We showed in section 4. 1. 2 that the addition of a non-accepting sink state, 

reached at any step is any other transition is taken, does not change the expres­
siveness of the automaton. 

We introduce this sink state explicitly at the SMI level, rather than before 
(at the TBA level), because we can use an efficient implementation artifact, 
saying the sink state is always active (or reached), except if any other one is. 
The corresponding variable, failure, is initialized to true, and set to false if 
any transition is taken. Transition relation 

We call the encoding of the transition relation the core automaton, or 
core TBA, with respect to the activation part, which we detail below. The core 
automaton depends highly on the SMI generation mode chosen. 

The figure 5.4 shows the SMI code of the sample TBA given in figure 5. 3 
in one-hot encoding mode. 

Each guarded expression represents exactly one transition of the automa­
ton. For a transition t of the automaton we can find exactly one guarded ex­
pression whose guard is the conjunction of the origin state of t, stating it is the 
current state, and the transition label. The codeblock of a transition updates 
the active state variables of both the left and the reached states, and asserts we 
are not in the sink state, by setting the (primed) value of failure$$ to false. 

p1 

p1J\7p2 (zOO} 

true 

Figure 5. 3 : A simple TBA. 

5 .5 .2 Activation part 

The three different activation modes we consider were defined in section 
1 . 5. These activation modes describe the range of the property expressed by 

the core TBA, e.g. whether it should hold immediately (initial mode), forever 
(invariant mode) or forever with no overlapping (iterative mode) . 

One can consider that if the activation condition is not met (and thus 
the TBA never activated), one can accept the run as fulfilling the specification. 
This is implemented by setting the fairness observer to true by default, as show 
in figures 5. 5, 5 . 6 and 5. 7 for each of the activation modes. One can also want 
to force the property to be verified, this behavior is called healthiness in (DH9 8]. 
One could for instance require healthiness of a specification on the assumption 
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MODULE sample_lsc 
CODE 
WHILE true do 
DCASE 

[] zOO < 7 : 
© [  z00$$ , zOO + 1 ]  

DESAC 
© [  failure$$ , true ] 
NDCASE 

[] (X1$$) and (pl ) : 
© [  failure$$ , false ] 
© [  Xi$$ , false ] 
© [  X1$$ , true ] 

[] (X1$$) and (pl and not p2 and (z00$$ < 7 ) )  
© [  failure$$ ,  false ] 
© [  X1$$ , false ] 
© [  X2$$ , true ] 
© [  z00$$ , 0 ]  

[] (X2$$) and (true ) 
© [  failure$$ ,  false ] 
© [  X2$$ , false ] 
© [  X2$$ , true ] 

NDESAC 
© [  fairness_observer$$ ,  false ] 
DCASE 

[] X2 : 
© [  fairness_observer$$ , true ] 

DESAC 
OD 

Figure 5.4: SMI code: the core TBA 

8 5  
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sicle, to prevent the model checker from never activating the specification, sat­
isfying it on the easiest way. Therefore the TBA2SMI tool provides the ability to 
rather initialize the fairness observer to false. 

Whatever the code generation mode, one-hot or logarithmic, we intro­
duce two new control variables to handle the activation modes. One is called 
tba_started, it allows us to distinguish between an initialization pass through 
the body loop or a step on the core automaton. Since this variable is internal to 
the FSM and has to be updated we declare it in the symbol table as a local data 
item boolean variable, using the topology of section 5. 4 .1. We put the core tba 
within a guarded expression guarded by the true evaluation of tba_started, 
while the activation part needs it to be false to be traversed. The second vari­
able is the activation condition variable, declared as a boolean input event, just 
like any atomic proposition, it is called ActivationCondition in our example 
code. 

The remainder of this section explains how the different activation modes 
are integrated within the SMI code, by adding a code fragment at the very 
beginning of the body while loop, before the clock's increment DCASE of figure 
5. 4. 

Initial mode 
A run on an initial TBA has to fulfill immediately, i.e at the first step of 

the run, the activation condition and be fair to be accepted. It is also accepted if 
the activation condition does not hold at first step while the activation exception 
does. In this case the core TBA isn't even activated, and the run immediately 
succeeds (see 1 . 5 .1). If the activation condition is not satisfied at the first step, 
and neither the activation exception is, then the run is rejected. 

