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SHARP WORST-CASE EVALUATION COMPLEXITY BOUNDS FOR
ARBITRARY-ORDER NONCONVEX OPTIMIZATION WITH

INEXPENSIVE CONSTRAINTS∗

CORALIA CARTIS† , NICHOLAS I. M. GOULD‡ , AND PHILIPPE L. TOINT§

Abstract. We provide sharp worst-case evaluation complexity bounds for nonconvex mini-
mization problems with general inexpensive constraints, i.e., problems where the cost of evaluat-
ing/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is negligible com-
pared to that of evaluating the objective function. These bounds unify, extend, or improve all known
upper and lower complexity bounds for nonconvex unconstrained and convexly constrained problems.
It is shown that, given an accuracy level ε, a degree of highest available Lipschitz continuous deriv-
atives p, and a desired optimality order q between one and p, a conceptual regularization algorithm

requires no more than O(ε
− p+1
p−q+1 ) evaluations of the objective function and its derivatives to com-

pute a suitably approximate qth order minimizer. With an appropriate choice of the regularization,
a similar result also holds if the pth derivative is merely Hölder rather than Lipschitz continuous. We
provide an example that shows that the above complexity bound is sharp for unconstrained and a
wide class of constrained problems; we also give reasons for the optimality of regularization methods
from a worst-case complexity point of view, within a large class of algorithms that use the same
derivative information.
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1. Introduction. Ever since the seminal paper by Vavasis [23] on the complex-
ity of finding first-order critical points in unconstrained nonlinear optimization was
published 25 years ago, the question of the optimal worst-case complexity of opti-
mization methods has been of interest to mathematicians and also, because of its
strong connection with deep learning, to computer scientists. Of late, there has been
a growing interest in this research field, both for convex and nonconvex problems.
This paper focuses on the latter class and follows a now substantial1 research trend
that derives bounds on the worst-case evaluation complexity (or oracle complexity)
of first- and (more rarely) second-order-necessary minimizers2 of nonlinear nonconvex
unconstrained optimization problems [23, 20, 16, 21, 5]. These papers all provide upper
evaluation complexity bounds: they show that, to obtain an ε-approximate first-order-
necessary minimizer (for unconstrained problem, this is a point at which the gradient
of the objective function is less than ε in norm), at most O(ε−2) evaluations of the
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objective function3 are needed if a model involving first derivatives is used, and at most
O(ε−3/2) evaluations are needed if using second derivatives is permitted. This result
was extended to convexly constrained problems in [7]. A broader framework allowing
the use of Taylor series of degree p was more recently proposed in [2], in which case
the worst-case evaluation complexity bound for ε-first-order-necessary unconstrained

minimizer is shown to be O(ε−
p+1
p ), thereby generalizing the previous results for this

case. Complexity for obtaining ε-approximate second-order-necessary unconstrained
minimizers was considered in [21, 5], where a bound of O(ε−3) evaluations was proved
to obtain an ε-second-order-necessary minimizer using a Taylor’s model of degree two,

and a bound of O(ε−
p+1
p−1 ) evaluations was shown in [9] for the case where a Taylor

model of degree p is used. Defining qth-order-necessary minimizers for q > 2 was
considered in [12], where the difficulty of stating and verifying necessary optimality
was discussed. In particular, it was concluded in this latter reference that defining
and computing ε-approximate qth-order-necessary minimizers for q > 2 is likely to
remain elusive, essentially because of the nonlinearity and lack of continuity of the
kernels of the derivatives involved. A more general Taylor-based definition of opti-
mality was introduced instead, which allowed to show an upper bound of O(ε−(q+1))
on evaluation complexity for convexly constrained problems, in particular improving
on the bound of O(ε−9/2) stated in [1] for the case p = q = 3.

The unconstrained and convexly constrained cases where the assumption of Lip-
schitz continuity is replaced by the weaker β-Hölder continuity (β ∈ (0, 1]) have also

been studied for q = 1 in [15, 8, 10]. These references show that at most O(ε−
p+β
p−1+β )

evaluations are needed for obtaining an ε-first-order-necessary minimizer.
While upper complexity bounds are important as they provide a handle on the

intrinsic difficulty of the considered problem, they do so at the condition of not being
overly pessimistic. To address this last point, lower bounds on the evaluation com-
plexity of unconstrained nonconvex optimization problems and methods were derived
in [4, 20] and [13], where it was shown that the known upper complexity bounds are
sharp (irrespective of the problem’s dimension) for most known methods using Tay-
lor’s models of degree one or two. That is to say that there are examples for which the
complexity order predicted by the upper bound is actually achieved. More recently,
Carmon et al. [3] provided an elaborate construction showing that at least a multi-

ple of ε−
p+1
p function evaluations may be needed to obtain an ε-first-order-necessary

unconstrained minimizer where derivatives of order at most p are used. This result,
which matches in order the upper bound of [2], covers a very wide class of potential
optimization methods4 but has the drawback of being only valid for problems whose
dimension essentially exceeds the number of iterations needed, which can be very large
and quickly grows when ε tends to zero.

Contributions. The present paper aims at unifying and generalizing all the
above results in a single framework, providing, for problems with inexpensive or no
constraints, provably optimal evaluation complexity bounds for arbitrary optimality
order, all relevant model degrees and levels of smoothness of the objective function.
By “inexpensive constraints,” we mean general set constraints whose enforcement
and evaluation5 cost is negligible compared to the cost of evaluating the objective
function. As a consequence, the evaluation complexity for such problems is meaning-
fully captured by focusing of the number of evaluations of this latter function. This
class of minimization problems contains important cases such as bound-constrained

3And its available derivatives.
4In particular, it covers randomized methods, which we do not consider in this paper.
5Constraints’ values and that of their derivatives, if relevant.
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problems and convexly constrained problems (when the projection onto the feasible
set is inexpensive) but also allows possibly nonconvex or even disconnected feasible
sets.

In order to achieve these objectives, we first revisit the Taylor-based optimality
measure of [12] and define (ε,δ)-qth-order-necessary minimizers, a notion extending
the standard ε-first- and ε-second-order cases to arbitrary orders. We then present a
conceptual regularization algorithm using degree p models and show that this algo-

rithm requires at most O(ε−
p+β
p−q+β ) evaluations of f and its derivatives to find such

an (ε,δ)-qth-order-necessary minimizer when the pth derivative of f is assumed to be
β-Hölder continuous. (If the pth derivative is assumed to be Lipschitz continuous, the

bound becomes O(ε−
p+1
p−q+1 ).) This bound matches the best known lower bounds for

first and second order and improves on the bound in O(ε−(q+1)) given by [12]. We
then show that this bound is sharp in order for unconstrained problems with Lipschitz
continuous pth derivative by completing and extending the result of [3] in two ways.

The first is to show that the lower worst-case bound of order ε−
p+1
p evaluations for

obtaining a first-order-necessary minimizer using at most p derivatives is also valid
for problems of every dimension, and the second is to show that this bound can be

generalized to a multiple of ε−
p+1
p−q+1 for obtaining a qth-order-necessary minimizer of

any order q ≤ p. In particular, this result matches in order the upper bound obtained
in the first part of the paper and subsumes or improves known lower bounds for first-
and second-order-necessary minimizers. While our lower bounds are derived for reg-
ularization algorithms applied to unconstrained problems, we also indicate that they
may be extended to a much wider class of minimization methods and to a significant
class of constrained problems.

The paper is organized as follows. Section 2 introduces the (possibly constrained)
minimization problem of interest and the concept of (ε,δ)-approximate qth-order-
necessary minimizers. It also presents a variant of the Adaptive Regularization algo-
rithm using degree p Taylor’s models (ARp) whose purpose is to find such minimizers.
Section 3 then provides an upper bound on the evaluation complexity for the ARp
algorithm to achieve this task. Section 4 then discusses specialization of this result
to the case where ε-approximate second-order-necessary minimizers are sought. The
complexity upper bound of section 3 is then proved to be sharp in section 5 for the
Lipschitz-continuous cases where the feasible set contains a ray. Some conclusions are
finally presented in section 6.

Notation. Throughout the paper, ‖v‖ denotes the standard Euclidean norm
of a vector v ∈ Rn. For a symmetric tensor S of order p, S[v1, . . . , vp] is the result of
applying S to the vectors v1, . . . , vp, S[v]p is the result of applying S to p copies of
the vector v, and

(1.1) ‖S‖[p]
def
= max
‖v‖=1

|S[v]p| = max
‖v1‖=···=‖vp‖=1

|S[v1, . . . , vp]|

(where the second equality results from Theorem 2.1 in [25]) is the associated induced
norm for such tensors. If S1 and S2 are tensors, S1 ⊗ S2 is their tensor product and
Sk⊗1 is the product of S1 k times with itself. For a real, sufficiently differentiable
univariate function f , f (i) denotes its ith derivative and f (0) is a synonym for f . For

an integer k and a real β ∈ (0, 1], we define (k + β)!
def
=
∏k
`=1(β + `) (this coincides

with the standard factorial if β = 1) and β! = 1. As is usual, we also define 0! = 1.
If M is a symmetric matrix, λmin(M) is its leftmost eigenvalue. If α is a real, dαe
and bαc denote the smallest integer not smaller than α and the largest integer not
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exceeding α, respectively. Finally globminx∈S f(x) denotes the smallest value of f(x)
over x ∈ S.

2. High-order necessary conditions for optimality and the ARp
algorithm.

2.1. A high-order optimality measure. Given p ≥ 1, this paper considers
the set-constrained optimization problem

(2.1) min
x∈F

f(x),

where we assume that F ⊆ Rn is closed and nonempty, and where f ∈ Cp,β(Rn),
namely, that

• f is p-times continuously differentiable,
• the pth derivative tensor of f at x is globally Hölder continuous, that is, there

exist constants L ≥ 0 and β ∈ (0, 1] such that, for all x, y ∈ Rn,

(2.2) ‖∇pxf(x)−∇pxf(y)‖[p] ≤ L‖x− y‖β .

