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Bounds on ortho-positronium and J/ψ – Υ quarkonia invisible decays
and constraints on hidden braneworlds in a SO(3, 1)-broken 5D bulk

Michaël Sarrazin1, 2, ∗ and Coraline Stasser2

1Institut UTINAM, CNRS/INSU, UMR 6213, Université Bourgogne–Franche-Comté,
16 route de Gray, F-25030 Besançon Cedex, France

2Laboratory of Analysis by Nuclear Reactions, Department of Physics,
University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium

While our visible Universe could be a 3-brane, some cosmological scenarios consider that other
3-branes could be hidden in the extra-dimensional bulk. Matter disappearance toward a hidden
brane is mainly discussed for neutron – both theoretically and experimentally – but other particles
are poorly studied. Recent experimental results offer new constraints on positronium or quarkonium
invisible decays. In the present work, we show how a two-brane Universe allows for such invisible
decays. We put this result in the context of the recent experimental data to constrain the brane
energy scale MB (or effective brane thickness M−1

B ) and the interbrane distance d for a relevant
two-brane Universe in a SO(3, 1)-broken 5D bulk. Quarkonia present poor bounds compared to
results deduced from previous passing-through-walls-neutron experiments for which scenarios with
MB < 2.5 × 1017 GeV and d > 0.5 fm are excluded. By contrast, positronium experiments can
compete with neutron experiments depending on the matter content of each brane. To constrain
scenarios up to the Planck scale, positronium experiments in vacuum cavity should be able to reach
Br(o-Ps → invisible) ≈ 10−6.

PACS numbers: 11.25.Wx, 36.10.Dr, 13.20.Gd

Many cosmological scenarios consider the existence of
hidden braneworlds, specifically to explain the origin of
dark matter and dark energy or as alternatives to cosmic
inflation [1–11]. Among the cosmological models of in-
terest, universes involving SO(3, 1)-broken 5D bulks con-
taining at least two braneworlds are under consideration
[8–10]. In the last decade, it has been shown that such
scenarios imply matter exchange between branes, which
is a possible way to test these models [12–17]. In this
context, neutron disappearance (reappearance) toward
(from) a hidden brane has been widely discussed both
theoretically [12–14] and experimentally [15–17]. Never-
theless, other kinds of particles have been somewhat ne-
glected, although with good reason. In the present paper,
we consider recent experimental results about constraints
on positronium [18, 19] or quarkonium [20] invisible de-
cays in vacuum 1. These works [18, 19] were themselves

∗Electronic address: michael.sarrazin@ac-besancon.fr; Corre-
sponding author
1 In a previous work [21], the constraint on Br(o-Ps → invisible)

is stronger by 3 orders of magnitude when compared to the work
here under consideration [18]. However, this constraint [21] is ob-
tained from measurements performed in presence of matter such
that o-Ps undergoes very high collision rates [18, 21]. Then,
decay rate calculation requires extrapolations [18, 21, 22], to ac-
count of collisions consequences, leading to large uncertainties
[18, 21]. As a result, there is a need for experiments with low
collision rates – or in vacuum – to avoid any extrapolation [18].
Nevertheless, uncertainties could be restrained thanks to com-
plex GEANT4 simulations possibly supplemented with a density
matrix approach, as done for neutron-hidden neutron dynamics
in nuclear reactors [15, 16], for instance. This significant fur-
ther work is far beyond the topic of the present work aiming to
demonstrate the relevance of positronium experiments to track

motivated by the possibility of invisible decays along ex-
tra dimensions [23], a situation somewhat similar but dif-
ferent from the present one involving hidden braneworlds.
Here, showing how a hidden braneworld allows for such
invisible decays, we discuss about constraints on the dis-
tance between our visible brane and a hidden one, and on
the brane energy scale (or brane thickness) in the bulk.
Highlighting the significant efficiency of the neutron to
probe the existence of hidden braneworld, we put the-
oretical constraints on the expected branching ratio for
positronium and quarkonium invisible decays.