The "exception" mechanism leads us to the definition of a corresponding 
new acceptance token, which states explicitly that the exception has been used. 
In practice we could also use the same observer than for the Büchi criteria (i.e. 
fairness_observer). We introduce a trigger (a local data item boolean) to 
ensure the evaluation of bath activation condition and exception occurs only 
at first step, it is called first_step in figure 5. 5, and is initialized to true. 
Obviously, once the core automaton activated, the acceptance of the run relies 
on infinitely many true evaluations of the fairness observer, as stated in section 
5. 5 .1 . 

Invariant mode 
An invariant activation mode means the run has to satisfy the automaton 

any time its activation condition holds. 
This invariant mode can be handled in different ways, from which the 

worse is perhaps building its product automaton. The TBA2SMI tool produces 
a non-deterministic activation of the core tba2 as shown in figure 5. 6 

2This way of handling multiple activations is adapted to the VIS mode) checker, which is 
used to check the mode) later on. 
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DCASE 
[] not ( tba_started ) and ( first_step ) : 

\O [  fairness_observer$$ , true ] 
\O [  f irst_step$$ , false ] 
DCASE 

[] ActivationCondition 
© [  tba_started$$ , true ] 
© [  Xi$$ , true ] 
© [  z00$$ , 0 ]  

[] not ( ActivationCondition 
DCASE 

[] ActivationException : 
© [ initiaLaccept$$ , true ] 

[] not ( ActivationException 
©[ failure$$ , true ] 
© [ f airness_{)bserver$$ , false ] 

DESAC 
DESAC 

DESAC 

Figure 5. 5: Activation in initial mode 

DCASE 
[] not ( tba_started ) : 

© [ f airness_observer$$ , true ] 
NDCASE 

[] ActivationCondition 
SKIP 

[] ActivationCondition 
© [  tba_started$$ , true 
© [  Xi$$ , true ] 
© [  z00$$ , 0 ]  

llDESAC 
DESAC 

Figure 5.6: Activation in invariant mode 

87 
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Iterative mode 

The iterative activation mode provides multiple activation of the TBA in 
the same run, but only one at the time. It uses a lock mechanism, described in 
section 1.5.3, to allow the TBA to be reactivated when its previous activation is 
completed, even when considering infinite runs. Let us just remember that if a 
run reaches a so-called finitely accepting state it can be considered as complete 
and hence allow the TBA to be reactivated. 

The first activation of the TBA occurs when the activation condition is met 
for the first time, if it is never the case the specification is accepted. Regarding 
the possible re-activations, the TBA2SMI tool introduces back-leading transitions 
from any of these true fair states (X2 in the sample TBA of figure 5.3) to the 
initial node, and modifies the transitions predicates accordingly, as explained in 
1.5.3 .  The first activation and the modified transitions can be found in figure 
5.7. 

DCASE 
[) not ( tba_started ) 
© [  fairness_observer$$ , true ] 

DCASE 
[] not ( ActivationCondition ) :  

SKIP 
[] ActivationCondition : 

© [  tba_started$$ ,  true ] 
© [  X1$$ , true ] 
© [  z00$$ , 0 ]  

DESAC 
DESAC 

[] (X2$$) and ( ActivationCondition 
©[ failure$$ , false ] 
© [  X2$$ ,  false ] 
© [ Xi$$ ,  true ] 
© [  z00$$ , 0 ]  

[] (X2$$) and (not ( ActivationCondition ) )  
© [  failure$$ , false ] 
© [  X2$$ , false ] 
© [  X2$$ , true ] 

Figure 5.7: Activation in iterative mode: first activation and reactivation from any true fair state 

Non-failure acceptance criteria 

The run of the automaton is fair if it evaluates infinitely often the fairness observer to true, recalling the Büchi acceptance criterion. 
The non-failure state acceptance (see 4.1.2) eventually holds. This criteria 

accepts the same runs than Büchi's does iff all unfair states of the automaton are 
constrained by at least one clock. A property represented by a NFA automaton 
can be  computed efficiently using invariant check methods (see 4.1 .3). 

