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ABSTRACT  

   In this paper, the specific primary production required (SPPR expressed as kg-NPP/kg-fish in wet 

weight) of more than 1700 marine species were calculated directly from 96 published food web models 

using the newly developed SPPR calculation framework. The relationship between SPPR and other 

ecological factors were then statistically analyzed. Among- and within-species variability of SPPR were 

found to be both explained by trophic level (TL), suggesting similar mechanisms underpinning both 

sources of variability. Among species, we found that harvesting species at higher mean trophic levels 

(MTL) increases the mean SPPR by a factor of 19 per 1 unit increase in MTL. Based on our empirical 

relationship, the mean SPPR of more than 9000 marine species were predicted and subsequently used 

to assess the primary production required (PPR) to support fisheries in five major fishing countries in 

Europe. The results indicated that conventional approach to estimating PPR, which neglects food web 

ecology, can underestimate PPR by up to a factor of 5. Within species, we found that harvesting 

populations occupying a higher TL leads to a higher SPPR. For example, the SPPR of Atlantic cod in the 

Celtic Sea (TL=4.75) was 5 times higher than in the Gilbert Bay (TL = 3.3). Our results, which are based on 

large amounts of field data, highlight the importance of properly accounting for ecological factors during 

the impact assessment of fisheries. 

Keyword: food web modeling, primary production required, linear regression model, trophic level, 

fishery’s impact  
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1. INTRODUCTION 

The annual average fish consumption per capita has doubled to 19.7 kg since the 1960s, accounting 

for 17% of the global population’s animal protein intake in 2013 (FAO, 2016b). Beside the beneficial 

amounts of protein, fish also provides humans with many lipids as well as many essential micronutrients 

(e.g., omega 3 long chain polyunsaturated fatty acids, vitamins D3, B12 and minerals calcium (Khalili 

Tilami and Sampels, 2018)). Globally, capture fisheries contribute about 56% to total fish production, of 

which marine fisheries account for approximately 88% (FAO, 2016b). Considerable amount of landed 

fishes, including: Peruvian anchovy, Atlantic herring, Blue whiting, Gulf menhaden, Antarctic krill, are 

reduced to fishmeal and fish oil which are important for livestock production as well as aquaculture 

systems (FAO, 2016b; Parker and Tyedmers, 2012b). Because of impacts of capture fishery on marine 

ecosystems (e.g., on the diversity, structure and functioning of benthic communities) various 

stakeholders (e.g., authorities, consumers) have raised concern about the sustainability of seafood 

production through capture fisheries (Henriksson et al., 2012; Jennings and Kaiser, 1998; Pelletier et al., 

2007). A main concern is the extraction of marine biotic resources through fishing. Indeed, fishing does 

not only extract the harvested biomass itself, but also indirectly extracts the amount of net primary 

production (NPP) synthesized by algae or seaweeds that is needed to sustain the harvested biomass. 

Many ecological footprint and life cycle assessment studies rely on the estimates of primary production 

required (PPR) to assess the ecological impacts of fishing (e.g., Borucke et al., 2013; Kautsky et al., 1997; 

Larsson et al., 1994; Papatryphon et al., 2004; Pauly and Christensen, 1995a; Pelletier and Tyedmers, 

2007; Pelletier et al., 2009; Swartz et al., 2010) making its correct estimation essential. PPR has been 

used either directly as a single indicator (e.g., Papatryphon et al. (2004) and Pauly and Christensen 

(1995b)), or in more complex integrative indices (e.g., Parker and Tyedmers (2012b) and Langlois et al. 

(2015)).  
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The PPR of the harvested biomass of a species can be calculated as the product of the specific primary 

production required (SPPR, expressed as kg-NPP/kg-harvested biomass in wet weight) and the total 

amount of harvested biomass. SPPR of a species is therefore the PPR of one unit of its harvested 

biomass. Using SPPR thus allows direct comparison of impact from the same amount of harvested 

biomass among species, and the calculation of total PPR from landing data. SPPR is currently calculated 

from a conventional approach assuming that (1) simple food chains with a constant efficiency of 

biomass transfer between trophic levels are an appropriate approximation of natural food webs, and (2) 

trophic level data listed in available databases are representative of the harvested fish (Borucke et al., 

