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Abstract

Evolution equations on graphs describe the development over time of a
system on a domain made of nodes and links, starting from an initial state.
They apply to phenomena so diverse that they will likely never develop into a
single coherent field. However, a central question is to reveal the impact of the
structural properties of the graph on the trajectory of the system.

This thesis is an attempt to further uncover this interplay between structure
and dynamics, beyond the simple paradigm of static networks of moderate size.
Empirical evidence indeed shows that some networks possess inherent temporal
properties. On another note, massive graphs have become commonplace in
real-life and scientific research, and a range of graph-theoretical methods and
algorithms face scalability issues, demanding to consider graphs as if they were
continuous objects.

We study two classes of problems: linear diffusion and then nonlinear
variants, where local reactions combine with some form of diffusion through the
edges of the graph. We revisit well-known stability-instability properties for such
systems, and reveal significant effects due to the temporal nature of the graph.
As a side note, we examine the inclusion of delay in the diffusive process, as a
reasonable way to improve the models and refine the match with observations, in
systems where the time for communication, reaction or decision-making cannot
be neglected.

We also prove the validity of the continuum-limit approach to random walks
on dense weighted graphs, in discrete and in continuous time, relying on the
framework provided by graph-limit theory. We answer positively to the question
of transferability, showing that the cost of duplicating the analysis for each
finite graph can be avoided by considering instead the continuum problem. The
dissertation ends with a study of diffusion-driven instabilities in reaction-diffusion
systems on graphons which are the continuum-limit version of graphs.

Foundations of diffusion and instabilities in nonlinear evolution equations on
temporal graphs and graphons, by Julien Petit
PhD thesis, June 25, 2020
Supervisors: Professor Timoteo Carletti and Military Professor Ben Lauwens





Acknowledgment

When the door came open, it revealed a large window overlooking the
university library and a wall covered with books. I vividly remember that
day which marked in my eyes the official start of this joint thesis between the
University of Namur (UNamur) and the Royal Military Academy (RMA) where
I came from. With this partnership in place I was ready to get started.

Back then, now more than five years ago, Anne Lemâıtre was the head of
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CHAPTER 1

Introduction

1.1. Evolution equations on graphs

Linear diffusion problems on graphs and nonlinear variants resembling the
semilinear heat equation make up the core of this thesis. They belong to the
wider body of evolution equations which model the time evolution of a system,
starting from an initial state. The motivation to study those equations on a
discrete domain comes from the various fields in the natural sciences, medicine,
economy, and many others where networks found their way. The marriage of
evolution equations and graphs has produced a dynamic, expanding research
community, with very broad interests. Hence, it is important to properly define
where we stand, especially when it comes to the type of networks that support
of our evolving systems.

In our setting, graphs are inherently discrete objects, made of edges or
links representing interaction, or connectedness, or reachability between a set
of vertices, but there is no notion of distance or travel-time associated to them.
Proximity between nodes is therefore a matter of hop-count. This thesis is not
concerned with what is called in the literature metric graphs or quantum graphs.
Those graphs are continuous objects, where propagation across the links is ruled
by a differential equation. Although largely relevant, metric graphs are only
considered in the concluding chapter as a first-choice target for further research.

The evolution equations studied in this work originate in a continuum-
domain version. Due to our choice of a discrete support, the differential diffusion
operators that appear in the original version of the equations, will be replaced by
matrices. However we will also work on equations defined on a continuum, and
this will again affect the nature of the diffusion operator. Indeed, the last decade
saw the development of graph-limit theory, an elegant mathematical framework
for the continuum limit of graphs, when the number of nodes becomes arbitrarily
large. The graph-limit version of the two main equations of this work is studied,
hence closing the loop of going from a continuum medium to a discrete domain,
then back to a continuum. In the process, the nature of the diffusion operator
cycles from differential operator, to finite matrix, to integral operator.

To conclude this overview, let make three observations which helped focus
our interest and inspired the content of the next chapters. Firstly, empirical
evidence shows that real-life networks may vary over time. Secondly, we know
that delay may impact diffusion between neighboring nodes. And finally, partially
due to the ever increasing availability of data in general, and to some specific

1



2 1. INTRODUCTION

fields of research, in some instances graphs tend to become very large objects.
At least one of these considerations made its way into every problem studied in
this dissertation.

1.2. How to read

Before we go any further, let us state our reading conventions. Instead of
using a different symbol for all different objects, context differentiates between
possible meanings. For instance, D denotes a diffusion coefficient, or diagonal
matrix of degrees. The index on page xi lays out the symbology and abbreviations,
sorted by category.

This document does not start with a preamble chapter dedicated to defini-
tions, theorems, and other preliminaries. We instead tried to preserve the logical
flow by introducing the mathematical concepts where they appear naturally in
the storyline. This being said, this thesis revolves around graphs, random walks,
and reaction-diffusion equations and we believe that as part of the introduction,
a global understanding of those core concepts is beneficial for the reader. This
will help set the stage and draw a clearer line between contextual information
or standard material in this introduction, and contributions in the subsequent
chapters. That is the goal of the next section.

This thesis contains many pointers to the literature, but we tried to make it
technically speaking, mostly self-contained. To achieve that, we have included
two appendices covering material designed to introduce the unfamiliar reader
to elements of spectral theory and semigroups. Explicit reference to these
appendices will be made along the text.

1.3. Core concepts

There are many excellent works on the matters of networks, random walks
and reaction-diffusion. We elected to mainly follow [134, 96] for sections 1.3.1
and 1.3.2 about graphs and random walks, and [96, 100, 101] for section 1.3.3,
which introduces reaction-diffusion processes.

1.3.1. Graphs and complex networks

Graphs, or also networks, model the adjacency relation between elements of
a discrete set of objects. There appears to be an agreement in the terminology
to refer with graphs to the set of vertices connected by edges, whereas for
networks the terms nodes and links are used. For some authors, graphs would
be the mathematical objects underlying real-life networks. We use those terms
interchangeably.

Beyond terminology, what remains is the indisputable amount of past and
recent successes of graph-theoretic tools in a wide array of applications. For
instance, there is currently a sustained interest in biological networks, such as
protein-protein interaction networks. One goal may be to identify motifs, namely
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Figure 1.1. The Petersen graph is an unweighted connected symmetric
graph with 10 vertices and 15 edges. It is regular because all nodes
have the same degree equal to two. In spite of its apparent simplicity
and modest size, the Petersen graph is well-known in graph-theory for
providing many examples and counter-examples, due to its very specific
properties.

sub-networks that appear a disproportionately large number of times given the
overall structure. Another contemporary examples are climate networks, which
allow to monitor and predict the effects of global warming. Networks help
law enforcement and intelligence agencies to keep track of terrorist threats and
identify emerging leaders. Banks use networks for fraud detection, and many of
today’s mathematical tools in graph-theory originate in applications in sociology.

In short, every time a situation involves entities interacting through links of
some nature, networks offer a conceptually simple modeling approach, although
the resulting graph may very well be a complicated object. Complex networks -
as they are called - are not necessarily made of independent building blocks, and
this does not go without analytical challenges, as reflected by the pages to come.
In this section, we first provide some necessary formalism, and then comment
on generalizations of networks that have emerged recently.

1.3.1.1. Formalism

We settle on the following notation: G = (V,E) is a graph, where V is a
finite set of vertices, and E ⊂ V × V is a set of edges. The vertices, also called
nodes, are labeled by {1, 2, . . . , } or by letters such as {v1, v2, . . .}. Two vertices
v and w form an edge [v, w] whenever v ∼ w where ∼ is an adjacency relation.
For now we assume this relation to be symmetric,

(1.1) v ∼ w ⇐⇒ w ∼ v,
such that the resulting graph is undirected, see fig. 1.1. Let |V | (resp. |E|)
denote the number of vertices (resp. edges). The density ρ of the graph is the
fraction of edges that are actually present, compared with the maximum possible
number of connections:

(1.2) ρ =
|E|(|V |

2

) .
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Figure 1.2. A weighted directed graph with three nodes. The graph
is strongly connected. Each node has out-degree equal to three, and
in-degree also equal to three. The weighted out-degree or out-strength
is always one. The same holds true for the weighted in-degree.

When it makes sense to take the limit |V | → ∞, one says the graph is dense if
|E| = O(|V |2), and sparse otherwise.

Each edge may be attributed a weight, making the otherwise unweighted
graph into a weighted one. The number of neighbors of node v is denoted by
deg(v). In weighted graphs, str(v) denotes the weighted degree or strength
of node v, that is to say the sum of the weights of all edges [v, w] for which
w ∼ v. For the sake of simplicity, the notation str(v) will henceforth also apply
to unweighted graphs and will refer to the degree, thereby identifying unweighted
graphs with graphs with binary weights, either 0 or 1.

A path of length n between two nodes v, w is an ordered sequence of n nodes

(1.3) [v1, . . . , vn]

such that v = v1, w = vn and vi ∼ vi+1, i = 1, . . . , n− 1. A graph is connected
if every pair of nodes is linked by a path. The graph distance dG(v, w) between
two nodes v, w is the minimal length of all paths from v to w.

Let Mn be the space of n× n matrices. The adjacency matrix A ∈Mn of
a finite graph G with n vertices is the square matrix where Aij is the weight
of the edge between nodes with labels i and j and zero if no such edge exists.
Unweighted graphs have binary adjacency matrix, where the ones indicate
existing edges. We denote

(1.4) D = diag(str(v1), . . . , str(vn))

the diagonal matrix of the strengths (or degrees in unweighted graphs).

If G is actually a directed graph as on fig. 1.2, the adjacency relation is
asymmetric and we write as v → w for an edge from node v to w, and call
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w → v the reciprocal edge. Let Vv = {w ∈ V | v → w ∈ E} be the neighborhood
of v, and its cardinal kv := |Vv| is called the out-degree of node v. Similarly,
V ′v = {w ∈ V | w → v ∈ E} and k′v := |V ′v | is called the in-degree of v. We will
refer to the weighted out-degree or out-strength (weighted in-degree, in-strength)
when the edges have weights. The directed graphs in this work are almost always
strongly connected, meaning every two nodes are linked by a directed path.

1.3.1.2. Networks beyond networks

The simplicity of networks as presented above has all but tempered the
enthusiasm they generate nowadays. For example, in Physical Review Letters,
American Physical Society’s flagship publication that exists since 1958, the
amount of network-science related papers published over the last decade amounts
to approximately one third of all publications on the subject until 2009 [99].
Geographically speaking, it is interesting to note that besides China and the
United States, the UK, Italy and Japan are the three countries to make it into
the top 5 of the greatest contributors in terms of number of publications in the
field since 2010.

It makes little doubt that networks in their original form will remain a useful
tool in data science and other emerging fields. Moreover, generalizations have
(re)surfaced in various directions, and keep gaining attention. For instance there
is a growing interest in hypergraphs, and simplicial complexes in particular.
These are objects where an edge can join any number of vertices, which hence
go beyond pairwise interactions. Another current theme is that of higher order
models, where one goal is to constraint individual paths in networks in an optimal
way, thereby removing the transitivity property of the adjacency relation. Finally,
viewing the network as a static entity may not fit to some empirical scenarios,
and the temporal dimension needs to be accounted for. This temporal dimension
is a main concern in chapters 2 and 3.

1.3.2. Random walks

Diffusion on networks is an extensive topic of research. Its archetype is the
study of random walks on graphs, which are random processes that describe a
path that consists in a succession of random steps of a walker across the edges.
Despite their apparent simplicity, random walks remains an active domain
of research [40, 5, 3, 4, 74], lying at the crossroads of probability, analysis,
graph-theory. They are used as a baseline model for the diffusion of items
or ideas on networks [89], but also as a tool to characterize certain aspects
of their organization such as the centrality of nodes based on the density of
walkers [21, 80, 77] or the presence of communities where a walker remains
trapped for long times [119, 118, 34, 76]. Random walks find applications
in biology, particle physics, financial markets, and many other fields [9, 13].
This diversity contributes to the numerous existing variants of random walks,
including Levy flights [68], correlated walks [116], elephant walks [123], random
walks in heterogeneous media [47], in crowded conditions [7], or even quantum
walks [67] (see [68, 58] and the many references therein).
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1.3.2.1. Discrete time

Consider first discrete time models and let X be a state space together with
a transition matrix

T = (T (y, x))x,y∈X
where T (y, x) ≥ 0 is the probability to move from x to y in one step, with
normalization ∑

y∈X
T (y, x) = 1, ∀x ∈ X.

