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Abstract

Strictness analysis is a method of static analysis based on abstract in-
terpretation for functional programs. The purpose of this technique is to
transform call-by-name into call-by-value when the result of function call
are identical. So, the semantics of call-by-name is unchanged and the eval-
uation of the result is more efficient. This analysis is applied to a second
order functional language.

Résumé

L’analyse de strictness est une méthode d’analyse statique de programme
basée sur 'interpretation abstraite. Le but de cette technique est de trans-
former le passage par nom des arguments dans les appels de fonction par
le passage par valeur quand les résultats des appels sont égaux. Ainsi, la
sémantique du passage par nom ne s’en trouve pas modifiée et les calculs
des résultats se fait de maniére plus efficace. Cette analyse est appliquée a
un langage fonctionnel du second ordre.
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Introduction

The main subject of this work is functional languages. A functional lan-
guage is a language where all commands are considered as expressions and a
program as a series of function declarations. We distinguish different types
of functions: first order functions which are functions that take solely vari-
ables as arguments and higher order functions which are functions that take
not only variables as arguments but functions too. Higher order is also di-
vided into several orders: 2"¢, 3¢ and so on ... A second order functional
language is a language where functions may take solely first order functions
as arguments (and obviously variables). A third order functional language
is a language where functions may take either first order functions or second
order functions as arguments, and so on for the n* order.

We may categorize functional languages in two families: strict languages
such as, for example, caml (http://caml.inria.fr) and Lisp and non-
strict or also called lazy languages such as Haskell (http://www.haskell.
org) and Miranda. Both differ by their parameter passing. The former
implements call-by-value while the latter implements call-by-name. Given
the function f below picked from [Myc80] [Pol96], let us examine how both
work:

let f(z,y) =if z=0then 1 else f(z - 1, f(z,y))

The principle of call-by-value is to evaluate arguments of function call before
performing the call. We have the following developments:

fO,y) =1
f(1,y) = if 1 =0 then 1 else f(0, f(2,y))

f(2,9))

yif 1 =10 thﬂ 1 @ f(Oif(2>y)))

, £(0, £(2,9)))

, £(0, (0, £(2,9))))

soon...

O =

(I T | |
e
o O O O

[eP)

Il
o

n

If we summarize the function results we see that the function gives a result
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only when z = 0:

1 ifx=0,
z,y) = )
f(=y) {_L otherwise.
On the other hand, the principle of the call-by-name is to evaluate ar-
guments of function call as late as possible. If we make the developments,
we have the following:

F(L,y) = if 1 = 0 then 1 else £(0,/(2,))
— i£0= 0 then 1 else £(0, /(2,))
=1

If we summarize the function results we have that for all £ and y that
f(z,y) =1

By definition, call-by-value is fast, efficient and easy to implement. We
may also imagine that arguments of function calls are evaluated in parallel
such that the computation of function calls is improved. But as seen in
the previous example, call-by-value may not terminate. It is not the case
in call-by-name. Its semantics is a natural way to evaluate expressions in a
functional language. The problem of call-by-name is that it is space- and
time-consuming because arguments are lugged around during all the eval-
uation of the function call. An optimization for a lazy functional language
should be to transform its costly evaluation mechanisms into a call-by-value.

Strictness analysis is a method of static analysis based on abstract in-
terpretation for functional languages. Its goal is to replace call-by-name
by call-by-value when the results of function calls are identical. It studies
strictness properties of a functional language. We will say that a function is
strict on one of its arguments if when the evaluation of this argument is un-
defined then the result of the function call is undefined. Strictness analysis
detects strict functions for which tranformation may be applied.

This work is structured as follows:

e Chapter 1 introduces all the mathematical framework that we use later
in this work. The three most important notions are domain, fiz-point
and strict functions.

e Chapter 2 introduces a first order functional language. We present dif-
ferent implementations of the same language and show the differences
between them. We also study a specific fix-point algorithm which is
the minimal function graph algorithm [DJM86) [DJR97). Then we
construct a strictness interpreter using minimal function graph.
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e Chapter 3 dresses the development of a higher order functional lan-
guage. We have limited this language to the second order. We do the
same development than in the previous chapter but we specify it more
formally and explain difficulties encountered during implementation.

e Finally, we conclude our work and present further work.
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Chapter 1

Mathematical Framework

1.1 Introduction

This chapter is devoted to the description of the mathematical concepts
used in the remainder of this document. We introduce some basic concepts
that can be found in the paper [Ros01]: domains, monotonous functions,
continuous functions and fix-points. These concepts allow us to introduce
a fundamental theorem: the fiz-point theorem. This is an important tool in
mathematical semantics and in abstract interpretation.

1.2 Complete Partial Order

Complete partial orders (CPO) or domains are playing an important role
in the study of strictness analysis and fix-point definition. The aim of this
section is to explain this notion. Before getting to it, we first introduce some
useful definitions.

Definition 1.1 (Partial order relation)

A relation < on a set F is a partial order relation if and only if this relation
respects the following properties:

(Reflexivity) VI € E:z <z

(Transitivity) Vz,y,2 € F:z<y AN y<z = z<z
(Antisymmetry)Vz,y€e E:z <y A y<z = =y

In this case, we call the couple (E, <) a partial order.

Definition 1.2 (Lower bound)
Given a partial order (E,<) and S C E, m is a lower bound of S if and only
ifVTeS m<z

Definition 1.3 (Greatest lower bound)
Given a partial order (E, <), m is the greatest lower bound or infimum of
S CE if
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e m is a lower bound of §
e VT lower bound of S, we have < m
We will use the notation NS to indicate a greatest lower bound of S.

In the same way, we can define similarly the upper bound and the least
upper bound of a set. Remark here that if the greatest lower bound (of least
upper bound) exists, it is unique.

Definition 1.4 (Chain)
Given a partial order (E, <), we call (z;)ic; a chain of E if and only if
Viel,z; € Eand z; < iy

We will often use this notion, thus we introduce a notation for it [Ros01].
We define chains(E), the set of chains from E and write (z;) € chains(E)
for a chain z; < z9 < ... in E. A chain may be considered as an increasing
sequence of elements in a domain F.

Now, we define now the notion of complete partial order, more usually
called domain.

Definition 1.5 (Domain)

A pair (FE, <) is called a domain if and only if

e I is a non-empty set;

e < is a partial relation order on F;

e F has a lower bound called 1 g;

e All chains x1 < z9 < ... < z; < ... in E have a least upper bound U;z;
inE.

Note that every set E can be extended to a domain by adding a least
element | and using a special ordering called flat ordering, noted C and
defined by:

Vz,y e FU{Ll}:2Cy < (z=1)V(z=y)
In this case, we say that the set E is lifted with the bottom value (L).
To denote the minimal element of a domain, we use the symbol L.
1.3 Continuity

As seen later in this chapter, continuity is an important notion to ensure
the existence of a fix-point.

Definition 1.6 (Monotonous function)
Given (F,<g) and (F,<r) two domains, f : E — F is monotonous if and
only if Vej,es € E:e; <ey = f(e1) < f(e2).
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Definition 1.7 (Continuous function)
Given (F,<g) and (F,<fp) two domains, f : E — F is continuous if and
only if f is monotonous and if ¥(e;) € chains(E) f verifies the equality:

Note that the composition of monotonous (resp. continuous) function is
a monotonous (resp. continuous) function.

1.4 Fix-point

Now we first introduce a definition of fix-point. Then, we present a propo-
sition which binds the notions of fix-point and domain.

Definition 1.8 (Fix-point)

Given f : E — E and e an element of E. The point e is a fix-point of the
function f if and only if f(e) = e. If for all points = in E such that f(z) =z
we have e < z, e is the least fix-point.

Theorem 1.1 (Fix-point theorem)
A continuous function f on a domain (F,<), f : (E,<) - (E,<) has a
least fix-point which we can find as

BEAES
i
PROOF.
The proof has three parts:
e We have a well-defined chain: 1. < f(1) < f2(1) <...
o We have a fix-point: f(LJ; f*(1)) = LJ;(f*(1))

e The fix-point is the least one: Vz € E f(z) =z = |, f{(L) < z

For a detailed proof, we refer to [Ros01].
The theorem says that for any domain E we have a function fix : (F =
E) — E which finds the least fix-point of a function.

1.5 Domain constructions

We will see in this section some domain constructions and their properties.
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1.5.1 Cartesian product

Definition 1.9 (Cartesian product)

Given n domains (Ey,<g,),... ,(En, <E.), we define the Cartesian product
(By X ... X Ep,<E;x..xE,) as the domain of tuples of values from set E1 to
FE,, where :

e Fi x...x F, = {(el,... ,en)|€1 EFEIN...Ney EEn}

o (€1,---,€n) <Eix..xEn (€],--. en) <= el <p e\ A...Ney <E, €h

This definition allows us to introduce some notation with respect to
Cartesian product. If Vi € {1,... ,n} : E; = E then we note the Cartesian
product By x ... x E, as E" and Vp,n € F: p<n <= Vi p; <n; where
subscripted notation is used to select the it* component of the tuple.

We may state some outstanding properties of Cartesian product:

Theorem 1.2 (Cartesian product of domain)
The Cartesian product of domains is a domain.

The proof of this theorem may be done by demonstrating these following
points:

e The relation <g,x..xE, 15 a partial order;
e There is a least element in F; X - x Ey;
e All chains of E} X - -+ x F,, has a least upper bound in F; x --- x Ej,.

This first property show that Cartesian product preserves the domain
definition.

The next property shows that we may construct a continuous function
on a Cartesian product from several continuous functions on domains.

Theorem 1.3 (Continuous function on Cartesian product)

Given (E1,<Eg,),...,(En,<g,) and (F1,<p),-.. ,(Fyn,<F,) domains. If
functions f; : E; — Fi,..., fn: E, — F, are continuous then the function
f defined by

f: Eyx...xE, - FXx..xF
(€15-.. yen) ~ (fie1,... fnen)

is continuous for Cartesian product.

This second property shows that Cartesian product preserves the conti-
nuity definition.
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1.5.2 Sum of domains

Definition 1.10 (Sum of domains)
Given n domains (Ey,<g,),...,(En,<g,), we can construct the sum (or

disjoint union) (Ey + -+ + Epn, <g,4+..+E,) as

e B +---+FE,= {-1—E1+---+En} U {(i,ei)li € {1,... ,TL} Ne; € Ei}
eVzE€E + -+ En Llp+4tE SE+-+E. T

* (i,€;) <pit..+E, (,€]) < e; <p e Vie{l,...,n}

Theorem 1.4 (Sum domain)
The sum of domains is a domain.

The steps to prove this theorem are the same than in the Cartesian
product case:

e The relation <g, ;... g, is a partial order;
e There is a least element in F) + -+ - + Fy;

e All chains of £; + --- + E, has a least upper bound in E; + - + E,.

1.5.3 Function domain

Theorem 1.5 (Function domain)

Given a non-empty set E and a domain (F,<p) we can construct the
function domain (F — F,<g_,r) of continuous functions from F to F with
ordering:

[ <gsrg < Vz €E, f(z) <r g(7)

1.6 Strict functions

We define a strict function as follows:

Definition 1.11 (Strict function)
Given (E1,<),...,(Fn,<) and (E,<) (n+1) domains and given f : E} X

FEy x...x E, - FE a continuous function. We will say that the function

f is strict in its i-th argument if and only ifV(ey,... ,€i_1,€i11,--- ,€n) €
Fi x E;_4 XE,'_H X ... X FEy,
f(el,... )ei—la—LE,'aei+la"' ,en) =1k

In a lazy functional language with this property, if the computation of
the argument does not terminate then the computation of the result of the
function will not terminate either. Hence, if we compute the argument before
the call (it is the case in the call-by-value) we then have two possibilities:
either the argument can be evaluated and no harm has been done or the
evaluation of the argument will fail to terminate. In the latter case, with a



16 Chapter 1. Mathematical Framework

strict function, we know that the computation of the result of the function
would have failed anyway. The only difference is that it now may happen a
bit earlier. Strictness of a function means that we may use a call-by-value
strategy rather than call-by-name and this should hopefully make it possible
to implement the function more efficiently.

An operational semantics based on call-by-value implies that all func-
tions are strict in their arguments.



Chapter 2

First-order case

2.1 Introduction

In this chapter, we present the step-by-step development of a strictness
interpreter of a first order functional language. The aim is to present basic
concepts to show how the implementation is constructed for a semantics.
First we describe the syntax of this language. Then we explain issues of the
transition from a call-by-value interpreter to a call-by-name interpreter. We
try to explain difficulties we have encountered when going from one to the
other. For these first implementations we use simple types like integers or
strings. The next step is to upgrade both implementations with the type
list’ and see what we have to change to their first implementation. We
also see another approach of the fix-point algorithm. This one is called the
minimal function graph approach and computes the value of a function call
only if necessary. Finally, we present a strictness interpreter using minimal
function graph.

2.2 A call-by-value interpreter

We describe in this section the semantics of a simple call-by-value interpreter
of a first order functional language.

We work with a set of values D. No matter the instantiation of the
set but D must contain at the time of implementation single values. For
example, we can imagine that D is the union between integers and strings:

D=ZUS

We define the domain D; which is the set D lifted with the bottom
valuee D} =DU{L}.

In a simple functional language, we distinguish two types of elements:
expressions and user-defined functions declaration.
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An expression is either a constant (c;) or a variable (z;) or a primitive ap-

plied to several arguments (p(ezpry,... ,ezpr,)) or a user-defined function
call (f(ezpry,... ,expry)):
erpr = ¢
| =
| pilezpry,... ezpry)
|

filezpry,. .. ezxpry)

A program is composed by user-defined functions descriptions.

prog == f(z1,...,z,) = expr]
| fa(z1,... ,T0) = ezpro
| folzy,...,2q) = expry

We point out that all functions have the same number of arguments.
Well, this is not an issue indeed. We can replace non-used arguments by
dummy variables to solve the problem. This syntax is very short and easy
to use for implementation.