2013; Papatryphon et al., 2004; Pauly and Christensen, 1995a; Pelletier and Tyedmers, 2007). Evidence 

indicates that both assumptions are invalid in many cases. This is because, in reality, fish species are 

embedded in complex food webs of which the structure can vary considerably in space and time thus 

potentially leading to different and more variable SPPR estimates than previously represented (Baird et 

al., 1998; De Laender et al., 2010). Luong et al. (2015) recently developed a new calculation framework 

that relies on food web flow matrices to estimate SPPR, as such allowing examination of the variability 

of SPPR with changes in spatial or temporal food web structure. This new calculation framework 

addresses a number of limitations of the previously developed food-web approach to SPPR calculation 

by (1) taking into account only the fraction of detritus originating from primary producers, thus reducing 

the overestimation of SPPR estimates, and (2) accounting for cycles in food webs when estimating SPPR. 

They have shown that SPPR estimates of some species from the new calculation framework were more 

than 100% higher than from the previously developed technique, and that the differences were largely 

dependent on degree of recycling.      

Parker and Tyedmers (2012b) point out that the magnitude of uncertainty in species-specific marine 

footprint assessments should be decreased by using species-specific and ecosystem-specific data. 

Obtaining site- and time-specific ecological data is time consuming and labor intensive. Therefore, a 
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better understanding of which factors are most important in determining SPPR will provide a simple 

alternative way for getting more reliable SPPR values. The objective of this paper is therefore to identify, 

for the first time, the ecological factors driving among- and within-species variability of SPPR at a global 

scale. Using our recently developed calculation framework, we first estimated SPPRs for species 

embedded in 96 food webs representing 75 local marine ecosystems spread across 5 continents. We 

then statistically tested which ecological factors best explain among- and within-species variability of 

SPPR. Next, we use available data on these ecological factors to extrapolate our results to food webs for 

which no detailed information is available and predict SPPRs of species whose ecological factors can be 

obtained from available databases. Finally, we compared PPR of 5 major European fishing countries 

(with most details of landing data) calculated using FAO catch data with SPPR estimated the results from 

our approach and the conventional one as an illustrative example. 

2. MATERIAL AND METHODS 

2.1. Food-web collection 

We found a list of more than 450 published food web models of which 184 models are freely 

downloadable in the Ecobase database (Colléter et al., 2015). These food webs were already 

constructed and solved by using the Ecopath with Ecosim (EwE) software which is the most widely used 

tool in marine food web modeling (Christensen and Pauly, 1992). Each compartment in a food web 

model can consist of a single species or many different species which share ecological characteristics 

(e.g., feeding behavior). From these 184 food web models, only 96 models in which the species 

composition (with scientific name) of all or some model compartments could be identified were 

retained for further analysis. These models also included at least one fishing fleet to represent the fished 

biomass flows. The locations of the marine ecosystems represented by these models are shown in the 

Supporting Information A (Figure S1).  
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These 96 food web models were downloaded and imported into the EwE software version 6.5. Matrices 

of consumption (material flows among model’s compartments), respiration, landing and discard (the 

amount of landing and discard from different fleets included in the model), and other production 

(immigration/emigration and changes in stock size) were extracted. These data were used to check the 

mass balance and then used to calculate the SPPR of the species in these food webs. We also obtained 

several ecological factors associated with these species (trophic level (TL - dimensionless), gross growth 

efficiency (PQ – dimensionless), specific ingestion rate (QB – year-1), specific production rate (PB – year-

1)), which could be used as potential explanatory variables for the prediction of SPPR.   

2.2. Specific primary production required (SPPR) calculation 

For each of the 96 retrieved food webs, we calculated the SPPR of every (group of) species, using the 

calculation framework proposed by Luong et al. (2015). More specifically, for each food web model, we 

obtained the biotic transaction matrix (Z=(zij)nxn), the production-normalized transaction matrix 