The couple (X,T), together with a starting distribution on X, defines a Markov
chain. Equivalently, we have a sequence (Zn)n∈N of X-valued random variables,
where Zn is the position in X at the n-th time step. The sequence (Zn)n∈N is
defined on the sample space Ω = XN, equipped with the product σ-algebra on
Ω arising from the σ-algebra on X. For a Markov chain starting in x ∈ X, the
discrete probability measure Px is such that
(1.5)
Px {Zn = xn, Zn−1 = xn−1, . . . , Z0 = x0} = T (xn, xn−1) . . . T (x1, x0)δx(x0),

where δx is the dirac distribution in x. As anticipated, a discrete-time Markovian
random walk on a symmetric graph G = (E, V ) with adjacency relation ∼ is
a Markov chain where the transition probabilities are adapted to the graph
structure, for instance for an unweighted connected graph,

(1.6) T (y, x) =

{
1/ deg(x) if y ∼ x,
0 otherwise.

The scope of this thesis is limited to nearest-neighbor random walks, meaning
T (y, x) > 0 only if dG(y, x) ≤ 1. This means teleportation of the walker, who
is then allowed to traverse the whole network to easier reach peripheral nodes
like happens in Google’s PageRank algorithm, is not permitted. Further, our
strong-connectedness assumption on G implies the Markov chain is irreducible,
that is,

∀x, y ∈ X, ∃n ∈ N : Tn(y, x) > 0,

where Tn(y, x) is the (y, x)-entry of the n-th matrix power of T.

Not all discrete-time random walks (Zn)n∈N are Markovian in trajectory,
or trajectory Markovian. Only those with trajectories satisfying (1.5), or put
differently,
(1.7)

Px {Zn = xn |Zn−1 = xn−1, . . . , Z0 = x0} = Px {Zn = xn |Zn−1 = xn−1}
are labeled as such.

1.3.2.2. Continuous time

This document concentrates on the more general continuous time versions,
where space is still discrete but where the timings of the moves of the random
walk generally follow a renewal process. Therefore, the walk is a stochastic
process {Z(t)}t≥0, where Z(t) is X-valued and with τn := tn−tn−1 an associated

sequence (τn)n∈N0
of inter-arrival times.
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A continuous-time random walk (CTRW) is semi Markovian, or trajectory
Markovian, if for all n ∈ N and s1 < . . . < sn < t and all x1, . . . , xn, y ∈ X such
that if Px {∩ni=1 (Z(si) = xi)} > 0, we have

(1.8) Px {Z(t) = y | ∩ni=1 (Z(si) = xi)} = Px {Z(t) = y |Z(sn) = xn} .
meaning the underlying discrete-time process in the state space X,

(1.9) Yn = Z(tn ≤ t < tn+1), n ≥ 0,

is a Markov chain. Further, the walk is Markovian in time (or time Markovian),
if it is a time-homogeneous process,

(1.10) Px {Z(t+ s) = z |Z(s) = y} = Px {Z(t) = z |Z(0) = y}
for all x, y, z ∈ E and s, t ≥ 0, in which case the timings of the moves follow a
Poisson process.

Summing up, a Markovian CTRW on a graph with edge set E is a stochastic
process where the underlying discrete-time chain on E is Markovian, and the
time-homogeneous transition probabilities are adapted to the discrete support G.
This thesis mainly contributes to random walks which elude this definition, since
we start with semi Markovian CTRW’s which are trajectory Markovian but not
time Markovian, and eventually study models where even the trajectory Markov
property is lost.

1.3.3. Reaction-diffusion equations

Reaction-diffusion (RD) equations proved a successful modeling tool based
on the combination of a rate or kinetic equation with the heat equation. They
lie at the heart of our understanding of spatial pattern formation and wave prop-
agation in disciplines such as, but not limited to, ecology, chemistry, molecular
biology or neuroscience. Indeed, Turing instabilities are one of the signature
phenomenon present in RD equations and a central point of our interest. This
phenomenon refers to the instability, seeded by diffusion, of a uniform steady
state of the system, which may generate stable and stationary spatial patterns
of concentration.

We start by introducing rate equations in section 1.3.3.1, and show in
section 1.3.3.2 how they combine with diffusion to yield a complete reaction-
diffusion model. We then discuss in section 1.3.3.3 the validity of those models
including their limitations and possible workarounds.

1.3.3.1. Rate equations

Rate equations may describe the evolution of the concentration of particles,
species or reactants, depending on the application. They have the form

(1.11)
du

dt
= F (u)

where u is an n-components real vector function of time, F is a rate or kinetic
function typically depending on one or more real parameters. The conditions

(1.12) F (u1, . . . , ui−1, 0, ui+1, . . . , un) ≥ 0
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ensure the rate function F is positivity preserving, meaning that if u(0) ≥ 0,
then u(t) ≥ 0 for all t > 0 [96]. For all our numerical examples in the main text,
we have chosen to use two standard models from the literature, one in chemistry
dubbed the Brusselator, and one in ecology that is called the Mimura-Murray
model of interaction.

Brusselator. The Brusselator is a chemical scheme introduced by Prigogine
and Lefever [113], will be our main example throughout this document. It is
the two-variable, four-step model

A + U
k1−−→ U

B + U
k2−−→ V + D

2U + V
k3−−→ 3 U

U
k4−−→ E

with rate equations

d[U ]

dt
= k1[A]− (k2[B] + k4)[U ] + k3[U ]2[V ](1.13a)

d[V ]

dt
= k2[B][U ]− k3[U ]2[V ],(1.13b)

where [X] denotes the concentration of X. Scaling time k4t 7→ t and defining
new the variables,

(1.14) a =

√
k2

1k3

k3
4

[A], b =
k2

k4
[B], u1 =

√
k3

k4
[U ], u2 =

√
k3

k4
[V ],

the rate equations become

du1

dt
= a− (b+ 1)u1 + u2

1u2,(1.15a)

du2

dt
= bu1 − u2

1u2.(1.15b)

The Jacobian matrix J of partial derivatives of the rates evaluated at the steady
state ue = (ue,1, ue,2) =

(
a, ba

)
is given by

(1.16) J =

(
b− 1 a2

−b −a2

)
,

indicating that if b > 1, signJ =
(

+ +
− −

)
indicating the Brusselator is a cross

activator-inhibitor type.

Mimura-Murray. Our secondary scheme is the Mimura-Murray biological
model of interactions, selected for its use as a benchmark in the literature. It is
given by

f(u1, u2) =

(
a+ bu1 − u2

1

c
− u2

)
u1(1.17a)

g(u1, u2) = (u1 − (1 + du2))u2,(1.17b)
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where a, b, c, d are positive parameters. Out of the six equilibrium points, two
are always unstable, and two more are trivial with one of the variables u1, u2

being zero. The remaining two read

(ue,1, ue,2) =

(
1 +

1

2d

(
bd− c− 2d+

√
∆
)
,

1

2d2

(
bd− c− 2d+

√
∆
))(1.18a)

(ue,1, ue,2) =

(
1 +

1

2d

(
bd− c− 2d+

√
∆
)
,

1

2d2

(
bd− c− 2d+

√
∆
))(1.18b)

with ∆ = (bd− c− 2d)2 + 4d2(a+ b− 1). The Jacobian matrix given by

(1.19) J =

(
2 bcue,1 − 3

cu
2
e,1 − ue,2 − a

c −ue,1
ue,2 ue,1 − 2due,2 − 1

)
.

1.3.3.2. Local kinetics and diffusive coupling combined

Even if we are mainly interested in two-component reaction-diffusion systems
on graphs, we will show in this section how to derive the RD equation for a single
variable on a continuum, based on a conservation law and Fickean diffusion. So
consider the introductory instance of a single particle with density u(x, t) in a
volume V ⊂ R3. If J is the particle flux, and F the net rate of production (birth
and death combined), we have

(1.20)
∂

∂t

∫
V

u(x, t)dV = −
∫
S

J · ds+

∫
V

F (u, x, t)dV,

where S is the boundary of V . The divergence theorem allows to write

(1.21)

∫
S

J · ds =

∫
V

∇ · JdV,

and (1.20) becomes

(1.22)

∫
V

(
∂

∂t
u+∇ · J − F

)
dV = 0.

Since V is arbitrary, a conservation equation for u is obtained:

(1.23)
∂

∂t
u+∇ · J − F = 0.

Fick’s first law of diffusion asserts that

(1.24) J = −D∇u
where D is the diffusion coefficient, in units of area over time. If this law applies
(1.23) becomes

(1.25)
∂

∂t
u = F +∇ · (D∇u),

where as noted F may be a function of u, x, t and D a function of x and t.

Equation (1.25) allows an extension to a vector (multi-species) setting, where
D then is a matrix where off-diagonal terms indicate cross-diffusion. In this



10 1. INTRODUCTION

work, D will always remain a diagonal matrix of constant coefficients, such that
in the scalar case of (1.25), we can write

(1.26)
∂

∂t
u = F +D∇2u.

Building on this example, it appears legitimate to add a Fickean diffusion term
to (1.11), resulting in a general equation of the form

(1.27) Dtu = F (u) +D∆u,

where Dt is time-derivative operator, and ∆ is a diffusion operator. If space is
continuous, then eq. (1.27) is a partial differential equation (PDE), Dt = ∂

∂t is a
partial time-derivative, and ∆ is typically a second order differential operator.
For instance, ∆ is the Laplacian operator

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

in a three-dimensional Euclidean space in the Cartesian coordinates x1, x2, x3

as in our example. Otherwise space is discrete, (1.27) is an ordinary differential
equation (ODE) , Dt = d

dt , and ∆ is a matrix operator.

1.3.3.3. Validity of RD models

We first discuss possible avenues to explain the combination of a rate and a
diffusion equation in RD models. Next we question the basic assumptions of
these models, and describe the most common extensions.

Macroscopic, mesoscopic and microscopic descriptions. There exist different
levels of justifications for combining two terms in the right-hand side of eq. (1.27).
Phenomenological explanations are based on the laws of conservation, and
eqs. (1.20) to (1.25) form an example of such argument. Equation (1.27) is a
macroscopic equation, because it can be obtained based on a long-time, large-
scale limit procedure applied to a mesoscopic description. Such mesoscopic
description follows from the microscopic rules, that is, the particle-level motion
rules, where random fluctuations are averaged out of the resulting mean-field
equations. This two-step procedure conveniently assumes that the microscopic
jump lengths and times are small comparatively to the macroscopic scales, an
assumption which may fail to hold [96, Chapter 3]. But when it succeeds,
the mesoscopic derivation ensures a sound mathematical model, where the
physical constraint of positivity and normalization of densities is guaranteed
by construction. We are limited to mesoscopic equations in this work since the
combined long-time, large-scale limit toward the macroscopic description does
not make sense on graphs which are inherently discrete objects.

Disputed assumptions. In spite of their widespread use, two core assumptions
of reaction-diffusion equations may fail to hold in real-life systems. The first
one is spatial homogeneity, which requires all reacting units to be identical.
The second one is transport following Fick’s second law of diffusion, which
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is physically unrealistic. Indeed, recall that in a 1-dimensional setting the
fundamental solution to

(1.28)
∂u

∂t
= D

∂2u

∂x2

with initial condition u(x, 0) = δ(x) is given by

(1.29) u(x, t) = (4πDt)
− 1

2 exp

(
− x2

4Dt

)
for all t > 0. This solution implies infinitely fast spreading of the initial
disturbance, u(x, t) > 0 for all x and all t > 0. Mathematically, this pathology is
due to the parabolic nature of (1.28). From a phenomenological point of view, it
is due to Fick’s first law (eq. (1.24)) which implies an instantaneous adaptation
to the gradient of the concentration. And from a mesoscopic perspective,
Brownian particles have no inertia since their directions of motion in however
small successive time intervals are uncorrelated. These model-related properties
can each be addressed at their level. Firstly, adding a small term to the left-hand
side of (1.28) turns it into an hyperbolic PDE,

(1.30) τ
∂2u

∂t2
+
∂u

∂t
= D

∂2u

∂x2

the reaction-telegraph equation. Loosely speaking, the solution of this equation
approaches that of (1.28) when τ → 0. Moreover the solution of (1.30) with

a point source at x = 0 in t = 0 is zero on |x| ≥
√

D
τ t. Secondly, Cattaneo’s

equation

(1.31) τ
∂J

∂t
+ J = −D∂u

∂x

may replace Fick’s first law. Finally, microscopic models of persistent random
walks may be designed [96, Chapter 2]. This is beyond the scope of this work.
However, when it comes to so-called Turing instabilities studied in chapters 5
to 7, the conclusions in the unmodified RD system might carry over [96, Chapter
10].

