
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Using application level overlays to provide multicast services

Donnet, Benoît

Award date:
2003

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/81cf3c70-20f7-4d4d-817f-10906c32eaf5

Facultés Universitaires Notre-Dame de la Paix
Institut d'Informatique

Using Application Level Overlays
To Provide Multicast Services

Benoit DONNET

Promoteur : Professeur Olivier Bonaventure

Travail de fin d'études réalisé en vue de l'obtention
du titre de Maître en Informatique

Année Académique 2002-2003

2

Abstract

These last years, the expansion of the multi-point communications, also called multicast ,
is impressive. Unfortunately, the multicast is difficult to implement efficiently because of
scalability reasons, among others. A solution proposed is Application Level Multicast that
could be implemented thanks to overlays. This dissertation is dedicated to the overlays . In a
first time, we will give an overview of several overlays and we will compare them: Application
Level Multicast Infrastructure, Narada, Overcast, Pastry, Yoid, Scribe and Reliable Overlay
Network. Next, we will introduce the both overlays we implemented in Lancaster: Application
Level Clustering and Tree Building Control Protocol. Their functioning and their limitations
will be explained and a comparison between all the exposed overlays will also be proposed. Our
implementation of Application Level Clustering and Tree Building Control Protocol will be
presented by their design. The description of the various packages, classes and interfaces will
constitute an introduction to the Java code. Finally, the assessment of the both mechanisms
will be present by the discussion about the performance measures performed on the P lanet
Lab network.

Résumé

Ces dernières années, l'essor des communications multi-points, aussi appellées multicast, est
impressionnant. Malheureusement, le multicast est difficile à implément.er efficacement en
raison, notamment, de problèmes de mise à l'échelle. Une solution proposée est Application
Level Multicast, qui peut être implémenté grâce aux overlays. Ce mémoire leur est consacré.
Dans un premier temps, nous passerons en revue et nous comparerons différents overlays:
Application Level Multicast Infrastructure, Narada, Overcast, Pastry, Yoid, Scribe et Reliable
Overlay Network. Ensuite, nous présenterons les deux overlays que nous avons implémenté
à Lancaster: Application Level Clustering et Tree Building Control Protocol. Leur fonction
nement et leur limitations seront expliqués et une comparaison entre tous les overlays exposés
sera aussi proposée. Notre implémentation d'Application Level Clustering et Tree Building
Control Protocol sera présentée au travers de leur design. La description des différents pack
ages, classes et interfaces constituera une introduction au code Java. Enfin, l'évaluation de
ces deux mécanismes sera présentée au travers de la discussion des mesures de performance
effectuées sur le réseau Planet Lab.

3

Acknowledgements
I would like to acknowledge first my supervisor, Professor Olivier Bonaventure, and Cristel

Pelsser for their patience towards me, for their ad vices (always wise), for their comments
(always relevant) and their rereadings.

I would also like to thank all the members of the team of the Computing Department in
Lancaster University for its welcome and itsjoviality. In particular, I would like to acknowledge
three people: Doctor Laurent Mathy who accepted my training in Lancaster and who spent
time to answer my questions. Doctor Steven Simpson who was always there to fill in my gaps
and raise my misunderstandings. Finally, Mrs. Carol Airey who has dealt with the majority
of my administrative steps.

Merci beaucoup à toutes et tous ...

Contents

Introduction

I Internet Protocol and Multicast

1 Internet Protocol
1.1 IPv4

1. 1. 1 Overview .
1.1.2 Limitations

1.2 IPv6
1.2.1
1.2.2

Expanded Addressing Capabilities
Packet Format

1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9

2 Multicast

1.2.2.1 Header Format
1.2.2.2 Improved Support For Extensions And Options .
Autoconfiguration . .
Multicast
Routing Optimization
Mobile IPv6
IPv4 - 1Pv6 Transition
Solutions To The IPv4 Limitations
Limitations

2.1 Motivations And Problems.
2.2 Overview

II Application Level Multicast and Overlays

3 Application Level Overlays
3.1 Application Level Multicast

3.1.1 Application Level Overlays: Definition
3.1.2 Overview

4 Two Application Level Overlay Protocols
4.1 Distance
4.2 Application Level Clustering (ALC)

4

1

2
2
2

3
4
4
6
6
6
8
8
9
9

10
11
12

13
13
14

19

20
20
21
22

31
31
32

CONTENTS

4.3 Ttee Building Control Protocol
4.4 ALC - TBCP comparison . .
4.5 Maintenance Procedure ...
4.6 Heartbeat Timer Negotiation
4. 7 Limitations

4.7.1 ALC limitations .
4.7.2 TBCP limitations

4.8 Summary

III Evaluation

5 Implementation Details
5.1 General Structure
5.2 Introduction To The Java Code .. .

5.2.1 Application Level Clustering
5.2.1.1 The UK.ac.lancs.Clustering.Agent package
5.2.1.2 The UK. ac. lancs. Clustering. Measurer package
5.2.1.3 The UK. ac. lancs. Clustering. User package . . .
5.2.1.4 The UK. ac. lancs. Clustering. Transfer package

5.2.2 Ttee Building Control Protocol
5.2.2.1 The UK . ac. lancs. tbcp. Controller package
5.2.2.2 The UK. ac. lancs. tbcp. Measurer package
5.2.2.3 The UK. ac. lancs. tbcp. User package ...
5.2.2.4 The UK. ac. lancs. tbcp. Transfer package

5.3 Implementation Issues
5.4 Data Transmission .

6 Performance Measures
6.1 Planet Lab
6.2 Application-Level Clustering

6.2.1 Introduction To The Measure Scenario
6.2.2 Construction Of The Ttee
6.2.3 Number Of Messages Exchanged
6.2.4 Heartbeat Messages Exchanged
6.2 .5 DBJREQ Messages Exchanged .
6.2.6 Total Bytes Exchanged
6.2.7 Ttee Maintenance
6.2.8 Time Needed To Find A Place In The Hierarchy

6.3 Ttee Building Control Protocol
6.4 Conclusion

7 Conclusion

5

36
40
40
45
45
46
47
47

49

50
50
51
51
51
59
61
63
64
64
70
71
72
73
73

75
75
76
76
77
78
78
79
81
82
83
85
86

87
7.1 Further Works 88

CONTENTS

A ALC: lmplementation Document
A. l Terminology
A.2 Protocol

A.2.1 Lexical Elements
A.2.2 Basic Types . . .
A.2.3 Object Types ..

A.2.3.1 DADDR Object .
A.2.3.2 MADDR Object .
A.2.3.3 PEERADDR Object
A.2.3.4 RDDT Object . .
A.2.3.5 KEY Object ...
A.2.3.6 MEASUREMENT Object .
A.2.3.7 LEAFONLY Object .
A.2.3.8 TENTATIVE Object
A.2.3.9 TIMER Object ..

A.2.4 Message Types
A.2.4.1 OBJREQ Message
A.2.4.2 OBJRSP Message
A.2.4.3 JOIN Message .
A.2.4.4 TRY Message
A.2.4.5 NC Message . .
A.2.4.6 NCA Message .
A.2.4.7 LEAVE Message
A.2.4.8 ERROR Message
A.2.4.9 ALIVE Message
A.2.4.10 ALIVEACK Message

A.2.5 Object Representation .
A.2.6 Message Representation

A.3 State
A.3.1 Agent State
A.3.2 Peer State .

6

93
93
93
93
94
94
94
94
95
95
95
95
95
95
95
95
96
96
96
96
97
97
97
97
97
97
98
99

. 103

. 103

. 105
A.4 Behavior 106

A.4.1 Initial State . 106
A.4.2 Action On join (From User) . 107
A.4.3 Action On leave (From User) . 107
A.4.4 Action On interest (From User) . 107
A.4.5 Action On measured (From Measurer) . 107
A.4.6 Action On Sorne Timeouts 108

A.4.6.1 Action On The Agent Data Address Timeout . 108
A.4.6.2 Action On The Agent Measurement Address Timeout . 108
A.4.6.3 Action On A Peer Data Address Timeout 108
A.4.6.4 Action On A Peer Measurement Address Timeout . 108
A.4.6.5 Action On A Message Reception Timeout . 108
A.4.6.6 Action On A Measurement Timeout . 108
A.4.6.7 Action On A Maintenance Timeout . 109
A.4.6.8 Action On An Error Timeout 109
A.4 .6.9 Action On An Heartbeat Timeout . . 109

CONTENTS 7

A.4.6.10 Action On An ALIVEACK Message Reception Timeout . 109
A.4.7 Action On Receipt Of An OBJREQ Message . . 110
A.4.8 Action On Receipt Of An OBJRSP Message . . 110
A.4.9 Action On Receipt Of A JOIN Message . . 110
A.4.10 Action On Receipt Of A TRY Message . 110
A.4.11 Action On Receipt Of A NC Message . . . 111
A.4.12 Action On Receipt Of A NCA Message . . 111
A.4.13 Action On Receipt Of A LEAVE Message . 111
A.4.14 Action On Receipt Of An ERROR Message . 112
A.4.15 Action On Receipt Of An ALIVE Message . 112
A.4.16 Action On Receipt Of An ALIVEACK Message . 112
A.4.17 Finite State Machine . . 112

A.4.17.1 The States 112

B TBCP: implementation document 114
B .1 Terminology 114
B.2 Protocol 114

B.2.1 Lexical Elements . 114
B.2.2 Basic Types 115
B.2.3 Object Types . . . 115

B.2.3.1 DADDR Object . . 115
B.2.3.2 MADDR Object . . 116
B.2.3.3 MEASUREMENT Object . . 116
B.2.3.4 TIMER Object 116
B.2.3.5 NODEADDR Object . . 116
B.2.3.6 KEY Object . . 116
B.2.3.7 ROOT Object . . . 116

B.2.4 Message Types 116
B.2.4.1 OBJREQ Message . 116
B.2.4.2 OBJRSP Message . 117
B.2.4.3 REJECT Message . 117
B.2.4.4 HELLO Message . . 117
B.2.4.5 HELLOACK Message . 117
B.2.4.6 JOIN Message 117
B.2.4. 7 WELCOME Message . . 118
B.2.4.8 WELCOMEACK Message . . 118
B.2.4.9 GO Message . . . 118
B.2.4.10 GOACK Message . 118
B.2.4.11 ERROR Message . 118
B.2.4.12 LEAVE message . 118
B.2.4.13 ALIVE Message . 118
B.2.4.14 ALIVEACK Message . 119

B.2.5 Object Representation . . 119
B.2.6 Message Representation . 120

B.3 State 126
B.3.1 Controller State . . 126
B.3.2 Node State 127

CONTENTS

B.4 Behavior
B.4.1 Initial State
B.4.2 Action On join (From The User)
B.4.3 Action On accept (From The User)
B.4.4 Action On leave (From The User) .
B.4.5 Action On measured (From The Measurer)
B.4.6 Action On Sorne Timeouts

B.4.6.1 Action On The Controller Data Address Timeout.

8

. 128

. 129

. 129

. 129

. 129

. 130

. 130

. 130
B.4.6.2 Action On The Controller Measurement Address Timeout . 130
B.4.6.3 Action On A Node's Data Address Timeout 130
B.4.6.4 Action On A Node's Measurement Address Timeout . 130
B.4.6.5 Action On A Message Reception Timeout . 130
B.4.6.6 Action On A Maintenance Timeout 131
B.4.6.7 Action On A Heartbeat Timeout 131
B.4.6.8 Action On An ALIVEACK Message Reception Timeout . 131
B.4.6.9 Action On A Join Procedure Timeout . 131
B.4.6.10 Action On An Error Timeout ...

B.4. 7 Action On Receipt Of An OBJREQ Message .
B.4.8 Action On Receipt Of An OBJRSP Message .
B.4.9 Action On Receipt Of A REJECT Message .
B.4.10 Action On Receipt Of A HELLO Message . .
B.4.11 Action On Receipt Of A HELLOACK Message
B.4.12 Action On Receipt Of A JOIN Message .. .
B.4.13 Action On Receipt Of A WELCOME Message .
B.4.14 Action On Receipt Of A WELCOMEACK Message .
B.4.15 Action On Receipt Of A GO Message ...
B.4.16 Action On Receipt Of A GOACK Message .
B.4.17 Action On Receipt Of An ERROR Message
B.4.18 Action On Receipt Of An ALIVE Message
B.4.19 Action On Receipt Of An ALIVEACK Message
B.4.20 Action On Receipt Of A LEAVE Message
B.4.21 Finite State Machine

B.4.21.1 The States

. 132

. 132

. 132

. 132

. 132

. 133

. 133

. 133

. 134

. 134

. 134

. 134

. 135

. 135

. 135

. 135

. 135

List of Figures

1.1 Address Class
1.2 An IPv6 Unicast Address .
1.3 An IPv4 Multicast Address
1.4 An Anycast Address
1.5 Header of an IPv6 packet .
1.6 Examples of IPv6 header extensions
1.7 Hop-by-Hop extension header
1.8 Routing extension header .
1. 9 Fragment extension header .
1.10 The Binding Messages . . .

2.1 The first way to implement Multicast .
2.2 The second way to implement Multicast
2.3 Pruning unwanted traffic .
2.4 P IM SM register ...
2.5 DVMRP - Source Tree . .

3.1 Application Level Multicast
3.2 ALMI tree
3.3
3.4
3.5

N arada tree
Overcast distribution tree .
Routing a message from a node 65alfc with key d46alc.
nodes in Pastry's circular namespace
Yoid Tree

The dots depict live

3.6
3.7
3.8

Membership management and multicast tree creation with Scribe
RON overlay network.

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Cluster hierarchy . . .
A region
Application Level Clustering - Join Procedure (first case)
Application Level Clustering - Join Procedure (second case)
Application Level Clustering - Join Procedure (third case)
Simplified version of ALC Finite State Machine
Local configuration test .
Tree Building Control Protocol - Join Procedure (first case)
Tree Building Control Protocol - Join Procedure (second case) .
Simplified version of TBCP Finite State Machine

9

3
5
5
6
6
7
7
7
8

10

13
14
15
15
17

21
23
23
24

25
26
28
29

33
34
34
35
36
37
38
39
39
41

LIST OF FIGURES

4.11 Root replication in ALC

5.1 Node Architecture .
5.2 The Agent Package .
5.3 The AgentState class
5.4 The AppData class .
5.5 The Message class .
5.6 The MessageContent class
5.7 The Objet class .. .
5.8 The PeerState class
5.9 The SigAddr class
5.10 The TimedAppData class
5.11 The AgentToMeasurerlnterface interface
5.12 The AgentToUserlnterface interface .
5.13 The ClusterAgentlnterface interface .
5.14 The Measurer Package .
5.15 The Measurement class.
5.16 The Radius class
5 .17 The Region class
5.18 The MeasurerToAgentlnterface interface
5.19 The Measurer class
5.20 The User Package
5.21 The UserToAgentlnterface interface .
5.22 The User class
5.23 The Transfer Package
5.24 The PeerConnected class .
5.25 The Server interface .
5.26 The Transfer interface ..
5.27 The ControllerPackage ..
5.28 The ControllerState class
5.29 The Message class
5.30 The MessageContent class
5.31 The Objet class
5.32 The Score class
5.33 The ControllerToME!asurerlnterface interface .
5.34 The Controllerlnterface interface
5.35 The ControllerToUserlnterface interface .. .
5.36 The Measurer Package
5.37 The MeasurerToControllerlnterface interface .
5.38 The Measurerlnterface interface
5.39 The User Package
5.40 The UserToControllerlnterface interface
5.41 The User interface ...

6.1 The PlanetLab network
6.2 Tree shape
6.3 Total number of messages exchanged

10

46

50
52
53
53
54
54
55
56
56
57
58
58
59
60
60
60
60
61
61
61
62
62
63
63
64
64
65
66
67
67
68
68
69
69
70
70
71
71
71
72
72

76
77
79

LIST OF FIGURES

6.4 Number of heartbeat messages exchanged
6.5 Number of OBJREQ messages exchanged ..
6.6 Total length exchanged
6. 7 Number of maintenance procedure without a move
6.8 Modification of a Join Procedure aspect
6.9 Time needed for anode to find its place in the hierarchy

A.1 The OBJREQ message
A.2 The OBJRSP message
A.3 The JOIN message
A.4 The TRY message
A.5 The NC message . .
A.6 The NCA message .
A.7 The LEAVE message .
A.8 The ERROR message .
A.9 The ERROR message .
A.10 The ALIVEACK message .
A.11 The Finite State Machine

B.1 The OBJREQ message
B.2 The OBJRSP message
B.3 The REJECT message
B.4 The HELLO message .
B.5 The HELLOACK message .
B.6 The JOIN message ...
B. 7 The WELCOME message .
B.8 The WELCOMEACK message
B.9 The GO message ...
B.10 The GOACK message .
B.11 The ERROR msg ...
B.12 The LEAVE message .
B.13 The ALIVE message .
B.14 The ALIVEACK message .
B.15 The Finite State Machine

11

80
81
82
83
84
84

99
. 100
. 100
. 101
. 102
. 102
. 103
. 103
. 103
. 103
. 113

. 121

. 121

. 121

. 122

. 123

. 124

. 124

. 125

. 125

. 125

. 125

. 125

. 126

. 126

. 137

List of Tables

1.1 Explanation of an IPv6 address . . 5

3.1 Application-level overlays overview summary 30

4.1 Application-level overlays overview summary 48

6.1 Average time to find a place by level 85
6.2 Tree instability 85

12

List of Pseudo-Code

1
2

Pseudo-code for the RTT measure
Pseudo-code for the maintenance procedure

13

32
43

Introduction

Since the beginning of the 90's, the Internet has seen a rapid expansion. Nowadays, a new
kind of services arises. These services need to send data from one sender (the source) to a large
number of recei vers (called a group of receivers) . These services are used by applications like
games with players at different locations, video-conferencing, film streaming, TV streaming,
. . . The naïve way to implement this kind of services is to send the same data to each receiver.
So, if the group of receiver is composed of 500 members, the source has to send 500 times the
same data. The problem of this solution is obvious: it the resources inside the network.

An elegant solution was discovered by S. Deering [1, 2] to avoid this naïve answer. It
consists in building a logical distribution tree between the source and the receivers. The data
is transmitted along the tree in only one data flow. This kind of communication is called
multi-point communication or multicast.

However, the protocols used to implement multicast (PIM-DM, PIM-SM, ...) have shown
their limitations. Because of the resources needed in routers, they are not scalable and thus,
not adapted to large groups of receivers. These protocols are also difficult to implement,
consume bandwidth and are expensive.

Nevertheless, the Internet Community didn't give up the multicast dream. An attractive
alternative has been proposed: Application Level Multicast (ALM). ALM is a mean of en
abling service provision in non-native multicast environments. ALM enables multicast-style
communications to be conducted using only unicast messaging between parties in an ALM
spanning tree [3].

ALM relies on protocols to build a tree between all participants of an ALM session. To
achieve that, we use Application Level Overlays (overlays). Application level overlay net
works consist of groups of application programs collaborating across a network using its basic,
unicast services. This not only allows services such as multicast to be emulated, but also
the participants can arrange themselves into trees or graphs according to application-specific
criteria [4].

ALM, via overlays, allows to avoid some of the drawbacks of performing multicast at layer
three: it is more scalable, it allows more flexibility, . . . [5]

This dissertation treats overlays, and in particular the two overlays we implemented at
Lancaster University: Application Level Clustering [6] and Tree Building Control Protocol
[7].

This document is divided in three parts and is organized as follows : the first part (Internet
Protocol and Multicast) contents two chapters. Chapter 1 introduces Internet Protocol (IP).
We present the Internet Protocol Version 4 (Ipv4) and we discuss the need for a new version.
The Internet Protocol Version 6 (1Pv6) is then presented. The issue of the lpv4-1Pv6 transition
are shortly introduced. The solution to the 1Pv4 limitations is also introduced and the 1Pv6
drawbacks are presented.

INTRODUCTION 11

Chapter 2 is dedicated to multicast. We present the motivations of multicast communi
cations. We also give an overview of protocols used to implement multicast at layer three:
PIM-SM, PIM-DM, SSM, DVMRP, MBGP, MSDP and MOSPF. Finally, the drawbacks of
these protocols are shown.

The second part (Application Level Multicast and Overlays) contents two chapters. Chap
ter 3 presents a solution to the drawbacks of multicast at layer three: Application Level
Multicast. ALM is discussed by the way to implement it: Application Level Overlays. We
will discuss several well known overlays: ALMI, Overcast , Narada, Pastry, Yoid, Scribe and
RON. A comparison of the different overlays concludes this third chapter.

Chapter 4 presents in depth the two overlays we implemented in Lancaster: Application
Level Clustering (ALC) and Tree Building Control Protocol (TBCP). The distance notion is
first explained. Next, we present the functioning of both overlays. A simplified version of the
finite state machine is also proposed. For space and easiness reasons, our fully specification of
both overlays, including ABNF, messages syntax and semantic node behavior and a complete
finite state machine, is proposed in appendixes A and B. The Maintenance Procedure and
the heartbeat timer negotiation are presented. A comparison between the both overlays and
their limitations are discussed. Finally, the comparison that concludes chapter 3 is extended
to ALC and TBCP.

The third part (Evaluation) contents two chapters. Chapter 5 introduces our Java imple
mentation of ALC and TBCP. The general structure of each overlay is presented. A description
of the various packages, classes and interfaces is proposed to introduce our Java code. A CD
ROM is given in appendix. This CD-ROM includes the JavaDoc and the Java code of ALC
and TBCP. This CD-ROM contains also an HTLM page (readme.html) to introduce the CD
ROM content. A section in chapter 5 explains the main problems we had to solve during the
Java implementation. Finally, we discuss the way we could transfer data over the tree build
by ALC and TBCP.

Chapter 6 discusses performance measures realized on the Planet Lab network. First, we
present the Planet Lab network. Next, we present the results of the measures performed on
ALC. The measure scenario is explained and the following points are discussed: construction
of the tree, number of messages exchanged, heartbeat messages exchanged, OBJREQ messages
exchanged, total bytes exchanged, tree maintenance and time needed to find a place in the
hierarchy. The purpose of this discussion is to show that our implementation works and to
measure the cost of the maintenance. Next, we introduce the measures performed on TBCP.
These measures show the limitations of the Maintenance Procedure in TBCP. They also
underline the fact that the time needed to find a place in the tree could be very high.

Part I

Internet Protocol and Multicast

1

Chapter 1

Internet Protocol

This chapter introduces the concepts of the Internet Protocol. First , we talk about IPv4
addresses in section 1.1. We give an overview of IPv4 and its limitations. For IPv6, in
section 1.2, we introduce the changes compared to IPv4 and the solutions brought to the IPv4
problems.

1.1 1Pv4

1. 1. 1 Overview

The Internet Protocol was defined in 1981 in [8]. In this section, we talk about the IPv4
addresses. Nowadays, IP version 4 is the most used version of the protocol.

IPv4 uses 32-bit addresses. The textual representation of such addresses is the following:
d.d.d.d where each d is a decimal number interpreted as a byte of data. The first d represents
the four most significant bits of the address and the last d the four less significant bits of
the address. The fields are separated by ".". Here are some examples of IPv4 addresses:
138.48.160.121, 217.136.143.61, ...

Each IPv4 address is divided into two parts: the network part , used to identify the subnet
in which the machine is and the local address part , used to identify the machine in the subnet.

It results from this division different forms of addresses, also called classes of addresses.
The Glass A address is indicated by the most significant bit of the address, which is always set
to O. As shown in figure 1.1.a, this class has a 7-bit network number and a 24-bit local address.
The textual form of this address is 128.0.0.0/ 8 or 128.0.0.0 255. 0.0.0 where "/ 8" 1 is call the
subnet mask and indicates the network part length. This kind of address allows 128 class A
networks. The class B address (figure 1.1.b) is indicated by the two most significant bits of
the address , which are always set to 10. This class has a 14-bit network number and a 16-bit
local address (for example: 138.48.0.0/ 16). The Glass G address (figure 1.1.c) is indicated by
the three most significant bits of the address, which are always set to 110. This class has a
21-bit network number and a 8-bit local address (for example: 138.48.160.0/ 8). The Glass E
address (figure 1.1.e)is indicated by the four most significant bits of the address, which are
always sett to 1111. It represents addresses reserved for experimental use.

The Glass D (figure 1.1.d)address is indicated by the four most significant bits of the
address, which are always set to 1110. A class D address represents a multicast address .

1T his notation is also known as the Classless Inter Domain Routing (CIDR) notation.

2

CHAPTER 1. INTERNET PROTOCOL 3

O 1 7 8 31

! 0 1 Network 1 Local Address

a. Class A Address
0 1 2 14 15

1 1 ol Network 1

31
Local Address

b. Class B Address
0 2 3 23 24 31

1 1 1 ol Network Local Address !
c. Class C Address

0 3 4 31

1 1 1 1 0 1 Multicast Address

d. Class D Address
0 3 4 31

1 1 1 1 1 1 Address

e. Class E Address

Figure 1.1: Address Class

The range of multicast addresses is thus 224.0.0.0 - 239.255.255.255. Special reserved group
addresses (224.0.0.0 - 224.0.0.255) are defined. For example:

224.0.0 .1 indicates all systems in this subnet.

224.0.0.2 indicates all routers in this subnet.

This division is, of course, theoretical. Now, for scaling reasons, we can find addresses
with CIDR notation such as / 23, / 13, ...

1Pv4 also defines reserved addresses. 121. O. 0.1 is the local address of a machine. lt is
usually known as the "loopback address". 10.0.0.0/ 8, 112.16.0.0/ 12, 192.168.0.0/ 16 are used
in private networks. 255.255.255.255 is used for general broadcast , i.e. sending of a packet to
every local node. 224.0.0.0/8 to 239.0.0.0/ 8 represent the multicast addresses. 218.0.0.0/8
to 223. 0.0.0/ 8, 240.0.0.0/ 8 to 255.0.0.0/ 8 are reserved for a further use.

1.1.2 Limitations

There are several limitations to the 1Pv4 addresses. The chaotic address distribution
leads to a squandering. For instance, the FUNDP has a / 16 network (138.48.0.0/ 16) . The
University thus owns 216 different addresses and that's too much for its needs! For this reason
experts have introduced a less strict division by allowing the attribution of various subnet
mask length .

There are geographical inequalities. Asia represents a strong growth potential but at the
end of 2001 , 74% of addresses were allocated to USA, 17% to Europe and 9% to Asia [9] .

The growth of devices requiring Internet connections and permanent addresses (mobile
services such as GPRS, UMTS, high bandwidth access, domotic applications, ...) is braked
by the lack of addresses.

1Pv4 is not developped for a commercial usage of Internet . 1Pv4 was not initially designed
to support Quality of Services (Qos) fonctions, multicast, autoconfiguration, security (essential
aspect of the commercial nowadays Internet).

CHAPTER 1. INTERNET PROTOCOL 4

The increasing size of routing tables due to solutions developed to tackle the lack of
addresses (NAT, ...) leads to more complexity. In fact, this problems does not disrupt the
BGP routing table but has rather a local influence. The Network Address Translator (NAT)
is used to save IP addresses. The principle is simple: use private addresses in a small network
(for example, inside a small company) and translate dynamically the packets sent / received.
This solution generates problems with fragmented packets and protocols that encode addresses
in the content of packets, such as FTP.

The mobility is not supported in a native way by 1Pv4. Incremental layers have been
developed, such as Mobile 1Pv4, but they are optional and not really optimal.

QoS was not forecasted in the beginning and, nowadays, it is supported by using policies
and tools created in addition of 1Pv4 (DiffServ, MPLS, Integrated Services, ...).

1.2 1Pv6

1Pv6 is a new version of the Internet Protocol and is aimed to replace 1Pv4. The changes
from 1Pv4 to 1Pv6 are principally clone to expand addressing capabilities (the IP. address
size is now 128 bits, instead of 32 bits). It also simplifies the packet format (header format
simplification, improved support for extensions and options and flow labelling capabilities).
It introduces autoconfiguration, multicast, routing optimization and mobile 1Pv6 in a native
way. AU these points are discussed in the further sections.

1.2.1 Expanded Addressing Capabilities

The 1Pv6 address is designed to identify an interface and a set of interfaces.
There are three ways to write the textual representation of an 1Pv6 address. x:x:x:x:x:x:x:x

is the preferred form. Each x is an hexadecimal number representing a block of 16-bit of the
address. Example:

fe80:0:0:0:201:2fI:fe29:85da

The example above shows an address containing blocks of bits set to zero. 1Pv6 authorizes
to compress this address by using "::", which indicates multiple groups of 16-bit of zeros. The
"::" can only appear once in an address. Here are some examples:

fe80:0 :0:0:201 :2ff:fe29:85da becomes fe80: :201 :2ff:fe29:85da

0:0:0:0:0:0:0: 12 becomes : : 1

0:0:0:0:0:0:0:03 becomes ::

::ffff:w.x.y.z is an 1Pv6 address representing an 1Pv4 address. lt is useful for programs that
are deployed on dual stack machines (i.e. machines that are 1Pv4 and 1Pv6 capable). They
can use the same data structure and the same sockets. ln the rest of the document, this kind
of address is called an Jpv4 M apped Jpv6 Address.

lpv6 considers three kinds of addresses: unicast address, multicast address and anycast
address.

2It is the loopback address
3The unspecifieci. address

CHAPTER 1. INTERNET PROTOCOL 5

A Unicast address identifies a single interface. Not all unicast addresses are public. There
are ad dresses that are guaranteed to be unique on a link (link-local addresses) and addresses
that are guaranteed to be unique on a site (site-local addresses). The format of a unicast
address is shown in figure 1.2. The text representation of IPv6 address prefix is the same
than the CIDR notation for IPv4 prefixes. For example, 12ab:0:0:cd3:: / 60 represents a 60-bit
prefix.

n bits (128 - n) bits

Subnet Prefix Interface ID

Figure 1.2: An IPv6 Unicast Address

A Multicast address identifies a set of interfaces. A packet sent to a multicast address
is delivered to all interfaces corresponding to this address. Figure 1.3 shows the format of
a multicast address. The eight most significant bits of the address (set to 1) identify the
address as a multicast address. The fg field is a set of four flags. The high order three flags
are reserved and have to be initialized to O. If the fourth flag equals to 0, it indicates a
"well-known" multicast address, i.e a permanently-assigned multicast address assigned by the
global internet numbering authority (IANA). Otherwise, it indicates a "transient" multicast
address, i.e. a non-permanently-assigned multicast address. The sc field is a 4-bit multicast
scope value used to limit the scope of the multicast group, i.e. node-local scope, link-local
scope, site-local scope and organization-local scope. The group ID identifies the multicast
group (permanent or transient) within the given scope. For example, FF05::41:5cb9. The
table 1.1 gives the explanation of the address.