To implement the interpreter, we need an environment to keep in memory
to which value a variable name or a function name points. A variable takes
its value from the set D. Function arguments take also their value from D
but a function call returns a value from the domain D : if the result of a
function call is .L this means that the function call does not terminate. We
define a variable environment and a functional environment as follows:

p € D" variable environment
¢ € &=(D" > D, )P functional environment

We need some functions to evaluate expressions and the meaning of a
program. In order to define an expression evaluation function, we need the
variable environment to be able to get the value of a variable and a functional
environment to be able to evaluate the value of a function call. The result of
the evaluation of an expression may be L because the evaluation of a function
call may not terminate. We call £ the evaluation function for expressions
which takes a variable environment and a functional environment. Given an
expression it returns a value of D :

Elexpr] : @ - D™ - Dy
Note before describing the semantics that a call-by-value interpreter eval-

uates the arguments of a function first, before performing the call. As
described in section 1.6, an operational semantics based on call-by-value
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implies that all functions are strict in their arguments. Therefore, a call-by-
value interpreter evaluates expressions in this way:

Elei) ¢ p=d;
Elzil ¢ p=pi
Eﬂpi(ea:prl,. .- aemp'f'n)]] ¢ p=
strict [pi)(Elezpri] ¢ p,- .., E[ezpra] ¢ p)
Elif(expry,expra,expra)] ¢ p=
cond(&[ezpri] ¢ p, Elexpra] ¢ p,Elexprs] ¢ p)

Elfi(expry, ... expry)] ¢ p =
strict ¢;(E[expri] ¢ p, ..., Elezpra] ¢ p)

where

strict: (D" — D)) — (D} — D))

f ~ if (mm=L1lVzy=L1LV...Vz,=1)
then 1 else f(z1,...,Zn)
cond : ’Di‘_ - D,

(vy,v9,v3) ~» if wv; then v,
else if not v; then w3 else L

In the equations above, d; is an element from D corresponding to the
syntactic element c; and [p;] is the function of signature (D™ — D, ) which
corresponds to the syntactic symbol p;.

Functional applications, basic operations [p;] and the cond function have
to be monotonous in order to have a well-defined semantics because D is
simple.

Moreover, basic operations and function calls must be strict: if one of
their arguments is .1, the result of the call must be .l. Except for the basic
conditional operation if for which we must not evaluate all arguments before
the call.

The program aims at giving a meaning to the different functions it con-
tains. Thus, the semantics of a program is a particular functional envi-
ronment which verifies all the equations of its user-defined functions. We
take the least one, so we compute the least fix-point of a transformation of
the functional environment ®. We call P the function which evaluates the
meaning of a program. This one has the following signature:

Plprog] : ®
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The meaning of a program is the least fix-point defined by:

Pl filzi, ... ,zp) = expry
f2($17"' 71‘17.) = €eIpr

folz1,. .. ,mn) =expr, | = fix(Ap.( E[lezpri] ¢,
5[[61‘])7‘2]] ¢v

Eleapry] $))

where fix is the function defined in chapter 1 section 1.4. FEach
function f; is bound to a function ¢; of signature D* — D,
such that the meaning of a program is the least fix-point of ¢ =
(Elezpri] ¢,... ,E[expry] ¢). This definition is correct if and only if ®
is a domain and A¢.(E[ezpri] ¢,...,E[expry] ¢) is continuous. P is ef-
fectively a domain following the function domain definition mentioned in
chapter 1 section 1.5.3 and A¢.(E[expri] @, ... ,Eexpry] ¢) is continous.

In order to implement the fix-point computation, a function called p is
defined A.1. Within a convention representation, this function has the same
signature than the semantic function P. The problem is to compute the
fix-point of P[prog]), thus of p prog. This fix-point verifies the equation
p prog phi = phi. But we may not write this equation in caml. On the
other hand, we may write phi £ x = p prog phi f x. This expression
is mathematically equivalent to p prog phi = phi according the function
equality definition described in [Sto77]. Note that all fix-point verifies this
equation. But caml will compute the least one because its semantics is strict.

The reader may find in appendix A.1 an implementation of this seman-
tics.

2.3 A call-by-name interpreter

Now, on the basis of the first implementation, we define the semantics of a
call-by-name interpreter. A call-by-name interpreter evaluates arguments of
a function call only if necessary. How can we change the semantics of the
call-by-value to obtain an interpreter which implements the call-by-name ?
The purpose of this section is to answer this question.

We have to revisit the variable and the functional environment. A vari-
able or an argument of a function call may be L because arguments are not
evaluated immediately or may be never evaluated. In some cases, if an ar-
gument of a function call is undefined, its evaluation may terminate. Hence,
we have the following definitions:
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The signature of the expression evaluation function has the same form
as in the call-by-value case:

Elezpr] : @ - D} - D,

The semantics of expressions is almost the same as in the call-by-value
case. The only difference resides in the evaluation of user-defined function
calls. In the call-by-name case, this evaluation does not have to be strict
because an argument could be L. We have the following equation:

The function P which computes the meaning of a program prog does
not change.

The reader can find in appendix A.2 an implementation of this semantics.
Note that the implementation of the interpreter is written in caml which is a
language using strict evaluation. We know that an interpeter using call-by-
name evaluates arguments of function calls as late as possible. How could we
delay the evaluation of the arguments in a strict interpreter? To delay the
evaluation of an argument, we are using the rule of abstraction-reduction
described in [Sto77] [Rou97]. The reduction rule allows us to replace in the
body of a function all occurences of the real parameter by the value of the
formal parameter. On the other hand, the abstraction rule allows us to put
in a formal parameter and to put out a real parameter. If the expression
flv/z) means “substitute the variable = by the expression v in the body
of the function f”. The abstraction-reduction rule may be described as
(e f(@)v < flv/a)

When f(e) is computed, e is evaluated first. We may apply the abstrac-
tion rule to the argument e: (Az.e)z. This expression is evaluated to e when
the function is applied to an argument of any type. We are free to choose the
type of the argument. In the implementation, we choose the unit value ().
Hence, we have that e is equivalent to (Az.e)(). The function f = \y.ezpr
is therefore transformed into another function: f' = MAy.ezpr{z/y] with
z = y(). The application f’(\().e) is therefore delayed. Indeed, the eval-
uated argument is a function which gives a result only when applied to a
value of unit type.

2.4 A call-by-value interpreter with lists

Now, we examine how to upgrade our first descriptions such that the inter-
preter supports lists. By definition, a list is a sequence of ordered values of
the same type for typed lists, of any types for non-typed lists. We consider
non-typed lists. The set of values containing this kind of list is D* which is
defined as follows:

D* = DU (D* x D)
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Elements from D* are either written as 1,2,... for atoms! or (...) for
pairs. Moreover, in D is added the element corresponding to the empty list
(noted nil). On the basis of this set, we can construct the lifted domain
(D*), which is a flat domain described as follows:

1,2, . (1.nal), (2. nil), (2. nil)),.

\\/

This domain contains well-defined lists (without L as component) and
has 1 as lower bound. A second interesting domain is (D, )* which is con-
structed from D; and contains lazy lists. A lazy list is a list which may
contain one or more | inside. This domain is defined as follows:

The structure of this domain is quite different from the previous one.
We have a tree structure which looks like the following:

(1.nil),...
|
(1.1).  (L.(L.1))  (L.ndd)
12,...  (L.1)
N
1

In a call-by-value interpreter, lists are defined in the domain (D*);. On
the other hand, in a call-by-name interpreter, lists are defined in the domain
(D1)* because an argument may never be completely evaluated during the
execution of a program.

In the call-by-value interpreter with lists, a variable and function call
argument can be a simple value from D or a list from D* x D*. The result
of a function call must be an element from (D*),. Therefore, the variable
and the functional environments are modified as follows:

p € D
¢ € 2=(D" = (D))

The expression evaluation function £ always needs as arguments: the
variable and the functional environment. Hence, the signature of the ex-
pression evaluation becomes:

Elezpr] : @ —» D*™* — (D*) L

If D contains integers.
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With respect to the semantics defined in section 2.2, we add the evalu-
ation of the three common primitives: cons, car and cdr.

E[cons(expry,expry)] ¢ p = strict cons(Efexpr] ¢ p,Eexpra] ¢ p)
Ecdx(ezpr)] ¢ p = strict cdr(Efezpr] ¢ p)

Elcax(ezpr)] ¢ p = strict car(Elezpr] ¢ p)

where strict is defined as in section 2.2 and cons, car and cdr are
defined as follows:

Given h,t in D*, we have:
cons (h,t) = (h.t)
Given z in D*, we have:

cdr =t ifz=(h.t)
cdr z =1 ifzeD

Given z in D*, we have:

car z=h ifz=(h.t)
car z =1 ifzeD

We have that cond, car and cdr are continous on (D*),. The function
‘P which computes the meaning of a program prog does not change anymore.
The reader can find in appendix A.3 an implementation of this semantics.

2.5 A call-by-name interpreter with lazy lists

In this section, we present a call-by-name interpreter with lazy lists. The
nature of a non-strict language is that their data constructors are also non-
strict. Non-strict constructors permit the definition of (conceptually) infinite
data structures. An example of a program which generates infinite lists is
described in section 2.6.

With regard to the semantics, we use the domain (D, )* described in
section 2.4 to define the variable and the functional environments:

p € (D)™
¢ € 2=((D)™ - (DL)*)

Hence, the signature of the expression evaluation function becomes:
Elezpr] : @ — (D)™ — (D )"

With respect to the interpreter described in section 2.3, we only add
the evaluation of the three primitives for lists manipulations. Because an
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element of a list may not be evaluated, these functions do not have to be
strict.

E[cons(ezpry, expry)] ¢ p = cons(E[ezpri] ¢ p, Eezpra] ¢ p)
Elcdr(ezpr)] ¢ p = cdr(E[ezpr] ¢ p)
Ecar(ezpr)] ¢ p = car(E[ezpr] ¢ p)

where cons, car, cdr are defined as in section 2.4.

We are always using the same P function in order to evaluate the mean-
ing of a program.

The first order language that we have developped until now is the one
we use to study strictness analysis in section 2.7.

Thereader can find in appendix A.4 an implementation of this semantics.

2.6 Examples

For our examples, we assume that our language has the following built-in
primitives and D is the set of integers:
pred ezpr : computes the predecessor of expr.
succ ezpr : computes the successor of ezpr.
if (ezpr,ezpre,exprs) : conditional command: if the evaluation of
ezpr is 0 then returns the evaluation of ezprs
otherwise returns the evaluation of ezpr,.
equ (expry,ezTprsy) : returns 1 if the evaluation of both expressions
ezpr) and exprsy is equal, 0 otherwise.
In order to simplify examples, we also assume that the following user-

defined functions are written:
times (z,y) : returns z * y.

plus (z,y) : returns z+y.

Call-by-name is time-consuming An example of program may be the
following:

fact x = if( equ(x,0),
1,
times( x, fact (pred x)))
if( equ(x,0),
1,
if( equ(n,1),
1,
plus( fibo (pred x), fibo (pred (pred x)))
)

fibo x

)

This program shows us the efficiency of the call-by-value with respect to
call-by-name when we are calling fibo(fact 4) for example. The reason
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resides in the fact that call-by-name does not evaluate arguments immedi-

atly: arguments are evaluated as late as possible. Table 2.1 shows how the

time-consuming the call-by-name interpreter is2.

Call Name | Value
fibo(fact (1)) 0.00 0.00
fibo(fact(2)) 0.01 0.00
fibo(fact(3)) 72.15 0.00
fibo(fact(4)) - 0.01

Table 2.1: Computation time in seconds

Interest of lazy lists Another interesting example is a program which
generates infinite lists and returns the first n elements.

listnum x = cons( x, listnum (succ x))
firstn (x, 1lst) = if( eqn(x, 0),
nil,
if ( atom(1st),
nil,
cons( car(lst),
firstn( pred x, cdr(lst)))

If we perform the call firstn(10, (listnum 0)), a strict evaluator does
not terminate because it computes 1listnum O which generates an infinite
list. In the other hand, a non-strict evaluator gives us the right answer
because, during the execution, the expression listnum O is never actually
evaluated.

2.7 Fix-point computation using minimal function
graph

2.7.1 Motivations

In the call-by-value case, computing the fix-point as described in the previous
sections may fail to terminate. For a function call to h(v) where h(z) =
h(z) and v € D, a strict evaluator does not terminate3. As we describe
further, minimal function graph is another way of computing the fix-point

2Tests were made on a Celeron 700Mhz with 64MiB RAM
3Note that a non-strict interpreter does not terminate either
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of a program. With this method, computing the fix-point of A(v) terminates
and gives the value L as result. On the other hand, for a function call to g(v)
where g(z) = g(z — 1) and v € D, the evaluation does not terminate either.
A strictness interpreter using minimal function graph gives us a solution to
our termination problem.

2.7.2 Minimal function graph

Minimal function graph (hereafter abbreviated mfg) is an approach which
consists in computing fix-point evaluating arguments of a function call only
when they are needed. The semantics groups together intermediate calls
during the evaluation of a program. In this approach, the idea is to de-
scribe functions as a set of arguments-result pairs in order to identify these
functions. From a set of arguments-result pairs, the mfg approach gives the
least set of pairs that are needed in order to compute the result. In this
semantics, function calls are represented as closures: a pair (f;, (v1,...,vn))
where f; is the function name and the tuple (vy,...,v,) is a list of argu-
ments. Furthermore, we distinguish two sets: a set C which collects the
different closures appearing in the computation and a set ® which is the
functional environment defined as a Cartesian product instead of a func-
tion. We call C a need-set. To explain how this approach works, consider
the simple example of the factorial function defined as:

Let us examine now the function call to fact with the argument 3. During
the execution, we check first if 3 is equal to 1. Since this is not the case, we
compute the ”else branch” of the conditional command. At this stage, we
don’t know the value of fact(3), hence fact(3) is mapped to the undefined
value L. We also see that fact(3) requires that the value of fact(2) be
computed. Hence, the set C contains the tuples (fact,3) and (fact,2). The
next iteration consists in computing the value of fact(2). With the same
reasoning, fact(2) is mapped to L and we see that in order to compute it
we need the value of fact(1). The pair (fact,1) is added to the set C. The
computation of fact(1) returns directly the value 1. The knowledge of this
value leads us to compute the value of fact(2) and later, the value of fact(3).
Finally, the set C contains the pairs {(fact, 3), (fact,2),(fact,1)}. We obtain
a graph which results from the computation of different values. Note that
we have computed only arguments that are needed.

2.7.3 An interpreter using mfg

As we have seen in the previous section, in order to write the semantics of an
interpreter using mfg algorithm, we have to define an additional set. This
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set called C captures arguments of function calls that are needed to evaluate
the initial call. C is a p-uple of sets:

The variable environment does not change with respect to the call-by-
value interpreter:

We redefine ® as a p-uple which contains sets of argument values and
the result of function calls with these arguments:

The expression evaluation function does not really change compared to
the call-by-value interpreter with lists. We have the following signature for
the expression evaluation function:

Elexpr] : ® - D™ — (D*) L

and the semantics of expressions is very close to the one of the call-by- |
value interpreter:

SIICi]] ¢ p= d;
Elzi] ¢ p=pi
Elpilezpr, .. ,expr)] & p =

strict [p](Efezpri] ¢ o, ... ,Elezpry] ¢ p)
E[if(ezpry,expra,exprs)] ¢ p =

cond(Eezpri] ¢ p,Elezpra] ¢ p,Elezprs] ¢ p)
E[fi(ezpry,... ,expry)] ¢ p = strict ¢i(Elezpri] ¢ p,... ,E[exprn] ¢ p)

where strict and cond are defined as in section 2.2 and where ¢; is
the function that the tabulated function ¢; represents. Given ¢; a tabulate
function from ¢, we note:

i : D - (D*)L
(dl d ) dn+1 if (dla' e ,dnadn+1) € d)ia
o L otherwise.