Observe that convexity or even connectedness of F is not requested. Observe also
that the more usual case of Lipschitz continuous pth derivative corresponds to β = 1.
We note that our assumption covers the continuous range of the objective function’s
smoothness from Hölder continuous gradients to Lipschitz continuous pth derivatives.
In what follows, we assume that β is known.

If Tp(x, s) is the standard pth degree Taylor’s expansion of f about x computed
for the increment s, that is,

(2.3) Tp(x, s)
def
= f(x) +

p∑
`=1

1

`!
∇`xf(x)[s]`,

(2.2) provides crucial approximation bounds, whose proof can be found in the
appendix.

Lemma 2.1. Let f ∈ Cp,β(Rn), and let Tp(x, s) be the Taylor approximation of
f(x+ s) about x given by (2.3). Then for all x, s ∈ Rn,

(2.4) f(x+ s) ≤ Tp(x, s) +
L

(p+ β)!
‖s‖p+β ,

(2.5) ‖∇jxf(x+ s)−∇jsTp(x, s)‖[j] ≤
L

(p− j + β)!
‖s‖p−j+β . (j = 1, . . . , p).

In order to characterize minimizers of (2.1), we follow [12] and introduce, for given
δ ∈ (0, 1] and j ≤ p,

(2.6) φδf,j(x)
def
= f(x)− globmin

x+d∈F
‖d‖≤δ

Tj(x, d),

which can be interpreted as the magnitude of the largest decrease achievable on the
Taylor’s expansion of degree j within the intersection of a ball of radius δ with the
feasible set. It was shown in [12] that φδf,j(x) is a proper generalization of well-known
unconstrained optimality measures for low orders. In particular, for any δ > 0, we
have

φδf,1(x) = ‖∇1
xf(x)‖ δ,(2.7)
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φδf,2(x) =
1

2

∣∣min[0, λmin

(
∇2
xf(x)

)∣∣ δ2(2.8)

provided ∇1
xf(x) = 0, and also, if additionally ∇2

xf(x) is positive semidefinite, that

(2.9) φδf,3 = ‖ projection of ∇3
xf(x) onto the nullspace of ∇2

xf(x) ‖ δ3.

At variance with other optimality measures, φδj,f (x) is well-defined for any order j ≥ 1
and varies continuously when x varies continuously in F . The role of the “optimality
radius” δ in (2.6) merits some discussion. It follows from (2.7)–(2.9) that the choice of
δ = 1 is adequate for retrieving known optimality conditions in the unconstrained case
for j = 1, and j = 2 provided ∇1

xf(x) = 0, and j = 3 provided additionally ∇2
xf(x)

is positive semidefinite. However, δ becomes important in other cases. Corollary 3.6
in [12] indicates that, when F is convex, qth-order necessary “path-based” optimality
conditions hold if

(2.10) lim
δ→0

φδf,j(x)

δj
= 0 for j = 1, . . . , q.

The limit for δ → 0 is necessary to capture the notion of local minimizer for (2.1). This
implies that δ should be seen as a truly local quantity associated with x. However,
considering φδf,j(x) for nonvanishing δ has substantial advantages from the point of
view of optimization: while it may fail to indicate that x is a local minimizer, it does
so only by providing a direction leading to values of f below f(x), thereby helping
to avoid local but nonglobal approximate solutions. We refer the reader to [12] for a
further discussion but conclude that considering large δ has strong advantages when
solving (2.1).

A special case is when x is an isolated feasible point, that is, a point which is
the sole intersection between F and any sufficiently small neighborhood of x. Such a
point is clearly a local minimizer, and this is reflected by the fact that φδf,q(x) = 0 for
any f , any q, and any sufficiently small δ.

The main drawback of using φδf,j(x) is, of course, that its computation requires
the global minimization of Tp(x, d) in the intersection of the ball of radius δ with
F . We are not aware of an easy way to do this in general6 when n > 1, which is
why our analysis remains of an essentially theoretical nature, as was the case for [12].
Note, however, that, albeit potentially very difficult, solving this global minimization
problem does not involve calculating the value of f or of any of its derivatives. In
that sense, this drawback is thus irrelevant for the worst-case evaluation complexity
which solely focuses on these evaluations.

Observe now that, if we were to relax the first-order condition ∇1
xf(x) = 0 for

unconstrained problems to ‖∇1
xf(x)‖ ≤ ε and, at the same time, relax the second-

order condition to |min[0, λmin(∇2
xf(x))]| ≤ ε, we then deduce that

(2.11) φδf,2(x) ≤ εδ +
1

2
εδ2 = ε

2∑
`=1

δ`

`!
.

A natural generalization of this observation is to define an (ε, δ)-approximate qth-
order-necessary minimizer of f as a point x such that

(2.12) φδf,q(x) ≤ εχq(δ),

6A small value of δ might help, but this computation remains NP-hard in most cases.
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where

(2.13) χq(δ)
def
=

q∑
`=1

δ`

`!
.

Because (2.12) is a new way to look at approximate optimality and is crucial for the
rest of this paper, it is worthwhile to motivate and discuss it further.

1. When ε = 0, (2.12) implies that the complicated path-based necessary op-
timality conditions derived in [12] do hold. This results from the fact that
these latter conditions merely express that the Taylor’s model of order q can-
not decrease close enough to x along any feasible polynomial path emanating
from x, which is clearly the case if x is a global minimizer of the same models
in the intersection of the feasible set and a ball of radius δ centered at x.
By continuity, these path-based conditions must therefore hold in the limit
under (2.12) when ε tends to zero. The role of (2.12) as a condition for ap-
proximate minimization is thus coherent and consistent with known necessary
conditions.

2. Inspired by (2.10), the stronger approximate optimality condition

(2.14) φδf,j(x) ≤ ε δj for j ∈ {1, . . . , q}

was used in [12] instead of (2.12). Our main reason to prefer (2.12) is the
following. Observe that (2.14) implies in particular that φδf,q(x) ≤ εδq, which
in turn implies, for δ small enough for the first-order term to dominate,
that φδf,1(x) ≤ εδq. In the unconstrained case (for example), this requires

‖∇1
xf(xk)‖ ≤ εδq−1, imposing an inordinate level of first-order optimality,

much stronger than the standard condition ‖∇1
xf(xk)‖ ≤ ε. No such diffi-

culty arises with (2.12) because the right-hand side of the condition involves
all powers of δ, which is not the case of the right-hand side of (2.14). Note,
however, that the vital continuity properties of φδf,q are not affected by the
choice of the right-hand side and are thus inherited by (2.12).

3. For given δ ∈ (0, 1], (2.12) does not imply that φδf,j(x) ≤ εχj(δ) for j ∈
{1, . . . , q − 1}, although the violation of this condition tends to zero with
δ.7 This slight blemish can be cured by requiring that φδf,j(x) ≤ εχj(δ) for
j ∈ {1, . . . , q} instead of (2.12).

4. Since δ ∈ (0, 1], we note that χq(δ) = Θ(δ), and so an equivalent alternative
to the termination condition (2.12) is to require that φδf,q(x) ≤ εδ. We use
(2.12) as it naturally occurs in subsequent proofs.

In order to further justify (2.12), we now make more explicit the “minimizing guar-
antees” provided by this approximate optimality condition, by formulating a result
analogous to Theorem 3.7 in [12]. This result gives a lower bound on the value of f(x)
in the feasible neighborhood of an (ε, δ)-approximate qth-order-necessary minimizer.

Theorem 2.2. Suppose that f is p times continuously differentiable and that ∇qxf
is β-Hölder continuous with constant L (in the sense of (2.2) with p = q) in an open
neighborhood of radius δ ∈ (0, 1] of some x ∈ F . Suppose also that x is an (ε, δ)-
approximate qth-order-necessary minimizer of f in the sense of (2.12). Then

7When δ tends to zero, the terms of orders j + 1 and higher in the Taylor’s expansion defining
φδf,q(x) and χq(δ) become negligible compared to the first j.
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f(x+ d) ≥ f(x)− 2εχq(δ) for all d with x+ d ∈ F and(2.15)

‖d‖ ≤ min

[
δ,

(
(q + β)! ε

L

) 1
q+β−1

]
.

Proof. Using the triangle inequality, (2.2), (2.4), and (2.12), we obtain that, for
‖d‖ ≤ δ,

f(x+ d) ≥ f(x+ d)− Tq(x, d) + Tq(x, d)

≥ −|f(x+ d)− Tq(x, d)|+ Tq(x, 0)− φδf,q(x)

≥ − L

(q + β)!
‖d‖q+β + f(x)− εχq(δ).

Thus,

f(x+ d) ≥ f(x)− L

(q + β)!
‖d‖q+β−1 δ − εχq(δ),

and the desired bound follows from the fact that δ ≤ χq(δ).

2.2. The ARp algorithm for high-order criticality. In order to find (ε, δ)-
approximate qth-order-necessary minimizers, we consider applying a variant of the
ARp algorithm to (2.1). This algorithm, described as Algorithm 2.1 on the next page,
is of the regularization type in that, at each iterate xk, a step sk is computed which
approximately minimizes (in a sense defined below) the model

(2.16) mk(s) = Tp(xk, s) +
σk

(p+ β)!
‖s‖p+β

subject to xk + s ∈ F , where p in an integer such that p ≥ q and σk ≥ σmin is a
“regularization parameter.”
A few comments are useful at this stage.