1.4. Aim

A central question when network science was still a novel, rapidly expanding
field of research, was to understand the structural properties of complex networks.
While a lot of progress has been made on this front, the next step - at least
from a dynamical systems point of view - is to understand how the structure
of the graph affects various properties of the dynamics. Even in the simplest
case of symmetric, unweighted networks, this problem proved both multi-faceted
and fascinating. In addition, only a fraction of real-life graphs are symmetric,
unweighted, static, and computationally speaking of reasonable size. The need
to encompass this reality in the study of dynamical systems on graphs is not
open to debate, and is the background motivation for each of the next three
research questions.
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1.4.1. First question

When networks model the shifting structure of relationships between people,
ideas, or even locations, they inherently change in time. These temporal networks
have been at the center of attention recently. Researchers have logically started
with the study of linear diffusion processes and synchronization phenomena
on simple models of such networks. These existing models are mostly single
timescale models, which does not necessarily reflect reality. In many outcomes,
for instance in some contact networks, it appears that the evolution of the
network is the result of more that one independent process, each characterized
by its own timescale. On top of that, considering diffusion, the moving entities
obey a set of microscopic rules with yet another independent characteristic
timescale.

The aim is to first design new random walk models that account for the
shortcomings of the single timescale walks, in order to have a tool at our disposal
to capture and study, in a second part of the same question, the main differences
with respect to the existing walks. The overall objective is to gain a better
understanding of diffusion on temporal networks, relying on the study of these
evolved walks.

1.4.2. Second question

This work is evenly split between the study of linear and nonlinear problems,
but questions to address and ideas to solve them may cross that organizational
boundary. It is such a crossing that will produce the second research question,
which necessitates two preliminary observations. On the one hand, the practical
relevance of Turing instabilities is recurrently challenged because the conditions
for the emergence of patterns are too restrictive to be satisfied out of a fully
controlled ad-hoc environment. On the other hand, as detailed in the previous
theme of research, diffusion is not confined to static graphs. And besides that,
diffusion is not immune to time-delay. Indeed, generally speaking delays are
key to our understanding of the interactions between neurons in biology, in
models of traffic flow, and cannot be neglected in many applications of diffusion,
propagation, epidemics, or rumor spreading.

The aim is to determine whether temporal variations of the graph, and
the ensuing modification of the diffusion operator, may loosen the conditions
for the emergence of Turing patterns. In the same line of investigation, as a
side-question we want to find out whether diffusion-driven instabilities may
arise due to another modification of the diffusion operator: the inclusion of a
processing delay.

1.4.3. Third question

In certain practical cases the size of the graph - its number of nodes - is
extremely large. Network models of the brain or of the internet, where each
page is a different node, are two common examples. There have been attempts
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to study the continuum limit of dynamical systems on networks of arbitrary
large size, but what was needed first was a rigorous mathematical framework
to let this idea operate. When graph-limit theory emerged approximately a
decade ago, it started filling that gap neatly. This theory provides a concept
of continuum limit for sequences of graphs of increasing size. Not long after it
appeared, graph-limit theory was put to work to establish the validity of the
continuum-limit approximation to fundamental linear and nonlinear evolution
equations on graphs, including the heat equation and the scalar reaction-diffusion
equation. There are however two natural topics to address in this work, that
have remained untouched so far.

The aim of the first topic is to prove the convergence of the continuum
limit scheme for the most basic random walk model, the so-called node-centric
walk, and to study the resulting problem on a continuum. Concerning the
second topic, we want to determine the conditions for Turing instabilities in a
RD system, applied directly to the problem on the continnum. Keep in mind
that the questions of convergence have already been affirmatively answered for
various problems where diffusion is encoded by the combinatorial Laplacian,
including the (non)linear heat equation and the reaction-diffusion equation
(or semilinear heat equation). This second point is two-faceted: it comprises
the determination the spectral properties of the Laplacian operator and the
formulation of a principle of linearized stability, which will be affected by the
infinite-dimensional nature of the problem.

1.5. Structure and contributions

The goal of the section is to outline the content of each individual chapter.
This will allow the reader to make connections between the chapters and the
different research questions, as represented by fig. 1.3. The descriptions of the
chapters also give a quick summary of the contributions, which will eventually
be reviewed in the conclusion in greater detail.

As the coloring of the nodes on fig. 1.3 shows, the first part of the thesis is
about linear models of diffusion on (in)finite graphs, and comprises chapters 2
to 4.

Chapter 2 : We consider random walks on dynamical networks where
edges appear and disappear possibly during finite time intervals. The
walks are grounded on up to three independent stochastic processes:
one determining the walker’s waiting-time, associated to the edges. We
determine the transition kernels and then compare the mean resting
times and stationary states of the different models, and pay particular
attention to the emergence of non-Markovian behavior, even when all
dynamical entities are governed by memoryless distributions.

Chapter 3 : We first propose a comprehensive analytical and numerical
treatment of a generic three-timescales walk introduced in chapter 2
on directed acyclic graphs. Once cycles are allowed in the network,
memory may emerge, remarkably even if the walker and the evolution
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Figure 1.3. The thesis at a glance. Each node labeled 2 to 7 refers to
a chapter. The diagram indicates the research question and the type of
equation addressed by each chapter.

of the edges are governed by Poisson processes. We then introduce
a general analytical framework to characterize such non-Markovian
walks and validate our findings with numerical simulations.

Chapter 4 : We explore the continuum limit of random walks by adopt-
ing a methodology based on graph-limit theory. Through an approxi-
mation procedure, the standard system of coupled ordinary differential
equations is replaced by a nonlocal evolution equation on the unit
interval. We focus on Markov chains on dense weighted graphs whose
dynamics are encoded in the transition matrix and the random-walk
Laplacian. After having established the well-posedness of the contin-
uum problem, we prove the convergence of the approximation procedure
in the case of a convergent sequence of dense graphs. We also con-
sider the case when the problem on a graph results from two different
types of discretization of the continuum version. We then apply the
spectral theory of operators to characterize the relaxation time of the
process in the continuum limit. We finally show that our results can
straightforwardly be extended to the discrete time walk.

The second part, made up of chapters 5 to 7, is devoted to nonlinear models.

Chapter 5 : Turing and Hopf bifurcations in networked RD systems
are introduced. A analytical expression of all possible stable steady
states in a two-component system is obtained in the neighborhood of
the bifurcation point. The effect of a processing delay in the diffusive
coupling is briefly discussed in the scalar and vector cases. We demon-
strate the emergence of instabilities seeded by the delayed-diffusion
operator.
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Chapter 6 : We study Markovian diffusion on periodic temporal net-
works when it is combined with local reactions to yield a reaction-
diffusion on a time varying graph. In particular, we determine condi-
tions for the emergence of diffusion-driven instabilities in this scenario.
Our main result shows that spatial instabilities may unexpectedly
arise in RD systems on time-varying networks, in the sense that the
linear stability analysis would conclude on the impossibility of such
phenomenon if the topology were to be frozen at any random time. An
instability threshold on the timescale of the evolution of the graph is
obtained, both for switched and continuously-varied networks.

Chapter 7 : This chapter mirrors the graph-limit approach to Markov-
ian random walks in chapter 4. The validity of the continuum-limit
approximation being well-established, we concentrate our effort on
achieving a principle of linear stability for reaction-diffusion equa-
tions on graphons, by applying results of spectral to the combinatorial
Laplacian. Illustrating the theory with examples, we prove that the
conclusions about stability with the linearized problem may or may
not hold depending on the underlying space of the initial perturbation.
The conclusions require only mild differentiability conditions on the
generator of the nonlinear semigroup associated to the continuum RD
equation.

Finally, chapter 8 outlines the conclusions and is an opportunity to elaborate
on future research directions. Appendices A and B complement chapters 4
and 7 by providing background material surrounding spectral measures and
stability-related properties of linear semigroups and their generators.

1.6. Publications

This work is partially based on a list of papers listed below and (co)written
since the start of this thesis. The main sources for chapters 2 and 3 are papers [5]
and [6] below. We would like to acknowledge that part of the analytical derivation
in [5] is the result of close collaboration with Martin Gueuning. The content of
Chapter 4 matches that of [7] intimately. Chapter 5 comprises some material
from [1,2], and the content of chapter 6 originates in [3]. This paper subsequently
lead to the variation in [4], for which my co-authors deserve the most credit.
Chapter 7 contains only unpublished work.
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CHAPTER 2

Mesoscopic foundations of
diffusion on temporal networks

2.1. Introduction

The mesoscopic foundations of diffusion rely on random walk models made
of a set of microscopic motion rules at the level of individual particles. The
mathematical properties of random walks on static networks are overall well-
established [83] and, under assumptions described section 1.3.2, are essentially
equivalent to those of a Markov chain. However, in real world scenarios a core
assumption that the network is a static entity, is often disputed. Empirical
evidence shows instead that the network should be regarded as a dynamical
entity, with edges appearing and disappearing in the course of time [57, 88, 56].

As part of our first research question, in this chapter we introduce and
analyze models of random walks that interconnect the dynamics of the walker,
namely the diffusing entity, and of the network, each contributing to the problem
with their own timescale(s). In particular, we focus on the mostly unexplored
scenario when the edges remain active - meaning they are available to the jumper
- over finite time intervals.

2.1.1. Temporal networks

The underlying object of a temporal network is a dynamical graph.

Definition 2.1 (Dynamical graph). Let G = (V,E) be a (static) underlying
graph and let

(2.1) A = {A`}m`=1 ,

with m = 2|E|, be the set of adjacency matrices Ak corresponding to the possible
configurations or subgraphs G′ = (V,E′), E′ ⊂ E, allowed by G. A dynamical
graph is a random marked point process

(2.2) (A`k , τk)k∈Z, `k ∈ {1, . . . ,m}

with mark space A and (τk) a sequence of rewiring times, which is symmetric
(resp. directed) if G is symmetric (resp. directed).

17
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Using the notation of the definition, the time-dependent adjacency matrix
is written as

(2.3) A(t) =
∑
k∈Z

A`kχ[τk,τk+1)(t),

with χ the indicator function. We denote kout
i (t) =

∑N
j=1Aij(t) the out-degree

and kin
i (t) =

∑N
j=1Aji(t) the in-degree of node i at time t.

We consider directed, model-driven temporal networks1 where the underlying
graph is strongly connected and where the duration of the up-times meaning the
edge is available for transport (resp. down-times, edge unavailable) is randomly
distributed.

Assumption 2.2 (Distributed up-times and down-times). The time evolution
of the edges is modeled by independent and identically distributed random
variables. The up-time (resp. down-time) of an edge is the random variable
Xu(t) (resp. Xd) with PDF U(t) (resp. D(t)) with support in R+ and finite
mathematical expectation.

The benefit of this restriction is simplified calculations without jeopardizing
the intended range of the conclusion.

2.1.2. Single-timescale random walks

We start with single-timescale random walks, where U(t) and D(t) may
actually be dirac distributions in zero. We will explain two types of binary classi-
fications, and present the three standard models relying on these classifications.

2.1.2.1. Classification

The impact of the temporal properties of networks on diffusive processes
have been explored by means of numerical simulations [64, 128, 107] and
analytical tools [33]. In those works, the distinction between the dynamics
on the network and the dynamics of the network is reflected by a standard,
two-faceted classification of random-walk processes [89]:

Node-centric vs edge-centric: It is generally relevant to distinguish
between node-based and edge-based dynamics [112]. In a node-centric
walk, a stochastic process occurring at the level of the node determines
the duration before the next jump. In an edge-centric model, also
known under the intuitive denomination of fluid model, the links are
the driving units. They become available for transport, then vanish,
according to their stochastic process.

Active vs passive: One draws a line between active and passive models.
The walk is active when the waiting time before the next move is
reset by each jump of the walker. Active walks are common models
for animal trajectories. On the other hand, in passive models the

1As opposed to data-driven temporal networks.
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motion of the walker is instead constrained by the temporal patterns
of (typically the edges of) the network. An example would be that of
a person randomly exploring a public transportation network, taking
every available ride.

Put differently, there are clocks, either on the nodes or on the edges (node-centric
vs edge-centric models), and either the clocks are reset following each jump of
the walker or they evolve in an independent manner (active vs passive models).

2.1.2.2. Standard models

Let us first briefly review the three classical models of continuous-time
random walks. Their respective sets of microscopic motion rules are described
by the three panels of figure 2.1.

Model 1 : active node-centric model where the walker resets the clock
of a node upon arrival on the node. One may think of the clock as
being attached to the walker, and as obeying the walker’s dynamics.
The waiting time on a node corresponds to the random variable Xw

with PDF ψ(t). In this work, we will concentrate on the simpler case
that the renewal counting process of the jumps is a Poisson process
with rate µ, allowing us to bring out effects due to walker-network
interaction. The variable Xw represents the active, node-level feature
in all models.

Model 2: active edge-centric model. The walker accordingly resets the
down-time of the edges leaving a node, upon arrival on that node. This
down-time is the random variable Xd and determines the period of
unavailability of the edge.

Model 3: again an edge-centric model with a passive walker, who pas-
sively follows edge activations.

The fourth combination corresponding to the two classification criteria, the
passive node-centric walk, appears to be irrelevant for practical applications [89].
We won’t discuss it further.