(A=(aij)nxn) from the consumption, landing, discard, and other production matrices. Each element zij and 

aij represents the biomass flow from the iith to the jth (group of) species and the amount of the ith (group 

of) species directly required to produce one unit of the jth (group of) species’ biomass, respectively. The 

production-normalized transaction matrix was formed by normalizing the elements of each column of Z 

by the production of the corresponding (group of) species to that column. The total requirement of 

biomass (directly and indirectly) from the ith (group of) species to produce one unit of the jth group of 

species’ biomass is represented by lij element of the production requirement matrix (L=(lij)nxn)), which is 

the inverse matrix of (I-A) where I is the identity matrix (matrix with 1s in the diagonal and 0s 

elsewhere). SPPRs for different (groups of) species in each food web models were then obtained from 

those rows of matrix L that correspond to primary producers. More details about how these matrices 

are derived are described in Luong et al. (2015).  
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2.3. Analyzing among and within species variability of SPPR 

From the set of SPPR values obtained from 96 food web models, we selected those species that 

occurred at least 10 times (107 species). This selection was based on the compromise between the 

number of the analyzed species (which should be enlarged as much as possible) and the sample size of 

each species for subsequent statistical analysis. The distribution of SPPR was very skewed so we applied 

a base-10 logarithmic transformation before proceeding further analysis. We made the correlation 

analysis for both average and original data. The results revealed that the relationships between 

log10(SPPR) and means of the ecological factors and log10(SPPR) and the ecological factors are likely to be 

linear. Therefore, we applied linear regression analysis to test which ecological factors (TL, QB, PB, PQ), 

explained among- and within-species variability of SPPRs as calculated from the food web models. This is 

an established approach and has been applied before by Chassot et al. (2010) to test for the effects of 

different ecological factors on the total PPR of large marine ecosystems. The amount of data (1726 data 

points for each of SPPR and ecological factors from 107 species) on which our analysis is based allows us 

to reliably use this linear regression to predict the SPPR of species not included in this analysis, but for 

which the relevant ecological factors are known. 

We developed two models: (1) one to analyze among-species variability of mean SPPRs (model 1), and 

(2) one to analyze within-species variability of SPPRs (model 2). In model 1, we analyzed the linear 

relationship of the spatio-temporal mean of the log10(SPPR) of 107 species (i.e. log10(SPPR), where SPPR is 

the geometric mean of SPPRs of a species) with the corresponding means of all ecological factors. In 

model 2, the linear relationship of log10(SPPR) and the ecological factors was analyzed using all data 

points of 107 selected species with species as a categorical explanatory variable. For both models, we 

used a stratified random selection (based on values of the response in model 1 and the names of the 

species in model 2) of 70% of the data for model fitting (training dataset) and used the remaining 30% 

for model validation.  
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Model selection and validation 

The most important ecological factors were selected using the Boruta and the cforest functions in the R 

packages Boruta and party, respectively (Hothorn et al., 2005; Kursa and Rudnicki, 2010; Strobl et al., 

2007; Strobl et al., 2008). We fitted the full model (containing all selected ecological factors from the 

previous step) to the training data and left out insignificant ecological factors (p-value > 0.05). We 

repeated this process until all ecological factors had statistically significant effects. We also checked for 

multi-collinearity (caused by correlations among the ecological factors) and eliminated the ecological 

factors with maximum variance inflation factors (VIF) until all VIFs were below 4 (Kabacoff, 2015). The 

selected ecological factors in this step were subsequently used to fit model 1 and 2. 

The final regression equation of model 1 can be written with the following form: 

     (      
)    ∑       ̅̅̅̅

 

   

 (Equation 1) 

Where  is the model intercept, i is linear regression coefficients which represent the effect of the 

mean of ecological factor i (    ̅̅̅̅   on log10(SPPRj) of the species j, and n is the number of the selected 

ecological factors. 

As opposed to model 1 where average data of species were used, model 2 utilized all individual 

observations of all 107 selected species. Because effects of the ecological factors (numerical explanatory 

variables) on log10(SPPR) can be dependent on species, we fitted model 2 using species as a categorical 

explanatory variable. One way to introduce the categorical explanatory variable to the model is by using 

dummy variables. To present a k-level categorical explanatory variable, we need k-1 dummy variables 