If the hypotheses of this criterion hold, i.e. if the automaton to be trans­
lated is constrained, we define a non-failure acceptance observer in the generated 
SMI code, which becomes false whenever the sink state (failure) becomes ac­
tive. The once false value of this non_failure_observer is sufficient to reject 
a run. 

The two fairness mechanisms are illustrated on the sample TBA in figure 
5.8, where fairness_observer is true whenever the active state is accepting, 
while the non_failure_observer becomes false if we reach the failure state. 
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We are allowed to illustrate both criteria since the TBA of figure 5.3 meets the 
requirements of the non failure acceptance condition. 

© [  fairness_observer$$ , false ] 
DCASE 

[] X2 : 

© [  fairness_observer$$ , true ] 
DESAC 
DCASE 

[] failure$$ = true : 
© [  X1$$ , false ] 
© [  X2$$,  false ] 
© [  non..failure_acceptance$$ , false ] 

DESAC 

Figure 5.8: Two observers, for two acceptance criteria 

Witness mode 

To provide an existential verification of any property we rely on the finitely 
accepting states concept (in 4.1.2). 

Sin ce any run that reaches such a state in the TBA is ( definitely) accepting 
we can, for instance, introduce a new observer that evaluates to true whenever 
any finitely accepting state is reached, let's call it witness_observer. An ex­
istential verification would then simply consist of a falsification of the formula 
□ ( ,witness_observer) that would provide a counter-example of a complete 
traversai of the automaton. 

5.5.3 Correctness 

Since the translation of TBA into the corresponding SMI code is quite 
intuitive, thanks to both formalisms, and highly detailed in the above sections, 
we won't prove more formally the correctness of our implementation choices. 

5 .6 Final steps before model checking 

We now sketch the translation of SMI into BLIF-MV, the internai formal­
ism of VIS (see 3. 2.3) . This translation entails BDD manipulations, which we 
do not want to detail in this report, hence we only sketch the guide lines of this 
final step. 

The translation generates BDDs, a characteristic function (see 2. 4.3) is 
computed for every bit of the state space, i.e. the variables defined in the 
SMI code. No additional variable is needed to represent the locations since we 
use a step semantics (one step of the FSM is one complete run through the 
nonterminating outermost loop of the SMI program). 
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Sorne additional input variables have to be added to cope with nondeter­
minism. These "choice" inputs are actually chosen between the possible runs 
through the SMI program, and hence resolve the nondeterminism. 

The loops can be handled either by computing a fixed point for the loop 
(very slow) or by unrolling the loop. The latest method does not fit endless 
loops, but is faster whenever usable. We cannot state in advance wether the 
body while loop will belong to one or the other of these two categories, since it 
depends on the code it executes. 

Because after the translation of a design and properties into SMI, all 
necessary docks are represented by a finite number of bounded variables (see 
5. 5 ) ,  one can generate untimed FSMs from the SMI code. The constructed 

FSM is such that one step of the FSM corresponds to one execution of the 
complete while-loop of the SMI code. Thus, in step semantics the FSM timers 
are increased by one in each state of the FSM. In super-step semantics timers 
are increased only in certain states, while they remain unchanged in all other 
states. 

5. 7 Conclusion 

In this chapter we presented the SMI formalism and a possible way of 
translating TBAs into programs of this language. Many other possibilities are 
allowed since SMI is a simple imperative program, allowing the same behavior 
to be represented on many different ways. 

In the next, and last chapter, we highlight the improvements brought 
to the CvOU verification environment through the introduction of this new 
translation. 
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Results 

The prototypical development and integration of the translation tool de­
scribed in chapter 5 has been conducted from September 2001 until December 
2001 at the Carl von Ossietzky Universitiit, Oldenburg, Germany (CvOU). 

We detail in this last chapter some improvements this new verification 
"option" brought to our Embedded Systems department verification environ­
ment. One should compare them with the goals that were identified to enhance 
our environment, on page 7 8. 

6 .1  Specification support 

6 .1 .1 LSC 

Live Sequence Charts specifications can be used as well as STDs to specify 
properties one could want to verify. We detailed in this report how such a 
specification is first unwound into a timed automaton (chapter 1) ,  translated 
into SMI code (chapter 5), represented as a BLIF-MV finite state machine ( 5. 6) 
and given to the VIS model checker to be tested on a design under development 
modeled with STATEMATE (chapter 3 ). 