When considering a two-brane Universe, whatever its
full high-energy description (i.e. whatever the number
or properties of bulk scalar fields responsible for parti-
cle trapping on branes, the number of extra dimensions
or the bulk metric, etc.), the fermion dynamics on both
branes at a sub-GeV energy scale is the same as the dy-
namics of fermions in a M4 × Z2 space-time in the con-
text of the non-commutative geometry [12, 13]. There
are then two copies of the Standard Model, each sec-
tor being localized in each brane. Assuming that each
braneworld is a M−1

B -thick domain wall – where MB is
the brane energy scale – the two sectors are mutually
invisible to each other at the zeroth-order approxima-
tion for processes with energies below MB . By con-
trast, matter fields in separate branes can mix at a
first-order approximation mainly through the Lagrangian
Lc = igψ+γ

5ψ− + igψ−γ
5ψ+, where ψ± are the Dirac

hidden braneworlds. Thus, for now, we chose to consider the
conservative but robust constraint from experiments in vacuum
cavity only [18].
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fermionic fields in each braneworld – denoted (+) and
(−) [12, 13]. The interbrane coupling g is given by [12]:

g = (m2/MB) exp(−md), (1)

and depends on the distance d between branes, on their
effective thickness M−1

B and on the mass m of the par-
ticle of the Standard Model under consideration, i.e. a
constituent quark [12, 24–27] or a lepton. More specifi-
cally for bound quarks, g presents a cut-off at d ≈ 0.5 fm
beyond which it cancels [12].

From Lc one can show that a particle could oscil-
late between two states, one localized in our brane, the
other localized in the hidden world. In fact, the oscil-
lation would be driven by the effective magnetic field
B⊥=g (A+ − A−) transverse-like to the branes, where
A± are the magnetic vector potentials in each brane.
Specifically, the interaction Hamiltonian Hc between the
Pauli spinors of the visible and hidden worlds is given by
[12–14]:

Hc = ~Ω
(

0 ε
ε† 0

)
, (2)

where ε = −iσ · B⊥/B⊥ = −iσ · n is a unitary matrix
acting on the spin with n = (sin θ cosφ, sin θ sinφ, cos θ),
and ~Ω = µnB⊥ with µn the magnetic moment of the
particle. Here vector potentials A± are dominated by
the huge (& 109 T m) overall astrophysical magnetic
vector potential Aamb related to the magnetic fields of
all the astrophysical objects (planets, stars, galaxies,
etc.) [14, 15, 29–33] and such that A+ − A− ≈ Aamb

[14, 15].

In the present work we consider bound states pp con-
stituted by a fermion p and its anti-particle p. These
states are characterized by a finite lifetime and some de-
cay channels. More precisely, we consider the long-living
13S1 state (ortho-state) and the short-living 11S0 state
(para-state) of the pp bound pair. Following the stan-
dard description, the ortho-state wave function can be
expressed as [34]:

|ψ1⟩ = |p, ↑⟩ ⊗ |p, ↑⟩ , (3)
|ψ−1⟩ = |p, ↓⟩ ⊗ |p, ↓⟩ , (4)

|ψ0⟩ = (1/
√

2) (|p, ↑⟩ ⊗ |p, ↓⟩ + |p, ↓⟩ ⊗ |p, ↑⟩) , (5)

and similarly for the para-state wave function, we have:

|ψP ⟩ = (1/
√

2) (|p, ↑⟩ ⊗ |p, ↓⟩ − |p, ↓⟩ ⊗ |p, ↑⟩) , (6)

where |p, ↕⟩ and |p, ↕⟩ relate to the wave functions of the
fermion and its anti-particle respectively both taking into
account the spin state.

Let us now consider the relevant interbrane coupling,
which is simply the sum of two Hc Hamiltonian operators
corresponding to the contributions of the particle and its
anti-particle [34]:

W = −i~Ω
(

0 (σp−σp) ·n
− (σp − σp) ·n 0

)
, (7)

where the minus sign (−σp) arises from the opposite mag-
netic moment of these particles. Considering the non-
diagonal terms of the coupling term W, and the pp wave
functions, we get:

(σp − σp) · n |ψ1⟩ = −
√

2eiφ sin θ |ψP ⟩ , (8)

(σp − σp) · n |ψ0⟩ = 2 cos θ |ψP ⟩ , (9)

(σp − σp) · n |ψ−1⟩ =
√

2e−iφ sin θ |ψP ⟩ , (10)

(σp − σp) · n |ψP ⟩ (11)
= 2 cos θ |ψ0⟩ −

√
2e−iφ sin θ |ψ1⟩ +

√
2eiφ sin θ |ψ−1⟩ .