2.1.3. Beyond standard models

The first point of this section is to elaborate on the motivations for intro-
ducing new models. The second point adds to the argument by giving details
about possible applications. The third point is a quick overview of the method.

2.1.3.1. Decoupled walker and transport layer

The standard models come short when the dynamics of the walker is decou-
pled from the transport layer represented by a dynamical network, such that the
diffusive process is effectively a combination of active and passive diffusion with
independent node-centric and edge-centric processes combined. Hence a first
objective of this chapter is to formulate natural extensions of existing random
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Figure 2.1. Microscopic motion rules for the three classical single-
timescale models

walks, that arise when the walker does not necessarily jump through an available
link. Instead, it is constrained by its own waiting time after each jump.

On top of that, the network is such that the duration of the links between
the nodes is not instantaneous [45, 124]. This is in contrast with a majority
of approaches which assume that the network evolution can be modeled as
a point process [54]. By doing so, we allow for the possibility to investigate
the importance of a timescale associated to edge duration, which has plenty
of applications in real-life systems. Take contact networks and their impact
on epidemic or information spreading as a canonical example. For instance,
recent research on empirical face-to-face network data collected via Bluetooth
was performed by the authors of [124]. They looked into the predictability of
the interactions between a large group of individuals taking part in the study. It
is representative that their work would mostly rely on data, and doesn’t go as
far as spreading processes, where our modeling would come in handy. In many
cases, the durations of availability timespans of the edges are inevitably finite
and, as results from [10] and a wealth of publications relying on data collected
by the SocioPatterns initiative [25, 120], even feature a long-tailed distribution.
This heterogeneity prohibits a well-defined timescale for the interactions, but
can be captured by the proposed models. In engineering, practical applications
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include peer-to-peer and proximity networks of mobile sensors with wireless
connections.

2.1.3.2. Applications

Different properties such as recurrence and transience, and quantities such
as hitting times and mean first passage time help characterize random walks.
We choose to focus on the mean resting time, that is, the expected total waiting
time on the nodes, with the motivation that this is an appropriate measure for
the speed of spreading processes in the different models. Because random walks
can be used to determine the most central nodes in a network, a final application
will be the analysis of the rankings of the nodes in the steady states resulting
from the different models.

Overall, given the central role of random walks in the design of algorithms on
networks, our results open the way to generalize standard tools such as PageRank
for centrality measures [21] and Markov stability for community detection [34].

2.1.3.3. Method

Our approach is based on the generalized integro-differential master equation
obtained for semi-Markovian random walks on temporal networks [54]. This
equation requires to determine the distribution of the resting time on the nodes.
By direct integration, we then obtain the mean resting time. We also compare the
different models, and evaluate the dominating timescales in regimes of extreme
values for the dynamical parameters. Finally, combining an asymptotic analysis
of the master equation and the resting times leads to the steady state for the
different models. The analysis up to that point does not take into account a
possible memory effect arising from walker-network interaction, which is the
subject of the next chapter.

2.2. Mesoscopic foundations

We introduce and classify new random walk models with up to three
timescales represented by fig. 2.2, and discuss their master equation.

2.2.1. Multiple-timescales random walks

Following assumption 2.2, the timescales are well-defined and are correctly
represented by the expectation of the random variables. This assumption holds
for exponential distributions, but wouldn’t for example apply for power-law
distributions. Each model features an active walker and we consider different
behaviors at edge level, as depicted by fig. 2.2.

Model 4 : The edge-level dynamics is passive and each edge cycles
through states of availability followed by periods of unavailability. The
duration of the up-times is a random variable Xu, and the duration
of the down-times is random variable Xd, with already-introduced
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(c) Model 6. Active at node and edge level
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Figure 2.2. Microscopic motion rules for natural extensions of the
classical random walks, with three (models 4 and 5) or just two (model 6)
competing timescales.

PDF’s U(t) and D(t). When the walker is ready to jump, there are
two possibilities. If one or more outgoing edges are available, a new
destination node is selected randomly without bias. The total waiting
time on the node is thus Xw. If no outgoing edge is available, then the
walker is trapped on the node, and waits until the next activation of
an edge2.

Model 5 : This time the model is active at node and edge level. At the
beginning of the walker’s waiting time, the state of each outgoing edge
is reset to unavailable, for a duration Xd. Then follows a period of

2Another behavior would have been that the ready-to-jump but trapped walker waits for

another period drawn again from the distribution of Xw, before attempting another jump. In
this scenario, the induced delay before the jump also depends on the dynamics of the walker
and not only on that of the network through availability of edges at the end of the prolonged
stay [42]. The analysis of the model would go along the lines presented here.
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availability Xu, then a down-time, and so on, until after a duration
Xw the walker is ready and an edge is eventually available.

Model 6 : The third declination is similar to the previous one in the
sense that the walker also actively resets the transport layer, but this
reset occurs at the end of the walker’s waiting time Xw. Therefore,
the walker is always trapped for a duration Xd and the dynamics only
has two timescales. This model relatively slows down the walker and
will serve as a baseline to compare the previous two models.

The mathematical modeling is expectedly more involved than with the
single-timescale models 1, 2 or 3, and is presented in the next section.

2.2.2. Master equation

Starting from the microscopic motion rules, the mesoscopic modeling pro-
duces a master equation for the evolution of the walker’s position across the
network. This position is encoded in the row vector of residence probabilities on
the N nodes of the graph,

n(t) = (n1(t), n2(t), . . . , nN (t))

with

(2.4) ni(t) = P {Z(t) = i} , i = 1, . . . , N,

where Z(t) is the location of the walker at time t. Once the equation is obtained,
the analysis of various properties of the walk becomes accessible.

2.2.2.1. Markovian random walks

The active node-centric walk, model 1, is arguably the simplest to study
among continuous-time random walks. It is Markovian when the waiting time
on the node is exponentially distributed. If the rate on node j is µj , the walk is
governed by the well-known master equation [4]:

(2.5) ṅi(t) =

N∑
j=1

µjnj
1

kj
Aji − µini,

If the rate is the same on all nodes, µj = µ for all j, and after scaling of the
time variable t 7→ µt, equation (2.5) reads

(2.6) ṅ = nD−1(A−D) = nLrw,

where D denotes the diagonal matrix of the out-degrees. The matrix

(2.7) Lrw = D−1A− I
is the so-called random walk Laplacian of the graph.

An alternative modeling for the process of model 1 is to consider that the
walker is always ready to jump, and that the edges activate like in the edge
centric walk of model 2. To illustrate this fact, let us start from model 1 where
we assume that the rates on the nodes are proportional to degree: µj = λkj , so
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that the rate of jump across each edge of the graph is the same, independently
of the degrees of the nodes. The resting time on node j is the random variable

(2.8) X(j)
d = min

{
X`←j
d

∣∣∣ ` ∈ Vj} ,
where the superscript in the right-hand side explicitly refers to the edges. Equa-
tion (2.8) refers to the minimum of kj exponential distributions with rate λ,
which again follows an exponential distribution with rate kjλ. Equation (2.5)
becomes

(2.9) ṅi(t) =

N∑
j=1

njλAji − λkini.

In matrix form, recalling that n is a row vector we have ṅ = λn(A − D), or
again, after scaling of time with respect to 1/λ,

(2.10) ṅ = nL,

where this time

(2.11) L = A−D
is known as the graph or combinatorial Laplacian. Equation 2.10 is well known to
correspond to model 2, where λ would be the rate of the exponential distribution
governing the time before activation of each edge. This shows that the same
process - in terms of trajectories - can be seen as happening atop of a static
graph, or a temporal graph. The walk on a static graph generates a temporal
network where jumps across edges are considered as edges activation.

Remark 2.3. Note again that this freedom of the choice of modeling exists
thanks to the restrictive framework of exponential distributions. Also observe
that eqs. (2.6) and (2.10) emerge as particular cases of the general eq. (2.21),
which effectively differentiates between the node-centric and edge-centric equa-
tions when the exponential assumption is relaxed.

Remark 2.4 (On the time-dependent Laplacian). In previous works dealing
with synchronization [130, 12], desynchronization [86], but also in reaction-
diffusion systems in chapter 6 and other works about dynamical systems on
time-varying networks [136, 56], a time-dependent Laplacian L(t) has replaced
the usual graph Laplacian L in the equations such that (2.10) becomes

(2.12) ṅ = nL(t).

In our framework, we consider this equation as associated to a passive edge-
centric walk on switched networks, where the underlying network of possible links
varies in time. The rewiring occurs for several edges simultaneously at discrete
time steps, as opposed to the continuous-time process we have considered so far,
where almost surely no two edges change states at the same time. The adjacency
matrix is

(2.13) A(t) = Aξ(t)

where ξ : R+ → I ⊂ N selects one possible graph configurations in the set
{Ai}i∈I . The Laplacian is then given by

(2.14) L(t) = A(t)−D(t),



2.2. MESOSCOPIC FOUNDATIONS 25

where D(t) contains the time-dependent degrees on its diagonal. Note that for
simplicity, we have again assumed that the rate λ is the same for all edges of
all configurations of the underlying graph, allowing us to use the timescaled
equation (2.10) between any two switching times. This remark applies in the
context of discrete switching, but can be extended to a continuously-varying,
weighted adjacency matrix, where L(t) is no longer a piecewise constant matrix
function.

2.2.2.2. Semi-Markovian random walks

In general, when the random variables Xw, Xu, Xd are no longer exponen-
tially distributed, the Markov property is lost3. However when the process is
semi-Markovian and Markovianity in trajectory is preserved, the differential
equations (2.6) and (2.10) are replaced by a generalized Montroll-Weiss equation.
Such generalizations have been developed from a node-centric perspective for
instance in [4], and for the edge-centric approach in [54], ending up in essen-
tially the same mesoscopic equation, the only difference being the underlying
microscopic mechanism regulating the resting times on the nodes. This lets
us choose between the two approaches. We will mainly follow [54], in which
the generalized master equation valid for arbitrary distributions for Xd in the
passive edge-centric walk is derived. This master equation will be an important
ingredient in the next two sections and is worth presenting.

The building quantity in the models is the resting time on a node j, namely
the duration between the arrival-time on the node, and a jump to any other node.
This duration is a random variable X(j) with PDF Ψj(t). This resting time
density (also known as transition density) satisfies the normalization condition

(2.15)

∫ ∞
0

Ψj(τ)dτ = 1,

meaning that a jump will eventually occur since the out-degree in the underlying
graph is positive. The diagonal matrix of the resting time densities is DT (t), so
that the elements are given by

(2.16) [DT (t)]ij = Ψj(t)δij .

The PDF of the resting time is written as the sum

(2.17) Ψj(t) =
∑
i∈Vj

Tij(t),

where Tij(t) refers to a jump across edge j → i. If j → i is an edge of G, the
integral

(2.18)

∫ ∞
0

Tij(τ)dτ =
1

kj
=: Tij

3In this work, we are interested in the loss of the Markov property resulting from the
interaction between dynamical entities, some or all of them following exponential distributions.
Therefore, we will not elaborate on the idea that conversely, Markovianity could emerge out of
the interaction between non-Markovian walker and edges.
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is thus the probability that at the time of the jump, the walker located on
node j selects node i as destination. Here T is the (effective) transition matrix.
Let the time-dependent functions Tij(t) be the entries of the matrix function
T(t). Finally, recall that the Laplace transform of the function f(t) is the map

s 7→
∫∞

0
f(t)e−stdt, and is written f̂(s) or L{f(t)}.

We are now in position to write the master equation which in the Laplace
domain reads

(2.19) L{ṅ(t)} =
(
T̂(s)D̂−1

T (s)− I
)
K(s)n̂(s),

where

(2.20) K̂(s) =
sD̂T (s)

1− D̂T (s)

is the nonlocal-in-time memory kernel. The time-domain version of (2.19) is

(2.21) ṅ(t) =
(
T(t) ∗ L−1

{
D̂−1
T (s)

}
− δ(t)

)
∗K(t) ∗ n(t),

where ∗ denotes a convolution. When the analysis is pushed further in the
s-domain, one obtains a compact expression for the steady state of the walk.
This fact is discussed in section 2.5.

2.3. Resting time density

The work ahead is now to compute the resting time densities Ψj(t), from
which the average time spent on a node for a given model follows directly, as is
shown in the next section. We compute and interpret this quantity starting from
the agent- and edge-level rules of the different models, to obtain a mesoscopic
interpretation. Our analysis is restricted to:

Assumption 2.5. The random variables Xw, Xu and Xd are exponentially
distributed.

This will allow to shed light on the effect of having up to three timescales,
and not on complications arising from otherwise possibly fat-tailed distributions
for these three random variables. As a result, the density for model 1 is
exponential and the two edge-centric models 2 and 3 generate statistically
equivalent trajectories, and hence the analysis for one model holds for the other.