(each variable has two possible values of 0 or 1). Each new dummy variable was created that has a value 

of one for each observations of a given species and zero for all others. The species which is not 
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represented explicitly by a dummy variable (having zero values in all dummy variables) is called the 

reference species. The estimated coefficients of the other species in the model are compared to this 

reference species – in this case was Acadian redfish (Sebastes fasciatus). We made two versions of 

model 2. One version considered interactions of species and the other ecological factors (i.e., effect of 

ecological factors on SPPR is dependent on species) with the final regression equation written in the 

following form:  

     (     )  (     )  ∑(      )     

 

   

 (Equation 2) 

Another version of model 2 assumes that the effects of ecological factors on log10(SPPR) is independent 

of species, meaning that there is no interaction of species and the ecological factors on log10(SPPRj): 

     (     )  (     )  ∑       

 

   

 (Equation 3) 

where 0 and 0i represent the model intercept and the effect of the ecological pi on log10(SPPR) of the 

reference species; j and j represent the differences in the intercept and the effect of the ecological 

factor pi on log10(SPPR) of species j compared to those of Acadian redfish; n is the number of the 

ecological factors in the model. 

We evaluated the goodness of fit of the models with different ecological factors combinations based on 

the following criteria: R-squared, adjusted R-squared, Akaike information criterion (AIC), and Bayesian 

information model (BIC) (James et al., 2013). We also assessed the models’ predictive capacities using 

the root mean squared error (RMSE) which represents the average distance between the observed 

values and the model predictions (Kuhn and Johnson, 2013). Detailed explanations of these criteria and 

how to interpret them are listed in the Supporting Information A (Section 2.1). We selected the models 

that scored best on these criteria. In addition, if two models had similar goodness of fit and predictive 
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performance, we preferred the more parsimonious one (with the smaller number of ecological factors) 

(James et al., 2013). The residuals of the final models were diagnosed to see if all the underlying 

assumptions (homogeneity and normality of residuals) were satisfied. Data manipulation and model 

construction were done using R version 3.3.1 (R Development Core Team, 2016). 

2.4. Assessing the ecological impact of European fisheries 

The ecological factors of 9575 marine species were obtained from Fishbase (Froese and Pauly, 2000) and 

Sealifebase (Palomares and Pauly, 2017) database using the R package rfishbase (Boettiger et al., 2012). 

The SPPRs of these species were then calculated using model 1, and the conventional approach that 

represents food webs by food chains. This conventional approach proposed by Pauly and Christensen 

(1995b) calculates the PPR (kgC-NPP) for harvesting m kg biomass of a species: 

    
 

 
       (Equation 4) 

where 1/9 is the wet weight to carbon conversion ratio. 

The SPPR (kg-NPP/kg-fish in wet weight) is derived from above equation as follows: 

            (Equation 5) 

where TE is transfer efficiency and TL is trophic level. 

The conventional approach uses a 10% of TE, as obtained through averaging transfer efficiency across 48 

aquatic food web models (Pauly and Christensen, 1995a). However, here we decided to revise this 

estimate based on 146 available marine food web models in which transfer efficiencies can be 

calculated. TLs used in the conventional approach are also obtained from the Fishbase and Sealifebase 

databases which use stomach content analysis (SCA) to derive TL of a species. TLs can be alternatively 

estimated from the stable isotope analysis (SIA). SIA  is sometimes considered as the most rigorous 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 11 

method of estimating TL (Carscallen et al., 2012). However, this approach also has limitations (i.e. non-

representative isotopic baseline and trophic discrimination factor), which are often not acknowledged, 

leading to biased TL estimations (Layman  et al., 2012). Fishbase and Sealifebase are still the most 

reliable global databases providing the trophic level of marine species at comparable accuracy with 

those from SIA (Mancinelli et al., 2013). More information about TL estimating approaches can be found 

in the Supporting Information A (Section 3). 

Finally, we calculated and compared PPR to sustain fisheries in 5 major fishing countries in Europe (i.e. 

Norway, Spain, Denmark, UK, and Iceland), using FAO catch data (FAO, 2016a) and SPPR estimates from 

our current analysis and the conventional approach. 

3. RESULTS AND DISCUSSION 

3.1. Worldwide estimation of specific primary production required (SPPR) 

We obtained the first worldwide estimation of SPPRs of more than 1700 marine species by coupling 

our new calculation framework with 96 published food web models from 75 local marine ecosystems 

spread across 5 continents. Some species can occur in more than one marine food web and at different 

points in time, such that we could test which ecological factors explained among- and within-species 

variability of SPPR.  