Field Value description
fp 0xFF Indicates that the address is a multicast address

Flags 0x0 Indicates that the address is a well-known ad-
dress

Scope 0x5 Indicates that the scope of the multicast group
is limited to the site

Reserved 0x0 Reserved for a further used. Always put to 0
Croup ID 0x415cb9 Identifies the multicast group within the site-

local scope. This value will be used at an Eth-
ernet level to create a MAC address

Table 1.1: Explanation of an IPv6 address

8 4 4 112 bits
Group ID

Figure 1.3: An IPv4 Multicast Address

An Anycast address identifies a set of interfaces . Compared to the multicast address, a
packet sent to an anycast address is delivered to only one of the interfaces. As figure 1.4 shows

CHAPTER 1. INTERNET PROTOCOL 6

it, an anycast address is syntactically identical to an unicast address. The difference is the
interface identifier is set to O in an anycast address.

1.2.2 Packet Format

1.2.2.1 Header Format

n bits

Subnet Prefix

Figure 1.4: An Anycast Address

Version 1 Traffic Class 1 Flow Label
Payload Length 1 Next Header

Source Address

Destination Address

1

Figure 1.5: Header of an IPv6 packet

(128 - n) bits

0000000000000000

Hop Limit

An IPv6 header contains several informations. The Version field indicates the Internet
Protocol version number. The Traffic Glass field is used for QoS. The Flow Label field is used
by a source to label sequences of packets for which it requests special handling by the IPv6
routers, such as non-default QoS or "real-time" service. The Payload Length is an unsigned
integer indicating the length of the IPv6 payload. Note that extension headers are part of
the payload. The Next Header field identifies the type of header immediately following the
1Pv6 header. The Hop Limit field has the same purpose as the TTL (Time To Live) field
in the IPv4 headers: indicate the maximum number of intermediate routers the packet can
visit. The purpose if this field is to avoid the loop of packets inside the network. The Source
Address and the Destination Address are 128-bit 1Pv6 addresses reprèsenting the sender and
the receiver.

1.2.2.2 lmproved Support For Extensions And Options

In 1Pv4, header options are encoded in separate headers that may be placed between the
IPv4 header and the upper-layer header in a packet. An 1Pv6 packet may carry zero, one or
more extension headers, each one identified by the Next Header field of the preceding header.
Figure 1.6 shows examples of IPv6 header extensions.

Extension headers are not processed by any node along a packet 's delivery path, until
the packet reaches the receiver. However, there is an exception for the Hop-by-Hop Options
header, which has to be examined by every node along a packet delivery path. For easiness
reasons, this option is the first one encoded in an IPv6 packet.

CHAPTER 1. INTERNET PROTOCOL

IPv6 header
Next Header =

TCP

IPv6 header
Next Header =

Routing

IPv6 header
Next Header =

Routing

Routing heade
Next Header =

TCP

Routing heade
Next Header =

Fragment

TCP header + data

TCP header + data

"'ragment heade fragment of TCP
Next Header = header + data

TCP

Figure 1.6: Examples of IPv6 header extensions

7

A full implementation of IPv6 includes the implementation of several extension headers.
The Hop-by-Hop Options header is identified by a Next Header value of Oin the IPv6 header
and its format is shown by figure 1.7. The Next Header identifies the type of header imme-

Next Header Hdr Ext Len

Options

Figure 1.7: Hop-by-Hop extension header

diately following the Hop-by-Hop Options header. The Hdr Ext Len represents the length
of the Hop-by-Hop Options header and the Options contains the options of the Hop-by-Hop
Options header.

The Routing option is used by an IPv6 source to list one or more intermediate nodes to be
absolutely visited on the way to the receiver. lt is similar to IPv4's Loose Source and Record
Route option. lt is identified by a Next Header value of 43 in the immediately preceding
header. Its format is shown by figure 1.8. The Next Header field identifies the type of header

Next Header 1 Hdr Ext Len 1 Routing Type= 0 1 Segments left

Reserved

Address[l)

...

Address[n]

Figure 1.8: Routing extension header

immediately following the routing option header. The Hdr Ext Len represents the Routing

CHAPTER 1. INTERNET PROTOCOL 8

header length but not including the first eight octets. The Routing Type is always set to zero.
The Segments Lejt field indicates the number of route segments remaining, i.e. the number
of intermediate nodes still to be visited. Reserved is a reserved field and Addressf 1 .. nj is a
vector of 128-bit addresses representing the intermediate nodes to be visited successively.

The Fragment option is used by an 1Pv6 source to send a packet larger than would fit in
the path MTU (Maximum Transmission Unit) to its destination4 . It is identified by a Next
Header value of 44 in the immediately preceding header. Its format is shown by figure 1.9.
The Next Header field identifies the initial header of the first fragment. The Reserved and

Next Header Reserved Fragment Offset Res M

Identification

Figure 1.9: Fragment extension header

the Res fields are reserved, the Fragment Offset represents the offset of the data following this
header. The M field is the more flag. If it equals 1, there are more fragments. If it equals 0,
it is the last fragment. The Identification is a value generated by the source node for every
packet that is to be fragmented and is used to recompose the packet at destination. It is also
a packet identifier.

The Destination Options option is used to carry optional information(s) that need to be
examined by the receiver(s). It is identified by a Next Header value of 60 and has the same
format as figure 1. 7.

The Authentication option provides a means to include optional authentication data. The
inclusion of this authentication data allows the receiver to verify the authenticity of the packet
sender, and also protects against modification of the packet. It may also be used to provide
protection against replay of packets, such that saved copies of an authenticated packet can't
la ter be resent by an attacker.

The Encapsulating Security Payload (ESP) [10] is used to provide, notably, confidential
ity, data origin authentication and an anti-replay service. ESP may be applied alone, in
combination with Authentication option or through the use of tunnel mode.

1.2.3 Autoconfiguration

1Pv6 offers two types of autoconfiguration methods. The Stateful Autoconfiguration is
the IPv6 equivalent to Dynamic Host Configuration Protocol (DHCP). DHCP's purpose is to
enable individual computers on a IP network to extract their configurations from a server: the
DHCP server. DHCPv6 is used to pass or addressing in the same way that DHCP is used in
1Pv4. It is called "stateful" because both DHCP server and client have to retain informations.

The Stateless A utoconfiguration [11] allows an host to propose an address (based on the
network prefix identifying the subnet of the host given by a router and its MAC address) and
proposes its use on the network.

1.2.4 Multicast

ln Section 1.2.1, we talked about the format of an IPv6 multicast address.

4 In 1Pv6, the fragmentation is performed only by the source node.

CHAPTER 1. INTERNET PROTOCOL 9

An IPv6 host must configure its network interface to accept packets sent with a given group
destination address and must inform its local multicast router about its interest in receiving
packets with a given group destination address.

IPv6 multicast uses different protocols depending on the equipment's location. On a LAN,
the Multicast Listener Discovery Protocol (MLD) is used. It allows hasts to receive traffic
from a specific set of sources and black the traffic from a specific set of sources.

Within the multicast domain, there is Protocol Independent Multicast (PIM) that can be
declined in three different versions. The Dense Mode (DM) is similar to Distance Vector
Multicast Routing Protocol (DVMRP developed in the next chapter) but can be used in
combination with any unicast routing protocol. In the Sparse Mode (SM), the receivers are
sparsely distributed and the shared trees are unidirectional. PIM-SM and PIM-DM for IPv4
are quite similar to their IPv4 versions that we will describe in the next chapter. The changes
between the two versions are explained in [12]. With the Source Specific Multicast (SSM)
[13, 14], multicast groups (*, G) are replaced by multicast channels (S, G). An IP packet is
transmitted by a source S to an SSM destination address G, and receivers can receive this
packet by subscribing to channel (S,G). The range FF3x:: / 96 of addresses is defi.ned for SSM
services.

In an inter-domain multicast, there is not any implemented protocol.

1.2.5 Routing Optimization

IPv6 allows a hierarchic addressing (by geographical area or by ISP), decreasing the number
of routes for the backbone routers. It allows also to simplify the address aggregation by
allowing to redistribute the addresses in an ideal way.

1.2.6 Mobile 1Pv6

The mobility support is an important aspect in IPv6 since the popularity of mobile com
puters (or assimilated devices, such as PDA, GSM, ...) doesn't stop to increase.

Mobile IPv6 [15] is intended to enable IPv6 nodes to move from one IP subnet to another.
A mobile node is any node that may change its point of attachment from any IP subnet to
another, while continuing to be addressed by its home address. A mobile node will be assigned
at least three addresses. The Home Address is the permanent IP address assigned to a mobile
node. It never changes, regardless of where the node is attached to the Internet . It is the
identifier of a mobile IPv6 node. The Gare-of Address is the mobile node's current address
while away from home. It is a globally-routable address acquired by the mobile node through
IPv6 address autoconfiguration (stateless or stateful) in the foreign subnet being visited by
the mobile node. The Link-local Address belongs to a tiny part of the IPv6 addresses. It is
not routable but it guarantees to be unique on a link, i.e. on a local network.

Mobile IPv6 considers two kinds of participants in a mobile session: the Home Agent
and the Correspondent Node. The Home Agent is a router on the mobile node 's home subnet
maintaining a record of the current binding (i.e. the association between a mobile node's home
address and its care-of address) of the mobile node. The Correspondent Node represents any
node with which a mobile node is communicating.

Mobile IPv6 enables any IPv6 node to learn and store the care-of address associated with
a mobile node's home address and then to send packets intended for the mobile node directly
to it at this care-of address using an IPv6 routing header. Mobile IPv6 aims to avoid the

CHAPTER 1. INTERNET PROTOCOL 10

triangular routing by using a set of new IPv6 Destination Options. The Binding Update
option sends by a mobile node to another to inform it of its current binding. The Binding
Acknowledgement option sends by a node to acknowledge the receipt of a Binding Update.
The packets carrying these options must use the Authentication option to avoid hijacking
attacks, such as "remote redirection". Figure 1.10 shows the messages exchange.

Mobile Nede Correspondent Nede

Binding Update

Binding Acknowledgrnent

Home Agent

Figure 1.10: The Binding Messages

Two mechanisms have to be implemented to use Mobile IPv6. First, delivering packets
to a mobile node from a correspondent node. Before sending a message, a node has to check
its Binding Cache (a central data structure used to cache the mobile node bindings). If no
entry is found for the destination, it sends the packet normally. The packet will be routed
by usual routing mechanisms to the mobile node's home subnet. Then, the mobile node's
Home Agent will intercept this packet and tunnel it to the care-of address. It is thus a case
of traditional triangular routing. On the other hand, if the correspondent node has an entry
for the destination in its Binding Cache, it will send the packet directly to the care-of address
indicated by the binding, using an IPv6 Routing header. If a correspondent node receives
persistent ICMP Host Unreachable or Network Unreachable messages after sending packets
to a mobile node using its cached care-of address, it should delete the cache entry. Second,
delivering packets to a mobile node from a Home Agent. When the Home Agent encapsulates
a packet for delivery to the mobile node, the home agent uses the care-of address as destination
address and uses its own address as source address. The home agent is expected to rarely
send packets to the mobile node because the mobile node will send Binding Update messages
as soon as possible to its correspondent node.

1.2. 7 1Pv4 - 1Pv6 Transition

An immediate migration from IPv4 to 1Pv6 is impossible for several reasons: cost, tech
nology changes, economic failure, . . . That's why the both protocols should co-exist during
a while. Several approaches have been defined [16] to tackle this transition problem.

The key to a successful IPv6 transition is compatibility with the large installed base of
1Pv4 hosts and routers. The mechanisms the 1Pv6 routers and hosts may implement to be

CHAPTER 1. INTERNET PROTOCOL 11

compatible with IPv4 hosts and routers are: dual IP layer and IPv6 over IPv4 tunneling. There
are two types of tunneling employed: automatic and configured. In the automatic tunneling,
the IPv4 tunnel endpoint address is determined from the IPv4 address embedded in the IPv4
compatible destination address of the IPv6 packet. With the configured tunneling, the IPv4
tunnel endpoint is determined by configuration information on the encapsulating node.

The most easiest way for IPv6 nodes to remain compatible with IPv4-only node is by
preserving a complete IPv4 implementation. These kind of nodes are called dual-stack nodes
in this document. They are able to receive/send directly IPv4 and IPv6 packets. The dual
stack technique may be used (but not necessary) in conjunction with the tunneling technique.
In this case, the dual stack node can support configured tunneling or both configured and
automatic tunneling. Thus, three configurations are conceivable: dual stack nodes that don't
perform tunneling, dual stack nodes that perform configured tunneling and dual stack nodes
that perform configured and automatic tunneling.

While the IPv6 infrastructure is being deployed, the existing IPv4 infrastructures can be
used to carry IPv6 traffic. Tunneling provides a way to perform that. IPv6/ IPv4 hosts and
routers can tunnel IPv6 packets over areas of IPv4 only capable nodes by encapsulating them
into IPv4 packets. This can be used in several ways. In the Router-ta-Router way, the tunnel
covers a segment of the end-to-end path that the IPv6 packet takes. In the Host-ta-Router
way, the tunnel covers the first segment of the end-to-end path that the IPv6 packet takes. In
the Host-to-Host, the tunnel covers the entire path that the IPv6 packet takes . Finally, with
the Router-ta-Host, the tunnel covers the last segment of the end-to-end path that the IPv6
packet takes.

In the first two methods, the IPv6 packet is being tunneled to an intermediate router
which has to decapsulate the IPv6 packet and then, forward it to the final destination. In
this case, the endpoint of the tunnel is different from the packet destination. So, the address
in the IPv6 packet being tunneled doesn't provide the IPv4 address of the tunnel endpoint.
That's why we use the configured tunneling for this case.

In the last two tunneling methods, the IPv6 packet is tunneled to is final destination.
The tunnel endpoint is thus the node to which the IPv6 packet is addressed. The tunnel
end point can thus be determined from the destination IPv6 address of that packet (via the
IPv4 Mapped IPv6 address). That's why we use the automatic tunneling in this case.

1.2.8 Solutions To The 1Pv4 Limitations

The adoption of the IPv6 addresses should allow to constitute a stock of 2128 unique
addresses. It will be enough to tackle the growth of the Internet popularity for a while.

The adoption of IPv6 could reestablish the primal end-to-end system. It avoids the use
of NAT that could cause problems with protocols that encode addresses in the message, such
as FTP, Application Level Clustering (see chapter 4), Tree Building Control Protocol (see
chapter 4), ...

IPv6 should allow a better management of multihomming, i.e. use several Internet Service
Providers (ISPs) to provide Internet / Extranet services or Virtual Private Network (VPN5).

This technic weights down strongly routing tables because the addressing becomes complex
to link the different ISPs and the different parts of the firm networks.

5 A Virtual Private Network is essentially a system that allows two or more private networks to be connected
over a publically accessible network, such as Internet. It usually consists of an encrypted tunnel.

CHAPTER 1. INTERNET PROTOCOL 12

IPv6 owns several advantages allowing a better management [9] of QoS but they are not
yet significant: the fixed header size, the header simplification, the flow label option, ...

1.2.9 Limitations

Sorne readers may be keen on IPv6 but it also has drawbacks. IPv6 could be a commercial
failure . It is needed to convince ISPs to adopt the new version of the Internet Protocol and it
will be not easy. .

The transition IPv4 - IPv6 will cost a lot of money for ISPs to adapt applications, routers,
. . . This cost will be probably passed on clients, private persons or companies . We can note
that the transition is perceived by the manufacturer as an economic leverage because of the
need of material changes.

The backbone operators have to pass to IPv6. Otherwise, bottleneck problems can hap
pen due to tunneling. An immediate conversion is impossible. The two protocols will have
to coexist during a while. Solutions have already been developed for the coexistence (see
sectionl.2. 7).

An adaptation of all softwares (IPv4 to IPv6) is also needed. This adaptation could take
time, even if each change is not really complex.

Chapter 2

Multicast

Multicast was already introduced in section 1.1.1 and 1.2.4 when we talked about addresses
format and introduced routing protocols supporting multicast.

This chapter details multicast by presenting its motivations and problems. We also propose
an overview of the protocols implementing multicast at layer three.

2.1 Motivations And Problems

The main motivation for multicast is to transmit the same information to several receivers.
Thus, we can define multicast as the way to transmit a specific information from a single sender
to a group of receivers. Examples: video conferencing, audio conferencing, video-on-demand,
... We note that, in some cases, the sender in a multicast session may change. The multicast
session may have only one or more than one sender. Multicast was invented by S. Deering
[1, 2]

There are two ways to implement multicast . The sender could send several times the same
information, i.e. information is sent to each receiver separately or it could send only one copy
of the information.

Figure 2.1 illustrates the first solution. Member 1 has to send twice the same information.
The drawback of this solution is the bandwidth consumption. Member 1 uses bandwidth two
times more than needed.

Figure 2.1: The first way to implement Multicast

In the second solution, the network will be responsible for forwarding efficiently this infor
mation to all receivers, as shown in figure 2.2. This solution is more efficient but, in a certain
way, it is just a means to displace the problem.

13

CHAPTER 2. MULTICAST 14

r-1'
1 ,,

Figure 2.2: The second way to implement Multicast

Making the second solution available requires the development of protocols. Here are some
protocols used to implement multicast at layer 3.

2.2 Overview

Protocol Independent Multicast Dense Mode (PIM DM) [17] assumes that when a source
starts sending data, all downstream systems want to receive the information. Thus, the traffic
is initially flooded to all PIM neighbors. If a branch does not have any group members,
PIM DM will prune it off by setting up prune state, as shown in figure 2.3. This pruned
branch timeouts after three minutes and traffic is re-flooded down the branch. The prune
state contains source and group informations. The forwarding branches form a tree rooted at
the source leading to all members of the group called source rooted tree. The mechanism used
to broadcast datagram and prune unwanted branches is called the reverse path forwarding
(RPF), a multicast forwarding mode where a data packet is accepted for forwarding if it is
received on an interface used to reach the source in unicast. When a new member appears in a
pruned branch, the branch can be grafted back. lt avoids the new corner to wait three minutes
before the next flooding. With PIM DM, only one source can send data. No rendez-vous point
(i.e. a coordination point) is needed, contrary to PIM SM.

Protocol Independent Multicast Sparse Mode (PIM SM) [18] uses a rendez-vous point (RP)
to coordinate forwarding from sources to receivers (see figure 2.4). Senders register to the RP
via their first hop router. They will send single copy of data through the RP to the registered
receivers. The receivers joined the Shared Distribution Tree rooted at the RP via their local
Designated Router (DR) . They will always receive data (and send messages such as Join1

and Register2) through their DR. Each multi-access network has a designated router , which
performs two main fonctions. First, it originates network link advertisements on behalf of
the network and, second, it establishes adjacencies with all routers on the network. A Shared
Distribution Tree is a tree whose root is a shared point (thus , it is the RP) in the network
which multicast data flows down to reach the receivers in the network. The traffic is forwarded
down the tree according to the Group address, regardless of source address. The notation used
is (*, G), where "*" means any source and "G" is the group address. As this notation suggests ,
with PIM SM, several sources can send data.

1 Join messages are cou pied with Prune messages and are sent to join/ prune a branch off of the the multicast
distri bution tree . This message disposes of a list containing a set of source addresses indicating the source
specific trees or shared tree that the router wants to join/ prune

2Register messages are used· by leaf routers attached to a source to register this source with the RP and to
request the RP to build a t ree back to these routers.

CHAPTER 2. MULTICAST

ti
œti[gffl

Receiver

n .. !L f ~
~ mtwilm

✓T-~ /7\,
~ - -- - --- un6Œml IRfo1â

--- ~1-
~

Multicas t p acke t (initial fl ooding)

Prune messaae - - -- ►
Multicast packet (aft➔ pruning)

Figure 2.3: Pruning unwanted traffic

1 • , G) Join➔

<1-Sha~ d :::e

(S,O) r~ister (Unicast)

..+-
Tra f fic Flow

------1>!>

Figure 2.4: PIM SM register

1
~

15

CHAPTER 2. MULTICAST 16

PIM-SM and PIM-DM for IPv6 are quite similar to their IPv4 versions that we described
above. The changes, essentially in messages format,between the two versions are explained in
[12] and are not relevant to our work.

Source-Specific Multicast [13, 14] (SSM) is deployed by using PIM-SM. The network layer
service provided by SSM is a channel, identified by an SSM destination IP address (G) and a
source IP address S. An IPv4 address range (232.0.0.0 to 232.255.255.255) has been reserved
by the IANA for use by the SSM service. For IPv6, the range FF3x::/96 is defined for SSM
services. A source S transmits IP datagrams to an SSM destination address G. A receiver
can receive these datagrams by subscribing to the channel (S,G). Channel subscription is
supported by version 3 of the IGMP protocol for IPv4 and version 2 of Multicast Listener
Discovery (MLD) protocol [19, 20] for IPv6. MLD is a subprotocol ofICMPv6. The purpose of
MLD is to enable each IPv6 router to discover the presence of multicast listeners on its directly
attached links and to determine specifically which multicast addresses are of interest to those
nodes. An SSM receiver application must know both the SSM destination address G and
the source address S before subscribing to a channel. Channel discovery is the responsibility
of applications. This information can be made available in a number of ways, including via
web pages, sessions announcement applications, . . . SSM has several benefits. SSM lends
itself to an elegant solution to the access control problem. When a receiver subscribes to
an (S,G) channel, it receives data sent by a only the source S. SSM defines channels on a
per-source basis, i.e., the channel (Sl,G) is distinct from the channel (S2,G), where Sl and S2
are source addresses, and G is an SSM destination address. This averts the problem of global
allocation of SSM destination addresses, and makes each source independently responsible for
resolving address collisions for the various channels that it creates. SSM requires only source
based forwarding trees. This eliminates the need for a shared tree infrastructure, such as the
RP-based shared tree infrastructure of PIM-SM. Finally, the SSM model is ideally suited for
point-to-multipoint applications such as Internet TV.

Distance Vector Multicast Routing Protocol (DVMRP) DVMRP [21] is an "interior gateway
protocol", suitable for use within an autonomous system (AS) but not between different AS.
DVMRP (see figure 2.5) is a Distance Vector based routing protocol using some RIP3 prin
ciples. Sorne fondamental differences with RIP are subnet masks that are sent in the route
advertisements. In addition, DVMRP uses Poison-Reverse metrics and infinity. A Poison
Reverse metric is denoted by adding infinity4 to the received metric and sending it back to
the router from which it was received. It is used by DVMRP routers to signal their upstream
neighbor that they are downstream and want to receive traffic from a source through their
upstream neighbor. This is thus performed after the computing of the best path. DVMRP in
formation is carried inside of Internet Group Management Protocol (IGMP) packets. DVMRP
routes are used to build Truncated Broadcast Trees (TBT). A TBT, for a source subnet "Sl",
represents a shortest path spanning tree rooted at subnet "Sl" to all other routers in the
network. The multicast traffic is flooded down the distribution tree for a source and the
downstream neighbors send back Prune messages for multicast traffic for which they have no
group members.

Multiprotocol BGP (MBGP) [22] defines extensions for BGP to allow it to carry more in
formation than just IPv4 route prefixes. MBGP does not propagate any multicast information
nor builds any multicast distribution trees. MBGP can distribute unicast prefixes that can be

3 Routing Information Protocol. It is a simple Distance Vector based routing protocol.
4 different of mathematic infinity.

CHAPTER 2. MULTICAST

Source Network Sl

1

/
lffiim

fi 1

1

2

2

---Resulting TBT

1
~

A

r 1
331

1 2

8§@■ ►

·11
34

3

~>1'oison Reverse(metric + infinity) sent to parent router

m ► 'loute for Source network with metirc m

Figure 2.5: DVMRP - Source Tree

17

·-

used for the multicast RPF check. The new types of routing information are: IPv4 prefixes
for Unicast routing, IPv4 prefixes for Multicast and IPv6 prefixes for Unicast routing. This
implies that MBGP can maintain several Routing Information Bases (RIBs): an Unicast RIB
(U-RIB) and a Multicast RIB (M-RIB). The U-RIB contains the prefixes that were previously
used by BGP. The M-RIB contains the prefixes used to RPF check for arriving multicast
traffic.

Multicast Source Discovery Protocol (MSDP) (23] is a mechanism to connect multiple PIM
SM domains together. MSDP routers in a PIM SM domain have a MSDP peering relationship
with MSDP peers in another domain. This relationship is made up of a TCP connection in
which control information is exchanged. When a RP in a PIM SM domain learns of a new
sender, it sends a Source Active (SA) message to its MSDP peers. If the MSDP peer receives
the SA from a non-RPF peer towards the originating RP, it will drop the message. Otherwise,
it forwards the message to all its MSDP peers. When a MSDP peer which is also an RP for its
own domain receives a new SA message, it determines if there are any group members within
the domain interested in any group described by an (S,G) entry within the SA message. In
this case, the RP triggers a (S, G) join event towards the data source. This sets up a branch
of the source tree to this domain. Otherwise, it ignores the message. This procedure is called
ftood-and-join.

Multicast OSPF (MOSPF) [24] includes Multicast information in OSPF Link State Ad
vertisements (LSA) to build multicast distribution trees . Each router maintains an image of
the topology of the entire network. MOSPF uses a new type of LSA called Group Membership
LSA to advertise the existence of group members . Group Membership are periodically flooded
throughout an area in the same way as classical OSPF LSA . MOSPF uses Dijkstra algorithm

CHAPTER 2. MULTICAST 18

to compute shortest-path tree for every < source-network;group> .
All these protocols are complex, difficult to implement and have significant drawbacks:

bandwidth consumption due to a lot of messages exchanges (for instance the flooding in PIM
DM) , state informations (routers have to retain informations for each group), cost (deployment
of such protocols could be expensive).

Moreover , there are other drawbacks linked to multicast itself. Multicast is UDP5 based,
the support of high level functionalities (such as QoS) is difficult. UDP does not provide a
reliable service. Packet drops may thus occur. There is no congestion control and it can result
in network service degradation due to lack of TCP windowing and "slow start" mechanism.
There are duplicate risks, i.e. some multicast protocol mechanisms can result in occasional
packet duplication. There is a out-of-sequence packet problem because of network problems.

Nevertheless, the multicast based on protocols at layer three has some advantages. It
enhances efficiency, i.e. the network bandwidth is used more efficiently since multiple streams
of data are replaced by a single stream. It optimizes performance by eliminating traffic redun
dancy. It also allows the creation of distributed applications [25). The multipoint applications
will not be possible as demand and usage grows because unicast transmission will not scale.
[25) explains this point like that: traffic level and clients increase at a 1:1 rate with unicast
transmission but traffic level and clients do not increase at a greatly reduce rate with multicast
transmission.

Meanwhile, the drawbacks created a need for a new model to implement Multicast that
takes into account of all them. This alternative model is called Application-Level Multicast
(ALM).

5User Datagram Protocol.

Part II

Application Level Multicast and
Overlays

19

Chapter 3

Application Level Overlays

In this chapter, we talk about Application Level Multicast (ALM). First, we introduce
ALM.

The second part of this chapter is dedicated to Application Level Overlays, a way to
implement Application Level Multicast. In a first time, we give a definition of Application
Level Overlays and, then, we present some Application Level Overlays. The two Application
Level Overlays we implemented in Java at Lancaster University will be introduced in chapter 4.

3.1 Application Level Multicast

ALM is the implementation of multicast above the socket layer on end systems (hosts).
AU participants to an ALM session are connected with unicast links. A spanning tree is built
between participants of an ALM session and is used to pass data between the nodes on the
tree.

The source sends the information towards some receivers. Each receiver resends this infor
mation towards other receivers. As aU is clone with unicast, routers only see unicast connec
tions. Figure 3.1 illustrates the concept. The participants to the ALM session are organized
into a tree rooted at the source. The links between each node are simply unicast connections.
When Source wants to transmit informations, it sends data to its children (Receiver 1 and
receiver 2) by using the unicast connections. If the receiver is a leaf (as Receiver 2), it does
not forward data. If the receiver is a node (as Receiver 1), it forwards data to aU its children
by using unicast communications. And so on until the data has reached each receiver.

This method is more scalable because routers do not need to retain a lot of state infor
mation. AU the group management is clone at the application level and the participants are
linked by unicast connections. The router has no particular role to play. ALM also allows
more fl.exibility by customizing some tools such as error management , data transcoding, ... As
ALM is developed at an application level, programmers can manage particular cases as they
want, such as failure recovery, messages received in the wrong state, . . . They can also de
velop their own way to encode/ decode data for transmission to provide security, . . . ALM
offers also accelerated deployment, simplified configuration1 and a better access control. The
drawback is a higher traffic load since packets in ALM networks cannot be replicated at the
exact branching points in the physical network and there are duplicated packets transmitted
on some of the links [26].

1 Now, it is the end user who is responsible for configuration/ installation and no more the ISPs .

20

CHAPTER 3. APPLICATION LEVEL OVERLAYS 21

Source

Router

Router

Figure 3.1: Application Level Multicast

3.1.1 Application Level Overlays: Definition

Application level overlay networks consist of groups of application programs collaborating
across a network using its basic, unicast, services. This not only allows services such as
multicast to be emulated, but also the participants can arrange themselves into trees or graphs
according to application-specific criteria (4).

There are two different approaches to build an application level overlay [27, 28]. The first
one builds the tree directly. Members explicitly select their parent from among the members
they know. The second one creates a rich node connecting all the members. It is a centralized
solution.

Application level overlay networks have some advantages [5]. It is incrementally deploy
able. An application level overlay network does not need any change in the existing Internet.
It is adaptable. The set of links on which packets are sent is constantly optimized over metrics
that are application-specific. By its adaptability and an increased control, an application level
overlay network is more robust than multicast performed by the underlying layers. For exam
ple, with a sufficient number of nodes deployed, an overlay network may be able to guarantee
that it is able to route between any two nodes in two different ways. It is customizable. The
overlay nodes can be multi-purpose computers, easily outfitted with equipments needed. It
is standardized. An application level overlay is built on the underlying network layers. This
implies that overlay traffic will be treated as well as any other. For example, an overlay net
work can use TCP which is "simple", well known, network friendly (with regard to congestion
control) and standardized.

Application level overlay networks have, of course, some drawbacks [5]. The management
is complex. The manager of an overlay network is often physically far from the machines being

CHAPTER 3. APPLICATION LEVEL OVERLAYS 22

managed. Human interventions should be minimized and be possible by non expert people.
In the real world, IP doesn't provide an universal connectivity service. Firewalls, Network
Address Translator (NAT) and proxies are a source of problems. An application level overlay
can't be as efficient as code running in routers. There is an information loss risk because an
application-level overlay network is built above a network infrastructure that offers a nearly
complete connectivity (modulo firewalls, NAT and proxies). We also expend effort deducing
the underlying topology.