1. Since σk ≥ σmin by (2.22), we have that mk(s) is bounded below as a function
of s and the existence of a constrained global minimizer s∗k is guaranteed
because β > 0. To the best of our knowledge, the only methods that can use
β = 0 are universal methods [8, 15, 19], where a higher power of regularization
is required and additional precautions are taken when computing a step, and
which we do not cover here.

2. Conditions (2.19) and (2.20) essentially ensure that the step is long enough,
which will be important for proving the important lower bound on the step-
length in Lemma 3.3 below. If (2.19) holds, the possibly expensive computa-
tion of φδsmk,q(sk) in (2.20) is unnecessary and δs may be chosen arbitrarily in
(0, 1].

3. Our choice to update δk+1 in parallel with xk+1 reflects our earlier comment
on the fact that δ is a local quantity: hence δk+1 should be consistent with
its corresponding value at xk+1 = xk + sk, which is δs.

4. We assume the availability of a feasible starting point, which is without loss
of generality for inexpensive constraints.

5. Before termination, each successful iteration requires the evaluation of f and
its first p derivative tensors, while only the evaluation of f is needed at un-
successful ones.

6. The mechanism of the algorithm ensures the nonincreasing nature of the
sequence {f(xk)}k≥0.
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Algorithm 2.1. ARp for (ε, δ)-approximate qth-order-necessary minimizers.

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization param-
eter σ0 > 0 are given, as well as an accuracy level ε ∈ (0, 1). The constants
δ0, $, θ, η1, η2, γ1, γ2, γ3, and σmin are also given and satisfy

(2.17)
$ ∈ (0, 1], θ > 0, δ0 ∈ (0, 1], σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1,

and 0 < γ1 < 1 < γ2 < γ3.

Compute f(x0) and set k = 0.
Step 1: Test for termination. Evaluate {∇ixf(xk)}qi=1. If (2.12) holds with δ =

δk, terminate with the approximate solution xε = xk. Otherwise compute
{∇ixf(xk)}pi=q+1.

Step 2: Step calculation. Attempt to compute an approximate minimizer sk of
model mk(s) and an optimality radius δs ∈ (0, 1] such that xk + sk ∈ F ,

(2.18) mk(sk) < mk(0),

and either

(2.19) ‖sk‖ ≥ $ε
1

p−q+β

or

(2.20) φδsmk,q(sk) ≤ θ‖sk‖p−q+β

(p− q + β)!
χq(δs).

If such a step does not exist, terminate with the approximate solution xε = xk.
Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

(2.21) ρk =
f(xk)− f(xk + sk)

Tp(xk, 0)− Tp(xk, sk)
.

If ρk ≥ η1, then define xk+1 = xk + sk and δk+1 = δs; otherwise define
xk+1 = xk and δk+1 = δk.

Step 4: Regularization parameter update. Set

(2.22) σk+1 ∈

 [max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

Increment k by one and go to Step 1 if ρk ≥ η1, or to Step 2 otherwise.

Iterations for which ρk ≥ η1 (and hence xk+1 = xk+sk) are called “successful,” and we

denote by Sk
def
= {0 ≤ j ≤ k | ρj ≥ η1} the index set of all successful iterations between

0 and k. We immediately observe that the total number of iterations (successful or
not) can be bounded as a function of the number of successful ones (and include a
proof in the appendix).

Lemma 2.3 (see [2, Theorem 2.4]). The mechanism of Algorithm 2.1 guarantees
that, if

(2.23) σk ≤ σmax
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for some σmax > 0, then

(2.24) k + 1 ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
.

2.3. Specific properties of the ARp algorithm. We now need to verify that
the algorithm is well-defined in the sense that either a step sk and associated δs satis-
fying (2.18)–(2.20) can always be found, or termination is justified. For unconstrained
problems with q ∈ {1, 2}, the first possibility directly results from the observation that
φδsmk,j(sk) (as given by (2.7)–(2.9) for f = mk and j ∈ {1, 2, 3}) can be made suitably
small at a global minimizer of the model. In those cases δs = 1 is always acceptable.
(More details for the case q = 2 are provided in section 4). The situation is more
complicated for q ≥ 3 because a global minimizer of the model (2.16) may not be a
global minimizer of its qth order Taylor’s expansion in the intersection of F and a ball
of arbitrary radius: we may have to restrict this radius for this important property
to hold. In order to clarify this issue, we first state a useful technical lemma, whose
proof is in the appendix.

Lemma 2.4. Let s be a vector of Rn. Then

(2.25) ‖∇js
(
‖s‖p+β

)
‖[j] =

(p+ β)!

(p− j + β)!
‖s‖p−j+β for j ∈ {0, . . . , p}

and

(2.26) ‖∇p+1
s

(
‖s‖p+β

)
‖[p+1] = β (p+ β)! ‖s‖β−1.

We next provide reasonable sufficient conditions for a nonzero step sk and an
optimality radius δs to satisfy (2.18)–(2.20).

Lemma 2.5. Suppose that s∗k is a global minimizer of mk(s) under the constraint
that xk + s ∈ F such that mk(s∗k) < mk(0). Then there exist a neighborhood of s∗k
and a range of sufficiently small δ such that (2.18) and (2.20) hold for any sk in the
intersection of this neighborhood with F and any δs in this range.

Proof. Let s∗k be the global minimizer of the model mk(s) over all s such that
xk + s ∈ F . Since mk(s∗k) < mk(0), we have that s∗k 6= 0. By Taylor’s theorem, we
have that, for all d,

0 ≤ mk(s∗k + d)−mk(s∗k) =

p∑
`=1

1

`!
∇`smk(s∗k)[d]` +

1

(p+ 1)!
∇p+1
s mk(s∗k + ξd)[d]p+1

for some ξ ∈ (0, 1). Thus, using the triangle inequality, (2.16), and (2.26),

−
q∑
`=1

1

`!
∇`smk(s∗k)[d]` ≤

p∑
`=q+1

‖d‖`

`!

∥∥∇`smk(s∗k)
∥∥
[`]

+
‖d‖p+1

(p+ 1)!

∥∥∇p+1
s mk(s∗k+ξd)

∥∥
[p+1]

(2.27)

=

p∑
`=q+1

‖d‖`

`!

∥∥∇`smk(s∗k)
∥∥
[`]

+ βσk
‖d‖p+1

(p+ 1)!
‖s∗k + ξd‖β−1.

Since s∗k 6= 0, we may then choose δs < ‖s∗k‖ such that, for every d with ‖d‖ ≤ δs,
‖s∗k + ξd‖ ≥ 1

2‖s
∗
k‖ > 0 and

(2.28)

p∑
`=q+1

‖d‖`

`!
‖∇`smk(s∗k)‖[`] + 21−ββσk

‖d‖p+1

(p+ 1)!
‖s∗k‖β−1 ≤

θ‖s∗k‖p−q+β

2(p− q + β)!
‖d‖.
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Hence we deduce from (2.27) and (2.28) that, for ‖d‖ ≤ δs,

−
q∑
`=1

1

`!
∇`smk(s∗k)[d]` ≤ θ‖s∗k‖p−q+β

2(p− q + β)!
δs ≤

θ‖s∗k‖p−q+β

2(p− q + β)!
χq(δs),

where the last inequality follows from (2.13). Continuity of mk and its derivatives
and the inequality mk(s∗k) < mk(0) then imply that there exists a neighborhood of
s∗k 6= 0 such that (2.18) holds and

−
q∑
`=1

1

`!
∇`smk(s)[d]` ≤ θ‖s‖p−q+β

(p− q + β)!
χq(δs)

for all s in this neighborhood and all d with ‖d‖ ≤ δs. This yields that, for all such s
with xk + s ∈ F ,

φδsmk,q(s) = max

0, globmax
‖d‖≤δs
xk+d∈F

(
−

q∑
`=1

1

`!
∇`smk(s)[d]`

) ≤ θ‖s‖p−q+β

(p− q + β)!
χq(δs),

as requested.

As can be seen in the proof of this lemma, δs may need to be small if any of the
tensors

∇`smk(s∗k) =

p∑
j=`

1

j!
∇jsmk(0)[s∗k]j−`

for ` ∈ {1, . . . , p + 1} has a large norm. This may occur in particular if β and ‖s∗k‖
are both close to zero, as is shown by the last term in the left-hand side of (2.28).
We also note that (2.20) obviously holds for sk = s∗k if xk + s∗k is an isolated feasible
point.

That one needs to consider the second case in Step 2 (where no step exists satis-
fying (2.18)–(2.20)) can be seen by examining the following one-dimensional example.
Let p = q = 3 and β = 1, and suppose that δk = 1, Tq(xk, s) = s2 − 2s3, and
σk = 4! = 24. Then mk(s) = s2 − 2s3 + s4 = s2(s − 1)2 and the origin is a global
minimizer of the model (and a local minimizer of Tq(xk, s)) but yet Tq(xk, δk) = −1,

yielding that φδkf,q(xk) = 1 > εχq(1) for ε ≤ 1/χq(1) = 4
7 . Thus, Step 1 with δk = 1

has failed to identify that termination was possible. It now remains to verify that it
is justified to terminate in Step 2 when no suitable nonzero step can be found.

Lemma 2.6. Suppose that the algorithm terminates in Step 2 of iteration k with
xε = xk. Then there exists a δ ∈ (0, 1] such that (2.12) holds for x = xε and xε is an
(ε, δ)-approximate qth-order-necessary minimizer.

Proof. Given Lemma 2.5, if the algorithm terminates within Step 2, it must be
because every global minimizer s∗k of mk(s) under the constraints xk + s ∈ F is such
that mk(s∗k) ≥ mk(0). In that case, s∗k = 0 is one such global minimizer and we have
that, for all d,

0 ≤ mk(d)−mk(0) =

q∑
`=1

1

`!
∇jxf(xk)[d]j +

p∑
`=q+1

1

`!
∇jxf(xk)[d]j +

σk
(p+ β)!