Models 2 and 3

Under assumption 2.5, the instantaneous activation times follow a Poisson
process and we have

Tij(t) = D(t)

[∫ ∞
t

D(τ)dτ

]kj−1

.
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The interpretation is that the edge j → i must activate after a time t, whereas all
competing edges must remain unavailable at least up to that point. Performing
the integration and multiplying by kj gives

(2.22) Ψj(t) = kjλe
−kjλt,

a result already found in [54]. This is again an exponential distribution with
rate kjλ.

Model 6

The walker residing in node j will jump along edge j → i at time t if all
competing edges are unavailable at least up until then - that is, their period of
unavailability will last for at least t− x, where x marks the time the walker is
ready to jump. Moreover, edge j → i needs to activate exactly after the duration
t− x. With this in mind,

Tij(t) =

∫ t

0

ψj(x)

[∫ ∞
t−x

D(s)ds

]kj−1

D(t− x)dx,

and noting that
[∫∞
t−x D(s)ds

]kj−1

simplifies to e−λ(kj−1)(t−x),

=

∫ t

0

µe−µxλe−kjλ(t−x)dx(2.23)

= µλe−kjλt
∫ t

0

e(−µ+kjλ)xdx.(2.24)

Note that (2.23) is merely the convolution between the waiting time of the
walker and the minimum of kj independent down-times for the edges, reflecting
the fact that the process results in an addition of random variables. To proceed,
we observe that the integral in (2.24) depends on whether µ = kjλ or µ 6= kjλ.
In the former case, the integral is equal to t and multiplying (2.24) by kj yields

(2.25) Ψj(t) = µkjλe
−kjλtt.

In the second case, µ 6= kjλ and eq. (2.24) gives

(2.26) Ψj(t) =
λµ

kjλ− µ
(
e−µt − e−kjλt

)
.

Model 4

This model is generally non-Markovian, but the following derivation assumes
a directed acyclic graph (DAG). The reason is twofold.

(1) When there are cycles, the walker may be influenced by the statistical
information left at the previous passage, which may induce biases
in the walker’s trajectory [127, 48]. Working with DAGs restores
Markovianity in the trajectories, and equation (2.19) is valid.
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(2) DAGs include directed trees and find many applications, see for instance
[95]. Every undirected graph possesses an acyclic orientation. More-
over, by contracting each strongly connected component, every directed
graph can be mapped to a DAG, a process illustrated by fig. 2.3. The
material presented in this section therefore provides tools to analyze
a random walk on a coarse-grained model obtained by condensation
of a given graph into a DAG. The acyclic predictions are expected to
remain good approximations when edges along paths can be considered
statistically independent, in the sense that no correlation exists between
their states. For this to hold, the process on the nodes should be slow
with respect to the edges dynamics, cycles should be long or locally,
nodes should have high degree.

1

2 3 4

56

(a) Directed graph

with cycles

1/2/3 4 5/6

(b) Directed acyclic

graph after condensation

Figure 2.3. Mapping of a directed network with cycles (A) to a DAG
(B) through a condensation process. Strongly connected components
are transformed into super-nodes.

Let us now determine the resting time density. In model 4, two possible
scenarios face the walker when ready to jump: either an edge is available with
probability r,

(2.27) r = P {edge j → i is available at a random time}
that is,

(2.28) r =
〈U〉

〈U〉+ 〈D〉 =
λ

λ+ η
,

or an extra wait period is needed before an outgoing edge turns available, with
probability

1− r =
η

λ+ η
.(2.29)

We decompose Tij(t) in two terms,

(2.30) Tij(t) = (1) + (2).

The first term corresponds to the case that the walker does not get trapped,

(2.31) (1) = ψj(t)

kj∑
`=1

1

`

(
kj − 1

`− 1

)
r`(1− r)kj−`.



2.3. RESTING TIME DENSITY 29

Edge j → i has to be available, and needs to be chosen among the kj − 1 other
edges which are also active at time t. To proceed, we use:

Fact 2.6 (Combinatorial identity). For n ∈ N0 and 0 ≤ p ≤ 1, it holds that

(2.32)

n∑
k=1

1

k

(
n− 1

k − 1

)
pk(1− p)n−k =

1

n
(1− (1− p)n) .

Proof. Using Newton’s binomial theorem, we have

n∑
k=1

1

k

(
n− 1

k − 1

)
pk(1− p)n−k =

n∑
k=1

(n− 1)!

k!(n− k)!
pk(1− p)n−k

=
1

n

n∑
k=1

(
n

k

)
pk(1− p)n−k

+
1

n

0∑
k=0

(
n

k

)
pk(1− p)n−k − 1

n
(1− p)n

=
1

n

n∑
k=0

(
n

k

)
pk(1− p)n−k − 1

n
(1− p)n

=
1

n
(p+ (1− p))n − 1

n
(1− p)n

=
1

n
(1− (1− p)n) .

�

Fact 2.6 allows to rewrite equation (2.31) as

(2.33) (1) = ψj(t)
1

kj

[
1− (1− r)kj

]
.

The quantity between square brackets is the probability that at least one edge
is available. The factor 1/kj appears because all outgoing edges are treated
indifferently, and so the probability to be chosen is distributed uniformly among
all edges including j → i.

In the second case represented by figure 2.4, the jump occurs after the walker
got trapped. If this happens on node j, then for a given i ∈ Vj the time w before
j → i becomes available has the PDF

(2.34) D(t) =
1

〈D〉

∫ ∞
t

D(ν)dν

as follows from the so-called bus paradox. Under assumption 2.5, this is again
an exponential distribution,

(2.35) D(t) = D(t).

Edge j → i is selected by the trapped walker to perform the jump a time t
if (i) the waiting-time expires before t, (ii) at that moment all other edges are
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time

τ x t

.

walker trapped

walker waiting-time walker not ready

walker trapped

walker jumps

arrives on node

leaves node

Figure 2.4. Resting time of the trapped walker. The walker arrives at
time τ on node j. At the end of the waiting-time x− τ determined by
ψj(t), none of the kj outgoing edges is active. The walker needs to wait
a subsequent duration w = t − x before a link becomes available. By
time-homogeneity, the resting time needs only be computed for τ = 0.

not active and will remain inactive at least until t, and (iii) edge j → i was also
unavailable but becomes active exactly at time t. It results that

(2.36) (2) =

∫ t

0

ψj(x)
[
(1− r)P {w > t− x}

]kj−1
(1− r)D(t− x)dx

or more compactly,

(2.37) (2) = (1− r)kj
∫ t

τ

ψj(x− τ)D(t− x)
[∫ ∞

t−x
D(s)ds

]kj−1
dx

where we have used eq. (2.35) to obtain

(2.38) P {w > t− x} =

∫ ∞
t−x

D(s)ds.

We have thus found

(2.39) Tij(t) = C
(1)
j ψj(t) + C

(2)
j

∫ t

0

ψj(x)

[∫ ∞
t−x

D(s)ds

]kj−1

D(t− x)dx,

where the constants

C
(1)
j :=

1

kj

[
1− (1− r)kj

]
(2.40)

C
(2)
j := (1− r)kj(2.41)

depend only on 〈U〉, 〈D〉, and on the topology through kj . The distribution of
U only matters through its mean that appears in r. On the other hand, the
distribution of D does matter beyond its mean, because the jump of a trapped
walker occurs directly at the end of a down-time. The resting-time density on
node j then reads

(2.42) Ψj(t) =
[
1− (1− r)kj

]
ψj(t) + (1− r)kjkjλµe−kjλt

∫ t

0

e(−µ+kjλ)xdx.
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The two terms of this PDF reflect a weighted combination of models 1 and
6, where the weight (1 − r)kj is the probability that all outgoing edges are
unavailable at a random time.

Model 5

When the walker is ready to jump, whether network edges are available or
not depends on the duration since the walker arrived on the node. That makes
the analysis somewhat more involved. Assume the walker is ready after s time
units. Let p∗(s) be the probability that an edge is in the same state it was at
time t = 0, namely

(2.43) p∗(s) = P {j → i is unavailable at time s | it is unavailable at time 0} ,
where s > 0 is random. Let also

(2.44) q∗(s) = 1− p∗(s)
be the probability the edge is available for transport at s.

Remark 2.7 (On the independence from the degree). The fact that p∗ does not
depend on the degree of the node is due to the memorylessness of the exponential
distribution. In general, smaller degrees favor the probability that the move
happened after the walker was trapped, that is, at the beginning of an up-time,
hence in turn having a reducing impact on p∗.

The two quantities p∗(s) and q∗(s) can be computed by accounting for all
possible on-off switches of the edge in the interval [0, s]. For the sake of clarity,
we make a simplifying assumption, resulting in a compact form for eqs. (2.43)
and (2.44).

Assumption 2.8. The rate parameters of the exponential random variables U
and D are the same.

Fact 2.9. Under assumption 2.8, for all s > 0 it holds that

p∗(s) =
1

2
(1 + e−2λs),(2.45)

q∗(s) =
1

2
(1− e−2λs),(2.46)

where λ is the exponential rate of the common exponential distribution.

Proof. Edge j → i is unavailable at time s in case it switched stated
exactly 2n times over that interval, n = 0, 1, . . . Hence we have

(2.47) p∗(s) =

∫ ∞
s

D(r)dr +

∫ s

0

(D ∗ U) (r)

∫ ∞
s−r

D(t) dtdr

+

∫ s

0

(D ∗ U ∗ D ∗ U) (r)

∫ ∞
s−r

D(t) dtdr + . . .

Introducing the notation for repeated convolutions

(2.48) f∗k1 ∗ g∗k2 = f ∗ · · · ∗ f︸ ︷︷ ︸
k1 factors

∗ g ∗ . . . ∗ g︸ ︷︷ ︸
k2 factors

, k1, k2 ∈ N,
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eq. (2.47) has the compact form

(2.49) p∗(s) =

∫ ∞
s

D(r)dr +

∞∑
k=0

∫ s

0

(
D ∗ U∗(k+1) ∗ D∗k

)
(r)

∫ ∞
s−r

D(t) dtdr.

The convolution U∗k ∗ D∗k is the PDF of the sum of the random variables

(2.50) X
(k)
U +X

(k)
D

where X
(k)
U (resp. X

(k)
D ) is the sum of k exponential random variables with

parameter η (resp. λ). It is well known that

X
(k)
U ∼ Erlang(k, η)(2.51)

X
(k)
D ∼ Erlang(k, λ).(2.52)

Using [62] for the convolution of Erlang densities, we find that the density of
(2.50) is given by

(2.53)
(
U∗k ∗ D∗k

)
(t) =

(ηλ)k

(λ− η)2k

×
k∑
j=1

[
(−1)k−j

(j − 1)!

(
2k − j − 1

k − j

)
(λ− η)j

{
e−ηt + (−1)je−λt

}]
tj−1χR+(t).

Introducing (2.53) in (2.49) and using assumption 2.8, after a computation one
comes to

(2.54) p∗(s) = e−λs cosh(λs) =
1

2

(
1 + e−2λs

)
,

and the expression for q∗(s) follows directly. �

If the walker is ready after a short time s, the edge will probably still be
down, p∗(0) = 1, while for large s, the state of the edge is up or down with equal
probability, lims→∞ p∗(s) = 1

2 . The second term of eq. (2.45) is the increase

with respect to r = 1
2 , and it is smaller for a higher rate λ and for larger s− ν.

This is because more switches will decrease the memory effect on the state of
the edge. These observations are depicted by fig. 2.5.

So now, we have an expression similar to (2.42) except that r and 1 − r
are essentially replaced by the time-dependent q∗ and p∗. Let us begin by first
writing an expression for Tij(t):

Tij(t) =
1

kj

[
1− p∗(t)kj

]
ψj(t)

+

∫ t

0

ψj(x)

[
p∗(x)

∫
t−x

D(s)ds

]kj−1

p∗(x)D(t− x)dx

=
1

kj

[
1− p∗(t)kj

]
ψj(t) + λµe−kjλt

∫ t

0

p∗(x)kje(−µ+kjλ)xdx

=
1

kj

[
1− p∗(t)kj

]
ψj(t) +

λµ

2kj
e−kjλt

∫ t

0

(
1 + e−2λx

)kj
e(−µ+kjλ)xdx,
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p
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Figure 2.5. Evolution of p∗(s), the probability for an edge to be
unavailable at time s knowing it was down at 0, in the all-exponential
case and for various ratios of η/λ. The teal and orange curves come
from eq. (2.49), whereas the gray series corresponds to eq. (2.54). In all
cases, the horizontal dotted series indicate the corresponding values of
r = λ/(λ+ η).

and using Newton’s binomial formula in both terms,

=
1

kj

1− 1

2kj

kj∑
m=0

(
kj
m

)
e−2mλt

ψj(t) +
λµ

2kj
e−kjλt

kj∑
m=0

(
kj
m

)
1

βm

(
eβmt − 1

)(2.55)

where we have set βm = −µ+ kjλ− 2mλ. The resting time density therefore
reads:

(2.56) Ψj(t) = µe−µt − µ

2kj

kj∑
m=0

(
kj
m

)
e−(µ+2mλ)t

+
µ

2kj
kjλ

kj∑
m=0

(
kj
m

)
1

βm
e−(µ+2mλ)t − µ

2kj
kjλ

kj∑
m=0

e−kjλt
(
kj
m

)
1

βm
.