3.1.2 Overview

Several techniques for building overlay trees to emulate multicast services have been pro
posed. Here is an overview of some of them.

An Application Level Multicast Infrastructure (ALMI) [29] session consists on a session
controller and several session members. A session controller is a program instance located
at a site easily accessible by all the members. The session members are organized into a
multicast tree where a line in this tree is represented by a unicast link between two members.
This multicast tree is in fact a shared tree amongst the members. The purpose of the session
controller is dual: ensure the connectivity of the multicast tree in case of departure/ arrival of
a member and in case of network failure, and ensure the effi.ciency by periodically computing
a minimum spanning tree. This calculation is based on measurements made by members. A
session member sends and receives data like in a classic multicast session. It also forwards data
to designated neighbors and it monitors the performances of unicast links to and from other
members. This monitoring is realized by sending probes and measuring the round-trip time
(RTT). These measurements will be used by the session controller to compute the minimum
spanning tree.

Figure 3.2 shows an example of ALMI tree. SC indicates the session controller. As shown
in the figure, the controller is independent of the tree. In this example, D is a new corner.
First, it has to contact the controller (its identity is known in advance). The controller will
then assign randomly an existing member to the new corner. Each node periodically sends
probes to its neighborhood and forwards the results to the controller. This information allows
the controller to compute the shared tree and the results are communicated to all members
in the form of a (parent, children) list.

Clearly, ALMI is a centralized structure. The session controller knows the complete topol
ogy and redistributes it to all members. To avoid problems linked to a centralized architecture,
there are "back-up controllers" ready to relay in case of session controller failure. ALMI is
based on TCP or UDP. The choice is dictated by its usage. A reliable service for data repli
cation needs TCP. An unreliable service for stream-based application needs UDP.

ALMI is useful for multicast session where there is a great number of small groups, like
video conferencing, multi-party network games, ... ALMI is also a solution for multi-sender
multicast communications thanks to the centralized architecture.

Narada [28] targets principally groups of small size. It uses the first way to build an
application level overlay, i.e. a new corner chooses itself its place in the tree. The tree
building is done in two steps. First, N arada constructs a rich connected graph between the
hasts, called mesh. Second, it constructs reverse shortest path spanning trees , each tree
rooted at the corresponding source using well known distance vector routing protocols. For
robustness reasons, each node has to conserve a complete information about the topology.
This information must be updated each time a new member joins or an existing member

CHAPTER 3. APPLICATION LEVEL OVERLAYS

Share.:i Tree t>

Assigna~o n ~ a ~w ♦r

Hea~r~~• :- ~ n_t ~ f>l>, SC

t~ =~:1.t..' __ c_h_i_:~~~~-..-

Figure 3.2: ALMI tree

leaves. As ALMI, Narada builds a multi-source tree.

meah

spanninq trea

(a) Network topology (b) Narada overlay tree

Figure 3.3: Narada tree

23

Figure 3.3 shows an example of Narada's tree building protocol2 . Figure 3.3(a) gives the
underlying network topology and figure 3.3(b) gives the overlay tree. As said above, Narada
begins to build a rich connected graph (or mesh) between the hosts. This mesh is a graph
where all nodes are connected together. The mesh on figure 3.3(b) is represented by the doted
links. This mesh offers a richer topology. It allows robustness but it implies looping risks.

2 For easiness reasons, the figure shows only a single source tree.

CHAPTER 3. APPLICATION LEVEL OVERLAYS 24

Based on this mesh, N arada builds the shortest spanning tree using well known distance vector
routing protocols. This is indicated on figure 3.3(b) by the arrowed links . The main property
of this spanning tree is a small delay from sources to receivers.

Overcast [5] aims to maximize the bandwidth of each node from the source and utilizes
the underlying network topology efficiently. An Overcast system consists of a central source,
interna! Overcast nodes scattered in the network and standard HTTP clients located in the
network. Overcast organizes the interna! nodes into a distribution tree rooted at the source.
The goal of Overcast's tree algorithm is to maximize bandwidth to the root for all nodes. The
basic idea is to add a new node as far away from the root as possible but without compromising
the bandwidth. The tree algorithm is run by the new corner. The new corner first contacts
the root (acting as the current parent) and begins a series of rounds in which it will attempt
to locate itself further away from the root without sacrificing bandwidth back to the root . A
round consists on measuring bandwidth from root to new corner through each root's children.
If the bandwidth through any of the children is as high as the direct bandwidth from the root,
then a new round becomes with one of the children, acting as the new current parent. In case
of multiple suitable children, the child closest in terms of network hops to the searching node
is chosen. If no child is suitable, the search for a parent ends with the current parent. Using
this distribution tree (see figure 3.4), Overcast provides Multicast group. Overcast allows
also unmodified HTTP clients to join these multicast groups. A node periodically reevaluates
its position in the tree by measuring bandwidth to its siblings, parent and grandparent . A
protocol (The Up/ down Protocol) is defined to maintain global state about the distribution
tree.

The main drawback of Overcast is the root because it is a single point of failure. The
solution brought is to replicate the root. Another problem is that the root maintains a
complete information about the tree. This is solved by maintaining a tree in which first
levels have degree one, as shown in figure 3.4. The advantage is that all nodes at these levels
maintain complete full information about the tree. The drawback is a possible increase of
delay.

Overcast is also a single-source multicast system and is based on TCP. Overcast may be
used for data distribution, particulary for high resolution video.

Figure 3.4: Overcast distribution tree

Pastry [30] aims to support a variety of Peer-to-Peer3 applications, such as file sharing,

3 A Peer-to-Peer (P2P) network is a distributed system in which ail nodes have identical responsibilities and
capacities and ail communications are symmetric (30].

CHAPTER 3. APPLICATION LEVEL OVERLAYS 25

file storage, group communication and naming systems. A Pastry system is a self-organizing
overlay network of nodes. Each node in the Pastry network has a unique, uniform random
identifier (nodeld) in a circular 128-bit identifier space. When presented with a message and
a numeric 128-bit key, a Pastry node efficiently routes the message to the node with a nodeld
that is numerically closest to the key, among all currently live Pastry nodes, as shown in
figure 3.5. The expected number of forwarding steps in the Pastry overlay network is O{log
N), while the size of the routing table maintained in each Pastry node is only O{log N) in
size (where N is the number of live Pastry nodes in the overlay network). Each Pastry node
keeps track of its L immediate neighbors in the nodeld space (called the leaf set), and notifies
applications of new node arrivals, node failures and node recoveries within the leaf set. Finally,
Pastry takes into account locality (proximity) in the underlying Internet; it seeks to minimize
the distance messages travel, according to a scalar proximity metric like the ping delay or the
number of IP routing hops.

I
\

/

/

\

, - - - - - , d4 71 f1
/ -........

Route(d46alc)

65alfc '-......._ -----

d4213f

/
I

d13da3

Figure 3.5: Routing a message from a node 65alfc with key d46alc. The dots depict live
nodes in Pastry's circular namespace

Yoid (31] was previously called Yallcast. It is a suite of protocols that allows all of the
replication and forwarding required for a given application to be done in the end hosts that
are running the application itself. In other words, yoid works in the case were the only
distributors of content are the consumers of the content themselves. The core of Yoid is a
topology management protocol, called YTMP, that allows a group of hosts -to dynamically
auto-configure into two topologies. The first topology is a (tunneled) shared tree topology
for efficient multicast distribution of application content. The second one is a (tunneled)
mesh topology for robust broadcast distribution. This mesh topology is anode and its direct
neighbors. The tunnel can be either two-party (i.e. based on TCP or UDP) or N-party
(based on a very tightly scoped IP multicast). Each host can join or leave the two topologies
independently, making the group itself dynamic. Each group has one or more rendez-vous
points. A new corner in a group first contacts the rendez-vous point. The rendez-vous point
answers by sending back a list of nodes and the prospective receiver chooses one of them as a
parent. To leave the group, a member contacts the rendez-vous point.

Figure 3.6 shows a yoid tree and gives terminology associated with it. Each box represents
a member. The rendez-vous point is not shown. The solid arrows represent the "links" of the

CHAPTER 3. APPLICATION LEVEL OVERLAYS

Leaf Member

~R
Transmit Member

Cluster
/

/

1

, , ,
Cluster foot

- "Tunneled" Unicast

IP Multicas
Cluster head

/

-
Figure 3.6: Yoid Tree

26

CHAPTER 3. APPLICATION LEVEL OVERLAYS 27

tree. These links refer to the relationship between neighbor members in the tree. A member
may receive and transmit either via unicast IP or scoped IP multicast. The relationship
between two neighbor members over unicast IP is that of parent/child . Where IP multicast
is used, the set of members is grouped as a cluster. One member of the cluster is elected the
head and is responsible to bridge the cluster via unicast IP with the rest of the tree. The
other cluster members are called feet and transmit/ receive data to / from the tree via the head.
Each yoid tree must have a single root. Each member, at a given time, is a transmit member
or a leaf member. It depends on whether it has a multiple neighbors or a single neighbor
respectively.

Scribe [32] is a fully decentralized model and is built above Pastry. A Scribe system consists
of a network of Pastry nodes, where each node runs the Scribe applications software.Any Scribe
node may create a group ; other nodes can then join the group, or multicast messages to all
members of the group. Scribe provides best effort delivery of multicast messages, and specify
no particular delivery order. Groups may have multiple sources of multicast messages and
many members. Scribe can support simultaneously a large numbers of groups with a wide
range of group sizes . It uses Pastry to manage group creation, group joining and to build
per-group multicast tree to disseminate the multicast messages in the group. Pastry and
Scribe are fully decentralized: all decisions are based on local information, and each node has
identical capabilities.

Each group has a unique groupld. The Scribe node with a nodeld numerically closest to
the groupld acts as the rendez-vous point for the associated group. Thé rendez-vous point
is the root of the multicast tree created for the group. This multicast tree will be used to
disseminate the multicast messages in the group. It is created using a scheme similar to reverse
path forwarding. The tree is formed by joining the Pastry routes from each group member
to the rendez-vous point. Group joining operations are managed in a decentralized manner
to support large and dynamic membership. Scribe nodes that are part of a group's multicast
tree are called forwarders with respect to the group; they may or may not be member of
the group. Each forwarder maintains a children table for the group containing an entry (IP
address, nodeld) for each of its children in the multicast tree. When a Scribe node wishes to
join a group, it asks Pastry to route a JOIN message with the group's groupld as the key. This
message is routed by Pastry towards the group's rendez-vous point. At each node along the
route, Scribe checks if the new corner is already a forwarder. If so, it accepts the node as a
child , adding it to the children table. If not , it creates an entry for the group and adds the
source node as a child in the associated children table . lt then becomes a forwarder for the
group by sending a JOIN message to the next node along the route from· the joining node to the
rendez-vous point . Figure 3.7 illustrates the group joining mechanism. The circles represent
nodes. We assume that there is a group with groupld 1100 whose rendez-vous point is the
node with the same identifier. The node 0111 is joining the group. ln this example , Pastry
routes the JOIN message to node 1001; then, the message from 1001 is routed to 1011; finally,
the message from 1011 arrives at 1100. This route is indicated by the solid arrows. Let us
assume that nodes 1001 and 1101 are not already forwarders . The joining of node 0111 causes
the other two nodes along the route to become forwarders for the group, and causes them
to add the preceding node in the route to their children table. Now, if node 0100 decides to
join the same group, the route that its JOIN message would take is shown using the dot-dash
arrow. Since node 1001 is already a forwarder , it adds node 0100 to its children table for the
group, and the message is terminated.

Periodically, each non-leaf node in the tree sends a heartbeat message to its children. A

CHAPTER 3. APPLICATION LEVEL OVERLAYS 28

child suspects that its parent is faulty when it fails to receive heartbeat messages. Upon
detection of the failure, a node calls Pastry to route a JOIN message to group's identifier.
Pastry will route the message, thus repairing the multicast tree. For example, figure 3. 7
considers the failure of node 1101. Node 1001 detects the failure and uses Pastry to route a
JOIN message towards the root through an alternative route (indicated by the dashed arrows).
The message reaches 1111 that adds 1001 to its children list and forward the JOIN message
towards the root. This causes node 1100 to add 1111 toits children list.

Finally, Scribe is based on TCP.

/ \.

/ \.
\.

Joining member

f0
\. /

\.

Joining member

Figure 3.7: Membership management and multicast tree creation with Scribe

Resilient Overlay Network [33] (RON) is a wide-area network overlay system that can
detect and recover from path outages and periods of degraded performance within several
seconds. RON pursues three goals. The main goal of RON is to enable a group of nodes to
communicate with each other in the face of problems with the underlying paths connecting
them. RON detects problems by aggressively probing and monitoring the paths connecting
its nodes. If the underlying Internet path is the best one, that path is used and no other
RON node is involved in the forwarding path. If the Internet path is not the best one, RON
will forward the packet by the way of other RON nodes. RON nodes exchange information
about the quality of the paths among themselves via a routing protocol and build forwarding
tables based on a variety of path metrics, including latency, packet loss rate, and available
throughput. The second goal of RON is to integrate routing and path selection with dis
tributed applications more tightly than is traditionally done. This integration includes the
ability to consult application-specific metrics in selecting paths, and the ability to incorporate
application-specific notions of what network conditions constitute a ''fault". An example of
this use is video-conferencing. This idea can be extended further to develop an Overlay ISP,
formed by linking (via RON) points of presence in different traditional ISP's after buying
bandwidth from them. Using RON's routing machinery, an Overlay ISP can provide more
resilient and failure-resistant Internet service to its customer. The last goal is to provide a
framework for the implementation of expressive routing policies , which govern the choice of

CHAPTER 3. APPLICATION LEVEL OVERLAYS 29

paths in the network. For example, RON facilitates classifying packets into categories that
could implement notions of acceptable use, or enforce forwarding rate controls.

Figure 3.8 shows an example of the RON general approach. Nodes get measurements of
some properties of the paths between them by sending probes. This is shown on the figure by
the dotted links . The nodes then exchange this information with each other so that they can
do some routing based upon this information. Once they have exchanged this information,
they then route the data over this path if it is better than the underlying Internet. This is
indicated on the figure by the dashed link.

.
' ' .
' ' ' ' ' ' '

3

< 1 ink fa ilure >
Probes < ---------->

-------·---------

Figure 3.8: RON overlay network

1

.
' ' ' ' ' ' '

' ' ' '
v

As a summary of this overview, we propose the table 4.1. The TCP and UDP columns
indicate if the overlay is based on TCP or UDP. The centralized column indicates if the overlay
provides a centralized solution or not. The Uni-Source column indicates if the tree build by
the overlay protocol is uni-source or not . The column Full knowledge indicates if, in the
tree, there is at least one node that have a full knowledge of the topology. The Interdomain
column indicates if the overlay is used for interdomain traffic or not . The Tree -column gives an
information about the type of tree build by the overlay protocol. The last column (Used for)
indicates the utilization of the overlay by an application . The ? indicates that the information
is not given by the authors.

CHAPTER 3. APPLICATION LEVEL OVERLAYS 30

ALMI y y y N y N Shared tree Multicast sessions
where there is a great
number of small groups

Narada ? ? N N y N Shortest path Small and sparse group
Overcast y N N y ? N Distribution tree On-demand and live

rooted at the data delivery
source

Pastry ? ? N N N N Circular name P2P application
space

Yoid y y N y y N Mesh topology Replication, data distri-
and shared tree bution

Scribe y N N N N N Multicast tree Multicast
RON N y ? ? ? y ? Monitor the functioning

and quality of the Inter-
net paths

Table 3.1: Application-level overlays overview summary

Chapter 4

Two Application Level Overlay
Proto cols

In this chapter, we describe in details two Application Level Overlay protocols developed at
Lancaster University: Application Level Clustering (ALC) and Tree Building Control Protocol
(TBCP).

The purpose of these overlays is to build a logical tree between end-hosts. The tree should
be optimal and should minimize the distance between the nodes. The Dijkstra algorithm
cannot be used because a node has only a partial view of the tree building session participants.
Furthermore, a node has no knowledge of the network topology. Once the tree is built , to
make sure a node is at its best place and the tree is still optimal, a Maintenance Procedure
has to be defined .

This chapter first introduce the notion of distance (section 4.1). Then, we describe Appli
cation Level Clustering (ALC) [6], an overlay protocol building a non-constrained tree (sec
tion 4.2). For easiness and space reasons, we will only describe how ALC works, i.e. builds a
logical tree between the nodes. Our fully specification, including ABNF, messages syntax and
semantic, we used to implement ALC in Java is presented in appendix A. Next, we develop
Tree Building Control Protocol (TBCP) [7], an overlay protocol building a constrained tree
(section 4.3). Again, for easiness and space reasons, we only describe how TBCP builds a
logical tree between the nodes. Our fully specification, including ABNF, messages syntax
and semantic is presented in appendix B. A comparison of both overlays is proposed in sec
tion 4.4. The Maintenance Procedure is also presented (section 4.5). A mechanism presenting
the heartbeat timer negotiation is described (section 4.6) . The limitations of both overlays
are shown in section 4.7. Finally, a summary is given in section 4.8.

4.1 Distance

Both protocols include the notion of distance. [6 , 7] let the designer free to decide the kind
of distance he wants to implement. It could be performance metric (RTT, delay, bandwidth ,
...), semantic metric (content, features, . ..), or even a multi-metric distance space. The only
requirement is that the measures are "comparable".

For both protocols , we chose a performance metric and, more precisely, a round-trip time
(RTT).

We didn 't use the Echo Request of ICMP and the port 7 (UDP Echo) because some

31

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS

Pseudo-Code 1: Pseudo-code for the RTT measure
inti = O;
long[] sendTime, receiveTime = new long[3];
long rtt = O;

//The packet is used to measure the rtt.
Datagram packet = "HELLO";
while (i < 3)

{

}

sendTime[i] = currentTime;
socket.send(packet);
socket.receive(response);
receiveTime[i] = currentTime;
rtt += receiveTime[i] - sendTime[i];
i++;

rtt = r:t;

32

routers do not take account of Echo Request or manage them with a low priority. There is
another potential problem with the firewalls. Sorne firewalls automatically reject the Echo
Request.Thus, there is a risk of false indications.

Pseudo-code 1 shows the way we choose to implement the RTT measurement, and more
precisely the way we send probes to evaluate the RTT. For relevant reasons, the pseudo-code 1
does not show the connection opening and closing but the port used is not a well-known port.
The port choice is based on the one used by the protocols for messages exchange.

The RTT is given by the mean average of three successive ping. We chose three because
we wanted an arbitration between the time needed to perform the measure and the mea
sure accuracy. This accuracy was proved by the measurement performed on Planet Lab (see
chapter 6).

The RTT measure has to be performed within one second, otherwise, the node starts again
the measure.

Our solution for the measure has a drawback: the port used can lead to problems with
firewalls or can be already used by another application.

In the rest of this document , when we are going to talk about distance, we will understand
RTT.

4.2 Application Level Clustering (ALC)

This section describes the formation of application-level overlay networks by allowing its
participants (peers) to organize themselves hierarchically in clusters [6] . A cluster is repre
sented by a cluster head and is composed of the cluster head and other nodes. The hierarchy
of clusters is organized into layers, where layer Li is composed of the heads of clusters that
<livide Li-1· For instance, in figure 4.1,the L1-cluster headed by Ris composed of A and B.

The cluster hierarchy built like this forms thus a logical tree spanning all the cluster heads
and rooted at layer Lo (see figure 4.1 right) . The cluster heads could be seen as the nodes

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 33

R LO

~
C

L2-cluster

A

r----- î LI

Ll-cluster

LO-cluster
R

C ------- î Ll

---------E L3

E
L3-cluster

D
L2-cluster

R 1 1 -r•••••~•

Figure 4.1: Cluster hierarchy

in an Application Level Overlay session. Each node at layer Li has to record information
only for its parent cluster head (the Li-l cluster head) and the Li+1 cluster heads (also called
children). For instance, in figure 4.1, B records Ras its parent and D as its child.

The algorithm used to build the hierarchy is distributed, recursive and based on unicast
communications. It doesn't need any knowledge of the network topology neither any prereq
uisite knowledge of the full hierarchy. The only information needed about the hierarchy is the
root address.

The Join Procedure is built like this: A node (N) desiring to join the hierarchy first
measures its distance to the root of that tree, acting as potential parent, by sending probes
and measuring the RTT. Then, it sends this potential parent (P) a JOIN message containing
this distance. Based on this information, the potential parent computes the zone of the joining
node. A zone is a ring centered on this node (the potential parent, thus Pin figure 4.2). More
precisely, a zone (or a region) is a triplet < best, worst, radius> , where best is the inclusive
measurement for suitable children, worst is the exclusive measurement for suitable children
and radius is the worst measurement that the prospective peer (i.e. the new corner, thus N in
figure 4.2) should accept from the selected children. The radius is built by using the formula
10LlogrnmJ+l - 10LlogrnmJ, where m represents the measure performed by the new corner (N) 1 .

The original plan was not to have general formulae to categorize children }?ut <livide them
according to fixed boundaries, and the measure will fall between two of them. log1om rounded
down to an integer gives the number of the lower boundary, and the radius is set to the width
between the two boundaries. If the new corner is a very remote peer talking to the root, the
large radius will mean that even the best of the peers that the new corner selects as the next
potential parent could be a long way away. As the new corner moves down the levels, the
distance between it and the current potential parent decreases rapidly, and the new corner
quickly refines its position in the hierarchy. So, initially, the new corner gets a very coarse set
of parents to try (i.e. roughly in its area), but it reduces exponentially with each level.

Figure 4.2(a) shows an example of region, where w means the worst, b the best, r the
radius and m the measure performed by the new corner (N). The resulting region is in grey.

1The formula was suggested by Steven Simpson from the Computing Department at Lancaster University.

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 34

For the protocol implementation, we chose to build the region by allocating zero to the best
and the measure to the worst. lt results a region, as the one shown in figure 4.2(b) .

(a) A region (b) A region implemented

Figure 4.2: A region

At this moment in the join procedure, 1\vo cases are possible:

1. The joining node is the only node in this zone.

2. There are other nodes in the zone.

In the first case, N becomes a child of P (see figure 4.3). The parent acknowledges the
joining node by sending a NCA (NEW_ CLUSTER_ACK) message. This message indicates to
N that it has found its place in the hierarchy.

N p

Join

Figure 4.3: Application Level Clustering - Join Procedure (first case)

The second case is a little more difficult. The potential parent sends back a TRY message
containing the list of all the nodes in the zone of the joining node. This message also contains
the radius information, used by N to build a region. N then measures its distance to some
of the nodes in the list. To ensure the scalability of the protocol and to control the latency

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 35

of the Join Procedure, each node disposes of a maximum limit L. It represents the number of
nodes N considers at each step of the algorithm. If the number of nodes in the list is smaller
than L, Peer 1 measures its distance to all of them. Otherwise, it randomly picks L of them.
This procedure is called Probabilistic Join. Again, two cases are considered:

1. At least one node falls within the joining node's scope, i.e. is in the region built with
the radius as in figure 4.4(c).

2. All the nodes considered are outside the joining node's scope.

Figure 4.4 illustrates the first case. Figure 4.4(a) illustrates the first step of the Join
Procedure: the new corner (N) considers the root of the hierarchy (P) as potential parent
and contacts it by sending a JOIN message containing the measure performed by N. Based
on this, P builds a region, compute a radius and checks if at least one of its children falls
within the region. If so, P sends N a TRY message containing the children list and the radius.
Figure 4.4(b) illustrates this aspect. When N receipts the TRY message, it measures its distance
to some of the nodes in the list. N tests then if anode falls within the region it builds with
the radius. In figure 4.4(c), A falls within the region built by N. N is going to begin a new
Join Procedure with A as potential parent. N is said to go down one layer. We note that P
doesn't keep any information about N.

© © ©
(il

(a) JOIN message (b) TRY message (c) Next iteration

Figure 4.4: Application Level Clustering - Join Procedure (second case)

Figure 4.5 illustrates the second case. The first two steps (figure 4.5(a) and 4.5(b)) are
totally identical to the other case. Figure 4.5(c) shows that all the nodes considered are outside
N 's region. Thus, N is becoming a new child of P. N sends a NC (NEW_ CLUSTER) message
to P. P acknowledges by sending back a NCA message.

An example of tree construction will be presented in chapter 6.
For space reasons, figure 4.6 shows only a simplified version of the Finite State Machine

(FSM) of ALC. A more complete version is presented in appendix A, section A.4.17. This
FSM represents the interaction of a node with its neighborhood and consists of five states:
Init, Wait, Connected, Maintenance and Finish. The !nit state is the initial state. This state
marks the beginning of the Join Procedure. Only an OBJRSP message can be accepted in this
state. The DBJREQ message is sent to the potential parent (the first time, it is the root) to know
its measurement address. The OBJRSP message is the response to the OBJREQ message. With
the measurement address, the new corner can measure its distance to the potential parent.
The Wait state is an intermediate state. It is between a not connected state (Init) and a

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 36

/ (ii)

©
© ©

G
@

@

(a) JOIN message (b) TRY message (c) New cluster

Figure 4.5: Application Level Clustering - Join Procedure (third case)

connected state (Connected). This state manages the Join Procedure as described above.
The Connected state is the state in which the new corner is connected to the tree. If the
node is the root of the tree, it directly goes to this state. In the Maintenance state, the node
performs a Maintenance Procedure, as described in section 4.5. Finally, the Finish state is
the final state, i.e. the state after leaving the tree. In this state, the node cannot accept any
messages.

A Maintenance Procedure is necessary to make sure that the current hierarchy is still the
best one. This procedure is described in section 4.5.

A heartbeat mechanism, described in section 4.6, is also necessary to detect crashes and
to recover the lost children.

lt results from this mechanism a tree rooted at the source. This multicast tree is uni-source
and decentralized. We choose to base the message exchanges on TCP. The transport protocol
used for data transporting will be application-specific.

4.3 Tree Building Control Protocol

This section describes the 'Iree Building Control Protocol (TBCP) designed to build over
lay trees among participants of a multicast session without any knowledge of the network
topology neither any prerequisite knowledge of the full group membership [7) .

TBCP is a distributed overlay spanning tree building protocol, whose purpose is to place
members in the most optimal position at joining time.

A new node joins the tree at the root. The new corner thus only neèds the (SP, P)
information, where SP is the IP address of the root and P the port used by the root for the
TBCP message exchanges.

Each TBCP node fixes a maximum number of "children" it accepts to accommodate with.
This value is called the fanout and is used to control the traffic load.

The Join Procedure is a recursive mechanism and works as follow: a new corner (N)
contacts a potential parent (P) by sending an HELLO message (for the first Join Procedure,
N starts to contact the root of the tree). P acknowledges immediately by sending back an
HELLOACK message containing its children list. For consistency reasons, P can process only
one Join Procedure at a time. lt thus starts a timer. During this timer, nobody can connect
to P. If there is a connection attempt during the timer (i .e. P receives an HELLO message), P

en s·
'2..
~
(D

o.
<
(D ...,
Cil o·
:::1
0 ,.....,

>
t'"'
0
"rj

§:
rt
(D

en
rt
~
rt
(D

?OBJRSP

?ALIVE
!ALIVEACK

?TRY & [one node falls within the joining node' s scope]

! JOIN

?ALIYE
!ALIVEACK

?JOIN

ERROR 1 ! NCA
1 ! TRY

LEAVE

?TRY & [all the nodes are
ou tside the j oining node ' s se ope]

! NC

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 38

sends back an ERRDR message.
N measures its distance from P and all the nodes in the list (let's call them Ci) and sends

this information to P in a JOIN message. If P hasn't received this message within the timer,
it sends to N a REJECT message, indicating that N has to restart the Join Procedure since the
beginning.

P tries to find a place for N by evaluating all the possible configurations. Figure 4. 7
illustrates this mechanism. P tests each configuration, simulating the fact that N or one of
the Ci (P's children) has to go clown one layer. A score fonction is used to estimate "how"
good each configuration is. The fonction is based on the distance estimated among P, N and
Gis. The score fonction implemented is the following:

score fonction = maxvME{Ci} u N D(P, M), where {Ci} is the set of P 's children, N the new
corner and D(i, j) is the distance between node i and node j along the tree. The chosen
configuration is the one with the smallest score.

Cl C2 C3 N

If fanout of P >= 4

N

Cl

~ r C2 C3

N

A
C2 r

Cl

~ r C2 N

C3

Figure 4. 7: Local configuration test

Here, two cases are possible:

1. P accepts N as a child (the fanout is not reached yet).

A
Cl C2 r

N

~
Cl C2 î

C3

2. P doesn't accept N as a child (the fanout is reached or the measures towards P are too
bad).

In the first case, P sends a WELCOME message to N, which N acknowledges immediately by
sending back a WELCOMEACK message. See figure 4.8 for the message exchangès.

In the second case, N or any P 's children (say Cj) has to be redirected to another P's
child (say Ci)- P sends to Cj or N a GO(Ci) message, indicating that the receiver has to go
clown one layer, which is immediately acknowledged by sending back a GOACK message. A new
Join Procedure will now start with Cj or N as potential child and Ci (the new rendez-vous
point) playing the role of P. See figure 4.9 for the message exchanges. This figure considers
the case where Cj has to go clown one layer.

Again, for space reasons, figure 4.10 shows a limited version of the FSM. A more complete
version is available in appendix B, section B.4.21. This FSM represents the interactions be
tween anode and its neighborhood and consists of six states: Init, Wait, Connected, JoinProc,
Maintenance and Finish. The !nit state is the initial state. It marks the beginning of the Join
Procedure, as described above . one messages can be accepted in this state. The Wait is the

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 39

N p

HELLO

Figure 4.8: Tree Building Control Protocol - Join Procedure (first case)

N p Ci

HELLO

Figure 4.9: Tree Building Control Protocol - Join Procedure (second case)

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 40

intermediate state, between a not connected state (Init) and a connected state (Connected) .
If the node receives a WELCOME message, it goes to the connected state. If it receives a GO mes
sage, it retums to the Init state and has to restart a new Join Procedure. In the Connected
state, the node is connected to the tree. It the node is the root of the tree, it directly goes to
the Connected state. In the JoinProc state, the node performs a Join Procedure, acting as a
potential parent. In this state, anode can handle only one Join Procedure at a time. In the
Maintenance state, the node performs a Maintenance Procedure, as described in section 4.5.
Finally, the Finish state is the final state, i.e. the state after leaving the tree. In this state,
the node cannot accept any messages.

As ALC, it results from this mechanism a tree rooted at the source. The multicast tree is
uni-source and totally decentralized. We also choose to base the message exchanges on TCP.
The transport protocol used for data transporting will be application-specific.

As ALC, TBCP also needs a Maintenance Procedure (see section 4.5) and a heartbeat
mechanism (see section 4.6) .

