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Abstract  21 

Current chemical risk assessment approaches rely on a standard suite of test species to assess 22 

toxicity to environmental species. Assessment factors are used to extrapolate from single 23 

species to communities and ecosystem effects. This approach is pragmatic, but lacks 24 

resolution in biological and environmental parameters. Novel modelling approaches can help 25 

improve the biological resolution of assessments by using mechanistic information to identify 26 

priority species and priority regions that are potentially most impacted by chemical stressors. 27 

In this study we developed predictive sensitivity models by combining species-specific 28 

information on acute chemical sensitivity (LC50 and EC50), traits, and taxonomic 29 

relatedness. These models were applied at two spatial scales to reveal spatial differences in 30 

the sensitivity of species assemblages towards two chemical modes of action (MOA): narcosis 31 

and acetylcholinesterase (AChE) inhibition. We found that on a relative scale, 46% and 33% 32 

of European species were ranked as more sensitive towards narcosis and AChE inhibition, 33 

respectively. These more sensitive species were distributed with higher occurrences in the 34 

south and north-eastern regions, reflecting known continental patterns of endemic 35 

macroinvertebrate biodiversity. We found contradicting sensitivity patterns depending on the 36 

MOA for UK scenarios, with more species displaying relative sensitivity to narcotic MOA in 37 

north and north-western regions, and more species with relative sensitivity to AChE inhibition 38 

MOA in south and south-western regions. Overall, we identified hotspots of species sensitive 39 

to chemical stressors at two spatial scales, and discuss data gaps and crucial technological 40 

advances required for the successful application of the proposed methodology to invertebrate 41 

scenarios, which remain underrepresented in global conservation priorities.  42 
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1. Introduction 43 

The scientific community is rapidly developing new ecological models to increase realism in 44 

environmental risk assessment (ERA, e.g. De Laender, Morselli, Baveco, Van den Brink, & 45 

Di Guardo, 2015; Windsor, Ormerod, & Tyler, 2018). However, what so far has remained 46 

unclear is which organisms need to be modelled. Common standard test species are usually 47 

not representative of all species present in ecosystems with regards to their sensitivity to 48 

stressors (Nagai, 2016). Indeed, it has already been argued for over 30 years that there is not a 49 

single species or a specific group of species which is always the most sensitive (all the time, 50 

everywhere, and towards every compound). This has been coined the ‘myth of the most 51 

sensitive species’ (Cairns, 1986). However, since in reality both compound multiplicity as 52 

well as species diversity occur simultaneously, it is not feasible to acquire all possible 53 

sensitivity data with laboratory toxicity testing. Therefore, there is a need to develop models 54 

that can help identify priority species, which are species that are likely to be intrinsically most 55 

sensitive to chemical stressors.  56 

Several studies have tried to determine which species are intrinsically most sensitive to 57 

chemical stressors by using species traits, and were able to explain up to 87 percent of the 58 

variation in species sensitivity using only four traits (Rico & Van den Brink, 2015; Rubach et 59 

al., 2012; Rubach, Baird, & Van den Brink, 2010; van den Berg et al., 2019). A large 60 

advantage of using traits-based approaches is that they add mechanistic understanding of the 61 

sensitivity process by describing characteristics that make a species more or less sensitive 62 

towards chemical stressors. This largely reduces the chances of overfitting models to the 63 

training data (Johnson & Omland, 2004). In addition to that, describing aquatic communities 64 

in terms of their biological traits increases the generality of such characterizations and their 65 

subsequent transferability between regions (Van den Brink et al., 2011). Also, correlations 66 
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between species traits and species sensitivity might exist, potentially resulting in unexpected 67 

effects at the community level (Baert, De Laender, & Janssen, 2017). 68 

Other studies (Malaj, Guénard, Schäfer, & Van der Ohe, 2016) concerned with determining 69 

which species were most sensitive to chemical stressors, combined phylogenetic information 70 

with chemical properties. They were to a great extent (R2 of ~0.8) capable of predicting 71 

species sensitivity to pesticides (Guénard, von der Ohe, Walker, Lek, & Legendre, 2014) and 72 

heavy metals (Malaj et al., 2016). Furthermore, some studies have demonstrated that indeed 73 

traits and phylogeny (or other measures of relatedness between species) both explain an 74 

unique part of the sensitivity process (Pilière et al., 2016; Poteat, Jacobus, & Buchwalter, 75 

2015). However, phylogenetic approaches do not unravel any concrete mechanisms of 76 

sensitivity, and are therefore more susceptible to overfitting on the training data. For this 77 

reason, we think that a combination of both traits and phylogenetic information has the most 78 

potential for identifying priority species at a large spatial scale.  79 

We envision these priority species to, in the future, become part of environmental scenarios, a 80 

simplified (model) representation of exposed aquatic ecosystems which provides a sufficient 81 

amount of ecological realism, enabling us to conduct an appropriate ERA (Rico, Van den 82 

Brink, Gylstra, Focks, & Brock, 2016). There are clear benefits associated with the 83 

development of scenarios for use in risk assessment, the most important ones being reduction 84 

of animal tests, integration of exposure and effect assessments, and increased realism with 85 

respect to spatial-temporal dimensions and species biodiversity (Rohr, Salice, & Nisbet, 86 