‖d‖p+β .
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We may now choose δ ∈ (0, 1] small enough to ensure that, for all d with ‖d‖ ≤ δ,

(2.29)

∣∣∣∣∣∣
p∑

`=q+1

1

`!
∇jxf(xk)[d]j +

σk
(p+ β)!

‖d‖p+β
∣∣∣∣∣∣ ≤ ε‖d‖ ≤ ε χq(δ),

which in turn implies that, for all d with ‖d‖ ≤ δ,

φδf,q(xk) = max

0, globmax
‖d‖≤δ
xk+d∈F

(
−

q∑
`=1

1

`!
∇`xf(xk)[d]`

) ≤ ε χq(δ),
concluding the proof.

Observe that, in this proof, we could have chosen δ small enough to ensure

σk
(p+ β)!

‖d‖p+β ≤ εχp(δ)

instead of (2.29), yielding φδf,p(xk) ≤ εχp(δ), which is a stronger necessary optimality
condition than (2.12). Together, Lemmas 2.5 and 2.6 ensure that Algorithm 2.1 is
well-defined.

However, none of the inner step and criticality computations involve the (re-)
evaluation of f or its derivatives, and therefore the evaluation complexity bound
presented in the next section is unaffected.

3. An upper bound on the evaluation complexity. The proofs of the fol-
lowing two lemmas are very similar to corresponding results in [2], and hence we again
defer them to the appendix (but still include them for completeness, as the algorithm
has changed).

Lemma 3.1. The mechanism of Algorithm 2.1 guarantees that, for all k ≥ 0,

(3.1) Tp(xk, 0)− Tp(xk, sk) ≥ σk
(p+ β)!

‖sk‖p+β ,

and so (2.21) is well-defined.

Lemma 3.2. Let f ∈ Cp,β(Rn). Then, for all k ≥ 0,

(3.2) σk ≤ σmax
def
= max

[
σ0,

γ3L

1− η2

]
.

We are now in position to prove the crucial lower bound on the step length.

Lemma 3.3. Let f ∈ Cp,β(Rn). Then, for all k ≥ 0 such that iteration k is
successful and Algorithm 2.1 does not terminate at iteration k + 1,

(3.3) ‖sk‖ ≥ κsε
1

p−q+β ,

where

(3.4) κs
def
= min

[
$,

(
(p− q + β)!

(L+ σmax + θ)

) 1
p−q+β

]
.
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Proof. If ‖sk‖ > $ε
1

p−q+β (i.e., (2.19) holds), the result is obvious. Suppose now

that ‖sk‖ ≤ $ε
1

p−q+β , which, in view of Step 2 of the algorithm, implies that (2.20)
holds. Since the algorithm does not terminate at iteration k + 1, we have that

(3.5) φ
δk+1

f,q (xk+1) > εχq(δk+1).

Let the global minimum in the definition of φ
δk+1

f,q (xk+1) be achieved at d with ‖d‖ ≤
δk+1. Since φ

δk+1

f,q (xk+1) > 0, we have from (2.6) that

q∑
`=1

1

`!
∇`xf(xk+1)[d]` < 0.

Then, successively using (2.6) for f at xk+1, the triangle inequality, (2.16), (1.1), and
(2.25), we deduce that

φ
δk+1

f,q (xk+1)

(3.6)

= −
q∑
`=1

1

`!
∇`xf(xk+1)[d]`

= −
q∑
`=1

1

`!
∇`xf(xk+1)[d]` +

q∑
`=1

1

`!
∇`sTp(xk, sk)[d]` −

q∑
`=1

1

`!
∇`sTp(xk, sk)[d]`

− σk
(p+ β)!

q∑
`=1

1

`!

(
∇`s
[
‖s‖p+β

]
(sk)

)
[d]` +

σk
(p+ β)!

q∑
`=1

1

`!

(
∇`s
[
‖s‖p+β

]
(sk)

)
[d]`

≤

∣∣∣∣∣
q∑
`=1

1

`!

[
∇`xf(xk+1)−∇`sTp(xk, sk)

]
[d]`

∣∣∣∣∣
−

q∑
`=1

1

`!

(
∇`s
[
Tp(xk, s) +

σk
(p+ β)!

‖s‖p+β
]
s=sk

)
[d]`

+
σk

(p+ β)!

∣∣∣∣∣
q∑
`=1

1

`!

(
∇`s
[
‖s‖p+β

]
s=sk

)
[d]`

∣∣∣∣∣
≤

q∑
`=1

L

`!(p− `+ β)!
‖sk‖p−`+βδ`k+1

−
q∑
`=1

1

`!
∇`smk(sk)[d]` +

q∑
`=1

σk
`!(p− `+ β)!

‖sk‖p−`+βδ`k+1.

Now, since ‖d‖ ≤ δk+1, and using (2.6) for mk at sk,

−
q∑
`=1

1

`!
∇`smk(sk)[d]` ≤ max

[
0,−

q∑
`=1

1

`!
∇`smk(sk)[d]`

]
≤ φδk+1

mk,q
(sk).

Using the fact that iteration k is successful, and thus δk+1 = δs, we obtain, from
(2.20) and (3.6), that
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φ
δk+1

f,q (xk+1) ≤
q∑
`=1

L

`!(p− `+ β)!
‖sk‖p−`+βδ`k+1 +

θ χq(δk+1)

(p− q + β)!
‖sk‖p−q+β(3.7)

+

q∑
`=1

σk
`!(p− `+ β)!

‖sk‖p−`+βδ`k+1

≤

[
L+ σk + θ

]
χq(δk+1)

(p− q + β)!
‖sk‖p−q+β ,

where we have used the fact that ‖sk‖ ≤ $ε
1

p−q+β ≤ 1 to deduce the last inequality.
As a consequence, (3.5) implies that

‖sk‖ ≥
[
ε(p− q + β)!

(L+ σk + θ)

] 1
p−q+β

,

and (3.3) then immediately follows from (3.2).

The bound given in the above lemma is another indication that choosing θ of the
order of L (when this is known a priori) makes sense. Observe also that the statement
of the above lemma is completely independent of δk+1.

We now combine all the above results to deduce an upper bound on the maximum
number of successful iterations, from which a final complexity bound immediately
follows.

Theorem 3.4. Let f ∈ Cp,β(Rn), and suppose that f(x) ≥ flow for all x ∈ Rn.
Then, given ε ∈ (0, 1), Algorithm 2.1 needs at most⌊

κp(f(x0)− flow)
(
ε−

p+β
p−q+β

)⌋
+ 1

successful iterations (each involving one evaluation of f and its p first derivatives)
and at most

(3.8)

⌊⌊
κp(f(x0)− flow)

(
ε−

p+β
p−q+β

)
+ 1
⌋(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)⌋
iterations in total to produce an iterate xε such that (2.12) holds, where σmax is given
by (3.2) and where

κp
def
=

(p+ β)!

η1σmin
max

{
$−(p+β),

[
(L+ σmax + θ)

(p− q + β)!

] p+β
p−q+β

}
.

Proof. At each successful iteration k before termination, we have the guaranteed
decrease

(3.9) f(xk)− f(xk+1) ≥ η1(Tp(xk, 0)− Tp(xk, sk)) ≥ η1σmin

(p+ β)!
‖sk‖p+β ,

where we used (2.21), (3.1), and (2.22). Moreover we deduce from (3.9), (3.3), and
(3.2) that

(3.10) f(xk)− f(xk+1) ≥ κ−1p ε
p+β
p−q+β , where κ−1p

def
=

η1σminκ
p+β
s

(p+ β)!
.
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Thus, since {f(xk)} decreases monotonically,

f(x0)− f(xk+1) ≥ κ−1p ε
p+β
p−q+β |Sk|.

Using that f is bounded below by flow, we conclude

(3.11) |Sk| ≤
f(x0)− flow

κ−1p
ε−

p+β
p−q+β

until termination. The desired bound on the number of successful iterations follows
from combining (3.11). Lemma 2.3 is then invoked to compute the upper bound on
the total number of iterations.

In particular, if the pth derivative of f is assumed to be globally Lipschitz rather
than merely Hölder continuous (i.e., if β = 1), the bound (3.8) on the maximum
number of evaluations becomes

(3.12)

⌊⌊
κp(f(x0)− flow)

(
ε−

p+1
p−q+1

)
+ 1
⌋(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)⌋
,

where

κp
def
=

(p+ 1)!

η1σmin
max

{
$p+β ,

[
q!(L+ σmax + θ)(e− 1)

(p− q + 1)!

] p+1
p−q+1

}
.

This worst-case evaluation bound generalizes known bounds for q = 1 (see [2]) or
q = 2 (see [9]) and significantly improves upon the bounds in O(ε−(q+1)) given by [12]
for a more stringent termination rule. It also extends the results obtained in [7] for
convexly constrained problems with q = 1 by allowing the significantly broader class
of inexpensive constraints.

We also note that it is possible to weaken the assumption that ∇pxf must satisfy
the Hölder inequality (2.2) for every x, y ∈ Rn (as required in the beginning of sec-
tion 2). The weakest possible smoothness assumption is to require that (2.2) holds
only for points belonging to the same segment of the “tree of iterates” ∪k≥0[xk, xk+sk]
(this is necessary for the proof of Lemma 2.1). As this path joining feasible iterates
may be hard to predict a priori, one may instead require (2.2) to hold in the whole of
F , which must then be convex to ensure the desired Hölder property on every segment
[xk, xk + sk].