SPPR varied considerably among and within 107 selected species (Figure 1). The species-specific 

geometric mean of SPPR varies up to 3 orders of magnitude among species, while within-species SPPR 

variability (the ratio of max to min SPPR) ranged from 3 (Round scad – Decapterus punctatus) to nearly 

1000 (Swordfish – Xiphias gladius). 
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Figure 1. The log10-transformed specific primary production required (SPPR) for the 107 most occurring 

species. Boxplots denote extremes (minima and maxima). Bars denote first quartiles, medians, and 

thirds quartiles. Red dots represent the logarithm with base 10 of geometric means of the SPPRs. 

Species are sorted from low (left) to high mean trophic level (right).  

3.2. Among-species variation of mean SPPR 

We found that the among-species variability of SPPR is explained best by two ecological factors: the 

mean trophic level and the mean growth efficiency (details on variable screening and model selection 

are available in the Supporting Information A – Section 2.2). More specifically, the logarithm of the 

geometric mean SPPR (log10(πSPPR)) is positively and negatively correlated with mean trophic level and 

mean growth efficiency, respectively. This result makes sense from an ecological point of view, as 

species occupying higher trophic levels or growing less efficiently tend to require more primary 

production for biomass production, and thus having a higher SPPR. The model with two explanatory 

variables i.e., mean growth efficiency and mean trophic level, explained 79% of the total among-species 
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variability (R2=0.79), while the model with mean trophic level alone already explained 77% of the total 

variability. The effects of mean trophic level on log10(πSPPR) (estimated coefficient = 1.24) was not 

impacted by excluding the mean growth efficiency (estimated coefficient = 1.28). The residual standard 

errors of two models are 0.27 and 0.28, respectively. In addition, these two models only differed 

marginally in model fit and predictive performance (Supporting Information A, Table S2). We therefore 

retained the simplest model (the mean trophic level as the sole predictor) (Figure 2). Model assumptions 

(normality and equal variance of residuals) were verified and the details can be found in the Supporting 

Information A (Figure S3). Overall, these results imply that a difference of 1 unit in mean trophic level 

between any two given species leads to an ecological impact that is 19 times higher when harvesting the 

species at the higher trophic level.  
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Figure 2. Comparison of mean SPPRs estimation using newly derived linear regression equation 

(log10(πSPPR) = -1.77 + 1.28*mean trophic level; solid black line) and the conventional approach (assuming 

a mean TE of 11.9%; red line). The black dashed lines represent the 95% prediction interval of the 

prediction using the newly derived linear regression equation; the red dashed line represent the most 

likely range of SPPR calculated from conventional approach (95% of realized transfer efficiency in 146 

marine food web models are in between 1.7 and 26.7%). 

3.3. Within-species variation of SPPR 

SPPR varied substantially within species (Figure 1) along with the ecological factors (Supporting 

Information A, Figure S4-S7). As such, finding which ecological factors explain this variability of SPPR is 

needed to predict the SPPR of a species in a given food web at a certain time. We found that this 

variability is best explained by the trophic level (positive effect) and the growth efficiency (negative 

effect). Including more ecological factors did not improve the fit and predictive capacity of the model 

(Supporting Information A, Table S3). Details on variable screening and model selection can be found in 

the Supporting Information A (Section 2.3). The effects of trophic level and growth efficiency were not 

species-specific, i.e. the two ecological factors affected SPPR equally for all species (Supporting 

Information A, Table S4). Furthermore, the linear regression model with two ecological factors (trophic 

level and growth efficiency) only marginally improved model fit and predictive capacity compared to the 

model with trophic level as the sole predictor. As a result, the simpler model was retained (Supporting 

Information A, Figure S9). All details on validation of model assumptions are also provided in the 

Supporting Information A (Figure S11). Some deviation from normality were observed to the right hand 

side of the QQ plot; however, this is not a serious problem when the sample size is large (Zuur et al., 

2009). 
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Our results show that, when the trophic level of a species is increased by 1 unit, the SPPR will increase 

more than 3 times. Our regression model for within-species SPPR variability probably allows predicting 