It is noticeable that an ortho-state in a brane convert
into a para-state only in the second brane and vice versa.
Then, considering only the ortho-state in our brane 2, the
relevant wave function to consider for matter exchange
can be written as:

|Ψ⟩ =
(

|Ψ+⟩
|Ψ−⟩

)
=
(

|ΨO⟩
|ΨP ⟩

)
=

 |ψ1⟩
|ψ0⟩

|ψ−1⟩
|ψP ⟩

 , (12)

where |Ψ±⟩ are the wave functions in each brane (+) or
(−), and

∣∣ΨO/P

⟩
the wave functions for the ortho-state

and para-state. The two-brane wave function |Ψ(t)⟩ then
follows:

i~∂t |Ψ(t)⟩ = (H0 + W) |Ψ(t)⟩ , (13)

where the Hamiltonian W can be recast as:

W = }Ω
(

0 |C⟩
⟨C| 0

)
where |C⟩ =

 i
√

2eiφ sin θ
−2i cos θ

−i
√

2e−iφ sin θ

 ,

(14)
and where H0 = diag(EO − i}ΓO, EO − i}ΓO, EO −
i}ΓO, EP − i}ΓP ). EO (respectively EP ) is the eigenen-
ergy and ΓO (respectively ΓP ) is the decay rate of the
ortho-state (respectively of the para-state).

|Ψ(t)⟩ is obtained from the Lippmann–Schwinger equa-
tion:

|Ψ(t)⟩ =
∣∣∣Ψ(0)(t)

⟩
+
∫ +∞

−∞
G(0)(t−t′)W |Ψ(t′)⟩ dt′, (15)

2 As shown in the following, the branching ratio of invisible decays
of ortho-states is larger by many orders of magnitude by contrast
to this of para-states.
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pp state Mass Full width 2Γ Br(o-pp → invisible)

Positronium o-Ps 1.022 − ε MeV 7.211 × 106 s−1 (th) < 5.9 × 10−4 at 90 % C.L.

p-Ps 1.022 − ε′ MeV 8.033 × 109 s−1 (th) -

Charmonium J/ψ 3096.900 ± 0.006 MeV 92.9 ± 2.8 keV (exp) < 7 × 10−4 at 90 % C.L.

ηc 2983.4 ± 0.5 MeV 31.8 ± 0.8 MeV (exp) -

Bottonium Υ 9460.30 ± 0.26 MeV 54.02 ± 1.25 keV (exp) < 3.0 × 10−4 at 90 % C.L.

ηb 9399.0 ± 2.3 MeV 10+5
−4 MeV (exp) -

TABLE I: Summary of positronium and quarkonium masses, full widths and invisible decay branching ratios from theoretical
and experimental data [18, 20, 24–28]. ε and ε′ describe the mass difference between the ortho-state and the para-state of the
positronium, such that |ε− ε′| = 0.84 meV.

where the propagator follows (i~∂t − H0)G(0)(t −
t′) = 1δ(t − t′) such that G(0)(t − t′) =
−i~−1e−i~−1H0(t−t′)Θ(t − t′), with Θ(t) the Heaviside
step function.

∣∣Ψ(0)(t)
⟩

= i~G(0)(t)
∣∣Ψ(0)⟩ is the solu-

tion of Eq. 13 when W = 0 with

∣∣∣Ψ(0)
⟩

=

( ∣∣∣Ψ(0)
O

⟩
0

)
where

∣∣∣Ψ(0)
O

⟩
=

 p
q
r

 , (16)

with |p|2 + |q|2 + |r|2 = 1.
∣∣Ψ(0)⟩ defines the ini-

tial state when the particle is created. Assuming that
~Ω ≪ EO, EP we use an up to the second-order expan-
sion of the Lippmann–Schwinger equation such that:

|Ψ(t)⟩ ∼
∣∣∣Ψ(0)(t)

⟩
(17)

+
∫ +∞

−∞
G(0)(t− t′)W

∣∣∣Ψ(0)(t′)
⟩
dt′

+
∫ +∞

−∞

∫ +∞

−∞
G(0)(t−t′)WG(0)(t′−t′′)W

∣∣∣Ψ(0)(t′′)
⟩
dt′′dt′.