2016). However, for obtaining more realism in respect to spatial-temporal dimensions and 87 

biodiversity, we require not only the identification of priority species, but also the spatial-88 

temporal dimensions at which these species occur. Therefore, after identifying priority 89 

species, looking into the distribution patterns of these species can help to identify priority 90 

regions, that is, regions where these priority species are more abundant. These regions can 91 
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assist in delivering realistic ranges of important landscape parameters (e.g. temperature, 92 

discharge, alkalinity) as input for environmental scenarios, enabling more realistic landscape 93 

level ERA (Franco et al., 2016; Rico et al., 2016). Additionally, these regions can become the 94 

focus of conservation and management efforts. 95 

The two main objectives of the present study therefore are i) to construct models predicting 96 

the sensitivity of aquatic macroinvertebrates based on mode of action (MOA), traits and 97 

relatedness, and ii) to reveal spatial differences in the sensitivity of species composition 98 

assemblages by applying the developed models at the continental and national scale. The 99 

community composition of European freshwater ecoregions (ERs, based on Illies, 1978) is 100 

used for the application of our models at the continental scale, while the reference database of 101 

the RIVPACS (River InVertebrate Prediction And Classification System) tool is used for 102 

river-type scale within the United Kingdom (Wright, 1994). We conduct the first trait-based 103 

chemical sensitivity assessment of freshwater macroinvertebrate assemblages, extensively test 104 

the influence of spatial scale on sensitivity patterns, and provide key recommendations for its 105 

robust application in data-poor taxa. 106 

2. Methods 107 

The whole methodology of this study has been developed in R, a free software environment 108 

(R Core Team, 2018). The R project, along with all scripts and data necessary to reproduce 109 

the models and figures performed in this study are available at Figshare 110 

(10.6084/m9.figshare.11294450) (van den Berg, 2019). 111 

2.1. Modelling approach 112 

We extracted toxicological data from Van den Berg et al. (2019; original data from ECOTOX 113 

(USEPA, 2017)), which comprised Mode Specific Sensitivity (MSS) values for 36 and 32 114 

macroinvertebrate genera towards baseline (narcosis) and AChE inhibiting toxicants 115 

https://doi.org/10.6084/m9.figshare.11294450
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respectively. Briefly, the MSS value represents the average relative sensitivity of each species 116 

to a group of chemicals with the same MOA (original MOA classification from Barron, 117 

Lilavois, & Martin, 2015), where an MSS value below zero indicates that the species is more 118 

sensitive than average, and an MSS value above zero indicates that the species is less 119 

sensitive than average. The MOAs narcosis and AChE inhibition were selected for this study, 120 

because they were the most data rich (van den Berg et al., 2019). Narcosis, also called 121 

baseline toxicity, is found toxic at similar internal concentration across all organisms (Escher 122 

& Hermens, 2002; Wezel & Opperhuizen, 1995). Therefore, differences in sensitivity for this 123 

MOA are expected to be small, equally distributed across taxonomic groups, and mainly 124 

explained by traits related to toxicokinetics (i.e. uptake, biotransformation, and elimination). 125 

AChE inhibition is a more specific MOA, and therefore shows large differences in effect 126 

concentrations depending on taxonomic group (van den Berg et al., 2019). For this MOA we, 127 

therefore, expect a stronger phylogenetic signal. To justify a separate analysis for the two 128 

MOAs, we made a correlation plot of the measured MSS values of species that were tested on 129 

both MOAs (Figure A.7). The lack of a significant relationship between species sensitivity 130 

towards the two MOAs indicates that sensitivity towards them is independent. We therefore 131 

chose to perform a separate analysis for both MOAs in this study. 132 

The dataset from Van den Berg et al. (2019) also contained data on genus name, unique 133 

identifier (UID from the NCBI database, Benson, Karsch-Mizrachi, Lipman, Ostell, & Sayers, 134 

2009; Sayers et al., 2009), and traits (original data from Tachet, Richoux, Bournaud, & 135 

Usseglio-Polatera, 2000; Usseglio‐Polatera, Bournaud, Richoux, & Tachet, 2000). In this 136 

study, we added relatedness to this dataset by constructing a taxonomic tree, since detailed 137 

phylogenetic data was still largely unavailable or incoherent for most freshwater 138 

macroinvertebrates (we looked, for instance, in Genbank, Benson et al., 2009), and Guénard 139 

and Von der Ohe et al. (2014) have provided sufficient proof that taxonomic relatedness 140 
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explains around the same amount of variation in species sensitivity as phylogenetic data when 141 

a wide taxonomic range is taken into consideration. This taxonomic tree is subsequently 142 

converted to Phylogenetic Eigenvector Maps (PEMs), from which species scores are extracted 143 

which subsequently serve as predictors of relatedness in model construction (Griffith & Peres-144 

Neto, 2006; Guénard, Legendre, & Peres‐Neto, 2013). 145 

2.1.1. Constructing the taxonomic tree.  146 

We constructed the taxonomic tree by extracting taxonomic data from the NCBI (National 147 

Centre for Biotechnology Information) database (Benson et al., 2009; Sayers et al., 2009), 148 

followed by applying the class2tree function from the taxize package in R (version 0.9.3, 149 

Chamberlain & Szöcs, 2013). Both the model species (for which we had sensitivity data 150 

available) and the target species (whose sensitivity we wanted to predict) were included in the 151 

tree. The simultaneous incorporation of both model and target species was necessary, because 152 

the PEM would change if the large number of target species would be added to the tree at a 153 

later point.  154 

2.1.2. Phylogenetic eigenvector maps.  155 

As descriptors of the taxonomic tree, phylogenetic eigenvectors were obtained from the PEM 156 

(see Guénard et al., 2013 for details). PEMs work on a similar basis as principal component 157 

analysis (PCA; Legendre & Legendre, 2012). Briefly, the eigenvectors of a PEM are obtained 158 

from a decomposition of the among-species covariance’s and represent a set of candidate 159 

patterns of taxonomic variation of the response variables (i.e. the sensitivities to different 160 

chemicals). As is the case for a traditional PCA, this decomposition results in n – 1 161 

eigenvectors (Legendre & Legendre, 2012), where in our analysis n was the number of model 162 

species. The calculation of a PEM is obtained from both the structure of the taxonomic tree 163 

and from the dynamics of the (in our case) sensitivity evolution. The dynamics of the 164 
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sensitivity evolution depends on the strength of a steepness parameter (parameter α; related to 165 