4.4 ALC - TBCP comparison

In this section, we try to highlight the big theorical differences between the protocols
implemented at Lancaster University. The comparison will focus on three key aspects of the
overlays implemented. These key aspects are: the philosophy of the tree built, the acceptance
level of a new corner in the tree and the way of accepting a new corner.

The philosophy of the tree construction is totally different in both protocols. ALC aims
to build a non-constrained tree. So, a node can have an unlimited number of children. This
could lead to a tree having only two levels: the root (level 1) and its children (level 2) . In
opposite, TBCP tries to build a constrained tree. In this tree,a node can have a maximum
fixed number of children (cfr the fanout). This number will be application-specific. This could
lead to a not very optimal tree. For example, when the fanout is reached, a node has to go
clown one layer. The parent tests all the possible configurations and chooses the best one but
the resulting configuration could be less efficient than the configuration with a higher fanout.

The acceptance level of a new corner in the tree is also different in both protocols . With
ALC, it is the new corner that chooses its place in the tree. Anode has no power on the choice
of its children. This could lead to problems when an overloaded node "accepts" an additional
child. In opposite, with TBCP, it is the parent that chooses to accept or not a new corner. A
node has a total control on its children.

The way of accepting a new corner is based on two concepts totally different. ALC uses
the concept of zone or region, as described in section 4.2. TBCP is based on a score fonction,
as described in section 4.3.

4.5 Maintenance Procedure

The previous sections introduced the Join Procedure for both protocols but it is obvious
that nodes join and leave the tree dynamically. This has an impact on the structure of the
tree.

After a while, the current position of a node may not be the best one. That 's why each
node is going to find periodically a better place in order to make the tree more efficient. The

"rj
oq·
C
('O

.i::.

......
0

en s·
"2.. s-;
('O

o..
<
('O
Cil

ê:,
::::1
0
>+,

.-3
t:o
0
"'O
"rj

2: .,...
('O

en .,... .., .,...
('O

~

B-
5·
('O

?REJECT 1 ?ERROR

[al}_ç~tgr g}Qs_~n

(timeout) j

?LEAVE (tentative .2_arent)

?WELCOME
!WELCOMEACK

Connected

?OBJRE.1/.
! OBJRSP

~
!JOIN

~

~

?ALIVE
!ALIVEACK

@
;:i:.:
'ij

~
~
;::..

t-3

~
►

~

~
~
~
t:-<
t:r-1

~
t-<
0

~
~
► ~

~
0
~
0
G
g
V)

.i::.

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 42

idea of the Maintenance Procedure is based on the concept of root path. The root path of a
node is the path from the root of the tree to that node.

The higher anode is in the tree (i.e. doser to the root), the more root paths it is likely
to appear in. So, to avoid the overloading of such nodes, we try to bias the choice of ancestor
towards nodes that are lower in the hierarchy. To achieve this, if the root path of a node is
R = A1, A2, ... , An, ancestor Ai will be chosen with probability n(:~l).

If at the end of a maintenance procedure a node has discovered a potential parent doser
than its current one, it then moves to that parent, starting a new Join Procedure, as described
above. Thus, a node can change place, i.e. be in another branch of the tree. Otherwise, it
remains at its place in the tree. A maintenance timer schedules the next maintenance timeout.
This maintenance interval is given by min[B(l +8)i, M], where B is the minimum maintenance
interval, M is the maximum maintenance interval, 8 is a scaling factor (8 > 0) and i is the
number of previous and consecutive maintenance procedures that didn't result in a move of
a node. If a node doesn't move, the new maintenance timer will be higher than the previous
one. Thus, more a node performs consecutive maintenance procedure that does not result in
a move, less maintenance procedure it performs.

The pseudo-code 2 gives the pseudo-code for the ALC implementation of the Maintenance
Procedure. The Maintenance Procedure is the same for TBCP. The algorithm works in seven
steps.

The first step checks if the node is the root of the hierarchy. If it is, the maintenance
procedure has no sense.

The second step aims to determine the position (positionHierarchy) of the node in the
hierarchy. This is clone by computing the number of nodes in the root path.

The third step computes the probability of each ancestor in the root path, starting with
the lowest in the hierarchy. Thus, it implements the n(:~i) formula, where n is substituted
by positionHierarchy.

The fourth step aims to choose the ancestor to eventually join. First, we determine a
random number. An ancestor will be chosen if and only if the random number is less than
its probability. If not, we subtract the probability of the ancestor to the random number and
we test with the next ancestor. As the root probability is the lowest and the current parent
probability is the highest , we have to begin the comparison with the current parent. If the
random number is not less than the current parent probability, it will never be less than the
probability of another ancestor because the current parent probability is the lowest. That's
why we subtract the probability of the not chosen ancestor to the random number.

The fifth step finds the PeerState of the chosen ancestor. The PeerState is a Java dass
that contains the state informations a peer retained about another peer (for -details , see sec
tion 5.2.1.1 and appendix A). This state information contains, among others, the three ad
dresses used by a node: the signalling address (used for the messages exchange), the measure
ment address (used to perform measure) and the data address (used to transfer data). Thus ,
the PeerState contains all the informations needed to perform a Join Procedure.

The sixth step checks if the chosen ancestor is the current parent. If so, we just have to
restart the maintenance timer. Otherwise, we go to the last step of the algorithm.

The seventh step first checks if this node has a measure against the chosen ancestor. If
not, this node first perform a measurement . Next, it compares the measures. There is a timer
associated to each measure. When the timer is out, a new measure is performed. This allow a
node to keep the latest measure to each node in its neighborhood. If the distance to the chosen
ancestor is less than the distance to the current parent, this node has to move. Otherwise, it

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS

Pseudo-Code 2: Pseudo-code for the maintenance procedure
/ / Test if this node is the root.
begin step 1:

if (root)
return

end step 1

/ / Determine the position of this node in the hierarchy.
begin step 2:

state = maintenance;
int positionHierarchy = 1;

//Get the parent of this node .
PeerState peer = parent(this);

while (peer -=/= null)
{

}

if (peer == root)
break;

//Get the parent of the peer.
peer = PARENT(peer) ;
posi tionHierarchy ++;

end step 2

//Compute the probability of each ancestor.
begin step 3 :

double tabProba = new double[positionHierarchy];
int j = O;
int i = positionHierarchy;

while (j < positionHierarchy)
{

bp b ['] 2*i ta ro a J = position Hierarchy*(positionHierarchy+ l);
i++;
J--;

}
end step 3

//Choose the ancestor.
begin step 4:

double rand = RAN DOM() ;
j = O;

while (j < positionHierarchy)
{

if (rand < tabProba[j])
break;

rand = rand - tabProba[j];

43

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS

j++;
}

end step 4

/ / Find the PeerState of the chosen ancestor.
begin step 5:

//Get the parent of this node.
peer = PARENT(this);
i = 1;
int stop = positionHierarchy - j ;

while (i < stop)
{

}

//Get the parent of peer.
peer = PARENT(peer);
i++;

end step 5

/ / Test if the chosen ancestor is the current parent.
begin step 6:

if (peer = PARENT(this))
goto restart;

end step 6

//Compare the measures.
begin step 7:

if (,:3 peer.dist)
PERFORMMEASURE(peer);

if (peer.dist < PARENT(this) .dist)
{

}
else

{

start = Wait;

//Signal its departure toits neighbourhood. LEAVETHÈHIERARCHY();

//Start a Join Prcedure and consider peer as the potential parent.
STARTJOINHIERARCHY(peer);

label: restart;
state = Connected;
number Maintenance WithoutMove++;
double x = (1 + otumberMaintenanceWithoutMove ;

double T = MIN(B+ x, M);
double latence = T + t + RANDOM(0, T);

44

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS

}
end step 7

//Restart the maintenance timer.
RESTARTMAINTENANCETIMER(latence);

has to restart the maintenance timer.

4.6 Heartbeat Timer Negotiation

45

Because a node can die or be unreachable due to network failures, it is necessary to define
a heartbeat mechanism. We describe here the negotiation of the heartbeat timer during the
ALC Join Procedure2 .

When a parent P sends to its new child N a WELCOME message, P inserts in it a timer
information. This information represents the minimum timer value for the ALIVE message
sent from N to P. The maximum value is implicit: if T is the minimum timer value, T + 3f
is the maximum.

N notes this information. In the WELCOMEACK message, N adds a timer information too. It
has the same meaning as the one in the WELCOME message: the minimum timer value for the
ALIVE message sent from P to N.

For each node, the timer value used will be chosen like this: the minimum timer value T
plus a value randomly chosen in[~, 3f].

If a node does not reply to an ALIVE message, two cases are conceivable:

1. one of the node's children doesn't reply.

2. the current parent doesn't reply.

If a child does not reply, there is nothing special to do. The node has just to consider that
its child left the tree.

If the current parent does not reply, the node has to start a join procedure, considering its
grand-parent as the tentative parent. This solution is feasible because each node has its root
path.

4. 7 Limitations

Both protocols defined above are not yet complete. They have five main drawbacks.
First, the protocols are not really fault tolerant, i.e. it does not exist any mechanism

to recover from a failure of the root. If the root dies, the tree (or the hierarchy) becomes
unstable and , generally, all the nodes die within the minute following the root failure. This
drawback will be fixed in further versions of both protocols. A solution could be the root
replication. As for Overcast, we could imagine that the three first levels of the hierarchy have
degree one and these nodes are a replication of the root. If the root dies, the node in the next
level becomes the root. This solution will be easy to implement in TBCP by simply fixing
the fanout to one for the three first levels. It will be more difficult for ALC because of the
non-constrained aspect of the tree. We could solve this problem in ALC with a new kind

2The idea is the same for the TBCP Join Procedure

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 46

of object: RODTREPLICATION. This object will contain an integer indicating the "substitution
priority" in case of root failure . The object will be optional and sent by the root/parent to
its child in the NCA message. Figure 4.11 shows the resulting tree of this mechanism. From
the root to child1, the root replication number will be 1, meaning that, in case of failure of
the root, child1 will become the root. From child1 to child2, the replication number will be
2, indicating that in case of failure of the root and child1, child2 will become the root. From
child2 to child3, the replication number will be 3, indicating that in case of failure of the root,
child1 and child2, child3 will become the root.

T
Chlldlrooè replicaèi= • 1

Chlld2rooè replicaèion • 2

~ooè replicaèion • 3

Figure 4.11: Root replication in ALC

Second, there is a problem if anode stays behind a Network Address Translator (NAT).
This node has a private address and the NAT translates it dynamically. Thus, the address
encoded by the node in the message is the private one. Again, this drawback will be fixed in
further versions of both protocols.

Third, there is no error management, i.e. a message received in a wrong state or with a
unknown format will simply be ignored.

Fourth, there is the firewall problem. Anode behind a firewall will not necessary be seen
by other participants. This problem can be solved if the user configures manually its firewall
to open all the ports used by the protocols.

Last, there is a problem with the root path update. When anode leaves the tree, it sends
a LEAVE message toits neighborhood (parent and children) but the r~~t of the tree/ hierarchy
is not aware of this departure. So, when a node performs the maintenance procedure and
chooses to join the node that left , it can't because it has disappeared. In the· both protocols,
none mechanism has been expected to avoid this problem. The problem is similar when a node
dies or when a node completely changes its position in the tree after a maintenance procedure.
A procedure should be defined to propagate changes in the tree, as the Up/ Down protocol in
Overcast [5] .

The next subsections will examine the problems peculiar to each protocol.

4.7.1 ALC limitations

The main problem of ALC concerns the non-constrained nature of the tree. The tree can
have the shape of a "string" or the root can have a large number of children. This can lead to
a not so good traffic load management.

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 47

In a persona! point of view, the fact that anode can not refuse anode as its child is a bad
idea. This can lead to an unnecessarily overloading of a node. The overlay protocol should be
as light as possible to allow an easy data transmission.

4. 7 .2 TBCP limitations

A node can process only one join procedure at a time. This can increase needlessly the
time needed to find a place in the tree.

The fact that the tree is constrained can lead to a not very optimal tree. A node has to
go clown one layer if the fanout is reached but the configuration could be more efficient if the
fanout was higher.

4.8 Summary

As a summary of this chapter, we add the both protocol described above in the table
used at the end of the previous chapter. The structure of the table 4.1 is the same than the
previous table. The TCP and UDP columns indicate if the protocols are based on TCP or
UDP. The centralized column indicates if the overlay provide a centralized solution or not for
tree computing. The uni-source column indicates if the tree build by the overlay protocol is
uni-source or not . The column Full knowledge indicates if, in the tree, there at least one node
that has a full knowledge of the topology. The Interdomain column indica.tes if the overlay is
used for interdomain traffic or not. The Tree column gives an information about the type of
tree build by the overlay protocol. The last column (Used for) indicates the utilization of the
overlay by an application. The ? indicates that the information is not given by the authors.
For ALC and TBCP, the TCP and UDP columns are put to Y because both protocols use
TCP for messages exchange and UDP to perform RTT measure.

CHAPTER 4. TWO APPLICATION LEVEL OVERLAY PROTOCOLS 48

ALMI y y y N y N Shared tree Multicast sessions
where there is a great
number of small groups

Narada ? ? N N y N Shortest path Small and sparse group
Overcast y N N y ? N Distribution tree On-demand and live

rooted at the data delivery
source

Pastry ? ? N N N N Circular name P2P application
space

Yoid y y N y y N Mesh topology Replication, data distri-
and shared tree bution

Scribe y N N N N N Multicast tree Multicast
RON N y ? ? ? y ? Monitor the functioning

and quality of the Inter-
net paths

ALC y y N y N N Cluster hierarchy video-conference, multi-
party games

TBCP y y N y N N Tree rooted at the video-conference, multi-
source party games

Table 4.1: Application-level overlays overview summary

Part III

Evaluation

49

Chapter 5

lmplementation Details

In this chapter, we describe the architecture (packages, ...) of the ALC and TBCP
implementations. First, we detail the structure of both protocols (section 5.1. The code is
also introduced by presenting packages, classes, fields and methods (section 5.2). Second, we
explain the problems we had to solve while writing the Java implementation (section 5.3).
Finally, we propose a way to transmit data above the tree built (section 5.4).

5.1 General Structure

A node in ALC and in TBCP consists of four application-defined components, as shown
in figure 5 .1.

Signalling Address

node

network

measurer

Figure 5.1: Node Architecture

The first component, called Agent in ALC and Controller in TBCP, is the most impor
tant because it manages the protocol. It represents thus the logical behavior of a node,
as described in chapter 4. This component handles messages and maintaines states about
itself and about nodes with which it is in contact . This component relies on an application
specific signalling address which allows the Agent / Controller of other peers to communi
cate. The Agent/ Controller interacts with other peers via the Ttansfer component. The
Agent/ Controller represents the main activity of anode.

The second component is the User. The User instructs the Agent / Control
1er to join (as root or as normal node) or leave the tree. In ALC, the User indicates to
the Agent how many "best neighbors" it is interested in and in , TBCP, it indicates to the

50

CHAPTER 5. IMPLEMENTATION DETAILS 51

Controller the fanout. The User provides the Agent/ Controller with an application-specific
data address which, in combination with the signalling address of the Agent/ Controller, allows
the Users of other nodes to communicate in an application-specific manner, i.e the way the
application using the ALC/ TBCP package decides to send data over the tree built by the
overlays. In return, the User in ALC will be informed of the best neighbors, including their
data addresses. The User component of both protocols will receive similar information about
the current parent of the node. The User is the starting point (join) and the ending point
(leave) of the actions of the Agent/ Controller in the tree. The User is the component that
allows the dialogue between the ALC/ TBC package and the application using it.

The third component is the Measurer. The Measurer provides the Agent/
Controller with an application-specific measurement address, which, in combination with the
signalling address of the Agent, allows the Measurer of other peers to communicate in an
application-specific manner, i.e. send/receive ping messages used to measure the RTT, as
defined in chapter 4. The Agent/Controller will instruct the Measurer to obtain a measurement
about other node by providing that node's measurement address. The Measurer calls the
Agent/Controller back in order to provide the measurement.

Measurements are opaque abstract types from the Agent/Controller's point of view. The
Measurer allows the Agent to determine the ordering of two measurements. In ALC, the
Measurer allows to determine a region and a radius from a given measurement.

The last component is the Transfer component. The Transfer hides the details of commu
nication of messages between peers. It will keep associations between per-node state main
tained by the Agent/ Controller, and the communication channels maintained by the Transfer
component (and its remote counterparts).

Each logical component defined above is represented by a Java package.

5.2 Introduction To The Java Code

The previous section gave an abstract view of the code design. This section presents each
component in more details and in a more concrete way, i.e. Java oriented.

5.2.1 Application Level Clustering

ALC is composed of four packages: the Agent package, the Measurer package, the User
package and the Transfer package.

5.2.1.1 The UK.ac.lancs.Clustering.Agent package

Figure 5.2 details the content of the Agent package. Each box represents an interface or a
class. This package is divided in two parts: the data structure (ab ove) and the logical behavior
(below). As shown in the figure, some boxes are linked by arrows in the logical behavior . The
box above represents an interface and the box below its implementation.

The data structure part 12 classes: AgentState, AppData, Message, MessageContent, Mes
sageContentVector, Objet, PeerState, PeerStateVector, SigAddr, TimedAppData, Unknown
MessageException and UnknownObjectException.

The AgentState class is illustrated in figure 5.3. This class implements the state maintained
by the Agent about itself and about its participation in the tree. The AgentState contains
the following informations:

CHAPTER 5. IMPLEMENTATION DETAILS

Agent

IAgentStatel MessageContentl IMessageContentVectorl

1 Message 1 AppData 1 1 Objet 11 PeerState 11 SigAddr 1

IPeerStateVectorl I TimedAppDatal junknownMessageExceptionl

1 UnknownObjetException 1

AgentToMeasurerinterface AgentToUserinterface

1 AgentToMeasurerimpl I AgentToUserimpl

ClusterAgentinterface MessageFactoryinterface

1 ClusterAgent I MessageFactoryimpl

Ipv4Mapped ipv6 1 Parsing 1 1 AlcToTbcp 1

Figure 5.2: The Agent Package

52

CHAPTER 5. IMPLEMENTATION DETAILS

sigAddrAgent: the signalling address of the Agent.

maddrlnfoAgent: the measurement address of the Agent.

daddrlnfoAgent: the data address of the Agent.

rootAddress: the signalling addrèss of the root of the tree.

peers: the state of each peers with which the Agent is in contact.

siblingsPending: the peers that are potential parents and have no recent measurement.

siblingsMeasured : the peers that are potential parents and have recent measurement.

currentParent: the state of the current parent.

tentativeParent: the peer that the Agent considers as a prospective parent.

children : the peers registered as children of the Agent.

53

All these fields are declared private. They can be accessed through accessors (set and get
methods) but they are not shown in figure 5.3 for readability and space reasons. In the
remainder of this chapter, we will not present the accessors and the constructors for the same
reasons.

AgentState
-sigAddrAgent: SigAddr
-maddrinfoAgent: TimedAppData
-daddrinfoAgent: TimedAppData
-rootAddress: SigAddr
-peers: PeerStateVector
-siblingsPending: PeerStateVector
-siblingsMeasured: PeerStateVector
;-currentParent: PeerState
-tentativeParent: PeerState
-children: PeerStateVector
-radius: AnnData

Figure 5.3: The AgentState class

The AppData class (figure 5.4) represents a sequence of octets with an application-specific
meaning. It is used to encode as byte streams more complex data structures like measurements,
radius and addresses. The sequence of octets is represented as a byte array (info) and is
declared as private. The isLessThan method tests if this appdata is less than app.

AppData
-info: byte[]
+isLessThan(app:AooData): boolean

Figure 5.4: The AppData class

CHAPTER 5. IMPLEMENTATION DETAILS 54

The Message class (figure 5.5) gives an abstract view of the messages, i.e. only the message
identifier. The fields are declared public.

Message
+OBJREQ_ id: int = 0
+OBJRSP_ id: int = 1
+JOIN_ id: int = 2
+TRY id: int = 3 -
+NC id: int = 4 -
+NCA_ id: int = 5
+LEAVE id: int = 6 -
+ERROR_ id: int = 7
+ALIVE id: int = 8 -
+ALIVEACK: int = 9

Figure 5.5: The Message class

The MessageContent class (figure 5.6) represents the content of messages exchanged be
tween nodes, i.e. all the objects in their Java representation that can be found in a message.
All the fields are declared private. This class is used in combination with the MessageCon
tent Vector class that gives a list of MessageContent object. These two élasses will be used
during the parsing of messages to convert the messages in a byte array format into a Message
Content Vector object that is easier to handle.

MessageContent
-messageid: int
-objectid: int
-key: int []
-tentative: boolean
-leafonly: boolean
-root: SigAddr
-parent: SigAddr
-dist: Appdata
-radius: AppData
-maddr: TimedAppData
-daddr: TimedAppData
-timer: int

Figure 5.6: The MessageContent class

The Objet class (figure 5.7) gives a view of the objects, i. e. their identifiers and their Java
representation. Objects are components of messages. All the fields are declared public. This
class is essentially used by the MessageFactorylmpl class to include the object in the messages.

The PeerState class (figure 5.8) represents the state information that the Agent maintains
about the peers with which it is in contact. The Agent keeps the following informations:

SigAddrPeer: the signalling address of the peer.

MaddrlnfoPeer: the measurement address of the peer.

CHAPTER 5. IMPLEMENTATION DETAILS

Objet
+DADDR_id: int = 0
+MADDR_id: int = 1
+PEERADDR: int = 2
+KEY_id: int = 3
+LEAFONLY_id: int = 5
+TENTATIVE: int = 6
+ROOT_id: int = 7
+TIMER_id: int = 8
+objid: int
+rnaddr: TirnedAppData
+daddr: TirnedAppData
+peerAddr: SigAddr
+key: int[]
+rneasurernent: AppData
+leafonly: boolean
+tentative: boolean
+root: SigAddr
+tirner: int

Figure 5.7: The Objet class

DaddrinfoPeer: the data address of the peer.

55

Mode : the "state" in which the Agent is in relation to this peer. The different modes are:
Error (the Agent sent a ERRDR message to this peer), boring (the default mode), M ea
suring (the Agent is performing a measurement to this peer), Tentative (the Agent acts
as a tentative peer to this peer) and Discovering (the Agent performs a Join Procedure
with this peer as potential parent).

LocalDist: the la test measurement made by the Agent against this peer.

RemoteDist: the latest measurement made by this peer against the Agent.

Leafonly: indicates whether the Agent will accept children or not.

ParentPeer: the peer which is the parent of the Agent .

Timeout: a period of time that the Agent will wait for a response before retransmitting the
message.

Lives : the number of times a message will be retransmitted without a response.

HeartbeatTimer: the minimum period of time that the Agent will wait before sending an
ALI VE message to this peer.

AliveAck Wanter: indicates that an ALIVE message has been sent to this peer and that an
ALIVEACK message is expected.

JoinRspPending: indicates that a JOIN message has been sent to this peer and that a TRY or
NCA message is expected

NcaPending: indicates that a NC message has been sent to this peer and a NCA message is
expected.

CHAPTER 5. IMPLEMENTATION DETAILS 56

Daddr Wanter: indicates that an OBJREQ message requesting the data address has been sent
to this peer and that an OBJRSP message is expected.

MaddrWanter: indicates that an OBJREQ message requesting the measurement address has
been sent to this peer and that an OBJRSP message is expected.

All the fields are declared private, except the modes that are declared public. The four methods
presented in figure 5.8 are used to handle the timeout problems. All the actions performed by
these methods are described in appendix A. This class should be used in combination with
the PeerState Vector that gives a list of PeerState objects .

PeerState
+ERROR_mode: int = 0
+BORING_mode : int = 1
+MEASURING_mode : int = 2
+TENTATIVE_mode : int = 3
+DISCOVERI NG_mode : int = 4
-sigAddrPeer: SigAddr
-maddrinfoPeer: TimedAppData
- mode: i n t
- daddrinfoPeer: TimedAppData
-localDist: AppData
-remoteDi st: AppData
- l eafonly: boolean
- parentPeer : PeerState
- timeout: int
- lives: int
-joinRspPending: boolean
- ncaPending: boolean
-daddrWanted: boolean
- maddrwanted: boolean
- heartbeatTimer: int
-aliveAckWanted: boolean
- localDistVal i d : boolean
- maddrTi meout (): void
-daddrTimeout () : void
- messageReceptionTimeout(): void
- heartbeatTimeout(): void
- aliveackTimout(): void

Figure 5.8: The PeerState class

The SigAddr class (figure 5.9) represents the signalling address of anode. As anode can
be 1Pv4 stack only, 1Pv6· stack only or dual stack, this class to store the 1Pv4 and the 1Pv6
addresses. All the addresses are stored in an 1Pv6 format. The fields are declared private.
The dualStack method indicates wether the node is dual stack or not. The Ipv4Stack method
indicates whether the node contains at least an 1Pv4 stack. The equal method tests if this
signalling address equals sa.

SigAddr
- Ipv4Mappedipv6: Inet6Address
- Portv4Mappedv6: int
- Ipv6Addr: Inet6Address
-Portv6: int
+dualStack(): boolean
+ipv4Stack () : boolean
+eaual(sa:SiaAddr): boolean

Figure 5.9: The SigAddr class

The TimedAppData class (figure 5.10) represents a data structure that is used with the
informations stored with a timeout information. The TimedAppData is thus composed of an
AppData information plus an expiration t ime and a boolean indicating if the data can be
passed the another peer.

CHAPTER 5. IMPLEMENTATION DETAILS 57

TimedAppData
-appDatainfo: AppData
-time: int = 60
-bool: boolean

Figure 5.10: The TimedAppData class

The UnknownMessageExceptionis thrown by the parseMessage() fonction in the Parsing
class when the Agent received a message of an unknown type. The UnknownObjectException
is thrown by the constructor of the Objet class when it meets an abject of an unknown type.

The logical behavior part contains four interfaces and seven classes: AgentToMeasurerln
terface, AgentToMeasurerlmpl, AgentToUserlnterface, AgentToUserlmpl, ClusterAgentlnter
face, ClusterAgent, Ipv4Mappedlpv6, MessageFactoryinterface, MessageFactorylmpl, Pars
ing, AlcToTbcp.

The AgentToMeasurerlnterface interface (figure 5.11) is used by the Agent to communicate
with the Measurer. There are five events from the Agent to the Measurer:

getAddress()=>(maddr)
The Agent needs to know immediately the measurement address of the node.

maddr is a TimedAppData identifying the measurement address of the node.

measure (peer, maddr)
The Agent needs a measurement from a peer. The response should be through a mea
sured event.

peer is a signalling address identifying the peer.

maddr is a TimedAppData identifying the peer's measurement address.

encode (dist) => (data)
The Agent needs a measurement converted to octets for transmission.

dist is the Measurement to be converted.

data is the measurement converted to AppData.

decode(data)=>(dist)
The Agent needs a measurement converted from octets after transmission.

data is the AppData to be converted.

dist is the measurement after conversion.

getRegion (dist) => (Region)

The Agent needs to compute the region in which its children must fall to be the potential
parent of a prospective peer.

dist the measurement offered by the prospective peer.

Region A region including the best (inclusive) measurement, the worst (exclusive) mea
surement for suitable children and the worst measurement that the prospective peer
should accept from the selected children.

CHAPTER 5. IMPLEMENTATION DETAILS

The AgentToMeasurerlmpl class implements this interface.

AgentT oMeasurerlnterface

+get.Address() : TimedAppData
+measure(peer:SigAddr,maddr:AppData): void
+encode(dist:Measurement): AppData
+decode(data : AppData): Measure me nt
+qetReqion(dist:Measurement): Reqion

Figure 5 .11: The AgentToMeasurer Interface interface

58

The AgentToUserlnterface interface (figure 5.12 is used by the Agent to communicate with
the User. There are four event types from the Agent to the User:

getAddress () => (daddr)
The Agent needs to know immediately the data address of the node.

daddr is a TimedAppData representing the data address of the node.

setParent (peer, daddr)
The Agent has determined its (new) position in the hierarchy, and is identifying the
parent. This event occurs whenever the parent changes or when the data address of the
parent changes.

peer is a signalling address identifying the parent node.

daddr is a TimedAppData identifying the data address of the parent node.

interestingPeer(peer, daddr)
The Agent has identified a peer that is among the best n peers requested by the interest
event, or its data address has changed.

peer is a signalling address identifying the node.

daddr is a TimedAppData identifying the data address of the node.

uninterestingPeer (peer)
The Agent has identified a peer that is no longer among the best n peers requested by
the interest event.

peer is a signalling address identifying the node.

The AgentTo Us erlmpl class implements this interface.

AgentT oUserlnterface

+getAddress {) : TimedAppData
+setParent (peer:SigAddr,daddr:AppData) : void
+interestingPeer (peer:SigAddr,daddr:AppData): void
+uninterestingPeer (peer:SigAddr) : void
+setTransfer(transfer:Transfer) : void

Figure 5.12: The AgentToUserlnterface interface

The ClusterAgentlnterface interface (figure 5.13) represents the Agent . This interface
allows the Agent to start / stop its actions in the cluster hierarchy and the processing of the

CHAPTER 5. IMPLEMENTATION DETAILS 59

messages. The ClusterAgent class implements this interface. The processing of the messages
is performed as described in appendix A.

messageProcessing (message, socket, portPeerListen, inet, port)
This method allows the processing of messages received from a peer.

message is the message received from a peer.

socket is the socket of the remote host.

portPeerListen is the port used by the remote host to listen/accept incoming connec
tions.

inet is the IPv4 address of the remote host if it is dual stack and if it communicates
with its IPv6 channel. Otherwise, it is set to null.

port is the port corresponding to the IPv4 address.

ClusterAgentlnterlace

+startAgentt r:Si9Addr, tra.nsfer ,Tra.nsfer, probaJo i n: inti : void
+stopAgent(): void
+mes sa eProcessin (mes sa rtPeerListen: int inet: Inet4Address rt: int : void

Figure 5.13: The ClusterAgentlnterface interface

The lpv4M appedlpv6 class allows the transformation of an IPv4 address into and IPv4
Mapped IPv6 address and inversely.

The MessageFactorylnterface allows the building of messages of any types, as described
in appendix A

The Parsing class transforms a message received in byte format into a MessageContentVec
tor object that is easier to process .

The AlcToTbcp class allows to transform locally the cluster hierarchy in a constrained tree.

5.2.1.2 The UK.ac.lancs.Clustering.Measurer package

Figure 5.14 gives a view of the content of the Measurer package. This package is divided
in two parts: the data structure (ab ove) and the logical behavior (below).

The data structure contains three classes: Measurement, Radius and Region.
The Measurement class represents a measurement , i.e. the interna! representation of a

measurement (i.e. RTT) performed by the Measurer with another node. Two methods are
defined to transform a Measurement object in an AppData object and inversely.