This translations chain allows any LSC specification to be verified on a 
design under development using symbolic CTL model checking with fairness 
constraints, based on BDDs techniques (chapter 2 ). 

Nevertheless some approximations are made (3 . 4 . 2 )  which sometimes pre­
vent us from being able to endorse a design, since some properties can be inval­
idated because of the approximations rather than because of the design errors. 

6 .1 .2 LTL 

Linear temporal logics can be checked the same way as LSCs, as long as 
the automaton corresponding to the formula fits the requirements of our TBA 
format. 

We cannot hence offer support for the whole LTL formalism, but detailed 
in section 3. 4.1 the subset of LTL we can verify. Actually we don't allow any 
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nested D (Globally) operator, to guarantee the acyclicity of the corresponding 
automaton. 

The translation of LTL into automaton is an active field of research in 
formai methods, as the state explosion problem described in 2 .3 .2 is still a 
challenge. [SB00], among others, gave one way to generate a reasonably small 
Büchi automaton from an LTL formula. This translation is not implemented 
yet in our verification environment, but will be soon since it is part of the next 
VIS release (VIS 2 .0) . 

The choice between a linear or a temporal framework, sketched in 2 .3 . 1 ,  
remains a current issue. Our choices, i.e. a linear specification framework on a 
branching-time verification core meets our present needs. Mixed solutions, as 
the one we describe here seem to be one path through this tapie. 

6 .2  More efficient verification 

Many specifications are accurate enough to be verified on a more efficient 
way than fair CTL mode! checking. 

We integrated the non-failure acceptance criterion ( defined in chapter 4)  
in the new verification chain. Properties represented by a NFA automata can be 
verified efficiently using invariant check techniques, i.e. on-the-fly state reacha­
bility analysis. 

Actually not ail properties can be verified using this technique, since heavy 
requirements are needed for a property to be represented as a NFA automaton. 
But we suggested in 4.3 that many "real" specifications could meet them. 

Above this, the invariant check gives us a possibility, again for the same 
specifications only, to verify them even if the approximated fair ACTL mode! 
checking fails. Hence, we are sometimes able to assert or reject a property which 
we could not verify before the NFA criterion integration. 

6.3 Iterative activation mode 

We gave in 1. 5.3 the definition of the iterative activation mode, and showed 
in 5. 5.2 how we implemented it within the design verification process. 

This activation mode is new within our verification environment. We 
believe it to be useful since it provides a determinis tic activation of the property 
check, and permit many (successive) activations in addition. The fact it is 
deterministic is quite interesting since nondeterminism is hard to handle in the 
mode! checking process. 

6.4 Witness verification 

We allow witness verification tests to be conducted. This generates a 
positive witness of the traversai of the automaton. We explained in section 
5. 5.2 how we implemented it. Such a verification is reduced to an invariant 

check, hence as efficient as the on-the-fly reachability states computation we 
already talked about. 



Chapter 7 

Conclusion 

One of our goals was to introduce the reader to the field of formal ver­
ifications, as well theoretical as practical, since the first would make no sense 
without the latter, whereas the second could not progress that much with no 
theoretic fundamentals. 

In particular we defended the use of timed Live Sequence Charts as for­
mal specification language. We believe the graphical appeal of this formalism 
coupled with its intuitive syntax and interesting features make it user-friendly 
and powerful. Temporal behaviors of reactive systems are especially the kind of 
scenario this formalism is suitable to describe. 

We then detailed how these specifications could be verified on modeled 
designs, using either fair CTL model checking or automata-theoretic related 
techniques. We first sketched the intuitions beyond these approaches, giving 
some related current issues and optimizations as well. We then showed how 
such a verification can be conducted in practice, using the VIS model checker 
and STATEMATE designs. 

On our way towards efficient validation we defined a property class that 
can be verified efficiently, using invariant check, i.e. an efficient state reacha­
bility analysis. To formally define this class of specifications we introduced a 
new acceptance criterion on timed automata. We proved that, under certain 
circumstances, the expressiveness of a timed automaton is the same whether 
considered with the Büchi acceptance condition or with the non-failure accep­
tance one. We admitted that the requirements for this equivalence to hold are 
quite constraining, but we also showed that most properties one could want to 
verify in real design development usage should meet them, hence our interest in 
this improvement. 