Now, we define a function N which collects arguments of a function call
that need to be evaluated. This function takes an expression, a functional
environment and a variable environment, and it constructs as a result an
element from C:

Nlezpr]: ® -+ D - C
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The semantics of N is the following:

Ne]) ¢ p=(0,...,0)
Nlzi] ¢ p=(0,...,0)
Nlpilezpry,... ,ezpra)] ¢ p= (Nezpr1] ¢ p) ®% ... @ (Nezpra] ¢ p)
Nlif(expry,ezpry,exprs)] ¢ p=
condn(ezpr, €TpTy, €TPT3)

Nlfi(ezpri,... ,ezpry)] ¢ p =

mkset( (E[ezpri] ¢ p),--- ,(E[ezpra] ¢ p),1)

®" (Nezpri] ¢ p) ®” ... ®" (Nezpra] ¢ p)

where
condn (expr,ecpry,ezprs) =
if (E[ezpri] ¢ p) then
(Nezpr1] ¢ p) ® Nezprs] ¢ p)
else
if not (E[expri] ¢ p) then
(Nezpri] ¢ p) ® (Nezprs] ¢ p)
else (NMezpri] ¢ p)
and
mkset (v1,...,Vp,1) =
if (v =1LV...Vv,=.1) then (0,...,0)
else (0,...,0, {(v1,---,vn)}i,0,...,0)
and
®Y: CxC - C
((e1,...,¢p),(chsensep) )~ (e1,.-.,¢p) ®Y(ch, .. ,Cp) =
(c1Ucl,...,cpUcy)

The operator ®" guarantee us the monotony of the A function and is
associative since the union of sets is associative.

In the capture of function calls for user-defined functions, if one of the
arguments is A, then we don’t add this function call to the result of the
evaluation. However, we add function calls that are needed in order to
evaluate each argument.

The fixpoint computation is slightly different of the previous ones be-
cause we compute two different sets: ® which represents the graph of a
function and C which contains the captures of function calls. We define a
function P which compute the meaning of a program. As we need to know
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which inital calls are performed at the start, P takes an extra argument cg
which contains them. Its signature is the following:

Plprog] co: ® x C
The meaning of a program is then the least fix-point defined as follows:
Plprog] co = fix(A(¢,c).(¢ ®" (iterate prog ¢ c),c ®” (needs prog ¢ c)))

where iterate should compute a new graph by calling the expression eval-
uation function £ for all calls in C and needs should collect all needs using
the A function for all calls in C. The function ®" is defined in the same
way as the ®" operator. Instead of computing the union of its arguments,
it computes the least upper bound and it is defined on ®. The fix-point
is well-defined because the upper bound operator will ensure us that the
function is monotonic.
Functions iterate and needs are defined as follows:

iterate [ fi(z1,...,Zy) = expr
f2(z1,... yzn) = expry

fp(ml,...,:;:n)=ezp7“p ]]¢<cla"',cp>:
( {(pElezpril dp | pEc)}

(o Eleprol 65 | pES)) )

needs [ fi(z1,...,T,) = expry
f2($13--- ,.’L‘n) = €IPry

fp(mla-" N ETPTp ]] ¢ (c1,... ’cp) =
(®pec, Nezpri] 6 p)

®Y...QY
(®pec,Nlezprp] 6 p)

The reader can find an implementation of this semantics in appendix

Ab.

Example

For this example, let’s take the Fibonnaci series (see code in section 2.6). We
call the function fibo with the argument 3. This is an interesting example
because this function is doubly recursive.

First, we begin with an empty functional environment and a need-set
(C) which is initialized with the arguments of the initial call (fibo, 3).
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¢ 0
C Il {(fibo,3)}

The conditional command is evaluated. As z is not equal to 0 nor to
1, the else branch of the conditional command is computed. The expres-
sion plus( fibo (pred x), fibo (pred (pred x))) is evaluated. When
this expression is evaluated we see that it is not possible to return a result
for fibo(3). Hence, the functional environment is upgraded with the tuple
(fibo, 3, 1). During the evaluation of the previous expression, the first ar-
gument of plus is evaluated first. We notice here that we have to compute
fibo(2) to get value of the initial call. Thus, the need-set is upgraded with
the tuple (fibo, 2).

¢ || (fibo,3, L) |
C 1l {(fibo,3), (fibo,2)} |

The next step consists of computing fibo(2) which comes from the pre-
vious call. As the functional environment does not contain the result
of the call to fibo(2), it is evaluated. As z is not equal to 0 or to 1,
the else branch of the conditional command is evaluated. The expression
plus( fibo (pred x), fibo (pred (pred x))) is once more evaluated.
When this expression is evaluated we see that it is not possible to return a
result for fibo(2). Hence, the functional environment is upgraded with the
tuple (fibo, 2, 1). During the evaluation of the previous expression, the first
argument of plus is evaluated first. We may notice that we have to compute
fibo(1) to get the value of fibo(3). The need-set becomes:

¢ l (ﬁb073$-l-)7(ﬁb0’2a‘]-)
C 11 {(fibo, 3), (fibo, 2), (fibo, 1)}

Now, fibo(1) which comes from the previous call to fibo(2) is evaluated.
As the functional environment does not contain the result of the call to
fibo(1), it is evaluated. As z is equal to 1, the function call returns 1.
The functional environment is then upgraded with the tuple (fibo,1,1). We
obtain the following sets:

¢ 1l (fibo,3, 1), (fibo, 2, L), (fibo, 1,1)
C ” {(ﬁb0a3)) (ﬁbo,z),(ﬁbo’l)}

We come back to the previous call. Now the second argument of plus
is computed. As z has the value 2, the expression that has to be computed
is fibo(0). First we check if we have not already computed the value of this
call. As this is not the case, the call is evaluated and returns as result the
value 1. The need-set is upgraded with the tuple (fitbo,0). These results
allow us to evaluate the value of fibo(2) and we return back to the first call
to plus.
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¢ Il (fibo,3, 1), (fibo,2,2), (fibo, 1,1), (fibo,0,1)
C || {(fibo, 3), (fibo, 2), (fibo, 1)(fibo,0)}

Now the second argument of plus of the first call is computed. Recall
that £ has the value 3. Thus the expression that has to be computed is
fibo(1). As the value of this expression is already known, we can return a
result for the initial call. We upgrade once more the functional environment
and we get the result.

¢ 1 (fibo, 3,3), (fibo,2,2), (fibo, 1,1), (fibo,0, 1)
C || {(fibo,3), (fibo,2), (fibo, 1)(fibo,0)}

Note that in this example, in order t o simplify notation and reduce space-
consumption, we have taken care to not directly express all function calls.
Normaly, ¢ and C must contain occurences of function calls to plus, equ
and if.

2.7.4 A strictness interpreter using mfg

In order to define a strictness interpretation, we use a two-point domain
that we note 2. Its elements are 0 and 1 and are ordered by 0 C 1.

2=1{0,1}, O0C1

This domain is defined to describe whether an element in (D*) is defined
or not. The .L element is mapped to 0 and other values are mapped to 1.
For this purpose we can define an abstraction function:
a: (D*) -2
a(d) = if d =L then 0 else 1
On the basis of this domain 2, we can easily redefine the semantics of
the previous section (2.7.3). We just substitute all D*’s in the previous
semantics. The variable and the functional environments are defined as
follow:
p € 2"
$p € D=p(2" x2)P

In order to ensure the safety properties, we need that the function eval-
uation of expression verifies the following equations:

a(Elci] ¢ p) E Eei] 6 p
a(E[zi] ¢ p) CEYz1] 4 p
a(Ep;(expry, ... sezpra)] ¢ p)

C Eezpri] ¢ pA ... AEMexpro] 6 p
a(E[if(ezpr1, ezpra, expr3)] ¢ p

C E'[ezpr1] ¢ pA (E'ezpra] ¢ pV ENezprs] ¢ p)
a(E[fi(expri,. .. ,expra)] ¢ p)

C &&Am\.n:m.\uﬁj: ¢ ps... “NB_THEQ.:__ ¢ bv
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In this way, we examine strictness properties of expressions. For basic
operations and function call, if one of their arguments is undefined (0),
their result is undefined (0). For the conditional expression, if expr; is
undefined we know that the result is undefined, otherwise, it is either the
result of the evaluation of ezpry or the result of the evaluation of ezprs.
The result returned by &' is an upper bound, hence if the upper bound is
the least element 0 then we know that the evaluation of the expression by
£ is undefined.

We mark the semantic function with a sharp (f) in order to distinguish
it from the previous function. The signature of the expression evaluation
function is straightforward:

Efexpr] : & — 2™ — 2
and we have the following semantics:
ENeil pp=1
E'Nzi] ¢ p = pi
Epilezpry, ... ,ezpra)] ¢ p = (E¥[expri] ¢ p) A... A (E¥]ezpra] ¢ p)
EVif(ezpr1,exzpra,exprs)] ¢ p =

(E'ezpr] ¢ p) A ((E*[ezpra] ¢ p) V (E¥ezprs] ¢ p))
ENfilezpry,... ,expra)] ¢ p = Gi(E[ezpri] ¢ p,... ,EMexpra] ¢ p)

For the need function, the set C is defined similarly:

cel =p(2M)
The signature of the need function becomes:
Nexpr] : ® — 2™ = (
And the associated need function N is also straightforward:

Nuﬂci]] ¢p= (07 ,0)
Nuﬂxi]] ¢p= ((07 7@)
N[pi(ezpry,... ,expra)] ¢ p = (NM'[ezpri] ¢ p) @Y ... @Y (Mezpry] ¢ p)
N[ ezpry, ... ezpra)] ¢ p =
mkset( (E4[ezpri] ¢ p), ... ,(E'ezpral ¢ p),1)
QUN[ezpri] ¢ p) @Y ... @Y (N [expra] ¢ p)

where functions mkset and ®" are defined like in section 2.7.3. The
function which computes the fix-point is the same as this described in the
same section.
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2.8 Example

Examine functions 2 where h(x) = h(x) and g where g(x) = g(x-1). The
table 2.2 shows us the result of function calls in the different cases. A sign
- means that function calls do not terminate; 1 that the execution of the
algorithm returns the value L and 0 the value 0 of the set 2.

h(x) = h(x) | g(x) = g(x-1)
Call-by-value - -
Call-by-name - -
mfg 1
strictness mfg 0 0

Table 2.2: Function results

How do we interpret these results 7 In the call-by-value and the call-by-
name cases, the interpreter does not terminate. The mfg is an improvment
of the fix-point computation, but it does not terminate in many cases either.
A strictness interpreter using mfg working on a finite domain terminates in
all cases.

The aim of strictness analysis is to transform call-by-name into call-by-
value when results of function calls are identical. In order to do that, we
study the strictness properties of user-defined functions. It means that if
the evaluation of an argument of a function call does not terminate then the
evaluation of the function call does not terminate either. When we work on
a finite set such as 2, the evaluation of a function call becomes independent
of the parameter passing mode and we are sure to obtain a result. Now, let
us take back the example with lazy lists in section 2.6 page 25. The table
2.3 shows the different results of the strictness interpreter with calls to the
function firstn.

Call Results
firstn (1, 0) 1
firstn (0, 1) 0

Table 2.3: Strictness of firstn.

What do these results mean ? They mean that the function listnum is
strict in its first argument but not in the second one. Hence, we know that
we are able transform call-by-name for the first argument into call-by-value.
That is what we expected.

In the example in section 2.6 page 24, the study of strictness of fact x
and fibo x allow us to know that we may replace call-by-name by call-by-
value. Hence the computation time of the result should be better.
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Chapter 3

Second-order case

3.1 Introduction

This chapter is devoted to the study of strictness analysis on a second order
functional language. In chapter 2, we have given a succinct description of
the first order case without giving real proofs of what we have done. The
reader interested in a complete developement of the first order case may
read [Pol96]. We dress in this chapter a more complete development of the
second order case.

3.2 A second order call-by-value interpreter

In this section, we are interested in the study of a second order call-by-value
functional language. First, we dress its mathematical semantics, then we
set out its caml implementation.

3.2.1 Mathematical semantics
Syntactic sets

We define syntactic sets containing symbols which allow us to write the
abstract syntax of the language.

c € Cons : Set of constants (or basic symbols)

T € Varv : Set of variables

h € Varf ' Set of first order functional variables

f € Funcy  Set of first order functional constants

g € Funcy : Set of second order functional constants

D € Prim @ Set of primitives (first order predefined functions)
expr € Ezpr : Set of expressions

prog € Prog : Set of programs



36 Chapter 3. Second-order case

Abstract syntax

A functional language is essentially made up of expressions. An ex-
pression is either a constant (c¢) or a variable (z;) or a basic opera-

tion (pi(ezpri,... ,expry)) or a call to a first order user-defined function
(fi(expri,... ,expry)). Moreover, we distinguish two second order calls.
The first one with a parameter name h (g;(ezpri,. .. ,ecpry)h) and the sec-
ond one with a first order function f; (gi(ezpr1,... ,expry)f;) as functional
argument. The last call corresponds to the evaluation of the parameter
name with its arguments (h(ezpri, ... ,ezpry)).
erpr = ¢

|z

| pilezpr,... ,expry)

| filezpry,... ezpry)

| gi(ezpry,... ,ezpry)h

] gi(e.'Ep'f‘l, G00) C:Ep'r‘n)fj

| h(expr,..., expry)

A program is composed of first and second order user-defined functions
descriptions:

prog = fi(z1,...,z,) = expr)
| fa(z1,...  2p) = exprs
| folz1,... ,zn) = ezpry
| gi(z1,...,zn)h = ezpr)
| g2(z1,... ,zn)h = ezpr)
| gg(z1,...,zp)h = ezxpry

We point out that like in the first order case, all functions possess the
same number of arguments. We can replace non-used arguments and func-
tions by dummy variables to solve the problem. Moreover, second order
user-defined functions are defined with only one functional variable (h). If
we want to use more than one & function in a second order call, we have to
define a selection function which given a number returns the appropriate A
function. The syntax described above does not allow to write functions that
returns a function as result: in other words, curryfication is not possible.
An example is given in the next section.

Some examples

We assume that our language has basic operations and the first order user-
defined functions plus and times defined in section 2.6.
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A first example consists in computing the sum of squares of the n first
integers. For this one, we define a first order function sqr which, given
an integer, computes the square of a number; a second order function sum
which, given an integer n and a first order function f, computes £ n + sum
(n-1) £ ifn # 0 and returns 0 otherwise; and a first order function sumsqr,
which given an integer, calls sum with this integer and the function sqr.