The Radius class (figure 5.16) represents the radius information computed by the Measurer.
The Region class (figure 5.17) represents a region, as defined in chapter 4).
The logical behavior contains an interface and four classes: MeasurerToAgentlnterface,

MeasurerToAgentlmpl, Measurer, PerformMeasure, PermanentServerRTT.
The MeasurerToAgentlnterface interface (figure 5.18) is used by the Measurer to commu

nicate with the Agent. There is only one event that could originate from the Measurer:

measured (peer, dist, timer)
The Measurer is indicating that it has completed a requested measurement with a given
peer.

CHAPTER 5. IMPLEMENTATION DETAILS 60

Measurer 1

1 Measurement 1 Region

1 MeasurerToAgentinterface 1 Measurer 1

MeasurerToAgentimpll

IPerformMeasure 1 PermanentServerRTT

Figure 5.14: The Measurer Package

Measurement
- measure: lona
+measurementToAppData(): AppData
+aooDataToMeasurement(aoo:AooData): Measurement

Figure 5.15: The Measurement class

Radius
-rad: Measurement
+co uteRadius(dist :Measurement): Measurement

Figure 5. 16: The Radius class

Region
- best: Measurement
- worst: Measurernent
- rad: Measurement

Figure 5.17: The Region class

CHAPTER 5. IMPLEMENTATION DETAILS 61

peer is a signalling address identifying that peer.

dist is the Measurement which the Agent can ask the Measurer to convert into AppData.

timer is an integer representing an absolute value for the measurement timeout, i.e.
the time the measurement will during which be valid .

The M easurerToAgentlmpl class implements this interface.

MeasurerToAgentlnterface

+measured(eer:Si Addr,dist: Measureme nt,timer:lon): vo id

Figure 5.18: The MeasurerToAgentlnterface interface

The Measurer class (figure 5.19) represents the Measurer component. It determines the
measurement address of the node and can be to convert the AppData form of the address into
a DatagramSocket.

Measurer
-meaaurementAddre••: TimedAppData
-siaAddr: SiaAddr
-determin•H-•urementAddre■e (): AppData
-tranaformAddreaeToAppData (addr: InetAddress, port: int): AppData
+tranaformAppDa taToDatagramSocket (addrAppOata: AppData): Data gramSocket
+tranaformAppDataTolnetAddreaa (addrAppData : AppDa ta) : InetAddresa
+aetM21.ddr (): TimedAnnData

Figure 5.19: The Measurer class

The PerformMeasure class allows the Measurer to perform measurement to specified peers.
The measurement is a Round-Trip Time (RTT) .

Finally, the PermanentServerRTT class is used by the Measurer to answer the measure
ment queries of other peers.

5.2.1.3 The UK. ac. lancs. Clustering . User package

User 1

1 Parentl

1 UserToAgentinterface 1

~

1 DecideStack 1

1 UserToAgent 1 1 Userl

Figure 5.20: The User Package

CHAPTER 5. IMPLEMENTATION DETAILS 62

As shown in figure 5.20, the User package is divided m two parts: the data structure
(ab ove) and the logical behavior (below).

The data structure part contains only one class: Parent. The Parent class allows the User
to keep the informations given by the Agent about the current parent of the node.

The logical part contains an interface and three classes: UserToAgentlnterface, UserToA
gentlmpl, DecideStack and User.

The UserToAgentlnterface interface (figure 5.21) is used by the User to communicate with
the Agent. There are four types of event from the User to the Agent:

join (peer, probaJ oin)
The User wishes to participate in a cluster hierarchy.

peer is a signalling address indicating the root peer.

probaJoin is an integer representing the number used for the probabilistic join.

accept()
The User wishes to be the root of a cluster hierarchy.

leave()
The User wishes to stop participating in a cluster hierarchy.

inter-est(count)
The User wishes to be informed of the data addresses of the best peers in the cluster
hierarchy it is participating.

count is an integer identifying the number of ideal peers.

The UserToAgentlmpl class implements this interface.

UserToAgentlnterface

+join (root :SigAddr,probaJoin:int) : void
+accept () : void
+l eave () : void
• i nterest (cou.nt : int): void

Figure 5.21: The UserToAgentlnterface interface

The DecideStack class allows the User to decide if the host's network stack is IPv4 only,
IPv6 only or dual stack.

The User class (figure 5.22) represents the User component. This class also provides
the data address of the node. It also keeps information about the current parent and the
interesting peers.

User
- pa r e nt : Pare nt
- interes t i naPeers: PeerStateVector
+ae tDaddrAddress{): TimedAooOat a

Figure 5.22: The User class

CHAPTER 5. IMPLEMENTATION DETAILS 63

Transfer

1 PeerConnected 1 1 PeerConnectedVector 1

ChannelCallbackinterface Serverinterface

lchannelCallbackl

Transferinterface IParsingFromChannell

- -,
1 Tra~sfer 1

Figure 5.23: The Transfer Package

5.2.1.4 The UK. ac. lancs. Clustering . Transfer package

As shown in figure 5.23, the Transfer package is divided into two parts: the data structure
(above) and the logical behavior (below).

The data structure part contains two classes: PeerConnected and PeerConnectedVector.
The PeerConnected class (figure ??) is a data structure used by the Transfer component

to keep information about the peer which it is in contact with. All the fields are declared
private. The PeerConnéctedVector class gives a list of PeerConnected abjects.

PeerConnected
- sigAddrPeer: SigAddr
- socketPeer: SocketChannel
+closeSocketPeer(): void

Figure 5.24: The PeerConnected class

The logical behavior contains several interfaces and classes: ChannelCallbacklnterface,
ChannelCallback, Serverlnterface, Server, Transferlnterface, Transfer and ParsingFromChan
nel.

As messages may be arriving from multiple peers/ nodes in any order, the ChannelCall
backinterface interface defines methods used to be sure that the message read is complete.
The ChannelCallback class implements this interface

The ParsingFromChannel class allows the "cutting" of a message received by the Transfer
component in different parts that will be understood by the Agent. This class should be used
in combination with the ChannelCallback class.

CHAPTER 5. IMPLEMENTATION DETAILS 64

The Serverlnterface (figure 5.25) interface defines the behavior of a server used to ac
cept incoming connections , to read messages on socket channels and to send messages on
socket channels. This server is based on the Selector class that allows to handle multiple 1/ 0
operations inside only one thread. The Server class implements this interface.

Serverlnterface

+initialization (): void
+finalize(}: void
+read.Message(callback:ChannelCallback): voi d
+writeMessaae(channel:SocketChannel ,messaa e :bvte[J): void

Figure 5.25: The Server interface

The Transferlnterface interface represents the Transfer component. It is used by the Agent
to send data to other peers. There are two methods to send data:

sendM essage (message, receiver)
This method sends a message to a well-known peer, i.e. a peer already present in the
peer list of the Agent .

message is the message to send.

receiver is the signalling address identifying the receiver.

sendM essage (message, receiver, port)
This method sends a message to an unknown peer, i.e. a peer not present in the peer
list of the Agent.

message is the message to send.

receiver is the signalling address identifying the receiver.

port is the port used by the receiver.

Transferlnterface

+stop () : void
+ sendMessage (message: byte (J , recei ver: SigAddr) : void
+send.Messaoe (rnessaae : bvte r 1 , recei ver: SioAddr, oort : int) : void

Figure 5.26: The Transfer interface

5.2.2 Tree Building Control Protocol

TBCP is composed of four packages: the Controller, the Measurer, the User and the
Transfer packages.

5.2.2.1 The UK . ac. lancs. tbcp. Controller package

Figure 5.27 shows the content of the Controller package. Each box represents an interface
or a class . This package is divided in two parts: the data structure (above) and the logical
behavior (below) . As shown in the figure, some boxes are linked by an arrow in the logical
behavior part. The box above represents an interfa ce and the box below its implementation.

CHAPTER 5. IMPLEMENTATION DETAILS

Controller

!controllerState I I MessageContent l I MessageContentVector l

1 Message 11 AppData I a
I

NodeState 1
1

SigAddr 1

INodeStateVector l I TimedAppData l l unknownMessageException l

1 UnknownObjetException 11 Score 1

ControllerToMeasurerinterface

ControllerToMeasurer

Controllerinterface

Controller

lrpv4Mappe dipv6 I

1 ScoreVectorl

ControllerToUserinterface

ControllertToUser l

MessageFactoryi nterface

1 MessageFactory 1

Parsing 1

Figure 5.27: The ControllerPackage

65

CHAPTER 5. IMPLEMENTATION DETAILS 66

The data structure part contains 14 classes: AppData, ControllerState, Message, Mes
sageContent, MessageContentVector, NodeState, NodeStateVector, Objet, Score, ScoreVector,
SigAddr, TimedAppData, UnknownMessageException, UnknownObjectException. The Ap
pData, SigAddr, TimedAppData, UnknownMessageException and UnknownObjectException
are identical to those used in TBCP.

The ControllerState class (figure 5.28) contains the state informations that the Controller
maintains about itself and its position in the tree. The Controller keeps the following infor
mations:

sigAddrController: the signalling address of the Controller.

maddrController: the measurement address of the Controller.

daddrController: the data address of the Controller.

fanout: the maximum number of children that will be accepted by the Controller.

rootAddress: the signalling address of the root of the tree.

timerJoin: the timer value for the Join Procedure.

nodes: the list of all the nodes the Controller is in contact with.

currentParent: the state of the current parent.

tentativeParent: the node which the Controller views as a prospective parent.

children: the nodes registered as children of the Controller.

tentativeChild: the node that is a Controller's potential child.

measurePending: the nodes that have no recent measurement.

measurePerformed: the nodes that have recent measurement.

All these fields are declared private.

ControllerState
-sigAddrController: SigAddr
-maddrController: TimedAppData
- daddrController: TimedAppData
- fanout: int
- rootAddress: SigAddr
- timerJoin: int
-nodes: NodeStateVector
- currentParent: nodeState
- tentativeParent: NodeState
- children: NodeStateVector
- t e ntativeChild: NodeState
- measurePending : NodeStateVe ctor
- measurePerformed: NodeStateVector

Figure 5.28: The ControllerState class

The Message class (figure 5.29) gives an abstract view of the messages , i.e. only the
message identifier. The fields are declared public.

CHAPTER 5. IMPLEMENTATION DETAILS

Message
+OBJREQ_id: i n t = 0
+OBJRSP_id: int = 1
+REJ ECT_id: int = 2
+HELLO_id: int = 3
+HELLOACK_id: int = 4
+JOIN_id: int = 5
+WELCOME_id: int = 6
+WELCOMEACK_id: int 7
+GO_id : int = 8
+GOACK_id: int 9
+ERROR_id : int = 10
+LEAVE_id: int = 11
+ALIVE_id: int = 12
+ALIVEACK id: int = 13

Figure 5.29: The Message class

67

The M essageContent class (figure 5.30) represents the content of messages exchanged be
tween nodes, i.e. all the abjects in their Java representation that can be found in a message.
All the fields are declared private. This class is used in combination with the MessageCon
tent Vector class that gives a list of MessageContent abjects. These two classes are used during
the parsing of messages to transform the message in a byte array format into a MessageCon
tent Vector abject that is easier to process.

MessageContent
-messageid: i n t
- obj ectid: int
-key: int []
-parent: SigAddr
-dist: AppDa ta
-maddr: TimedAppData
-daddr: TimedAppData
-timer: int

Figure 5.30: The MessageContent class

The Objet class (figure 5.31) gives a view of the abjects , i.e. their identifiers and their Java
representation . Objects are component of messages. the identifiers are declared public and
the others fields are declared private. This class is essentially used by the M essageFactorylmpl
class to include the abject in the messages.

The Score class (figure 5.32) represents the informations about a configuration kept by the
Controller during the calculation of the score fonction. The informations are the following:

children is the children list in case of this configuration will be chosen by the Controller.

goDown is the node that will go clown one layer if this configuration is chosen.

parent is the parent of the node that will go clown one layer.

dist is the distance of this configuration.

CHAPTER 5. IMPLEMENTATION DETAILS

Objet
+DADDR_id: int = 0
+MADDR_id: int = 1
+MEASUREMENT_id: int 2
+TIMER_id: 3 = int
+NODEADDR_id: int = 4
+KEY_id: int = 5
+ROOT_id: 6 = int
-daddr: TirnedAppData
- rnaddr: TirnedAppData
-rneasurernent: AppData
-tirner: int
-nodeAddr: SigAddr
-key: int[]
-root: SigAddr
-obiid: int

Figure 5.31: The Objet class

Score
- children: NodeStateVector
- goDown: NodeState
- parent: NodeState
- dist: Measurernent

Figure 5.32: The Score class

AU these fields are declared private.

68

The logical behavior part contains four interfaces and six classes: ControllerToMeasurerin
terface, ControllerTo User Interface, ControllerToMeasyrer, ControllerTo User, Controller Inter
face, Controller, Ipv4MappedIPv6, MessageFactoryinterface, MessageFactory and Parsing.
The Ipv4Mappedipv6 class is totally identical to the synonym class in ALC. The MessageFac
toryinterface interface and the Parsing class are basically the same as in ALC but adapted to
TBCP.

The ControllerToMeasurerlnterface interface (figure 5.33) is used by the Controller to
communicate with the Measurer. There are five types of events from the Controller to the
Measurer:

getAddress () ⇒ (maddr)
The Controller needs to know immediately the measurement address of the node.

maddr is a TimedAppData representing the measurement address of the node.

measure (node, maddr)
The Controller asks the Measurer to perform a measurement against a specific node.
The measurement will be returned as a m easured event.

node is a signalling address identifying the node.

maddr is a TimedAppData representing the measurement address of the node.

encode (dist) ⇒ (data)
The Controller needs a measurement converted to octets.

CHAPTER 5. IMPLEMENTATION DETAILS

dist is a Measurement to be converted.

data is the measurement after the conversion.

decode(data)=>(dist)
The Controller needs a measurement converted from octets.

data is the AppData to be converted.

dist is the measurement after the conversion.

compare (distl , dist2) => (value)
The Controller wants to compare to measurements .

distl is a Measurement to be compared with dist2.

dist2 is a Measurement to be compared with distl.

value is an integer representing the result of the comparison

The ControllerTo User class implements this interface.

ControllerToMeasurerlnterface

+getAddress(): TimedAppData
+measure { node: SigAddr, maddr: AppOata) : void
+decode(data:AppData) : Measurement
+encode{dist:Measurement): AppData
+comoare (distl:Measurement dist2 :Measurernent): int

Figure 5.33: The ControllerToMeasurerlnterface interface

69

The Controllerlnterface interface (figure 5.34) represents the Controller. lt allows the
Controller to start/stop its actions in t he tree and the message processing. The Controller class
implements this interface. The message processing is performed as described in appendix B.

messageProcessing (msg, channel, portN odeListen, inet, port)
This method allows the processing of a message received from a node.

msg is the message received from a node.

channel is the channel used to communicate with the remote node.

portNodeListen is the port used by the remote node to accept/ listen incoming connec
tions.

inet is the 1Pv4 address of the remote node if it is dual stack and if it communicates
with its IPv6 channel. Otherwise, it is set to null.

port: is the port corresponding to the IPv4 address.

Controllerlnle!face

+startCcmtroller ,::SiaAddr, tr31lsfer:1ransfer, fal\C'Jt: int) : ·1cnd
+stO{.Contr~ller\! : ·;;)id
+1essacieFrocessi:x1iL"<l :bvtel J ,chaMel: SocketctaMel, wrtllodeListen: int, met: lnetUMress,oort: int) : ·:~1d

Figure 5.34: The Controllerlnterface interface

The ControllerToUserlnterface interface (figure 5.35) is used by the Controller to commu
nicate with the User. There are two types of events from the Controller to the User:

CHAPTER 5. IMPLEMENTATION DETAILS

getAddress () ⇒ (daddr)
The Controller needs to know immediatly the data address of the node.

daddr is a TimedAppData representing the data address of the node .

setParent(parent, daddr)

70

The Controller has determined its position (possibly a new one) in the tree. This event
occurs either when the parent changes or when its data address changes.

parent is a signalling address indicating the signalling address of the node.

daddr is a TimedAppData representing the data address of the node .

The ControllerToUser class implements this interface.

ControllerToUserlnterface

+getAddress(), TimedAppData
+setParent(oarent,SiaAddr,daddr,AooData), void

Figure 5.35: The ControllerToUserlnterface interface

5.2.2 .2 The UK. ac .lancs . tbcp .Measurer package

Measurer

1 Measurernent l

MeasurerToControllerinterface Measurerinterface

MeasurerToController

IPerforrnMeasure l 1 PerrnanentServerRTT

Figure 5.36: The Measurer Package

Figure 5.36 shows the content of the Measurer package. This package is divided in two
parts: the data structure (ab ove) and the logical behavior (below) .

The data structure part contains only one class (M easurement) that is totally identical to
the Measurement class in ALC.

The logical behavior contains two interfaces and four classes: MeasurerToControllerln
terface, MeasurerToController, Measurerlnterface, Measurer , PerformMeasure and Perma
nentServerRtt. The last two classes are identical to those in ALC.

CHAPTER 5. IMPLEMENTATION DETAILS 71

The MeasurerToControllerlnterface interface (figure 5.37) is used by the Measurer to com
municate with the Controller. There is only one event from the Measurer to the Controller:

measured (node, dist)
The Measurer is indicating that it has completed a requested measurement to a given
node

node is a signalling address identifying that node.

dist is a Measurement representing the measurement performed that the Controller
could ask then the Measurer to convert to AppData).

The MeasurerToController class implements this interface.

MeasurerToControllerlnterface

+rneasured(node:Si Addr , dist:Measurernent): void

Figure 5.37: The MeasurerToControllerinterface interface

The Measurerlnterface interface (figure 5.38) represents the Measurer and determines the
measurement address of the node. This interface is implemented by the Measurer class.

Measurerlnterface

+deterrnineMeasurementAddress(): AnnData

Figure 5.38: The Measurerlnterface interface

5.2.2.3 The UK . a c . lancs. tbcp. User package

User

1 Parent !

UserToControllerinterface Userinterface

UserToController

DecideStack 1

Figure 5.39: The User Package

CHAPTER 5. IMPLEMENTATION DETAILS 72

As shown in figure 5.39, the User package is divided in two parts: the data structure
(ab ove) and the logical behavior (below) .

The data structure part contains only one class (Parent) that is identical to the same class
in ALC.

The logical behavior part contains two interfaces and three classes: UserToControllerln
terface, UserToController, Userlnterface, User and DecideStack. The last class is the same as
the one in ALC.

The UserToControllerlnterface interface (figure 5.40) is used by the User to communicate
with the Controller. There three types of events from the User to the Controller:

join (root, fanout)
The User asks the Controller to join an existent tree.

root is a signalling address indicating the root address.

fanout is an integer indicating the maximum number of children this node might have.

accept (Janout)
The User orders the Controller to be the root of the tree.

fanout is an integer indicating the maximum number of children this node might have.

leave()
The User orders the Controller to leave the tree.

UserToControllerlnterface

+join(root:SigAddr,fanout:int) : void
+accept (fanout:int): void
+leave(): void

Figure 5.40: The UserToControllerlnterface interface

The UserToController class implements this interface.
The Userlnterface interface (figure 5.41) represents the User and determines the data

address of the node. This interface is implemented by the User class.

Userlnterface

+createDataAddress(si :Si Addr): A Data

Figure 5.41: The User interface

5.2.2.4 The UK. ac . lancs . tbcp. Transfer package

The Transfer package in TBCP is totally identical to the Transfer package in ALC (see
section 5.2.1.4).

CHAPTER 5. IMPLEMENTATION DETAILS 73

5.3 lmplementation Issues

This section presents the problems we had to solve during the Java implementation.
The first problem was the IP stack discovery. We wished that a node could discover by

itself its type of IP stack. Therefore, anode could know whether it is dual stack, IPv4 only
stack or IPv6 only stack. Our first idea was to open an IPv4 socket and an IPv6 socket on a
host and then see the exceptions launched at runtime. This solution was impossible because
Java makes transparent the socket opening, i.e. the programmer does not know whether he
uses an IPv4 or an IPv6 socket.

Finally, we found the solution in jdk 1.4.1. We used the Networkinterface.
getNetworkinterfaces() method from the java.net package. This method returns an Enu
meration containing all the network interfaces of the host: IPv4 address (if it exists), IPv6
address (if it exists) and the loopback address (v4 and/ or v6). Lastly, some handlings (Enu
meration, casting, exceptions) were needed to allow to decide the kind of IP stack.

The second problem was the Transfer component, and more specially the Server class.
This problem was due to the utilization of the java. nio and java. nio. channel packages
available since jdk 1.4.1.

In the previous versions of the jdk, to run an application that uses several sockets, the
programmer had to start a thread for each connection. In spite of that, he could encounter
problems like operating system limits, deadlocks, .. . Now, the programmers have the oppor
tunity to use the selector, a tool allowing to manage several simultaneous sockets in a single
thread. The selector performs multiplexing, i.e. managing several I/ 0 actions in a single
thread.

The difficulties were the understanding and the utilization of the selector. The solutions
were found in [34, 35, 36, 37].

5.4 Data Transmission

This section introduces the way we could transfer data over the tree built by ALC and
TBCP. Remember that the purpose of ALC and TBCP is to build a tree to emulate multicast
communications. For the moment , nothing is foreseen relating to the data transmission.

We think that the data transfer should be independent of ALC and TBCP. The simpler and
more elegant solution is that the application above ALC and TBCP (i.e. the application using
them) has to manage the data transfer. This application will need to know the data address
of the parent (for the potential acknowledgements) and the data address of the children.

The interactions between the application and the underlying overlay protocol will be possi
ble by using the User. To play this intermediate role, the User needs to know more informations
about the Agent / Controller 's neighborhood: the parent data address (the User already knows
it) and the children data addresses.

Thus, new events between the User and the Agent / Controller (and inversely) should be
added. From the User to the Agent / Controller , only one event is enough:

get Children () ==> ch ildren
The User needs to know immediately the list of children of the Agent / Controller.

children is a Peer / NodeStateVector representing the list of children.

From the Agent / Controller to the User , two events are needed:

CHAPTER 5. IMPLEMENTATION DETAILS 74

setChild (sigAddr, daddr)
A new child joined the Agent/ Controller. This event happens if there is a new child or
the data address of a child has changed.

sigAddr is a signalling address identifying the child.

daddr is the data address of the child.

rem ove Child (sigAddr)
A child left the Agent / Controller.

sigAddr is a signalling address identifying the child.

Chapter 6

Performance Measures

This chapter discusses the performances of the overlays exposed in chapter 4. These
performances have been observed on the PlanetLab overlay network.

First, we introduce Planet Lab (section 6.1). Then, we present and discuss the mea
surements done for Application-Level Clustering (ALC - section 6.2). Next, we introduce
the measurements done for Tree Building Control Protocol (TBCP - section 6.3). Finally,
section 6.4 concludes this chapter.

6.1 Planet Lab

Planet Lab [38, 39, 40, 41] is a global overlay network for developing and accessing new
network services. Their goal is to grow to 1000 geographically distributed nodes, connected
by a diverse collection of links. Toward this end, they are putting Planet Lab nodes into
edge sites, co-location and routing centers, and homes (i.e. at the end of DSL lines and cable
modems). Planet Lab is designed to support both short-term experiments and long-running
services. Currently running services include peer-to-peer networks, and content distribution
networks.

There are currently more than 115 machines at 45 sites world-wide (see figure 6.1) available.
Planet Lab creates an environment in which to conduct experiments at Internet scale. The
most obvious is that network services deployed on Planet Lab experience all of the behaviors
of the real Internet where nothing (latency, bandwidth, ...) is predictable.

Over the next two years, their intention is to grow Planet Lab frotn the current 115 nodes
into a world-wide federation of 1000 nodes with sites in Universities, co-location centers, in
dustrial labs and even the Abilene (Internet2) backbone routing centers. Abilene [42] is an
advanced backbone network that connects regional network aggregation points, to support the
work of Internet2 universities as they develop advanced Internet applications. Internet2 [43]
is a consortium being led by 202 universities working in partnership with industry and gov
ernment to develop and deploy advanced network applications and technologies, accelerating
the creation of tomorrow's Internet.

Each Planet Lab node consists of a Linux-based PC running specially developed virtual
machine technology allowing experiments to be conducted independently. This virtual machine
aims to provide better security and resource isolation between services running over it.

75

CHAPTER 6. PERFORMANCE MEASURES 76

Figure 6.1: The PlanetLab network

6.2 Application-Level Clustering

This section presents the performance of measures with ALC. First , we are going to explain
our approach (section 6.2.1). Second, we are going to discuss the measures.

6.2.1 Introduction To The Measure Scenario

The measures were performed on the Planet Lab network during the Easter holidays (from
April 4th to 6th, 2003). The Planet Lab nodes used were the following:

Lancaster (planetlab1. cs-ipv6. lancs. ac . uk - 194.80.38.242)

Arizona (planetlab1. cs. arizona. edu - 150.135.62.2)

Cambridge (planetlab1 .xeno. cl. cam. ac. uk - 128.232.103.201)

Copenhagen (planetlab1. diku. dk - 192.38.109.143)

University of Bologna (planetlab1. cs. unibo. i t - 130.136.254.21)

University of Technology, Sydney (planetlab1. it. uts . edu. au - 138.25.15.194)

University of Chicago (planetlab1. cs . uchicago . edu - 128.135.11.149)

Kansas (kupl1. i ttc. ku. edu - 129.237.123.250)

UC Santa Barbara (planet1. cs. ucsb. edu - 128.111.52.61)

The measure were performed in an environment containing no firewall and no NAT.
The Lancaster node was chosen to be the root of the hierarchy. The port used for the

ALC application was 5000, except for Arizona and Santa Barbara where it was both 5000 and
7000. So, there were two ALC applications running on the Arizona and on the Santa Barbara
nodes.

CHAPTER 6. PERFORMANCE MEASURES 77

The ALC application was launched in this order: Lancaster, Arizona 1, Arizona 2, Cam
bridge, Copenhagen, Balogna, Sydney, Chicago, Kansas , Santa Barbara 1 and, finally, Santa
Barbara 2.

The nodes measured were the following: Lancaster, Cambridge, Arizona 1, Santa Barbara
and Kansas. The measures were done by taking "statistics" in the application all the minutes
during approximately 15 - 20 minutes.

The only parameter was the value for the Probabilistic Join. It was put to 5. Remember
that the Probabilistic Join represents the maximum number of nodes a new corner will consider
at each step of the Join Procedure (see section 4.2) .

The following points were measured: the number of heartbeat messages exchanged between
nodes, the number of OBJREQ1 messages exchanged, the number of Maintenance Procedure,
the total number of messages exchanged, the total bytes exchanged between nodes and the
time needed for a node to find its place in the hierarchy. These measures aim to show that
our Java implementation of ALC works correctly.

6.2.2 Construction Of The Tree

Figure 6.2 shows the tree shape obtained during our test. The surrounded nodes are those
that were the measure target. We could notice that the non-constrained aspect of the tree
prevents to do speculation about its shape.

Sydney -- - "' ~ Ariz ona 1/

/~
Santa Barbara 1 Arizona 2

- -1- -

-- - "'

~
Bologna Copenhagen Chicago , Ka~a~

'-.Santa Barbara ~ - - -
Figure 6.2: Tree shape

The tree shape does not seem obvious at the first look (Chicago is a child of Cambridge,
Santa 2 is a child of Arizona 2, ...) . To remove this misunderstanding, we are going to explain
in details the complete Join Procedure.

First , we launch Lancaster as the root. Next, we launch Arizona 1 that contacts Lancaster
with a JOIN message. As Arizona 1 is Lancaster's only child , Lancaster accepts immediately
Arizona 1. ext, we launch Arizona 2 that contacts Lancaster with a JOIN message. Based on
the measurement included in the JOIN message, Lancaster builds a region and checks if a child
falls in it. As it is, Lancaster sends back a TRY message containing information about Arizona
1 and the radius information. Arizona 2 measures its distance to Arizona 1 and , according to
the radius, contacts Arizona 1 as the new potential parent. Arizona 1 accepts Arizona 2 as
its child. Next , we launch Cambridge. It contacts Lancaster with a J OIN message. Lancaster
builds a region and constats that none child falls in it . Remember that the region is built with

1The different messages used by ALC are explained in appendix A

CHAPTER 6. PERFORMANCE MEASURES 78

the measure performed by the new corner (the best measurement is put to zero and the worst
is put to the RTT). In this case, the RTT between Cambridge and Lancaster is less than the
RTT between Arizona 1 and Lancaster. So, Lancaster accepts Cambridge as its child.

We next launch Copenhagen that contacts Lancaster with a JOIN message. The region
indicates to Lancaster that Cambridge could be a potential parent for Copenhagen. Thus,
Lancaster sends back a TRY message containing informations about Cambridge and the radius
information. Then, Copenhagen starts again a Join Procedure with Cambridge as potential
parent because Cambridge is in the radius. Cambridge accepts Copenhagen as its child. Next,
we launch Bologna. The mechanism is identical to the one used by Copenhague because no
child falls into the region built by Cambridge (Bologna is doser to Cambridge than Copen
hagen). We next launch Sydney. As Sydney is doser to Lancaster than to Cambridge and
Arizona, it becomes a Lancaster's child. For Chicago and Kansas, the mechanism is identical
to the one used by Bologna. Santa Barbara 1 is an Arizona l 's child because Arizona 1 felt
in the region built by Lancaster, Arizona 1 felt in the radius and is doser to Santa Barbara
1 than Lancaster. Santa Barbara 2 is an Arizona 2's child because when Arizona 1 built the
region, only Arizona 2 felt in it (Arizona 2 is doser to Arizona 1 than Santa Barbara 1) .

The tree built is steady, as explained in section 6.2. 7. A maintenance procedure is never
theless useful because nodes can join/ leave the tree dynamically. The common theme linking
the next sections will be the measure of the maintenance cost.

6.2.3 Number Of Messages Exchanged

There are two kinds of messages exchanged in ALC: the messages used by the Join Pro
cedure and the messages used for the tree maintenance. This section aims to show the total
number of messages exchanged by the nodes.

Figure 6.3 shows the total number of messages exchanged between nodes during ten min
utes. As shown, the higher in the tree anode is and more it has children, more messages it
has to handle (sent or receipt) . The curves are cumulative. In average, after ten minutes, the
Cambridge nodes received and sent 132 messages. ln opposite, the Kansas node received and
sent 38 messages. This shows the difference between a leaf and an important node in a load
point of view.