2.4. Mean resting time

The mathematical expectation the resting time X(j) on node j is given by

(2.57) E{X(j)} =

∫ ∞
0

tΨj(t)dt,

and will also be referred to by 〈Ψj〉. It is naturally called the mean resting time
(or mean residence time, MRT) and is relevant in many scenarios, as it will for
instance directly determine the relaxation time on tree-like structures.
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2.4.1. Derivation of the mean resting time

In this section we handle the models by increasing level of complexity.

Models 1, 2 and 3

In the active node-centric walk, one writes directly 〈Ψj〉model 1 = 1
µ . It

follows from the resting time density of model 2 in eq. (2.22) that

(2.58) 〈Ψj〉model 2 = E
{
X(j)
d

}
,

where X(j)
d was introduced by equation (2.8).

Model 6

Consider first the case µ = kjλ. Following eq. (2.25), the mean resting time
reads

(2.59) 〈Ψj〉model 6 =

∫ ∞
0

µt2kjλe
−kjλtdt.

Recalling that the n-th moment of an exponential distribution with rate λ is
E(Xn) = n!/λn, we have

(2.60) 〈Ψj〉model 6 = 2/µ = 1/µ+ 1/(kjλ).

The same expression is obtained in the case when µ 6= kjλ. Indeed, from (2.26),

〈Ψj〉model 6 =
λµ

kjλ− µ

∫ ∞
0

(
e−µτ − e−kjλτ

)
dτ =

λµ

kjλ− µ

(
1

µ2
− 1

(kjλ)2

)
,

that is,

(2.61) 〈Ψj〉model 6 =
1

µ
+

1

kjλ
= E{Xw}+ E{X(j)

d },

justifying again to consider (Mod. 6) an additive model.

Model 4

We have observed that the resting time PDF (2.42) is a weighted combination
of the PDFs of models 1 and 6, such that

〈Ψj〉model 4 = 〈Ψj〉model 1 + 〈Ψj〉model 6

=
[
1− (1− r)kj

]
E{Xw}+ (1− r)kj

(
E{Xw}+ E

{
X(j)
d

})
= E{Xw}+ (1− r)kjE

{
X(j)
d

}
.(2.62)

Under this form, we see the model is conditionally (depending on r) additive.
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Model 5

The mean resting time follows from the PDF (2.56) as

(2.63) 〈Ψj〉model 5 = E{Xw} −
µ

2kj

kj∑
m=0

(
kj
m

)
1

(µ+ 2mλ)2

+
µ

2kj
kjλ

kj∑
m=0

(
kj
m

)
1

βm

1

(µ+ 2mλ)2
− µ

2kj
1

kjλ

kj∑
m=0

(
kj
m

)
1

βm
.

Regrouping the terms, we get

〈Ψj〉model 5 = E{Xw}+
µ

2kj

kj∑
m=0

(
kj
m

)(
1

(µ+ 2mλ)2

[
kjλ

βm
− 1

]
− 1

βm

1

kjλ

)

= E{Xw}+
µ

2kj

kj∑
m=0

(
kj
m

)
1

βm

(
1

µ+ 2mλ
− 1

kjλ

)

= E{Xw}+
µ

2kj

kj∑
m=0

(
kj
m

)
1

µ+ 2mλ
E
{
X(j)
d

}
.(2.64)

2.4.2. Discussion

All models have a mean resting time that we cast under the form

(2.65) 〈Ψj〉 = αE{Xw}+ β(kj , µ, λ)E
{
X(j)
d

}
,

where α depends only on the walker and β(kj , µ, λ) is topology driven since
it represents the probability that all outgoing edges are unavailable when the
walker is ready. Summing up the results of this section, we have

αmodel 1 = 1 βmodel 1(kj , µ, λ) = 0(2.66)

αmodel 2 = 0 βmodel 2(kj , µ, λ) = 1(2.67)

αmodel 3 = 0 βmodel 3(kj , µ, λ) = 1(2.68)

αmodel 4 = 1 βmodel 4(kj , µ, λ) = (1− r)kj(2.69)

αmodel 5 = 1 βmodel 5(kj , µ, λ) =
1

2kj
µ

kj∑
m=0

(
kj
m

)
1

µ+ 2mλ
(2.70)

αmodel 6 = 1 βmodel 6(kj , µ, λ) = 1.(2.71)

Recall that (2.70) was derived under assumption 2.8, η = λ, for which r = 1
2 .

To allow a fair comparison between models we write

(2.72) βmodel 4(kj , µ, λ) =
1

2kj
.

Using standard algebra, it is straightforward to check that

(2.73) 0 = βmodel 1 < βmodel 4 < βmodel 5 < βmodel 6 = 1,



36 2. MESOSCOPIC FOUNDATIONS OF DIFFUSION

for all kj ∈ N0 and all positive reals µ and λ. The smaller this coefficient, the
larger the expected number of jumps along the trajectories of the walk, all other
parameters being chosen equal.

We want to compare the three where there is a dynamical walker-network
interaction. To this end, let us define the ratios of mean resting times

R1 :=
〈Ψj〉model 4

〈Ψj〉model 6
,(2.74)

R2 :=
〈Ψj〉model 5

〈Ψj〉model 6
.(2.75)

These quantities depend only on the degree kj , and on a new variable ξ := λ
µ .

Indeed, we write

R1(kj , ξ) =
kj2

kjξ + 1

kj2kjξ + 2kj
,(2.76)

R2(kj , ξ) =
kj2

kjξ +
∑kj
m=0

(
kj
m

)
1

1+2mξ

kj2kjξ + 2kj
.(2.77)
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(a) Model 4, eq. (2.76). The reduc-
tion in MRT is substantial for small

ξ, especially combined with larger de-

grees such that the relatively slow
network timescales have less impact.
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(b) Model 5, eq. (2.77). The reduc-
tion in MRT is less pronounced than

in the comparatively faster model 4.
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and even van-
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Figure 2.6. Reduction in mean resting times of models 4 and 5 with
respect to the additive model 6. The ratios R1 and R2 compare the
three models with two timescales given by µ and λ = η, for which there
is walker-edges interaction. Going from walk (1) to (4) to (5) to (6), the
MRT increases - all dynamical and topological parameters being equally
chosen. Diffusion on a tree topology would be slower. Notice that only
the degree kj and ξ = λ

µ determine these comparisons.
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The above expressions are plotted in figure 2.6 for various values of the
degree. That Ri(kj , ξ →∞) = 1 for i = 1, 2 and R2(kj , 0) = 1 is a consequence
of the asymptotic behavior of the resting time densities.

2.5. Steady state

One core application of random walks is their ability to rank nodes of
a network according to the long-term residence probability of the walker, an
information directly accessible from the steady state (SS) of the preceding
section. We have mentioned that the steady state is essential to Google’s
PageRank algorithm, but obviously goes beyond the ranking of webpages. It
can notably help identify the most prominent or threatening figures in a network
of individuals, a motivation for what follows.

2.5.1. Derivation of the steady state

Let D〈T 〉 be the diagonal matrix of the MRT,

(2.78)
[
D〈T 〉

]
ij

= 〈Ψj〉δij .

A small-s analysis of the generalized master equation (2.19) showed in [54] the
steady-state to be

(2.79) n(∞) := lim
t→∞

n(t) ∝ D〈T 〉v,

where ∝ is the proportionality symbol and v = (v1, . . . , vN ) is the eigenvector
associated to the unit eigenvalue of the effective N × N transition matrix T.
Recall eq. (2.18),

(2.80) Tij =

∫ ∞
0

Tij(t)dt =
1

kj
Aji.

One straightforwardly checks that vj = kj satisfies

(2.81) (Tv)i =

N∑
`=1

A`i = ki,

where the last equality assumes that the network is balanced, namely, the in-
degree of node i is equal to its out-degree ki. In other words, when the underlying
network is balanced, the steady state is [54]

(2.82) nj(∞) ∝ D〈T 〉kj .

Our goal is to understand how the SS depends on the modeling scheme and
hence how the ranking process changes accordingly. We will compute those
steady states and report the result graphically on figs. 2.7 and 2.8.
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(a) Model 5, eq. (2.90)
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(b) Model 6, eq. (2.87) (c) Directed Erdös-Rényi
graph. Each edge represents

a pair of reciprocal links.

Figure 2.7. Steady states for models 5 and 6. Those models behave in
the limit for the fast walker, µ→∞, as a Markovian passive edge-centric
random walk, where the steady state is uniform across the network. In
the small-µ limit, the steady state probability is proportional to the
degree, like in the Markovian active node-centric walk. This behavior
does not hold true for model 4. The rate parameters are η = 1 = λ = 1.

Models 1, 2 and 3.

For later comparisons, let us briefly recall that with the node-centric model 1,
〈Ψj〉 = 1

µ and the steady-state is proportional to degree,

(2.83) n
(Mod. 1)
j (∞) =

kj∑N
`=1 kl

,
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whereas with the active edge-centric model 2 we have

(2.84) n
(Mod. 2)
j (∞) =

1

N
.

As pointed out, the same expression is valid for the passive edge-centric walk
of model 3 when the down-time distribution is exponential. One easily verifies
that the right-hand side of ṅ = nLrw vanishes for n = n(Mod. 1)(∞), while
the same holds true with ṅ = nL for n = n(Mod. 2)(∞). Uniformity of the
steady-state (2.84) is due to the fact that the edges are all selected just as
frequently. Well-connected nodes are more likely to be visited by the walker,
but will be left sooner.

Model 6

Based on eq. (2.82) we have

(2.85) n
(Mod. 6)
j (∞) ∝

(
1

µ
+

1

kjλ

)
kj =

1

λµ
(µ+ kjλ),

and after normalisation we get

(2.86) n
(Mod. 6)
j (∞) =

kjλ+ µ∑N
`=1 k`λ+ µ

or under a different form, after division by kjλµ,

(2.87) n
(Mod. 6)
j (∞) =

1
µ + 1

kjλ∑N
`=1

k`
kj

1
µ + 1

kjλ

=
E{Xw}+ E

{
X(j)
d

}∑N
`=1

k`
kj
E{Xw}+ E

{
X(j)
d

}
We recover the expressions of the active node-centric (Mod. 1) and edge- centric
(Mod. 4) walks in the respective limits λ→∞ and µ→∞.

Model 4

This model necessitates a preliminary observation concerning the method.
The transition density derived in the preceding section results to be only an
approximation when the graph has cycles. On the other hand, the steady state
formula (2.82) assumes balanced networks. Hence, the steady state we will
obtain with eq. (2.89) is an approximation if the balanced network has cycles,
for instance when the network has reciprocal links.

Let us now proceed with the analysis. We have

(2.88) n
(Mod. 4)
j (∞) ∝ kj

µ
+ (1− r)kj 1

λ

and through normalization we obtain

(2.89) n
(Mod. 4)
j (∞) =

kj
µ + (1− r)kj 1

λ∑N
`=1

[
k`
µ + (1−r)k`

λ

] .
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(a) Analytic, eq. (2.89). Remarkably,
when µ→∞, the steady-state prob-
ability is high when degree is low.
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(b) Monte Carlo simulation of 104

trajectories of a walker, in the range
of values of µ corresponding to the

reversed degree-based ranking

Figure 2.8. Steady state for model 4. The analytical prediction of panel
(A), which does not account for the presence of cycles in the network, is
qualitatively confirmed by Monte Carlo simulation of the actual process
on panel (B). Kendall’s Tau coefficient on fig. 2.9 captures the inversion
with respect to the degree-based ranking. The rate parameters and
network are those of fig. 2.7.
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Figure 2.9. Kendall’s Tau correlation coefficient for the steady state
of model 4 relative to fig. 2.8b. When Kendall’s τ is one , the ranking
is degree-based; when τ is −1, it is reversed. There is no link between
the two when τ is 0.

As expected, n
(Mod. 4)
j (∞) tends to n

(Mod. 1)
j (∞) when λ → ∞. But more

importantly, in the limit of a very fast walker we have

lim
µ→∞

n
(Mod. 4)
j (∞) =

(1− r)kj∑N
`=1(1− r)k`

.
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It results that smaller residence probabilities are associated with nodes with
larger degree. At variance for a relatively slow walker, larger degree means larger
probability:

lim
µ→0

n
(Mod. 4)
j (∞) =

kj∑N
`=1 k`

.

