
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Strictness analysis for a class of second order functional languages

Burlet, Frédéric

Award date:
2002

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Oct. 2024

https://researchportal.unamur.be/en/studentTheses/75bbeead-de32-4b7d-9129-e6eeb650f126

FUNDP
Institut d'Informatique

Rue Grandgagnage, 21

B - 5000 NAMUR (Belgique)

Strictness Analysis

For A Class Of Second Ortler
Functional Languages

Frédéric BURLET

Under the management of Baudouin Le Charlier

Institut d'Informatique
Facultés Universitaires Notre-Dame de la Paix

Namur

Juin 2002

Abstract

Strictness analysis is a method of static analysis based on abstract in
terpretation for functional programs. The purpose of this technique is to
transform call-by-name into call-by-value when the result of fonction call
are identical. So, the semantics of call-by-name is unchanged and the eval
uation of the result is more efficient. This analysis is applied to a second
order functional language.

Résumé

L'analyse de strictness est une méthode d'analyse statique de programme
basée sur l'interpretation abstraite. Le but de cette technique est de trans
former le passage par nom des arguments dans les appels de fonction par
le passage par valeur quand les résultats des appels sont égaux. Ainsi, la
sémantique du passage par nom ne s'en trouve pas modifiée et les calculs
des résultats se fait de manière plus efficace. Cette analyse est appliquée à
un langage fonctionnel du second ordre.

\

1
1

\

I would like to first thank my promoter, Baudouin Le Charlier, without whom this work
would not exist; M ads Rosendahl, my training course supervisor, with whom I have hugely
learned during my stay in Denmark; Steve Uhlig for his numerous advices and corrections
in English. I also would like to thank Vincent Letocart for his marvellous advices given
through IRC during my training course and all the persans that have indirectly supported
me morally during this hardship, namely my parents, my friends and many other peoples
that I have perhaps forgotten.

.

4

Contents

Introduction 7

1 Mathematical Framework 11
1.1 Introduction . 11
1.2 Complete Partial Order 11
1.3 Continuity . 12

1.4 Fix-point 13

1.5 Domain constructions 13

1.5.1 Cartesian product 14

1.5.2 Sum of domains 15

1.5.3 Function domain 15

1.6 Strict fonctions 15

2 First-order case 17
2.1 Introduction . 17

2.2 A call-by-value interpreter . 17

2.3 A call-by-name interpreter . 20

2.4 A call-by-value interpreter with lists 21

2.5 A call-by-name interpreter with lazy lists 23

2.6 Examples 24

2.7 Fix-point computation using minimal fonction graph 25

2.7.1 Motivations 25

2.7.2 Minimal fonction graph 26

2.7.3 An interpreter using mfg . 26

2.7.4 A strictness interpreter using mfg . 31

2.8 Example . 33

3 Second-order case 35

3.1 Introduction . 35

3.2 A second order call-by-value interpreter 35

3.2.1 Mathematical semantics 35

3.2.2 A caml implementation 40

3.3 A second order call-by-name interpreter 45

6 CONTENTS

3.3.1 Mathematical semantics
3.3.2 A caml implementation

3.4 A second order call-by-value interpreter with lists .
3.4.1 Mathematical semantics
3.4.2 A caml implementation

3.5 A second order call-by-name interpreter with lists .
3.5.1 Mathematical semantics
3.5.2 A caml implementation . . .

3.6 Example
3.7 A second order interpreter using mfg

3. 7 .1 Introduction
3. 7.2 Mathematical semantics . . .

3.8 A second order strictness interpreter using mfg
3.9 Examples . .

4 Conclusion
Bibliography
A First order case implementations

A.l Call-by-value interpreter
A.2 Call-by-name interpreter
A.3 Call-by-value interpreter with lists
A.4 Call-by-name interpreter with lazy lists
A.5 A mfg implementation
A.6 A strictness interpreter using mfg .

B Second order case implementations
B.l Call-by-value interpreter
B.2 Call-by-name interpreter
B.3 Call-by-value interpreter with lists
B.4 Call-by-name interpreter with lazy lists
B.5 A mfg implementation
B.6 A strictness interpreter using mfg

45
46
47

47

48
49
49
50
50
51
51
51
54
56

57

59

61
61
63
64
64
65

70

73
73
75
76
77
78
82

Introduction

The main subject of this work is fonctional languages. A fonctional lan
guage is a language w here all commands are considered as expressions and a
program as a series of fonction declarations. We distinguish different types
of fonctions: first order functions which are fonctions that take solely vari
ables as arguments and higher order functions which are fonctions that take
not only variables as arguments but fonctions too. Higher order is also di
vided into several orders: 2nd, 3rd and so on . . . A second order fonctional
language is a language where fonctions may take solely first order fonctions
as arguments (and obviously variables). A third order fonctional language
is a language where fonctions may take either first order fonctions or second
order functions as arguments, and so on for the nth order.

We may categorize fonctional languages in two families: strict languages
such as, for example, carnl (http: / / carnl. inria. fr) and Lisp and nonstrict or also called lazy languages such as Haskell (http://www. haskell.
org) and Miranda. Bath differ by their parameter passing. The former
implements call-by-value while the latter implements call-by-name. Given
the fonction f below picked from [Myc80] [Pol96], let us examine how bath
work:

let J (x, y) = if x = 0 then 1 else J (x - 1, f (x, y))

The principle of call-by-value is to evaluate arguments of fonction call before
performing the call. We have the following developments:

f(O,y) = 1

J(l, y) = if 1 = 0 then 1 else f(O, f (2, y))

= f (O, f (2, y))
= J(O,if 1 = 0 then 1 else J(O,J(2,y)))

= f (O, f(O,](2, y)))

= J(O,J(O,if 1 = 0 then 1 else f(O,f(2,y))))

= f(O, f(O, f(O, J(2, y))))

= and so on ...

If we summarize the fonction results we see that the fonction gives a result

8 Introduction

only when x = 0:

f(x,y) = { � if X = Ü
otherwise.

On the other hand, the principle of the call-by-name is to evaluate ar
guments of fonction call as late as possible. If we make the developments,
we have the following:

J(O,y) = 1

J(l,y) = if 1 = 0 then 1 else J(O,J(2,y))
= f(O, f(2, y))
= if O = 0 then 1 else f (O, f (2, y))
= 1

If we summarize the fonction results we have that for all x and y that
f(x, y) = 1.

By definition, call-by-value is fast, efficient and easy to implement. We
may also imagine that arguments of fonction calls are evaluated in parallel
such that the computation of fonction calls is improved. But as seen in
the previous example, call-by-value may not terminate. It is not the case
in call-by-name. Its semantics is a natural way to evaluate expressions in a
fonctional language. The problem of call-by-name is that it is space- and
time-consuming because arguments are lugged around during all the eval
uation of the fonction call. An optimization for a lazy fonctional language
should be to transform its costly evaluation mechanisms into a call-by-value.

Strictness analysis is a method of static analysis based on abstract in
terpretation for fonctional languages. Its goal is to replace call-by-name
by call-by-value when the results of fonction calls are identical. It studies
strictness properties of a fonctional language. We will say that a fonction is
strict on one of its arguments if when the evaluation of this argument is un
defined then the result of the fonction call is undefined. Strictness analysis
detects strict fonctions for which tranformation may be applied.

This work is structured as follows:

• Chapter 1 introduces all the mathematical framework that we use later
in this work. The three most important notions are domain, fix-point
and strict functions.

• Chapter 2 introduces a first order fonctional language. We present dif
ferent implementations of the same language and show the differences
between them. We also study a specific fix-point algorithm which is
the minimal fonction graph algorithm [DJM86] [DJR97]. Then we
construct a strictness interpreter using minimal fonction graph.

Introduction 9

• Chapter 3 dresses the development of a higher order functional lan
guage. We have limited this language to the second order. We do the
same development than in the previous chapter but we specify it more
formally and explain difficulties encountered during implementation.

• Finally, we conclude our work and present further work.

10 Introduction

Chapter 1

Mathematical Framework

1.1 Introduction

This chapter is devoted to the description of the mathematical concepts
used in the remainder of this document. We introduce some basic concepts
that can be found in the paper [Rosül]: do mains, monotonous fonctions,
continuous fonctions and fix-points. These concepts allow us to introduce
a fondamental theorem: the fix-point theorem. This is an important tool in
mathematical semantics and in abstract interpretation.

1.2 Complete Partial Order

Complete partial orders (CPO) or domains are playing an important role
in the study of strictness analysis and fix-point definition. The aim of this
section is to explain this notion. Before getting to it, we first introduce some
usefol definitions. Definition 1.1 (Partial order relation)
A relation S on a set E is a partial order relation if and only if this relation
respects the fallowing properties: (Reflexivity) \:lx E E : x S x (Transitivity) Vx, y, z E E : x S y /\ y S z ⇒ x S z (Antisymmetry) Vx,y E E: x S y /\ y S x ⇒ x = y

In this case, we call the couple (E, :::;) a partial order.
Definition 1.2 (Lower bound)
Given a partial order (E, s) and S Ç E, mis a lower bound of S if and only
if \:lx ES m S x

Definition 1.3 (Greatest lower bound)
Given a partial order (E, s), m is the greatest lower bound or infimum of

S ç E if:

12 Chapter 1. Mathematical Framework

• m is a Jower bound of S
• Vx Jower bound of S, we l1ave x S m
We will use the notation nS to indicate a greatest Jower bound of S.

In the same way, we can define similarly the upper bound and the least
upper bound of a set. Remark here that if the greatest lower bound (of least
upper bound) exists, it is unique.

Definition 1.4 (Chain)
Given a partial order (E, s), we call (xi)iEI a chain of E if and only if
Vi E I,xi E E and Xi S Xi+I

We will often use this notion, thus we introduce a notation for it [Rosül).
We define chains(E), the set of chains from E and write (xi) E chains(E)
for a chain x1 S x2 s ... in E. A chain may be considered as an increasing
sequence of elements in a domain E.

Now, we define now the notion of complete partial order, more usually
called domain.
Definition 1.5 (Domain)
A pair (E, s) is called a domain if and only if
• E is a non-empty set;
• S is a partial relation order on E;
• E bas a lower bound called _LE;
• All chains x1 S x2 S . . . s Xi S . . . in E have a least upper bound Uixi
in E.

Note that every set E eau be extended to a domain by adding a least
element J_ and using a special ordering called fiat ordering, noted Ç and
defined by:

Vx,yEEU{_L}:xÇy ç=;, (x = _L)V (x = y)

In this case, we say that the set E is lifted with the bot tom value (_L).
To denote the minimal element of a domain, we use the symbol _L.

1.3 Continuity

As seen later in this chapter, continuity is an important notion to ensure
the existence of a fix-point.

Definition 1.6 (Monotonous fonction)
Given (E, SE) and (F, SF) two domains, J : E ➔ F is monotonous if and
only if Ve1, e2 E E : e1 S e2 ⇒ J (ei) S J(e2).

1.4. Fix-point 13

Definition 1. 7 (Continuous fonction)
Given (E, �E) and (F, �F) two domains, f : E-+ F is continuous if and
only if f is monotonous and if \i(ei) E chains(E) f verifi.es the equality:

LJ1 (f(ei)) = J(lJ
e
(ei))

i i

Note that the composition of monotonous (resp. continuous) fonction is
a monotonous (resp. continuous) fonction.

1.4 Fix-point

Now we first introduce a definition of fix-point. Then, we present a propo
sition which binds the notions of fix-point and domain.

Definition 1.8 (Fix-point)
Given f : E -+ E and e an element of E. The point e is a fi.x-point of the
fonction f if and only if f(e) = e. If for all points x in E such tlrnt f(x) = x
we have e � x, e is the least fi.x-point.

Theorem 1.1 (Fix-point theorem)
A continuous fonction f on a domain (E, �), f (E, �) -+ (E, �) bas a
least fi.x-point which we can fi.nd as

PROOF.

The proof has three parts:

• We have a well-defined chain: J_ � f (J_) � f 2 (J_) � ...

• We have a fix-point: f (LJ Ji(.1_)) = LJ(Ji(.1_))

• The fix-point is the least one: \ix E E f (x) = x => LJ Ji(.1_) � x

◊

For a detailed proof, we refer to [Rosül].
The theorem says that for any domain E we have a fonction fix: (E-+

E) -+ E which finds the least fix-point of a fonction.

1. 5 Domain constructions

We will see in this section some domain constructions and their properties.

IJ/(j_)
i

14 Chapter 1. Mathematical Framework

1.5.1 Cartesian product

Definition 1.9 (Cartesian product)
Given n domains (E1 , '.5:E1

), ••• , (En , :5:EJ, we defi.ne the Cartesian product
(E1 x ... x En , '.5:E1 x ... xEJ as the domain of tuples of values from set E1 to
En where:
• E1 X ... X En = { (e1 , ... , en) 1 e1 E E1 /\ ... /\ en E En}
• (el, ··· , en) '.5:E1 x ... XEn (e�, ... , e�) {=::} e1 '.5:E1 e� /\ ... /\en '.5:En e�

This definition allows us to introduce some notation with respect to
Cartesian product. IfVi E {1, .. . ,n}: Ei = E then we note the Cartesian
product E1 x ... x En as En and V p, 'Tl E E : p $; 'Tl {=} Vi Pi $; 'T/i where
subscripted notation is used to select the ith component of the tuple.

We may state some outstanding properties of Cartesian product:

Theorem 1.2 (Cartesian product of domain)
The Cartesian product of domains is a domain.

The proof of this theorem may be clone by demonstrating these following
points:

• The relation :5:Ei x•••xE,. is a partial order;

• There is a least element in E1 x • · · x En ;

• AU chains of E1 x · · · x En has a least upper bound in E1 X · · · x En.

This first property show that Cartesian product preserves the domain
definition.

The next property shows that we may construct a continuous fonction
on a Cartesian product from several continuous fonctions on domains.

Theorem 1.3 (Continuous fonction on Cartesian product)
Given (E1, '.5:E

1

), • • • , (En , '.5:EJ and (F1, $;p
1

), • • • , (Fn , '.5:FJ domains. If
fonctions fi : E1 -+ Fi, ... , f n : En -+ Fn are continuo us then the fonction
J defi.ned by

J : E1 X ... X En -+ F1 X ... X Fn

(el, ··· , en) � (fie1 , ... fnen)

is continuous for Cartesian product.

This second property shows that Cartesian prod uct preserves the conti
nuity definition.

1.5.2 Sum of domains
Definition 1.10 (Sum of domains)

1.6. Strict fonctions 15

Given n domains (E1, :SE1), ••• ,(En,'.SEn), we can construct the sum (or
disjoint union) (E1 +···+En, '.SE1 + .. +En) as
• E1 + . . ·+En= {j_Ei+·+En } U {(i, ei)li E {l , . . . , n} /\ ei E Ei}
• \:/x E E1 + · · · + En J_E1 +·+En '.SE1 +··+En X

• (i, ei) '.SE1 +··+En (i, eD � ei :SE; e� \fi E {1, . . . , n}

Theorem 1.4 (Sum domain)
The sum of dornains is a dornain.

The steps to prove this theorem are the same than in the Cartesian
product case:

• The relation :SE1 +··+E,, is a partial order;

• There is a least element in E1 + · · · + En ;

• All chains of E1 +···+En has a least upper bound in E1 +···+En.

1.5.3 Function domain
Theorem 1.5 (Function domain)
Given a non-ernpty set E and a domain (F, :SF) we can construct the
fonction clomain (E -+ F, '.SE-+F) of continuous fonctions frorn E to F with
ordering:

f :SE-+F g � \:/x E E, f(x) '.SF g(x)

1.6 Strict functions

We define a strict fonction as follows:

Definition 1.11 (Strict function)
Given (E1, :S), . . . , (En, :S) and (E, :S) (n+l) clornains and given J : E1 X
E2 x . . . x En -+ E a continuous fonction. We will say that the fonction
f is strict in its i-th argument if and only if\:/(e1, . . . , ei-1, ei+l, ··· ,en) E
E1 X Ei-1 X Ei+l X . . . X En,
f(e1, . . • , ei-1, J_E;, ei+l, . . . , en)= J_E

In a lazy fonctional language with this property, if the computation of
the argument does not terminate then the computation of the result of the
fonction will not termina te either. Hence, if we compute the argument before
the call (it is the case in the call-by-value) we then have two possibilities:
either the argument can be evaluated and no harm has been clone or the
evaluation of the argument will fail to terminate. In the latter case, with a

16 Chapter 1 . Mathematical Framework

strict fonction, we know that the computation of the result of the fonction
would have failed anyway. The only difference is that it now may happen a
bit earlier. Strictness of a fonction means that we may use a call-by-value
strategy rather than call-by-name and this should hopefolly make it possible
to implement the fonction more efficiently.

An operational semantics based on call-by-value implies that all fonc
tions are strict in their arguments.