SPPR of 107 most occurring species in a given ecosystem at a specific time using their trophic level. For 

example, Atlantic cod (Gadus morhua) has trophic level of 4.75 in the Celtic Sea, whereas it occupies the 

trophic level of 3.3 in the Gilbert Bay (Chassot et al., 2008; Wroblewski, 2006). This leads to a difference 

of a factor of 5 in the SPPR of these two Atlantic cod populations (1883 and 335 tonnes-NPP/tonnes-fish, 

respectively). However, one limitation of the current analysis so far is that the 96 food web models are 

mainly located in Africa, Europe and America (Supporting Information A, Figure S1); extrapolation to 

food webs in other continents with less available data should therefore be done with care.  

3.4. Assessing the ecological impact of European fisheries 

Using the obtained linear regression equation in model 1 (Figure 2) with mean trophic level data from 

two well-known databases, i.e., Fishbase and Sealifebase, we calculated the mean SPPR for a total of 

more than 7000 species (with mean trophic levels ranging from 2.6 to 4.2). Next, we used the 

conventional approach proposed by Pauly and Christensen (1995a) to estimate mean SPPRs of these 

species but using the mean transfer efficiency of 11.9% calculated from 146 marine food web models 

(95% of values lies in the range of 1.7 to 26.7%) (Supporting information A, Figure S15). We found that 

the conventional approach systematically predicts lower mean SPPRs compared to our new analysis. 

Differences between both methods were more pronounced with increasing mean trophic level and 

attained a factor of 4.4 at a mean trophic level of 4.2. However, the estimates from the conventional 

approach (with mean TE of 11.9%) lie within the 95% prediction interval of the estimations from our 

linear regression model. SPPR estimated from the conventional approach exhibits a wide range of 

variation due to the large variability in transfer efficiency. The SPPR resulting from our novel analysis, 

however, are less variable (Figure 2). Extrapolations for species with mean trophic levels outside the 

range mentioned above (more than 2500 species) can be found in the Supporting information B.   
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Based on the landing data retrieved from FAO statistics (FAO, 2016a) and the mean SPPRs of different 

species derived from model 1, we estimated the PPR to support fisheries of five major fishing countries 

in Europe (Figure 3B). We found remarkable differences between countries despite comparable catches. 

Specifically, during the period of 2005-2014, the total catch of Denmark and Spain were not much 

different (Figure 3A) but the fisheries of Spain required 7-15 times more primary production than those 

of Denmark. Towards the end of the considered period, Spanish fisheries even required 1.2 times more 

primary production than those of Norway, despite the latter being the country with the highest catches 

in that same period. These results reflect the fact that Spain harvested species at the top of the food 

web (more than 60% of total catches were at trophic levels higher than 4.0), whereas Denmark 

harvested species at lower trophic levels (more than 50% of catches were below 3.1). Thus, one ton of 

harvested fish of Spain, on average, required more than 9.5 times primary production than the same 

amount of caught of Denmark. Using SPPRs estimated from the conventional approach does not change 

the differences between countries’ dependence on primary production but does estimate this 

dependence to be lower than when taking the food web structure into account (Figure 3C). The 

discrepancy in PPR requirements estimated by the two approaches is a function of the trophic levels of 

catch because the difference in estimated mean SPPRs increased with mean trophic levels as mentioned 

above.  
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Figure 3. Landings in 5 major fishing countries in Europe from 2005 to 2014 (panel A). The total primary 

production required (PPR) to support landings of these 5 countries, which were calculated by our newly 

derived linear regression equation (PPRnew, panel B), and by conventional approaches (PPRconventional, 

panel C). The black line represents the total values for all 5 countries. 

The primary production required to sustain fisheries calculated as above can subsequently be used to 

calculate the marine fishprint (the amount of area required to sustain fishery of a given country) by 

dividing PPR by total primary production (Borucke et al., 2013; de Leo et al., 2014). In previous studies 

(e.g., Essington et al., 2006; Pauly and Christensen, 1995a) and our assessment, the mean trophic levels 

of the species were obtained from databases (e.g., Fishbase and SeaLifeBase) and were assumed 

invariant across individual size, time, and location. Consequently, the changes in PPR of a given country 

over time or differences in PPR among countries only reflect the changes or differences in the number of 

landings and the species composition of catches. They do not account for potentially large trophic level 

variability associated with food web dynamics and ontogenetic changes of populations (Branch et al., 
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2010; Chassot et al., 2008). This variability of trophic level can be accounted for by using spatio-temporal 

specific SPPR estimates of 107 species in Model 2. More specifically, SPPR of these species in a given 

ecosystem at a specific time can be calculated if specific value of their trophic level available rather than 

depending on average value from database. 