We have:

sqr x = times(x,x)
sum n f = if( equ(n,0), O, plus(f n, sum (pred n) £f))
SUmSqQr n = sum n sqr

We may compare our example with the abstract syntax and identify the
different function calls:

times(x,x) filexpry, ... ,expry)
fn h(expry,... ,expry)
sum (pred n) f gi(expry,... ,expry)h
sum n sqr gilexpry, ... expry)f;

Another example shows the usage of the selection function. We define
two first order functions sqr and cube that compute respectively the square
and the cube of an integer; a second order function bigsum which, given two
functions £ and g and an integer n, computesf n + g n + sum (n-1) f g
if n # 0 and returns 0 otherwise. It is clear that the syntax described above
does not allow us to write the following program:

sqr x = times(x,x)
cube x = times(times(x,x),x)
bigsum n f g = if( equ(n,0),
0,
plus(f n, plus(g n, bigsum (pred n) f g)))
sumsqrcube n = bigsum n sqr cube

because the second order function bigsum takes two first order functional
symbols.

In order to respect the syntax, we define a selection function sel which
given an integer and a list of arguments returns the function call. Hence we
have:

sqr x = times(x,x)
cube x = times(times(x,x),x)
sel (n,x) = if( equ(n,0),
sqr x,
if( equ(n,1),
cube x,

0))
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bigsum n sel = if( equ(n,0),
0,
plus(sel (0,n),
plus(sel (1,n), bigsum (pred n) sel)))

sumsqrcube n = bigsum n sel

Values set

We work with a set of values D which is a general set that can contain simple
values as defined in section 2.2 and we define the domain D; = DU {1}.

Environments

We also define some environments. The first one is a variable environment
which does not change with respect to the first order case. Hence, we have:

p € D"

Speaking about the functional environment, we need to define an addi-
tional element n which represents the value of the formal parameter h passed
to a second order function. Its value is a function from D" to D, . Hence, 7
and ¢ are defined as follows:

n € E=(D"-»D,) Parameter value ”environment”
¢ € ®=(FE-D"-»Dy)P*? Second order functional environment

This definition of the functional environment & allows us to group first
order and second order functions. In the case of a first order function, the
functional parameter h does not appear. Thus, we have to use a trick for n
in order to compute the semantics of a first order function. For this purpose,
we rely on a function defined as follows:

n.=Xz.l VzeD"

Note that we could have divided the functional environment into two
distinct domains: one that contains first order functions definitions and
another that contains second order functions definitions. We have not chosen
this representation because it is more complex to compute fixpoint on two
domains than one and because we may use the fix-point definition from the
previous chapter.

Expression evaluation function

The expression evaluation function takes as arguments a variable environ-
ment, a first and a second order functional environment and a parameter
value environment. We have the following signature:

Elexpr]): ® -+ E - D" 5D,
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Each expression is evaluated as follows:

Elc] pnp=2d
Elz:) ¢ np=pi
Elpilezpry, ... ,ezpra)] ¢ mp =
strict [p;](E[ezpri] ¢ m p, ..., Elexpra] ¢ 1 p)
E[if(ezpry, expry, exprs)] ¢ n p =
cond(E[ezpri] ¢ 1 p, Elezpra] ¢ n p,Elezprs] ¢ n p)
Elfi(expry,... ,exprn)] ¢ 1 p=
strict (¢; WL)(S[[ezPTI]] édnp... ,Sﬂezprn]] ¢ n p)
Elgilezpry, ... sezpra)h] ¢ p =
strict (¢p+; m)(Elezpri] ¢ np, ... Elezpra] ¢ 1 p)
if h is a parameter name (formal parameter)
Elgi(expry,. .. expra)fil dnp=
strict (p+i(¢y n1))(Elezpri] ¢ m p,... ,Eleapra] ¢ 1 p)
if the parameter value is the named
function f;(actual parameter)
E[h(ezpry, ... ,ezpra)] ¢ m p =
strict n(Efexpm] ¢ n p,... ,E[exprn] ¢ 1 p)

where strict and cond are defined in section 2.2.

In the equations above, d is an element from D corresponding to the
syntactic element ¢ and [p;] is the function of signature (D™ — D) which
corresponds to the syntactic symbol p;. (¢; n1) is a first order function
corresponding to the syntactic element f; and whose signature is (D" —
D). Moreover, basic operations, function call and cond function have to
be monotonous in order to have a well-defined semantics.

Program evaluation function

We call P, the function that evaluates the meaning of a program. It has the
same signature as in the first order case:

Plprog] :
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The meaning of a program is the least fix-point defined by:

PH fl(.’l,'l,... ,zn):ezprl

fQ(‘Tla R 7:En) = €IPTy
fp(-'L'l, cee D) = eTpry
91(T1,... ,Tn)h = expr]
92(1,... ,zn)h = ezpry

9q(z1,. .. ,m;l)llzempr; I = fix(\.( Elexpri] &,
Eﬂemprz]] d’a

£ ﬂezp.rp]] o,
Elezpri] ¢,
Elexprs] ¢,

Eleapr'] $))

where fix is the function defined in chapter 1 section 1.4.
This definition is correct if and only if ® is a domain and
Ap.(Elexpri] ¢,... ,E[expryn] ¢,E(ezprl] ¢, ... ,E[exprl] #) is continuous.
® is effectively a domain following the function domain definition mentioned
in chapter 1 section 1.5.3.

3.2.2 A caml implementation

Before writing a caml interpreter for this second order call-by-value func-
tional language, we have to give an instantiation of the abstract syntax
described in the beginning of this section. First, we instantiate D as the
union of integers and strings:

D=72ZUS

We define primitives p;: succ, pred, equ, if and cat which are re-
spectively the successor, the predecessor, the equality test, the conditional
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command and the concatenation of strings. The syntax is the following:

expr = d;

Ti

succ(ezpr)
pred(ezpr)
equ(ezpry,ezpry)
if(expr,,exprq, exprs)
cat(ezpr,, exprs)

filexpry,... ,expry)
g;(expry, ... ,expry)h
gxemznq,...,emprn)j}
h(ezpry, ... ,ezpry)

Primitives [p;] are specified as follows:

succ: D — Dy
n ~ n+l ifneZ
pred: D — Dy
n ~» n—-1 ifnez
cat: DxD — Dy
(n1,m2) ~ n1'ng
equ: DxD — Dy
(ny,m) ~ 1 ifneD
(n1,m2) ~ 0 if ny,n2 € Z and n; # n2
("“7”2) ~s 0 ifnl,nzeSandnl#ng
if: DxDxD — D
(0,m1,m2)  ~ 72
(nyn1,m2) ~ mp  ifneZ)\{0}

The translation of the abstract syntax to caml is rather straightforward.
The set of values D which contains integers and strings is translated into a
caml object of type val:

type val = I of int | S of string ;;
Elements from FEzpr are translated into caml object of type expr:

type expr = INT of int ‘

| STR of string

| VAR of string

| SUCC of expr

| PRED of expr

| EQU of expr*expr

| IF of expr*expr¥expr

| CAT of expr¥expr

| CALL of stringx(expr list)*string;;
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An element of Prog is translated to a caml object of the form:
type prog = PROG of (string*(string list)#*string+*expr) list;;

where components of tuples are respectively the function name, the list
of variable names, the functional argument name and an expression which
is the body of the function.

In order to specify correctly caml functions corresponding to semantic
functions, we introduce a meta-function which maps an object from the
mathematical world to an object from the caml world. We will note it (.)€
[Pol96]. So, if z is an element of Varv, we note its representation z¢ and we
write abusively (.)¢ : Varv — string. From now on, we have:

o

: Varv — string,
: Varf - string,
: Expr -- expr,
: Prog — prog,
: Func) --» string,
: Funcy — string.

o

o

o

~— N ~— —
o

Primitives are translated into caml functions below which are a direct
transcription from their specification above:

let succ = fun (I n) -> (I (n+1))
] _  => raise (NotAValidType "in succ function");;

let pred = fun (I n) -> (I (n-1))
_  => raise (NotAValidType "in pred function");;
let equ = fun (I i , I j) -> if (i=j) then (I 1) else (I 0)

| (S8s, St) -> if (s=t) then (I 1) else (I 0)
| (- , _) ->raise (NotAValidType "in equ function");;

let cat = fun (S s, St) -> 8 (s7t)
| (. , _ ) =>raise (NotAValidType "in cat function");;

let myif = fun (I 0, x, y) => ¥y
! (In x,y)—>x
!

( -, %, y) -> raise (NotAValidType "in myif function");;

As caml use call-by-value, we don’t call the myif function defined above
in order to implement the conditional command. If we call this function,
caml will evaluate the three arguments before returning a result and in the
case of non-termination, this result may be invalid. We have to use the if
then else of caml which uses lazy evaluation.

We can specify primitives, expressions and a program as follows.
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e For primitives:

e For expressions:

Ve € Cons (c)® = INT d ifdeZ
Ve € Cons (c)¢ =STR d ifdes
Vz; € Varv (z;)¢ = VAR z;

where z; is the string which represents the name of the variable
Vezpr € Ezpr (succ ezpr)® = SUCC expr®
Vezpr € Exzpr (pred ezpr)® = PRED ezxpr®
Vezpr,,ezpry € Expr

(equ (ezpri,ezpry)) = EQU (ezpr§, exprs)
Vezpri, expry € Expr

(cat (expri,expry))® = CAT (exprs,exprs)
Vezpry, expray, exprs € Krpr

(if (expri, expra, exprs))t =
IF (ezpr§,exprs, exprs)
Vezpry,... ,expr; € ExprVf; € Func

(filexpri,... ,ezpry))® = CALL(ff, [ exprS ;...; ezpr§ 1,°7)
Vezrpri,... ,ezpr, € ExprVg; € Funcy, Vh € Var f

(gi(expry, ... ,exprp)h)® = CALL(gf, [ ezpr{ ;...; exprS 1,h°)
Vezpri,... ,ezpr, € ExprVg; € Funcy Vf; € Func

(9:(expry, ... ,expra) fj) = CALL(gj, [ expr{ ;...; expry 1, f;)
Vezpri,... ,expry, € ExprVh € Varf

(h(ezpri,... ,ezpry)) = CALL(hS, [ expr{ ;...; ezprs 1,°7)

e For programs

Vprog € Prog (prog)°=PROG [ (ff,[ z§ ;...; z5 ], ezprs
(f5, U z§ 5.5 25, 1,exprs)
(g1, [ z§ 5...5 =5 1, expr®)
(g5, [ z§ 5... ;25 ],expr:f)]

Now, the next step is to define the caml type associated to the variable
and the functional environments. An object of the type rho implements an
element of p and an object of the type phi is an element of ®.

type tho = RHO of (string*val) list;;

type phi = PHI of (string -> (val list) -> string -> val) ;;



44 Chapter 3. Second-order case

where components of tuples from rho are respectively a variable’s name
and a variable’s value and phi is a function which takes a function name,
a list of argument’s values, a parameter name and returns a value which is
the result of the function.

We have:

(.)¢:® — phi
()¢:p — rho

We also can specify the variable and functional environments as follows:

Voe D" (p)°=1[ (z5,0%) 5 ... ;5 (z5,05) ]
Vo € (E — D™ — D, )P+
let ¢ = (PHI ¢) we have
ifi <p (¢in1p)® = fip°s wheres is anything
ifi>p (¢ilwfi)p)" = pgir°fs

Now that we have defined caml types and primitives, we can construct
the evaluation function of expressions. The construction of this function
is a simple pattern matching upon the structure of expressions. We call
this function e. To take advantage of curryfication we modify the signature
order:

Elexpr] : ® - E—->D" - D,
becomes
e:tho — phi — string — string — expr — val

In order to avoid redundancy in the functional environment, the param-
eter value is defined as a string which references an element from ¢.

Note that the caml function represents correctly the semantic function
(25

The translation of the expression evaluation function £ into the caml
function e is straightforward except for the function call for which we give
an explanation. In the semantics we have four cases of function calls: two
first order function calls (call to f; and k) and two second order function
calls (both with g; but with a different parameter). If the function name f is
different from the parameter name, we know that f is a second order func-
tion. Thus, we apply the function returned by (phi f) to the result of the
evaluation of the list of expressions and either f; if s is the parameter name
pn or h which is s otherwise. The case where f is equal to pn corresponds
to the first order case.
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let rec e (RHO rho) (PHI phi) pn pv =

fun (INT i) =-> (I i)

| (STR s) -> (8 s)

] (VAR s) -> valofs s rho
[ (CALL (f,1,s)) —>

if (f = pn)

then (phi pv) (map (e (RHO rho) (PHI phi) pn pv) 1) (lookupf s pn pv)
else (phi f) (map (e (RHO rho) (PHI phi) pn pv) 1) (lookupf s pn pv)
| (IF (c, a, b)) ->
if (istrue (e (RHO rho) (PHI phi) pn pv c))
then (e (RHO rho) (PHI phi) pn pv a)
else (e (RHO rho) (PHI phi) pn pv b)
| (succ x) -> succ (e (RHO rho) (PHI phi) pn pv x)
| (PRED x) -> pred (e (RHO rho) (PHI phi) pn pv x)
| (CAT (x,y)) ->
cat ( (e (RHO rho) (PHI phi) pn pv x),
(e (RHO rho) (PHI phi) pn pv y) )
I (EQU (x,y)) ->
equ ( (e (RHO rho) (PHI phi) pn pv x),
(e (RHO rho) (PHI phi) pn pv y) );;

As explained in chapter 2, the fix-point is computed with a function
called p. This function has the following signature:

p:prog -+ phi -+ string -+ val list --» string -» val
We may specify this function in terms of representation convention:
Plprog] = p prog®¢“(¢f;)°L =5; ... ;25 1h°
The fix-point computation is implemented in caml as follows:

let rec p = fun (PROG []) (PHI phi) f vl pv -> raise (EmptyList "in prog")
| (PROG ((fn, pl, q, expr)::r)) (PHI phi) f vl pv ->
if (f=fn)
then (e (RHO (zip pl v1)) (PHI phi) q pv expr)
else p (PROG r) (PHI phi) f vl pv;;

let rec fixphy (PROG prog) f vl =
p (PROG prog) (PHI (fixphy (PROG prog))) f vl;;

The reader can find the complete caml implementation in appendix B.1.

3.3 A second order call-by-name interpreter

3.3.1 Mathematical semantics

Now, we examine how to implement a call-by-name interpreter on the basis
of the call-by-value interpreter. The syntax of the language does not change:
we are taking the one defined in section 3.2.1.
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Environments

In call-by-name, variables and arguments of a function call may be L as
explained in section 2.3. Hence variable and functional environments are
defined as follows:

p € D} Variable environment
n € E=(D} -Dy) Parameter value "environment”
¢ € ®=(F—- D} - D, )P Second order functional environment

Expression evaluation function

The signature of the expression evaluation function has the following signa-
ture:

Elexpr) : ® > E -5 D - D

The only difference with the call-by-value case is that function calls are
not strict. Other expressions are evaluated in the same way.