Chapter 2

First-order case

2 .1 Introduction

In this chapter, we present the step-by-step development of a strictness
interpreter of a first order fonctional language. The aim is to present basic
concepts to show how the implementation is constructed for a semantics.
First we describe the syntax of this language. Then we explain issues of the
transition from a call-by-value interpreter to a call -by-name interpreter. We
try to explain difficulties we have encountered when going from one to the
other. For these first implementations we use simple types like integers or
strings. The next step is to upgrade both implementations with the type
'list' and see what we have to change to their first implementation. We
also see another approach of the fix-point algorithm. This one is called the minimal function graph approach and computes the value of a fonction call
only if necessary. Finally, we present a strictness interpreter using minimal
fonction graph.

2.2 A call-by-value interpreter

We describe in this section the semantics of a simple call-by-value interpreter
of a first order fonctional language.

We work with a set of values 1J. No matter the instantiation of the
set but 1J must contain at the time of implementation single values. For
example, we can imagine that 1J is the union between integers and strings:

We define the domain 1J _1_ which is the set 1J lifted with the bottom
value: 1J _1_ = 1J U { J_ } .

In a simple fonctional language , we distinguish two types of elements:
expressions and user-defined fonctions declaration.

18 Chapter 2. First-order case

An expression is either a constant (ci) or a variable (xi) or a primitive ap
plied to several arguments (p(expr 1, . . . , expr n)) or a user-defined fonction
call (f(expr 1, . . . , exprn)):

expr . . _ Ci
Xi
Pi (expr 1, . . . , exprn)
fi (expr 1, . . . , exprn)

A program is composed by user-defined fonctions descriptions.

pr og . . - fi (x1, . . . , Xn) = expr 1
h (x1, . . . , xn) = expr 2

We point out that ail fonctions have the same number of arguments.
Well, this is not an issue indeed. We can replace non-used arguments by
dummy variables to salve the problem. This syntax is very short and easy
to use for implementation .

To implement the interpreter, we need an environment to keep in memory
to which value a variable name or a fonction name points. A variable takes
its value from the set 1J. Function arguments take also their value from 7J
but a fonction call returns a value from the domain 7J _1_ : if the result of a
fonction call is 1- this means that the fonction call does not terminate. We
define a variable environment and a fonctional environment as follows:

p E 1)71 variable environment
<jJ E <I> = (Vn --+ 1J _1_)P fonctional environment

We need some fonctions to evaluate expressions and the meaning of a
program. In order to define an expression evaluation fonction, we need the
variable environment to be able to get the value of a variable and a fonctional
environment to be able to evaluate the value of a fonction call. The result of
the evaluation of an expression may be 1- because the evaluation of a fonction
call may not terminate. We call E the evaluation fonction for expressions
which takes a variable environment and a fonctional environment. Given an
expression it returns a value of 7J _1_ :

E[expr] : <I> --+ vn --+ 1J 1-

Note before describing the semantics that a call-by-value interpreter eval
uates the arguments of a fonction first, before performing the call. As
described in section 1.6, an operational semantics based on call-by-value

2.2. A call-by-value interpreter 19

implies that all fonctions are strict in their arguments. Therefore, a call-by
value interpreter evaluates expressions in this way:

t'[ci] <P p = di
t' [xi] <P P = Pi

t'[pi (expr1, • . . , exprn)] <P p =
strict [pi] (t'[expr1] <P p, . . . , t' [exprn] <P p)

l' [if (expr1, expr2 , expr3)] </> p =
cond(t' [expr1] <P p, t'[expr2] </> p, t' [expr3] <P p)

t' [fi (expr1, . . . , exprn)] </> p =
strict <Pi (t'[expr1] <P p, . . . , t' [exprn] <P p)

where

strict : (V11 ➔ V J_) ➔ (V1j_ ➔ V J_)
f ,,,,_., if (x1 = J_ V x2 = J_ V . . . V Xn = .1_)

then J_ else J (x1, . . . , xn)
cond : v3 J_ ➔ VJ_

(v1 ' v2 , v3) ,,,,_., if V1 then v2
else if not v1 then v3 else J_

In the equations above, di is an element from V corresponding to the
syntactic element Ci and [pi] is the fonction of signature (Vn ➔ V J_) which
corresponds to the syntactic symbol Pi·

Functional applications, basic operations [pi] and the cond fonction have
to be monotonous in order to have a well-defined semantics because V J_ is
simple.

Moreover, basic operations and fonction calls must be strict: if one of
their arguments is _l_ , the result of the call must be _l_, Except for the basic
conditional operation if for which we must not evaluate all arguments before
the call.

The program aims at giving a meaning to the different fonctions it con
tains. Thus, the semantics of a program is a particular fonctional envi
ronment which verifies all the equations of its user-defined fonctions. We
take the least one, so we compute the least fix-point of a transformation of
the fonctional environment <I>. We call P the fonction which evaluates the
meaning of a program. This one has the following signature:

P[prog] : <I>

20 Cliapter 2. First-order case

The meaning of a program is the least fix-point defined by:

P[h (xi, . . . , Xn) = expr1
h(x1 , .. . ,xn) = expr2

fix(.\<j>.(E[expr1] </>,
E[expr2] </>,

where fix is the fonction defined in chapter 1 section 1.4. Each
fonction fi is bound to a fonction <P i of signature vn -t 'D 1.
such that the meaning of a program is the least fix-point of 4> =
(E[expr1] </> , ... , E[exprp] </>). This definition is correct if and only if <I>
is a domain and .\<j>.(E[expr1] </>, ... , E[exprp] </>) is continuous. <I> is ef
fectively a domain following the fonction domain definition mentioned in
chapter 1 section 1.5.3 and .\<j>.(E[expr1] </>, ... , E[exprp] </>) is continous.

In order to implement the fix-point computation, a fonction called p is
defined A. 1. Within a convention representation, this fonction has the same
signature than the semantic fonction P. The problem is to compute the
fix-point of P[prog], thus of p prog. This fix-point verifies the equation
p prog phi = phi. But. we may not write this equation in caml. On the
other band, we may write phi f x = p prog phi f x. This expression
is mathematically equivalent to p prog phi = phi according the fonction
equality definition described in [Sto77]. Note that all fix-point verifies this
equation. But caml will compute the least one because its semantics is strict.

The reader may find in appendix A.l an implementation of this seman
tics.

2.3 A call-by-name interpreter

Now, on the basis of the first implementation, we define the semantics of a
call-by-name interpreter. A call-by-name interpreter evaluates arguments of
a fonction call only if necessary. How can we change the semantics of the
call-by-value to obtain an interpreter which implements the call-by-name ?
The purpose of this section is to answer this question.

We have to revisit the variable and the fonctional environment. A vari
able or an argument of a fonction call may be J_ because arguments are not
evaluated immediately or may be never evaluated. In some cases, if an ar
gument of a fonction call is undefined, its evaluation may terminate. Hence,
we have the following definitions:

p E 'D1
</> E <l> = ('D1 -t 'D 1.)P

2.4. A call-by-value interpreter with lists 21

The signature of the expression evaluation fonction has the same form
as in the call-by-value case:

[[expr] : <I> --+ 'D1 --+ 'D 1_

The semantics of expressions is almost the same as in the call-by-value
case. The only difference resides in the evaluation of user-defined fonction
calls. In the call-by-name case, this evaluation does not have to be strict
because an argument could be J_, We have the following equation:

The fonction P which computes the meaning of a program prog does
not change.

The reader can find in appendix A.2 an implementation of this semantics.
Note that the implementation of the interpreter is written in caml which is a
language using strict evaluation. We know that an interpeter using call-by
name evaluates arguments of fonction calls as late as possible. How could we
delay the evaluation of the arguments in a strict interpreter? To delay the
evaluation of an argument, we are using the rule of abstraction-reduction
described in [Sto77] [Rou97]. The reduction rule allows us to replace in the
body of a fonction all occurences of the real parameter by the value of the
formal parameter. On the other hand, the abstraction rule allows us to put'
in a formal parameter and to put out a real parameter. If the expression
J [v/x] means "substitute the variable ·x by the expression v in the body
of the fonction f" . The abstraction-reduction rule may be described as
(>.x.J (x))v ç=} J[v/x] .

When f(e) is computed, e is evaluated first. We may apply the abstrac
tion rule to the argument e: (>.x.e)x . This expression is evaluated to e when
the fonction is applied to an argument of any type. We are free to choose the
type of the argument. In the implementation, we choose the unit value () .
Hence, we have that e is equivalent to (>.x.e) () . The fonction J = >.y.expr
is therefore transformed into another fonction: J' = Ày.expr[z/y] with
z = y () . The application f' (>.() .e) is therefore delayed. Indeed, the eval
uated argument is a fonction which gives a result only when applied to a
value of unit type.

2 .4 A call-by-value interpreter with lists

Now, we examine how to upgrade our first descriptions such that the inter
preter supports lists . By definition, a list is a sequence of ordered values of
the same type for typed lists, of any types for non-typed lists. We consider
non-typed lists. The set of values containing this kind of list is 'D* which is
defined as follows:

'D* = 'D U ('D* X 'D*)

22 Chapter 2. First-order case

Elements from D* are either written as 1, 2, . . . for atoms1 or (. • .) for
pairs. Moreover, in D is added the element corresponding to the empty list
{noted nil). On the basis of this set, we can construct the lifted domain
(D*)J_ which is a fiat domain described as follows:

1 ,2 , . . . (1 . nil), {2 . nil), . . . (1 . {2 . nil)), . . .

--------\ �

This domain contains well-defined lists (without J_ as component) and
has J_ as lower bound. A second interesting domain is (D 1.)* which is con
structed from D 1. and contains lazy lists. A lazy list is a list which may
contain one or more J_ inside. This domain is defined as follows:

The structure of this domain is quite different from the previous one.
We have a tree structure which looks like the following:

{1 • nil), . . .

1
{ 1 . _1_) , . . . (_1_ . (_1_ . _1_)) (_1_ . nil)

� I �
1,2, . . . (_1_ . j_)

"' /
J_

In a call-by-value interpreter, lists are defined in the domain {D*)J_. On
the other band, in a call-by-name interpreter, lists are defined in the domain
(D 1.)* because an argument may never be completely evaluated during the
execution of a program.

In the call-by-value interpreter with lists, a variable and fonction call
argument eau be a simple value from D or a list from D* x D*. The result
of a fonction call must be an element from (D*)J_ . Therefore, the variable
and the fonctional environments are modified as follows:

p E D*n

<p E <I> = {D*n ➔ ('D*)J_)P

The expression evaluation fonction E always needs as arguments: the
variable and the fonctional environment. Hence, the signature of the ex
pression evaluation becomes:

l'[expr] : <I> ➔ D*n ➔ (D*)J_
1 If V con tains integers.

2.5. A call-by-name interpreter with Jazy lists 23

With respect to the semantics defined in section 2.2, we add the evalu-
ation of the three common primitives: cons, car and cdr.

E[cons(expr 1 , expr 2)] <p p = strict cons(E [expr 1] <p p, E [expr·2] <p p)
E[cdr(expr)] cp p = strict cdr(E [expr] <p p)
E[car(expr)] <p p = strict car(E[expr] cp p)

where strict is defined as in section 2.2 and cons, car and cdr are
defined as follows:

Given h, t in V*, we have:

cons (h, t) = (h . t)

Given x in V* , we have:

cdr X = t if X = (h . t)
cdr X = J_ if X E V

Given x in V* , we have:

car x = h if X = (h . t)
car X = J_ if X E V

We have that cond, car and cdr are continous on (V*)J_. The fonction
P which computes the meaning of a program pr og does not change anymore.

The reader can find in appendix A.3 an implementation of this semantics.

2.5 A call-by-name interpreter with lazy lists

In this section, we present a call-by-name interpreter with lazy lists. The
nature of a non-strict language is that their data constructors are also non
strict. Non-strict constructors permit the definition of (conceptually) infini te
data structures. An example of a program which generates infinite lists is
described in section 2.6.

With regard to the semantics, we use the domain (V 1-)* described in
section 2.4 to define the variable and the fonctional environments:

p E (V 1-)m

cp E <I> = ((V 1-)m ➔ (V 1-)*)P

Hence, the signature of the expression evaluation fonction becomes:

E [expr] : <I> ➔ (V 1-)m ➔ (V 1-)*

With respect to the interpreter described in section 2.3, we only add
the evaluation of the three primitives for lists manipulations. Because an

24 Cllapter 2. First-order case

element of a list may not be evaluated, these fonctions do not have to be
strict.

l' [cons(expr 1, expr 2)] </> p = cons(l'[expr 1] </> p, l'[expr 2] </> p)
l'[cdr(expr)] </> p = cdr(l'[expr] </> p)
l'[car(expr)] </> p = car(l' [expr] </> p)

where cons, car, cdr are defined as in section 2.4.
We are always using the same P fonction in order to evaluate the mean

ing of a program.
The first order language that we have developped until now is the one

we use to study strictness analysis in section 2. 7.
The reader can find in appendix A.4 an implementation of this semantics.

2 .6 Examples

For our examples, we assume that our language has the following built-in
primitives and V is the set of integers:

pred expr computes the predecessor of expr .
suce expr computes the successor of expr .
if (expr 1, expr 2 , expr3) conditional command: i f the evaluation of

expr 1 is O then returns the evaluation of expr3
otherwise returns the evaluation of expr 2.

equ (expr 1, expr 2) returns 1 i f the evaluation of bath expressions
expr 1 and expr 2 is equal, 0 otherwise.

In order to simplify examples, we also assume that the following user
defined fonctions are written:

times (x, y) returns x * y.
plus (x, y) : returns x + y.

Call-by-name is time-consuming An example of program may be the
following:

fact x = if (equ(x , O) ,
1 ,
times(x , fact (pred x)))

fibo x = if (equ(x , O) ,

)

1 ,
if (equ(n , 1) ,

1 ,
plus(fibo (pred x) , fibo (pred (pred x)))

)

This program shows us the efficiency of the call-by-value with respect to
call-by-name when we are calling fibo (fact 4) for example. The reason

2. 7. Fix-point computation using minimal fonction graph 25

resides in the fact that call-by-name does not evaluate arguments immedi
atly: arguments are evaluated as late as possible. Table 2.1 shows how the
time-consuming the call-by-name interpreter is2 •

Call Name Value
fibo (fact (1)) 0.00 0.00
fibo (fact (2)) 0 .01 0.00
fibo (fact (3)) 72 . 1 5 0.00
fibo (fact (4)) - 0.01

Table 2.1: Computation time in seconds

Interest of lazy lists Another interesting example is a program which
generates infinite lists and returns the first n elements.

listnum x = cons (x , listnum (suce x))

f irstn (x , 1st) = if (eqn(x , 0) ,

nil ,

if (atom(lst) ,

nil ,

)

cons (car (lst) ,

f irstn (pred x , cdr (lst)))

)

If we perform the call firstn (10 , (listnum 0)) , a strict evaluator does
not terminate because it computes listnum 0 which generates an infinite
list. In the other hand, a non-strict evaluator gives us the right answer
because, during the execution, the expression listnum 0 is never actually
evaluated.

2. 7 Fix-point computation using minimal function

graph

2.7 .1 Motivations

In the call-by-value case, computing the fix-point as described in the previous
sections may fail to terminate. For a fonction call to h(v) where h(x) =
h(x) and v E 7J, a strict evaluator does not terminate3 . As we describe
forther, minimal fonction graph is another way of computing the fix-point

2Tests were made on a Celeron 700Mhz with 64MiB RAM
3Note that a non-strict interpreter does not terminate either

26 Chapter 2. First-order case

of a program. With this method, computing the fix-point of h(v) terminates
and gives the value J_ as result. On the other hand, for a fonction call to g(v)
where g(x) = g(x - 1) and v E V, the evaluation does not terminate either.
A strictness interpreter using minimal fonction graph gives us a solution to
our termination problem.

2.7.2 Minimal function graph

Minimal fonction graph (hereafter abbreviated mfg) is an approach which
consists in computing fix-point evaluating arguments of a fonction call only
when they are needed. The semantics groups together intermediate calls
during the evaluation of a program. In this approach, the idea is to de
scribe fonctions as a set of arguments-result pairs in order to identify these
fonctions. From a set of arguments-result pairs, the mfg approach gives the
least set of pairs that are needed in order to compute the result. In this
semantics, fonction calls are represented as closures: a pair (h , (v1 , . . . , Vn))
where fi is the fonction name and the tuple (v1 , . . . , vn) is a list of argu
ments. Furthermore, we distinguish two sets: a set C which collects the
different closures appearing in the computation and a set <I> which is the
fonctional environment defined as a Cartesian product instead of a fonc
tion. We call C a need-set. To explain how this approach works, consider
the simple example of the factorial fonction defined as:

let fact (n) = if n = 1 then 1 else n * fact (n - 1)

Let us examine now the fonction call to fact with the argument 3 . During
the execution, we check first if 3 is equal to 1. Since this is not the case, we
compute the "else branch" of the conditional command. At this stage, we
don't know the value of fact (3), hence fact (3) is mapped to the undefined
value .l_ . We also see that fact (3) requires that the value of fact (2) be
computed. Bence, the set C contains the tuples (tact , 3) and (tact , 2). The
next iteration consists in computing the value of fact (2) . With the same
reasoning, fact (2) is mapped to J_ and we see that in order to compute it
we need the value of fact (l). The pair (tact, 1) is added to the set C. The
computation of fact (l) returns directly the value 1. The knowledge of this
value leads us to compute the value of fact (2) and later, the value of fact (3) .
Finally, the set C contains the pairs { (tact , 3) , (tact , 2) , (tact , l)}. We obtain
a graph which results from the computation of different values. Note that
we have computed only arguments that are needed.