Pagels’ parameter κ (Pagel, 1999), where α = 1 – κ). This parameter represents the relative 166 

evolution rate of the sensitivity to the MOA, takes values between 0 (natural evolution) and 1 167 

(strong natural selection), and was in our study estimated from the known sensitivity of the 168 

model species. We constructed the PEMs with the MPSEM package (version 0.3-4, Guénard, 169 

2018; Guénard et al., 2013). 170 

2.1.3. Model construction.  171 

For the narcosis dataset, two leverage points were discovered during the modelling process 172 

(Figure A.1 and A.2). Since we doubted the validity of these points (they were exactly 173 

identical) and were unable to assess their validity (there was no data available on closely 174 

related species, and the reference was inaccessible), they were removed from the dataset, 175 

reducing the number of species for which toxicity data was available to 34. For the AChE 176 

inhibition dataset, only the 27 Arthropoda species present in the dataset were included in the 177 

analysis, because this MOA works in a more specific manner, making differences in MOA 178 

among different phyla more likely (Maltby, Blake, Brock, & Van den Brink, 2005). 179 

Eventually, 33 and 26 eigenvectors were included as taxonomic predictors for narcosis and 180 

AChE inhibition respectively (in the modelling process, taxonomic predictors were indicated 181 

with a ‘V’, see Figures A.3 and A.4 for examples of such predictors), and were added to the 182 

sensitivity and trait data. To reduce the number of predictors going into the final model 183 

building process (required due to memory limitations of the algorithm), an exhaustive search 184 

was performed using the regsubsets function from the leaps package (version 3.0, Lumley & 185 

Miller, 2017). From this, traits or phylogenetic eigenvectors that were least frequently 186 

included in the best 1% of the models, ordered according to the Bayesian Information 187 

Criterion (BIC), were removed from the analysis. Next, an exhaustive regression was 188 

performed between the remaining predictors and the available MSS values, allowing a 189 
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maximum of 4 predictors in the models. The best model was the model with the lowest AICc 190 

(Aikaike’s Information Criterion with a correction for small sample size, Johnson & Omland, 191 

2004). The modelling exercise was repeated using only traits-, and a combination of traits- 192 

and taxonomic- predictors. We did not consider taxonomy-only models, because we were 193 

primarily interested in obtaining more mechanistic understanding of the sensitivity process.  194 

2.2. Predicting unknown taxa 195 

The best model found for narcosis and the best model found for AChE inhibition were 196 

subsequently applied to the prediction of the sensitivity of species composition assemblages at 197 

two different spatial scales, continental and national. For the continental scale, the community 198 

composition of European freshwater ecoregions (ERs) was downloaded from 199 

https://www.freshwaterecology.info/ (Schmidt-Kloiber & Hering, 2015). Although we realize 200 

that these data do not exactly resemble species assemblage data, it was the only dataset 201 

currently available at this spatial scale. For the national scale, the reference database of the 202 

RIVPACS tool was downloaded from the website of the Centre for Ecology and Hydrology 203 

(https://www.ceh.ac.uk/services/rivpacs-reference-database). The RIVPAC database was 204 

selected, because it is the only easily accessible database that provides detailed community 205 

level data at this spatial scale. The database contains macroinvertebrate assemblages at 685 206 

reference sites, and was originally used to assess the ecological quality of UK rivers under the 207 

Water Framework Directive. To assess the ecological quality, the 685 sites have in an earlier 208 

study been grouped into 43 end groups based on biological and environmental variables 209 

(Davy-Bowker et al., 2008). For descriptive summary purposes, these 43 end-groups were 210 

furthermore combined into 7 higher level super-groups (Davy-Bowker et al., 2008, Table 1), 211 

such that these super-groups can be considered river-types at a relatively broad scale. In this 212 

study, we will use the super-groups to assess differences in species sensitivity on a river-type 213 

scale (Table 1).  214 

https://www.freshwaterecology.info/
https://www.ceh.ac.uk/services/rivpacs-reference-database
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The Tachet database was used as a source of traits data (Tachet et al., 2000; Usseglio‐Polatera 215 

et al., 2000). In order to make species-traits matching between the two community 216 

compositions (ERs and RIVPACS) and the Tachet database possible, the taxonomy of the 217 

three databases was aligned with the NCBI database using the taxize package (version 0.9.3, 218 

Chamberlain & Szöcs, 2013). Species from the ER and RIVPACS communities could then be 219 

matched with traits from the Tachet database using the UIDs from the NCBI database. This 220 

matching was done at genus level. Since the traits in the Tachet database are coded using a 221 

fuzzy coding approach (describing a species by its affinity to several trait modalities, see 222 

Chevenet, Dolédec, & Chessel, 1994 for more information), a transformation was required 223 

before this data could be used. Continuous traits were transformed using a weighted averaging 224 

of the different trait modalities, whilst for factorial traits the modality for which the species 225 

had the highest affinity was selected (as in van den Berg et al., 2019).  226 

At this point, taxonomic and trait data of all the target species (species for which we want to 227 

predict sensitivity) were complete, and PEM scores had to be added. To do this, the locations 228 

of the target species were extracted from the taxonomic tree, and subsequently transformed 229 

into PEM scores using the MPSEM package (version 0.3-4, Guénard, 2018; Guénard et al., 230 