Moreover, we gave in this master thesis both theoretical and practical 
justifications to these considerations. Giving a formai hierarchy of the dock 
constraints on the theoretical hand and an intuitive algorithm to implement 
the new acceptance criterion on the practical hand. We proved the algorithm 
preserves the language of any automaton it optimizes. 

The field of formai verification is currently focussed on some major topics, 
one of which is the choice between a linear or a branching time framework. Many 
initiatives are taken to compose with the advantages of both approaches, and 

93 



9 4  Chapter 7 Conclusion 

our works situates itself on the same path. We motivated our choices for a linear 
time specification framework coupled with a branching time model checker. 

We are aware our notion of time is far more simple than some real-time 
considerations [AD 9 4] which actually impassion many formai verification re­
search groups. Nevertheless we showed interesting things could be clone using 
a (simplified) discrete-time framework, which often suffices to model the target 
design. 

One could pretend that some of our requirements are quite constraining, 
as, for instance, the obligation for our TBAs to be acyclic. We explained why we 
use them and our reason are, almost always, empirically justified. Nevertheless 
from a theoretical point of view many new problems could arise if we remove 
some. We pretend that, even if a problem seems interesting on the theoretical 
point of view, there is only few interest in resolving it if we know in advance 
our solution won't be used by anyone, i.e. industrially speaking. 

Sorne interesting researches could be conducted to further investigate the 
possibilities we described here. For instance one could improve the iterative 
activation mode, as sketched in 1. 5. 3 . Another further-work topic would be the 
looking for better explicit dock constraints definition, which would constrain 
more labels without modifying the language of the automaton. 
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Appendix A 

LSC unwinding 

This appendix illustrates the complete translation chain we defined in this 
master thesis. We refer here to a train crossing control system. This system is 
composed of lights, barriers, and sensors to detect the arrival and the departure 
of a train. 

The specification given by the LSC of figure A.1 describes the first part 
of a communication, which should take place when a level crossing is secured, 
so that an approaching train can safely pass it. The LSC is activated when the 
train announces its arrival, i.e. by sending the message activate, which is the 
activation condition. 

The crossing controller (instance XingCtrl) reacts by sending an acknowl­
edgement (message ack) to indicate that it has received the request and simul­
taneously it initiates the securing procedure by first ordering the sub-controller 
for the traffic lights (instance Lights) to turn on the lights (message turn on). 

The lights controller does just that and first switches on the yellow light 
(message switch2yellow), which has to be on for some seconds, before the 
light changes to red (message switch2red), indicating that the car traffic must 
stop. We model this through the sending of these messages to the environment 
(instance XingEnv). If all this has happened, the lights controller informs the 
crossing controller that the lights are now on (i.e. red, with the message lights 
on). This communication sequence can of course only happen this way, if the 
lights are not broken or malfunctioning. This is ensured by the local invari­
ant no__red_err. We didn't introduce local invariants in the LSC formalism 
described in section 1.2.2, since it can also be seen as a triggering message sent 
by the environment (or any other component), stating the assertion is met. 

After completing the behavior shown in this LSC the crossing controller 
starts a similar interaction with the controller for the barrier in order to lower 
the barrier, which completes the securing procedure. 

The property expressed by the LSC of figure A.l hence states that every 
time a train arrives the lights are turned on, since the LSC mode is INVARIANT. 

We declared in 4.3.2 most interesting properties could be timed "enough" 
to allow an efficient verification of the property they express. This "enough" 
means that all hot locations have to be time covered. We hence refine this 
specification, stating the light should stay yellow for 2 or 3 steps, and the whole 
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Figure A.l: A LSC property of the crossing controller 
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securing process should take at most 10 steps to be completed. The resulting 
LSC is shown in figure A.2. 

Name: securing_lights 
Activation: activate 
Mode: Invariant 

� 
I 

ack 

,?JngCtrl 

11 .1ôr 

........ 

tum_on 

Lights 1 Xia
�
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(no_red_err )i 12,31 
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switch2red 
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Lights_on 1 

1 
1 
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Figure A.2: Adding timing annotations to an LSC 

This scenario is unwound into the corresponding TBA (figure A.3) by a 
strict application of the unwinding procedure of [KW0l] which has been de­
scribed in section 1.4. 