2.7 .3 An interpreter using mfg

As we have seen in the previous section , in order to write the semantics of an
interpreter using mfg algorithm, we have to define an additional set. This

2. 7. Fix -point computation using minimal fonction graph 27

set called C captures arguments of fonction calls that are needed to evaluate
the initial call. C is a p-uple of sets:

The variable environment does not change with respect to the call-by
value interpreter:

We redefine <I> as a p-uple which contains sets of argument values and
the result of fonction calls with these arguments:

The expression evaluation fonction does not really change compared to
the call-by-value interpreter with lists. We have the following signature for
the expression evaluation fonction:

E[expr] : <I> -+ D*n -+ (D*)J_

and the semantics of expressions is very close to the one of the call-by
value interpreter:

E [ci] <P p = di

E [xi] <P p = Pi

E[Pi (expr1, . . . , exprn)] <P p =
strict [pi] (E [expr 1] </J p, . . . , E [exprn] </J p)

E [if(expr 1, expr 2, expr3)] <jJ p =

cond(E[expr 1] </J p, E[expr 2] <P p, E[expr3] <P p)
E [fi (expr 1, . . . , exprn)] </J p = strict <Î>i (E[expr 1] </J p, . . . , E [exprn] <P p)

where strict and cond are defined as in section 2.2 and where ef>i is
the fonction that the tabulated fonction <Pi represents. Given <Pi a tabulate
fonction from </J, we note:

ef>i : D*n -+ (D*)J_

(d i , . . . , d,,) � { �+l if (d1, . . . , dn, dn+1) E <Pi,
otherwise.

N ow, we define a fonction N w hich collects arguments of a fonction call
that need to be evaluated. This fonction takes an expression, a fonctional
environment and a variable environment, and it constructs as a result an
element from C:

N[expr] : <I> -+ v*n -+ c

28 Chapter 2. First-order case

The semantics of N is the following:

N[ci] <P p = (0 , . . . , 0)
N[xi] <P p = (0, . . . , 0)
N[pi (expr 1, . . . , expr n)] <P p = (N[expr 1] <P p) ®u . . . ®u (N[exprn] <P p)
N[if (expr 1, expr 2 , expr3)] <P p =

condn(expr i, expr 2, expr3)
N[fi (expr 1, . . . , expr n)] <P p =

where

and

and

mkset((l'[expr 1] <P p) , . . . , (l'[expr n] <P p) , i)
®u (N[expr 1] <P p) ®u . . . ®u (N[expr n] <P p)

condn (expr i, expr 2, expr 3) =

if (l' [expr 1] </J p) then
(N[expr i] <P p) ®u (N[expr 2] <P p)

else
if not (l' [expr i] </J p) then

(N[expr i] <P p) ®u (N[expr3] <P p)

else (N[expr i] <P p)

mkset (v1, . . . , vn, i) =

if (v1 = J_ V . . . V Vn = ..1_) then (0, . . . , 0)

else (0, . . . , 0, { (v1, . . . , vn) } i , 0, . . . , 0)

C x C ----? C

((ci, . . , , cp) , (c�, . . . , c�)) ""' (ci, . . . , cp) ®u (c�, . . . , c�) =
(ci U cL . . . , cp U c�)

The operator ®u guarantee us the monotony of the N fonction and is
associative since the union of sets is associative.

In the capture of fonction calls for user-defined fonctions, if one of the
arguments is ..1_, then we don't add this fonction call to the result of the
evaluation . However, we add fonction calls that are needed in order to
evaluate each argument.

The fixpoint computation is slightly different of the previous ones be
cause we compute two different sets: <I> which represents the graph of a
fonction and C which contains the captures of fonction calls. We define a
fonction P which compute the meaning of a program. As we need to know

2. 7. Fix-point computation using minimal fonction graph 29

which inital calls are performed at the start, P takes an extra argument co
which contains them. Its signature is the following:

P [prog] co : � x C

The meaning of a program is then the least fix-point defined as follows:

P[prog] c0 = fix(>.(</>, c) . (</> 0u (iterate prog </> c), c 0u (needs prog </> c)))

where i terate should compute a new graph by calling the expression eval
uation fonction [for all calls in C and needs should collect all needs using
the N fonction for all calls in C. The fonction 0u is defined in the same
way as the 0u operator. Instead of computing the union of its arguments,
it computes the least upper bound and it is defined on �- The fix-point
is well-defined because the upper bound operator will ensure us that the
fonction is monotonie.

Functions i terate and needs are defined as follows:

iterate [fi(x1, . . . , xn) = expr1
h (x1, . . . , Xn) = expr2

fp (xl, ··· , xn) = exprp] </> (cl, ··· , cp) =

({(p, [[expr1] </> p I p E c1) }
' . . . '

{ (p, [[exprp] </> p I p E cp) }

needs [fi (x1, . . . , Xn) = expr1
h(x1, . . . , xn) = expr2

Jp (x1, . . . , xn) = exprp] </> (cl, ··· , cp) =

(0�Ec 1 N[expr1] </> p)
0u . . . 0u

(0�EcpN[exprp] </> p)

The reader can find an implementation of this semantics in appendix
A.5.

Example

For this example, let's take the Fibonnaci series (see code in section 2.6). We
call the fonction fibo with the argument 3. This is an interesting example
because this fonction is doubly recursive.

First, we begin with an empty fonctional environment and a need-set
(C) which is initialized with the arguments of the initial call (fibo , 3).

30 Chapter 2. First-order case

C { (fibo, 3) }
The conditional command is evaluated. As x is not equal to O nor to

1, the else branch of the conditional command is computed. The expres
sion plus (f ibo (pred x) , f ibo (pred (pred x))) is evaluated. When
this expression is evaluated we see that it is not possible to return a result
for fibo (3) . Hence, the functional environment is upgraded with the tuple (fibo, 3, j_), During the evaluation of the previous expression, the first ar
gument of plus is evaluated first. We notice here that we have to compute fibo(2) to get value of the initial call. Thus, the need-set is upgraded with
the tuple (fibo, 2) .

C { (fibo, 3) , (fibo, 2) }

The next step consists of computing fibo (2) which cornes from the pre
vious call . As the functional environment does not contain the result
of the call to fibo(2) , it is evaluated. As x is not equal to O or to 1,
the else branc h of the conditional command is evaluated. The expression
plus (f ibo (pred x) , f ibo (pred (pred x))) is once more evaluated.
When this expression is evaluated we see that it is not possible to return a
result for fibo (2) . Hence, the functional environment is upgraded with the
tuple (fibo, 2, j_). During the evaluation of the previous expression, the first
argument of plus is evaluated first. We may notice that we have to compute fibo (l) to get the value of fibo(3) . The need-set becomes:

<p (fibo, 3, j_), (fibo, 2, j_) C { (fibo, 3) , (fibo, 2) , (fibo, l) }

Now, fibo (l) which cornes from the previous call to fibo (2) is evaluated.
As the functional environment does not contain the result of the call to fibo (l) , it is evaluated. As x is equal to 1, the fonction call returns l.
The functional environment is then upgraded with the tuple (fibo, l, 1) . We
obtain the following sets:

cp (fibo, 3, j_), (fibo, 2, j_), (fibo, l, 1) C { (fibo, 3) , (fibo, 2) , (fibo, 1) }

We came back to the previous call. Now the second argument of plus
is computed. As x has the value 2 , the expression that has to be computed
is fibo (O) . First we check if we have not already computed the value of this
call. As this is not the case, the call is evaluated and returns as result the
value l. The need-set is upgraded with the tuple (fibo, 0) . These results
allow us to evaluate the value of fibo (2) and we return back to the first call
to plus.

1111 ©
1 Il

1 cp Il (fibo, 3, j_)

Il 1
_ll ______ j

Il

Il

2. 7. F
ix-point com

putation using m
inim

al fonction graph 31
cp (fibo, 3, .. L), (fibo, 2, 2), (fibo, 1, 1), (fibo, 0, 1)
C

{ (fibo, 3), (fibo, 2), (fibo, 1) (fibo, 0)}
N

ow
 the second argum

ent of plus of the first call is com
puted. R

ecall
that x has the value 3.

T
hus the expression that has to be com

puted is
fibo (l).

A
s the value of this expression is already know

n, w
e can return a

result fo
r the initial call. W

e upgrade once m
ore the fonctional environm

ent
and w

e get the result.

cp (fibo, 3, 3), (fibo, 2, 2), (fibo, 1, 1), (fibo, 0, 1)
C

{ (fibo, 3), (fibo, 2), (fibo, 1)(fibo, 0
)}

N
ote that in this exam

ple, in order to sim
plify notation and reduce space

consum
ption, w

e have taken care to not directly express all fonction calls.
N

orm
aly, cp and C

 m
ust contain occurences of fonction calls to plus, equ

and if.

2
. 7

.4

A
 str

ic
tn

e
ss in

te
rp

re
te

r u
sin

g
 m

fg

In order to define a strictness interpretation, w
e use a tw

o-point dom
ain

that we note 2. Its elem
ents are 0 and 1 and are ordered by 0 Ç l.

2={0,1 },
0 Çl

T
his dom

ain is defined to describe w
hether an elem

ent in (V
*) is defined

or not. T
he ..L elem

ent is m
apped to O and other values are m

apped to 1.
For this purpose we can define an abstraction fonction:

a
: (V

*)----+ 2
a

(d) =
 if d =

 ..L then 0 else 1

O
n the basis of this dom

ain 2, we can eas
ily redefine the sem

antics of
the previous section (2.7.3).

W
e just substitute all 'D

*'s in the previous
sem

antics.
T

he variable and the fonctional environm
ents are defined as

fo
llow

:
p

E
2

n

c/J
E

<l> = t,J(2
n

 X 2) P

In order to ensure the safety properties, w
e need that the fonction eval-

uation of expression verifies the follow
ing equations:

a(l'[c
i] cp p) Ç l'�[c

i] cp p
a(l'[x

i] cp p) Ç [U[x1] cp p
a(l'[pi(e xpr1, . .. , e xprn)] cp p)

Ç l'�[e xpr1] cp p /\
 ... /\

 [U[e xprn] cp p
a(l' [if(e xpr1, e xpr2, e xpr3)] cp p

Ç [
U[e xpr1] cp p /\

 ([U[e xpr2] cp p V [U[e xpr3] cp p)
a(l'[fi(e xpr1, ... , e xprn)] cp p)

Ç c/J
i ([

U[e xpr1] cp p , ... , [U[e xprn] cp p)

__L_

32 Cliapter 2 . First-order case

In this way, we examine strictness properties of expressions. For basic
operations and function call, if one of their arguments is undefined (0),
their result is undefined (0). For the conditional expression, if expr 1 is
undefined we know that the result is undefined, otherwise, it is either the
result of the evaluation of expr 2 or the result of the evaluation of expr3.
The result returned by Ert is an upper bound, hence if the upper bound is
the least element 0 then we know that the evaluation of the expression by
l' is undefined.

We mark the semantic function with a sharp (U) in order to distinguish
it from the previous function. The signature of the expression evaluation
function is straightforward:

and we have the following semantics :

l'rt [ci] cp p = l
frt [xi] cp p = Pi

t:rt [pi (expr 1, . . . , expr n)] cp p = (Ert [expr 1] cp p) /\ . . . /\ (Ert [expr n] cp p)
E rt [if(expr 1, expr 2, expr3)] cp p =

(Ert [expr 1] cp p) /\ ((Ert [expr 2] cp p) V (Ert [expr3] cp p))
E rt [Ji (expr 1, . . . , expr n)] cp p = �i (Ert [expr 1] cp p, . . . , Ert [exprn] cp p)

For the need function, the set C is defined similarly:

The signature of the need function becomes:

And the associated need function N is also straightforward:

Nrt [ci] c/J p = (0, . . . , 0)
Nrt [xi] c/J p = (0, . . . , 0)
Nrt [pi (expr 1, . . . , exprn)] cp p = (Nrt [expr 1] cp p) 0u . . . 0u (Nrt [expr n] cp p)
Nrt [Jf (expr 1, . . . , exprn)] cp p =

mkset((l'rt [expr 1] cp p), . . . , (Ert [expr n] cp p), i)
0u (Nrt [expr 1] cp p) 0u . . . 0u (Nrt [expr n] cp p)

where functions mkset and 0u are defined like in section 2. 7.3. The
function which computes the fix-point is the same as this described in the
same section.

2.8. Example 33

2.8 Example

Examine fonctions h where h (x) = h (x) and g where g (x) = g (x- 1) . The
table 2 .2 shows us the result of fonction calls in the different cases. A sign
- means that fonction calls do not terminate; J_ that the execution of the
algorithm returns the value J_ and O the value O of the set 2.

h(x) = h (x) g (x) = g (x-1)
Call-by-value - -
Call-by-name - -
mfg J_ -
strictness mfg 0 0

Table 2.2: Function results

How do we interpret these results ? In the call-by-value and the call-by
name cases, the interpreter does not terminate. The mfg is an improvment
of the fix-point computation, but it does not terminate in many cases either.
A strictness interpreter using mfg working on a finite domain terminates in
all cases.

The aim of strictness analysis is to transform call-by-name into call-by
value when results of fonction calls are identical. In order to do that, we
study the strictness properties of user-defined fonctions. It means that if
the evaluation of an argument of a fonction call does not terminate then the
evaluation of the fonction call does not terminate either. When we work on
a finite set such as 2, the evaluation of a fonction call becomes independent
of the parameter passing mode and we are sure to obtain a result. Now, let
us take back the example with lazy lists in section 2. 6 page 25. The table
2.3 shows the different results of the strictness interpreter with calls to the
fonction f irstn.

Call Results
firstn (1 , 0) 1
firstn (0 ' 1) 0

Table 2 .3 : Strictness of f irstn.

What do these results mean ? They mean that the fonction listnum is
strict in its first argument but not in the second one. Hence, we know that
we are able transform call-by-name for the first argument into call-by-value.
That is what we expected.

In the example in section 2.6 page 24, the study of strictness of fact x
and f ibo x allow us to know that we may replace call-by-name by call-by
value. Hence the computation tüne of the result should be better.

34 Chapter 2. First-order case

Chapter 3

Second-order case

3 . 1 Introduction

This chapter is devoted to the study of strictness analysis on a second order
functional language. In chapter 2, we have given a succinct description of
the first order case without giving real proofs of what we have done. The
reader interested in a complete developement of the first order case may
read [Pol96]. We dress in this chapter a more complete development of the
second order case.

3.2 A second order call-by-value interpreter

In this section, we are interested in the study of a second order call-by-value
functional language. First, we dress its mathematical semantics, then we
set out its caml implementation.

3.2.1 Mathematical semantics

Syntactic sets

We define syntactic sets containing symbols which allow us to write the
abstract syntax of the language.

C E Cons Set of constants (or basic symbols)
X E Varv Set of variables
h E Varf Set of first order functional variables
f E lFunc1 Set of first order functional constants
g E lFunc2 Set of second order functional constants
p E IPrim Set of primitives (first order predefined fonctions)
expr E lExpr Set of expressions
prog E IProg Set of programs

36 Chapter 3. Second-order case

Abstract syntax

A fonctional language is essentially made up of expressions. An ex
pression is either a constant (c) or a variable (xi) or a basic opera
tion (Pi (expr1, . . . , exprn)) or a call to a first order user-defined fonction
(fi (expr1, . . . , expr n)) . Moreover, we distinguish two second order calls.
The first one with a parameter name h (gi (expr1, . . . , exprn)h) and the sec-
ond one with a first order fonction Jj (gi(expr 1, . . . , expr n) Jj) as functional
argument. The last call corresponds to the evaluation of the parameter
name wi th i ts arguments (h (expr1 , . . . , exprn)) .

expr . . _ c
Xi
Pi (expr1, . . . , exprn)
fi (expr 1, . . . , exprn)
9i(expr 1, . . . , exprn)h
9i (expr 1, . . . , exprn)Jj
h (expr1, . . . , expr n)

A program is composed of first and second order user-defined fonctions
descriptions:

prog fi(x 1 , . . . , xn) = expr 1
h (x 1, . . . , xn) = exprz

fp (x1, . . . , Xn) = exprp

g1 (x1, . . . , Xn)h = expr �
g2(x1, . . . , xn)h = expr�

gq (x1, . . . , Xn)h = expr�

We point out that like in the first order case, all fonctions possess the
same number of arguments. We can replace non-used arguments and fonc
tions by dummy variables to solve the problem. Moreover, second order
user-defined fonctions are defined with only one fonctional variable (h). If
we want to use more than one h fonction in a second order call, we have to
define a selection fonction which given a number returns the appropriate h
fonction. The syntax described above does not allow to write fonctions that
returns a fonction as result: in other words, curryfication is not possible.
An example is given in the next section.