Elfilexpry,... sezpra)] pnp=
(¢i n1)(Elezpri] ¢ m py... ,Elexpra] 1 p)
5[[91‘(615107'1, cee ,6.’1)]77'”)}1]] ¢ np=
(¢p+i m)(Elezpri] ¢ m p, ... ,Elezpra] ¢ 7 p)
if h is a parameter name (formal parameter)
Elgi(ezpry, ... sezpra)fi] ¢ np=
(bp+i(d5 n1)) (Elezpril ¢ n o, , Elezpra] ¢ 1 p)
if the parameter value is the named
function f;(actual parameter)
5“}1(61‘])7‘1, . ,ezp?“n)]] ¢np=
n(Elexpri] ¢ n p,... ,Elexpra] ¢ 7 p)

where 7 is defined in section 3.2.1.

Program evaluation function

The program evaluation function is defined as above and possesses the same
signature.

3.3.2 A caml implementation

For a discussion of the implementation, please consult section 3.5.2 which
considers this language extended with lazy lists. The reader can find a caml
implementation in appendix B.2.
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3.4 A second order call-by-value interpreter with
lists

In this section, we upgrade types by adding lists to simple types. The syntax
of the language does not change.

3.4.1 Mathematical semantics
Values set

The set of values we use is the same as defined in section 2.4:
D* =DU(D* x D*)

and we use the domain (D*), as defined in section 2.4 in order to define
the functional environment.

Environments

A variable is a simple value from D or a list from the set D* x D*. Hence
the variable environment is defined as follows:

pED*n

Arguments of a function call take their values in the set D* because an
argument of a function can be a simple value or a list. A function call
returns a value from (D*) ;. Hence we have these definitions:

n € E=(D*" - (D*))) Parameter value ”environment”
¢ € ®=(F-»D*" -+ (D*))PTY Second order functional environment

Expressions evaluation function

In order to evaluate expressions, we define a function which takes a variable
environment, a parameter environment and a second order functional envi-
ronment and returns a value of (D*) . Hence, the signature of the expression
evaluation function becomes:

Elezpr] : ® - E - D*™ — (D*)

As in the first order case and with respect to the semantics of a second
order call-by-value interpreter defined in section 3.2.1, the three common
primitives cons, car and cdr are added to the set of primitives. Their
definitions are given in section 2.4.

For expressions evaluation, we add the evaluation of the three operators
on lists to the one of the call-by-value interpreter described earlier in this
chapter (see section 3.2.1). The evaluation of these three primitives is the
same as the one described in section 2.4.
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Program evaluation function

The function P which computes the meaning of a program prog does not
change anymore.

3.4.2 A caml implementation

For the caml implementation, we change the type val, which is the caml
representation of D, so that it supports lists.

of int

type val = I

| S of string
| P

|

of val*val

In the set of expressions we add the three primivites on lists and we
specify them as follows:

eTpr =...
| car(ezpr)
| cdr(ezpr)
| cons(ezpry, expry)
car: D* — (D%,
lst ~ h iflst=(h.t)
cdr: D* — (D*),
Ist ~ t iflst=(h.t)

cons: D*xD* — (D%,
(h,t) ~ (h.t)

These basic operations are translated into the caml functions below
which are a direct transcription of their specification above.

let car = fun (P (x,y)) -> x

] _ -> raise (NotAPair "in car function");;

let cdr

fun (P (x,y)) -> ¥y
_ -> raise (NotAPair "in cdr function");;

let cons = funx y -> P (x , y);;

In terms of representation function, the caml implementation corre-
sponds accurately to the definition of the semantics.

Vezpr € Expr (car ezpr)® = CAR ezpr
Vezpr € Ezpr (cdr ezpr)® = CDR expre
Vezpry,expry € Expr (cons (ezpri,ezpry))® = CONS (ezprS, ezprs)
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And we have:

VI € D* car 1°= (car(l))*
Ve D* cdr I° = (cdr(l))
Vh,l € D* cons (h¢I1¢) = (cons(h,l))¢

The reader interested by a complete implementation can find the caml
code in appendix B.3.

3.5 A second order call-by-name interpreter with
lists

3.5.1 Mathematical semantics

The definition of a second order call-by-name interpreter with lists is really
straightforward on the basis of the previous work.

Environments

The value of a variable is a simple value from the set D, or a list. Lists
may contain . Hence, if the value of a variable is a list, this value comes
from (D) )*. The result of a function call or a parameter value (which is a
function) comes from (D )*.

Thus, variable and functional environments are defined as follows:

p € (D)™ Variable environment
n € E=((DL)™ > (DL)Y) Parameter value "environment”
¢ € ®=(F— (D)™ — (Dy)*)P*? Second order functional enironment

Expression evaluation function

The evaluation function of expressions takes as arguments the expression
that must be evaluated, a functional environment, a parameter value "en-
vironment” and a variable environment. This function gives as result an
element of (D )*. Its signature is the following;

Elexpr] : ® -+ E — (DL)*™ - (DL)*

Equations for expression evaluation functions are drawn from the first
order call-by-name interpreter with list 2.5 for primitives and the second
order call-by-name interpreter 3.3 for function calls.

The function P which computes the meaning of a program prog does
not change anymore.
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3.5.2 A caml implementation

Caml is a strict language. We have already explained in section 2.3 how to
simulate call-by-name in a language that implements call-by-value. Since
we would like that arguments be evaluated as late as possible, we redefine
the caml type which represents D*.

type val = I of int
| S of string
| P of nval*nval
| NULL
and nval = (unit -> val) ;;

nval is the type on which the interpreter works. As lazy lists may
contain undefined elements (see section 2.5), basic operations for their con-
struction/destruction have to be defined on nval. On the other hand, other
primivites are defined on val because they have to be strict. Hence, cons,
car and cdr are written in caml as follows:

let cons = fun x y ~> myout (P (x , y));;
let car x = match myin x

with (P(x,y)) -> x
| - -> raise (NotAPair "in car function");;

let cdr x = match myin x
with (P(x,y)) >y
| -> raise (NotAPair "in cdr function");;

where myin and myout are respectively the reduction and the abstraction
rules (explained in section 2.3). These functions have the following signature:

myin: (() — val) — val
myout : val — (() — val)

Their respective caml code is:
let myin a = a ()
let myout a () = a

The reader interested by the implementation can find it in appendix B.4.

3.6 Example

Suppose that we have the basic operations and user-defined function defined
in the section 2.6. A second order program working on list may be the
following:
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fact x = if( equ(x,0),
1,
times( x, fact (pred x)))
if( equ(x,0),
1,
if( equ(n,1),
1,
plus( fibo (pred x), fibo (pred (pred x)))
)

fibo x

)
fibfact n = fibo (fact n)
map 1 f = if( (atom 1),
nil,
cons( f (car 1), map (cdr 1) f)
)
mapfibfact 1 = map 1 fibfact

An example of a call may be mapfibfact (1;2;3;4).

3.7 A second order interpreter using mfg

3.7.1 Introduction

We have already spoken about minimal function graph in section 2.7. Here,
we explain how to implement the minimal function graph algorithm for the
second order case. The execution of the algorithm is the same as in the
first order case. Note however that there is a little difference. In the second
order case, the second argument of a second order user-defined function is
a function. In order to compute the minimal function graph of this second
order user-defined function, we associate the functional argument to the
result of the computation of the associated minimal function graph. Our
development are based on the one described in section 2.7.3

3.7.2 Mathematical semantics

The definition of the variable environment does not change with respect to
the call-by-value interpreter with list described in section 3.4. The parameter
and functional environment are not defined as a function any more. The pa-
rameter environment is the Cartesian product between variable environment
and the domain of function results. Whereas the functional environment is
the Cartesian product between parameter name, variable environment and
the domain of function result. They are defined as follows:

p € D Variable environment
n € E = p(D* x (D*),) Parameter value "environment”
¢ € ®=p(ExD™x (D*) )P Functional environment
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We define a set C which has the same role as in the first order case (see
section 2.7.3). But its definition is different. We collect tuples of arguments
of functions which have to be computed and their associated functional
actual parameter (which is the value of the functional formal parameter of
the second order function). Hence we have:

c € C = p(D*" x BP9
The signature of the expression evaluation function is defined as usual:
Elezpr]) : @ - E - D' — (D*)
We have the following evaluations for expressions:

El) dnp=d
Elzi] ¢ n p=pi
Elpilexpry,... expry)] ¢ np=
strict [pi(E[expri] é n p, ... ,Elexpra] ¢ 1 p)
E[if(expr),expry,exprs)] ¢ n p =
cond(E[ezpr1] ¢ n p, Elexpra] ¢ 1 p, E[ezprs] ¢ 0 p)
Elfilexpry,... ,expra)] 0 p=
strict ¢; 71 (Efexpri] d n p, ..., Elexpra] ¢ 0 p)
Elgi(expry,... ;expra)h] ¢ n p =
strict ¢pii 7 (Elezpri] ¢ npy... ,Elexpra] ¢ p)
if h is a parameter name (formal parameter)
Elgi(expry,. .. sexpra)fi] ¢ mp =
strict ¢p4i(dj 1) (Elexzpri] ¢ m p, ... ,Elezpra] ¢ 7 p)
if the parameter value is the named
function f;(actual parameter)
Eln(expry, ... sexpry)] ¢ n p=
strict 7 (E[expri] ¢ 1 p,... E[ezpra] ¢ 1 p)

where ¢;, 77 and 7j; are functions that the tabulate functions ¢;,7 and 7,
represent. They are defined as follows:

(ﬁ_i: ('D*n—>D_L_) N D - (D*)L
7 g S (—1Ln+1 otherwise.
and
m: D™ = (D)1
(dy,...,dp) ~ {dn+1 if(dl,-.--,dn,dnﬂ)en,
L otherwise.
and
ML DL P
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The N function is a function which collects closures of the different
function calls that appear during the evaluation. This function returns a set
C. Its signature is the following:

Nlezpr]:® -+ E - D" »C

The calls are collected as follows:

Nlc]¢np=,...,0
N'[Ia:l]] ¢np=1(0,...,0
Nlpi(expry,... ,expra)] ¢ np=
(NMezpri] ¢ n p)&“ ... ®Y (Nezprs] ¢ 1 p)
Nif(expry,expry, exprs)] ¢ np=
condn(ezpry, expry, exprs)
Nlfi(ezpry,... ,expra)] ¢ np=
mkset( (E[expri] ¢ n p), ..., (E[expra] ¢ 0 p), 0, 4)
& (Nezpri] ¢ n p) @Y ... ®" (Nezpra] ¢ 1 p)
Nlgi(expry,... ;exprn)h] ¢ mp=
mkset( (E[ezpri] ¢ n p), ..., (Elexpra] ¢ 1 p),n:7)
®“(Nezpri] ¢ n p) @Y ... " (Nezpra] ¢ 1 p)
if h is a parameter name (formal parameter)
Nlgi(ezpry, ... sexpra)fil émp=
mkset( (Eﬂempm]] ¢ P), sy (S[[emp"'nﬂ ¢én P)a ¢j’ 7‘)
®Y(Nezpri] ¢ 1 p) @ ... ®"° (Nezpra] ¢ n p)
if the parameter value is the named
function f;(actual parameter)
Nh(ezpry,... ,exprp)] ¢ np=
mkset( (Efexpri] ¢ 1 p), ..., (E[expra] ¢ 0 p),0,1)
®"(Nezpri] ¢ n p) ®" ... ®" (Nezprn] ¢ n p)

where condn is defined as in section 2.7.3 page 28.
and the function mkset is defined as follows:

mkset (vi,...,%n, f,1) =
if (m =LV...Vo, =1) then (0,...,0)
else (@, awa{<vla--- avn’f)}iama"' ’0)

and the operator ®" is defined as in section 2.7.3 page 28.

The function that computes the fix-point is the same as the one for the
fisrt order case. It is defined in section 2.7.3 page 29.
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3.8 A second order strictness interpreter using
mfg

As in the first order case (see section 2.7.4), we define the two-point domain
2 on which we are constructing the strictness interpreter.

2=1{0,1}, 0C1

Elements of D* are mapped by an abstract function a to an element of
2. The 1 element is mapped to 0 and other values are mapped to 1. The
abstract function is defined as follows:

a:D* — 2
a(d) = if d =1 then 0 else 1

Variables, parameters and functional environments are redefined by sub-
stituting all D* by 2:

2TL
E =p2" - 2)
d

€
€
€ p(2" x E x 2)Pte

_*3I D

The translation of the £ function to £ is straightforward. The evaluation
function of expressions is redefined as follow: ’

Eezpr]) : @ —» E — 2™ - 2

Note that £! must verifies safety properties. It means that for all ezpr €
Ezpr,n € E, ¢ € & and p € D**, £ must verify:

a(Elc) ¢ p) T EYc) ¢ p
a(flzi) ¢ p) C Ezi] 6 p
a(Epi(ezpry,... ,expra)] ¢ p)

C EMexpri] ¢ pA ... ANE exprn] ¢ p
a(E[if (expry, expry, exprs)] ¢ p

C Eexpri]) ¢ p A (E¥expra] ¢ pV ENeaprs] 6 p)
a(Efi(expry,. .. ,ezpra)] ¢ p)

C (¢51.)(E expri]) ¢ pA ... AEWexpry] ¢ p)
a(Elgi(ezpry,... ,expra)fi] ¢ p)

C (¢p+i(BinL))(E ezpri] ¢ p, ..., E[expry] ¢ p)
a(Elgi(expry, ... expra)h] & p)

C (p+i(djm) (E¥ ezpri] ¢ p,... ,EMexpra] ¢ p)
a(&[h(ezpry, ... ;expry)] ¢ p)

C (&' ezpri] ¢ pA ... AE¥expra] ¢ p)

In this way, we examine the strictness properties of expressions. Ex-
planations are the same than in the first order case, see section 2.7.4. The
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semantics for &Y follows:

E'lc) dnp=d
E'Na:i] ¢ np=pi
E'pi(ezpry, ... sexpra)] ¢ 1 p = (E'ezpri] ¢ n pA... AEWexpra] ¢ n p)
EMNif(expry, expra,exprs)] ¢ n p =
(E'ezpri] ¢ p A (E'ezpra] ¢ n pV E'exprs] ¢ 7 p))
Eu[[fi(emprl, ceey expry)] ¢ p =
(¢ 17L) (EMezpri]) ¢ 0 p, ..., Eezpra] 6 n p)
EMgiexpry, ... ,exprn)h] ¢ p=
(p+i M) (EMezpri] ¢ 0 p, ... ,E¥ezpra] ¢ n p)
if h is a parameter name (formal parameter)
EMNgi(ezpri, ... ezpra)fil dn p =
($p+i(¢j 711))(E ezpri] ¢ m pr... ,E[ezpra] ¢ 7 p)
if the parameter value is the named function f;(actual parameter)
EVh(expry,... ,ezpra)] ¢ mp =
n(Eezpri) ¢ m o, ..., EMezpra] ¢ m p)

The signature of the need function is defined as follows:
Nezpr]: ® - E = 2" 5 C

The semantics is straightforward with respect to the previous one defined
for the concrete case.