We are now going to calculate the whole decay rate
Γ of the pp bound state in the two-brane Universe. We
set Γ = (1/2)τ−1 where τ is the mean lifetime of the pp
state given by τ =

∫∞
0 tf(t)dt where the related distribu-

tion function for the probability to observe the particle is
f(t) = −(d/dt)P with P = ⟨Ψ(t) |Ψ(t)⟩. Then, we get:
Γ−1 = 2

∫∞
0 ⟨Ψ(t) |Ψ(t)⟩ dt. Using Eq. 17, we can now

express ⟨Ψ(t) |Ψ(t)⟩ up to the second order of approxi-
mation and we can simply compute Γ−1:

Γ−1 ∼ 1
ΓO

+ Γ2
O − Γ2

P

ΓP Γ2
O

∣∣∣⟨C ∣∣∣Ψ(0)
O

⟩∣∣∣2 (18)

× Ω2

~−2 (EO − EP )2 + (ΓO + ΓP )2
,

where
∣∣∣⟨C ∣∣∣Ψ(0)

O

⟩∣∣∣2 =
∣∣√2

(
eiφr − e−iφp

)
sin θ + 2q cos θ

∣∣2.
It is noticeable that the result depends on the polariza-

tion state of the ortho-state compared with the direction
n of the effective magnetic field B⊥ = nB⊥ while it is
not the case for a neutron for instance [14] 3. Anyway,
in most experiments, there is no way for the particles
to be produced with a fixed polarization. In this case,∣∣∣⟨C ∣∣∣Ψ(0)

O

⟩∣∣∣2 = 4/3 for unpolarized particles. From Eq.
18 we can deduce the whole decay rate Γ:

Γ = Γ (o-pp → visible decay) + Γ (o-pp → invisible) ,
(19)

with

Γ (o-pp → visible decay) = ΓO

(
1 − ΓO

ΓP
R
)
, (20)

and

Γ (o-pp → invisible) = ΓP R, (21)

and where

R =
∣∣∣⟨C ∣∣∣Ψ(0)

O

⟩∣∣∣2 Ω2

~−2 (EO − EP )2 + (ΓO + ΓP )2
. (22)

Thus, the invisible decay rate (see Eq. 21) is simply the
para-state decay rate (since o-pp converts into p-pp in the
hidden brane) weighted by R, the probability of swap-
ping from our visible braneworld to the hidden brane.

3 For a neutron with a given polarization state such that |u⟩ =
α |↑⟩ + β |↓⟩ (with |α|2 + |β|2 = 1), considering the off-diagonal
terms of Hc proportional to σ ·n, we get σ ·n |u⟩ = α′ |↑⟩+β′ |↓⟩.
Although (α′, β′) ̸= (α, β) in most cases (i.e. the polarization is
modified when the neutron leaps into the hidden brane), one
gets: |α′|2 + |β′|2 = 1 such that the swapping amplitude does
not depend on the polarization state of the neutron. It is not
longer the case of the pp states here under consideration due to
the structure of their wave functions.
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By contrast, Eq. 20 shows that o-pp decay products –
recorded in our visible world – must occur at a lower
rate since some particles are lost through decays in the
hidden brane. At last, Eq. 21 shows that some decays
must occur as invisible ones leading to an apparent loss
of energy which is more easily detectable than a change
of the visible o-pp decay rate.

Finally, we simply deduce the branching ratio for the
invisible decay of unpolarized particles:

Br(o-pp → invisible) = 4
3

ΓP

ΓO
(23)

× Ω2

~−2 (EO − EP )2 + (ΓO + ΓP )2

As a remark, similar calculations can be done in order
to obtain the branching ratio Br(p-pp →invisible) for the
invisible decay of para-states. As a result, one then gets:

Br(p-pp → invisible)
Br(o-pp → invisible)

= 3
(

ΓO

ΓP

)2

, (24)

such that Br(p-pp →invisible) is up to 6 (respec-
tively 5 and 4) orders of magnitude smaller than Br(o-
pp →invisible) for positronium (respectively charmonium
and bottonium), thus justifying to focus only on invisible
decays of ortho-states.