Sorne examples

We assume that our language has basic operations and the first order user
defined fonctions plus and times defined in section 2.6.

3.2. A second order call-by-value interpreter 37

A first example consists in computing the sum of squares of the n first
integers. For this one, we define a first order fonction sqr which, given
an integer, computes the square of a number; a second order fonction sum

which, given an integer n and a first order fonction f , computes f n + sum

(n-1) f if n =/- 0 and returns O otherwise; and a first order fonction sumsqr ,

which given an integer, calls sum with this integer and the fonction sqr .
We have:

sqr x = times (x , x)

sum n f = if (equ (n , 0) , 0 , plus (f n , sum (pred n) f))

sumsqr n = sum n sqr

We may compare our example with the abstract syntax and identify the
different fonction calls:

times (x , x)

f n

sum (pred n) f

sum n sqr

fi(expr1 , ... , exprn)
h(expr1 , . . . , exprn)
9i(expr1 , . . . , exprn)h
9i(expr1 , ... , exprn)Jj

Another example shows the usage of the selection fonction. We define
two first order fonctions sqr and cube that compute respectively the square
and the cube of an integer; a second order fonction bigsum which, given two
fonctions f and g and an integer n, computes f n + g n + sum (n-1) f g

if n =/- 0 and returns O otherwise. It is clear that the syntax described above
does not allow us to write the following program:

sqr x = t imes (x , x)

cube x = times (times (x , x) , x)

bigsum n f g = if (equ (n , 0) ,

0 ,
plus (f n , plus (g n , bigsum (pred n) f g)))

sumsqrcube n = bigsum n sqr cube

because the second order fonction bigsum takes two first order fonctional
symbols.

In order to respect the syntax, we define a selection fonction sel which
given an integer and a list of arguments returns the fonction call. Hence we
have:

sqr x = time s (x , x)

cube x = times (times (x , x) , x)

sel (n , x) = if (equ (n , 0) ,

sqr x ,

if (equ(n , 1) ,

cube x ,

0))

38 Chapter 3. Second-order case

bigsum n sel = if (equ (n , 0) ,

0 ,

plus (sel (0 , n) ,

plus (sel (1 , n) , bigsum (pred n) sel)))

sumsqrcube n = bigsum n sel

Values set

We work with a set of values 1) which is a general set that can contain simple
values as defined in section 2.2 and we define the domain 1) J_ = 1) U { J_}.

Environments

We also define some environments. The first one is a variable environment
which does not change with respect to the first order case. Hence, we have:

p E 1)n

Speaking about the fonctional environment, we need to define an addi
tional element 77 which represents the value of the formal parameter h passed
to a second order fonction. Its value is a fonction from 1)n to 1) J_ . Hence, 77
and cf> are defined as follows:

'T/ E

q> E

E = (Dn -+ 1) j_)
<I> = (E -+ 1Jn -+ 1) L)p+q

Parameter value " environment"
Second order fonctional environment

This definition of the fonctional environment <I> allows us to group first
order and second order fonctions . In the case of a first order fonction, the
fonctional parameter h does not appear. Thus, we have to use a trick for 77
in order to compute the semantics of a first order function. For this purpose,
we rely on a fonction defined as follows:

'T/l_ = Àx,J_ Vx E Dn

Note that we could have divided the fonctional environment into two
distinct domains: one that contains first order fonctions definitions and
another that contains second order fonctions definitions. We have not chosen
this representation because it is more complex to compute fixpoint on two
domains than one and because we may use the fix-point definition from the
previous chapter.

Expression evaluation function

The expression evaluation fonction takes as arguments a variable environ
ment, a first and a second order functional environment and a parameter
value environment. We have the following signature:

l'[expr] : <I> -+ E -+ 1)n -+ 1) J_

3.2. A second order call-by-value interpreter 39

Each expression is evaluated as follows:

E[c] </> 77 p = d
E [xi] </> 'T/ p = Pi
E[pi(expr 1, . . . , exprn)] </> 'T/ p =

strict [pi] (E [expr 1] </> 'T/ p, . . . , E [exprn] </> 'T/ p)
E [if (expr 1, expr 2, expr3)] </> 'T/ p =

cond(E[expr 1] </> T/ p, E [expr 2] </> T/ p, E [expr3] </> T] p)
E[fi (expr 1, . . . , exprn)] </> T] p =

strict (<Pi 77_1_)(E[expr 1] </> T] p, . . . , E[exprn] </> 'T/ p)
E[gi(expr 1, . . . , exprn)h] </> 'T/ p =

strict (</>p+ i T])(E[expri] </> 'T/ p, . . . , E[exprn] </> 'T/ p)
if h is a parameter name (formal parameter)

E[gi (expr 1, . . . , exprn)f1] </> TJ p =
strict (</>p+ i (<Pj TJ1-))(E[expr 1] </> 'T/ p, . . . , E[exprn] </> T] p)

if the parameter value is the named
fonction J1 (actual parameter)

E[h(expr 1, . . . , exprn)] </> T] p =
strict 77(E [expr 1] </> T] p, . . . , E [exprn] </> T] p)

where strict and cond are defined in section 2.2.

In the equations above, d is an element from V corresponding to the
syntactic element c and [p i] is the fonction of signature (Vn ➔ V _1_) which
corresponds to the syntactic symbol Pi· (</>j 'T/ _1_) is a first or der fonction
corresponding to the syntactic element f1 and whose signature is (Vn ➔
V 1_). Moreover, basic operations, fonction call and cond fonction have to
be monotonous in order to have a well-defined semantics.

Program evaluation function

We call P, the fonction that evaluates the meaning of a program. It has the
same signature as in the first order case:

P[pr og] : <I>

40 Chapter 3. Second-order case

The meaning of a program is the least fix-point defined by:

P[fi(x1, . . , , xn) = expr1
h (x1, . . . , Xn) = expr2

Jp(x1, . . . , Xn) = exprp
g1(x1, . . . , xn)h = expr�
g2(x1, . . . , xn)h = expr�

gq (x1, . . . , Xn)h = expr�] = fix(,\cp. (t'[expr1] cp,
t'[expr2] cp,

t' [exprp] cp,
t' [expr�] cp,
t' [expr�] cp,

where fix is the fonction defined in chapter 1 section 1.4.
This definition is correct if and only if <I> is a domain and
Àcp. (t'[expr1] cp, . . . , t'[exprn] cp, t'[expr�] cp, . . . , t' [expr�] cp) is continuous.
<I> is effectively a domain following the fonction domain definition mentioned
in chapter 1 section 1.5.3.

3.2.2 A caml implementation

Before writing a caml interpreter for this second order call-by-value func
tional language, we have to give an instantiation of the abstract syntax
described in the beginning of this section. First, we instantiate D as the
union of integers and strings:

We define primitives pr suce, pred, equ, if and cat which are re
spectively the successor, the predecessor, the equality test, the conditional

3.2. A second order call-by-value interpreter 41

command and the concatenation of strings. The syntax is the following:

expr ··- di
Xi

succ(expr)

pred(expr)

equ(expr1, expr2)
if (expr1, expr2, expr3)
cat (expr1, expr2)
fi (expr1 , . . . , expr n)
9i (expr1 , . .. , exprn)h
9i (expr1, .. . , exprn)fj
h(expr1, ... , exprn)

Primitives [pi] are specified as follows:

equ :

suce : 7J ➔ 1) 1_

n ,_,_. n + l if n E Z
pred : 7J ➔ 1) 1_

n ,_,_. n - l
cat : 7J x 7J ➔ 1) 1_

(n1, n2) ,_,_. n1 'n2
1J x 1J ➔ 1J1_

if n E Z

(n, n) ,_,_. 1 if n E 7J
(n1, n2) ,_,_. 0
(n1, n2) ,_,_. 0

if : 7J X 7J X 7J -,

if n1 , n2 E Z and n1 =/= n2
if n1, n2 E § and n1 =/= n2

1) l_

(0, n1, n2) ,_,_. n2
(n, n 1, n2) ,_,_. n 1 if n E Z \ { 0}

The translation of the abstract syntax to caml is rather straightforward.
The set of values 7J which contains integers and strings is translated into a
caml object of type val:

type val = I of int I S of string ; ;

Elements from !Expr are translated into caml object of type expr:

type expr = INT of int
STR of string
VAR of string
suce of expr
PRED of expr
EQU of expr*expr
IF of expr*expr*expr
CAT of expr*expr
CALL of string* (expr list) *string ; ;

42 Chapter 3. Second-order case

An element of jp>rog is translated to a caml abject of the form:

type prog = PROG of (string* (string list) *string*expr) list ; ;

where components of tuples are respectively the fonction name, the list
of variable names, the fonctional argument name and an expression which
is the body of the fonction.

In order to specify correctly caml fonctions corresponding to semantic
fonctions, we introduce a meta-function which maps an object from the
mathematical world to an abject from the caml world. We will note it (_)C

[Pol96] . So, if x is an element of 'Varv, we note its representation xc and we
write abusively (f : Varv -+ string. From now on, we have:

(.t : Varv -+ string,
(f : Var J -+ string,
(f : IExpr -+ expr,
(f : l!Drog -+ prog,
(.t : lFunci -+ string,
(f : lFunc2 -+ string.

Primitives are translated into caml fonctions below which are a direct
transcription from their specification above:

let suce = fun (I n) -> (I (n+1))
-> raise (NotAValidType " in suce function") ; ;

let pred = fun (I n) -> (I (n- 1))
-> raise (NotAValidType " in pred function") ; ;

let equ = fun (I i I j) -> if (i=j) then (I 1) else (I 0)
(S s ' s t) -> if (s=t) then (I 1) else (I 0)
(- ' -) -> raise (NotAValidType " in equ function") ; ;

let cat = fun (S s s t) -> s (s~t)
(- ' -) -> raise (NotAValidType " in cat function") ; ;

let myif = fun (I 0 , x , y) -> y
(I n , x , y) -> X

(- ' x , y) -> raise (NotAValidType " in myif function") ; ;

As caml use call-by-value, we don't call the myif fonction defined above
in order to implement the conditional command. If we call this fonction,
caml will evaluate the three arguments before returning a result and in the
case of non-termination, this result may be invalid. We have to use the if
then else of caml which uses lazy evaluation.

We can specify primitives, expressions and a program as follows.

3.2. A second order call-by-value interpreter 43

• For primitives: Vn E 'D suce ne = (succ (n)t Vn E 'D pred ne = (pred (n)t Vn1 , n2 E 'D cat (ny , n\D = (cat (n1 , n2))e Vn1 , n2 E 'D equ(nr , n2) = (equ(n1 , n2)Y
• For expressions:

Ve E Cons (et = INT d if d E Z
V c E Cons (c Y = STR d if d E § Vxi E Var v (xit = VAR Xi

where Xi is the string which represents the name of the variable Vexpr E Expr (suce expr) e = suce expr c Vexpr E Expr (pred expr)e = PRED expr c Vexpr 1 , expr2 E Expr
(equ (expr 1 , expr2)) c = EQU (expr 1 , expr�) Vexpr 1, expr2 E Expr
(cat (expr 1 , expr2))c = CAT (expr f, expr�) Vexpr 1 , expr2, expr3 E Expr
(if (expr 1 , e1;pr2, expr3) Y =

IF (expr 1 , expr 2 , expr 3) Vexpr 1 , . . . , expr;;, E Expr V fi E !Func 1 (fi (expr 1 , • • · , exprn)Y = CALL(f?, [expr 1 ; . . . ; expr�] , ' ') Vexpr 1 , . . . , expr71 E Expr Vgi E !Func2 Vh E Var f (gi (expr 1 1 . . . , exprn) hY = CALL(gf, [expr 1 ; . . . ; expr�] , hc) Vexpr 1 , . . . , exprn E Expr Vgi E !Func2 Vfj E !Func 1 (gi (expr 1 , . . . , expr 71) fj) c = CALL(gf, [expr 1 ; . . . ; expr�] , JJ) Vexpr 1 , . . . , exprn E Expr Vh E Var f (h(expr 1 , . . . , expr 71))c = CALL(he, [expr 1 ; . . . ; expr�] , ' ')

• For programs Vpr og E JP>r og (pr og) c = PROG [(ff, [x1 ; . . . ; x�] , expr r)
. . ' . . . , (J;, [x1 ; . . . ; x�] , exprp>

(g1 , [x1 ; . . . ; x;] , expr t)
. . , . . . ' (gg, [x1 ; . . . ; x;] , expr�c)]

Now, the next step is to define the caml type associated to the variable
and the functional environments. An object of the type rho implements an
element of p and an object of the type phi is an element of <l>.

type rho = RHO of (string*val) list ; ;

type phi = PHI of (string -> (val list) -> string -> val) , ,

44 Chapter 3. Second-order case

where components of tuples from rho are respectively a variable's name
and a variable's value and phi is a fonction which takes a fonction name,
a list of argument's values, a parameter name and returns a value which is
the result of the fonction.

We have:

(f : <I> ➔ phi
(f : p ➔ rho

We also can specify the variable and fonctional environments as follows:

V p E vn (pt = [(XÏ ' pi) ; . . . ; (X� ' p�)]
Vcp E (E ➔ vn ➔ 1) _t)p+q

let cpc = (PHI cp) we have
if i :S p (c/>i'T/.LP)c = cpj{pcs wheres is anything
if i > p (cpi(({J/j)pf = ({J9{PCfJ

Now that we have defined caml types and primitives, we can construct
the evaluation fonction of expressions. The construction of this fonction
is a simple pattern matching upon the structure of expressions. We call
this fonction e . To take advantage of curryfication we modify the signature
order:

l' [expr] : <I> ➔ E ➔ vn ➔ 1) .L

becomes

e : rho ➔ phi ➔ string ➔ string ➔ expr ➔ val

In order to avoid redundancy in the fonctional environment, the param
eter value is defined as a string which references an element from cp.

Note that the caml fonction represents correctly the semantic fonction
l':

The translation of the expression evaluation fonction l' into the caml
fonction e is straightforward except for the fonction call for which we give
an explanation. In the semantics we have four cases of fonction calls: two
first order fonction calls (call to li and h) and two second order fonction
calls (both with 9i but with a different parameter). If the fonction name f is
different from the parameter name, we know that f is a second order fonc
tion. Thus, we apply the fonction returned by (phi f) to the result of the
evaluation of the list of expressions and either li if s is the parameter name
pn or h which is s otherwise. The case where f is equal to pn corresponds
to the first order case.

3.3. A second order call-by-name interpreter 45

let rec e (RHO rho) (PHI phi) pn pv =
-> (I i) fun (INT i)

(STR s)
(VAR s)

-> (S s)
-> valofs s rho

(CALL (f , l , s)) ->
if (f = pn)
then (phi pv) (map (e (RHO rho) (PHI phi) pn pv) 1) (lookupf s pn pv)
else (phi f) (map (e (RHO rho) (PHI phi) pn pv) 1) (lookupf s pn pv)

1 (IF (c , a, b)) ->
if (istrue (e (RHO rho) (PHI phi) pn pv c))
then (e (RHO rho) (PHI phi) pn pv a)
else (e (RHO rho) (PHI phi) pn pv b)

1 (SUCC x) -> suce (e (RHO rho) (PHI phi) pn pv x)
1 (PRED x) -> pred (e (RHO rho) (PHI phi) pn pv x)
1 (CAT (x , y)) ->

cat ((e (RHO rho) (PHI phi) pn pv x) ,
(e (RHO rho) (PHI phi) pn pv y))

(EQU (x , y)) ->
equ ((e (RHO rho) (PHI phi) pn pv x) ,

(e (RHO rho) (PHI phi) pn pv y)) ; ;

As explained in chapter 2, the fix-point is computed with a fonction
called p. This fonction has the following signature:

p : prog -+ phi -+ string -+ val list -+ string -+ val

We may specify this fonction in terms of representation convention:

P[prog] = p progc<V (</>Jj t [x1 ; . . . ; x�] hc

The fix-point computation is implemented in caml as follows:

let rec p = fun (PROG []) (PHI phi) f vl pv -> raise (EmptyList " in prog")
(PROG ((fn , pl , q , expr) : : r)) (PHI phi) f vl pv ->

if (f=fn)
then (e (RHO (zip pl vl)) (PHI phi) q pv expr)
else p (PROG r) (PHI phi) f vl pv ; ;

let rec f ixphy (PROG prog) f vl =
p (PROG prog) (PHI (fixphy (PROG prog))) f vl ; ;

The reader can find the complete caml implementation in appendix B. l.