4. Seeking ε-approximate second-order-necessary minimizers. We now
discuss the particular and much-studied case where second-order minimizers are sought
for unconstrained problems with Lipschitz continuous Hessians (that is, p ≥ q = 2,
F = Rn, and β = 1). As we now show, a specialization of Algorithm 2.1 to this case
is very close (but not identical) to well-known methods. Let us consider Step 1 first.
The computation of φδkf,2(xk) then reduces to

(4.1) φδkf,2(xk) = max

[
0,− globmin

‖d‖≤δk

(
∇1
xf(xk)T d+

1

2
dT∇2

xf(xk)d
)]
,

which amounts to solving a standard trust-region subproblem with radius δk (see [14]).
Hence verifying (4.1) or testing the more usual approximate second-order criteria

(4.2) ‖∇1
xf(xk)‖ ≤ ε and λmin

(
∇2
xf(xk)

)
≥ −ε
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have very similar numerical costs (remember that finding the leftmost eigenvalue of
the Hessian is the same as finding the global minimizer of the associated Rayleigh
quotient). If we now turn to the computation of sk in Step 2, Algorithm 2.1 then
computes such a step by attempting to minimize the model

(4.3) Tp(xk, s) +
σk

(p+ 1)!
‖s‖p+1,

as has already been proposed before for general p [2, 9]. Moreover, the failure of
(2.12) in Step 1 is enough, when q ≤ 2, to guarantee the existence of nonzero global
minimizers of Tp(xk, s) and mk(s) and thus to ensure that a nonzero sk is possible.
The approximate model minimization is stopped as soon as (2.19) or (2.20) holds, the
latter then reducing to checking that
(4.4)

φδsmk,2(sk) = max

[
0,− globmin

‖d‖≤δs

(
∇1
smk(sk)T d+

1

2
dT∇2

smk(sk)d
)]
≤ θ‖sk‖p−1

(p− 1)!
χ2(δs)

for some δs ∈ (0, 1]. For each potential sk, finding δs ∈ (0, 1] requires solving (possibly
approximately)

− globmin
‖d‖≤δs

(
∇1
smk(sk)T d+

1

2
dT∇2

smk(sk)d

)
≤ θ‖sk‖p−1

(p− 1)!
χ2(δs).

While this could be acceptable without affecting the overall evaluation complexity
of the algorithm, a simpler alternative is available for q = 2. We may consider
terminating the model minimization when either (2.19) holds or
(4.5)

0 > globmin
‖d‖≤1

(
∇1
smk(sk)T d+

1

2
dT∇2

smk(sk)d
)
≥ −θ‖sk‖

p−1

(p− 1)!
χ2(1) = −3θ‖sk‖p−1

2(p− 1)!
.

The inequality is guaranteed to hold when sk is close enough to s∗k, a global minimizer
of the model mk(s), since then ∇1

smk(s∗k) = 0 and ∇2
smk(s∗k) is positive semidefinite,

and then d = 0 provides the global minimizer of the second-order Taylor model of
mk(s) around sk. Verifying (4.5) only requires at most one trust-region calculation
for each potential step and ensures (4.4) with δs = 1, making the choice δk+1 = 1
acceptable. The cost of this technique is comparable to that proposed in [9] where an
eigenvalue computation is required for each potential step. Combining these observa-
tions, Algorithm 2.1 then becomes Algorithm 4.1.

If p = q = 2, computing sk in Step 2 amounts to approximately minimizing
the now well-known cubic model of [17, 21, 24, 5]. In addition, if sk is the exact
global minimizer of this model, the above argument shows that (4.5) automatically
holds at sk, and checking this inequality by solving a trust-region subproblem is thus
unnecessary. The only difference between our proposed algorithm and the more usual
cubic regularization (ARC) method with exact global minimization is that the latter
would check (4.2) for termination, while the algorithm presented here would instead
check (4.1) with δk = 1 by solving a trust-region subproblem. As observed above,
both techniques have comparable numerical cost.

The bound (3.12) then ensures that Algorithm 4.1 terminates in at most O(ε−
p+1
p−1 )

evaluations of f , its gradient and Hessian. This algorithm thus shares8 the upper

8For a marginally weaker (see footnote 7 and Theorem 2.2) but still necessary and, in our view,
more sensible approximate optimality condition.
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Algorithm 4.1. ARp for ε-approximate second-order-necessary minimizers.

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization param-
eter σ0 > 0 are given, as well as an accuracy level ε ∈ (0, 1). The constants
$, θ, η1, η2, γ1, γ2, γ3, and σmin are also given and satisfy (2.17). Compute
f(x0) and set k = 0.

Step 1: Test for termination. Evaluate {∇ixf(xk)}2i=1. If φ1f,2(xk) ≤ εχ2(1),

with φ1f,2(xk) given by (4.1) and χ2(1) by (2.13), terminate with the ap-

proximate solution xε = xk. Otherwise compute {∇ixf(xk)}pi=3.
Step 2: Step calculation. Compute a step sk 6= 0 by approximately minimizing

the model (4.3) in the sense that (2.18) holds and

‖sk‖ ≥ $ε
1

p−2+β or (4.5) holds.

Step 3: Acceptance of the trial point. Compute f(xk +sk) and define ρk as in
(2.21). If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Compute σk+1 as in (2.22). Incre-
ment k by one and go to Step 1 if ρk ≥ η1, or to Step 2 otherwise.

complexity bounds stated in [9] for general p with different values of ε for first and
second order, and in [21, 5] for p = 2.

5. A matching lower bound on the evaluation complexity for the
Lipschitz continuous case. We now intend to show that the upper bound on evalu-
ation complexity of Theorem 3.4 is tight in terms of the order given for unconstrained
and a broad class of constrained problems with Lipschitz continuous pth derivative
(i.e., β = 19). This objective is attained by defining a variant of the high-degree Her-
mite interpolation technique developed in [12] and then using this technique to build,
for any number p of available derivatives of the objective function and any optimality
order q, an unconstrained univariate example of suitably slow convergence (i.e., for
which the order in ε given by (3.12) is achieved). This example is then embedded in
higher dimensions to provide general lower bounds.

5.1. High-degree univariate Hermite interpolation. We start by investi-
gating some useful properties of Hermite interpolation. Let us assume that we wish
to construct a univariate Hermite interpolant π of degree 2(p+ 1) of the form

(5.1) π(τ) =

2p+1∑
i=0

ci τ
i

on the interval [0, s] satisfying the 2(p+ 1) conditions

(5.2) π(i)(0) = f
(i)
0 , π(i)(s) = f

(i)
1 for i ∈ {0, . . . , p},

where f
(i)
0 and f

(i)
1 are given. The values of the coefficients c0, . . . , cp may then be

obtained by

ci =
f
(i)
0

i!
for i ∈ {0, . . . , p}

9A example of slow convergence for general β and p > 1 + β is provided in [10].
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while the remaining ones satisfy the linear system
(5.3)
a0,0s

p+1 a0,1s
p+2 · · · a0,p−1s

2p a1,ps
2p+1

a1,0s
p a2,2s

p+1 · · · a2,p−1s
2p−1 a2,ps

2p

...
...

. . .
...

...
ap,0s ap,1s

2 · · · ap,p−1s
p ap,ps

p+1



cp+1

cp+2

...
c2p+1

=


f
(0)
1 − T (0)

p (0, s)

f
(1)
1 − T (1)

p (0, s)
...

f
(p)
1 − T (p)

p (0, s))

,
where

Tp(0, s) =

p∑
i=0

f
(i)
0

i!
si and ai,j =

(p+ j + 1)!

(p+ j + 1− i)!
(i, j = 0, . . . , p).

Observe that (5.3) can be rewritten as
sp

sp−1

. . .

1

Ap


s

s2

. . .

sp+1



cp+1

cp+2

...
c2p+1

 =


f
(0)
1 − T (0)

p (0, s)

f
(1)
1 − T (1)

p (0, s)
...

f
(p)
1 − T (p)

p (0, s))


with Ap is the matrix whose (i, j)th entry is ai,j , which only depends on p. It was
show in [12, Appendix] that Ap is nonsingular. Therefore


cp+1 s
cp+2 s

2

...
c2p+1 s

p+1

 = A−1p


1
sp

[
f
(0)
1 − T (0)

p (0, s)
]

1
sp−1

[
f
(1)
1 − T (1)

p (0, s)
]

...

f
(p)
1 − T (p)

p (0, s)

 .

We therefore deduce that, for any τ ∈ [0, s] ,

|π(p+1)(τ)| =

∣∣∣∣∣
p∑
i=0

(p+ 1 + i)!

i!
cp+1+i τ

i

∣∣∣∣∣
≤

p∑
i=0

(p+ 1 + i)!

i!

(
|cp+1+i| si+1

)
s−1

≤ (p+ 1)(2p+ 1)!

p!
‖A−1p ‖∞ max

j=0,...,p

∣∣∣∣∣f (j)1 − T (j)
p (0, s)

sp−j+1

∣∣∣∣∣ .
The mean-value theorem then implies that, for any 0 ≤ τ2 ≤ τ1 ≤ s and some
ξ ∈ [τ2, τ1] ⊆ [0, s],

|π(p)(τ1)− π(p)(τ2)|
|τ1 − τ2|

= |π(p+1)(ξ)|(5.4)

≤ max
τ∈[0,s]

|π(p+1)(τ)|

≤ (p+ 1)(2p+ 1)!

p!
‖A−1p ‖∞ max

j=0,...,p

∣∣∣∣∣f (j)1 − T (j)
p (0, s)

sp−j+1

∣∣∣∣∣ .
This development thus leads us to the following conclusion.
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Theorem 5.1. Suppose that {f (j)` } are given for ` ∈ {0, 1} and j ∈ {0, . . . , p}.
Suppose also that there exists a constant κf ≥ 0 such that, for all j ∈ {0, , . . . , p},

(5.5)
∣∣∣f (j)1 − T (j)

p (0, s)
∣∣∣ ≤ κf sp−j+1.