2013). The PEM scores were then combined with the traits data, which allowed us to predict 231 

the sensitivity (MSS values) towards narcotic and AChE inhibiting chemicals using the two 232 

best models developed earlier.  233 

The sensitivity of each ER or river type was determined by calculating the percentage of 234 

species with an MSS value below 0, comparable to (Hering et al., 2009). For RIVPACS, this 235 

was initially done both on abundance and presence-absence data, on the seasons spring, 236 

summer and autumn separately, and averaged over the three seasons. Eventually, we focused 237 

on presence-absence data averaged over the three seasons only, due to higher uncertainty (e.g. 238 

due to sampling error and seasonality) associated with the other data subsets. The results were 239 
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projected on maps by colouring the ERs and river types according to the percentage of 240 

sensitivity species (MSS < 0) present. To construct the maps, we downloaded a map of the 241 

world from the Natural Earth website (https://www.naturalearthdata.com/downloads/10m-242 

cultural-vectors/). The shape files for the ERs were obtained from the European Environment 243 

Agency (https://www.eea.europa.eu/data-and-maps/data/ecoregions-for-rivers-and-lakes), and 244 

their projection was transformed to match the projection of the world map using the 245 

spTransform function form the sp package (version 1.3-1, Pebesma & Bivand, 2005). 246 

Coordinates of all the RIVPACS sites were available in the RIVPACS database.  247 

2.3. Statistics  248 

A Kruskal-Wallis Rank Sum Test was done to check if there were any statistically significant 249 

differences in sensitivity between ERs or RIVPAS groups. If this was true, multiple 250 

comparisons of all the groups were done with Kruskal Wallis using the kruskal function from 251 

the agricolae R package (version 1.2-8, Mendiburu, 2017). Fisher’s least significant 252 

difference criterion was used as a post-hoc test, and we used the Bonferroni correction as p-253 

adjustment method. 254 

  255 

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/
https://www.eea.europa.eu/data-and-maps/data/ecoregions-for-rivers-and-lakes
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Table 1. Division of the 685 reference sites into the 7 super-groups, along with a description 256 

of the dominant characteristics of the super-groups (taken from Davy-Bowker et al., 2008). 257 

RIVPACS 

super-group 

N 

sites 

Dominant characteristics 

1 64 All in Scotland, mostly islands 

2 148 Upland streams, mainly in Scotland and Northern England 

3 169 Intermediate rivers, South-East Scotland, Wales, North and South-West England 

4 48 Small steeper streams, within 13 km of source 

5 115 Intermediate size lowland streams, including chalk, South-East England 

6 84 Small lowland streams, including chalk, South-East England 

7 57 Larger, lowland streams, South-East England, larger, finer sediments 

 258 

3. Results 259 

3.1. Sensitivity models 260 

Incorporating taxonomic relatedness slightly improved the predictive capacity of models for 261 

invertebrate sensitivity towards narcotic and AChE inhibiting chemicals (higher adjusted R2), 262 

compared to models without taxonomy (Table 2). Interestingly, the trait ‘mode of respiration’ 263 

was incorporated in the taxonomy & traits model of narcosis (Figure A.3) and was also 264 

present in the traits-only model. For AChE inhibition, mode of respiration was included in the 265 

taxonomy & traits model (Figure A.4), but not in the traits-only model. Considering the 266 

taxonomic predictors, V14, V2 and V4 were present in both the taxonomy-only and the 267 

taxonomy & traits model for narcosis. For AChE inhibition, the predictors V7 and V3 were 268 

present in both the taxonomy-only and the taxonomy & traits model. 269 

  270 
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Table 2. Predictive models constructed for narcotic and AChE inhibiting chemicals, in- and 271 

excluding taxonomy. Taxonomic predictors are indicated with a V. See Figures A.3 and A.4 272 

for a visualization of the predictors incorporated in the taxonomy & traits models. 273 

MOA Type of model Model Adj. 

R2 

p - value 

Narcosis Taxonomy & 

traits 

MSS = -0.44 + 1.63 * V14 – 1.95 * V2 + 

0.32 * respiration mode + 1.27 * V4 

0.47 < 0.001 

 Taxonomy-

only 

MSS = 0.16 + 1.66 * V4 + 1.64 * V14 + 

1.16 * V5 – 1.14 * V2 

0.42 < 0.001 

 Traits-only MSS =  0.04 – 0.25 * dispersal mode + 0.39 

* respiration mode 

0.20 0.011 

 

AChE 

inhibition 

Taxonomy & 

traits 

MSS = 0.74 + 2.94 * V7 – 1.62 * V3 – 1.04 

* V13 – 0.29 * respiration mode 

0.62 < 0.001 

 Taxonomy-

only 

MSS = 0.19 + 2.61 *V7 + 0.9 * V10 – 0.88 

* V1 – 0.86 * V3 

0.61 < 0.001 

 Traits-only MSS =  6.93 – 0.84 * life cycle duration – 

1.13 * cycles per year– 0.17 * feeding mode 

– 0. 78 * temperature preferendum 

0.4 0.004 

 274 

Cross-validation of the model species resulted in the correct classification of 82% and 74% of 275 

the genera as sensitive or tolerant for respectively narcosis and AChE inhibiting chemicals 276 

(Figure 1). For narcosis, the Diptera Paratanytarsus and Mochlonyx, the Odonata 277 

Ophiogompus, the Ephemeroptera Siphlonurus, the Gastropoda Aplexa, and the Annelida 278 

Chaetogaster were misclassified (predicted on the wrong side of the zero line). For AChE 279 
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inhibition, incorrect predictions were made in only two taxonomic groups, the Diptera 280 

Glyptotendipes, Paratanytarsus, Tanytarsus, and the Odonata Anax, Crocothemis, 281 