Figure 6.3 also shows that Cambridge exchanges more messages than Lancaster. This
is due to the fact that Cambridge has a more important neighborhood: a parent and four
children. In opposite, Lancaster has "only" three children and no parent. Thus, the number
of maintenance messages exchanged by Cambridge is more important . We can also note that,
during the first four minutes, the number of messages exchanged by Lancaster and Cambridge
is identical. The reason is simple: Lancaster is always the starting point for a new comer's
Join Procedure. This is not necessarily the case for Cambridge, even if its probability to be
involved in a Join Procedure is high.

As figures 6.3(a) and 6.3(b) suggest, the number of messages sent equals the number of
messages received. Thus, anode sends a message in response of another or waits the answer
of a message sent.

6.2.4 Heartbeat Messages Exchanged

Heartbeat messages are part of the maintenance messages. They are used to check if a
neighbor (parent or child) is still alive.

CHAPTER 6. PERFORMANCE MEASURES

, .. ~~~-~~-~~-~-=--~_--,
l.r.11112 - Mzcna -•---·; ,·

~~~·~ 

( a) Total number of messages received 

.,,,.,.--
-------~---✓ 

--
,,,-· _____ ... ✓--

o '-, -~~~-~,-~,-~~-~~ 

Tirra (lm) 

(b) Total number of messages sent 

Figure 6.3: Total number of messages exchanged 

79 

As shown in figure 6.4, the growth of the heartbeat messages exchanged is more or less 
linear during ten minutes. The heartbeat mechanism is lightweight for the leaves of the 
tree. It is easy to understand: a leaf exchanges heartbeat messages with only one node: its 
parent. In opposite, the mechanism is more heavy for nodes having a lot of children, as, for 
example, Cambridge (four children and a parent). More than 20 messages were exchanged 
during ten minutes. In average, a heartbeat message is sent or received each 30 seconds even 
if the node has received informations from a neighbor. This mechanism is lightweight for the 
network (heartbeats are small messages) but it represents a higher cost for the nodes at the 
state information and the CPU level. This problem could be solved easily: the timer for the 
heartbeat messages could be set up only when a node does not receive any messages from a 
node in its neighborhood during 30 seconds. 

The curve order is a little bit different in figure 6.4(a) and 6.4(b). This could be explained 
by the timer used to schedule the heartbeat messages sending. This timer contains a random 
part to avoid collision and a node overloading. 

ln our implementation, the timer value negotiated by peers during the Join Procedure 
belongs to [45;125] seconds. Regarding the number of nodes in Cambridge's neighborhood, 
Cambridge, during ten minutes, should send between 24 and 65 heartbeat messages. With 
regard to a leaf, it should send between 5 and 13 heartbeat messages. The measures have 
shown that the number of heartbeat messages sent by a peer is doser to the minimum than 
the maximum. 

6.2.5 OBJREQ Messages Exchanged 

Figure 6.5 is about the exchange of OBJREQ messages. An OBJREQ message is a message 
requesting informations to another peer. In response, an OBJRSP message is sent. The OBJREQ 
message can be sent for three reasons: 

1. the Join Procedure always begins by measuring the RTT to the potential parent. Each 
node owns a measurement address used to receive probes for RTT measuring. A joining 
node could know this address by sending an OBJREQ message requesting the measurement 
address to the potential parent. 



CHAPTER 6. PERFORMANCE MEASURES 

,L., ====:::~:::::::::t:::=..~.-~.-~~-~_J 
rme(ITWI) 

(a) Number of heartbeat messages re
ceived 

(b) Number of heartbeat messages 
sent 

Figure 6.4: Number of heartbeat messages exchanged 

80 

2. a timer is associated to the measurement and data address. When the timer is out, an 
OBJREQ message is sent, requesting the measurement and data address of the node. 

3. a timer is associated to the RTT measured for each node. When this timer expires a 
new RTT measure is performed. For implementation reasons, it is realized by sending 
first an OBJREQ message to check the measurement address of the measured node, even 
if this measurement address is still available in the cache. 

So, the OBJREQ message belongs to the messages used by the Join Procedure and by the 
Maintenance Procedure. 

Figure 6.5(a) shows the number of OBJREQ messages received by anode during ten minutes. 
In opposite, figure 6.5(b) shows the number of OBJREQ messages sent by a node during ten 
minutes. We can see that a leaf sends more OBJREQ messages than it receives. Lancaster 
receives more messages than Cambridge, but it is the opposite for the sent. 

The higher a node is in the hierarchy, the higher is the probability to be involved in the 
Join Procedure and, thus, the higher is the probability to receive OBJREQ messages. The more 
relationships anode has (as Cambridge, for example), the more addresses it has to manage. For 
example, let's take the case of the Cambridge node. This node has four children and one parent. 
Each of these nodes has a measurement address and a data address. A timer is associated to 
each address. So, Cambridge has to manage ten different addresses with ten timers. It has 
thus to send regularly ten OBJREQ messages to update its cache (figure 6.5(b). In the same 
way, each node in its neighborhood has to manage the Cambridge's measurement and data 
addresses. Thus, regularly, Cambridge receives OBJREQ messages requesting its measurement 
and data addresses (figure 6.5(a)). In opposite, anode lower in the hierarchy (Kansas, for 
example), sends and receives less OBJREQ messages because it has only one node's data and 
measurement addresses to manage. 

The curves in figures 6.5(a) and 6.5 (b) are different. This could be explained by the purpose 
of an OBJREQ message and the position of anode in the hierarchy. If the node is the root, it 
will receive a lot of OBJREQ messages because it is a mandatory path for the Join Procedure. 
Remember that the Join Procedure always begins by measuring the distance between the new 
corner and the potential parent. To achieve that, the new corner must know the potential 



CHAPTER 6. PERFORMANCE MEASURES 81 

parent's measurement address and an OBJREQ message is sent to discover it. The root will 
send less OBJREQ messages because this node sends this message only to update its cache 
entry. Here, Lancaster has only three children, thus only three entry in its cache. Anode like 
Cambridge will receive a lot of OBJREQ messages but fewer than the root. In opposite, it will 
send a lot of OBJREQ messages because, as said above, it has to manage a lot of entries in its 
cache (four children and one pare~t). If a node is a leaf (as Santa Barbara 2) , it will send 
more OBJREQ messages than receive them because of the Join Procedure. If anode receives a 
TRY message containing a lot of potential parents, it has to measure its distance to all these 
nodes and thus, send first OBJREQ messages to know their measurement address. A leaf will 
receive very little OBJREQ messages because it is in relation with only one node: its parent. 

l'urmrd~~...,._ 

(a) Number of OBJREQ messages re
ceived 

~d(lbJ\eq~_,. 

..... •·····~···· .. ···· 

1~ .. /.. ./ 
/-·· 

./ ~ 
__ ,,.-· -· 

· ..... ~~ 
•,'-~-~~-~. -.~~~-~--' 

'""-!l'IW'1) 

(b) Number of OBJREQ messages sent 

Figure 6.5: Number of OBJREQ messages exchanged 

6.2.6 Total Bytes -Exchanged 

This section will evaluate ALC in terms of bytes exchanged between nodes. 
After the first minutes, the total bytes exchanged between nodes is higher for the leaf (see 

figure 6.6). This could be explained by the Join Procedure, and more precisely the sending 
of JOIN messages and the receipt of TRY messages. The lower in the tree a node is, more 
it sends JOIN messages and more it receives TRY messages. A JOIN message contains two 
different addresses: the root address and the potential parent address. Theses addresses are 
present for security reasons but it makes messages longer. The root address will be used by 
the potential parent to check if the new corner does not attempt to join the wrong tree. If the 
root address does not correspond to the current root address of the tree, the potential parent 
sends back an ERROR message. The potential parent address will be used by the potential 
parent to check if the new corner contacts the right parent. If not, it sends back an ERROR 
message. A TRY message contains the addresses (signalling, measurement and data addresses) 
of a node's children. More a node has children, more heavy is the TRY message. It is the case, 
for example, for the Cambridge node. After three minutes, it seems to stabilize. The growth 
becomes linear. This is due to the tree stability (see further). 

As shown in figure 6.6(a), the load is the most important for Cambridge. Again, it is due 
to the messages exchanged during the Join Procedure. Add to this the fact that this node 



CHAPTER 6. PERFORMANCE MEASURES 82 

receives more messages (see figures 6.3(a) and 6.3(b)). All these elements put together, it 
leads to a load increase of nodes having an important neighborhood. The depth of the tree 
has also an impact on the load. The probality for a node in a high level in the tree to be a 
mandatory route during a Join Procedure is higher than for anode in a low level in the tree. 
Furthermore, the number of Join Procedure needed to find a place in the hierarchy grows with 
the depth of the tree. 

As shown in figure 6.6(b), the load is the most important for Lancaster (the root). The 
growth of the load is important during the three first minutes. Again, this could be explained 
by the Join Procedure, and particulary by the sending of TRY messages. After the three first 
minutes, the growth becomes linear . 

. ,~~~-~~.-~.-~~-~~ 
r.,•(IIWI) 

(a) Bytes received 

.,~ -~~~--.-~.-~~-~~ 
ln.{nin) 

(b) Bytes sent 

Figure 6.6: Total length exchanged 

All these measures about messages confirm a theorical problem: the non-constrained aspect 
of the tree can lead to an overloading of a node. This problem is not desirable for the lightness 
of the protocol. 

6.2. 7 Tree Maintenance 

As said several times, a node can join/ leave the tree dynamically. This could have an 
impact on the structure of the tree and, after a while, the current position of a node may not 
be the best one. 

This section will discuss the number of Maintenance Procedures performed by a node 
during ten minutes. We can note that no intentional departure of a node2 was realized during 
these ten minutes . 

In average, we could see that a node performs a Maintenance Procedure each minute. 
Figure 6.7 shows the number of Maintenance Procedures that does not result in a move of 
the node. However, the spacing of Maintenance Procedures due to the successive number of 
procedure without a move is not shown with force. After ten minutes , each node has performed 
nine Maintenance Procedures. This could be explained by the choice for the value used by the 
maintenance timer. As said in section 4.5, the maintenance timer is given by min[B(l+b/, M]], 

2We mean by intentional departµre the fact that the User component orders the Agent component to leave 
the tree by sending a leave event (see section 5.2.1.3. 



CHAPTER 6. PERFORMANCE MEASURES 83 

where Bis the minimum maintenance interval, Mis the maximum maintenance interval , J is a 
scaling factor ( J > 0) and i is the number of previous and consecutive Maintenance Procedures 
that didn't result in a move of anode. For our Java implementation, B was put to 30, M to 
60 and J to 0.1. The first Maintenance Procedure should be performed quickly to make sure 
the node is well positioned in the tree. At worst, a Maintenance Procedure will be performed , 
each minute. This proximity of maintenance procedure is desirable to make sure the position 
is still the best one in a dynamic environment . 

During the performance measurement , we noticed the stability of the tree. Only two nodes 
(Kansas and Santa Barbara 23) performed one maintenance procedure that result in a move. 
It was performed quickly (the first or the second maintenance procedure execution). This 
stability could be explained by two factors : 

1. the RTT stability. We mean by stability the fact that the way we implemented the 
RTT measurement gives us nearly the same RTT between two nodes, with a variation 
of two milliseconds, on condition that the underlying network topology does not change 
between two measurements. 

2. the modification of a Join Procedure aspect. Anode will go down one layer if and only 
if there is at least a node in the joining node scope (i.e. within the radius) and the 
distance towards this node is less than the distance towards the potential parent. This 
aspect is shown by figure 6.8. A is the root of the tree and N is the new corner. N 
builds a region with the radius given by A and measures its distance to D. As shown in 
the figure , the distance between N and A ( m) is less than the distance between N and 
D (n). So, it is preferable for N to be a child of A than a child of D. 

This stability is highly desirable as far as the tree has to transport data. Too much move
ments due to Maintenance Procedure would lead to instability harmful to data transporting. 

~ot!TWl"ll..,...promclnwihDUI•-

r 

' "'", -~~~-~,-~.-~~-~--' 
T..-. (n....) 

Figure 6.7: umber of maintenance procedure without a move 

6.2.8 Time Needed To Find A Place In The Hierarchy 

T he time needed for anode to find its place in the hierarchy is a way to measure the Join 
Procedure latency (see figure 6.9) . 

3For readability reasons, the figure 6.7 shows only the Kansas and Arizona curves. The Kansas and Santa 
Barbara curves are identical and ail the others curves are identical to the Arizona one. 



CHAPTER 6. PERFORMANCE MEASURES 84 

Figure 6.8: Modification of a Join Procedure aspect 

The lower a node is in the hierarchy, the more time it needs to find its place in the 
hierarchy. This is principally explained by the time needed to evaluate the RTT and the fact 
that the node must evaluate more potential parents. We chose to use UDP to ping nodes. 
UDP is a non-reliable protocol. To make sure the pings are realized, we "protected" the RTT 
measurement with a mechanism ensuring that after one second, if the RTT is not measured, 
the pings are to be started again. Sometimes, it is necessary to launch two or three times 
the measurement. And when a measurement has to be done for each node in a TRY message, 
it could take a lot of time. This is why the time needed for Kansas to find its place is the 
highest. Kansas was situated at level three and was the 9th node launched. 

The peak observed for Kansas can be interpreted as the worst case to find a place in the 
hierarchy: a lot of nodes . to test, all the RTT measures need several pings, . . . 

10000 -... ......... - .... -

Tln"e,__.IOthcl•P,-. lnlN,.._lrdty 

2 •Atttcni
~2 - ~ ·laà - SwtaS.W. ·-• ·· 

LNI - ~ -

IOIXI --··--.,. •• _________ •• - - - -·--- ---"'-•~. 

""",'--~-~~~.~~.-~~~__, 

....... 

Figure 6.9: Time needed for anode to find its place in the hierarchy 

Table 6.1 gives the average time to find a place in the hierarchy by level. The level 1 is 
set to zero because it corresponds to the root of the tree. Level 2 corresponds to Sydney, 
Arizona 1 and Cambridge nodes. Level 3 corresponds to Santa Barbara 1, Arizona2 , Balogna, 
Copenhagen, Chicago and Kansas nodes. Finally, level 4 corresponds to Santa Barbara 2 



CHAPTER 6. PERFORMANCE MEASURES 85 

node . This table allows us to see that the time needed to find a place in the hierarchy grows 
with the depth of the tree, as suggested by figure 6.9 

Level in the tree Average time to find a place (ms) 
Level 1 0 
Level 2 6777 
Level 3 8455 
Level 4 12043 

Table 6.1 : Average time to find a place by level 

6.3 Tree Building Control Protocol 

The measures were performed on the Planet Lab network between April 28th, 2003 and 
May 03rd, 2003. The nodes used were the same than the one used for ALC. The root, the port 
used and the start order were also identical. The only changing parameter was the fanout . 
It was put to three for all the nodes. Remember that the fanout represents the maximum 
number of children a node accepts to accommodate with (see section 4.3). 

Sorne performance tests have been processed with TBCP. Unfortunately, because of lack 
of time, the tree stability can't be reached. The table 6.2 shows the number of Maintenance 
Procedures processed by some nodes during a period of ten minutes. As we can see, there are a 
lot of Maintenance Procedures resulting in a move of a node. This aspect is clearly prejudicial 
for TBCP and can be explained by the fact that the Maintenance Procedure (nearly identical 
to the one used by ALC - see pseudo-code 2) is not adapted to TBCP. Because a node does 
not choose its place in the tree, it cannot take the initiative of a Maintenance Procedure. We 
hope that this problem will be fixed in further version of TBCP. 

Following the example of ALC, the inadequacy of the Maintenance Procedure can be 
solved by introducing a TENTATIVE object in messages exchanged during the Join Procedure. 
This object should indicate to the potential parent that the new corner does not want to join 
immediately the tree but wants to detect the effects of joining. The TENTATIVE object should 
be added in the HELLO, JOIN and WELCOME messages. This object should also be optional. The 
new corner will effectively join the tree if the new place is better than the previous one, i.e. 
higher in the tree. This is performed by sending a WELCOMEACK message in response of the 
WELCOME message with the TENTATIVE abject . 

Node Maintenance without a move Maintenance with a move 
Cambridge 3 6 

Chicago 3 4 
Bologna 8 1 

Copenhagen 8 1 
Santa Barbara 2 3 4 

Sydney 1 8 

Table 6.2: Tree instability 



CHAPTER 6. PERFORMANCE MEASURES 86 

However, the test draft showed some interesting aspects of TBCP: the time needed to find 
a place and the tree shape. First, we noted that the time anode needs to find a place in the 
tree is higher than in ALC. This time varies between 5000 ms (for anode in a high level) and 
105000 ms (for anode in a low level in a very extreme case). This range can be explained by 
the fact that a potential parent can process only one Join Procedure at a time. So, if two nodes 
want to join the same parent at the same time, one will have to wait during 15 seconds plus 
a random time between zero and ten. This random time is used to avoid collision. Second, 
we noticed during debugging session that the tree shape is always the same, independently of 
the starting order. This is due to the score fonction and the RTT stability. Thus, if we know 
the distance between nodes, we can do speculations about the tree shape. 

6.4 Conclusion 

The measures performed on ALC showed that our implementation works: the tree is built 
correctly and is steady. The measures brought also a potential node overloading problem to 
the light. This problem could be solved with the LEAFONLY object4 . This abject indicates that 
the node does not wish to have children. It could highly limit the load of nodes that do not 
have the needed resources (CPU, memory) allowing to deal with. 

The measures performed on TBCP were not complete because of lack of time. However, 
several interesting results were observed: the tree construction is carried out correctly and it 
exists speculation possibilities about the tree shape. Nevertheless, some negative results were 
also noted: the inadequacy of the Maintenance Procedure and the time needed to find a place 
in the tree. For the Maintenance Procedure, an idea of the solution was proposed. 

4 see appenclix A.2.3.7. 



Chapter 7 

Conclusion 

This dissertation is coming to an end. The limitations of 1Pv4 were presented and a 
solution to solve them (1Pv6) was explained. 

The motivations for multicast were discussed and the protocols used to implement multi
cast at layer three were introduced. The drawbacks of these protocols were presented and a 
solution to solved them, Application Level Multicast, was developed through overlays. 

We presented advantages of overlays: they are incrementally deployable, adaptable, robust, 
customizable and standardized. We also discussed their drawbacks: management complexity, 
less efficient that code running in routers, firewalls, NAT, proxies, effort needed to deduce the 
network topology. 

We described several well known overlays and summarized their important points in a 
table. 

ALC and TBCP were completely described: their functioning (i.e. how they build a logical 
tree) was explained and our fully implementable specification was proposed in appendix. This 
specification includes messages format de-finition, ABNF, interna! node behavior and complete 
fini te state machine. A comparison between ALC and TBCP was proposed and discussed three 
aspects: the philosophy of the tree built, the acceptance level of a new corner in the tree and 
the way of accepting a new corner. The theorical limitations of both overlays were shown and 
will be discussed in section 7.1. We extended to ALC and TBCP the table summarizing the 
important points of overlays. 

Our Java implementation was presented by describing the cutting of each overlay in four 
logical components. We also introduced the Java code by giving a short explanation of each 
Java package, classe and interface. We proposed a manner to transfer data over the tree built 
by ALC and TBCP. Our idea is the following: the application above ALC ·and TBCP (i.e. 
the application using them) has to manage the data transfer. The interactions between the 
application and the underlying overlay protocol will be possible by using the User compo
nent. We described the events that should be added between the User component and the 
Agent/ Controller component. 

The performance measures performed on ALC showed that our Java implementation of 
the overlay is working correctly. That means that the protocol is respected (i.e. the tree 
is built correctly) and the tree built is steady. The measures brought also a potential node 
overloading problem to the light . This problem could be solved with the LEAFONLY object. 

The performance measures performed on TBCP are not complete because of lack of time. 
However, several interesting results have been observed: the tree construction is carried out 

87 



CHAPTER 7. CONCLUSION 88 

correctly and it exists speculation possibilities about the tree shape. Sorne negative results 
were also noted: the inadequacy of the Maintenance Procedure and the time needed to find a 
place too high. 

7.1 Further Works 

However, the work is not yet finished. We have seen that ALC and TBCP suffered from sev
eral limitations: root not fault tolerant, NAT / firewalls problems, root path updating, ... We 
wish these problems will be fixed in further versions of both overlays. 

For the fault tolerant problem, we proposed an idea of solution: the root replication. As 
for Overcast, we could imagine that the three first levels of the hierarchy have degree one and 
these nodes are a replication of the root. If the root dies, the node in the next level becomes 
the root. This solution will be easy to implement in TBCP by simply fixing the fanout to one 
for the three first levels. For ALC, the non-constrained aspect of the tree makes this solution 
more difficult to implement. A new type of object (ROOTREPLICATIDN) should be defined. 

For the root path updating, a procedure should be defined to propagate changes in the 
tree, as the Up/Down protocol in Overcast [5]. 

The performance measures performed on TBCP showed that the tree built is not steady. 
This is brought about the inadequacy of the Maintenance Procedure. We also proposed an 
idea of solution. Following the example of ALC, we could introduce a TENTATIVE object in 
some messages exchanged during the Join Procedure in TBCP. This object should indicate 
to the potential parent that the new corner does not want to join immediately the tree but 
wants to detect the effects of joining. The new corner will effectively join the tree if the new 
place is better than the previous one, i.e. higher in the tree. 

Despite of all the efforts deployed, ALM is not yet set as the standard for multicast. It 
only remains to see if ALM will achieve to get the upper hand. 



Bibliography 

[1] S. E. Deering. Hosts Extensions For IP Multicasting, RFC 988. IETF, Jul. 1986. 

[2] S. E. Deering. Host Extensions For IP Multicasting, RFC 1054. IETF, May 1998. 

[3] R. Canonico P . Smith, L. Mathy and D. Hutchison. ALM and ProgNets for v4-to-v6 
Multicast Transition. In IEEE OpenArch'0J Short Paper Session, Anchorage, Alaska, 
USA, Apr. 2001. 

[4] Web site about Application Level Overlays: http: / /-w-w-w . acti venet. lancs. ac . uk/ 
overlay/. 

[5] J. Jannotti D. K. Giffard K. L. Johnson M.F. Kasshoek and J. W. O'Toole Jr. Overcast: 
Reliable Multicasting with an Overlay Network. In USENIX OSDI 2000, San Diego, CA, 
USA, Oct. 2000. 

[6] S. Simpson L. Mathy, Y. Wakeman and D. Hutchison. Universal, Efficient and Scalable 
Neighbour Discovery. Lancaster University, Internal Report , 2002. 

[7] R. Canonico L. Mathy and D. Hutchison. An Overlay Tree Building Control Protocol. 
In Proc. of 3rd Intl. COST264 Workshop on Networked Croup Communication {NGC 
2001), Nov. 2001. 

[8] J. Postel. Internet Protocol, RFC 791. IETF, Sept. 1981. 

[9] Etude Réalisée pour la DIGITIP par l'Idate. Les enjeux du Déploiement du Protocole 
IPv6 - Rapport Final. http: //-w"W"W . telecom. gouv . fr/documents/etu\_accueil. htm, 
2002. 

[10] R. Atkinson S. Kent . IP Encapsulating Security Payload (ESP), RFC 2406. IETF, Nov. 
1998. 

[11] S. Thomson and T. Narten . IPv6 Stateless Address Autoconfiguration , RFC 2462. IETF, 
Dec. 1998. 

[12] H. Sandick B. Haberman and G. Kump. Protocol Independent Multicast Routing in the 
Internet Protocol Version 6 (IPv6). Internet Draft, pim-ipv6-03.txt, Work In Progress, 
Mar. 2000. 

[13] S. Bhattacharyya C. Diot L. Giuliano R. Rockell J. Meylor D. Meyer G. Shepherd and 
B. Haberm;m. An Overview of Source-Specific Multicast (SSM) Deployment. Internet 
Draft, draft-ietf-ssm-overview-02. txt, Work In Progress, Dec. 2001. 

89 



BIBLIOGRAPHY 90 

[14] H. Holbrook and B. Cain. Source-Specific Multicast for IP. Internet Drajt, draft-ietf
ssm-arch-02. txt, Work In Progress, Mar. 2003. 

[15] C. E. Perkins and D. B. Johnson. Mobility Support in IPv6. In Proceedings of the Second 
Annual International Conference on Mobile Computing and N etworking, Rye, New-York, 
USA, Nov. 1996. 

[16] R. Gilligan and E. Nordmark. Transition Mechanisms for IPv6 Hosts and Routers, RFC 
1933. IETF, Apr. 1996. 

[17] S. Deering D. Estrin D. Farinacci V. Jacobson A. Helmy D. Meyer and L. Wei. Protocol 
Independant Multicast Version 2 Dense Mode Specification. Internet Drajt, draft-ietf
pim-v2-dm-03. txt, Work In Progress, Jun. 1999. 

[18] D. Estrin D. Farinacci A. Helmi D. Thaler S. Deering M. Handley V. Jacobson C. Liu 
P. Sharma and L. Wei. Protocol Independent Multicast - Sparse Mode (PIM-SM): Pro
tocol Specification, RFC 2362. IETF, Jun. 1998. 

[19] W. Fenner S. Deering and B. Haberman. Multicast Listener Discovery (MLD) for IPv6. 
IETF, Oct. 1999. 

[20] B. Haberman and R. Worzella. IP Version 6 Management Information Base for The 
Multicast Listener Discovery Protocol. IETF, Jan. 2001. 

[21] C. Partridge D. Waitzman and S. Deering. Distance Vector Multicast Routing Protocol, 
RFC 1075. IETF, Nov. 1988. 

[22] D. Katz T. Bates, R. Chandra and Y. Rekhter. Multiprotocol Extensions for BGP-4, 
RFC 2283. IETF, Feb. 1998. 

[23] D. Meyer and B. Fenner. Multicast Source Discovery Protocol (MSDP). Internet Drajt, 
draft-ietf-msdp-spec-14.txt, Work In Progress, Nov. 2002. 

[24] J. Moy. Multicast Extensions for OSPF, RFC 1584. IETF, Mar. 1994. 

[25] CISCO Systems. IP Multicast Training Materials. 
ftp: / / ftpeng.cisco.com/ ipmulticast/ training/ index.html, Aug. 2001. 

[26] Yunxi Sherlia Shi. Design Of Overlay Networks For Internet Multicast. PhD thesis, Sever 
Institute of Washington University, Aug. 2002. 

[27] Ian Stoica. CS268: Lecture 19 (Application Level Multicast. http://www. es . berkeley. 
edu;-istoica/ cs268/notes/lecture19 . pdf , Mar. 2001. 

[28] S. G. Rao Y. Chu and H. Zhang. A Case for End System Multicast. In ACM SIGMET
RICS 2000, Santa Clare, CA, USA, June 2000. 

[29] D. Verma D. P endarakis, S Shi and M. Waldvogel. ALMI: An Application Level Multicast 
Infrastructure. In 3rd USENIX Symposium on Internet T echnologies and Systems (USITS 
'01) , pages 49- 60, San Francisco, CA, USA, Mar. 2001. 



BIBLIOGRAPHY 91 

(30] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and Rout
ing for Large-Scale Peer-to-Peer Systems. In Proc. of the 18th IFIP / ACM International 
Conference on Distributed Systems Platforms (Middleware 2001}, Heidelberg, Germany, 
Nov. 2001. 

(31] P. Francis. Yoid: Extending the Internet Multicast Architecture. http://www . icir . 
org/yoid/docs/index.html, Apr. 2000. 

[32] A.-M. Kermarrec M. Castro, P. Druschel and A. Rowstron. Scribe: A Large-Scale and 
Decentralized Application-Level Multicast Infrastructure. In IEEE Journal on Selected 
Areas in Communications, volume 20, NO 8, Oct. 2002. 

(33] F. Kaashoek D. Andersen, H. Balakrishnan and R. Morris. Resilient Overlay Networks. 
In 18th ACM Symposium on Operating System Principles (SOSP), Banff, Canada, Oct. 
2001. 

[34] Q. H. Mahmoud. Network Programming with JavaTM 2 Platform, Standard Edition 
1.4 (J2SETM). http: //java. sun. com/features/2002/08/j2se-network. html, Sept. 
2002. 

(35] M. T. Nygard. Master Merlin's New 1/0 Classes. Squeeze Maximum Performance 
Out of Non-blocking 1/0 and Memory-mapped Buffer. http://www. j avaworld. corn/ 
javaworld/jw-09-2001/jw-0907-merlin\_p.html, Sept. 2001. 

(36] T. Burns. Non-blocking Socket 1/ 0 in JDK 1.4. 
http://www.owlmountain.com/tutorials/NonBlockingio.htm, Dec. 2001. 

(37] J. Zukowski. New 1/0 Functionality for JAVA TM 2 Standard Edition 
1.4. http://developer.java.sun.com/developer/technicalArticles/releases/ 
nio/%, Dec. 2001. 

[38] PlanetLab web site: http://www. planet-lab. org. 

[39] D. Culler L. Peterson, T. Anderson and T. Roscoe. A Blueprint for Introducing Disruptive 
Technology into the Internet. In Proceedings of the First ACM Workshop on Hot Topics 
in Networks (HotNets - I), Princeton, NJ, Oct. 2002. 

[40] L. Peterson and T. Roscoe. PlanetLab Phase 1: Transition to an Isolation Kernel. 
http://www.planet-lab.org, Sept. 2002. 

[41] L. Peterson. Dynamic Slice Creation, The PlanetLab Architecture Team. http://www. 
planet- lab. org, Work In Progress, Oct. 2002. 

[42] Abilene web site: http: //abilene . internet2. edu. 

[43] Internet2 web site: http://www. internet2. edu/about/aboutinternet2 . html. 

[44] D. Cracker and P. Overell. Augmented BNF for Syntax Specifications : ABNF , RFC 
2234. IETF, Nov. 1997. 