The initial state of the unwound TBA is XL The only acceptant one is 
the double cirded X5. The three remaining X2, X3 and X4states are neither 
initial, nor accepting. 

As explained in section 1.2.2 the cold locations, depicted in dotted por­
tions of the instances lines, represent a state of the instance were the system is 
allowed to stay forever. We hence see on picture A.3 the only accepting states 
corresponds to the eut which contains all maximal locations. Since no other eut 
is composed only with cold and maximal locations. 

Recalling the notions of dock constraining a state and a transition we 
can say the dock z0 constrains globally all unfair states, or, said otherwise, this 
TBA is completely constrainable. 

The application of the translation procedure described in 5.5 to the spec­
ification represented by this TBA generates the SMI code given in figure A.4. 
One can easily remark the way the invariant activation mode is handled. 
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Figure A.3: The unwound TBA 



MODULE lsc_securing_lights 

CODE 
WHILE true DO 

DCASE 
[] not ( tba_started ) : 

©[ fairness_observer$$, true] 
NDCASE 

[] activate 
SKIP 

[] activate 
©[ tba_started$$, true] 
©[ Xi$$, true] 
©[ z0$$, 0 J 
©[ z1$$, O J 

NDESAC 
DESAC 
DCASE 

[] tba_started$$ 
DCASE 

[] zO < 11 
©[ z0$$, zO + 1] 

DESAC 
DCASE 

[] z1 < 4 : 
© [ z1$$, z1 + 1 ] 

DESAC 
©[ failure$$, true] 
NDCASE 

[] (X3$$) and (not switch2red and no_red_err ) 
and (z0$$ <= 10) 

©[ failure$$, false] 
©[ X3$$, false] 
©[ X3$$, true] 

[] (X3$$) and (not no_red_err ) and (z0$$ <= 10) 
©[ failure$$, false] 
©[ X3$$, false] 
©[ X5$$, true] 

[] (X3$$) and (switch2red and no_red_err) and 
(z0$$ <= 10) and (z1$$ >= 2) and (z1$$ <= 3 )  

©[ failure$$, false] 
© [ X3$$, false ] 
©[ X4$$, true] 

[] (X5$$) and (TRUE) and (z0$$ <= 10) 
©[ failure$$, false] 
© [ X5$$, false ] 
©[ X5$$, true] 

[] (X4$$) and (lights_on and no_red_err) 
and (z0$$ >= 10) and (z0$$ <= 10 ) 

©[ failure$$, false] 
©[ X4$$, false] 
©[ X5$$, true] 

[] (X4$$) and (not no_red_err ) and (z0$$ <= 10) 
©[ failure$$, false] 
©[ X4$$, false] 
©[ X5$$, true] 

Figure A.4: SMI property translation(l) 
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0D 

END 
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[] (X4$$) and (not lights_on and no.xed_err) 
and (z0$$ <= 10) 

©[ failure$$, false] 

©[ X4$$, false] 
©[ X4$$, true] 

[] (Xi$$) and (not no_red_err) and (z0$$ <= 10) 
©[ failure$$, false] 
©[ Xi$$, false] 
©[ X5$$, true] 

[] (Xi$$) and (not ack and not turn_on and 
no.xed_err) and (z0$$ <= 10) 

©[ failure$$, false] 
©[ Xi$$, false] 
©[ Xi$$, true] 

[] (Xi$$) and (ack and turn_on and no_red_err ) 
and (z0$$ <= 10) 

©[ failure$$, false] 
©[ Xi$$, false] 
©[ X2$$, true] 
©[ z0$$, 0 ] 

[] (X2$$) and (switch2yellow and no_red_err) 
and (z0$$ <= 10) 

©[ failure$$, false] 

©[ X2$$, false] 
©[ X3$$, true] 

©[ z1$$, 0] 
[] (X2$$) and (not no_red_err) and (z0$$ <= 10) 

©[ failure$$, false] 

© [ X2$$, false ] 
©[ X5$$, true] 

[] (X2$$) and (not switch2yellow and no_red_err) 
and (z0$$ <= 10) 

©[ failure$$, false] 

©[ X2$$, false] 
©[ X2$$, true] 

NDESAC 
©[ fairness_observer$$, false] 
DCASE 

[] X5 : 

©[ fairness_observer$$, true] 
DESAC 
DCASE 

[] failure$$ = true 
©[ Xi$$, false] 
©[ X2$$, false] 

©[ X3$$, false] 
©[ X4$$, false] 
©[ X5$$, false ] 

©[ non...failure acceptance$$, false] 
DESAC 

DESAC 

Figure A.5: SlVII property translation(2) 



Appendix B 

Statemate model certifier 

patterns library 

The STATEMATE model certifier helps the user to construct complex spec­
ifications simply by instancing or combining patterns. The present description 
is based on [I-L00a]. 