We are now investigating the ortho-positronium (o-
Ps) (respectively the J/ψ charmonium and the Υ bot-
tonium) invisible decay through its conversion into para-
positronium (p-Ps) (respectively ηc charmonium and ηb

bottonium) in the hidden brane.
Equation 23 applies by using the relevant parameters

(see table I). Here the difference EO − EP includes the
following contributions:

EO − EP = (mO −mP ) c2 +mOV+ −mPV− (25)

where mO and mP are the masses of the ortho-state
and of the para-state respectively, and V± are the
gravitational potentials in each brane. Doing this, we
consider the following hypotheses:

(i) Null electric dipole moment hypothesis
In our previous works [12, 16, 17], it has been under-

lined that the interaction between the magnetic vector
potential and the charge of a particle precludes the par-
ticle swapping between branes. As a consequence, since
we consider electron/positon pairs or quark/antiquark
pairs, we must consider these pairs as strictly charge-
less and without charge structure. Let Ebind be the
typical binding energy of the fermion/antifermion pair.
Then, the time ∆t ∼ ~/Ebind during which quantum
fluctuations allow for an instantaneous electric dipole
moment (EDM) must be smaller than the period
T ∼ ~/ (EO − EP ) of the Rabi oscillation during which
the pp state oscillates between each brane. This allows
a time averaged EDM equal to zero. That means that
EO − EP ≪ Ebind must be verified. This condition is

verified in quarkonium where the mass-energy difference
between the ortho and para states dominates (i.e.
EO − EP ∼ (mO −mP ) c2). Indeed, Ebind ≈ 1 GeV and
≈ 0.7 GeV while EO −EP ≈ 61 MeV and ≈ 114 MeV for
the bottonium and the charmonium respectively [28]. By
contrast, for the positronium the gravitational potential
is now dominant (i.e. EO − EP ∼ mP s (V+ − V−)) and
Ebind ≈ 6.8 eV [34]. Then, positronium is a relevant
probe if |V+ − V−| . 10−6c2. The consequence of this is
discussed later in this paper.

pp ~Ω p (or p) g

o-Ps < 6.4 × 10−4 eV e−/e+ < 1.1 × 10−8 m−1

J/ψ < 0.15 MeV c/c < 1.2 × 104 m−1

Υ < 0.10 MeV b/b < 4.8 × 104 m−1

n (udd) < 0.14 eV u or d < 2.4 × 10−3 m−1

TABLE II: Derived constraints on ~Ω for positronium and
quarkonium, and on the interbrane coupling constant g for
some Standard Model particles. The quark constituent
masses used are mb = 4730 MeV and mc = 1550 MeV [24–
28]. Neutron results are derived from previous experimental
results [15] and given for comparison.

(ii) Global gravitational potential hypothesis
The gravitational potential V± felt by the particles

incorporates many contributions. Some are local and
others are more global at a cosmological scale. Mat-
ter distribution can be considered as homogeneous
and isotropic at a cosmological scale. If the second
brane is similar to our own, then the difference of
the gravitational contributions of each brane vanishes
when considering large scale contributions only. As a
consequence, the difference of the gravitational contri-
butions of each brane just depends on fluctuations of
local mass distributions in each brane at various scales.
The first contribution comes from matter fluctuations
related to large-scale galactic superstructures [35, 36].
The amplitude of such fluctuations is characterized by
the well-known parameter σ8 [35, 36], which allows to
estimate the amplitude VC of the gravitational potential
at the level of large-scale superstructures [36]. Here we
get [36]: VC = (3/2)Ωm0

(
8 Mpc/H−1

0
)2

σ8 ≈ 10−5c2

(where Ωm0 is the present-day density parameter for
baryons and cold dark matter, and H0 the Hubble
constant). At a closer scale, Milky Way contributes
for VMW ≈ 5 × 10−7c2, while the Sun, the Earth, and
the Moon provide lower contributions of about 10−8c2,
7 × 10−10c2, and 10−13c2, respectively [14]. Considering
hidden branes similar to our own, or with a lower matter
content, VC should allow to define an upper constraint
on |V+ − V−| < 10−5c2.