[45] R. Hinden and S. Deering. IP Version 6 Addressing Architecture, RFC 2373. IETF, Jul. 
1998. 



BIBLIOGRAPHY 92 

[46] R. Hinden and S. Deering. Internet Protocol Version 6 Specification, RFC 2460. IETF, 
Dec. 1998. 

[47] O. Bonaventure. Info2210 - Téléinformatique et Réseaux: Fonctions et Concepts. FUNDP 
- Institut d'Informatique. Lessons , Academic Year 2001 - 2002. 

[48] JavaDoc: http ://www. java. sun . corn. 



Appendix A 

ALC: lmplementation Document 

This appendix represents t he document used to implement the ALC protocol. 

A .1 Terminology 

This section contains the definitions of concepts/terms used in this chapter. 

• Node : anode is an end-host and/or tansport/application-level proxies or servers. 

• Agent: an agent is the part of anode that participates in building a cluster hierarchy. 
It is also called Cluster Agent 

• Message: a message has a type and contains zero or more objects. A Cluster Agent 
reacts according to the type of the message. 

• Object: an object has a type and contains data associated with that type. Objects are 
component of messages. 

• Peer: participant of the application-level overlay network. 

• Cluster: a cluster is represented by a cluster head and is composed of the cluster head 
and other nodes. 

A. 2 Protocol 

This section describes the network interactions between peers in a clustering hierarchy. 
This includes the messages, object types , and their formats. It does not describe how they 
are transported from a peer to another. 

Internal architecture and behavior of anode is beyond the scope of this section. Section 5.1 
suggested an internal architecture. The behavior for a peer is described in appendix A.4. 

A. 2. 1 Lexical Elements 

We define here lexical elements that will be used in the rest of this appendix. The Aug
mented BNF (ABNF) [44] is used for the syntax specification. 

bit ::= "O" 1 "l " 

93 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 

Octet ::= 8*8bit 

time ::= 15*bit 

objlength ::= 2*2Octet ; abject length is stored on 2 bytes. 

msglength ::= 4*4Octet ; message length is stored on 4 bytes. 

Port ::= 2*2Octet 

1Pv6 address ::= 16*16Octet 

94 

address : := 1Pv6 _ address Port ; an IPv6 address {including v4-mapped} and a port number. 

A.2.2 Basic Types 

Here are some more complex types. They use the lexical elements defined above in sec
tion A.2.1. 

appdata ::= *Octet ; a sequence of octets with application-specific meaning. 

timed-appdata ::= appdata time bit ; appdata plus an expiry time, and a boolean indicating 
whether the data can be passed on to another peer. 

sigaddr ::= 1 *2address ; a signalling address - an IPv6 address and port number, and/ or an 
IPv4 mapped IPv6 address and port number. It identifies a peer in an application-level 
overlay and is sufficient for signalling with that peer. 

measurement :: = appdata ;an application-specific measurement. 

A.2.3 Object Types 

Objects are components of messages. The object type specifies the type of the data it 
contains, and broadly indicates the purpose of the object. Objects with unrecognized types 
should be ignored. 

A.2.3.1 DADDR Object 

This object consists of a timed-appdata , and represents the data address of a peer. 

DADDR_body ::= timed-appdata 

A.2.3.2 MADDR Object 

This object consists of a timed-appdata , and represents the measurement address of a 
peer. 

MADDR_body :: = timed-appdata 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 95 

A.2.3.3 PEERADDR Object 

This object consists of an address, and represents the signalling address of a parent. A 
second address holds an alternative address for dual v4/ v6-capable hosts. The address could 
be an IPv4 address only, an IPv6 address only or an IPv4 and IPv6 address. 

PEERADDR_body ::= 1*2address 

A.2.3.4 ROOT Object 

This object consists of an address, and represents the signalling address of the root of the 
tree. A second address holds an alternative address for dual v4/ v6-capable hosts. 

ROOT _ body ::= 1 *2address 

A.2.3.5 KEY Object 

This object consists of an object identifier, and indicates an object being requested. 

KEY _body ::= Obj_id; Obj_ id will be defined in section A.2.5; 

A.2.3.6 MEASUREMENT Object 

This object consists of an appdata , and represents a measurement. 

MEASUREMENT_body ::= appdata 

A.2.3.7 LEAFONLY Object 

This object contains no data. Its presence indicates a wish to not be the parent of any 
other node. 

A.2.3.8 TENTATIVE Object 

This object contains no data. Its presence indicates a wish to not join a parent, but to 
detect the effect of joining. The peer (a new corner) using this object wants to know its 
position in the hierarchy but without joining effectively the hierarchy. 

A.2.3.9 TIMER Object 

This object consists of a time, and represents the minimum timer value for the heartbeat 
message 

TIMER _ body ::= time 

A.2.4 Message Types 

Objects of unknown types, or objects unexpected within a particular type of message, will 
be ignored. 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 96 

A.2.4.1 OBJREQ Message 

This message is sent to a peer to request objects (for example DADDR, MADDR, ... ), and 
contains the following objects: 

keys a sequence of KEYs. 

OBJREQ_body ::= *KEY _obj 

A.2.4.2 OBJRSP Message 

This message is sent as a response to an OBJREQ message, and contains the following 
objects: 

objects a sequence of objects requested by a peer. 

OBJRSP _ body ::= *Object 

A.2.4.3 JOIN Message 

This message marks the start of a Join Procedure. It is sent by a node which wants to 
join the hierarchy to a potential parent, and contains the following objects: 

root a ROOT indicating the root of the tree 

parent an optional PEERADDR indicating the expected parent of the sender. 

dist a MEASUREMENT made by the sender against the receiver. 

tentative an optional TENTATIVE indicating that the sender is merely checking the outcome 
of attempting to join the receiver. 

leafonly an optional LEAFONLY indicating if the sender will accept new clusters of its own. If 
not present, the sender will accept new clusters. 

timer a TIMER indicating the minimum timer value for the heartbeat message sending from 
the receiver of the JOIN message to the sender 

JOIN_body :: = 3*6Object 

A.2.4.4 TRY Message 

This message is sent by a potential parent to the new corner in response of a JOIN message 
only if children of this potential parent may be doser parent to the new corner, and con tains 
the following objects: 

radius a MEASUREMENT to help the receiver determine which of the sibs are suitable parents. 

sibs a sequence of PEERADDRs, DADDRs and MADDRs. Each DADDR and MADDR is associated with 
the preceding PEERADDR. 

TRY _body::= l*Object 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 97 

A.2.4.5 NC Message 

This message is sent by a new corner after receiving a TRY message if no child of the 
potential parent is a doser parent, and contains the following objects: 

parent an optional PEERADDR indicating the expected parent of the sender. 

dist a MEASUREMENT made by the sender against the receiver. 

leafonly an optional LEAFONLY indicating that the sender will accept new clusters of its own. 

timer a TIMER indicating the minimum timer value for the heartbeat message from the re-
ceiver of the NC message to the sender of this NC message. 

NC_body ::= 2*40bject 

A.2.4.6 NCA Message 

This message is sent by a parent to welcome a new corner as its child, and contains the 
following objects: 

objects a sequence of objects (i.e. DADDR, MADDR, ... ) that may be useful in communicating 
arbitrary application data between the peers. 

tentative an optional TENTATIVE indicating that the sender has not actually registered the 
receiver as its child. 

timer a TIMER indicating the minimum timer value for the heartbeat message from the re
ceiver of the NCA message to the sender 

NCA_body ::= *Object 

A.2.4.7 LEAVE Message 

This message contains no objects, and is sent by a peer which wants to leave the hierarchy. 

A.2.4.8 ERROR Message 

This message contains no objects, and is sent to express that an ef"ror occurs. 

A.2.4.9 ALIVE Message 

This message contains no objects, and is sent to a peer to test if it is still alive. 

A.2.4.10 ALIVEACK Message 

This message contains no objects, and is sent to acknowledge an ALIVE message (and, 
broadly, to confirm that this peer is still alive). 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 98 

A.2.5 Object Representation 

In general, each abject is transmitted as a sequence of octets, beginning with a length 
(the maximum length is 216 ) , an abject-type identifier and a body (the length accounts for all 
three parts). 

Object ::= objlength Obj_id *Octet 

The identifiers for each type are listed below: 

Obj_id ::= DADDR_id I MADDR_id I PEERADDR_id I KEY_id I MEASUREMENT_id 
1 LEAFONLY _id I TENTATIVE_id I ROOT _id I TIMER_id 

DADDR id ::= 0 ; identifier of the DADDR abject 

MADDR_id ::= 1 ; identifier of the MADDR abject 

PEERADDR_id ::= 2 ; identifier of the PEERADDR abject 

KEY _id ::= 3 ; identifier of the KEY abject 

MEASUREMENT _id ::= 4; identifier of the MEASUREMENT abject 

LEAFONLY id ::= 5 ; identifier of the LEAFONLY abject 

TENTATIVE_id ::= 6 ; identifier of the TENTATIVE abject 

ROOT id ::= 7; identifier of the ROOT abject 

TIMER_id ::= 8 ; identifier of the TIMER abject 

An abject of a particular type should have a body as defined in section A.2.3: 

DADDR_obj ::= objlength DADDR_id DADDR_body 

MADDR_obj ::= objlength MADDR_id MADDR_body 

PEERADDR_obj ::= objlength PEERADDR_id PEERADDR_body 

KEY _obj ::= objlength KEY _id KEY _ body 

MEASUREMENT_obj :: = objlength MEASUREMENT_id MEASUREMENT_body 

LEAFONLY _obj :: = objlength LEAFONLY _id 

TENTATIVE_obj ::= objlength TENTATIVE_id 

ROOT _obj :: = objlength ROOT _id ROOT _body 

TIMER_obj ::= objlength TIMER_id TIMER_body 

Object :: = DADDR_obj I MADDR_obj I PEERADDR_obj I KEY _obj I MEASURE
MENT _obj I LEAFONLY _obj I TENTATIVE_obj I ROOT _obj I TIMER_obj 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 99 

A.2.6 Message Representation 

In general , each message is transmitted as a sequence of octets, beginning with a length 
(the maximum length is 232 ), a message-type identifier and a body (a sequence of objects). 
The length accounts for all three parts. 

Message : := msglength Msg_id *Object 

The identifiers for each type are listed below: 

Msg_id : := OBJREQ_id I OBJRSP _id I JOIN _ id I TRY _ id I NC_id I LEAVE_id IER-
ROR_id I ALIVE_id I ALIVEACK_id 

OBJREQ_id :: = 0 ; identifier of the OBJREQ message 

OBJRSP _id ::= 1 ; identifier of the OBJRSP message 

JOIN_id ::= 2; identifier of the JOIN m essage 

TRY _id ::= 3 ; identifier of the TRY message 

NC _ id ::= 4 ; identifier of the NC message 

NCA_id ::= 5 ; identifier of the NCA message 

LEAVE_id ::= 6 ; identifier of the LEAVE message 

ERROR_id ::= 7; identifi er of the ERROR m essage 

ALIVE_id ::= 8 ; identifier of the ALIVE message 

ALIVEACK_id ::= 9 ; identifier of the ALIVEACK message 

A message of a particular type should have a body as defined in sect. A.2.4: 

OBJREQ_msg : := msglength OBJREQ_id OBJREQ_body 

32 b its 

ms gle ngth 

OBJREO i d 1 Unused 
obj l ength 1 Key id 1 

Obj_id 1 Obj_id 1 Obj_id 1 

. . . 

Obj id 1 Obj id 1 Obj id 1 

Figure A.l : The OBJREQ message 

OBJRSP _msg ::= msglength OBJRSP _ id OBJRSP _body 

JOIN_msg :: = msglength JOIN_id JOIN_body 

TRY _ msg :: = msglength TRY _id TRY _ body 

Unused 
Obj_id 

Obj i d 



APPENDIX A . A LC: IMPLEMENTATION DOCUMENT 100 

32 bits 

msglength 

OBJRSP id 1 Unused 

Object 

... 

Object 

Figure A.2: The OBJRSP message 

32 bits 

msgl ength 

JOIN id 1 Unused 
Obilenath 1 ROOT id 1 Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 Address 

Port Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 Address 

Port Unused 
Objlength PEERADDR id 1 Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 Address 

Port Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 Address 
.. 

Port Unused 
objlength MEASUREMENT id 1 Unused 

appdata 

objlenath TENTATIVE id 1 Unused 
objle ngth LEAFONLY_id 1 Unused 

objlength TIMER_id 1 Unused 
time Unused 

Figure A.3: The JOIN message 



APPENDIX A . ALC: IMPLEMENTATION DOCUMENT 101 

32 bits 

msglength 

JOIN id 1 Unused 

Objlenqth 1 MEASUREMENT _id 1 Unused 

apD(lata 

o bjl e ngth 1 PEERADDR id 1 u nused 

1Pv6 Addr ess 
or 

IPv4 Mapped IPv6 Address 

Port 1 unused 

I Pv6 Address 
or 

IPv4 Mapped IPv6 Address 

Port 1 Unused 
objlength 1 MAOOR_id 1 Unused 

appdata 

time 1 Boolean 1 unused 

ob j length 1 CADOR id 1 Unuseà 

appdata 

time 1 Boolean 1 Unused 

. . . 

Objlength 1 PEERADDR id 1 Unused 

IPv6 Address 
or 

1Pv4 Mapped IPv6 Address 

Port 1 Unused 

1Pv6 Address 
or 

IPv4 Mapped IPv6 Address 

Port 1 Unused 

objlength 1 MADDR id 1 Unused 

appdata 

time 1 Boolean 1 Unused 

objlength 1 OAODR id 1 Unused 

appela ta 

time 1 Boolean 1 Unused 

Figure A.4: The TRY message 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 102 

32 bits 

msglength 

NC id 1 Unused 

Objlength 1 PEERADDR id 1 Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 Address 

Port 1 Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 Address 

Port 1 unused 
Objlength 1 MEASUREMENT_id 1 Unused 

appdata 

obj length ILEAFONL. id 1 Unused 

objlength 1 TIMER id 1 Unused 
t ime 1 Unused 

Figure A.5: The NC message 

32 bits 

msglength 

NCA_id 1 Unused 
. . 

Object 

... 

Object 

objlength 1 TENTATIVE id 1 Unused 

objlength 1 TIMER_id 1 Unused 

time 1 Unused 

Figure A.6: The NCA message 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 

NC_msg ::= msglength NC_id NC_body 

NCA_msg ::= msglength NCA_id NCA_body 

LEAVE_msg ::= msglength LEAVE_id 

32 bits 

msglength 

1 LEAVE id Unused 

Figure A.7: The LEAVE message 

ERROR_msg ::= msglength ERROR_id 

32 bits 

msglength 

ERROR_id Unused 

Figure A.8: The ERROR message 

ALIVE_msg ::= msglength ALIVE_id 

32 bits 

msglength 

ALIVE_id Unused 

Figure A.9: The ERROR message 

ALIVEACK_msg ::= msglength ALIVEACK_id 

32 bits 

ms glength 
ALIVEACK_id Unused 

Figure A.10: The ALIVEACK message 

A.3 State 

103 

An Agent retains information about its position in the hierarchy. Sorne of this ( the Agent 
state) applies to its entire participation in the hierarchy, while the rest ( the peer state) applies 
only to individual peers with which it is interacting. 

A.3.1 Agent State 

sigaddr-agent (sigaddr) the signalling address of the local Agent . 



APPENDIX A . ALC: IMPLEMENTATION DOCUMENT 

sigaddr-agent ::= sigadddt 

maddr-info-agent (timed-appdata) t he measurement address of the local Agent. 

maddr-info-agent ::= timed-appdata 

daddr-info-agent (timed-appdata) the data address of the local Agent. 

daddr-info-agent ::= timed-appdata 

root-address (sigaddr) the signalling address of the root. 

root-address : := sigaddr 

peers (set of peer-state) state of each peer. 

peers ::= *peer-state 

104 

siblings-pending (set of ref of peer-state) peers who are potential parents, and have no recent 
measurements 

siblings-pending : := *peer-state 

siblings-measured (set of ref of peer-state) peers who are potential parents, and have recent 
measurements. 

siblings-measured ::= *peer-state 

current-parent (ref of peer-state) t he state of the current parent. 

current-parent ::= peer-state 

tentative-parent (ref of peer-state) the peer which this node views as a prospective parent. 

tentative-parent ::= peer-state 

children (list of ref of peer-state , ordered by remote-dist ) peers registered as children. 

children ::= *peer-state 

radius (appdata)a radius information given by another peer to help the Agent to find the 
suitable parent. 

radius ::= 1 *lappdata 

agent-state : := sigaddr-agent maddr-info-agent daddr-info-agent root-address peers siblings
pending siblings-measured current-parent tentative-parent children radius 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 105 

A.3.2 Peer State 

The Agent holds state about each remote peer with which it interacts. 

sigaddr-peer (sigaddr) the signalling address of the peer. 

sigaddr-peer ::= sigaddr 

mode (ERRDR, BDRING , MEASURING , TENTATIVE?, DISCOVERING) the state of the current peer 
in relation to the remote peer. 

mode::= Error mode I Boring_mode I Measuring_mode I Tentative mode I Discover-
ing_mode 

Error_mode ::= 'O' ;when an error occurs 

Boring_mode ::= 'l' ; the default mode. 

Measuring_mode ::= '2' ; the Agent performs a m easurement to this peer. 

Tentative_mode ::= '3' ; the Agent acts as a tentative peer to this peer. 

Discovering_mode ::= '4' ; the Agent performs a Join Procedure with this peer as potential 
parent. 

maddr-info-peer (timed-appdata) the measurement address of the peer. 

maddr-info-peer :: = timed-appdata 

daddr-info-peer (timed-appdata) the data address of the peer. 

daddr-info-peer ::= timed-appdata 

local-dist ( appdata) the latest measurement made by this Agent against the peer. 

local-dist :: = appdata 

remote-dist (appdata) the latest measurement made by the peer against this Agent. 

remote-dist ::= appdata 

leafonly (boolean) whether the peer will accept children. 

leafonly : := boolean 

parent-peer (ref of peer-state) the peer who is thought to be the parent of this peer. 

parent-peer ::= peer-state 

timeout (integer) a period of time (in seconds) the Agent will wait for a response before 
retransmitting, used to compute expiration times. The messages concerned are: OBJREQ , 
JOIN and NC. 

timeout ::= time 

lives (integer) the number of times a message will be transmitted without a response. 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 106 

lives ::= 1 *digit 

heartbeat-timer (integer) the minimum period of time (in seconds) the Agent wait before 
sending an ALIVE message to this peer. 

aliveack-wanted (boolean) indicates that an ALIVE message was sent to this peer and an 
ALIVEACK message is expected. 

join-rsp-pending (boolean) indicates a JOIN message has been sent, and a TRY or NCA is 
expected. 

join-rsp-pending ::= boolean 

nca-pending (boolean) indicates an NC message has been sent , and a NCA is expected. 

nca-pending ::= boolean 

daddr-wanted (boolean) indicates an DBJREQ message has been sent requesting DADDR, and 
a corresponding OBJRSP is expected. 

daddr-wanted ::= boolean 

maddr-wanted (boolean) indicates an OBJREQ message has been sent requesting MADDR, and 
a corresponding OBJRSP is expected. 

maddr-wanted ::= boolean 

peer-state ::= sigaddr-peer mode maddr-info-peer daddr-info-peer local-dist remote-dist lea
fonly parent-peer timeout lives heartbeat-timer aliveack-wanted join-rsp-pending nca
pending daddr-wanted maddr-wanted 

A.4 Behavior 

This section describes the actions (fields update, messages to be sent) to be taken on 
certain events, most of which are the receipts of messages. The initial state is also described. 

A.4.1 Initial State 

• Create the User component. 

- Determine the application-specific data address. 

- Decide the type of network stack ( e.g. if the Agent is dual stack - IPv4 and IPv6 
capable - or single stack). 

- Create the Signalling Address of this node. 

• Create the Measurer Component. 

- Determine the application-specific measurement address. 

• Create the Agent component. 

- Create this Agent State. 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 

• Create The Transfer component. 

Create the server(s) according to the type of network stack. 

Start the server(s). 

• Wait for an event from the User component (i .e. accept, join). 

A.4.2 Action On join (From User) 

• Ignore if already joined to the root. 

• Clear all state, as if by leave. 

107 

• Create Peer State for the root. Set root mode to MEASURING and maddr-wanted to true. 

• Set tentative-parent to root 

• Send an DBJREQ message requesting the measurement address to the root. 

A.4.3 Action On leave (From User) 

• Inform the User that there are no interesting peers. 

• Send a LEA VE message to all peers. 

• Discard all peer states. 

• Close all sockets. 

• Close the Transfer component 

A.4.4 Action On interest (From User) 

• Inform the User with the n best peers. 

A.4.5 Action On measured (From Measurer) 

The Measurer has obtained a measurement asked for by the Agent. 

• Record the measurement in the peer's local-dist. 

• If the peer belongs to siblings-pending, move it to siblings-measured. If siblings-pending 
is now empty, consider sending a NC to the tentative-parent , or selecting one of siblings
measured as the new tentative-parent. Break. 

• If the peer is the tentative-parent, send a JOIN, including the new measurement. Also 
send a TENTATIVE if there is a current-parent and current-parent f. tentative-parent . 



A PPENDIX A. ALC: IMPLEMENTATION DOCUMENT 108 

A.4.6 Action On Sorne Timeouts 

A.4.6.1 Action On The Agent Data Address Timeout 

• The Agent asks the User for the data address of the node 

• Update the Agent state with the new data-address 

• Restart timer 

A.4.6.2 Action On The Agent Measurement Address Timeout 

• The Agent asks the Measurer for the measurement address of the node 

• Update the Agent state with the new measurement address 

• Restart timer 

A.4.6.3 Action On A Peer Data Address Timeout 

• Send an OBJREQ message requesting DADDR. 

• Set daddr-wanted to "true". 

• Start t imer for message reception. 

A.4.6.4 Action On A Peer Measurement Address Timeout 

• Send an DBJREQ message requesting MADDR. 

• Set maddr-wanted to "true". 

• Start timer for message reception. 

A.4.6.5 Action On A Message Reception Timeout 

• If all flags (maddr-wanted , daddr-wanted . nca-pending and join-rsp-pending) are clear, 
break. 

• If lives > 0 

- For each flag that is not clear, send the message to the node. 

- Deduct one to Lives. 

- Restart timer. 

A.4.6.6 Action On A Measurement Timeout 

• Ask a measurement to the Measurer. 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 109 

A.4.6. 7 Action On A Maintenance Timeout 

• If the Agent is the root of the tree, break 

• Go to the maintenance state. This involves that the Agent is going to ignore all the ALC 
messages he will receive, except the OBJREQ, OBJRSP, ALIVE and ALIVEACK messages. 

• Compute the place of the Agent in the hierarchy 

• Choose the ancestor 

• Ensure that the measurement is still valid . If it is no more valid, ask the Measurer to 
perform a measure 

• If the ancestor is a potential parent doser than the Agent's current one 

- Send a JOIN message to this peer. 

- Go to the Wait state. 

• Else 

- Rest art the timer. 

- Go to the Connected state. 

A.4.6.8 Action On An Error Timeout 

• Set the peer's mode to MEASURING. 

• Set the state to Init. 

• Send an OBJREQ message to the tentative-parent. 

A.4.6.9 Action On An Heartbeat Timeout 

• Send an ALIVE message. 

• Set aliveack-wanted to "true". 

• Start timer for ALIVEACK message reception. 

A.4.6.10 Action On An ALIVEACK Message R eception Timeout 

• If the flag aliveack-wanted is clear, break. 

• If the peer is one of this peer's children, consider it as dead (i.e. discard its peer state). 

• If the peer is the current-parent, proceed like this: 

- If tentative-parent =/=- null, break. 

- Set tentative-parent to the parent of the current-parent . 

- Discard current-parent . 

- Ensure tentative-parent mode is measuring. 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 110 

- If tentative-parent.maddr-info-peer is out of date, send OBJREQ. Break. 

If tentative-parent.local-dist is out of date, send measure. Break. 

- Send JOIN. 

A.4. 7 Action On Receipt Of An OBJREQ Message 

• Return an OBJRSP. If the keys specified DADDR, insert a DADDR containing the Agent 
daddr-info. If the keys specified MADDR, insert a MADDR containing the Agent maddr-info. 

A.4.8 Action On Receipt Of An OBJRSP Message 

• If a MADDR is present in the abjects, update the peer maddr-info-peer entry for the sender 
with its contents . Clear maddr-wanted. If mode is MEASURING, request the measuring 
component to perform a measurement. 

• If a DADDR is present in the abjects , update the peer daddr-info-peer entry for the sender 
with its contents. Clear daddr-wanted. If the peer is [one of the best] , and the User has 
not been informed, pass the daddr-info onto the User . 

• If all the fl.ags daddr-wanted , maddr-wanted ,join-rsp-pending, nca-pending are clear, reset 
timeout and lives. 

A.4.9 Action On Receipt Of A JOIN Message 

• If parent is absent, and this node is not the root node, respond with an ERROR. Break. 

• If parent is present , and this node is the root node, or parent != current-parent, respond 
with an ERROR. Break. 

• Update the sender's remote-dist from dist. 

• Update the sender's leafonly state from leafanly. 

• Identify the set of children (from children) in the same region as the sender. 

• If this set is empty, update the sender 's heartbeat-timer from timer and send a NCA: if 
a TENTATIVE was present in the JOIN, include one in the response, else record the p eer 
in children . Break. 

• If this set is not empty, send a TRY: compute a radius , and sibs from the set of chosen 
children , i. e. children falling into the region built by the Agent. 

A.4.10 Action On Receipt Of A TRY Message 

• If the peer is not the tentative-parent , break. 

• Clear join-rsp-pending. If all the flags daddr-wanted , maddr-wanted , join-rsp-pending, nca
pending are clear, reset timeout and lives. 

• Record the sibs data in the relevant peer states ( except for those still in ERROR mode) , 
update siblings-measured and siblings-pending according to whether those peers have an 
up-to-date measurement and set parent-peer to the sender for each sib . 



A PPENDIX A. A LC: IMPLEMENTATION DOCUMENT 111 

• Ensure all the peers identified by sibs have their mode on measuring. 

• For each of sibs, send OBJREQ for MADDR. 

A.4.11 Action On Receipt Of A NC Message 

• If parent is absent , and this node is not t he root node, respond with an ERROR. Break. 

• If parent is present, and this node is the root node, or parent != current-parent, respond 
with an ERROR. Break. 

• Ensure the st ate for the sending peer appears in children , according to the new dis t. 

• Update the sender's leafonly state from leafonly. 

• Update the sender 's heartbeat-timer stat e from tim er 

• Send a NCA message. 

A.4.12 Action On Receipt Of A NCA Message 

• Record the DADDR and MADDR components into the peer st ate if present. 

• If the peer is not the tentative-parent, break. 

• Update t he sender 's heartbeat-timer state from tim er 

• If there is a current-parent, and the measurement to tentative-parent is no better than 
that to the current-parent, set the tentative-parent to current-parent , else leave the current
parent, set current-parent to tentative-parent and inform the User about the new parent . 

A.4.13 Action On Receipt Of A LEAVE Message 

• If sender = current-parent: 

- If tentative-parent is not null , break. 

- Set tentative-parent to the parent-peer of the sender . 

- Set current-parent to null. 

- Ensure tentative-parent mode is measuring. 

- If tentative-parent.maddr-info-peer is out of date, send OBJREQ . Break. 

- If tentative-parent.local-dist is out of date, send m easure. Break . 

- Send JOIN. 

• Else if sender = tentative-parent: 

- If current-parent f= null , ensure the timer for the maintenance procedure is set , and 
break. 

Set the tentative-parent back to an ancestor (the parent-peer), ensure MEASURING , 
check maddr-info , check local-dist, send JOIN, as before. 



APPENDIX A. ALC: IMPLEMENTATION DOCUMENT 

A.4.14 Action On Receipt Of An ERROR Message 

• Set the mode of the peer to ERROR. 

• If the current state is Wait, start the error timer. 

A.4.15 Action On Receipt Of An ALIVE Message 

• Send an ALIVEACK message in response 

A.4.16 Action On Receipt Of An ALIVEACK Message 

112 

• If the message is received within the timer, restart the timer for this peer to send a new 
ALIVE message 

• Else break. 

A.4.17 Finite State Machine 

This section presents a finite state machine (FSM). A FSM shows the dynamic of the 
messages, e.g. how the messages are exchanged and, above all, when they can be exchanged 
between peers (and not exchange of messages/ informations inside a peer). The explanation 
about actions to do on receipt of a particular message are described abo~e. The FSM here 
represents the interactions of the Agent with the entire hierarchy. 

A.4.17.1 The States 

• !nit: this is the initial state. Only the OBJRSP message can be accepted in this state. 
This state is the beginning of the first join procedure. 

• Wait: this an intermediate state. It is between a not connected state (Init) and a 
connected state ( Connected). This state manages the Join Procedure. Of course, while 
the Agent is in this state, it can't accepta JOIN message from another peer. If the Agent 
receives an ERROR essage, it directly goes to the !nit state. If the peer receives a LEAVE 

or an ERROR message from its tentative-parent, it directly returns to the !nit state. The 
following message should be ignored in this state: 

- JOIN 

• Connected: the Agent is in this state when it is connected to the tree. In this state, the 
Agent can accept all the messages except the NCA message. If the LEA VE message received 
cornes from a child, there is nothing special to do. Although the LEAVE message cornes 
from the tentative- parent and there is a current-parent, the Agent passes in Maintenance 
state to start a re-join procedure (maintenance procedure as described in section 4.5). If 
the sender is the current-parent, ensure the "grand-parent" becomes the tentative-parent. 

• Maintenance: in this state, the Agent perform a re-join procedure (maintenance) as 
described above (see section 4.5) . 

• Finish: this is the final state, i. e. the state after leaving the tree. In this state, the 
Agent cannot accept any messages. 



?OBJREQ 1 ?AL!VE 1 ?TRY I JOIN 
J ?LEAVE J ?NC j ?NCA 1 ?ERROR 

?0BJREQ 

!OBJRS 

! OBJREQ 

? OBJRSP 

?TRY & {one node falls wi thin the joining node's scope] 

! JOIN 

NCA 

LEAVE 

?TRY & [all the nodes are 
outside the joining node's scope] 

! NC 

?Join 1 ?TRY 1 ?NC 1 ?NCA 
?OBJREQ j ?OBJRSP j ?LEAVE 

j ?ERROR j AL!VE j ALIVEACK 

..... ..... 
~ 



Appendix B 

TBCP: implementation document 

This appendix represents the document used to implement the TBCP protocol. 

B .1 Terminology 

This section contains the definition of concepts/terms used in this chapter. 

• R endez-vous point: the root of the spanning tree. The root is identified by the (S, SP) 
pair, where Sis its IP address and SP the port number used. That 's the only information 
a node needs to join the tree. 

• Fanout: the maximum number of children anode will accept. 

• Message: a message has a type and contains zero or more objects. A node reacts 
according to the type of the message. 

• Object: an object has a type and contains data associated with that type. Objects are 