Ophiogompus and Orthetrum.  282 

 283 

Figure 1. Observed MSS values (filled squares) and values predicted (unfilled circles) using 284 

traits and taxonomy according to the best models for (a) narcotic (b) and AChE inhibiting 285 

chemicals. 286 

3.2. European freshwater ecoregions 287 

3.2.1. Data availability. 288 

For the ER communities, taxonomic data was available for 97% of the species, and covered 289 

four crustacean orders (Amphipoda, Anostraca, Decopoda, and Isopoda), and six insect orders 290 

(Coleoptera, Diptera, Ephemeroptera, Lepidoptera, Plecoptera and Trichoptera). Figure A.5 291 

shows the taxonomic composition of all ERs at the order level. For 19% of these species there 292 

was no or incomplete trait data available, leading to the exclusion of these species from our 293 

analysis. Of the remaining species, only around 5% had toxicity data available. We therefore 294 
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had to predict the sensitivity of around 95% of the species for which no toxicity data was 295 

available using the taxonomy & traits models for narcosis and AChE inhibition.  296 

3.2.2. Taxonomic pattern.  297 

On the continental scale, 46 and 33% of the species were found sensitive (MSS < 0) towards 298 

narcotic and AChE inhibiting chemicals, respectively. For narcotic chemicals, 18 families 299 

contained only genera predicted as sensitive. Among these 18 families were all families 300 

belonging to the order of Isopoda (1 family), as well as a part of the Amphipoda (1 family), 301 

Plecoptera (6), and Trichoptera (10) families included in our study (Table A.1). Five families 302 

contained both sensitive and tolerant genera. Four of these families belonged to the order of 303 

the Trichoptera, and one to the order of Lepidoptera. The remaining 25 families were 304 

predicted to only contain tolerant genera (MSS > 0), and included all of the families 305 

belonging to the order of Anostraca (1 family), Decapoda (5), Diptera (1), and Ephemeroptera 306 

(12), as well as the remaining Amphipoda (2 families), Plecoptera (1), and Trichoptera (3) 307 

families included in this study (Table A.2).  308 

For AChE inhibiting chemicals, there was little variation in sensitivity of the genera 309 

belonging to the same family, and the whole family was either predicted to contain only 310 

sensitive (MSS < 0) or only tolerant (MSS > 0) genera. All genera belonging to the order of 311 

the Trichoptera and all genera belonging to the family of the Gammaridae were predicted as 312 

sensitive (Table A.3), while all other families included in this study were predicted to contain 313 

only tolerant genera (Table A.4).  314 

3.2.3. Geographical pattern.  315 

For both MOAs, we noticed that the South of Europe (e.g. ER 1) has the highest proportion of 316 

sensitive species (MSS < 0), whilst Iceland (ER 19) is the ecoregion containing the lowest 317 

proportion of sensitive species (Figure 2). Central Europe (e.g. ER 14) contains the lowest 318 
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percentages of sensitive species. ER 6 contains the largest percentage (57%) of species 319 

sensitive to narcotic chemicals, whilst ER 24 contains the largest percentage (45%) of species 320 

sensitive to AChE inhibiting chemicals.  321 

When comparing the assigned sensitivity class of each ER for the two MOAs, we find that 8 322 

of the 25 ERs were grouped into the same class for both MOAs (ER 1, 3, 5, 11, 18, 19, 21, 24, 323 

Figure A.5). ER 2, 4, and 6 -10 were classified one or two classes lower for sensitivity 324 

towards AChE inhibiting chemicals compared to sensitivity towards narcotic chemicals, 325 

whilst the opposite was true for ER 12 -17, 20, 22, 23, and 25 (Figure A.6).  326 
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 327 

Figure 2. Percentage of sensitive taxa (MSS < 0) to narcotic (a) and AChE inhibiting (b) chemicals in European freshwater ecoregions. The 328 

numbers refer to the ecoregion number (ER 1 through ER 25).329 
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3.3. RIVPACS river types 330 

3.3.1. Data availability.  331 

For the RIVPACS end-group communities, taxonomic data was available for 98% of the 332 

species. To ensure that model predictions did not trespass the taxonomic range on which the 333 

model was calibrated, any phylum that was not represented by one of the model species was 334 

removed from the analysis. Consequently, sensitivity towards narcotic chemicals was 335 

predicted for genera belonging to the phyla Annelida, Mollusca, and Arthropoda, whilst 336 

sensitivity towards AChE inhibiting chemicals was predicted only for Arthropoda. 337 

Coincidentally, in case of both datasets (Annelida, Mollusca, and Arthropoda, versus 338 

Arthropoda only), 34% of the species had no or incomplete traits data available, leading to the 339 

exclusions of these species from the analysis. Of the remaining species, less than 10% had 340 

toxicity data available. We therefore had to predict the sensitivity of 90% of the species for 341 

which no toxicity data was available using the taxonomy & traits models for narcosis and 342 

AChE inhibition. 343 

3.3.2. Taxonomic pattern.  344 

Within the UK, 38, and 25% of the species were found sensitive (MSS < 0) to narcotic and 345 

AChE inhibiting chemicals respectively. For narcotic chemicals, 37 families contained only 346 

genera predicted as sensitive, with an MSS value below zero. Among these 37 families were 347 

all families belonging to the order of Annelida (9 families), Isopoda (1), and Odonata (7), as 348 

well as a part of the Amphipoda (1), Plecoptera (6), Trichoptera (8), and Gastropoda (5) 349 

families included in our study (Table A.5). Four families contained both sensitive and tolerant 350 

genera, all of them belonging to the order of Trichoptera. The 49 remaining families were 351 

predicted to only contain tolerant genera, with an MSS value above zero. Among them were 352 

all families belonging to the order of Arguloida (1 family), Coleoptera (7), Decapoda (1), 353 
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Diptera (5), Ephemeroptera (9), Hemiptera (7), Lepidoptera (1), Megaloptera (1), Neuroptera 354 