3.5. Implications and future perspective 

SPPR of a species cannot be directly measured in the field, and can only be estimated using food web 

modeling. Our current analysis is the first one using the large amount of data from published food web 

models with an advanced calculation framework to estimate SPPR of more than 1700 species globally 

and then statistically test which ecological factors are important in explaining variability of SPPR. Our 

results indicate that among- and within-species variability of SPPR were both explained by trophic level 

(TL), suggesting both are driven by similar mechanisms. Such mechanisms may be linked to the 

inefficient energy/material transfer in food webs.  

One limitation of our current analysis is the choice of the species included in the statistical analysis 

following the worldwide estimation of SPPRs. The criteria of 10 times occurrence of a species in all 

studied food web models we made was arbitrary represented a compromise regarding the coverage of 

the analyzed species and the sample size for statistical analysis, but was based on the data availability. In 

this study, we could utilize just 96 out of 184 downloadable Ecopath food web models available in 

Ecobase database due to the lack of details in the species composition in the other food web models. As 

a result, 107 species were considered in our analysis and the prediction of the spatio-temporal specific 

SPPRs from trophic level (model 2) is only available for these species. However, these 107 species 

represent the most fished species in many countries, e.g., they accounted for more than 70% of total 

landings in the United Kingdoms and Iceland in the period from 2005 to 2014. The relationship between 

SPPR and trophic level might also be dependent on the ecosystem types from which it was harvested. 
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However, this dependency was not analyzed in our current study due to the lack of data and should be 

further investigated in the future when data are available. 

Concerning uncertainty in food web modelling, we recommend that both information on species 

composition and data uncertainty should be reported in future Ecopath food web modeling studies. In 

the present study, we could not account for the uncertainty of the food web flow matrices which were 

used to calculate the SPPRs. Methods are available to do so, if data availability permits. Recently, 

Guesnet et al. (2015) provided an easy-to-use routine that allows incorporating uncertainty of Ecopath 

models’ input data. In this way, the uncertainty in the input data (e.g., dietary, biomass, growth 

efficiency) can be propagated to the resulting food web flow matrices and thus SPPR estimates. 

Unfortunately, the uncertainty in the input data, often expressed as ‘pedigree scores’, was unavailable 

when carrying out the present study, making the assessment of uncertainty of estimated SPPRs 

impossible. Another approach which has been widely used in marine food web modeling is linear inverse 

modeling coupled with Markov chain Monte Carlo approach (LIM-MCMC) (Chaalali et al., 2015; Luong et 

al., 2014; Van Oevelen et al., 2010). LIM-MCMC allows for quantification of the uncertainty in both 

energy/material flows in the food webs and ecological indices (SPPR estimates are included) 

characterizing the structure and functioning of a food web (Kones et al., 2009). LIM-MCMC is a more 

relevant tool to represent the bacterial loop processes in ecosystem functioning (Chaalali et al., 2015). It 

therefore can lead to a better estimation of the SPPR. As a result, all these advancements can help to 

improve our SPPR estimates and regression models when more relevant data are available.  

This study provides SPPR values of more than 9000 marine species which will enhance further 

applications of SPPR metric and its derivations in different fields such as: human appropriation of net 

primary production (HANPP), ecological footprint (EF), and life cycle assessment (LCA). Human 

appropriation of net primary production (HANPP) is an integrated indicator quantifying the effects of 
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human-induced changes in productivity and harvest on ecological biomass flows. Haberl et al. (2014) 

defined HANPP as the difference between the NPP of the natural pristine ecosystems and the remaining 

NPP in the ecosystem after harvest under current conditions. As such, HANPP consists of harvested NPP 

(abbreviated as HANPPharv) and changes in NPP resulting from land use and land transformation 