N'[c)¢np=1(0....,0
N z) pnp=1(,...,0)
N[pi(ezpry, ... ,ezpra)] ¢ n p=
(M ezpri] ¢ 1 p) @ ... @ (Mezpra] ¢ 7 p)
NU[if(expry, expra, exprs3)] ¢ n p =
condn(ezpr, eTpry, eTPT3)
N fi(expry,... ,expra)] ¢ mp=
mkset( (E'[ezpri] ¢ 71 p),. .., (E'[ezpra] ¢ n p), 1)
®Y(N¥[ezpri] ¢ n p) @Y. ®Y WUezprs] ¢ 1 p)
N'gi(ezpry, ... ,ezpra)h] ¢ p =
mkset( (E'[expri] ¢ 7 p),... , (E'[ezpra] ¢ m p),m,1)
®“(Nezpri] ¢ 1 p) & ... ® (N¥[ezpra] ¢ 1 p)
if h is a parameter name (formal parameter)
Nlgi(ezpry,... ,expra)fil ¢ mp =
mkset( (E'[ezpri] ¢ 1 p), ..., (ENezpra] ¢ 7 p), ¢5,1)
®YU(Nezpri] ¢ 1 p) ® ... @ (N'ezpra] ¢ 1 p)
if the parameter value is the named function f;(actual parameter)
Nih(ezpry,... expra)] ¢ 0 p =
mkset( (Eezpri] ¢ 1 p), ... , (ENezpra] ¢ 1 p), 0,1)
V(N [ezpri] ¢ n p) ®" ... ®° (M[ezpra] ¢ 7 p)
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This algorithm detects whether a function is strict in its arguments or
not. Since the abstract semantics is independent of parameter passing, we
are now able to detect cases where call-by-name can be transformed into
call-by-value. The difficulties in the second order case was situated in the
functional argument.

3.9 Examples

Let us examine the example described in section 3.6 page 50. If we call
map O fibfact, the result of the evaluation will be 0. Hence, we know that
map function will be strict in its first argument and we can replace its call-
by-name parameter passing by call-by-value. But what about the function
fibfact ? fibfact is the functional parameter, there is no interest to
replace a function by 0 or 1. In the semantics that we have proposed above,
the minimal function graph of this argument is computed. Then, it is passed
to the second order function in order to evaluate the result of the inital
function call.



Chapter 4

Conclusion

After having introduced the mathematical tools for our development, we
have defined a first order functional language. First, we have presented how
to write the semantics of a strict language and difficulties we have encoun-
tered to define a non-strict language starting from the former. For these first
semantics we have worked on a simple set of values D and we were inter-
ested in the integration of lists. We have seen that fix-point computation for
these semantics does not change no matter how complex the set of value or
the parameter passing mode are. Nevertheless, we have seen that the strict
evaluation is more efficient than the non-strict evaluation but at the cost of
not terminating in many cases. In order to improve the lazy evaluation, we
have then studied cases where call-by-name could be replaced by call-by-
value. To do this, we have studied another fix-point computation which is
based on minimal function graph. We have then applied strictness analysis
on our language with a two points domains on which all well-defined values
are mapped to 1 and undefined are mapped to 0. This algorithm allowed us
to detect cases where call-by-name can be transformed into call-by-value.

The next step was to study higher order cases. We have restricted our
study to the second order case and gone deeper into the point tackled in the
first chapter.

It is certain that our developments are incomplete. Even if the inte-
gration of list is a good idea, the strictness analysis applied to languages
supporting lists could be better developped. Instead of working on a two
points domain, we may apply strictness analysis on a four points domain
which is a non-flat domain as described in [Wad87).

A weak point of our approach is that our second order language does
not support curried functions. A next step should be to take currification
into account. We have not presented in this document an interpreter which
performs strictness analysis at compile-time. It would be interesting to
implement such an interpreter and compare its computation tiime with the
one of a call-by-name interpreter. Such an interpreter is described for the
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fisrt order case in [Pol96). The author shows how much computation time
of function calls is reduced using this technique but she does not generalize
in all cases. Another further work should be to study the efficiency of other
fix-point algorithms in terms of space- and time-consumption. In [LCVH93],
the authors present a general fix-point algorithm for abstract interpretation.
The functioning mode of this algorithm is similar to the one of minimal
function graph but is applicable to many other abstract interpretation areas.

We could also extend our work directly to the higher order case as explain
in [BHA86) [DJRIT7].
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Appendix A

First order case
implementations

A.1 Call-by-value interpreter

exception NotAValidType of string;;
exception EmptyList of string;;
exception EmptyString of string;;
exception LengthError of string;;
exception NotAPair of string;;
exception IfError of string;;

(* Basic values *)

type val = I of int
| S of string ;;

(* Expressions *)

type expr = INT of int

| STR of string

| VAR of string

| CALL of stringk(expr list)
| IF of expr*expr*expr

| SUCC of expr

| PRED of expr

| CAT of expr*expr

| EQU of expr*expr ;;

(* Program *)
type prog = PROG of ((string*(string list)*expr) list) ;;
(* Variable environment *)

type rho = RHO of (string*val) list;;
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(* Function environment *)
type phi = PHI of (string -> ((val list) -> val)) ;;
(* Some useful functions *)

let rec valofs s = fun [] -> raise (EmptyList "in valofs function")
| ((a,b)::1) -> if (s=a) then b else valofs s 1 ;;

=fun [J [0 > 0O
| (a::r) (b::s) -> (a,b)::(zip r s)
{ - . => raise (LengthError "in zip function");;

let rec zip

let istrue = fun (I 0) -> false
| (I J) -> true
]

-> false;;
(* Primitives - buit-in functions *)

let succ = fun (I n) -> (I (n+1))
i . => raise (NotAValidType "in succ function");;

let pred = fun (I n) -> (I (n-1))
] _ -> raise (NotAValidType "in pred function");;

let equ = fun (I i , I j) -> if (i=j) then (I 1) else (I 0)

| (Ss, St) ->if (s=t) then (I 1) else (I 0)
] (_ , _ ) ->raise (NotAValidType "in equ function");;

let cat = fun (S s , S t) -> S (57t)
] ( _, _) ->raise (NotAValidType "in cat function");;

(* Expression evaluation *)

let rec e (RHO rho) (PHI phi) =

fun (INT i) -> (I i)
| (STR s) -> (S s)
| (VAR s) -> valofs s rho
|

(CALL (£f,1)) ->
(phi £) (map (e (RHO rho) (PHI phi)) 1)
|  (IF (c, a, b)) ->
if (istrue (e (RHO rho) (PHI phi) c))
then (e (RHO rho) (PHI phi) a)
else (e (RHO rho) (PHI phi) b)
| (succ x) -> succ (e (RHO rho) (PHI phi) x)
| (PRED x) -> pred (e (RHO rho) (PHI phi) x)
| (CAT (x,y)) ->
cat ( (e (RHO rho) (PHI phi) x),
(e (RHO rho) (PHI phi) y) )
| (EQU (x,y)) =>
equ ( (e (RHO rho) (PHI phi) x),
(e (RHO rho) (PHI phi) y) );;

(x Program evaluation *)
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let rec p = fun (PROG [J) (PHI phi) f vl -> raise (EmptyList "in prog")
| (PROG ((fn, pl, expr)::r)) (PHI phi) f vl ->
if (f=fn)
then (e (RHO (zip pl v1)) (PHI phi) expr)
else p (PROG r) (PHI phi) f v1;;

let rec fixphi (PROG prog) f vl =
p (PROG prog) (PHI (fixphi (PROG prog))) f vl ;;

A.2 Call-by-name interpreter

(* Compare this implementation with the call-by-value case *)
(* Basic values have not changed *)
(* Value may be not evaluated immediately *)

type nval == (unit -> val) ;;

(* Variable environment *)

type rho = RHO of (string * nval) list;;

(* Function environment *)

type phi = PHI of (string -> (nval list) -> nval) ;;
(* The trick - Reduction function *)

let myin a = a() ;;

(x Expression evaluation. Caml use a strict evaluation. This expression
evaluation simulates a call-by-name interpreter *)

let rec en (RHO rho) (PHI phi) =
fun (INT 1) O -> (I i)
! (8TR s) (O -> (5 s)
| (VAR s) () -> myin (valofs s rho)
| (CALL (£,1)) () ->
myin ((phi f) ((map (en (RHO rho) (PHI phi)) 1 )))
! (IF (c, a, b)) ) -
if istrue (myin (en (RHO rho) (PHI phi) c))
then (en (RHO rho) (PHI phi) a ())
else (en (RHO rho) (PHI phi) b ())
| (sucC x) () -> (succ (myin (en (RHO rho) (PHI phi) x)))
| (PRED x) () -> (pred (myin (en (RHO rho) (PHI phi) x)))
I (CAT (x,y)) O ->
( cat ( myin (en (RHO rho) (PHI phi) x),
myin (en (RHO rho) (PHI phi) y) ) )
| (EQU (x,y)) O ->
( equ ( (myin (en (RHO rho) (PHI phi) x)),
(myin (en (RHO rho) (PHI phi) y)) ) ) ;;
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A.3 Call-by-value interpreter with lists

(* Compare this implementation with the call-by-value case without list *)
(* Basic values: D =D U { NULL } and D* = D U (D* x D* ) *)

I of int
S of string
P of val*val

type val

(* In expressions, we add the constructor CONS and destructor CAR,CDR *)

type expr = NIL
(x ... *)
| CONS of expr*expr
| CAR of expr
| CDR of expr
| ATOM of expr ;;

(* The three add-on primitives *)

let cons = fun x y -> P (x, y);;

let car = fun (P (x,y)) -> x

. -> raise (NotAPair "in car function");;
let cdr = fun (P (x,y)) =>y
| = -> raise (NotAPair "in cdr function");;

(* We have also add a new primitive to test if an element is an atom or not *)

let atom = fun (I x) -> (I 1)
| (S x) -> (1)
| NULL -> (I 1)
|

(P (x,y)) => (I 0);;
(* Expression evaluation *)

let rec e (RHO rho) (PHI phi) =
fun NIL -> NULL

(x .. ¥)
| (CONS (x,y)) ->

cons (e (RHO rho) (PHI phi) x)

(e (RHO rho) (PHI phi) y)

| (CAR x) -> car (e (RHO rho) (PHI phi) x)
| (CDR x) -> cdr (e (RHO rho) (PHI phi) x)
| (ATOM x) -> atom (e (RHO rho) (PHI phi) x);;

A.4 Call-by-name interpreter with lazy lists
(* Compare this implementation with respect to call-by-name without lists *)

type expr = NIL
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(* ... %)

| CONS of expr*expr
| CAR of expr

| CDR of expr

| ATOM of expr ;;

(* Tricks to implement lazy lists *)

let myout a () = a ;; (* Abstraction function *)
let myin a = a() ;; (* Reduction function *)

(* The three add-on primitives *)
let cons = fun x y -> myout (P (x , y));;

let car x = match myin x
with (P(x,y)) => x
| _ -> raise (NotAPair "in car function");;

let cdr x = match myin x
with (P(x,y)) >y
| _ -> raise (NotAPair "in cdr function");;

= fun (I x) => (I 1)
| (8 x) -> (I1)
| NULL -> (I 1)
| (P (x,y)) => (I 0);;

let atom

(* Expression evaluation *)

let rec en (RHO rho) (PHI phi) =
fun NIL () -> NULL
(* ... %)
| (CONS (x,y)) O =->
myin ( cons ((en (RHO rho) (PHI phi) x ))
((en (RHO rho) (PHI phi) y)) )

| (CAR x) (O -> myin (car ( (en (RHO rho) (PHI phi) x)))

1 (CDR x) () -> myin (cdr ( (en (RHO rho) (PHI phi) x)))

| (ATOM x) () -> (atom (myin (en (RHO rho) (PHI phi) x)));;

A.5 A mfg implementation
(* We add a special value BOT in the set of values *)
type bval

I
S of string
P of bvalxbval

(* The function environment is defined as a tuple *)

type phi = PHI of (string * (bval list) * bval ) list ;;
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(* Primitives are redefined such that they support the BOT value *)

let succ = fun (I n) -> I (n+1)
| BOT -> BOT
| - -> raise (NotAValidType "in succ function");;
let pred = fun (I n) -> I (n-1)
| BOT -> BOT
| - -> raise (NotAValidType "in pred function");;
let equ = fun (BOT, _ ) -> BOT
| ( _ , BOT ) -> BOT
| (Ii , I j)->if (i=j) then I 1 else I 0
| (Ss , St) ->if (s=t) then I 1 else I 0O
| ( NULL, NULL) -> I 1
I (_, NULL ) > IO
| (NULL , _) > IO
| (P(x,y) , _) =>1I0O0
] (_ ,P@ab) ->1I0
I ( _ , - ) =->raise (NotAValidType "in equ function");;

let cat = fun ( BOT , _ ) -> BOT
] ( _, BOT ) -> BOT
| (s, St) ->8 (s7t)
| (_, _) => raise (NotAValidType "in cat function");;
let cons = fun BOT _ => BOT
| BOT -> BOT*
I x y > P (x, Vi
let car = fun BOT -> BOT
I (P (x,y)) ->x
| ~ -> raise (NotAPair "in car function");;
let cdr = fun BOT -> BOT
| (P (x,y)) ->y
| _ -> raise (NotAPair "in cdr function");;
let atom = fun (I x) -> I 1
; B x)->1I1
} (NULL) > I 1
i P (x,y)) >I0
| BOT -> 1 0;;

(* Some useful

let rec seek f

let rec iseq

functions *)

= fun [] -> []
| ((e, 1)::r) -> if (f=e) then 1 else seek f r;;

fun (BOT) (BOT) -> true
T x) (T y) -> x=y
(5 t) () ->t=r
(P(a,b)) (P(x,y)) -> (iseq a x) && (iseq b y)
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| _ _ -> false;;

(x Expression evaluation function *)
(* Expression are evaluated as usual except for function call because phi is
defined as a tuple instead of function *)

let rec e (RHO rho) (PHI phi) =
fun (% ... %)
| (CALL (£,1)) ->
lookupphi f (map (e (RHO rho) (PHI phi)) 1) phi

(* checkargs verify if two lists are equal *)

and checkargs = fun [] 0 -> true
| (el::11) (e2::12) -> (iseq el e2) &% (checkargs 11 12)
| - - -> false

(* member checks if an element is in a list or not *)

and member x = fun [] -> false
| (e::1) -> if (x=e) then true else member x 1

(* lookupphi checks if one argument of the arg list is BOT. If it is the case,
it returns BOT, otherwise it extracts the result value of f from phi *)

and lookupphi f arg phi = if (member (BOT) arg) then BOT
else lookupphil f arg phi

and lookupphil f arg = fun []J -> BOT
|  ((f1, argl, res)::r) ->
if (checkargs arg argl) && (f=£f1)
then res
else lookupphil f arg r;;