(2), and Bivalvia (4), as well as the remaining Amphipoda (3), Plecoptera (1), Trichoptera (3), 355 

and Gastropoda (4) families (Table A.6). 356 

For AChE inhibiting chemicals, there was little variation in sensitivity of the genera 357 

belonging to the same family, and, as for the ER assemblages, the whole family was either 358 

predicted to only contain sensitive (MSS < 0) or tolerant (MSS > 0) genera. In total, 25 359 

families contained genera that were all predicted as sensitive. This encompassed all families 360 

belonging to the order of Trichoptera (15 families), as well as a part of the Amphipoda (1), 361 

Diptera (2), Neuroptera (1), and Odonata (6) families (Table A.7). The remaining 43 362 

Arthropod families were predicted to only contain tolerant species, and included all Arguloida 363 

(1 family), Coleoptera (7), Decapoda (1), Ephemeroptera (9), Hemiptera (7), Isopoda (1), 364 

Lepidoptera (1), Megaloptera (1), and Plectopera (7), as well as the rest of the Amphipoda (3), 365 

Diptera (3), Neuroptera (1), and Odonata (1) families (Table A.8). 366 

3.3.3. Geographical pattern.  367 

Considering the RIVPACS sites, geographical patterns show opposite results for the two 368 

MOAs (Figure 3). Regions containing more species sensitive towards narcotic chemicals were 369 

observed in the west and north of the UK, while regions containing more species sensitive 370 

towards AChE inhibiting chemicals were found in the south, south-west of the UK (Figure 3). 371 

RIVPACS sites located in small to intermediate lowland streams contained more sensitive 372 

species towards AChE inhibiting chemicals (super-groups 3, 4 and primarily 5, boxplots 373 

Figure 3), whilst for narcotic chemicals most sensitive species were found at sites located in 374 

upland rivers, mainly located in Scotland and Northern England (super-groups 1 and 2, 375 

boxplots Figure 3). For both MOAs, larger, lowland streams located in South-East England 376 

(super-group 7), contained the smallest percentage of sensitive species. 377 
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 378 

Figure 3. Map of the UK showing the percentage of sensitive taxa (MSS < 0) present at all 379 

RIVPACS sites, and boxplots of the percentage of sensitive species (MSS < 0) present in each 380 

RIVPACS super-group to narcotic and AChE inhibiting chemicals. Letters in boxplots 381 

indicate significant differences (p < 0.05). 382 

4. Discussion 383 

4.1. Traits and taxonomic predictor selection, and how this can be improved 384 

For both MOAs, mode of respiration was selected as an important trait for explaining species 385 

sensitivity (Table 2). Several studies have investigated the relationship between respiration 386 

and AChE inhibiting chemicals before (Buchwalter, Jenkins, & Curtis, 2002; Rico & Van den 387 

Brink, 2015; Rubach et al., 2012; Rubach et al., 2010; van den Berg et al., 2019), and have 388 

frequently found respiration important for determining species sensitivity, primarily due to an 389 
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influence of respiration mode on uptake rates. The relationship between narcosis and 390 

respiration has been studied less, and there is to our knowledge only one study available that 391 

performed an analysis with narcotic chemicals (van den Berg et al., 2019). The result of that 392 

study closely aligns with ours, undoubtedly due to the large overlap in the data included in 393 

both studies.  394 

We find that combining traits with taxonomic information results in models with increased 395 

predictive power, although only marginal (Table 2). Previous studies likewise emphasize the 396 

importance of complementing traits approaches with taxonomic approaches (Pilière et al., 397 

2016; Poff et al., 2006; Poteat et al., 2015). For example, Pilière and colleagues (2016) used 398 

boosted regression tree modelling to assess the environmental responses of single traits, 399 

orders and trait profile groups. They found that taxa belonging to the same trait profile group 400 

but to different orders showed different environmental responses. Similarly, they found that 401 

taxa belonging to the same order but to different trait profile groups showed different 402 

environmental responses (Pilière et al., 2016). This indicates that unique information related 403 

to the evolutionary history was captured by the order of a taxon, whilst another part was 404 

captured by the trait set of a taxon. We find a similar result in our study, where the taxonomy-405 

only model explaining sensitivity towards narcotic chemicals has an explanatory power of 406 

0.42. This explanatory power increases to 0.46 when traits are included (Table 2). For AChE 407 

inhibition we see a similar result, although there the increase is only from 0.61 to 0.62 (Table 408 

2). Although the increase of predictive power is only slight, the increase in mechanistic 409 

explanation is large, since the traits reveal mechanistic information regarding species 410 

sensitivity, and the taxonomic predictors point out taxa which show a different response to the 411 

chemical. The taxonomic predictors can thereby focus future research on finding the actual 412 

mechanisms that are different between these taxa. For this reason, both traits and taxonomy 413 

should be taken into consideration simultaneously for maximum benefit to risk assessment.  414 
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Although our models already show a good fit on the available data (Table 2), we anticipate 415 

that technological advances both in molecular and computational technologies will lead to an 416 

improvement of our models over time. Applying sophisticated molecular approaches can help 417 

with resolving the taxonomy of currently still problematic organism groups, for instance, by 418 

increasingly basing taxonomy on DNA markers, ideally replacing taxonomy completely by 419 

phylogenetics in due time (Hebert, Cywinska, Ball, & Dewaard, 2003). Additionally, basing 420 

phylogenetic trees on key target genes associated with Adverse Outcome Pathways (AOPs) 421 

might substantially improve phylogenetic predictive models for application in ecotoxicology 422 

(e.g. LaLone et al., 2013). Furthermore, our models could improve with increased computing 423 

power. Due to memory limitations and the structure of currently existing model selection 424 

algorithms, we had to restrict the number of predictors going into the model selection process. 425 