(denoted as HANPPluc). Most of existing HANPP studies only consider the HANPPharv from terrestrial 

ecosystems without considering the harvested marine biomass (Haberl, 1997; Haberl et al., 2014; 

Rojstaczer et al., 2001). The future HANPP studies should consider also the HANPPharv from the marine 

ecosystems by using the SPPR calculated from our work and the landing data. This HANPPharv is then can 

be used to account for ecological footprint of biomass harvested from marine ecosystems. Currently, 

PPR calculated from landing data and global average values of species’ SPPR are still the most reliable 

and applicable in assessing the ecological impacts of biomass removal (e.g., Papatryphon et al., 2004; 

Parker and Tyedmers, 2012a; Vázquez-Rowe et al., 2012). Our new approach provides a more 

conservative assessment of PPR compared to the conventional one. As shown previously in the example, 

the conventional approach can underestimate the PPR of 5 major fishing countries in Europe by a factor 

of 3 to 5.  

In the field of life cycle assessment (LCA), PPR was first used by Papatryphon et al. (2004) and 

subsequently has been widely used to account for the impacts of fishery and aquaculture on marine 

ecosystems (Cashion et al., 2016). However, it was criticized as providing only the relative impacts in 

seafood LCA and not an absolute measure of sustainability. Recently, Langlois et al. (2014) used SPPR to 

derive the new metrics in order to assess the impact of biotic resource depletion at the ecosystem level 

(amount of net primary production removed in relation to the total net primary production of the 

ecosystem). They classified all marine species into 34 groups and used the conventional approach to 

calculate the average SPPRs of these groups of species. Our result helps to refine their methods by 

providing the large amount of SPPR values of marine species with the corresponding 95% prediction 
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intervals, which hence allows for uncertainty to be taken into account. Model 2 in this study also brings 

benefit to these kinds of study by allowing for the effect of changes in TL on SPPR of a specific species to 

be taken into account. SPPRs calculated from this study can also be used to improve the Cumulative 

exergy extraction from natural environment (CEENE) method.  

CEENE is a resource accounting method which has been extensively applied in LCA studies of 

aquaculture systems (Huysveld et al., 2013; Nhu et al., 2016). In this method, all material and energy 

flows are quantified in one single unit (joule of exergy), thus making the calculation of overall resource 

efficiency metric straightforward (Alvarenga et al., 2013; Dewulf et al., 2007; Huysveld et al., 2015; 

Taelman et al., 2014). The overall resource efficiency from life cycle perspective, called cumulative 

degree of perfection (CDP), can be defined as the ratio of exergy contained in the product to CEENE of 

its supply chain. The SPPR is a metric reflecting the overall efficiency of resource use (i.e., net primary 

production) in the natural systems. Converting the SPPR as calculated from our new empirical equation 

into exergy allows for coupling of the overall resource use efficiency of human-made production 

systems with natural ones. This integrated overall resource efficiency metric will provide a more 

comprehensive picture of resource use efficiency and should be investigated in the future LCA of 

fisheries and aquaculture. 

4. CONCLUSION 

In this study, SPPRs of more than 1700 species were directly calculated based on food web flow matrices 

obtained from 96 food web models using the advanced SPPR calculation framework. The relationship 

between mean SPPR and mean trophic level were then derived statistically for the first time. Mean SPPR 

of more than 9000 marine species were inferred using the mean trophic level retrieved from Fishbase 

and Seabase life databases (Froese and Pauly, 2000; Palomares and Pauly, 2017). The results from this 

study can be used to enhance the future application of primary production required (PPR) in ecological 
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footprint and life cycle assessment studies. The PPRs of fishery in five major European fishing countries 

were calculated and compared with the results from the conventional approach.  The results indicate 

that the conventional approach underestimates PPRs in the five countries by up to a factor of 5. 

Therefore, our new approach gives a more conservative assessment of marine biotic resource use. 
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Highlights 
 

 Specific primary production required (SPPR) were calculated for more than 1700 species  
 Trophic level is the most important ecological factor determining species’s SPPR. 
 Mean SPPR increases 19 times when mean trophic level increases by 1 unit 
 Biotic resource use for fishery of 5 major European fishing countries were calculated 
 New approach gives the result up to 5 times higher than conventional one. 
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