(* Need: collects the function call that are needed *)

let rec need (RHO rho) (PHI phi) =
fun NIL -> 0
I (NT i) -> [
| (TR s) -> []
I (VAR ©) = []
| (FUNC (f,1)) ->
addneed ( f , (map (e (RHO rho) (PHI phi)) 1) , (needlist (RHO rho) (PHI phi) 1))
| (IF (c,a,b)) =->
begin
match (e (RHO rho) (PHI phi) c)
with (I 0) -> (need (RHO rho) (PHI phi) c)@(need (RHO rho) (PHI phi) b)
| (I _) -> (need (RHO rho) (PHI phi) c)@(need (RHO rho) (PHI phi) a)
! _ => (need (RHO rho) (PHI phi) c)
end
(SUCC x) -> (need (RHO rho) (PHI phi) x)
(PRED x) -> (need (RHO rho) (PHI phi) x)
(CAT (x,y)) -> (need (RHO rho) (PHI phi) y)@(need (RHO rho) (PHI phi) x)
(EQU (x,y)) -> (need (RHO rho) (PHI phi) y)@(need (RHO rho) (PHI phi) x)
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(CONS(x,y)) -> (need (RHO rho) (PHI phi) y)@(need (RHO rho) (PHI phi) x)
(CAR x) -> (need (RHO rho) (PHI phi) x)
(CDR x) -> (need (RHO rho) (PHI phi) x)
(ATOM x) -> (need (RHO rho) (PHI phi) x)

(* needlist computes need for a list of expressions *)
and needlist (RHO rho) (PHI phi) = fun [] -> []
| (e::1) -> (need (RHO rho) (PHI phi) e)
@(needlist (RHO rho) (PHI phi) 1)

(* For function call, if one of the arg is BOT then don’t add the closure
to C *)

and addneed (f, arg, nlist) = if (member BOT arg) then nlist
else (f,arg)::nlist;;

(* Some useful functions *)
(* Test the equality of two elements from phi *)

let iseq_phi (f1, 11, v1) (f2, 12, v2) =
(f1 = £2) && (iseq vl v2) && (checkargs 11 12);;

(x Test if an element is in phi or not *)
let rec is_in_phi_list v = fun [] -> false
| (e::1) -> (iseq_phi v e)
or (is_in_phi_list v 1);;
(¥ Is a set included in another one 7 *)

let rec included = fun [] [] -> true
(

e::1) m -> (is_in_phi_list e m) && (included 1 m)
[1 _ -> true;;

|
I
(* Test if two phi sets are equal *)

let testphi 11 12 = (included 11 12) && (included 12 11);;

(* Test the equality of two elements from C *)

I

let iseq_c (f1, 11) (£2, 12) = (f1 = £f2) && (checkargs 11 12);;

(* Test if an element from C is in C or not *)

let rec is_in_c_list v = fun [] -> false
| (e::1) -> (iseq_c v e) or (is_in_c_list v 1);;

(* Is a set included in another one 7 *)

fun (] (] -> true

let rec included_c =
| (e::1) m -> (is_in_c_list e m) && (included_c 1 m)
|

0] -> true;;
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(* Test the equality of two C sets *)
let test_c 11 12 = (included_c 11 12) && (included_c 12 11);;

(* Function that computes fix-point *)
(* phi and C are improved until they are equal *)

let rec iterate phi c prog =
let phil = newphi c phi prog and
cl = union (newc c phi prog) c
in if ((testphi phi phil) && (test_c c c1)) then (phil, cl)
else iterate phil cl prog

(* newphi computes a new phi *)
(¥ if C is the empty set, then returns the empty set
otherwise, for each closure in C, we construct a phi *)

and newphi = fun (] phi prog -> []
| ((f,arg)::r) phi prog ->
(f, arg, e (RHO (buildrho f prog arg)) (PHI phi) (findexp f prog))::
(newphi r phi prog)

(* newc computes a new C *)
(* if C is the empty set, then returns the empty set
otherwise, for each closure in C, we collect new closures *)

and newc = fun [] phi prog -> []
| ((f,arg)::r) phi prog ->
(need (RHO (buildrho f prog arg)) (PHI phi) (findexp f prog))@
(newc r phi prog)

(* buildrho constructs a rho for a function f in a program prog with a the list
of value arg *)

and buildrho = fun f [] arg -> raise (EmptyList "in buildrho")
| f ((f1, lvar, exp)::r) arg ->
if (f=f1) then (zip lvar arg)
else buildrho f r arg

(* findexp returns the expr associated to a function f from a program prog *)
and findexp = fun f [] -> raise (EmptyList "in findexp")
| f ((f1, lvar, exp)::r) ->
if (f=f1) then exp
else findexp f r;;

(* start is a userfriendly way of calling iterate *)

let start f arg (PROG prg) = iterate [] [(f,arg)] prg ;;



70 Appendix A. First order case implementations

A.6 A strictness interpreter using mfg

(x Compare this case with the interpreter using minimal function graph *)
(* New domain for a strictness interpreter
We work with the two point domain 2 which contains ZERO and ONE *)

type bval = ZERO | ONE;;

(* Primitives for the strictness interpreter are only the logical ’and’ and
Yor? *)

let myand = fun ONE ONE -> ONE
-> ZERO;;

let myor = fun ZERO ZERO -> ZERO
| _ _ -> ONE;;

(* Some useful functions *)

let rec valofs s = fun [] -> raise (EmptyList "in valofs function")
| ((a,b)::1) => if (s=a) then b else valofs s 1 ;;

=fun [1 [1 -> []
| (a::r) (b::s) -> (a,b)::(zip r s)
| -> raise (LengthError "in zip function");;

let rec zip

= fun (ONE) (ONE) -> true
] (ZER0O) (ZERD) -> true
| -> false;;

let rec iseq

(x E# *)

let rec esharp (RHO rho) (PHI phi) =

fun NIL -> ONE
I (INT i) -> ONE
| (STR s) -> ONE
| (VAR s) -> (valofs s rho)
|

(CALL (f,1)) ->
lookupphi f (map (esharp (RHO rho) (PHI phi)) 1) phi
| (IF (c, a, b)) -> myand (esharp (RHO rho) (PHI phi) c)
(myor (esharp (RHO rho) (PHI phi) a)
(esharp (RHO rho) (PHI phi) b))
| (succ x) -> (esharp (RHO rho) (PHI phi) x)
[ (PRED x) -> (esharp (RHO rho) (PHI phi) x)
! (CAT (x,y)) =>
myand (esharp (RHO rho) (PHI phi) x)
(esharp (RHO rho) (PHI phi) y)
I (EQU (x,y)) =->
myand (esharp (RHO rho) (PHI phi) x)
(esharp (RHO rho) (PHI phi) y)
| (CONS (x,y)) ->
myand (esharp (RHO rho) (PHI phi) x)
(esharp (RHO rho) (PHI phi) y)
| (CAR x) -> (esharp (RHO rho) (PHI phi) x)
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| (CDR x) -> (esharp (RHO rho) (PHI phi) x)
] (ATOM x) -> (esharp (RHO rho) (PHI phi) x)

and checkargs = fun [] 0 -> true
| (el::11) (e2::12) -> (iseq el e2) && (checkargs 11 12)
| - - -> false

and member x = fun [] -> false

| (e::1) -> if (x=e) then true else member x 1

and lookupphi f arg phi = if (member (ZERO) arg) then ZERO
else lookupphil f arg phi

and lookupphil f arg = fun [] -> ZERO
((f1, argl, res)::r) ->
if (checkargs arg argl) && (f=f1)
then res
else lookupphil f arg r;;

(x N#t )

let rec needsharp (RHO rho) (PHI phi) =
fun NIL -> [
] (NT i) -> ]
I (STR s) -> [
i AR x) ->[]
| (CALL (f,1)) -> addneed ( f,
(map (esharp (RHO rho) (PHI phi)) 1),
(needlist (RHO rho) (PHI phi) 1) )
] (IF (c,a,b)) -> (needsharp (RHO rho) (PHI phi) c)@
(needsharp (RHO rho) (PHI phi) a)@
(needsharp (RHO rho) (PHI phi) b)
] (succ x) -> (needsharp (RHO rho) (PHI phi) x)
| (PRED x) -> (needsharp (RHO rho) (PHI phi) x)
] (CAT (x,y)) -> (needsharp (RHO rho) (PHI phi) y)@
(needsharp (RHO rho) (PHI phi) x)
| (EQU (x,y)) -> (needsharp (RHO rho) (PHI phi) y)@
(needsharp (RHO rho) (PHI phi) x)
] (CONS(x,y)) =-> (needsharp (RHO rho) (PHI phi) y)@
(needsharp (RHO rho) (PHI phi) x)

] (CAR x) -> (needsharp (RHO rho) (PHI phi) x)
] (CDR x) -> (needsharp (RHO rho) (PHI phi) x)
] (ATOM x) -> (needsharp (RHO rho) (PHI phi) x)

and needlist (RHO rho) (PHI phi) = fun [1 -> []
| (e::1) -> (needsharp (RHO rho) (PHI phi) e)
@(needlist (RHO rho) (PHI phi) 1)

and addneed (f, arg, nlist) = if (member ZERO arg) then nlist
else (f,arg)::nlist;;

(x Fixpoint computation does not change with respect to the mfg
implementation *)
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Appendix B

Second order case
implementations

B.1 Call-by-value interpreter

(* Basic Values *)

type val = I of int
|

I

S of string ;;.
(* Expressions *)

INT of int
STR of string

VAR of string

type expr =

1

I

| CALL of string*(expr list)*string
I

|

|

|

I

IF of expr*expr*expr
SUCC of expr
PRED of expr
CAT of expr*expr
EQU of expr*expr ;:
(* Variable environment *)
type rho = RHO of (string*val) list;;
(* Function environment *)
type phi = PHI of (string -> (val list) -> string -> val) ;;
(* Program *)
type prog = PROG of ((string*(string list)*stringxexpr) list) ;;

(* Some useful functions *)

let rec valofs s = fun [] -> raise (EmptyList "in valofs function")
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| ((a,b)::1) -> if (s=a) then b else valofs s 1 ;;

let rec zip = fun [J [J -> [J
| (a::xr) (b::s) -> (a,b)::(zip r s)
[

-> raise (LengthError "in zip function");;

= fun (I 0) -> false
I (I J) -> true
| -> false;;

let istrue

(* Primitives *)

let succ = fun (I n) -> (I (n+1))
| _ => raise (NotAValidType "in succ function");;
let pred = fun (I n) -> (I (n-1))

-> raise (NotAValidType "in pred

let equ = fun (I i ,
| (s ,St) >
I (o v ) >

let cat = fun (S s ,

I j) -> if (i=j) then (I
if (s=t) then (I 1) else
raise (NotAValidType "in

St) > 8 (s7t)

function");;

1) else (I 0)
(I 0)
equ function");;

! oy 2)

-> raise (NotAValidType "in cat function");;

(* Expression evaluation function *)

let lookupf s pn pv = if (s=pn) then pv else s;;
let rec e (RHO rho) (PHI phi) pn pv =
fun (INT i) -> (1T i)
] (STR s) -> (S s)
| (VAR s) -> valofs s rho
I (CALL (£,1,s)) —->
if (f = pn)

then (phi pv) (map (e (RHO rho) (PHI phi) pn pv) 1) (lookupf s pn pv)
else (phi f) (map (e (RHO rho) (PHI phi) pn pv) 1) (lookupf s pn pv)
] (IF (c, a, b)) ->
if (istrue (e (RHO rho) (PHI phi) pn pv c))
then (e (RHO rho) (PHI phi) pn pv a)
else (e (RHO rho) (PHI phi) pn pv b)
| (succ x) -> succ (e (RHO rho) (PHI phi) pn pv x)
| (PRED x) -> pred (e (RHO rho) (PHI phi) pn pv x)
| (CAT (x,y)) ->
cat ( (e (RHO rho) (PHI phi) pn pv x),
(e (RHO rho) (PHI phi) pn pv y) )
I (EQU (x,y)) ->
equ ( (e (RHO rho) (PHI phi) pn pv x),
(e (RHO rho) (PHI phi) pn pv y) );;

(* Program evaluation *)

let rec p = fun (PROG []) (PHI phi) f vl pv -> raise (EmptyList "in prog")
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| (PROG ((fn, pl, q, expr)::r)) (PHI phi) f vl pv ->
if (f£=fn)
then (e (RHO (zip pl v1)) (PHI phi) q pv expr)
else p (PROG r) (PHI phi) f vl pv;;

let rec fixphi (PROG prog) f vl =
p (PROG prog) (PHI (fixphi (PROG prog))) f vl;;
B.2 Call-by-name interpreter
(x Compare this implementation with the second order call-by-value interpreter *)

(* Basic values have not changed *)
(* Value may be not evaluated immediately *)

type val = I of int
| S of string;;
type nval == (unit -> val) ;;

(* Variable environement *)

type rho = RHO of (string * nval) list;;

(* Function environment *)

type phi = PHI of (string -> (nval list) -> string -> nval) ;;
(* The trick - Reduction function *)

let myin a = a() ;;

(* Expression evaluation *)

let lookupf s pn pv = if (s=pn) then pv else s;;

let rec en (RHO rho) (PHI phi) pn pv =
fun (INT i) O -> (I 1)
| (STR s) (O -> (S s)
I (VAR s) () -> myin (valofs s rho)
| (CALL (£,1,s)) O ->
if (f=pn)
then
myin ((phi pv) ((map (en (RHO rho) (PHI phi) pn pv) 1 )) (lookupf s pn pv))
else
myin ((phi f) ((map (en (RHO rho) (PHI phi) pn pv) 1)) (lookupf s pn pv))
| (IF (c, a, b)) () ->
if istrue (myin (en (RHO rho) (PHI phi) pn pv c))
then (en (RHO rho) (PHI phi) pn pv a ())
else (en (RHO rho) (PHI phi) pn pv b ())
| (sucC x) () -> (succ (myin (en (RHO rho) (PHI phi) pn pv x)))
| (PRED x) () -> (pred (myin (en (RHO rho) (PHI phi) pn pv x)))
| (CAT (x,y)) ) ->
( cat ( myin (en (RHO rho) (PHI phi) pn pv x),
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myin (en (RHO rho) (PHI phi) pn pv y) ) )
I (EQU (x,y)) O -
( equ ( (myin (en (RHO rho) (PHI phi) pn pv x)),
(myin (en (RHO rho) (PHI phi) pn pv y)) ) ) ;;

B.3 Call-by-value interpreter with lists

(* Compare this implementation with the second order call-by-value interpreter
without lists *)