Then the Hermite interpolation polynomial π(τ) on [0, s] given by (5.1) and satisfying
(5.2) admits a Lipschitz continuous pth derivative on [0, s], with Lipschitz constant
given by

Lp
def
=

(p+ 1)(2p+ 1)!

p!
‖A−1p ‖∞κf ,

which only depends on p and κf .

Proof. The proof directly results from (5.4) and (5.5).

Observe that (5.5) is identical to (2.5) when β = 1 and n = 1. This means that

the conditions of Theorem 5.1 automatically hold if the interpolation data {f (j)i } is
itself extracted from a function having a Lipschitz continuous pth derivative.

Applying the above results to several interpolation intervals then yields the exis-
tence of a smooth Hermite interpolant.

Theorem 5.2. Suppose that, for some integer ke > 0 and p > 0, the data {f (j)k }
and {xk} is given for k ∈ {0, . . . , ke} and j ∈ {0, . . . , p}. Suppose also that sk =
xk+1 − xk ∈ (0, κs] for k ∈ {0, . . . , ke} and some κs > 0, and that, for some constant
κf ≥ 0 and k ∈ {0, . . . , ke − 1},

(5.6)
∣∣∣f (j)k+1 − T

(j)
k,p(xk, sk)

∣∣∣ ≤ κf sp−j+1
k ,

where Tk,p(xk, s) =
∑p
i=0 f

(i)
k si/i!. Then there exists a p times continuously differen-

tiable function f from R to R with Lipschitz continuous pth derivative such that, for
k ∈ {0, . . . , ke},

f (j)(xk) = f
(j)
k for j ∈ {0, . . . , p}.

Moreover, the range of f only depends on p, κf , maxk f
(0)
k , and mink f

(0)
k .

Proof. We first use Theorem 5.1 to define a Hermite interpolant πk(s) of the form

(5.1) on each interval [xk, xk+1] = [xk, xk + sk] (k ∈ {0, . . . , ke}) using f
(j)
0 = f

(j)
k and

f
(j)
1 = f

(j)
k+1 for j ∈ {0, . . . , p}, and then set

f(xk + s) = πk(s)

for any s ∈ [0, sk]. We may then smoothly prolongate f for x ∈ R by defining two
additional interpolation intervals [x−1, x0] = [−s−1, 0] and [xke , xke + ske ] with end
conditions

f−1 = f
(0)
0 , fke+1 = f

(0)
ke

and f
(j)
−1 = f

(j)
ke+1 = 0 for j ∈ {1, . . . , p},

and where s−1 and ske are chosen sufficiently large to ensure that (5.6) also holds on
intervals −1 and ke. We next set

f(x) =


f
(0)
0 for x ≤ x−1,
πk(x− xk) for x ∈ [xk, xk+1] and k ∈ {−1, . . . , n},
f
(0)
ke

for x ≥ xke + ske .
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5.2. Slow convergence to (ε,δ)-approximate qth-order-necessary min-
imizers. We now consider an unconstrained univariate instance of problem (2.1).
Our aim is first to show that, for each choice of p ≥ 1 and q ∈ {1, . . . , p}, there exists
an objective function f ∈ Cp,1(R) (i.e., β = 1) for problem (2.1) which is bounded
below and such that obtaining an (ε, δ)-approximate qth-order-necessary minimizer
may require at least

ε−
p+1
p−q+1

evaluations of the objective function and its derivatives using Algorithm 2.1, matching,
in order of ε ∈ (0, 1], the upper bound (3.12). Our development follows the broad
outline of [13] but extends it to approximate minimizers of arbitrary order. Given
a model degree p ≥ 1 and an optimality order q ∈ {1, . . . , p}, we first define the

sequences {f (j)k } for j ∈ {0, . . . , p} and k ∈ {0, . . . , kε} with

(5.7) kε =
⌈
ε−

p+1
p−q+1

⌉
by

(5.8) ωk = ε
kε − k
kε

,

as well as

(5.9) f
(j)
k = 0 for j ∈ {1, . . . , q − 1} ∪ {q + 1, . . . , p}

and

(5.10) f
(q)
k = −(ε+ ωk) q!χq(1) < 0.

Thus

(5.11) Tp(xk, s) =

p∑
j=0

f
(j)
k

j!
sj = f

(0)
k − (ε+ ωk)χq(1)sq

and, assuming δk = 1 for all k (we verify below that this is acceptable),

(5.12) φδkf,q(xk) = (ε+ ωk)χq(δk).

We also set σk = p! for all k ∈ {0, . . . , kε} (we again verify below that is acceptable).
Note that

(5.13) ωk ∈ (0, ε] and φδkf,q(xk) > εχq(δk) for k ∈ {0, . . . , kε − 1}

(and (2.12) fails at xk), while

(5.14) ωkε = 0 and φδkf,q(xkε) = εχq(δk)

(and (2.12) holds at xkε). It is easy to verify using (5.11) that the model (2.16) is
then globally minimized for

(5.15) sk =

[
|f (q)k |

(q − 1)!

] 1
p−q+1

= [q(ε+ ωk)χq(1)]
1

p−q+1 > ε
1

p−q+1 (k ∈ {0, . . . , kε}).
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Hence this step satisfies (2.19) if we choose $ = 1. Because of this fact, we are free
to choose δs arbitrarily in (0, 1], and we choose δs = 1. The step (5.15) yields that

mk(sk) = f
(0)
k − (ε+ ωk)χq(1)[q(ε+ ωk)χq(1)]

q
p−q+1 +

1

p+ 1
[q(ε+ ωk)χq(1)]

p+1
p−q+1

= f
(0)
k − ζ(q, p)[q(ε+ ωk)χq(1)]

p+1
p−q+1 ,(5.16)

where

(5.17) ζ(q, p)
def
=

p− q + 1

q(p+ 1)
∈ (0, 1).

Thus mk(sk) < mk(0) and (2.18) holds. We then define

(5.18) f
(0)
0 = 2[2qχq(1)]

p+1
p−q+1 and f

(0)
k+1 = f

(0)
k − ζ(q, p)[q(ε+ ωk)χq(1)]

p+1
p−q+1 ,

which provides the identity

(5.19) mk(sk) = f
(0)
k+1

(ensuring that iteration k is successful because ρk = 1 in (2.21) and thus that our
choice of a constant σk is acceptable and also that, provided we choose δ0 = 1 to
ensure (5.12) for k = 0, the value δk = 1 is admissible for all k). In addition,

using (5.18), (5.13), (5.17), the inequality kε ≤ 1 + ε−
p+1
p−q+1 from (5.7) gives that, for

k ∈ {0, . . . , kε},

f
(0)
0 ≥ f (0)k ≥ f (0)0 − kζ(q, p)[2qεχq(1)]

p+1
p−q+1

≥ f (0)0 − kεε
p+1
p−q+1 [2qχq(1)]

p+1
p−q+1

≥ f (0)0 −
(

1 + ε
p+1
p−q+1

)
[2qχq(1)]

p+1
p−q+1

≥ f (0)0 − 2[2qχq(1)]
p+1
p−q+1

and hence that

(5.20) f
(0)
k ∈

[
0, 2[2qχq(1)]

p+1
p−q+1

]
for k ∈ {0, . . . , kε}.

We also set

x0 = 0 and xk =

k−1∑
i=0

si.

Then (5.19) and (2.16) give that

(5.21)
∣∣∣f (0)k+1 − Tp(xk, sk)

∣∣∣ =
1

p+ 1
|sk|p+1.

Now note that, using (5.11) and the first equality in (5.15),

T (j)
p (xk, sk) =

f
(q)
k

(q − j)!
sq−jk I[j≤q] = − (q − 1)!

(q − j)!
sp−j+1
k I[j≤q],
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where I[·] is the standard indicator function. We may now verify that, for j ∈
{1, . . . , q − 1},

∣∣∣f (j)k+1 − T
(j)
p (xk, sk)

∣∣∣ =
∣∣∣0− T (j)

p (xk, sk)
∣∣∣ ≤ ∣∣∣∣ (q − 1)!

(q − j)!

∣∣∣∣ |sk|p−j+1 ≤ (q − 1)! |sk|p−j+1,

(5.22)

while, for j = q, we have that

(5.23)
∣∣∣f (q)k+1 − T

(q)
p (xk, sk)

∣∣∣ =
∣∣∣−(q − 1)! sp−q+1

k + (q − 1)! sp−q+1
k

∣∣∣ = 0

and, for j ∈ {q + 1, . . . , p},

(5.24)
∣∣∣f (j)k+1 − T

(j)
p (xk, sk)

∣∣∣ = |0− 0| = 0.

Combining (5.21), (5.22), (5.23), and (5.24), we deduce that (5.6) holds with κf =
(q − 1)!. We may thus apply Theorem 5.2 with β = 1, κf = (q − 1)!, and κs = 1 and
deduce the existence of a p times continuously differentiable function f from R to R
with Lipschitz continuous derivatives of order 0 to p which interpolates the {f (j)k } at
{xk} for k ∈ {0, . . . , kε} and j ∈ {0, . . . , p}. Moreover, (5.20) and Theorem 5.2 imply
that f is bounded below and that its range only depends on p and q. In addition,
(5.19) ensures that every iteration is successful and thus, because of (2.22), that the
value σk = p! may be used at all iterations.

This argument allows us to state the following lower bound on the complexity of
the regularization algorithm using a pth degree model.