3.3 A second order call-by-name interpreter

3.3.1 Mathematical semantics

Now, we examine how to implement a call-by-name interpreter on the basis
of the call-by-value interpreter. The syntax of the language does not change:
we are taking the one defined in section 3.2.1.

46 Chapter 3. Second-order case

Environments

In call-by-name, variables and arguments of a fonction call may be J_ as
explained in section 2.3. Hence variable and functional environments are
defined as follows:

p E 'D1
77 E E = (V1 ➔ V 1_)
<P E <l> = (E ➔ 'D1 ➔ V 1-)P+<!

Expression evaluation function

Variable environment
Parameter value " environment"
Second order fonctional environment

The signature of the expression evaluation fonction has the following signa
ture:

l'[expr] : <I> ➔ E ➔ V1 ➔ 'D1_

The only difference with the call-by-value case is that fonction calls are
not strict. Other expressions are evaluated in the same way.

l'[fi(expr1, . . . , exprn)] <P 'TJ p =

(<Pi 771_)(l'[expr1] <P 'TJ p, . . . , l' [exprn] <P 'TJ p)
l'[gi(expr1 , . . . , exprn)h] <P 'TJ p =

(<Pp+i 77)(l'[expr1] <P 'TJ p, . . . , l' [exprn] <P 'TJ p)
if h is a parameter name (formal parameter)

l'[gi(expr1 , . . . , exprn)f1] <P 'TJ p =
(<Pp+i(<Pj 771_))(l'[expr1] <P 'T/ p, . . . ,l'[exprn] <P 'TJ p)

if the parameter value is the named
fonction f 1 (actual parameter)

l'[h(expr1 ,• • · , exprn)] <P 'TJ p =
77(l'[expr1] <P 'TJ p, . . . , l'[exprn] <P 'TJ p)

where 771_ is defined in section 3.2. 1.

Program evaluation function

The program evaluation fonction is defined as above and possesses the same
signature.

3.3.2 A caml implementation

For a discussion of the implementation, please consult section 3.5.2 which
considers this language extended with lazy lists. The reader eau find a caml
implementation in appendix B.2.

3.4. A second order call-by-value interpreter with Jis ts 47

3.4 A second order call-by-value interpreter with

lists

In this section, we upgrade types by adding lists to simple types. The syntax
of the language does not change.

3.4.1 Mathematical semantics

Values set

The set of values we use is the same as defined in section 2.4:

1)* = 1) U (7J* X 7J*)

and we use the domain (D*h as defined in section 2.4 in order to define
the fonctional environment.

Environments

A variable is a simple value from 1) or a list from the set 1)* x 1)*. Hence
the variable environment is defined as follows:

p E Dm

Arguments of a fonction call take their values in the set 1)* because an
argument of a fonction can be a simple value or a list. A fonction call
returns a value from (7J*) .l . Hence we have these definitions:

'T/ E E = (1J*n -+ (7J*) .l)
cp E <P = (E -+ 1)*n -+ (1J*).L)P+q

Expressions evaluation fonction

Parameter value " environment"
Second order fonctional environment

In order to evaluate expressions, we define a fonction which takes a variable
environment, a parameter environment and a second order fonctional envi
ronment and returns a value of (7J*) .l · Hence, the signature of the expression
evaluation fonction becomes:

E [expr] : <P -+ E -+ 1J*n -+ (1J*).L

As in the first order case and with respect to the semantics of a second
order call-by-value interpreter defined in section 3.2. 1, the three common
primitives cons, car and cdr are added to the set of primitives. Their
definitions are given in section 2 .4.

For expressions evaluation, we add the evaluation of the three operators
on lists to the one of the call-by-value interpreter described earlier in this
chapter (see section 3.2. 1). The evaluation of these three primitives is the
same as the one described in section 2 .4 .

48 Cha.pter 3 . Second-order case

Program evaluation function
The fonction P which computes the meaning of a program pr og does not
change anymore.

3.4.2 A caml implementation

For the caml implementation, we change the type val, which is the caml
representation of 'D, so that it supports lists.

type val = I of int

s of string

p of val*val

NULL ' '

In the set of expressions we add the three primivites on lists and we
specify them as follows:

expr
car(expr)
cdr(expr) cons (expr 1 , expr2)

car : 'D* ---+ ('D*)J_
ls,t "V'-t h if lst = (h . t)

cdr : 'D* ---+ ('D*)J_
lst "V'-t t if lst = (h . t)

cons : 'D* X 'D* ---+ ('D*)J_
(h, t) "V'-t (h . t)

These basic operations are translated into the caml fonctions below
which are a direct transcription of their specification above.

let car = fun (P (x , y)) -> X
-> raise (NotAPair " in car function") ; ;

let cdr = fun (P (x , y)) -> y
-> raise (NotAPair " in cdr function") ; ;

let cons = fun x y -> p (x ' y) ; ;

In terms of representation fonction, the caml implementation corre
sponds accurately to the definition of the semantics.

\:/ expr E lExpr (car expr) c = CAR expr c

\:/expr E lExpr (cdr expr)c = CDR expr c

\:/ expr 1 , expr2 E lExpr (cons (expr 1 , expr2) f = CONS (exprf, expr�)

3.5. A second order call-by-name interpreter with lists 49

And we have:

Vl E V* car zc = (car (l))C
Vl E V* cdr zc = (cdr (l))c
Vh, l E V* cons (hc , zc) = (cons (h, l))c

The reader interested by a complete implementation can find the caml
code in appendix B.3.

3.5 A second order call-by-name interpreter with

lists

3.5 .1 Mathematical semantics

The definition of a second order call-by-name interpreter with lists is really
straightforward on the basis of the previous work.

Environments
The value of a variable is a simple value from the set V ..L or a list. Lists
may contain 1- . Hence, if the value of a variable is a list, this value cames
from (V ..L)* . The result of a fonction call or a parameter value (which is a
fonction) cornes from (V ..L)* .

Thus, variable and fonctional environments are defined as follows:

p E (V..L)m

7/ E E = ((V ..L)m ➔ (V ..L)*)
<p E <T> = (E ➔ (V ..L)*n ➔ (V ..L)*)P+q

Expression evaluation fonction

Variable environment
Parameter value " environment"
Second order fonctional enironment

The evaluation fonction of expressions takes as arguments the expression
that must be evaluated, a fonctional environment, a parameter value "en
vironment" and a variable environment. This fonction gives as result an
element of (V ..L)* . Its signature is the following:

l' [expr] : <T> -+ E -+ (V ..L)*n -+ (V ..L)*

Equations for expression evaluation fonctions are drawn from the first
order call-by-name interpreter with list 2.5 for primitives and the second
order call-by-name interpreter 3.3 for fonction calls.

The fonction P which computes the meaning of a program pr og does
not change anymore.

50 Chapter 3 . Second-order case

3.5.2 A caml implementation

Caml is a strict language. We have already explained in section 2.3 how to
simulate call-by-name in a language that implements call-by-value. Since
we would Iike that arguments be evaluated as late as possible , we redefine
the caml type which represents V*.

type val = I of int
s of string
p of nval*nval
NULL

and nval -- (unit -> val) ' '

nval is the type on which the interpreter works. As lazy lists may
contain undefined elements (see section 2.5), basic operations for their con
struction/destruction have to be defined on nval. On the other hand, other
primivites are defined on val because they have to be strict. Hence, cons,
car and cdr are written in caml as follows:

let cons = fun x y -> myout (P (x , y)) ; ;

let car x = match myin x
with (P (x , y)) -> x

1 -> raise (NotAPair " in car function") ; ;

let cdr x = match myin x
with (P (x , y)) -> y

1 -> rai se (NotAPair " in cdr function ") ; ;

where myin and myout are respectively the reduction and the abstraction
rules (explained in section 2.3). These functions have the following signature:

myin : (O ➔ val) ➔ val
myout : val ➔ (() ➔ val)

Their respective caml code is:

let myin a = a ()

let myout a () = a

The reader interested by the implementation can find it in appendix B.4.

3.6 Example

Suppose that we have the basic operations and user-defined function defined
in the section 2.6. A second order program working on list may be the
following:

3 . 7. A second order interpreter using mfg 51
fact x = if (equ(x , O) ,

1 ,

t ime s (x , fact (pred x)))
fibo x = if (equ(x , O) ,

1 ,

if (equ (n , 1) ,

1 ,

plus (f ibo (pred x) , f ibo (pred (pred x)))
)

)

fibfact n = fibo (fact n)

map 1 f = if ((atom 1) ,

nil ,

cons (f (car 1) , map (cdr 1) f)

)

mapf ibf act 1 = map 1 fibfact

An example of a call may be mapfibfact (1 ; 2 ; 3 ; 4) .

3 . 7 A second order interpreter using mfg

3. 7.1 Introduction

We have already spoken about minimal fonction graph in section 2.7. Here,
we explain how to implement the minimal fonction graph algorithm for the
second order case. The execution of the algorithm is the same as in the
first order case. Note however that there is a little difference. In the second
order case, the second argument of a second order user-defined fonction is
a fonction. In order to compute the minimal fonction graph of this second
order user-defined fonction, we associate the fonctional argument to the
result of the computation of the associated minimal fonction graph. Our
development are based on the one described in section 2.7.3

3.7.2 Mathematical semantics

The definition of the variable environment does not change with respect to
the call-by-value interpreter with list described in section 3.4. The parameter
and fonctional environment are not defined as a fonction any more. The pa
rameter environment is the Cartesian product between variable environment
and the domain of fonction results. Whereas the fonctional environment is
the Cartesian product between parameter name, variable environment and
the domain of fonction result. They are defined as follows:

p E 7yn
7] E E = g;:i('Drn X ('D*).i)
</> E <l> = g;:i(E X 1)*n X ('D*) _i)P+Q

Variable environment
Parameter value " environment"
Functional environment

52 Chapter 3. Second-order case

We define a set C which has the same role as in the first order case (see
section 2.7.3). But its definition is different. We collect tuples of arguments
of fonctions which have to be computed and their associated functional
actual parameter (which is the value of the fonctional formai parameter of
the second order fonction). Hence we have:

C E C = g;i('D*n X E)P+q

The signature of the expression evaluation fonction is defined as usual:

E[expr] : <T? --+ E --+ vm --+ ('D*)..L

We have the following evaluations for expressions:

E [c] cp 'T/ p = d
E[xi] cp 'T/ p = Pi
E[pi(expr1 , . . . , exprn)] cp 'T} p =

strict [pi](E[expr1] cp 'T} p, . . . , E[exprn] cp 'T} p)
E[if(expr1 , expr2, expr3)] cp 'T} p =

cond(E[expr1] cp 'T} p, E[expr2] cp 'T} p, E[expr3] cp 'T} p)
E[fi(expr1 , . . . , exprn)] cp 'T} p =

strict 4Ji 'T}1_ (E[expr1] cp 'T} p, . . . , E[exprn] cp 'T} p)
E[gi(expr1 , • • · , exprn)h] cp 'T} p =

strict �p+i f/ (E[expr1] cp r7 p, . . . , E [exprn] cp 'T} p)
if h is a parameter name (formai parameter)

E[gi(exprl , · · · , exprn)]j] cp 'T} p =
strict �p+i(<h 'T}1_)(E[expr1] cp 'T} p, . . . , E [exprn] cp 'T} p)

if the parameter value is the named
fonction]j (actual parameter)

E[h(expr1 , . . . , exprn)] cp 'T} p =
strict f/ (E[expr1] cp 'T} p, . . . , E[exprn] cp 'T} p)

where 4Ji , f/ and 'T}1_ are fonctions that the tabulate fonctions c/Ji , 'T/ and 'T/1-
represent. They are defined as follows:

4Ji : ('Dm --+ 'D .1_) --+ 'D*n --+ ('D*)..L

and

f/ :

and

n -> (d1 , . . . , dn) � {
�n+I

otherwise.

'D*n --+ (D* h

(d1 , . . . , dn) { �
+! if (di , . . . , dn , dn+I) E 'T/,

otherwise.

'T/-.1_ : 'D*n --+ (D* h
(d1 , . . . , dn) ,y-; J_

3. 7. A second order interpreter using mfg 53

The N fonction is a fonction which collects closures of the different
fonction calls that appear during the evaluation. This fonction returns a set
C. Its signature is the following:

N[expr] : <I> -+ E -+ 1)*n -+ C

The calls are collected as follows:

N[c] efJ 'T/ p = (0, . . . , 0)

N[xi] efJ 'T/ p = (0, . . . , 0)

N[pi(expr1 , . . . , exprn)] cp 'T/ p =
(N[expr1] cp 'T/ p) ®u . . . ®u (N[exprn] cp 'T/ p)

N[if (expr1 , exprz , expr3)] efJ 'T/ p =
c ondn(expr 1 , exprz , expr3)

N[fi(expr1 , . . . , exprn)] cp 'T/ p =
mkset((E[expr1] cp 7/ p) , . . . , (E[exprn] cp 'T/ p) , 0, i)

®u(N[expr1] cp 'T/ p) ®u . . . ®u (N[exprn] cp 'T/ p)
N[gi(expr1 , . . . , exprn)h] cp 'T/ p =

mkset((E[expr1] cp 'T/ p) , . . . , (E[exprn] cp 'T/ p) , 'T/, i)
®u(N[expr1] cp 'T/ p) ®u . . . ®u (N[exprn] cp 'T/ p)
if h is a parameter name (formal parameter)

N[gi(expr1 , . . . , exprn)Jj] cp 'T/ p =
mkset((E[expr1] cp 'T/ p) , . . . , (E[exprn] cp 'T/ p) , c/Jj , i)

®u(N[expr1] cp 'T/ p) ®u . . . ®u (N[exprn] cp 'T/ p)
if the parameter value is the named
fonction Jj (actual parameter)

N[h(expr1 , . . . , exprn)] cp 'T/ p =
mkset((E [expr1] cp 'T/ p), . . . , (E[exprn] cp 'T/ p) , 0 , l)

®u(N[expr1] cp 'T/ p) ®u . . . ®u (N[exprn] cp 'T/ p)

where condn is defined as in section 2.7 .3 page 28.
and the fonction mkset is defined as follows:

mkset (v1 , . . . , Vn , J, i) =
if (v1 = _l V . . . V vn = _i) then (0, . . . , 0)

else (0 , . . . , 0 , { (vi , . . . , vn , J) } i , 0, . . . , 0)

and the operator ®u is defined as in section 2. 7. 3 page 28 .
The fonction that computes the fix-point is the same as the one for the

fisrt order case. It is defined in section 2 . 7 .3 page 29 .

54 Chapter 3. Second-order case

3.8 A second order strictness interpreter using

mfg

As in the first order case (see section 2.7.4), we define the two-point domain
2 on which we are constructing the strictness interpreter.

2 = {0,1}, OÇl

Elements of 1)* are mapped by an abstract fonction a to an element of
2. The J_ element is mapped to O and other values are mapped to 1. The
abstract fonction is defined as follows:

a : D* --+ 2
a(d) = if d = J_ then O else 1

Variables, parameters and functional environments are redefined by sub-
stituting all D* by 2:

p E 2n

'f/ E E = p(2n --+ 2)
cp E <P = p(2n X E X 2)p+q

The translation of the E function to [,tl is straightforward. The evaluation
function of expressions is redefined as follow:

E,tl [expr] : <1> --+ E --+ 2n --+ 2

Note that [,tl must verifies safety properties. It means that for all expr E
!Expr, 'f/ E E, cp E <1> and p E vm , [,tl must verify:

a(E[c] cp p) Ç [,tl [c] cp p
a(E [xi] </> p) Ç [tl [x1] </> p
a(El[pi(expr1, . .. , exprn)] </> p)

Ç E,tl [expr1] </> p A . . . A E,tl [exprn] </> p
a(E[if(expr1, expr2, expr3)] </> p

Ç E,tl [expr1] </> p A (Etl [expr2] c/; p V E,tl [expr3] </> p)
a(E[fi(expr1, .. . , exprn)] </> p)

Ç (</>j'f/1-)(Etl [expr1] </> p A ... A E, tl [exprn] cp p)
a(E[gi(expr1 , ... ,exprn)Jj] </> p)

Ç (</>p+i(</>j 'f/1-))(Etl [expr1] </> p, . . . ,Etl [exprn] </> p)
a(E[gi(expr1 , ... ,exprn)h] </> p)

Ç (</>p+i(</>j'f/))(Etl [expr1] </> p, .. . ,Etl [exprn] </> p)
a(E[h(expr1 , ... , exprn)] </> p)

Ç ry(Etl [expr1] </> p A . .. A Etl [exprn] </> p)

In this way, we examine the strictness properties of expressions. Ex
planations are the same than in the first order case, see section 2.7.4. The

3.8. A second order strictness interpreter using mfg 55

semantics for [U follows:

[P [c] ef> 'Tl p = d
[U[xi] <p 'Tl P = Pi
[P [pi (expr1 , .. . , exprn)] <p 'Tl p = ([P [expr1] <p 'Tl p /\ . . . /\ [P [exprn] <p 'Tl p)
[P[if(expr1 , expr2 , expr3)] <p 'Tl p =

([l [expr1] <p 'Tl p /\ ([P [expr2] <p 'Tl p V [P [expr3] <p 'Tl p))
[P [fï (expr1 , . . . , exprn)] <p 'Tl p =

(�i 'T71_) ([P [expr1] <p 'Tl p, . . . , [P [exprn] <p 'Tl p)
[P[gi (expr1 , . .. , exprn)h] <p rJ p = - - p il (</>p+i 'Tl) ([[expr1] <p 'Tl p, . . . , [[exprn] <p 'Tl p)

if h is a parameter name (formal parameter)
[P [gi (expr1 , .. . , exprn) Jj] <p 'Tl p =

(ef>p+i (cfj ,,,-_L)) ([P [expr1] <p 'Tl p, . . . , E� [exprn] <p 'Tl p)
if the parameter value is the named fonction Jj (actual parameter)

[P [h(expr1 , • . . , exprn)] <p 'Tl p =

ry([P [expri] <p 'Tl p, . . . , [P [exprn] <p 'Tl p)

The signature of the need fonction is defined as follows:

NP [expr] : <I> ➔ E ➔ 2*n ➔ C

The semantics is straightforward with respect to the previous one defined
for the concrete case.