However, since we maintain strict rules to avoid overfitting (e.g. the use of AICc as a model 426 

selection criterion and the use of a multivariate approach for the taxonomic predictors), it 427 

would be possible to add more predictors to the model without increasing the chance of 428 

overfitting.  429 

4.2. Sensitivity patterns at European scale 430 

At the continental scale, we predict that around half of the species are sensitive (MSS < 0) 431 

towards narcotic chemicals. This matches our expectations, since MSS is a relative value, and 432 

there is not any taxonomic group known that is particularly sensitive towards narcotic 433 

compounds (Escher & Hermens, 2002). For AChE inhibiting chemicals we predict around 434 

one third of the arthropod species to be sensitive (MSS < 0). This is less than found in the 435 

sensitivity ranking of Rico and Van den Brink (2015), where on average 70% of the 436 

Arthropoda were found sensitive towards AChE inhibiting chemicals (organophosphates and 437 

carbamates). However, this difference likely originates from the fact that Rico and Van den 438 

Brink (2015) also included non-arthropod species. Since MSS is a relative value, and 439 
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arthropod species are the most sensitive group towards AChE inhibiting chemicals, including 440 

non-arthropod species will result in relatively more sensitive arthropod species.  441 

Considering both MOAs, our predictions show that river basins in central Europe contain 442 

fewer sensitive species than those situated in the south (Figure 2). We reason that this results 443 

from, on the one hand, chemical exposure patterns before and during the period that Illies 444 

recorded the community composition of the ERs (Illies, 1978), and on the other hand, from 445 

more ancient phylogeographical and ecological processes. Indeed, the pattern we find 446 

coincides with the emission pattern of multiple persistent organic contaminants commonly 447 

used in the 1960s, around the time when Illies was constructing his species database (Illies, 448 

1978). Chemicals like DDT (Dichloro-diphenyl-trichloroethane, Stemmler & Lammel, 2009), 449 

lindane (Prevedouros, MacLeod, Jones, & Sweetman, 2004), mercury (Pacyna, Pacyna, 450 

Steenhuisen, & Wilson, 2003), and PCDFs (polychlorinated dibenzofurans, Pacyna, Breivik, 451 

Münch, & Fudala, 2003) were more extensively used in central Europe, potentially reducing 452 

the occurrence of more sensitive species in those regions. However, we think that chemical 453 

exposure was not the main determinant for species composition, primarily because Moog and 454 

colleagues demonstrated that different ERs could always be differentiated from each other 455 

based on their community composition, even when heavily impacted by chemical stress 456 

(Moog, Schmidt-Kloiber, Ofenböck, & Gerritsen, 2004). Therefore, we argue that the main 457 

cause for the geographical pattern we see lies in the phylogeography of Europe, in which 458 

extreme climatic events wipe out more sensitive species, and mountainous regions 459 

consecutively serve as refugia and biodiversity hotspots (Rahbek, Borregaard, Antonelli, et 460 

al., 2019; Rahbek, Borregaard, Colwell, et al., 2019). During the last ice age, glaciers covered 461 

the majority of northern Europe, forcing most species towards refugia present in southern 462 

Europe or to ice free parts of high mountain areas (e.g. Schmitt & Varga, 2012). Indeed, there 463 

is a large overlap in biodiversity hotspots (Médail & Quézel, 1999; Mittermeier, Myers, 464 
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Thomsen, Da Fonseca, & Olivieri, 1998; Rahbek, Borregaard, Colwell, et al., 2019) or so-465 

called regions of large endemism (Deharveng et al., 2000), with regions containing the 466 

highest percentage of sensitive species (Figure 2). Then after the last ice age, species 467 

recolonized northern Europe from these southern refugia, which is confirmed by the fact that 468 

almost all species occurring in northern European are also present in central and/or southern 469 

Europe (Hering et al., 2009). The relatively higher sensitivity of ER 22 and 15 (especially 470 

towards AChE inhibiting chemicals, Figure 2) can be explained due to migration of more 471 

sensitive species from Siberian refugia, e.g. located in the Ural mountains (Bernard, Heiser, 472 

Hochkirch, & Schmitt, 2011; Schmitt & Varga, 2012). 473 

4.3. Sensitivity patterns at UK scale 474 

We see that certain biases in the underlying data are revealed in the sensitivity patterns we 475 

find for the UK. For instance, at a national scale, fewer species were considered sensitive 476 

compared to the continental scale, both towards narcotic and AChE inhibiting chemicals. We 477 

think this is caused by the interaction of two things. First, our models are biased in predicting 478 

entire families as sensitive or tolerant, in some cases resulting in entire phyla being predicted 479 

as sensitive or tolerant. Second, the RIVPACS communities are taxonomically uneven at 480 

genus level, the level we used to predict species sensitivity. Indeed, dipterans make up around 481 

40% of all genera present which all are predicted to be tolerant towards the two MOAs. In this 482 

case, the taxonomic unevenness at genus level specifically, has a large influence on the 483 

percentage of species sensitive at the national scale. When we compare the ER and RIVPACS 484 

results at the family level, results between the two datasets are more consistent. For instance, 485 

for the ER dataset we predict that 33, 59, and 86% of respectively Amphipoda, Trichoptera, 486 

and Plecoptera families were sensitive towards narcotic compounds. This was 25, 53, and 487 