components of messages. 

• Node: end-host . 

B.2 Protocol 

This section describes the network interactions between nodes in the tree. This includes the 
message and object types, and their formats. It does not describe how they are transported. 

Interna! architecture and behavior of a node is implementation-defined, and otherwise 
beyond the scope of this section. Section 5.1 suggested an interna! architecture. The behavior 
for a peer is described in appendix B.4. 

B.2.1 Lexical Elements 

We define here lexical elements that will be used in the rest of this appendix. The Aug
mented BNF (ABNF) [44] is used for the syntax specification. 

bit ::= 'O' 1 ' l ' 

114 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 

Octet ::= 8*8bit 

time ::= 2*20ctet 

boolean ::= "true" 1 "false" 

digit ::= %30 .. . %39 ; 0 ... 9 

objlength :: = 2*20ctet ; abject length is stored on 2 bytes 

msglength ::= 4*40ctet ; m essage length is stored on 4 bytes 

Port ::= 2*20ctet 

Address ::= 16*160ctet 

B.2.2 Basic Types 

115 

Here are some more complex types. They use the lexical elements define in the previous 
section. 

sigaddr :: = 1 *2Address ; a signalling address - an IPv6 address and port number and/ or, 
an IPv4 mapped IPv6 address and a port number. It identifies a node in the tree and is 
sufficient for signalling with that node. 

appdata ::= *Octet ; a sequence of octet with application specific meaning. 

timed-appdata ::= appdata time boolean ; appdata plus an expiry timer and a boolean 
indicating if the data can be passed to another node. 

positive integer ::= 1 *digit 

negative integer ::= "-"l *digit 

integer ::= positive_integer I negative_integer 

measurement an application-specific measurement 

B.2.3 Object Types 

Objects are component of messages. The object type specifies the type of the data it 
contains and, clearly indicates the purpose of the object. Objects with unrecognized types 
should be ignored. 

B.2.3.1 DADDR Object 

This object consists of a timed-appdata , and represents the data address of anode. 

DADDR_body ::= 1 *ltimed-appdata 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 116 

B.2.3.2 MADDR Object 

This object consists of a timed-appdata , and represents the measurement address of a 
node. 

MADDR_body :: = 1 *ltimed-appdata 

B.2.3.3 MEASUREMENT Object 

This object consists of an appdata , and represents a measurement. 

MEASUREMENT_body ::= l*lappdata 

B.2.3.4 TIMER Object 

This object consists of a timer, and represents a minimum timer value for the heartbeat 
message. 

TIMER_body ::= 1 *ltimer 

B.2.3.5 N0DEADDR Object 

This object consists of an Address, and represents the signalling address of a node. A 
second Address holds an alternative address for nodes that are dual stack (i.e. IPv4/ v6 
capable). 

NODEADDR_body ::= 1*2Address 

B.2.3.6 KEY Object 

This object consists of an object identifier (see section B.2.5) , and indicates an object 
being requested. 

KEY _body ::= 1 *lübj_id 

B.2.3. 7 RDDT Object 

This object consists of an Address, and represents the signalling address of the root. A 
second Address holds an alternative address for nodes that are dual stack (i.e. IPv4/ v6 
capable). 

ROOT _ body := 1 *2Address 

B.2.4 Message Types 

Messages with unrecognized type or received at an unexpected moment will be ignored. 

B.2.4.1 0BJREQ Message 

This message is sent to a node to request objects (for example DADDR, MADDR, ... ), and 
contains the following objects: 

keys : a sequence of KEYs 

OBJREQ_body :: = *KEY _obj 



APPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 117 

B.2.4.2 OBJRSP Message 

This message is sent as a response to an OBJREQ message and contains the following objects: 

Objects : a sequence of objects 

OBJRSP _ body ::= *Object ; Object will be described in section B .2. 5 

B.2.4.3 REJECT Message 

This message contains no objects, and is sent by a potential parent to a new corner to tell 
it that it has to restart the Join Procedure from the beginning. 

B.2.4.4 HELLO Message 

This message marks the start of a Join Procedure. lt is sent by a new corner to a potential 
parent , and contains the following objects: 

root : a ROOT indicating the root of the tree. 

parent : an optional NODEADDR indicating the expected parent of the receiver . 

HELLO _ body ::= 1 *20bject 

B.2.4.5 HELLOACK Message 

This message is sent as a response to an HELLO message and contains the following objects: 

maddr : a MADDR indicating the measurement address of the sender 

sibs : a sequence of < NODEADDR;MADDR> . Each MADDR is associated with the preceding 
NODEADDR (the signalling address of a sender's child). 

HELLOACK _ body :: = 1 *Object 

B.2.4.6 JOIN Message 

This message is sent by a new corner to its potential parent and contains the following 
objects: 

dist : a MEASUREMENT taken by the new corner against its potential parent. 

distlist : a sequence of < NODEADDR;MEASUREMENT> . Each MEASUREMENT is associated with the 
preceding NODEADDR (measures taken by the new corner against the potential parent 's 
children). 

JOIN_body :: = l *Object 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 118 

B.2.4. 7 WELCOME Message 

This message is sent by a parent to accept a new corner as its child, and contains the 
following objects: 

maddr : a MADDR indicating the measurement address of the sender 

daddr : a DADDR indicating the data address of the sender 

timer : a TIMER indicating the minimum timer value for the ALIVE message sent from the 
new corner to the parent 

WELCOME_body ::= 3*30bject 

B.2.4.8 WELCOMEACK Message 

This message is sent by a new corner toits new parent to acknowledge a WELCOME message, 
and contains the following objects: 

maddr : a MADDR indicating the measurement address of the sender 

daddr : a DADDR indicating the data address of the sender 

timer : a TIMER indicating the minimum timer value for the ALIVE message sent from the 
parent to the new corner 

WELCOMEACK_body ::= 3*30bject 

B.2.4.9 GO Message 

This message is sent by a parent to a new corner or one of its children to redirect it to 
another child, and contains the following objects: 

parent : a NODEADDR indicating the signalling address of the new potential parent 

GO_body ::= l*lObject 

B.2.4.10 GOACK Message 

This message contains no objects, and is sent to acknowledge a GO message. 

B.2.4.11 ERROR Message 

This message contains no objects, and is sent to express that an error occurs (for example, 
the node contacted for a Join Procedure is not the potential parent or belongs to another 
tree) . 

B.2.4.12 LEAVE message 

This message contains no objects, and is sent by anode which wants to leave the tree. 

B.2.4.13 ALIVE Message 

This message contains no objects, and is sent to a node to test if it is still alive. 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 119 

B.2.4.14 ALIVEACK Message 

This message contains no objects, and is sent to acknowledge an ALIVE message (and, 
broadly to confirm that the node is still alive) . 

B.2.5 Object Representation 

Each object is transmitted as a sequence of octets , beginning with a length (the maximum 
length is 216 ) , an Object-type identifier and a body 1 (the length accounts for all three). 

Object :: = objlength Obj_id *Octet 

The identifiers for each object are listed below: 

Obj_id ::= DADDR_id I MADDR_id I MEASUREMENT _id I TIMER_id I NODEADDR_id 
1 KEY _id I ROOT _id 

DADDR id ::= 0 ; identifier of the DADDR abject 

MADDR_id ::= 1 ; identifier of the MADDR abject 

MEASUREMENT id ::= 2 ; identifier of the MEASUREMENT abject 

TIMER id ::= 3 ; identifier of the TIMER abject 

NODEADDR_id ::= 4; identifier of the NODEADDR abject 

KEY _id ::= 5 ; identifier of the KEY abject 

ROOT _id ::= 6 ; identifier of the ROOT abject 

An object with a particular type should have a body, as defined in section B.2.3 

DADDR_obj ::= objlength DADDR_id DADDR_body 

MADDR_obj :: = objlength MADDR_ id MADDR_ body 

MEASUREMENT_ obj ::= objlength MEASUREMENT_id MEASUREMENT_body 

TIMER _obj :: = objlength TIMER_ id TIMER_body 

NODEADDR_obj ::= objlength NODEADDR_ id NODEADDR_body 

KEY _obj ::= objlength KEY _ id KEY _body 

ROOT_obj ::= objlength ROOT _ id ROOT_ body 

Object :: = DADDR_obj I MADDR_obj I MEASUREMENT_obj I TIMER_obj I NODEADDR_obj 
1 KEY_ obj I ROOT _ obj 

1 a sequence of octets 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 120 

B.2.6 Message Representation 

Each message is transmitted as a sequence of octets, beginning with a length , a message
type identifier and a body 2 ( the length accounts for all three parts) . This sequence is encoded 
in big-endian. 

Message ::= msglength Msg_id *Object 

The identifiers for each message are listed below: 

Msg_id ::= OBJREQ_id I OBJRSP _id I REJECT _id I HELLO _id I HELLOACK_id 1 
JOIN_id I WELCOME_id I WELCOMEACK _ id I GO_id I GOACK_id I ERROR_ id 
1 LEAVE_id I ALIVE_id I ALIVEACK_id 

OBJREQ_id ::= 0 ; identifier of the OBJREQ message 

OBJRSP id ::= 1 ; identifier of the OBJRSP message 

REJECT _id ::= 2 ; identifier of the REJECT message 

HELLO _id ::= 3 ; identifier of the HELLO message 

HELLOACK_id ::= 4; identifier of the HELLOACK message 

JOIN _id ::= 5 ; identifier of the JOIN message 

WELCOME_id : := 6 ; identifier of the WELCOME m essage 

WELCOMEACK_id ::= 7 ; identifier of the WELCOMEACK message 

GO _ id :: = 8 ; identifier of the GO message 

GOACK_id ::= 9 ; identifier of the GOACK m essage 

ERROR_id ::= 10 ; identifier of the ERROR message 

LEAVE_id ::= 11 ; identifier of the LEA VE message 

ALIVE_id ::= 12 ; identifier of the ALIVE message 

ALIVEACK_id ::= 13 ; identifier of the ALIVEACK message 

A message with particular type should have a body as defined in section B.2.4 

2a sequence of objects 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 

OBJREQ_msg ::= msglength OBJREQ_id OBJREQ_body 

32 bits 

msglength 

OBJREQ id 1 Unused 

objlength 1 Kev id 1 Unused 
Obj id 1 Obj id 1 Obj id 1 Obi id 

... 

Obj id 1 Obj id 1 Obj id 1 Obj id 

Figure B.l: The OBJREQ message 

OBJRSP _msg ::= msglength OBJRSP _ id OBJRSP _body 

32 bits 

msglength 

OBJRSP id 1 Unused 

Object 

... 

Object 

Figure B.2: The OBJRSP message 

REJECT_msg ::= msglength REJECT_id REJECT_body 

32 bits 

msglength 

REJECT_ id Unused 

Figure B.3: The REJECT message 

HELLO _msg ::= msglength HELLO _ id HELLO _body 

HELLOACK_ msg ::= msglength HELLOACK_id HELLOACK_ body 

JOIN _ msg ::= msglength JOIN _ id JOIN_body 

WELCOME_ msg :: = msglength WELCOME_id WELCOME_body 

WELCOMEACK_msg ::= msglength WELCOMEACK_id WELCOMEACK_body 

GO _msg ::= msglength GO _ id GO _body 

GOACK_msg ::= msglength GOACK _ id GOACK_body 

ERROR_msg ::= msglength ERROR_id 

LEAVE_msg :: = msglength LEAVE_ id 

121 



APPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 

32 bits 

msglength 

HELLO id 1 Unused 
obj l e ngth 1 ROOT id 1 

Ipv6 Address 
or 

Ipv4 Mapped IPv6 

Port 1 Unused 

Ipv6 Address 
or 

Ipv4 Mapped IPv6 

Port 1 Unused 

objlength 1 NODEADDR_id 1 

Ipv6 Address 
or 

Ipv4 Mapped IPv6 

Port 1 unused 

Ipv6 Address 
or 

Ipv4 Mapped IPv6 

Port 1 Unused 

Figure B.4: The HELLO message 

ALIVE_msg ::= msglength ALIVE_id 

ALIVEACK_msg ::= msglength ALIVEACK_id 

122 

Unused 

Unused 



APPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 123 

32 bits 

msglength 

HELLOACK id 1 Unused 

objlength 1 MADDR id 1 Unused 

appdata 

tirne 1 boolean 1 Unused 
objlength 1 NODEADDR id 1 Unused 

Ipv6 Address 
or 

Ipv4 Mapped IPv6 

Port 1 Unused 

Ipv6 Address 
or 

Ipv4 Mapped IPv6 

Port 1 Unused 

objlength 1 MADDR id 1 Unused 

appdata 

time 1 boolean 1 Unused 

.. . 

objlength 1 NODEADDR id 1 Unused 

Ipv6 Address 
or 

Ipv4 Mapped IPv6 

Port 1 Unused 

Ipv6 Address 
or 

Ipv4 Mapped IPv6 

Port l Unused 
objlength 1 MADDR id 1 Unused 

appdata 

tiine 1 boolean 1 Unused 

Figure B.5: The HELLOACK message 



APPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 124 

32 bits 

msglength 

JOIN id 1 Unused 

objlength 1 MEASUREMENT id 1 Unused 

appdata 

obilength 1 NODEADDR id 1 Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 

Port 1 Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 

Port 1 Unused 

objlength 1 MEASUREMENT_ 1d 1 Unused 

appdata 

... 
obj l ength 1 NODEADDR id 1 Unused 

IPv6 Address 
or 

I Pv4 Mapped IPv6 

Port 1 Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 

Port 1 Unused 

obj l e ngth 1 MEASURDŒNT_id 1 Unused 

appela ta 

Figure B .6: The JOIN message 

32 bits 

msglength 
.. 

WELCOME id 1 Unused 
objlength 1 MADDR_id 1 Unused 

appdata 

time 1 boolean 1 Unused 

objlength 1 DADDR_id 1 Unused 

appdata 

tirne 1 boolean 1 Unused 
objlength 1 TIHER id 1 Unused 

time 1 unused 

Figure B. 7: The WELCOME message 



APPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 125 

32 bits 

msglength 

WELCOMEACK id 1 Unused 
objlength 1 MADDR id 1 Unused 

appdata 

tirne 1 boolean 1 Unused 

objlength 1 DADDR id 1 Unused 

appdata 

time 1 boolean 1 Unused 
objlength 1 TIMER id 1 Unused 

time 1 Unused 

F igure B.8: The WELCOMEACK message 

32 bits 

msglength 

GO id 1 Unused 

o b;lenoth 1 NODEADDR.._id l Unused 

IPv6 Address 
or 

I Pv4 Mapped I Pv6 

port 1 Unused 

IPv6 Address 
or 

IPv4 Mapped IPv6 

port 1 Unused 

Figure B .9: The GO message 

32 bits 

msglength 

GOACK id unused 

Figure B.10: The GOACK message 

32 bits 

msglength 

ERROR_id Unused 

Figure B. 11: T he ERRDR msg 

32 bits 

msglength 

REJECT id Unused 

Figure B .12: T he LEAVE message 



A PPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 126 

32 bits 

1---=-ALIVE id 

msg l ength 

Unused 

F igure B.13: The ALIVE message 

32 bits 

msglength 

ALIVEACK_id Unus e d 

Figure B.14: The ALIVEACK message 

B.3 State 

A Controller keeps informations about its posit ion in the tree. Sorne of this ( the Controller 
state) applies to its entire participation in the tree, while the rest ( the node state) applies only 
to individual nodes with which it is interacting. 

B .3.1 Controller State 

sigaddr-controller (sigaddr) T he signalling address of the Controller. 

sigadd-controller ::= sigaddr 

maddr-controller (timed-appdata) The measurement address of the Controller. 

maddr-controller ::= timed-appdata 

daddr-controller (timed-appdata) The data address of the Controller. 

daddr-controller ::= timed-appdata 

fanout (integer) The maximum number of children that will be accepted by the Controller. 

fanout : := positive_ integer 

root (sigaddr) The signalling address of the root of the tree. 

root ::= sigaddr 

timer-join (time) The timer value (in seconds) for the Join Procedure. After this timeout , 
the Join Procedure must be completed. 

timer-join ::= time 

nodes (set of node-state) The list of ail nodes the Controller is in contact with. 

nodes ::= *node-state 

current-parent (node-state) The current parent of the Controller. 



APPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 

current-parent ::= node-state 

tentative-parent (node-state) The node the Controller views as a potential parent . 

tentative-parent ::= node-state 

children (list of node-state ordered by dist). 

children ::= *node-state 

tentative-child (node-state) The potential new child. 

tentative-child ::= node-state 

measure-pending (set of node-state) Nodes that have no recent measurements. 

measure-pending ::= *node-state 

measure-performed (set of node-state) Nodes that have recent measurements. 

measure-performed ::= *node-state 

127 

controller-state ::= sigaddr-controller maddr-controller daddr-controller fanout root timer
join nodes current-parent tentative-parent children tentative-child measure-pending measure
performed 

B.3.2 Node State 

sigaddr-node (sigaddr) The signalling address of this node. 

sigaddr-node ::= sigaddr 

maddr-node (timed-appdata) The measurement address of this node. 

maddr-node :: = timed-appdata 

daddr-node (timed-appdata) The data address of this node 

daddr-node ::= timed-appdata 

parent-node (node-state) The node presumed to be the parent of this node . 

parent-node ::= node-state 

dist (appdata ) The distance between the Controller and this node. 

dist ::= appdata 

dist-newcomer (appdata) The distance between the new corner and this node. 

dist-newcomer ::= appdata 

heartbeat-timer (time) The minimum period of time (in seconds) the Controller will wait 
before sending an ALIVE message to this node. 

heartbeat-timer ::= time 



A PPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 128 

alive-ack-wanted (boolean) Indicates that an ALIVE message has been sent to this node and 
a corresponding ALIVEACK is expected. 

alive-ack-wanted ::= boolean 

daddr-wanted (boolean) Indicates that an OBJREQ message requesting a DADDR abject has 
been sent and a corresponding OBJRSP is expected. 

daddr-wanted ::= boolean 

maddr-wanted (boolean) Indicates that an OBJREQ message requesting a MADDR abject has 
been sent and a corresponding OBJRSP is expected. 

maddr-wanted ::= boolean 

join-wanted (boolean) Indicates that a HELLOACK message has been sent and a JOIN message 
is expected. 

join-wanted ::= boolean 

lives (integer) A number of times a message will be sent without a response. 

lives ::= integer 

t imeout (time) a period of time (in seconds) the Controller will wait for a response before 
retransmitting. 

timeout ::= time 

mode (ERROR, MEASURING, BORI NG) The "state" of the node 

mode ::= ERROR_mode I MEASURING_mode I BORING_mode 

ERROR_mode ::= "O" ; This node sends back an ERROR message to the Controller 

MEASURING mode ::= "l" ; The measurer of the node is performing measurement to this 
node 

BORING_mode ::= "2" ; when everything is alright, anode is in the BORING mode 

node-state ::= sigaddr-node maddr-node daddr-node dist dist-newcomer heartbeat-timer 
aliveack-wanted daddr-wanted maddr-wanted join-wanted lives timeout mode 

B .4 Behavior 

This section describes the actions (fields updates, messages to be sent) to be taken on 
certain events, most of which are the receipts of message. The initial state is also described. 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 129 

B.4.1 Initial State 

• Create the User component. 

• Determine the application-specific data address 

• Decide the type of network stack ( e.g. if the Controller is dual stack - 1Pv4 and 1Pv6 
capable - or single stack). 

• Create the signalling address of this node. 

• Create the Measurer Component. 

• Determine the application-specific measurement address. 

• Create the Controller Component. 

• Create the Controller State 

• Create The Transfer Component 

• Wait for an event from the User component (i.e. accept, join) 

B.4.2 Action On join (From The User) 

• Ignore if the node has already joined the tree. 

• Create node state for the root. 

• Set root as tentative-parent. 

• Send an HELLO message. 

• Go to the Wait state. 

B.4.3 Action On accept (From The User) 

• Go to the Connected state. 

B.4.4 Action On leave (From The User) 

• Send a LEAVE message to all nodes. 

• Discard all node state. 

• Close all sockets. 

• Close the Transfer component. 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 130 

B.4.5 Action On measured (From The Measurer) 

The Measurer has obtained a measurement asked by the Controller. 

• Record the measurement in the node 's dist. 

• If the node belongs to measure-pending, move it to measure-performed 

• If the measure-pending is now empty, send a JOIN message to the tentative-parent con
taining these distances. 

B.4.6 Action On Sorne Timeouts 

B.4.6.1 Action On The Controller Data Address Timeout 

• The Controller asks the User for the data address of the node (event getAddress(}⇒daddr). 

• Update the Controller 's daddr-controller with daddr. 

• Rest art timer. 

B.4.6.2 Action On The Controller Measurement Address Timeout 

• The Controller asks the Measurer for the measurement address of the node ( event getAd
dress (}⇒ maddr) . 

• Update the Controller's maddr-controller with maddr. 

• Rest art timer. 

B.4.6.3 Action On A Node's Data Address Timeout 

• Send an OBJREQ message requesting DADDR. 

• Set daddr-wanted to "true". 

• Start timer for message reception. 

B.4.6.4 Action On A Node's Measurement Address Timeout 

• Send an OBJRSP message requesting MADDR. 

• Set maddr-wanted to "true". 

• Start timer for message reception. 

B.4.6.5 Action On A Message Reception Timeout 

• If all flags (maddr-wanted and daddr-wanted ) are clear , break. 

• If lives > 0 

- For each flag that is not clear , send the associated message to the node. 

- Deduct one to Lives. 

- Restart timer. 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 131 

B.4.6.6 Action On A Maintenance Timeout 

• If the node is the root of the tree, break. 

• Go to the Maintenance state. 

• Compute the place of the node in the tree. 

• Cho ose the ancestor. 

• If the ancestor chosen is the current-parent, break. 

• Set tentative-parent to the chosen ancestor. 

• Go to the Wait state. 

• Start a Join Procedure and use the tentative-parent as rendez-vous point. 

B.4.6.7 Action On A Heartbeat Timeout 

• Send an ALIVE message. 

• Set aliveack-wanted to "true". 

• Start timer for ALIVEACK message reception. 

B.4.6.8 Action On An ALIVEACK Message Reception Timeout 

• If the flag aliveack-wanted is clear, break. 

• If the node is one of this node's children, consider it as death (i.e. discard its node state). 

• If the node is the current-parent, proceed like this: 

- If tentative-parent #- null, break. 

- Set tentative-parent to the parent of the current-parent. 

- Discard current-parent. 

- Go to the Wait state. 

- Start a Join Procedure and use the tentative-parent as rendez-vous point . 

B.4.6.9 Action On A Join Procedure Timeout 

• If tentative-child 's join-wanted is clear, break. 

• Else 

- Send a REJECT message to the tentative-child . 

- Release all node state associated. 

- Go to the Connected state. 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 

B.4.6.10 Action On An Error Timeout 

• Send an HELLO message to the tentative-parent. 

• Go to the Wait state. 

B.4. 7 Action On Receipt Of An OBJREQ Message 

Return an OBJRSP message. 

• If keys specified a DADDR, insert a DADDR containing the Controller daddr-controller. 

• If keys specified a MADDR, insert a MADDR containing the Controller maddr-controller. 

B.4.8 Action On Receipt Of An OBJRSP Message 

132 

• If a MADDR is present in the objects, update the maddr-node information for the sender, 
and clear maddr-wanted. If mode for the sender is MEASURING_mode , ask the Measurer 
to perform a measurement. 

• If a DADDR is present in the objects, update the daddr-node information for the sender, 
and clear daddr-wanted . 

• If all flags (madr-wanted , daddr-wanted) are clear, reset timeout and lives. 

B.4.9 Action On Receipt Of A REJECT Message 

• If the sender is not the tentative-parent, break. 

• Clear the sender's node-state. 

• Wait during a random time. 

• Restart a Join Prùcedure (i .e. send an HELLO message to the tentative-parent. 

B.4.10 Action On Receipt Of A HELLO Message 

• If parent is absent and this node is not the root node, send an ERROR message. Break. 

• If parent is present and this node is the root node, or parent !~ · current-parent, send an 
ERRROR message. Break. 

• Create a node-state for the sender. 

• Record the sender as tentative-child . 

• Set tentative-child 's join-wanted to true. 

• Send an HELLOACK message containing the maddr-controller information and a "siblist" 
(i.e. a list of the signalling address and the measurement address of each child). 

• Start the timer for the Join Procedure. 

• Go to the JoinProc state. 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 133 

B.4.11 Action On Receipt Of A HELLOACK Message 

• If the sender is not the tentative-parent , break. 

• Update tentative-parent with MADDR information. 

• Ensure the tentative-parent 's mode is MEASURING. 

• Add tentative-parent to measure-pending. 

• Create a node-state for each < NODEADDR, MADDR> . 

• Ensure the mode is MEASURING for each pair. 

• Add each pair to measure-pending and to nodes. 

• For each node in the measure-pending list, send an OBJREQ message for MADDR. 

B.4.12 Action On Receipt Of A JOIN Message 

• If the sender is not the tentative-child , break. 

• Clear join-wanted. 

• If I children 1 + 1 ::; fanout 

- Send a WELCOME message to the tentative-child including MADDR, DADDR and TIMER. 

- Break. 

• If I children 1 + 1 > fanout 

- Compute the score fonction based on the measurements included in the JOIN mes
sage. 

- Choose the best local configuration. 

- If the tentative-child has to be redirected. 

* Send a GO message including the new rendez-vous point to the tentative-child. 

* Remove tentative-child. 

- If a node's child must be redirected 

* Send to it a GO message including its rendez-vous point. 

* Remove its node state. 

* Send the tentative-child a WELCOME message including MADDR, DADDR, Timer in
formation. 

B.4.13 Action On Receipt Of A WELCOME Message 

• If the sender is not the tentative-parent , break. 

• Record the MADDR, DADDR and TIMER informations in the relevant node state. 

• Move tentative-parent to current-parent . 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 134 

• Send back a WELCOMEACK message including DADDR, MADDR and TIMER informations. 

• Start the timer for the heartbeat message. 

• Start the timer for the Maintenance Procedure. 

• Go to the Connected state. 

B.4.14 Action On Receipt Of A WELCOMEACK Message 

• If the sender is not the tentative-child , break. 

• Record the MADDR, DADDR and TIMER informations in the relevant node state. 

• Add tentative-child to children. 

• Start the timer for the heartbeat message. 

• Go to the Connected state. 

B.4.15 Action On Receipt Of A GO Message 

• If the sender is not the current-parent or the sender is not the tentative-parent, break 

• Create a node state for the NODEADDR included in the GO message 

• Set node-parent to sender. 

• Record the node state as tentative-parent 

• Send back a GOACK message. 

• Start a Join Procedure and use the tentative-parent as the rendez-vous point. 

B.4.16 Action On Receipt Of A GOACK Message 

• If the sender is the tentative-child , release all node states related and go to the Connected 
state. 

• If the sender is a node 's child , release all node states related and go to the Connected 
state. 

B.4.17 Action On Receipt Of An ERROR Message 

• If the sender is not the tentative-parent , break. 

• Set the sender's mode to ERROR. 

• Start the timer for error. 

• Go to the Init state. 



APPENDIX B . TBCP: IMPLEMENTATION DOCUMENT 135 

B.4.18 Action On Receipt Of An ALIVE Message 

• If the sender is unknown, break. 

• Send back an ALIVEACK message. 

B.4.19 Action On Receipt Of An ALIVEACK Message 

• If the sender is unknown, break. 

• If the message was received within the timer, clear aliveack-wanted and restart timer. 

• Else, break. 

B.4.20 Action On Receipt Of A LEAVE Message 

• If the sender is a node 's child, release all node states related. Break. 

• If sender = current-parent 

- If tentative-parent is not null, break. 

- Set tentative-parent to the parent-node of the sender. 

- Release current-parent 

- Start a Join Procedure and use the tentative-parent as rendez-vous point. 

- Go to the Wait state. 

• If sender = tentative-parent 

- If current-parent # null, ensure the timer for the maintenance procedure is set and 
break. 

Set tentative-parent back to an ancestor (parent-node) , start a Join Procedure, use 
the tentative-parent as rendez-vous point and go to the Wait state. 

B.4.21 Finite State Machine 

This section presents the Finite State Machine (FSM). The FSM represents the interac
tions of the Controller with the entire tree . 

B .4.21.1 The States 

• Init: This is the initial state. None message can be accepted in this state. This state is 
the beginning of the Join Procedure. 

• Wait: This is an intermediate state. It is between a not connected state (Init) and a 
connected state ( Connected). In this state, a new corner wait for a WELCOME message or 
a GO message. If the node receives a WELCOME message, it goes to the Connected state 
(it is now considered as a child of another node). If it receives a GO message, it returns 
to the Init state and has to restart a Join Procedure. 



APPENDIX B. TBCP: IMPLEMENTATION DOCUMENT 136 

• Connected: In this state, the node is connected to the tree. If the node is the root 
node, it directly goes to this state. In this state, anode can receive a GO message from 
its parent. It then goes to the !nit state to start a Join Procedure. In this state, the 
following messages should be ignored because they are parts of a Join Procedure: 

- WELCOME message. 

- WELCOMEACK message. 

- JOIN message. 

- HELLOACK message. 

- REJECT message. 

- GOACK message. 

- ERROR message. 

The node can leave the tree by sending a LEAVE message. It then goes to the Finish 
state when it receives a leave event from the User. However, if the node receives an 
HELLO message, it answers with an HELLOACK message and goes to the JoinProc state. 
Now, the node plays the role of a rendez-vous point. 

• JoinProc: When anode passes into this state, it starts a timer for the Join Procedure. 
If the JOIN message is not received within this timer, the node sends the potential child 
a REJECT message and returns to the Connected state. On the opposite, the node sends 
back a WELCOME or GO message and wait for the corresponding acknowledgement. When 
it is received, the node returns to the Connected state. The following messages are not 
accepted in this state: 

- HELLO message (anode can only deals with one Join Procedure at a time for con
sistency reasons). 

- HELLOACK message (anode can't be at the same time a new corner and a rendez-vous 
point). 

- ERROR message (a node can only accept this message when it performs a Join 
Procedure as a new corner). 

During a Join Procedure, the node can leave the tree (if the User decided so) and to do 
so, sends a LEAVE message and goes to the Finish state. 

• Maitenance: In this state, the Controller performs a Maintenance Procedure as described 
above (see section 4.5). All messages , except the ALIVE, ALIVEACK , OBJREQ and OBJRSP 
messages should be ignored. 

• Finish: This is the final state, i.e. the state after leaving the tree. In this state, the 
Controller can 't accept any messages. 



>rj 
oq " 

r::: .., 
(D 

to ,.... 
CJl 

s;: 
~ 

B
Eï 
(D 

?HELLO j ?HELLOACK j ?AL , , 

?HELLO 1 ?HELLOACK 1 ?R 
?GO 1 ?GOACK 1 ?J OIN 1 ? 
?WELCOMEACK ? 

?O 

?REJECT J ?ERROR ?LEAVE (tentative parent) 

?WELCOME 
! weU:okEXck 

!WVE 

?GQAÇK 

?ALIVE 
!ALIVEACK 

?HELLOACK J ?ERROR 

?HELLO j ?HELLOACK j ?ALIVE 1 ?REJECT 
?JOIN j ?WELCOME j GO j 

?ALIVEACK j ?GOACK j ?REJECT j 
BJREQ J ?OBJRSP J ?LEAVE / ?ERROR 

,.... 
c,., 
-.J 