NP [c] ef> 'Tl p = (0, . . . , 0)
Nti [xi] </> 'Tl p = (0, . .. , 0)
Nti [pi (expr1 , ... , exprn)] <p 'Tl p =

(NP [expr1] <p 'Tl p) ®u . . . ®u (Nil [exprn] <p 'Tl p)
Nti [if (expr1 , expr2 , expr3)] <p 'Tl p =

condn(expr1 , expr2 , expr3)
NP [fï (expr1 , . .. , exprn)] <p 'Tl p =

mkset(([P [expr1] <p 'Tl p) , . . . , ([P [exprn] <p 'Tl p) , 0, i)
®u (Nti [expr1] <p 'Tl p) ®u .. . ®u (NP [exprn] <p 'Tl p)

NP [gi (expr1 , .. . , exprn)h] <p 'Tl p =

mkset (([P [expr1] <p 'Tl p) , . . . , ([P [exprn] <p 'Tl p) , 'Tl , i)
®u (NP [expr1] <p 'Tl p) ®u . . . ®u (NP [exprn] <p 'Tl p)
if h is a parameter name (formal parameter)

NP [gi (expr1 , . .. , exprn)Jj] <p 'Tl p =
mkset (([P [expr1] <p 'Tl p) , . . . , ([P [exprn] <p 'Tl p) , </>j , i)

®u (NP [expr1] <p 'Tl p) ®u .. . ®u (NP [exprn] <p 'Tl p)
if the parameter value is the named fonction Jj (actual parameter)

N1 [h(expr1 , . . . , exprn)] <p 'Tl p =

mkset(([P [expr1] <p 'Tl p) , . . . , (E 1 [exprn] <p 'Tl p) , 0, l)
®u (Nil [expr1] <p 'Tl p) ®u . . . ®u (NP [exprn] <p 'Tl p)

56 Chapter 3 . Second-order case

This algorithm detects whether a fonction is strict in its arguments or
not. Since the abstract semantics is independent of parameter passing, we
are now able to detect cases where call-by-name can be transformed into
call-by-value. The difficulties in the second order case was situated in the
fonctional argument.

3.9 Examples

Let us examine the example described in section 3.6 page 50. If we call
rnap O f ibfact , the result of the evaluation will be O. Hence, we know that
rnap fonction will be strict in its first argument and we can replace its call
by-name parameter passing by call-by-value. But what about the fonction
fibfact ? f ibfact is the fonctional parameter, there is no interest to
replace a fonction by O or 1. In the semantics that we have proposed above,
the minimal fonction graph of this argument is computed. Then, it is passed
to the second order fonction in order to evaluate the result of the inital
fonction call.

Chapter 4

Conclusion

After having introduced the mathematical tools for our development, we
have defined a first order functional language. First, we have presented how
to write the semantics of a strict language and difficulties we have encoun
tered to define a non-strict language starting from the former. For these first
semantics we have worked on a simple set of values D and we were inter
ested in the integration of lists. We have seen that fix-point computation for
these semantics does not change no matter how complex the set of value or
the parameter passing mode are . . Nevertheless , we have seen that the strict
evaluation is more efficient than the non-strict evaluation but at the cost of
not terminating in many cases . In order to improve the lazy evaluation, we
have then studied cases where call-by-name could be replaced by call-by
value. To do this, we have studied another fix-point computation which is
based on minimal Junction graph. We have then applied strictness analysis
on our language with a two points domains on which all well-defined values
are mapped to 1 and undefined are mapped to O. This algorithm allowed us
to detect cases where call-by-name can be transformed into call-by-value.

The next step was to study higher order cases. We have restricted our
study to the second order case and gone deeper into the point tackled in the
first chapter.

It is certain that our developments are incomplete. Even if the inte
gration of list is a good idea, the strictness analysis applied to languages
supporting lists could be better developped. Instead of working on a two
points domain, we may apply strictness analysis on a four points domain
which is a non-fiat domain as described in [Wad87].

A weak point of our approach is that our second order language does
not support curried fonctions . A next step should be to take currification
into account. We have not presented in this document an interpreter which
performs strictness analysis at compile-time. It would be interesting to
implement such an interpreter and compare its computation tiine with the
one of a call-by-name interpreter. Such an interpreter is described for the

58 Chapter 4. Conclusion

fisrt order case in [Pol96]. The author shows how much computation time
of fonction calls is reduced using this technique but she does not generalize
in all cases. Another forther work should be to study the efficiency of other
fix-point algorithms in terms of space- and time-consumption. In [LCVH93],
the authors present a general fix-point algorithm for abstract interpretation.
The fonctioning mode of this algorithm is similar to the one of minimal
fonction graph but is applicable to many other abstract interpretation areas.
We could also extend our work directly to the higher order case as explain
in [BHA86] [DJR97].

Bibliography

[BHA86] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strict
ness Analysis For Higher-Order Functions. Science of Computer Programming, 7:249-278, 1986.

[DJM86] Neil D. Jones and Alan Mycroft . Data Flow Analysis of Applica
tive Programs Using Minimal Function Graphs. In 13th Symp. on Principles of Prog. Languages, pages 296-306, St . Petersbug,
Florida, January 1986.

[DJR97] Neil D. Jones and Mads Rosendahl . Higher Ortler Minimal Func
tion Graph. Technical report, University of Copenhagen, Univer
sity of Roskilde, 1997.

[HPF99] Paul Hudak, John Peterson, and Joseph H. Fasel. A Gentle Introduction to Has kell 98, 1999.

[LC] Baudouin Le Charlier. Interprétation Abstraite. Course notes.

[LC92] B. Le Charlier. L'Analyse Statique des Programmes par In
terprétation Abstraite. Nouvelles de la Science et des Tec hnologies, 9(4):19-25, 1992.

[LCVH93] B. Le Charlier and P. Van Hentenryck. A general top-clown fix
point algorithm (revised version). Technical Report 93-22, Insti
tute of Computer Science, University of Namur, Belgium, (also
Brown University), jun 1993.

[Ler77] H. Leroy. La Fia bilité des Programmes, chapter 5 - Sémantique
Mathématique, pages 5.1-5.15. Ecole d'été de l'A.F.C.E.T., 1977.

[Mau95] Michel Mauny. Functional Programming Using Cam[Light, 1995.

[Myc80] Alan Mycroft. The Theory and Pratice of Transforming Call-by
Need into Call-by-Value. In International Symposium on Programming, volume 83 of LNCS, pages 269-281, Paris, France,
April 1980. Springer-Verlag.

60 BIBLIOGRAPHY

[Pol96] Isabelle Pollet. Analyse de Strictness de Langages Applicatifs par
P Interprétation Abstraite Master's thesis, University of Namur,
1996-97

[Ros95] Mads Rosendahl. Introduction to A bstract Interpretation, 1995.

[Ros0l] Mads Rosendahl. Introduction to Domain Theory. DIKU, Com
puter Science University of Copenhagen, 2001.

[Rou97] Jacques Rouablé. Programmation en Caml. Eyrolles, 1997.

[Sto77] J. Stoy. Denotational Semantics, chapter 5 - The lambda
calculus, pages 52-77. M.I.T. Press, 1977.

[Ten81] R.D. Tennet. Principles of Programming Languages, chapter 13
- Formal Semantics, pages 211-249. Prentice-Hall, 1981.

[Wad87] Phil Wadler. Strictness Analysis on Non-Flat Domains (by Ab
stract Interpretation Over Fini te Domains. In A bsract Inter
pretation of Declarative Languages, chapter 12, pages 266-275.
Ellis-Horwood edition, 1987.

Appendix A

First order case

implementations

A.1 Call-by-val ue interpreter

exception NotAValidType of string ; ;
exception EmptyList of string ; ;
exception EmptyString of string ; ;
exception LengthError of string ; ;
exception NotAPair of string ; ;
exception IfError of string ; ;

(* Basic values *)

type val = I of int
S of string , ,

(* Expressions *)

type expr INT of int
STR of string
VAR of string
CALL of string* (expr list)
IF of expr*expr*expr
suce of expr
PRED of expr
CAT of expr*expr
EQU of expr*expr

(* Program *)

type prog = PROG of ((string* (string list) *expr) list) , ,

(* Variable environment *)

type rho = RHO of (string*val) list ; ;

62 Appendix A . First order case implementations

(* Function environment *)

type phi = PHI of (string -> ((val list) -> val)) , ,

(* Sorne useful functions *)

let rec valofs s = fun [] -> raise (EmptyList "in valofs function")
((a , b) : : 1) -> if (s=a) then b else valofs s 1 ; ;

let rec zip fun [] [] -> []
(a : : r) (b : : s) -> (a ,b) : : (zip r s)

-> raise (LengthError " in zip function") ; ;

let istrue fun (I 0) -> false
(I _) -> true

-> false ; ;

(* Primitives - huit-in functions *)

let suce fun (I n) -> (I (n+1))
-> raise (NotAVal idîype " in suce function") ; ;

let pred fun (I n) -> (I (n-1))
-> raise (NotAValidîype 11 in pred function") ; ;

let equ fun (I i I j) -> if (i= j) then (I 1) else (I O)

(S s ' s t) -> if (s=t) then (I 1) else (I 0)
(- ' -) -> raise (NotAValidîype " in equ function") ; ;

let cat fun (S s s t) -> s (s�t)

(- ' -) -> raise (NotAValidîype " in cat function") ; ;

(* Expression evaluation *)

let rec e (RHO rho) (PHI phi)
fun (INT i) -> (I i)

(STR s) -> (S s)
(VAR s) -> valofs s rho
(CALL (f , l)) ->

(phi f) (map (e (RHO rho) (PHI phi)) 1)
(IF (c , a , b)) ->

if (istrue (e (RHO rho) (PHI phi) c))
then (e (RHO rho) (PHI phi) a)
else (e (RHO rho) (PHI phi) b)

(SUCC x) -> suce (e (RHO rho) (PHI phi) x)
(PRED x) -> pred (e (RHO rho) (PHI phi) x)
(CAT (x , y)) ->

cat ((e (RHO rho) (PHI phi) x) ,
(e (RHO rho) (PHI phi) y))

(EQU (x , y)) ->
equ ((e (RHO rho) (PHI phi) x) ,

(e (RHO rho) (PHI phi) y)) ; ;

(* Program evaluation *)

A.2. Call-by-name interpreter 63

let rec p = fun (PROG []) (PHI phi) f vl -> raise (EmptyList " in prog")
1 (PROG ((fn , pl , expr) : : r)) (PHI phi) f vl ->

if (f=fn)
then (e (RHO (zip pl vl)) (PHI phi) expr)
else p (PROG r) (PHI phi) f vl ; ;

let rec fixphi (PROG prog) f vl =
p (PROG prog) (PHI (fixphi (PROG prog))) f vl ; ;

A.2 Cali-by-name interpreter

(* Compare this implementation with the call-by-value case *)
(* Basic values have not changed *)
(* Value may be not evaluated immediately *)

type nval == (unit -> val) , ,

(* Variable environment *)

type rho = RHO of (string * nval) list ; ;

(* Function environment *)

type phi = PHI of (string -> (nval list) -> nval) , ,

(* The trick - Reduction function *)

let myin a = a() ; ;

(* Expression evaluation . Carol use a strict evaluation . This expression
evaluation s imulates a call-by-name interpreter *)

let rec
fun

en (RHO rho) (PHI phi)
(INT i) () -> (I i)
(STR s) () -> (S s)
(VAR s) () -> myin (valofs s rho)
(CALL (f , l)) () ->

myin ((phi f) ((map (en (RHO rho) (PHI phi))
(IF (c , a , b)) () ->

if i strue (myin (en (RHO rho) (PHI phi) c))
then (en (RHO rho) (PHI phi) a ())
else (en (RHO rho) (PHI phi) b ())

1)))

(SUCC x) () -> (suce (myin (en (RHO rho) (PHI phi) x)))

(PRED x) () -> (pred (myin (en (RHO rho) (PHI phi) x)))
(CAT (x , y)) () ->

(cat (myin (en (RHO rho) (PHI phi) x) ,
myin (en (RHO rho) (PHI phi) y)

(EQU (x , y)) () ->
(equ ((myin (en (RHO rho) (PHI phi) x)) ,

(myin (en (RHO rho) (PHI phi) y))) ; ;

64 Appendix A. First order case implementations

A.3 Call-by-value interpreter with lists

(* Compare this implementation Yith the call-by-value case Yithout list *)
(* Basic values : D = D U { NULL } and D* = D U (D* x D*) *)

type val = I of int

1 s of string

1 p of val*val

1 NULL ; ;

(* In expressions , ye add the constructor CONS and destructor CAR , CDR *)

type expr = NIL
(* . . . *)
1 CONS of expr*expr
1 CAR of expr
1 CDR of expr
1 ATOM of expr

(* The three add-on primitives *)

let cons = fun x y -> P (x , y) ; ;

let car = fun (P (x , y)) -> x
-> raise (NotAPair " in car function") ; ;

let cdr fun (P (x , y)) -> y

-> raise (NotAPair " in cdr function") ; ;

(* We have also add a ney primitive to test if an element is an atom or not *)

let atom = fun (I x) -> (I 1)
(S x) -> (I 1)

NULL -> (I 1)
(P (x ,y)) - > (I O) ; ;

(* Expression evaluation *)

let rec e (RHO rho) (PHI phi)
fun NIL -> NULL

(* *)

1 (CONS (x ,y)) ->

A.4

cons (e (RHO rho) (PHI phi) x)
(e (RHO rho) (PHI phi) y)

(CAR x) -> car (e (RHO rho) (PHI phi) x)
(CDR x) -> cdr (e (RHO rho) (PHI phi) x)
(ATOM x) -> atom (e (RHO rho) (PHI phi) x) ; ;

Call-by-name interpreter with lazy lists

(* Compare this implementation with respect to call-by-name without lists *)

type expr = NIL

(* . . . *)
1 CONS of expr*expr
1 CAR of expr

1 CDR of expr
1 ATOM of expr , ,

(* Tricks to implement l azy lists *)

A .5 . A mfg implementation 65

let myout a () = a ; ; (* Abstraction function *)
let myin a = a () ; ; (* Reduction function *)

(* The three add-on primitives *)

let cons = fun x y -> myout (P (x , y)) ; ;

let car x = match myin x
with (P (x , y)) -> x

-> raise (NotAPair "in car function") ; ;

let cdr x = match myin x
with (P (x , y)) -> y

-> raise (NotAPair " in cdr function") ; ;

let atom fun (I x) -> (I 1)

(S x) -> (I 1)

NULL -> (I 1)

(P (x , y)) -> (I 0) ; ;

(* Expres sion evaluation *)

let rec en (RHO rho) (PHI phi)
fun NIL () -> NULL

A.5

(* . . . *)
(CONS (x , y)) () ->

myin (cons ((en (RHO rho) (PHI phi) x))
((en (RHO rho) (PHI phi) y)))

(CAR x) () -> rnyin (car ((en (RHO rho) (PHI phi) x)))
(CDR x) () -> rnyin (cdr ((en (RHO rho) (PHI phi) x)))
(ATOM x) () -> (atorn (myin (en (RHO rho) (PHI phi) x))) ; ;

A mfg implementation

(* We add a special value BOT in the set of values *)

type bval I of int
s of string
P of bval*bval
NULL
BOT ' '