(iii) Global magnetic vector potential hypothesis
The overall ambient astrophysical magnetic vector
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potential Aamb was previously discussed in the literature
in a different context [29–33]. Aamb is the sum of all
of the magnetic vector potential contributions related
to the magnetic fields of astrophysical objects (planets,
stars, galaxies, etc.) since B(r) = ∇ × A(r). At large
distances from sources (for instance, close to the Earth),
Aamb is almost uniform (i.e. ∇ × Aamb ≈ 0) and cannot
be cancelled out with magnetic shields [33]. As a rule
of thumb, A ≈ DB where D is the distance from the
astrophysical source and B is the typical field induced
by the object. The expected order of magnitude of Aamb

can be then roughly constrained. Galactic magnetic
field variations on local scales towards the Milky Way
core (Aamb ≈ 2 × 109 T m) are usually assumed [29–33].
By contrast, the Earth’s magnetic field leads to 200 T m
while the Sun contributes 10 T m [33]. By contrast, the
magnitude of intergalactic contributions are less clear
[14]). Then, for now Aamb can be fairly bounded by the
lower estimated value: Aamb = 109 T m.

FIG. 1: (Color online). Bounds on the brane energy scale MB

and on the interbrane distance d derived from each particle
kind: bottonium (yellow), charmonium (magenta), positron-
ium (cyan) and neutron (purple). Each domain on the left
of a colored band is excluded. Each colored band widens to
the right when sensitivity increases: up to the Planck scale for
neutron and positronium (Br(o-Ps → invisible) = 1.4×10−6),
up to Br(quarkonium → invisible) = 10−6 for quarkonia.

As a result, from table I and Eq. 23 we deduce the re-
sults shown in table II. Table II gives the upper bounds
for the coupling constants (~Ω or g) both for bound
states and some fundamental particles of the Standard
Model. From table II data and Eq. 1, we can now derive
lower bounds on the brane energy scale MB and upper
bounds on the interbrane distance d – for a SO(3, 1)-

broken M4 ×R1bulk – which are independent of the par-
ticle under consideration. The results are summarized
on Fig. 1. Each domain on the left of a colored band
is excluded: If matter disappearance can occur in the
present braneworld scenario, these values of (MB, d) are
not relevant. One notes that bounds are much poorer
for quarkonia than for positronium or neutron. For the
latter, it is noticeable that the constraints are just one or-
der of magnitude below the reduced Planck energy scale,
except if one accepts as possible a fine tuning of the dis-
tance d between 1 fm or 1 Å allowing for significantly low
values for MB (see Fig. 1). To be more quantitative, ta-
ble III (left column) gives the bounds of the brane energy
scale MB for each particle.

Particle MB Br(o-pp → invisible)

o-Ps > 1.2 × 1017 GeV 1.4 × 10−6

J/ψ > 1.0 × 1012 GeV 1.3 × 10−16

Υ > 2.4 × 1012 GeV 2.9 × 10−16

neutron > 2.5 × 1017 GeV

TABLE III: Left column: Various bounds on the brane en-
ergy scale MB derived from each particle kind for interbrane
distances below 0.5 fm. Right column: Expected branching
ratios for a brane energy scale at the reduced Planck energy
(2.43 × 1018 GeV).

Considering the same two-brane scenario and assuming
now that the brane energy scale is the reduced Planck en-
ergy scale, we can derive the expected branching ratio for
the positronium and quarkonia invisible decays (see right
column in table III), which need to be reached to observe
the phenomenon. While the expected branching ratio for
quarkonia is far beyond any current experimental skill,
it is not the case for positronium which could compete
with neutron to constrain braneworld scenarios [15–17].
In addition, in Fig. 1, each colored band widens to the
right when sensitivity increases: up to the Planck scale
for neutron and positronium (Br(o-Ps → invisible) =
1.4 × 10−6), up to Br(quarkonium → invisible) = 10−6

for quarkonia.
As a major result, pretty low-energy experiments – in-

volving positronium or neutron – appear then more suit-
able to probe the Planck scale than experiments needing
colliders to produce quarkonia states. Even for a brane
energy scale MB at the Planck energy, low-energy disap-
pearance phenomena can occur and could be observed in
future low-energy experiments while the Planck scale is
directly unreachable with colliders. However, to occur,
positronium oscillations imply that the gravitational po-
tentials in each brane must verify |V+ − V−| . 10−6c2,
i.e. a value one order of magnitude lower that the up-
per gravitational constraint mentioned above. As a re-
sult, positronium and neutron experiments are comple-
mentary as they could allow to discriminate between two
kinds of gravitational environment.
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