It was reported before that fat-tailed resting times on a portion of the nodes
of a network could lead to accumulation on these nodes in spite of their low
degree [41]. In our case, the renewal process ruling the jump times arises
from interaction between walker and network, without explicitly reverting to
long-tailed distributions of the resting time on certain nodes.

Model 5

Resulting directly from the transition density given by (2.64), we have

(2.90) n(Mod. 5)(∞) ∝ 1

µ
+

µ

2kjλ

kj∑
m=0

(
kj
m

)
1

µ+ 2mλ

and the normalization factor is given by

(2.91)

[
N

µ
+
µ

λ

N∑
`=1

(
1

2k`

k∑̀
m=0

(
k`
m

)
1

µ+ 2mλ

)]−1

.

2.5.2. Discussion

In this discussion we compare the introduced models based on a numerical
experiment, and then give details about the Monte-Carlo random walk simulator.

2.5.2.1. Comparison between models

For our simulations, we selected an Erdös-Rényi graph with 30 nodes and
connection probability 1

5 pictured on fig. 2.7c. All reciprocal links are present,
implying the graph is not cycle-free. Figures 2.7a and 2.7b indicate no departure
for models 5 and 6 from the degree-based ranking, at variance with the peculiar
behavior of model 4 on fig. 2.8. The figure shows that the steady state computed
with the theoretical formula is in good agreement with Monte-Carlo simulations
describe below. The formula proved mostly accurate throughout our numerical
investigation, certainly in terms of ranking of the nodes.

The discrepancy between fig. 2.8a and fig. 2.8b is not a finite-size effect of
our sample, and is confirmed by a 95% confidence interval, although it was not
reported on the figure for clarity. The network topologies and range of values
for the dynamical parameters which preserve the agreement between analytical
approximation and simulation, together with confidence intervals, are further
discussed in chapter 3.
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2.5.2.2. Numerical simulation

The numerical method relies on Monte-Carlo simulation to determine the
probabilities n(t) by averaging over a large number M of realizations. Each
trajectory of the walker corresponds to new samples of the stochastic processes
regulating the walker’s waiting-times and the up- and down-times of the edges.
The time interval [0, T ] of each realization is discretized according to a uniform
partition

(2.92) 0 = t0 < t1 < · · · < tm = T, ∆t = tk − tk−1.

For a fixed t ∈ [0, T ] and j ∈ V , the probability nj(t) is given by

(2.93) nj(t) = P{Z(t) = j} = E
{
χZ(t)=j

}
,

which is approximated by its estimator χZ(t)=j . Here the averaging is performed
over the sample of the walker’s position at time t,

(2.94) {Zω1(t), . . . , ZωM (t)} ,
which results form the simulation of M independent trajectories ω1, . . . , ωM .
Since M is large, it results from the central limit theorem that χZ(t)=j is
approximately normally distributed. Therefore,

(2.95)
√
M
χZ(t)=j − E

{
χZ(t)=j

}
sM

∼ tM−1,

where s2
M denotes the unbiased sample variance and tM−1 is a Student’s t-

distribution with M − 1 degrees of freedom. A confidence interval readily follows
from (2.95) noticing the convergence in distribution of the t-distribution to a
normal standard law when M →∞.

Since the jumps occur at irregular times and the probabilities nj(t) are com-
puted on the partition (2.92), averaging is performed of the intervals (tk−1, tk],
and each sample is given by

(2.96) χZω` (tk)=j ≈
1

∆t

∫ tk

tk−1

χZω` (t)=jdt

for k = 1, . . . ,m and ` = 1, . . . ,M . In essence the probabilities nj(tk) are
approximated by the fraction of time spent by the walker on node j over the
time interval (tk−1, tk] [54].

2.6. Conclusion

This chapter proposes models of random walks where the walker does not
have a memory and is unbiased, and offers a look into their trajectories when
defined on temporal networks. As we have discussed, there exist different ways to
inter-connect the dynamics of the walker and of the network, and this interplay
may break the Markovianity of the system, even in purely active models or
passive models without cycles. A long-tailed walker waiting time on (a subset of)
the node(s), such as in [41], is not required to observe a dramatic departure from
the steady-states of the classical random walk models. We have revealed that
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the mean resting time may be impacted, resulting in a slowed-down diffusion on
tree-like structures.

Overall, our work underlines the importance of the different timescales
associated to random walks on temporal networks, and unveils the importance
of the duration of contacts on diffusion. In this paradigm, the walk that most
naturally combines the classical active node-centric and passive edge-centric
walks, is described by model 4. In this model the interaction of a memoryless
walker and a network governed by memoryless distributions leads to the loss of
the trajectory Markov property and of time-homogeneity. In the next chapter
we develop a mathematical framework further enabling an analytic treatment of
this finding, and of the influencing factors such as the rates of the distributions
and the topology of the graph.





CHAPTER 3

Emergence of memory with
competing timescales

3.1. Introduction

Mathematical analysis of dynamics on temporal networks often relies on
the assumption that links activate during an infinitesimal duration [54]. We
have seen in chapter 2 that in the case of continuous-time random walks, this
framework naturally reduces to Markovian and semi-Markovian process, and
the dynamics then exhibits interesting properties including the so-called waiting
time paradox [127, 48]. The emergence of non-Markovian trajectories is even
more pronounced in situations when the activations of the edges are correlated,
often requiring the use of higher-order models for the data [122, 78].

However, this whole stream of research neglects an important aspect of
the edge dynamics, the non-zero duration of their availability, which has been
observed and characterized in a variety of real-life systems, including sensor
data [45, 138, 121]. In the previous chapter, microscopic models have been
introduced and analyzed, in order to capture this specificity of the edges and some
of its applied consequences. In particular, we proposed a natural combination
of the fundamental active node-centric, and passive edge-centric random walks.
This lead to a model which is neither node-centric nor edge centric, but where
the active feature of the walker-level dynamics, and the passive character of its
decoupled edge-level counterpart are both preserved.

We have seen with fig. 2.8 that this new walk, model 4, is a semi-Markovian
process described by the master equation eq. (2.21) only when the underlying
graph does not have cycles. Our main objective is therefore to develop an
analytical framework that also applies to non-Markovian random walks on
temporal networks with finite up-times. This will finalize our contributions with
respect to our first research question.

In addition to the presence of cycles, the competition between the three
timescales makes the problem particularly rich. Figure 3.1 summarizes possible
scenarios of timescale separation. It conveys the message that in two limit
regimes the regular single-timescale CTRWs are essentially recovered. In one
regime, the trajectory of the walker is solely determined by the waiting time
on the nodes, since the edges are nearly always active. In the second regime,
the time spans between two instantaneous up-times of the edges dominate the
dynamics, as it is the slowest component. But generally speaking, not only one

45
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U(t)

D(t)

U(t)

D(t)

U(t)

D(t)

U(t)

D(t)

A B

CD

longer down-times shorter down-times
longer up-times

shorter up-times

Figure 3.1. Modeling depending on timescale separation. The bottom
panel represents the characteristic up-time and down-time durations with
respect to the walker’s own timescale. The corners labeled from A to D
correspond to the four cases where there is a clear timescale separation
between up-times, down-times and waiting time of the walker. Each
of these situations is described by one of the top panels, representing
typical PDFs U(t) and D(t). At the right of the domain, in the region
ranging from B to C, the network dynamics has less influence. In the
region around D, the modeling may possibly only retain the down-times,
and the walker’s waiting time. Our focus is on the center of the domain,
between the dotted regions, where the full complexity of the model
needs to be accounted for.

timescale prevails and neither of the former two asymptotic regimes can capture
the full dynamics, thereby motivating this chapter.

This chapter is organized as follows. In section 3.2, we consider the semi-
Markovian case that arises when the graph is a DAG. We present equivalent
node-centric and edge-centric formulations for the walk. Then we derive the
propagator and a transport equation without using the Laplace transform.
We discuss in section 3.3 the two sources, dynamical and topological, for the
emergence of memory in the trajectories. In section 3.4 we then apply our
time-domain method initially developed for DAGs, to graphs with cycles. We
explicitly compute corrections to the transition kernel accounting for short cycles
of length 2. The analytical predictions are confronted with numerical simulations
in section 3.5, which also contains details about the numerical implementation
of our formalism. We finally conclude and give perspectives in section 3.6.

3.2. The semi-Markovian case

As a first step, we consider the trajectory of a random walker as defined
by model 4 on a DAG. The reason for that is twofold. First, we will show that
the three different timescales still allow for purely node-centric, or edge-centric
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models with statistically equivalent trajectories. Secondly, we will show how to
find the propagator which maps the initial condition to the residence probabilities
at a subsequent time, without reverting to the Laplace transform. Although not
necessary at this stage, our approach will come in handy when we deal with the
non-Markovian case.

3.2.1. Equivalent node- and edge-centric models

Even beyond Poisson processes, the model on DAGs can be cast into a
node-level-only process, or into an edge-level-only variant with instantaneous
durations of edges availability, and a walker who has no own waiting time. We
will discuss both approaches, which enable the use of the formalism valid form
models 1 and 3 of chapter 2.

3.2.1.1. Node-centric model

The goal is to compute the PDF Ψj for the resting time X(j) of the walker,
based on ψ, U and D. Observe that Ψj depends on the node only through its
out-degree. Let D(1),j be the PDF of the random variable w(1),j defined as the
minimum of kj independent random variables w with density D given by the
bus paradox, eq. (2.34). Using independence we have

D(1),j(t) =
d

dt

(
1− P

{
w(1),j > t

})
(3.1)

= − d

dt
(P{w > t})kj

= kj (1− Fw(t))
kj−1 D(t),(3.2)

where Fw(t) is the distribution function of w. The contribution of the edges to
the total waiting time has density given by

(3.3) E(1),j(t) = (1− r)kjD(1),j(t) + (1− (1− r)kj )δ(t).
Observe that it is properly normalized,

(3.4)

∫ ∞
0

E(1),j(t)dt = (1− r)kj
∫ ∞

0

D(1),j(t)dt+ 1− (1− r)kj = 1.

By additivity, the resting-time of the walker in node j is given by

(3.5) Ψj(t) = (ψ ∗ E(1),j)(t)

such that

(3.6) Ψj(t) = (1− r)kj (ψ ∗ D(1),j)(t) + (1− (1− r)kj )ψ(t).

When all densities are exponential, w(1),j ≡ X(j)
d as given by eq. (2.8) is expo-

nentially distributed with rate kjλ and we know that

(3.7) (ψ ∗ D(1),j)(t) =
kjλµ

µ− kjλ
(
e−kjλt − e−µt

)
,

which may be plugged in (3.6) and we recover Ψj(t) of eq. (2.62).
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3.2.1.2. Edge-centric model

When opting for an edge-centric model, one has to determine the distribution

of the down-times on the edges such that Ψj be given by eq. (3.6). Let X
(j)
d

be the random variable associated in this edge-centric model to the down-time
of an edge originating from node j. This is the usual notation, except for the
superscript indicating the dependence on the (degree of the) node. Denoting as
always by FA the cumulative distribution of a random variable A, we have

(3.8) FX(j)(t) = 1− P
{
X(j) > t

}
= 1−

(
1− F

X
(j)
d

(t)
)kj

which is then solved for F
X

(j)
d

(t). The PDF of the down-times is then given by

differentiation,

(3.9)
d

dt
F
X

(j)
d

(t) =
1

kj

(
1− FX(j)(t)

)1/kj−1
Ψj(t).

3.2.2. Time-domain derivation of the propagator

Consider a random walker initially located at node Z(0) = j0. The propaga-
tor of the walk maps the initial condition n(0) given by

(3.10) nj(0) = P {Z(0) = j} = δjj0 , j = 1, . . . , N,

to n(t), the vector of residence probabilities at a later time t, namely nj(t) =

P{Z(t) = j}. Let q
(k)
j (t) be the conditional PDF of the arrival time on node j

in k jumps, conditionally on the initial condition, obeying the normalization
condition

(3.11)

N∑
j=1

∫ ∞
0

q
(k)
j (t)dt = 1, ∀k ∈ N.

In particular observe that for k = 0, we have

(3.12)

N∑
j=1

∫ ∞
0

q
(0)
j (t)dt =

N∑
j=1

∫ ∞
0

nj(0)δ(t)dt =

N∑
j=1

δjj0 = 1,

and for k = 1,

(3.13)

N∑
j=1

∫ ∞
0

q
(1)
j (t)dt =

N∑
j=1

∫ ∞
0

Tjj0(t)dt =

∫ ∞
0

Ψj0(t)dt = 1.

Therefore,

(3.14) qj(t) :=

∞∑
k=0

q
(k)
j (t)

represents the conditional probability density of the arrival time on node j
in any number of jumps. Observe that qj(t) does not satisfy a normalization
condition such as eq. (3.11). Let also Φj(t, τ) be the survival probability, i.e.
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the probability to stay on node j at least up to t > τ with τ the arrival time on
node i, such that

(3.15) nj(t) =

∫ t

0

Φj(t− τ)qj(τ)dτ.