(* The function environment is defined as a tuple *)

type phi = PHI of (string * (bval list) * bval) list , ,

66 Appendix A . First order case implementations

(* Primitives are redefined such that they support the BOT value *)

let suce fun (I n) -> I (n+1)
BOT -> BOT

-> raise (NotAValidType " in suce function") ; ;

let pred = fun (I n) -> I (n-1)
BOT -> BOT

-> raise (NotAValidType " in pred function") ; ;

let equ fun BOT ' -) -> BOT

- ' BOT) -> BOT
(I i ' I j) -> if (i=j) then I 1 else I 0
(S s ' s t) -> if (s=t) then I 1 else I 0

(NULL , NULL) -> I 1

(NULL) -> I 0
(NULL ' -) -> I 0
(P (x , y) ' -) -> I 0

(- ' P (a , b)) -> I 0

(-) -> raise (NotAValidType " in equ function") ; ;

let cat fun (BOT -) -> BOT

(- ' BOT) -> BOT
(S s ' s t) -> s (sA t)

(- ' -) -> raise (NotAValidType

let cons fun BOT -> BOT
BOT -> BOT"

X y -> p (x , y) ; ;

let car fun BOT -> BOT
(P (x , y)) -> x

" in cat function") ; ;

-> raise (NotAPair " in car function") ; ;

let cdr fun BOT -> BOT
(P (x , y)) -> y

-> raise (NotAPair " in cdr function") ; ;

let atom = fun (I x) -> I 1
(S x) -> I 1
(NULL) -> I 1

(P (x , y)) -> I

BOT -> I O ; ;

(* Sorne useful functions *)

let rec seek f fun [] -> []

0

((e , l) : : r) -> if (f=e) then 1 else seek f r ; ;

let rec iseq fun (BOT) (BOT) -> true
(I x) (I y) -> x=y
(S t) (S r) -> t=r
(P (a ,b)) (P (x , y)) -> (iseq a x) && (iseq b y)

A.5. A mfg implementation 67

-> false ; ;

(* Expression evaluation function *)
(* Expression are evaluated as usual except for function call because phi is

defined as a tuple instead of function *)

let rec e (RHO rho) (PHI phi) =

fun (* . . . *)

1 (CALL (f , l)) ->
lookupphi f (map (e (RHO rho) (PHI phi)) 1) phi

(* checkargs verify if tYo lists are equal *)

and checkargs fun [] [] -> true
(e1 : : 1 1) (e2 : : 12) -> (iseq e1 e2) && (checkargs 11 12)

-> false

(* mernber checks if an elernent is in a list or not *)

and rnernber x fun [] -> false
(e : : 1) -> if (x=e) then true else member x 1

(* lookupphi checks if one argument of the arg list is BOT . If it is the cas e ,
it returns BOT , otherwise i t extracts the result value of f frorn phi *)

and lookupphi f arg phi =

. i f (rnernber (BOT) arg) then BOT
else lookupphi1 f arg phi

and lookupphi1 f arg fun [] -> BOT
((f 1 , arg1 , res) : : r) ->
if (checkargs arg arg1) && (f=f 1)
then res
else lookupphi1 f arg r ; ;

(* Need : collects the function call that are needed *)

let rec need (RHO rho) (PHI phi) =

fun NIL -> []

1 (INT i) -> []
1 (STR s) -> []

1 (VAR x) -> []

1 (FUNC (f , l)) ->
addneed (f , (rnap (e (RHO rho) (PHI phi)) 1) , (needlist (RHO rho) (PHI phi) 1))

1 (IF (c , a , b)) ->
begin
match (e (RHO rho) (PHI phi) c)
Yith (I 0) -> (need (RHO rho) (PHI phi)

(I _) -> (need (RHO rho) (PHI phi)
-> (need (RHO rho) (PHI phi)

end
(SUCC x) -> (need (RHO rho) (PHI phi) x)
(PRED x) -> (need (RHO rho) (PHI phi) x)
(CAT (x , y)) -> (need (RHO rho) (PHI phi)
(EQU (x , y)) -> (need (RHO rho) (PHI phi)

c) © (need (RHO rho) (PHI phi) b)
c) © (need (RHO rho) (PHI phi) a)
c)

y) © (need (RHO rho) (PHI phi) x)
y)© (need (RHO rho) (PHI phi) x)

68 Appendix A. First order case implementations
(CONS (x , y)) -> (need (RHO rho) (PHI phi) y)© (need (RHO rho) (PHI phi) x)
(CAR x) -> (need (RHO rho) (PHI phi) x)
(CDR x) -> (need (RHO rho) (PHI phi) x)
(ATOM x) -> (need (RHO rho) (PHI phi) x)

(* needlist computes need for a list of expressions *)

fun [] -> [) and needlist (RHO rho) (PHI phi)
1 (e : : 1) -> (need (RHO rho) (PHI phi) e)

© (needlist (RHO rho) (PHI phi) 1)

(* For function call , if one of the arg is BOT then don ' t add the closure
to C *)

and addneed (f , arg , nlist) if (member BOT arg) then nlist
else (f , arg) : : nlist ; ;

(* Sorne useful functions *)

(* Test the equality of two elements from phi *)

let iseq_phi (f1 , 1 1 , v1) (f2 , 12 , v2) =
(f1 = f2) && (iseq v1 v2) && (checkargs 11 12) ; ;

(* Test if an element is in phi or not *)

let rec is_in_phi_list v fun [] -> false
(e : : 1) -> (iseq_phi v e)

or (is_in_phi_list v l) ; ;

(* Is a set included in another one ? *)

let rec included fun [] [] -> true
1 (e : : 1) m -> (is_in_phi_list e m) && (included 1 m)

1 [) _ -> true ; ;

(* Test if two phi sets are equal *)

let testphi 11 12 = (included 11 12) && (included 12 1 1) ; ;

(* Test the equality of two elements from C *)

let iseq_c (f1 , 11) (f2 , 12) = (f1 f2) && (checkargs 11 12) ; ;

(* Test if an element from C is in C or not *)

let rec is_in_c_list V = fun [] -> false

1 (e : : 1) -> (iseq_c V e) or (is_in_c_list V 1) ; ;

(* Is a set included in another one ? *)

let rec included_c fun [] [] -> true
(e : : l) m -> (is_in_c_list e m) && (included_c 1 m)

[] -> true ; ;

A.5. A rnfg irnplernentation 69

(* Test the equality of two C sets *)

let test_c 11 12 = (included_c 11 12) && (included_c 12 1 1) ; ;

(* Function that computes fix-point *)
(* phi and C are improved until they are equal *)

let rec iterate phi c prog =
let phi 1 = newphi c phi prog and

c1 = union (newc c phi prog) c
in if ((testphi phi phi1) && (test_c c c 1)) then (phi1 , c1)

else iterate phi1 c 1 prog

(* newphi computes a new phi *)
(* if C is the empty set , then returns the empty set

otherwis e , for each closure in C, we construct a phi *)

and newphi = fun [] phi prog -> []
((f , arg) : : r) phi prog ->

(f , arg , e (RHO (buildrho f prog arg)) (PHI phi) (findexp f prog)) : :
(newphi r phi prog)

(* newc computes a new C *)
(* if C is the empty set , then returns the empty set

otherwise , for each closure in C, we collect new closures *)

and newc fun [] phi prog -> []
1 ((f , arg) : : r) phi prog ->

(need (RHO (buildrho f prog arg)) (PHI phi) (findexp f prog)) ©
(newc r phi prog)

(* buildrho constructs a rho for a function f in a program prog with a the list
of value arg *)

and buildrho =
1

fun f [] arg -> raise (EmptyList "in buildrho ")
f ((f 1 , lvar , exp) : : r) arg ->

if (f=f 1) then (zip lvar arg)
else buildrho f r arg

(* findexp returns the expr associated to a function f from a program prog *)

and findexp fun f [] -> rai se (EmptyList " in findexp")
f ((f i , lvar , exp) : : r) ->

if (f=f 1) then exp
else findexp f r ; ;

(* start is a userfriendly way of calling iterate *)

let start f arg (PROG prg) = iterate [] [(f , arg)] prg , ,

70 A ppendix A . First order case implementations

A.6 A strictness interpreter using mfg

(* Compare this case with the interpreter using minimal function graph *)
(* New demain for a strictness interpreter

We York with the two point demain 2 which contains ZERO and ONE *)

type bval = ZERO I ONE ; ;

(* Primitives for the strictness interpreter are only the logical ' and ' and
' or ' *)

let myand fun ONE ONE -> ONE
-> ZERO ; ;

let myor fun ZERO ZERO -> ZERO
-> ONE ; ;

(* Sorne useful functions *)

let rec valofs s = fun [] -> raise (EmptyList " in valofs funct ion")
((a , b) : : 1) -> if (s=a) then b else valofs s 1 ; ;

let rec zip fun [] [] -> []

(a : : r) (b : : s) -> (a ,b) : : (zip r s)
_ _ -> raise (LengthError " in zip function") ; ;

let rec iseq fun (ONE) (ONE) -> true
(ZERO) (ZERO) -> true

-> false ; ;

let rec esharp (RHO rho) (PHI phi)
fun NIL -> ONE

1

1

1

1

(INT i) -> ONE
(STR s) - > ONE
(VAR s) -> (valofs s rho)
(CALL (f , 1)) ->
lookupphi f (map (esharp (RHO rho) (PHI phi)) 1) phi
(IF (c , a , b)) -> myand (esharp (RHO rho) (PHI phi) c)

(myor (esharp (RHO rho) (PHI phi) a)
(esharp (RHO rho) (PHI phi) b))

(SUCC x) -> (esharp (RHO rho) (PHI phi) x)
(PRED x) -> (esharp (RHO rho) (PHI phi) x)
(CAT (x , y)) ->

myand (esharp (RHO rho) (PHI phi) x)
(esharp (RHO rho) (PHI phi) y)

(EQU (x , y)) ->
myand (esharp (RHO rho) (PHI phi) x)

(esharp (RHO rho) (PHI phi) y)
(CONS (x , y)) ->

myand (esharp (RHO rho) (PHI phi) x)
(esharp (RHO rho) (PHI phi) y)

(CAR x) -> (esharp (RHO rho) (PHI phi) x)

A. 6. A strictness interpreter using mfg 71

(CDR x) -> (esharp (RHO rho) (PHI phi) x)
(ATOM x) -> (esharp (RHO rho) (PHI phi) x)

and checkargs = fun [) [] -> true

1 (ei : : 1 1) (e2 : : 12) -> (iseq e 1 e2) && (checkargs 1 1 12)
1 -> false

and member x = fun [] -> false
(e : : l) -> if (x=e) then true else member x 1

and lookupphi f arg phi if (member (ZERO) arg) then ZERO
else lookupphi1 f arg phi

and lookupphi1 f arg = fun [] -> ZERO

1 ((f i , arg1 , res) : : r) ->
if (checkargs arg arg1) && (f=f1)
then res
else lookupphi1 f arg r ; ;

let rec needsharp (RHO rho) (PHI phi)
fun NIL -> []

(!NT i) -> []
(STR s) - > []
(VAR x) -> []
(CALL (f , l)) -> addneed (f ,

(IF (c , a , b)) ->

(SUCC x) ->
(PRED x) ->
(CAT (x , y)) - >

(EQU (x , y)) ->

(CONS (x , y)) ->

(CAR x) ->
(CDR x) ->
(ATOM x) ->

(map (esharp (RHO rho) (PHI phi)) 1) ,
(needlist (RHO rho) (PHI phi) 1))

(needsharp (RHO rho) (PHI phi) c)©
(needsharp (RHO rho) (PHI phi) a) ©
(needsharp (RHO rho) (PHI phi) b)
(needsharp (RHO rho) (PHI phi) x)
(needsharp (RHO rho) (PHI phi) x)
(needsharp (RHO rho) (PHI phi) y)©
(needsharp (RHO rho) (PHI phi) x)
(needsharp (RHO rho) (PHI phi) y) ©
(needsharp (RHO rho) (PHI phi) x)
(needsharp (RHO rho) (PHI phi) y)©
(needsharp (RHO rho) (PHI phi) x)
(needsharp (RHO rho) (PHI phi) x)
(needsharp (RHO rho) (PHI phi) x)
(needsharp (RHO rho) (PHI phi) x)

and needlist (RHO rho) (PHI phi) = fun [) -> []

1 (e : : 1) -> (needsharp (RHO rho) (PHI phi) e)
© (needlist (RHO rho) (PHI phi) 1)

and addneed (f , arg , nlist) if (member ZERO arg) then nlist
else (f , arg) : : nlist ; ;

(* Fixpoint computation does not change with respect to the mfg
implementation *)

72 Appendix A . First order case implementations

Appendix B

Second order case

implementations

B.1 Call-by-value interpreter

(* Basic Values *)

type val I of int
S of string , , .

(* Expressions *)

type expr INT of int
STR of string
VAR of string
CALL of string* (expr list) *string
IF of expr*expr*expr
suce of expr
PRED of expr
CAT of expr*expr
EQU of expr*expr

(* Variable envirorunent *)

type rho = RHO of (string*val) list ; ;

(* Function envirorunent *)

type phi = PHI of (string -> (val list) -> string -> val) , ,

(* Program *)

type prog = PROG of ((string* (string list) *string*expr) list) , ,

(* Sorne useful functions *)

let rec valofs s = fun [] -> raise (EmptyList " in valofs function")

74 A ppendix B. Second order case implementations

((a , b) : : l) -> if (s=a) then b else valofs s 1 , ,

let rec zip = fun [] [] -> []
1 (a : : r) (b : : s) -> (a ,b) : : (zip r s)

1 -> raise (LengthError " in zip function") ; ;

let istrue = fun (I 0) -> false
(I _) -> true

-> false ; ;

(* Primitives *)

let suce fun (I n) -> (I (n+1))
1 -> raise (NotAValidîype " in suce function") ; ;

let pred fun (I n) -> (I (n-1))

1 -> raise (NotAValidType " in pred function") ; ;

let equ = fun (I i , I j) -> if (i=j) then (I 1) else (I 0)
1 (S s , S t) -> if (s=t) then (I 1) else (I 0)
1 (_ , _) -> raise (NotAValidType " in equ function") ; ;

let cat fun es s , s t) -> s cs-t)
1 _ , _) -> raise (NotAValidîype " in cat function") ; ;

(* Expression evaluation function *)

let lookupf s pn pv = if (s=pn) then pv else s ; ;

let rec e (RHO
fun (INT i)

(STR s)
(VAR s)

rho) (PHI phi) pn pv
-> (I i)
-> (S s)
-> valofs s rho

(CALL (f , l , s)) ->
if (f = pn)
then (phi pv) (map (e (RHO rho) (PHI phi) pn pv) 1)
else (phi f) (map (e (RHO rho) (PHI phi) pn pv) 1)

(IF (c, a , b)) ->
if (istrue (e (RHO rho) (PHI phi) pn pv c))
then (e (RHO rho) (PHI phi) pn pv a)
else (e (RHO rho) (PHI phi) pn pv b)

(SUCC x) -> suce (e (RHO rho) (PHI phi) pn pv x)
(PRED x) -> pred (e (RHO rho) (PHI phi) pn pv x)
(CAT (x , y)) ->

cat ((e (RHO rho) (PHI phi) pn pv x) ,
(e (RHO rho) (PHI phi) pn pv y)

(EQU (x , y)) ->
equ ((e (RHO rho) (PHI phi) pn pv x) ,

(e (RHO rho) (PHI phi) pn pv y)) ; ;

(* Program evaluation *)

(lookupf s pn pv)
(lookupf s pn pv)

let rec p = fun (PROG []) (PHI phi) f vl pv -> raise (EmptyList " in prog")

B.2. Call-by-name interpreter 75

(PROG ((fn , pl , q , expr) : : r)) (PHI phi) f vl pv ->
if (f=fn)
then (e (RHO (zip pl vl)) (PHI phi) q pv expr)
else p (PROG r) (PHI phi) f vl pv ; ;

let rec fixphi (PROG prog) f vl =

p (PROG prog) (PHI (fixphi (PROG prog))) f vl ; ;

B.2 Call-by-name interpreter

(* Compare this implementation with the second order call-by-value interpreter *)
(* Basic values have not changed *)
(* Value may be not evaluated immediately *)

type val I of int
S of string ; ;

type nval == (unit -> val) , ,

(* Variable environement *)

type rho = RHO of (string * nval) list ; ;

(* Function environment *)

type phi = PHI of (string -> (nval list) -> string -> nval) , ,

(* The trick - Reduction function *)

let myin a = a() ; ;

(* Expression evaluation *)

let lookupf s pn pv = if (s=pn) then pv else s ; ;

let rec en (RHO rho) (PHI phi) pn pv =

fun (!NT i) () -> (I i)
(STR s) () - > (S s)
(VAR s) () - > myin (valofs s rho)
(CALL (f , 1 , s)) () ->

if (f=pn)
then

myin ((phi pv) ((map (en (RHO rho) (PHI phi) pn pv) 1)) (lookupf s pn pv))
else

myin ((phi f) ((map (en (RHO rho) (PHI phi) pn pv) 1)) (lookupf s pn pv))
1 (IF (c , a , b)) () ->

if istrue (myin (en (RHO rho) (PHI phi) pn pv c))
then (en (RHO rho) (PHI phi) pn pv a ())
else (en (RHO rho) (PHI phi) pn pv b ())