Lemma 5.3. Given any p ∈ N0 and q ∈ {1, . . . , p}, there exists a p times contin-
uously differentiable function f from R to R with range only depending on p and q
and Lipschitz continuous pth derivative such that, when the regularization algorithm
with pth degree model (Algorithm 2.1) is applied to minimize f without constraints, it
takes exactly

kε =
⌈
ε−

p+1
p−q+1

⌉
iterations (and evaluations of the objective function and its derivatives) to find an
(ε,δ)-approximate qth-order-necessary minimizer.

This implies the following important consequence for higher dimensional prob-
lems.

Theorem 5.4. Given any n ∈ N0, p ∈ N0, and q ∈ {1, . . . , p}, there exists a p
times continuously differentiable function f from Rn to R with range only depending
on p and q and Lipschitz continuous pth derivative tensor such that, when the regu-
larization algorithm with pth degree model (Algorithm 2.1) is applied to minimize f
without constraints, it takes exactly

(5.25) kε =
⌈
ε−

p+1
p−q+1

⌉
iterations (and evaluations of the objective function and its derivatives) to find an
(ε, δ)-approximate qth-order-necessary minimizer. Furthermore, the same conclusion
holds if the optimization problem under consideration involves constraints provided
the feasible set F contains a ray.

Proof. The first conclusion directly follows from Lemma 5.3 since it is always pos-
sible to include the unimodal example as an independent component of a multivariate
one.
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The second conclusion follows from the observation that our univariate example
of slow convergence is only defined on R+ (even if Theorem 5.2 provides an extension
to the complete real line). As a consequence, it may be used on any feasible ray.

We now make a few observations.
1. In the above example, we have restricted our attention to the Lipschitz con-

tinuous case where β = 1. It is possible that it could be extended to cover
a more general choice of β ∈ (0, 1]: for example, [6] develops precisely such
examples for second-order methods and Hölder continuous functions.

2. Theorem 5.4 generalizes to arbitrary values of q, the bound obtained in [3]
for the case q = 1 and also shows that, at variance with the result derived in
this reference, the generalized bound applies for arbitrary problem dimension
but depends on ε, p, and q.

3. For simplicity, we have chosen, in the above example, to minimize the model
mk(s) globally at every iteration, but we might consider other pairs (s, δs). A
similar example of slow convergence may in fact be constructed along the lines
used above10 for any sequence of acceptable11 model reducing steps and asso-
ciated optimality radii (in the sense of Lemma 2.5), provided the optimality
radii remain bounded away from zero. This means that our example of slow
convergence applies not only to Algorithm 2.1 but also to a much broader
class of minimization methods containing all known methods using Taylor se-
ries that attempt to achieve approximate qth order criticality as defined here;
note that much in the definition of the example’s function is independent of
the algorithm and one could, for instance, replace regularization with trust
region or linesearch (of course, the complexity would be worse for the latter
two if one uses standard frameworks; see next paragraph). Moreover, it is
also possible to weaken the constraints on the step further by relaxing (5.19)
and only insisting on acceptable decrease of the objective function value in
Step 3 of the algorithm.

In [3], the authors derive their upper bound for q = 1 for the general class of
“zero-preserving” algorithms, which are algorithms that “never explore (from
xk) coordinates which appear not to affect the function,” that is, directions
d along which Tp(xk, ·) is constant. This property is obviously shared by
Algorithm 2.1 because it attempts to reduce the Taylor’s expansion of f
around the current iterate (the presence of the isotropic regularization term
is irrelevant for this).

4. Our example does apply, for instance, to a linesearch method using univariate
minimization along a descent search direction computed from the Taylor ex-
pansion of f , which is another zero-preserving method. Note, however, that
such a method, just as every other linesearch method along descent directions
(including possibly randomized coordinate searches), is bound to fail when
attempting to compute approximate minimizers of order beyond three for
problems whose dimension exceeds one,12 because then the Taylor expansion
at a nonoptimal point need no longer decrease along straight lines. This is
demonstrated by the following old example [18, 22]. Let

10At the price of possibly larger constants.
11Remember that δ = 1 is always possible for q = 1. It thus unsurprising that no such condition

appears in [3].
12Linesearch methods remain relevant for unidimensional problems, obviously, which is why we

have mentioned them in relation with our slow convergence example.
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f(x1, x2) =

(
1

2
x21 − x2

)(
x21 − x2

)
.

Then f(0, 0) = 0, and the origin is not a minimizer since f decreases along
the arc x2 = 3

4x
2
1 (the origin is a saddle point in this case). Yet the ori-

gin is a strong local minimizer along every straight line passing through the
origin, preventing any linesearch method based on descent directions from
progressing from (0, 0).

Let us now consider an alternative unconstrained minimization method which would
attempt to reduce the unregularized model (that is, (2.16) with σk = 0) in order to
find an unconstrained first-order minimizer. It is easy to see that if one chooses

f
(1)
k = −(ε+ ωk), f

(i)
k = 0 for i ∈ {2, . . . , p− 1} and f

(p)
k = p!,

the same reasoning as above yields that the largest obtainable decrease with this
model occurs at

sk =

(
ε+ ωk
p

) 1
p−1

and is given by

f
(0)
k −mk(sk) = (p− 1)

(
ε+ ωk
p

) p
p−1

.

This then implies that at least a multiple of ε−
p
p−1 evaluations may be needed to find

approximate first-order-necessary minimizers, which is worse than the bound in ε−
p+1
p

holding for the regularized algorithm. This is consistent with the known lower O(ε−2)
bound for first-order points that holds for the (unregularized) Newton method (and
hence the trust-region method), both of which use p = 2. Adding the regularization
term thus not only provides a mechanism to limit the stepsize and make the step
well-defined when Tp(xk, s) is unbounded below but also amounts to increasing the
“useful degree” of the model by one, improving the worst-case complexity bound.

Summing up the above discussion, we conclude that an example of slow conver-
gence requiring at least (5.25) evaluations can be built for any method whose steps
decrease the regularized (σk ≥ σmin) or unregularized (σk = 0) model (2.16) and
whose approximate local optimality can be measured by (2.20) for some constant θ
and δk = 1 (which we can always enforce by adapting $ and (5.9)). For orders up to
two, this includes most variants of steepest-descent and Newton’s methods including
those globalized with regularization, trust-region, a linesearch, or a mixture of these
(see [13] for a discussion). General linesearch methods are excluded for high-order
optimization as they may fail to converge to approximate minimizers of order four
and beyond.

Finally, one may wonder at what would happen if, for the interpolation data
(5.9)–(5.10), the model

mk(s) = Tp(xk, s) +
σk
m!
|s|m

were used for some m > p+1, resulting in a shorter step. The global model minimizer
would then occur at s = [q(ε+ ωk)χq(1)]1/(m−1) and give an optimal model decrease
equal to [q(ε+ωk)χq(1)]m/(m−1)(m− q)/m. However, (5.6) would then fail for j = 0,
and the argument leading to an example of slow convergence would break down.
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6. Summary, further comments, and open questions. For any optimality
order q ≥ 1, we have provided the concept of an (ε, δ)-approximate qth-order-necessary
minimizer for the very general set-constrained problem (2.1). We have then proposed
a conceptual regularization algorithm to find such approximate minimizers and have

shown that, if∇pxf is β-Hölder continuous, this algorithm requires at most O(ε−
p+β
p−q+β )

evaluations of the objective function and its first p derivatives to terminate. When
∇pxf is Lipschitz continuous, we have used an unconstrained univariate version of the
problem to show that this bound is sharp in terms of the order in ε for any feasible
set containing a ray and any problem dimension.

In view of the results in [8, 15], one may wonder at what would happen if the
regularization power (i.e., the power of ‖s‖ used in the last term of the model (2.16))
were allowed to differ from p+ β. The theory presented above must then be reexam-
ined, and the crucial point is whether a global upper bound σmax on the regularization
parameter can still be ensured as in Lemma 3.2. One easily verifies that this is the
case for regularization powers r ∈ (p, p + β]. Arguments parallel to those presented
above then yield an upper bound of O(ε−

r
r−q ) evaluations,13 recovering the bound

given in section 3.3 of [8] for q = 1. The situation is, however, more complicated (and
beyond the scope of the present paper) for r > p + β, and the determination of a
suitable general complexity upper bound for this latter case has not been formalized
at this stage, but the analysis for q = 1 discussed in section 3.2 of [8] suggests that
an improvement of the bound for larger r is unlikely.

Although the results presented essentially solve the question of determining the
optimal evaluation complexity for unconstrained problems and problems with general
inexpensive constraints, some interesting issues remain open at this stage. A first such
issue is whether an example of slow convergence for all ε ∈ (0, 1) can be found for
feasible domains not containing a ray. A second is to extend the general complexity
theory for problems whose constraints are not inexpensive: the discussion in [11]
indicates that this is a challenging research area.

Appendix A.

A.1. Proof of lemmas in section 2.

Proof of Lemma 2.1. We first establish the identity
(A.1)

Ik−1,β
def
=

∫ 1

0

ξβ(1− ξ)k−1 dξ =
(k − 1)!

(k + β)!
, where (k + β)!

def
=

k∏
i=1

(i+ β) and β! = 1.

If k = 1, the result directly follows from a simple integration. To see (A.1) for k > 1,
integrating by parts, we have that

Ik−1,β =

[
ξ1+β

1 + β
(1− ξ)k−1

]1
0

+
(k − 1)

(1 + β)

∫ 1

0

ξ1+β(1− ξ)k−2 dξ =
(k − 1)

(1 + β)
Ik−2,1+β

and thus, recursively, that

Ik−1,β =
(k − 1)!

(k − 1 + β)!
I0,k−1+β =

(k − 1)!

(k − 1 + β)!

∫ 1

0

ξk−1+β dξ =
(k − 1)!

(k + β)!
.

13We may even relax (2.20) slightly by replacing ‖sk‖p−q+β by ‖sk‖r−q .
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As in [12], consider the Taylor identity

(A.2) ψ(1)− τk(1) =
1

(k − 1)!