(* Basic values: D = D U { NULL } and D* = D U (D* x D*x ) %)

I of int

S of string
P of val*val
NULL ;;

type val

(* In expressions, we add the constructor CONS and destructor CAR,CDR *)

type expr = NIL
(x ... %)
| CONS of expr*expr
| CAR of expr
| CDR of expr
| ATOM of expr ;;

(* The three add-on primitives *)
let cons = fun x y ->P (x, y);

let car = fun (P (x,y)) -> x
| _ -> raise (NotAPair "in car function");;

let cdr = fun (P (x,y)) ->y
-> raise (NotAPair "in cdr function");;

(* We have also add a new primitive to test if an element is an atom or not *)
let atom = fun (I x) -> (I 1)
| (8 x) > (I1)
[ NULL -> (I 1)
l (P (x,y)) => (I 0);;

(* Expression evaluation *)
let lookupf s pn pv = if (s=pn) then pv else s;;

let rec e (RHO rho) (PHY phy) pn pv =
fun NIL -> NULL
(x ... %)
| (CONS (x,y)) ->
cons (e (RHO rho) (PHY phy) pn pv x)
(e (RHO rho) (PHY phy) pn pv y)
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i (CAR x) -> car (e (RHO rho) (PHY phy) pn pv x)
| (CDR x) -> cdr (e (RHO rho) (PHY phy) pn pv x)
| (ATOM x) -> atom (e (RHO rho) (PHY phy) pn pv x);;

B.4 Call-by-name interpreter with lazy lists

(* Compare this implemenation with respect to call-by-name without lists *)

type expr = NIL
(CIED)
| CONS of expr*expr
| CAR of expr
| CDR of expr
| ATOM of expr ;;

(* Tricks to implement lazy lists *)

let myout a () = a ;; (* Abstraction function *)
let myin a = a() ;; (* Reduction function *)

(* The three add-on primitives *)
let cons = fun x y => myout (P (x , y));;
let car x = match myin x

with (P(x,y)) -> x
] _ -> raise (NotAPair "in car function");;

let cdr x = match myin x
with (P(x,y)) =y
| _ -> raise (NotAPair "in cdr function");;

= fun (I x) -> (I 1)
| (s x) > (I 1)
] NULL -> (I 1)
| (P (x,y)) => (I 0);;

let atom

(* Expression evaluation *)
let lookupf s pn pv = if (s=pn) then pv else s;;

let rec en (RHO rho) (PHY phy) pn pv =
fun NIL () -> NULL
(x ... %)
| (CONS (x,y)) O ->
myin ( cons ((en (RHO rho) (PHY phy) pn pv x ))
((en (RHO rho) (PHY phy) pn pv y)) )

| (CAR x) () -> myin (car ( (en (RHO rho) (PHY phy) pn pv x)))

| (CDR x) () -> myin (cdr ( (en (RHO rho) (PHY phy) pn pv x)))

| (ATOM x) () -> (atom (myin (en (RHO rho) (PHY phy) pn pv x)));;
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B.5 A mfg implementation

(* We add a special value BOT in the set of values *)
type bval

I
S of string
P of bval*bval

(* The function environment is defined as a tuple *)

type phi = PHI of (string * (bval list) * bval ) list ;;

(* Primitives are redefined such that they support the BOT value *)
fun (I n) -> I (n+1)

| BOT -> BOT
| -> raise (NotAValidType "in succ function");;

let succ

= fun (I n) -> I (n-1)
| BOT -> BOT
i . => raise (NotAValidType "in pred function");;
let equ = fun ( BOT , _ ) -> BOT
] ( _ , BOT ) -> BOT
| (Ii , I j) ->if (i=j) then I 1 else I O
} (Ss , St)->if (s=t) then I 1 else I O
J ( NULL, NULL) -> I 1
] (_, NULL) =IO
J (NULL , _) => IO
| (P(x,y) , _) >10
I (_ ,P@ab) »>1IO0
| (- , _) ->raise (NotAValidType "in equ function");;
let cat = fun ( BOT , _ ) -> BOT
| (., BOT ) - BOT
! (Ss, St) ->S (s7t)
] (_, - ) =>raise (NotAValidType "in cat function");;

= fun BOT _  => BOT
| - BOT -> BOT
I x y =>P &, ¥i;

let cons

= fun BOT -> BOT
} (P (x,y)) ->x
] -> raise (NotAPair "in car function");;

let car

= fun BOT -> BOT
| P (x,y)) >y
]

-> raise (NotAPair "in cdr function");;

let cdr

let atom = fun (I x) -> I 1
| (8 x) >1I1
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] (NULL) -> I 1
i P (x,y)) > 10
| BOT -> I 0;;

(* Some useful functions *)

let rec seek f = fun [] -> []
| ((e, 1)::r) -> if (f=e) then 1 else seek f r;;

let rec iseq = fun (BOT) (BOT) -> true
I T x) (Iy) ->x=y
| (S t) (Sr) -> t=r
] (P(a,b)) (P(x,y)) -> (iseq a x) && (iseq b y)
} _ -> false;;
(x Expression evaluation function *)
(* Expression are evaluated as usual except for function call because phi is
defined as a tuple instead of function *)

let rec e (RHO rho) (PHI phi) =
fun (x ... *)
i (CALL (£,1)) ->
lookupphi f (map (e (RHO rho) (PHI phi)) 1) phi

(* checkargs verify if two lists are equal *)

and checkargs = fun [] ) 0] -> true
| (el::11) (e2::12) -> (iseq el e2) && (checkargs 11 12)
| -> false

(* member checks if an element is in a list or not *)

and member x = fun [] -> false
I (e::1) -> if (x=e) then true else member x 1

(* lookupphi checks if one argument of the arg list is BOT. If it is the case,
it returns BOT, otherwise it extracts the result value of f from phi *)

and lookupphi f arg phi = if (member (BOT) arg) then BOT
else lookupphil f arg phi

and lookupphil f arg = fun [] -> BOT
| ((f1, argl, res)::r) ->
if (checkargs arg argl) && (f=f1)
then res
else lookupphil f arg r;;

(* Need: collects the function call that are needed *)

let rec need (RHO rho) (PHI phi) =
fun NIL -> 0

| (INT i) -> (]

| (STR s) -> [

| (VAR x) -> []
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I (FUNC (£,1)) ->
addneed ( f , (map (e (RHO rho) (PHI phi)) 1) , (needlist (RHO rho) (PHI phi) 1))
| (IF (c,a,b)) =->
begin
match (e (RHO rho) (PHI phi) c¢)
with (I 0) -> (need (RHO rho) (PHI phi) c)@(need (RHO rho) (PHI phi) b)
| (I _) -> (need (RHO rho) (PHI phi) c)@(need (RHO rho) (PHI phi) a)
| . => (need (RHO rho) (PHI phi) c)
end
| (SUCC x) -> (need (RHO rho) (PHI phi) x)
I (PRED x) -> (need (RHO rho) (PHI phi) x)
| (CAT (x,y)) -> (need (RHO rho) (PHI phi) y)@(need (RHO rho) (PHI phi) x)
I  (EQU (x,y)) -> (need (RHO rho) (PHI phi) y)@(need (RHO rho) (PHI phi) x)
|  (CONS(x,y)) -> (need (RHO rho) (PHI phi) y)@(need (RHO rho) (PHI phi) x)
| (CAR x) -> (need (RHO rho) (PHI phi) x)
|  (CDR x) -> (need (RHO rho) (PHI phi) x)
| (ATOM x) -> (need (RHO rho) (PHI phi) x)

(* needlist computes need for a list of expressions *)
and needlist (RHO rho) (PHI phi) = fun [] -> []
| (e::1) -> (need (RHO rho) (PHI phi) e)
Q@(needlist (RHO rho) (PHI phi) 1)

(* For function call, if one of the arg is BOT then don’t add the closure
to C *)

and addneed (f, arg, nlist) = if (member BOT arg) then nlist
else (f,arg)::nlist;;

(* Some useful functions *)
(* Test the equality of two elements from phi *)

let iseq_phi (f1, 11, v1) (f2, 12, v2) =
(f1 = £2) && (iseq vl v2) &% (checkargs 11 12);

(* Test if an element is in phi or not *)
let rec is_in_phi_list v = fun [] -> false
I (e::1) -> (iseq_phi v e)
or (is_in_phi_list v 1);;
(* Is a set included in another one ? *)

let rec included = fun [] [] -> true
(

e::1) m -> (is_in_phi_list e m) && (included 1 m)
[ _ => true;;

|
|
(* Test if two phi sets are equal *)

let testphi 11 12 = (included 11 12) && (included 12 11);;

(* Test the equality of two elements from C *)
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let iseq_c (f1, 11) (£2, 12) = (f1 = £2) & (checkargs 11 12);;
(* Test if an element from C is in C or not *)

let rec is_in_c_list v = fun [] -> false
| (e::1) -> (iseq_c v e) or (is_in_c_list v 1);;

(* Is a set included in another one ? *)

let rec included_c = fun [] [] -> true
| (e::1) m -> (is_in_c_list e m) && (included_c 1 m)
| I . => true;;

(* Test the equality of two C sets *)
let test_c 11 12 = (included_c 11 12) && (included_c 12 11);;

(* Function that computes fix-point *)
(* phi and C are improved until they are equal *)

let rec iterate phi c prog =
let phil = newphi c phi prog and
cl = union (newc c phi prog) c
in if ((testphi phi phil) && (test_c c c1)) then (phil, cl)
else iterate phil cl prog

(* newphi computes a new phi *)
(# if C is the empty set, then returns the empty set
otherwise, for each closure in C, we construct a phi *)

and newphi = fun (] phi prog -> []
| ((f,arg)::r) phi prog ->
(f, arg, e (RHO (buildrho f prog arg)) (PHI phi) (findexp f prog))::
(newphi r phi prog)

(* newc computes a new C *)
(* if C is the empty set, then returns the empty set
otherwise, for each closure in C, we collect new closures ¥)

and newc = fun [] phi prog -> []
| ((f,arg)::r) phi prog ->
(need (RHO (buildrho f prog arg)) (PHI phi) (findexp f prog))@
(newc r phi prog)

(* buildrho constructs a rho for a function f in a program prog with a the list
of value arg *)

and buildrho = fun f [] arg -> raise (EmptyList "in buildrho")
I f ((f1, lvar, exp)::r) arg ->
if (£=f1) then (zip lvar arg)
else buildrho f r arg

(# findexp returns the expr associated to a function f from a program prog *)
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and findexp = fun f [] -> raise (EmptyList "in findexp")
| f ((f1, lvar, exp)::r) ->
if (f=f1) then exp
else findexp f r;;

(* start is a userfriendly way of calling iterate *)

let start f arg (PROG prg) = iterate [] [(f,arg)] prg ;;

B.6 A strictness interpreter using mfg

(* Compare this case with the interpreter using minimal function graph *)
(* New domain for a strictness interpreter
We work with the two point domain 2 which contains ZERO and ONE *)

type bval = ZERO | ONE;;

(* Primitives for the strictness interpreter are only the logical ’and’ and
Yor’ *)

let myand = fun ONE ONE -> ONE
-> ZERO;;

let myor = fun ZERO ZERO -> ZERO
-> ONE;;

(* Some useful functions *)

let rec valofs s = fun [] -> raise (EmptyList "in valofs function")
| ((a,b)::1) -> if (s=a) then b else valofs s 1 ;;

=fun [J [J -> [0
| (a::r) (b::s) -> (a,b)::(zip r s)
| - - => raise (LengthError "in zip function");;

let rec zip

= fun (ONE) (ONE) -> true
| (ZERD) (ZERO) -> true
| -> false;;

let rec iseq

(* E# *)

let rec esharp (RHO rho) (PHI phi) =

fun NIL -> ONE
| (INT i) -> ONE
| (STR s) -> ONE
| (VAR s) -> (valofs s rho)
|

(CALL (£,1)) ->
lookupphi f (map (esharp (RHO rho) (PHI phi)) 1) phi
| (IF (c, a, b)) -> myand (esharp (RHO rho) (PHI phi) c)
(myor (esharp (RHO rho) (PHI phi) a)
(esharp (RHO rho) (PHI phi) b))
[ (succ x) -> (esharp (RHO rho) (PHI phi) x)
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| (PRED x)
| (CAT (x,y))

->
->

myand (esharp

(esharp

I (EQU (x,y))

->

myand (esharp

| (CONS (x,y)
myand

) =

(esharp (RHO rho) (PHI phi) x)

(RHO rho) (PHI phi) x)
(RHO rho) (PHI phi) y)

(RHO rho) (PHI phi) x)
(esharp (RHO rho) (PHI phi) y)

(esharp (RHO rho) (PHI phi) y)
| (CAR x) -> (esharp (RHO rho) (PHI phi) x)
| (CDR x) -> (esharp (RHO rho) (PHI phi) x)

| (ATOM x) -> (esharp (RHO rho)

and checkargs

and member x = fun []
(e::1) -> if (x=e) then true else member x 1

and lookupphi f arg phi = if (member (ZERO) arg) then ZERO
else lookupphil f arg phi

and lookupphil f arg = fun [] -> ZERO
((f1, argl, res)::r) ->
if (checkargs arg argl) && (f=f1)

(> N# *)

let rec needsharp

fun [] 0

(el::11) (e2::12) -> (iseq el e2) && (checkargs 11 12)

fun NIL -> [
| (INT i) -> []
| (STRs) -> 0
| (VAR x) -> []
| (CALL (f,1)) ->

| (IF (c,a,b)

| (succ x)
| (PRED x)
| (CAT (x,y))

| (EQU (x,y))
| (CONS(x,y))
| (CAR x)

| (CDR x)
| (ATOM x)

) >

=> true

(esharp (RHO rho) (PHI phi) x)

(PHI phi) x)

-> false

-> false

then res

else lookupphil f arg r;;

addneed ( f,

(map (esharp (RHO rho) (PHI phi)) 1),
(needlist (RHO rho) (PHI phi) 1) )

(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO
(needsharp (RHO

(RHO rho) (PHI phi) =

rho)
rho)
rho)
rho)
rho)
rho)
rho)
rho)
rho)
rho)
rho)
rho)
rho)
rho)

(PHI
(PHI
(PHI
(PHI
(PHI
(PHI
(PHI
(PHI
(PHI
(PHI
(PHI
(PHI
(PHI
(PHI

phi)
phi)
phi)
phi)
phi)
phi)
phi)
phi)
phi)
phi)
phi)
phi)
phi)
phi)

c)@
a)@
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and needlist (RHO rho) (PHI phi) = fun [1 -> (I
| (e::1) -> (needsharp (RHO rho) (PHI phi) e)
Q@(needlist (RHO rho) (PHI phi) 1)

and addneed (f, arg, nlist) = if (member ZERO arg) then nlist
else (f,arg)::nlist;;

(* Fixpoint computation does not change with respect to the mfg
implementation *)