(SUCC x) () -> (suce (myin (en (RHO rho) (PHI phi) pn pv x)))
(PRED x) () -> (pred (myin (en (RHO rho) (PHI phi) pn pv x)))
(CAT (x , y)) () ->

(cat (myin (en (RHO rho) (PHI phi) pn pv x) ,

76 Appendix B. Second order case implementations

myin (en (RHO rho) (PHI phi) pn pv y)))
(EQU (x , y)) () ->

(equ ((myin (en (RHO rho) (PHI phi) pn pv x)) ,
(myin (en (RHO rho) (PHI phi) pn pv y)))) , ,

B.3 Call-by-value interpreter with lists

(* Compare this implementation with the second order call-by-value interpreter
without lists *)

(* Basic values : D = D U { NULL } and D* = D U (D* x D*) *)

type val I of int
s of string
P of val*val
NULL , ,

(* In expressions , we add the constructor CONS and destructor CAR , CDR *)

type expr = NIL

(* . . . *)

1 CONS of expr*expr
1 CAR of expr
1 CDR of expr
1 ATOM of expr , ,

(* The three add-on primitives *)

let cons = fun x y - > P (x , y) ; ;

let car fun (P (x , y)) -> X

-> raise (NotAPair

let cdr fun (P (x , y)) -> y
-> raise (NotAPair

"in car function") ; ;

1 1 ill cdr function") ; ;

(* We have also add a new primitive to test if an element is an atom or net *)

let atom fun (I x) -> (I 1)

(S x) -> (I 1)
NULL - > (I 1)

(P (x ,y)) -> (I 0) ; ;

(* Expression evaluation *)

let lookupf s pn pv = if (s=pn) then pv else s ; ;

let rec e (RHO rho) (PHY phy) pn pv =

fun NIL -> NULL
(* *)

1 (CONS (x , y)) ->
cons (e (RHO

(e (RHO
rho) (PHY phy)
rho) (PHY phy)

pn pv x)
pn pv y)

B.4. Call-by-name interpreter with Jazy lists 77

(CAR x) -> c ar (e (RHO rho) (PHY phy) pn pv x)
(CDR x) -> cdr (e (RHO rho) (PHY phy) pn pv x)
(ATOM x) -> atom (e (RHO rho) (PHY phy) pn pv x) ; ;

B.4 Call-by-name interpreter with lazy lists

(* Compare this implemenation with respect to call-by-name Yithout lists •)

type expr = NIL

(* . . . *)

1 CONS of expr*expr

1 CAR of expr

1 CDR of expr

1 ATOM of expr ' '

(* Tricks to implement lazy lists •)

let myout a () = a ; ; (* Abstraction function *)
let myin a = a () ; ; (* Reduction function •)

(* The three add-on primitives •)

let cons = fun x y -> myout (P (x , y)) ; ;

let car x = match myin x
with (P(x , y)) -> X

-> raise (NotAPair " in car function") ; ;

let cdr x = match myin x
with (P (x , y)) -> y

-> raise (NotAPair " in cdr function") ; ;

let atom = fun (I x) -> (I 1)
(S x) -> (I 1)
NULL -> (I 1)
(P (x ,y)) -> (I 0) ; ;

(* Expression evaluation *)

let lookupf s pn pv = if (s=pn) then pv else s ; ;

let rec en (RHO rho) (PHY phy) pn pv =

fun NIL () - > NULL

(* . . . *)

(CONS (x , y)) () ->
myin (cons ((en (RHO rho) (PHY phy) pn pv x))

((en (RHO rho) (PHY phy) pn pv y)))
(CAR x) () -> myin (car ((en (RHO rho) (PHY phy) pn pv x)))
(CDR x) 0 -> myin (cdr ((en (RHO rho) (PHY phy) pn pv x)))
(ATOM x) 0 -> (atom (myin (en (RHO rho) (PHY phy) pn pv x))) ; ;

78 Appendix B. Second order case implementations

B.5 A mfg implementation

(* We add a special value BOT in the set of values *)

type bval I of int
s of string
P of bval*bval
NULL
BOT , ,

(* The function environment is defined as a tuple *)

type phi = PHI o f (string * (bval list) * bval) list , ,

(* Primitives are redefined such that they support the BOT value •)

let suce fun (I n) -> I (n+1)
BOT -> BOT

-> raise (NotAValidType " in suce function") ; ;

let pred fun (I n) -> I (n- 1)
BOT -> BOT

-> raise (NotAValidType " in pred function") ; ;

let equ fun BOT) -> BOT

- , BOT) -> BOT
(I i , I j) -> if (i=j) then I 1 else I 0
(S s , s t) -> if (s=t) then I 1 else I 0

(NULL , NULL) -> I 1

(NULL) -> I 0

(NULL ' -) -> I 0

(P (x , y) , -) -> I 0

(- ' P(a ,b)) -> I 0

(- ' -) -> raise (NotAValidType " in equ function") ; ;

let cat fun BOT -) -> BOT
BOT) -> BOT

(S s ' s t) -> s (s-t)

(- ' -) -> raise (NotAValidType " in cat function") ; ;

let cons fun BOT -> BOT
BOT -> BOT

X y -> p (x , y) ; ;

let car fun BOT -> BOT
(P (x , y)) -> x

-> raise (NotAPair " in car function") ; ;

let cdr fun BOT -> BOT
(P (x , y)) -> y

-> raise (NotAPair " in cdr function") ; ;

let atom fun (I x) -> I 1

(S x) -> I 1

(

(- '

B .5. A mfg implementation 79

(NULL) -> I 1
(P (x , y)) -> I 0
BOT -> I 0 ; ;

(* Sorne useful functions *)

let rec seek f fun [] -> []
((e , 1) : : r) -> if (f=e) then 1 else seek f r ; ;

let rec iseq = fun (BOT) (BOT) -> true
(I x) (I y) -> x=y
(S t) (S r) -> t=r
(P (a , b)) (P (x , y)) -> (iseq a x) && (iseq b y)

-> false ; ;

(* Expression evaluation function *)
(* Expression are evaluated as usual except for function call because phi is

defined as a tuple instead of function *)

let rec e (RHO rho) (PHI phi)
fun (* . . . *)

(CALL (f , l)) ->
lookupphi f (map (e (RHO rho) (PHI phi)) 1) phi

(* checkargs verify if two lists are equal *)

and checkargs fun [] [] -> true
(e1 : : 1 1) (e2 : : 12) -> (iseq e1 e2) && (checkargs 11 12)

-> false

(* member checks if an element is in a list or not *)

and member x fun [) -> false
(e : : 1) -> if (x=e) then true else member x 1

(* lookupphi checks if one argument of the arg list is BOT . If it is the case ,
it returns BOT , otherwise it extracts the result value of f from phi *)

and lookupphi f arg phi = if (member (BOT) arg) then BOT
else lookupphi 1 f arg phi

and lookupphi 1 f arg fun [) -> BOT
((f i , arg1 , res) : : r) ->
if (checkargs arg arg1) && (f=f 1)
then res
else lookupphi1 f arg r ; ;

(* Need : collects the function call that are needed *)

let rec need (RHO rho) (PHI phi) =

fun NIL -> []
(INT i) -> []
(STR s) -> []
(VAR x) -> []

80 Appendix B. Second order case implementations

(FUNC (f , 1)) ->
addneed (f , (map (e (RHO rho) (PHI phi)) 1) , (needlist (RHO rho) (PHI phi) 1))

1 (IF (c , a , b)) ->
begin
match (e (RHO rho) (PHI phi) c)
with (I 0) -> (need (RHO rho) (PHI phi)

1 (I _) -> (need (RHO rho) (PHI phi)
1 -> (need (RHO rho) (PHI phi)
end

csucc x) -> (need (RHO rho) (PHI phi) x)
(PRED x) -> (need (RHO rho) (PHI phi) x)
(CAT (x , y)) -> (need (RHO rho) (PHI phi)
(EQU (x , y)) -> (need (RHO rho) (PHI phi)
(CONS (x , y)) -> (need (RHO rho) (PHI phi)
(CAR x) -> (need (RHO rho) (PHI phi) x)
(CDR x) -> (need (RHO rho) (PHI phi) x)
(ATOM x) -> (need (RHO rho) (PHI phi) x)

c) © (need
c) © (need
c)

y)© (need
y)© (need
y) © (need

(* needlist computes need for a list of expressions *)

fun [] -> []

(RHO rho) (PHI phi)

(RHO rho) (PHI phi)

(RHO rho) (PHI phi)
(RHO rho) (PHI phi)
(RHO rho) (PHI phi)

and needlist (RHO rho) (PHI phi)

1 (e : : l) -> (need (RHO rho) (PHI phi) e)
© (needlist (RHO rho) (PHI phi) 1)

(* For function call , i f one o f the arg is BOT then don ' t add the closure
to C *)

and addneed (f , arg , nlist) if (member BOT arg) then nlist
else (f , arg) : : nlist ; ;

(* Sorne useful functions *)

(* Test the equality of two elements from phi *)

let iseq_phi (fi , 11 , v 1) (f2 , 12 , v2) =
(fi = f2) && (iseq v1 v2) && (checkargs 1 1 12) ; ;

(* Test if an element is in phi or not *)

let rec is_in_phi_list v fun [] -> false
(e : : 1) -> (iseq_phi v e)

o r (is_in_phi_list v l) ; ;

(* Is a set included in another one ? *)

let rec included fun [] [] -> true

1 (e : : 1) m -> (is_in_phi_list e m) && (included 1 m)

1 [] _ -> true ; ;

(* Test if two phi sets are equal *)

let testphi 11 12 = (included 1 1 12) && (included 12 1 1) ; ;

(* Test the equality of two elements from C *)

b)
a)

x)
x)
x)

B.5. A mfg implementation 81

let iseq_c (fi , 11) (f2 , 1 2) = (fi = f 2) && (checkargs 1 1 12) ; ;

(* Test if an element from C is in C or not *)

let rec is_in_c_list v = fun [] -> false
(e : : l) -> (iseq_c v e) or (is_in_c_list v l) ; ;

(* Is a set included in another one ? *)

let rec included_c fun [] [] -> true
(e : : 1) m -> (is_in_c_list e m) && (included_c 1 m)

[] -> true ; ;

(* Test the equality of two C sets *)

let test_c 11 12 = (included_c 11 12) && (included_c 12 11) ; ;

(* Function that computes fix-point *)
(* phi and C are improved until they are equal *)

let rec iterate phi c prog =
let phi1 = newphi c phi prog and

ci = union (newc c phi prog) c
in if ((testphi phi phi1) && (test_c c ci)) then (phi1 , c i)

else iterate phi1 c i prog

(* newphi computes a new phi •)
(* if C is the empty set , then returns the empty set

otherwise , for each closure in C , we construct a phi *)

and newphi = fun [] phi prog -> []
((f , arg) : : r) phi prog ->

(f , arg , e (RHO (buildrho f prog arg)) (PHI phi) (findexp f prog)) : :
(newphi r phi prog)

(* newc computes a new C *)
(* if C i s the empty set , then returns the empty set

otherwise , for each closure in C , we collect new closures *)

and newc fun [] phi prog -> []
1 ((f , arg) : : r) phi prog ->

(need (RHO (buildrho f prog arg)) (PHI phi) (findexp f prog)) ©
(newc r phi prog)

(* buildrho constructs a rho for a function f in a program prog with a the list
of value arg *)

and buildrho = fun
1

f [] arg -> raise (EmptyList " in
f ((f i , lvar , exp) : : r) arg ->

if (f=f 1) then (zip lvar arg)
else buildrho f r arg

buildrho")

(* findexp returns the expr associated to a function f from a program prog *)

82 Appendix B. Second order case implementations

and findexp fun f [] -> rai se (EmptyList " in findexp")
f ((f 1 , Ivar , exp) : : r) - >

if (f=f1) then exp
else f indexp f r ; ;

(* start is a userfriendly way of calling iterate *)

let start f arg (PROG prg) = iterate [] [(f , arg)] prg , ,

B .6 A strictness interpreter using mfg

(* Compare this case with the interpreter using minimal function graph *)
(* New domain for a strictness interpreter

We work with the two point domain 2 which contains ZERO and ONE *)

type bval = ZERO I ONE ; ;

(* Primitives for the strictness interpreter are only the logical ' and ' and
' or ' *)

let myand fun ONE ONE -> ONE
-> ZERO ; ;

let myor fun ZERO ZERO -> ZERO
-> ONE ; ;

(* Sorne useful functions *)

let rec valofs s = fun [] ->
((a , b) : : l) ->

let rec zip fun [] [] -> []

raise (EmptyList "in
if (s=a) then b else

(a : : r) (b : : s) -> (a ,b) : : (zip r s)

valofs funct ion")
valofs s 1 . .

_ _ -> raise (LengthError " in zip function") ; ;

let rec iseq = fun (ONE) (ONE) -> true

1 (ZERO) (ZERO) -> true

1 -> false ; ;

let rec esharp (RHO rho) (PHI phi)
fun NIL -> ONE

1 (INT i) -> ONE

1 (STR s) -> ONE
1 (VAR s) -> (valofs s rho)
1 (CALL (f , 1)) ->

lookupphi f (map (esharp
(IF (c , a , b)) -> myand

(SUCC x) -> (esharp

(RHO rho) (PHI phi)) 1) phi
(esharp (RHO rho) (PHI phi) c)
(myor (esharp (RHO rho) (PHI phi)

(esharp (RHO rho) (PHI phi)
(RHO rho) (PHI phi) x)

a)
b))

B.6. A strictness interpreter using mfg 83

(PRED x) -> (esharp (RHO rho) (PHI phi) x)
(CAT (x , y)) ->

myand (esharp (RHO rho) (PHI phi) x)
(esharp (RHO rho) (PHI phi) y)

(EQU (x , y)) ->
myand (esharp (RHO rho) (PHI phi) x)

(esharp (RHO rho) (PHI phi) y)
(CONS (x , y)) ->

myand (esharp (RHO rho) (PHI phi) x)
(esharp (RHO rho) (PHI phi) y)

(CAR x) -> (esharp (RHO rho) (PHI phi) x)
(CDR x) -> (esharp (RHO rho) (PHI phi) x)
(ATOM x) -> (esharp (RHO rho) (PHI phi) x)

and checkargs fun (] [] -> true
(e1 : : 11) (e2 : : 12) -> (iseq e1 e2) && (checkargs 11 12)

-> false

and member x = fun [] -> false
(e : : 1) -> if (x=e) then true else member x 1

and lookupphi f arg phi if (member (ZERO) arg) then ZERO
else lookupphi1 f arg phi

and lookupphi1 f arg fun [] -> ZERO
((f i , arg1 , res) : : r) ->
if (checkargs arg arg1) && (f=f1)
then res
else lookupphi1 f arg r ; ;

let rec needsharp (RHO rho) (PHI phi)
fun NIL -> []

1 (INT i) -> []
1 (STR s) -> []
1 (VAR x) -> []
1 (GALL (f , l)) -> addneed (f ,

(IF (c , a , b)) -> (needsharp
(needsharp
(needsharp

(SUCC x) -> (needsharp
(PRED x) -> (needsharp
(CAT (x , y)) -> (needsharp

(needsharp
(EQU (x , y)) -> (needsharp

(needsharp
(CONS (x , y)) -> (needsharp

(needsharp
(CAR x) -> (needsharp
(CDR x) -> (needsharp
(ATOM x) -> (needsharp

(map (esharp (RHO rho) (PHI phi)) 1) ,
(needlist (RHO rho) (PHI phi) 1))
(RHO rho) (PHI phi) c)©
(RHO rho) (PHI phi) a)©
(RHO rho) (PHI phi) b)
(RHO rho) (PHI phi) x)
(RHO rho) (PHI phi) x)
(RHO rho) (PHI phi) y)©
(RHO rho) (PHI phi) x)
(RHO rho) (PHI phi) y)©
(RHO rho) (PHI phi) x)
(RHO rho) (PHI phi) y)©
(RHO rho) (PHI phi) x)
(RHO rho) (PHI phi) x)
(RHO rho) (PHI phi) x)
(RHO rho) (PHI phi) x)

84 Appendix B. Second order case implementations

and needlist (RHO rho) (PHI phi)
1

fun [] -> []

(e : : l) -> (needsharp (RHO rho) (PHI phi) e)
© (needlist (RHO rho) (PHI phi) 1)

and addneed (f , arg , nlist) if (member ZERO arg) then nlist
else (f , arg) : : nlist ; ;

(* Fixpoint computation does not change with respect to the mfg
implementation *)