∫ 1

0

(1− ξ)k−1[ψ(k)(ξ)− ψ(k)(0)] dξ

involving a given univariate Ck function ψ(t) and its kth order Taylor approximation

τk(t) =

k∑
i=0

ψ(i)(0)
ti

i!

expressed in terms of the value ψ(0) = ψ and ith derivatives ψ(i), i = 1, . . . , k. Then,
picking ψ(t) = f(x + ts), for given x, s ∈ Rn, and k = p, the identity (A.2) and the
relationships ψ(p)(t) = ∇pxf(x+ ts)[s]p and τp(1) = Tp(x, s) give that

f(x+ s)− Tp(x, s) =
1

(p− 1)!

∫ 1

0

(1− ξ)k−1 (∇pxf(x+ ξs)−∇pxf(x)) [s]p dξ,

and thus from the definition of the tensor norm (1.1), the Hölder bound (2.2) and the
identity (A.1) when k = p, we obtain that

f(x+ s)− Tp(x, s)

≤ 1

(p− 1)!

∫ 1

0

(1− ξ)k−1
∣∣∣∣(∇pxf(x+ ξs)−∇pxf(x))

[
s

‖s‖

]p∣∣∣∣ ‖s‖p dξ
≤ 1

(p− 1)!

∫ 1

0

(1− ξ)k−1 max
‖v‖=1

|(∇pxf(x+ ξs)−∇pxf(x)) [v]
p| ‖s‖p dξ

=
1

(p− 1)!

∫ 1

0

(1− ξ)k−1‖∇pxf(x+ ξs)−∇pxf(x)‖[p]dξ · ‖s‖p

≤ 1

(p− 1)!

∫ 1

0

ξβ(1− ξ)p−1 dξ · L‖s‖p+β =
L

(p+ β)!
‖s‖p+β

for all x, s ∈ Rn, which is the required (2.4).
Likewise, for arbitrary unit vectors v1, . . . , vj , choosing ψ(t) = ∇jxf(x+ts)[v1, . . . ,

vj ] and k = p − j, it follows from (A.2), the relationships ψ(p−j)(t) = ∇pxf(x +
ts)[v1, . . . , vj ][s]

p−j , and τp−j(1) = ∇jsTp(x, s) that

(A.3)
(∇jx f(x+ s)−∇jsTp(x, s))[v1, . . . , vj ]

=
1

(p− j − 1)!

∫ 1

0

(1− ξ)p−j−1 (∇pxf(x+ ξs)−∇pxf(x)) [v1, . . . , vj ][s]
p−j dξ.

Then picking v1, . . . , vj to maximize the absolute value of left-hand side of (A.3) and
using the tensor norm (1.1), the Hölder bound (2.2), and the identity (A.1) when
k = p− j, we find that

‖∇jxf(x+ s)−∇jsTp(x, s)‖[j]

≤ 1

(p− j − 1)!

∫ 1

0

(1− ξ)p−j−1
∣∣∣∣∣(∇pxf(x+ ξs)

−∇pxf(x))[v1, . . . , vj ]

[
s

‖s‖

]p−j ∣∣∣∣∣‖s‖p−j dξ
≤ 1

(p− j − 1)!

∫ 1

0

(1− ξ)p−j−1 max
‖v1‖=···=‖vp‖=1

|(∇pxf(x+ ξs)

−∇pxf(x)) [v1, . . . , vp]| ‖s‖p−j dξ
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=
1

(p− j − 1)!

∫ 1

0

(1− ξ)p−j−1‖∇pxf(x+ ξs)−∇pxf(x)‖[p] dξ · ‖s‖p−j

≤ 1

(p− j − 1)!

∫ 1

0

ξβ(1− ξ)p−j−1 dξ · L‖s‖p−j+β =
L

(p− j + β)!
‖s‖p−j+β

for all x, s ∈ Rn, which gives (2.5).

Proof of Lemma 2.3. The regularization parameter update (2.22) gives that, for
each k,

γ1σj ≤ max[γ1σj , σmin] ≤ σj+1, j ∈ Sk, and γ2σj ≤ σj+1, j ∈ Uk,

where Uk
def
= {0, . . . , k} \ Sk. Thus we deduce inductively that σ0γ

|Sk|
1 γ

|Uk|
2 ≤ σk. We

therefore obtain, using (2.23), that

|Sk| log γ1 + |Uk| log γ2 ≤ log

(
σmax

σ0

)
,

which then implies that

|Uk| ≤ −|Sk|
log γ1
log γ2

+
1

log γ2
log

(
σmax

σ0

)
,

since γ2 > 1. The desired result (2.24) then follows from the equality k+1 = |Sk|+|Uk|
and the inequality γ1 < 1 given by (2.17).

Proof of Lemma 2.4. We first observe that ∇js
(
‖s‖p+β

)
is a jth order tensor,

whose norm is defined using (1.1). Moreover, using the relationships

(A.4) ∇s
(
‖s‖τ

)
= τ ‖s‖τ−2s and ∇s

(
sτ⊗

)
= τ s(τ−1)⊗ ⊗ I, (τ ∈ R),

defining

(A.5) ν0
def
= 1 and νi

def
=

i∏
`=1

(p+ 2− 2`),

and proceeding by induction, we obtain that, for some µj,i ≥ 0 with µ1,1 = 1,

∇s
[
∇j−1s

(
‖s‖p+β

)]
= ∇s

[
j∑
i=2

µj−1,i−1νi−1‖s‖p+β−2(i−1) s(2(i−1)−(j−1))⊗ ⊗ I((j−1)−(i−1))⊗
]

=

j∑
i=2

µj−1,i−1νi−1

[
(p+ β − 2(i− 1))‖s‖p+β−2(i−1)−2 s(2(i−1)−(j−1)+1)⊗ ⊗ I(j−i)⊗

+ ((2(i− 1)− (j − 1))‖s‖p+β−2(i−1) s(2(i−1)−(j−1)−1)⊗ ⊗ I((j−1)−(i−1)+1)⊗
]

=

j∑
i=2

µj−1,i−1νi−1

[
(p+ β + 2− 2i)‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

+ (2(i− 1)− j + 1)‖s‖p+β−2(i−1) s(2(i−1)−j)⊗ ⊗ I(j−(i−1))⊗
]
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=

j∑
i=2

µj−1,i−1νi−1(p+ β + 2− 2i)‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

+

j−1∑
i=1

(2i− j + 1)µj−1,iνi‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

=

j∑
i=1

(
(p+β+2−2i)µj−1,i−1νi−1+(2i−j+1)µj−1,iνi

)
‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗,

where the last equation uses the convention that µj,0 = 0 for all j. Thus we may write

(A.6) ∇js
(
‖s‖p+β

)
= ∇s

[
∇j−1s

(
‖s‖p+β

)]
=

j∑
i=1

µj,iνi ‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

with

(A.7)
µj,iνi = (p+ β + 2− 2i)µj−1,i−1νi−1 + (2i− j + 1)µj−1,iνi

=
[
µj−1,i−1 + (2i− j + 1)µj−1,i

]
νi,

where we used the identity

(A.8) νi = (p+ β + 2− 2i)νi−1 for i = 1, . . . , j

to deduce the second equality. Now (A.6) gives that

∇js
(
‖s‖p+β

)
[v]j =

j∑
i=1

µj,iνi‖s‖p+β−j
(
sT v

‖s‖

)2i−j

(vT v)j−i.

It is then easy to see that the maximum in (1.1) is achieved for v = s/‖s‖, so that

(A.9) ‖∇js
(
‖s‖p+β

)
‖[j] =

(
j∑
i=1

µj,iνi

)
‖s‖p+β−j = πj‖s‖p+β−j

with

(A.10) πj
def
=

j∑
i=1

µj,i νi.

Successively using this definition, (A.7), (A.8) (twice), the identity µj−1,j = 0, and
(A.10) again, we then deduce that

πj =

j∑
i=1

µj−1,i−1νi +

j∑
i=1

(2i− j + 1)µj−1,iνi(A.11)

=

j−1∑
i=1

µj−1,iνi+1 +

j∑
i=1

(2i− j + 1)µj−1,iνi

=

j−1∑
i=1

µj−1,i
[
νi+1 + (2i− j + 1)νi

]
=

j−1∑
i=1

µj−1,i
[
(p+ β + 2− 2(i+ 1))νi + (2i− j + 1)νi

]
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= (p+ β + 1− j)
j−1∑
i=1

µj−1,i νi

= (p+ β + 1− j)πj−1.

Since π1 = p+β from the first part of (A.4), we obtain that πj = (p+β)!/(p− j+β)!,
which, combined with (A.9) and (A.10), gives (2.25). We obtain (2.26) from (A.9)
and (A.10), the observation that πp = (p+ β)!, and (A.11) for j = p+ 1.

A.2. Proof of lemmas in section 3.

Proof of Lemma 3.1 (see [2, Lemma 2.1]). Observe that, because of (2.18) and
(2.16),

0 ≤ mk(0)−mk(sk) = Tp(xk, 0)− Tp(xk, sk)− σk
p+ 1

‖sk‖p+β

which implies the desired bound. Note that sk 6= 0 as long as we can satisfy condition
(2.18), and so (3.1) implies (2.21) is well defined.

Proof of Lemma 3.2 (see [2, Lemma 2.2]). Assume that

(A.12) σk ≥
L

1− η2
.

Using (2.4) and (3.1), we may then deduce that

|ρk − 1| ≤ |f(xk + sk)− Tp(xk, sk)|
|Tp(xk, 0)− Tp(xk, sk)|

≤ L

σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and
σk+1 ≤ σk. As a consequence, the mechanism of the algorithm ensures that (3.2)
holds.
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