86% of the families in the same orders in the RIVPACS dataset.  488 
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The geographical distribution of sensitive species throughout the United Kingdom is less 489 

pronounced than at a European level, although the opposing results of the RIPVAC super-490 

groups towards the two MOAs studied is striking. This contradictory result corresponds with 491 

the study of Van den Berg et al. (2019), where an inclusive database approach reveals large 492 

differences in species sensitivity depending on MOA. Their study shows that AChE and 493 

narcosis are on opposing ends of a dendrogram clustered on a matrix of species sensitivity 494 

towards six diverse MOAs, indicating that AChE and narcosis show the largest differences in 495 

species sensitivity among all MOAs tested. Additionally, we found alternative explanations 496 

that could explain the contradicting geographical patterns we found for the two MOAs. 497 

As an explanation for the geographical pattern for narcotic compounds, we find a large 498 

overlap between hotspots of sensitivity towards narcotic toxicants and conservation areas in 499 

the UK (e.g. with Special Areas of Conservation, Special Protection Areas, Sites of Special 500 

Scientific Interest, (Gaston et al., 2006)). It is known that protected areas serve as 501 

establishment centres, enabling the colonization of new regions by species that are shifting 502 

their geographical ranges (Hiley, Bradbury, Holling, & Thomas, 2013; Thomas et al., 2012). 503 

Although all RIVPACS sites are considered reference sites and have been selected because of 504 

low anthropogenic influence, our results show that whether or not these sites are included or 505 

in close proximity to a conservational area leads to a higher support of sensitive species, 506 

likely due to an increased landscape and habitat heterogeneity. 507 

As an explanation for the geographical pattern for AChE inhibiting compounds, the larger 508 

differences between the sensitivity of super-groups towards AChE inhibiting chemicals 509 

demonstrates that species sensitive towards AChE inhibition were more differentiated 510 

according to river type (i.e. the abiotic preferences of the species) than according to the 511 

availability of conservation areas. Additionally, the finding that the North to South pattern 512 

that we found at a European level was not noticeably present at the UK level is probably due 513 
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to smaller differences in environmental factors (e.g. temperature, precipitation, 514 

phylogeographic history) when considering the UK only, compared to when the whole of 515 

Europe is considered. 516 

4.4. Implications and outlook 517 

Our analysis indicates that not only the taxonomic resolution of available trait databases is 518 

crucial, also the resolution of the model is important. Additionally, we are confident that our 519 

models will improve in the near future, for instance by the replacement of the taxonomic tree 520 

with a phylogenetic tree based on validated biomarkers (for instance, as in Simões et al., 521 

2019). In that case, the successful application of our suggested approach is mainly limited by 522 

access to raw biological data (e.g. species abundance), which is currently still problematic 523 

because governmental agencies provide ecological status information based on general 524 

indices rather than species counts. Providing access to raw data, along with clear metrics on 525 

the quality of that data (e.g. meeting the criteria defined in Moermond, Kase, Korkaric, & 526 

Ågerstrand, 2016), would foster our understanding of the links between anthropogenic 527 

stressors and populations or communities. Subsequently combining this effect data with 528 

chemical concentration data would be the next logical step, and would require chemical 529 

concentration data on all chemicals that are being monitored, not only priority substances, to 530 

be made widely available by governmental agencies.  531 

The current analysis provides an important new chapter in the development of environmental 532 

scenarios that can be used for the environmental risk assessment of chemicals at larger 533 

geographical scales (Franco et al., 2016; Rico et al., 2016). Our work is the first attempt to 534 

apply sensitivity models on community assemblage data previously grouped according to both 535 

biotic and abiotic parameters (e.g. invertebrate community composition, water depth, 536 

alkalinity and temperature, Davy-Bowker et al., 2008). This combination of both biological 537 
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and spatial data is required to successfully characterize exposure, effects and recovery of 538 

aquatic non-target species under realistic worst-case conditions. Currently, mismatches exist 539 

between parameter values and spatial-temporal scales of ecological models used to predict 540 

potential effects of chemicals (Rico et al., 2016). Our approach contributes to solving this 541 

mismatch by simultaneously incorporating biological and environmental factors.  542 

In addition to this, the inclusion of traits in our models leads to an increased mechanistic 543 

understanding of cause-effect relationships, and allows for the application across wide 544 

biogeographical regions. This extrapolation enables, for instance, the comparison of 545 

ecological status across countries or regions that have so far remained unmonitored due to 546 

practical reasons (e.g. remote regions), for instance, by using species assemblages predicted 547 

by means of species distribution models (e.g. as in He et al., 2015). Also, patterns across wide 548 

geographical scales can easily be compared with other studies by means of geographical 549 

information systems (GIS) and simple additive models to reveal regions where multiple 550 

stressors might be causing an effect simultaneously (e.g. as in Figure A.6, and see Vaj, 551 

Barmaz, Sørensen, Spurgeon, & Vighi, 2011 for an example study). Take, for instance, the 552 

potential impact of climate change on aquatic insects. Hering et al. (2009) show that southern 553 

European regions contain the highest fraction of species sensitive towards climate change. 554 

Since this largely overlaps with the regions we found to be most sensitive towards chemical 555 

stressors (Figure 2), there might be an increased overall effect on aquatic communities due to 556 

an unexpected interaction between climate change and chemical stress. In the north-east of 557 

Europe, a similar amplification effect may occur due to an overlap in regions with a relatively 558 

high chemical sensitivity (Figure 2), and predicted increased potential of harmful arthropod 559 

pest invasions (Bacon, Aebi, Calanca, & Bacher, 2014).  560 

Finally, our study demonstrates that sensitivity towards chemical stressors is spatially 561 

variable, and that although entire regions can be considered relatively tolerant, there might 562 
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still be certain river reaches with a large percentage of sensitive species. Applied at relevant 563 

geographic scales, the methodology described in this study has demonstrated the potential to 564 

identify hotspots of sensitive species for given chemical classes. When applied to current risk 565 

assessment approaches, this will both increase the biological realism of assessments, and 566 

reduce the need for overly conservative assessment factors.  567 
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