A pattern consists of a main part, called the kernel pattern, which defines 
the main property to be checked. For example, (System...mode = RUNNING) 
implies (out1 = 1) after two steps. This pattern is of the form Condition 

implies Condition after Step-Count. 

We use the letters P, Q, R as place holders for conditions and X, Y, N 
for counters. Hence the property above is based on the kernel pattern called 
P _implies_Q.J(_steps_later. Using this pattern the placeholders P and Q are 
respectively instantiated with System...mode = RUNNING and out1 = 1 and X is 
instantiated with 2. 

Besicles the kernel part a pattern is further determined by its mode and 
its start-up phase. 

The start-up phase can be defined either by giving a fixed number of steps 
or a predicate (e.g. raising a signal). Often the start-up phase is given by one 
single step where all initializations of the system are clone. In STATEMATE this 
may correspond to the execution of the initial default transition. 

The mode specifies when the kernel pattern should be valid. We distin­
guish four modes: initial, first, invariant, and iterative. Three of them were 
already defined in section 1.5, all are illustrated in figure B.1. 

• Initial patterns define properties which should be valid for the initial part 
of a computation, i.e. when reaching a stable state after the start-up 
phase. 

• The First pattern is an implication where the second part should be valid 
when the first part is true for the first time after the start-up phase. 

• Invariant patterns should be valid again and again. Whenever the activa­
tion condition of a pattern is satisfied the specification of a pattern should 
be valid from that point onwards. 

g 
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Figure B.1: The STATEMATE activation modes 

• Iterative mode is similar to the invariant pattern in the sense that the 
pattern should be valid again and again. The difference with regards to 
the previous one is that this pattern will only be activated if the previous 
active region has been completed. 

All the patterns 

All the patterns available in the STATEMATE model certifier library are 
presented in table B.1, based on their kernel pattern and activation mode. A X 
means this patterns exists in this activation mode, a 0 states this combination 
does not exists, a 1 means this combination results in the same pattern as the 
one in initial mode and a 2 is the same as in invariant mode. 

One should add the suffix _after ....N_steps or _after ..reaching..R to these 
kernel patterns to express the start-up-phase, hence obtaining the complete 
pattern. We notice that a final ..B in the kernel pattern is a (finite) bound on 
the occurrence of the finally operator. 

We can for instance build the complete pattern ini t...P _implies_f inally _Q..B_after ..reaching..R 
using an initial activation mode and a start-up phase triggered by the rise of a 
signal. The automaton corresponding to this property can be found in figure 
B.2. 

All the patterns cited above are expressed in both TBA and timed tem­
poral logics formalisms in [I-L00a]. 



initial first invariant iterative 

X 1 X 2 
P JmpliesJinally _QJ3 X X X 2 
Finally _p J3 X 1 X 2 
P Jmpliedinally _globally _QJ3 X X X 2 
Finally _globally _p J3 X 1 1 2 
P Jmplies_globally _Q X X X 2 
P Jmplies_Q...X..stepsJater X X 0 X 

P Jmplies_Q_during..next...X..steps X X 0 X 

P Jmplies_Q_atleast...X..steps_after _p X X 0 X 

P ..stable...X..stepsJmplies_afterwards_Q X X 0 X 

P ..stable...X..stepsJmpliesJinally _QJ3 X X 0 X 

Q_while_F X 1 X 2 
Q_while_F J3 X 1 X 2 
Q_only after _p X 1 0 2 
Q..not before_F X 1 0 2 

Table B.l: patterns of the STATEMATE model certifier library 

nol P or Q 

Figure B.2: The automaton of ini t_F _implies..f inally _Q....B_after ...reaching...R 