Here we have used time-homogeneity, Φj(t, τ) ≡ Φj(t− τ), which also applies
for the transition kernel, Tij(t, τ) ≡ Tij(t− τ). We have the relationship

Φj(t− τ) = 1−
∫ t

τ

Ψj(ν − τ)dν = 1−
∫ t

τ

∑
i∈Vj

Tij(ν − τ)dν.(3.16)

Remark 3.1 (Survival probability with exponential distributions). Under as-
sumption 2.5, following a direct calculation based on the expression for Tij(t),
eq. (2.39), the survival probability reads

(3.17) Φj(t) = 1− (1− r)kj
(

1− 1

λkj − µ
(
λkje

−µt − µe−λkjt
))

−
(
1− (1− r)kj

) (
1− e−µt

)
,

a fact that will be used throughout our numerical simulations.

We want to write the column vector n(t) = (n1(t), . . . , nN (t))T in terms
of the transition kernel Tij and of the initial condition n(0). Combining (3.15)
and (3.16) shows that we have to determine qj(t). We have

(3.18) qj(t) =

∞∑
k=1

q
(k)
j (t) + q

(0)
j (t),

where we recall q
(0)
j (t) = nj(0)δ(t). Equivalently,

(3.19) qj(t) =

∞∑
k=0

q
(k+1)
j (t) + q

(0)
j (t),

where

(3.20) q
(k+1)
j (t) =

N∑
i=1

∫ t

0

Tji(t− ν)q
(k)
i (ν)dν.

Summing on both sides over k ≥ 0 and adding q
(0)
j (t) yields

(3.21) qj(t) =

N∑
i=1

∫ t

0

Tji(t− ν)qi(ν)dν + q
(0)
j (t).

In vector form, with q(t) = (q1(t), . . . , qN (t))
T

, this becomes

(3.22) q(t) = T q(t) + q(0)(t)

where T is the finite-rank linear integral operator acting on q(t) defined by:

(3.23) T q(t) =

∫ t

0

T (t− ν)q(ν)dν,

and where the kernel T (t) is a matrix function with component (i, j) given by
Tij(t). Due to the acyclic nature of the graph, we obtain with eq. (3.23) a
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convolution and applying a Laplace transform allows to solve (3.22) for q(t), as
was done in [54].

It is however not mandatory to use the Laplace transform to solve the
integral equations (3.22) for q(t) and obtain a Laplace-domain Montroll-Weiss
equation for n(t). We can proceed directly in the time domain and solve the
equation relying on the acyclic nature of the graph. From eq. (3.22) we find

(3.24) q(t) = (I − T )−1q(0)(t) =
∞∑
k=0

T kq(0)(t),

where the convergence of the Neumann series follows directly from an argument
in [47, Appendix A.2], that is based on the Perron-Frobenius theorem for
non-negative matrices. In terms of the initial condition, we have

(3.25) q(t) =

∞∑
k=0

T kδ(t)n(0).

The successive terms T kn(0)δ(t) account for the probability to arrive on a given
node at time t, starting from the initial node in exactly k steps.

Remark 3.2. In general, the Neumann series does not offer a practical way for
computing (I − T )−1 since it involves an infinite number of terms. Because we
make the assumption that the underlying graph G has no cycles, the series can
be cut after d terms, where d is the diameter of the graph.

Once q(t) is found, we consider equation (3.15), which can be cast under
the form

(3.26) n(t) = Pq(t)

where P is another finite-rank, diagonal operator with components given by

(3.27) (Pq(t))j =

∫ t

0

Φj(t− τ)qj(τ)dτ, j = 1, . . . , N.

The right-hand-side of (3.27) can be computed directly in the time-domain,
or through a Laplace transform and we have thus found the propagator. An
integration of the analytical model is compared against Monte-Carlo simulation
on figure 3.2 under assumption 2.5 that all random variables are exponentially
distributed.

3.2.2.1. Time-domain transport equation

From (3.15) we can compute ṅ(t) in terms of the transition kernel and of the
initial condition. Applying Leibniz’s rule for differentiation under the integral
sign, we obtain

ṅj(t) = qj(t)−
∫ t

0

qj(τ)
∑
i∈Vj

Tij(t− τ)dτ = qj(t)−
∫ t

0

qj(τ)Ψj(t− τ)dτ.

(3.28)

The interpretation is that the rate of variation of nj(t) is given by a sum of all
arrivals minus the departures, with each departure resulting from a previous
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(a) The solid curves represent the analytical probabilities nj(t). Monte-

Carlo simulation based on 105 independent trajectories determined shaded
areas representing a confidence interval of one standard deviation above
and below the mean. The mean was not drawn to preserve readability.
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(b) The walker is initially located on node 1.

Figure 3.2. Validation of the analytical model on a DAG with expo-
nential distributions with equal rates, µ = η = λ = 1.

arrival at any point in time. In matrix form, with the obvious definition for the
diagonal operator Q, eq. (3.28) reads

(3.29) ṅ(t) = (I −Q)q(t) = (I −Q)

∞∑
k=0

T kq(0)(t)

and using eq. (3.26), we formally obtain the generalized master equation

(3.30) ṅ(t) = (I −Q)P−1n(t).

It should be remarked that the operator (I−Q)P−1 is nonlocal in time, and that
this equation is generally non-Markovian, or put differently, that the process it
describes has memory, as we discuss in the next section.

3.3. Emergence of memory

There are two causes for the loss of the Markov properties in time and
trajectory. The first one is dynamical and due to the different timescales, whereas
the second one is topological with the existence of cycles. We will illustrate
both contributions numerically. Our approach is to neglect these sources in the
modeling, and to compare the result against Monte-Carlo simulation.
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3.3.1. Neglecting timescales

Figure 3.1 hints towards the existence of three possible scenarios: one where
the dynamics of the walker dominates, one where the down-times dominate, and
a third one where the modeling should clearly account for all the three processes.
This claim is sustained by an illustrative example on fig. 3.3 where Monte-Carlo
simulation over [0, T ] compares the error in the modeling when keeping only one
timescale,

eMod.1(T ) =

∫ T

0

∥∥∥n(Mod.1)(t)− n(t)
∥∥∥

2
dt(3.31)

eMod.3(T ) =

∫ T

0

∥∥∥n(Mod.3)(t)− n(t)
∥∥∥

2
dt(3.32)

for a range of values of the exponential rates (η, λ) on the edges, while the
walkers timescale is normalized, µ = 1. Here n(Mod.1)(t) and n(Mod.3)(t) are
respectively given by the node-centric eq. (2.6) and the edge-centric eq. (2.10),
whereas n(t) results from Monte-Carlo simulation. The existence of the two
regimes (low error, teal-colored regions) corresponding to the dotted areas on
fig. 3.1 is hereby confirmed. Keep in mind that the error levels displayed on the
figure obviously dependent on the various topological and dynamical parameters,
but also on the duration of the simulation, and that this plot hardly provides
any rule to decide when timescales may be neglected.

Section 3.4 aims at providing the necessary modeling framework to cover
the full domain of this plot, including the region where both errors are large and
where the full interplay of the walker’s and edges’ behaviors should be accounted
for.

3.3.2. Neglecting the cycles in the graph

The results derived thus far relied on an assumption of independence between
events, edges appearing or vanishing, encountered by the random walker. This
assumption ceases to hold true when the underlying network has cycles. In
chapter 2, we have seen with fig. 2.8 that despite the qualitative agreement
of the steady-state-based ranking between analytical modeling on DAGs and
Monte-Carlo simulation, there was some amount of quantitative discrepancy
between the two. The purpose of fig. 3.4 is to highlight the significant deviations
between the acyclic approximation and the numerical simulation of the walk,
even in situations when each of the three processes is Poisson, on the small
graph with cycles visible on fig. 3.3c. The semi-Markov property is visibly lost,
and the memory effect is visibly stronger when the walker’s timescale is faster.
These observations justify the corrective framework of the next section.

3.4. Mesoscopic modeling with cycles

In general, if cycles are present in the network, the state space is essentially
the full trajectory of the random walk, which makes the problem intractable
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(b) Error of the active node-centric
model, eq. (3.31)

1 2 3

(c) Directed graph with a 2-cycle
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Figure 3.3. Neglecting timescales. This figure provides a comparison
of the passive edge-centric (a) and active-node centric (b) models with
Monte-Carlo simulation involving 4 · 103 independent trajectories on the
graph in (c). The error between the predictions of those single-timescale
models and the actual (Monte-Carlo) probabilities nj(t) is plotted for
various combinations of the rates η and λ, with µ = 1. The time interval
of the simulation is [0, 5].

analytically. We therefore propose a method estimating the corrections due
to cycles of a given length. Although the proposed framework is general, we
restrict the following discussion to contributions of cycles of length two. This will
speed up the numerical simulations, as the incorporation of long cycles comes
with increased computational cost. Also note that longer cycles are associated
to weaker corrections, as more time between two passages tends to wash out
footprints left by the walker.

3.4.1. Propagator with corrections for 2-cycles

In order to allow a correction for 2-cycles, we will basically view the walk as
a second order Markov chain. Accordingly, we condition the arrival-times on a
node based on the time of the previous move. Let us define qjmm′(τ, ν) to be
the arrival time density for the couple (τ, ν) on nodes m′ → m → j. Observe
that almost surely, 0 < ν < τ . As depicted by figure 3.5, let Ti|jmm′(t|τ, ν) be
the conditional transition kernel across edge j → i at time t, taking the two
previous jumps into account: from m′ to m at time ν and from m to j at time τ .
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Figure 3.4. Neglecting the cycles. The stationary state nj(∞) for
several values of the rate µ of the walker is plotted resulting from Monte-
Carlo simulation (solid lines with filled markers) and the analytical
model on DAGs (dashed lines). The width of the shading around the
Monte-Carlo curves corresponds to twice the standard deviation of the
mean computed from 4 · 104 independent trajectories. The up- and
down-time rates are η = 1 = λ and the initial condition of the walk is
n(0) = (1, 0, 0)T . This figure indicates that the memory effect is more
pronounced when the walker’s rate increases. We used the graph of
fig. 3.3c.
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Figure 3.5. Jump times and nodes in the definition of the transition
kernel Ti|jmm′(t|τ, ν) and of the survival probability Φjmm′(t|τ, ν). Here,
nodes m′ and j and nodes m and i are not necessarily different nodes.

By the limited amount of memory we take into account, this conditional kernel
actually depends only on the durations t− ν and τ − ν:

(3.33) Ti|jmm′(t|τ, ν) = Ti|jmm′(t− ν|τ − ν, 0) =: T̃i|jmm′(t− ν|τ − ν).

Here we use the tilde symbol ˜ to indicate explicitly that this is the kernel after
time-homogeneity was used. Let also Φjmm′(t|τ, ν) be the survival probability
on node j, having made the two previous jumps at times ν ≤ τ . We have

(3.34) Φjmm′(t|τ, ν) = 1−
∑
i∈Vj

∫ t

τ

Ti|jmm′(s|τ, ν) ds.
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The normalization condition reads

(3.35) lim
t→∞

Φjmm′(t|τ, ν) = 0, ∀ 0 ≤ ν ≤ τ,

or equivalently, in terms of transitions

(3.36)
∑
i∈Vj

∫ ∞
τ

Ti|jmm′(s|τ, ν) ds = 1

for all 0 ≤ ν ≤ τ and 1 ≤ j ≤ N . In the remainder of this section the
computations assume the conditional transition density to be known. Its exact
form will be determined in section 3.4.2.

Using the same steps as for acyclic graphs, let us first write the probability
that the walker is on node j at time t as

(3.37) nj(t) = n
(0)
j (t) + n

(1)
j (t) + n

(k≥2)
j (t),

where the superscript refers to the number of jumps performed up to time t. The
first two terms are not impacted by the memory effect, and can be computed
based on the transition kernel for DAGs:

(3.38) n
(0)
j (t) =

∫ t

0

Φj(t, τ)q
(0)
j (t)dτ = Φj(t, 0)nj(0),

and

(3.39) n
(1)
j (t) =

∫ t

0

Φj(t, τ)q
(1)
j (τ)dτ =

∑
m∈V ′j

nm(0)

∫ t

0

Φj(t, τ)Tjm(τ, 0)dτ.

It remains to compute n
(k≥2)
j (t) =

∑
k≥2 n

(k)
j (t). Note that in n

(k)
j (t) we also

need the transition density of the (k + 1)-th jump which determines the survival
probability on node j after k jumps. For all k ≥ 2 we write

(3.40) n
(k)
j (t) =

∑∑
m′→m→j

∫∫
0≤ν≤τ

Φjmm′(t|τ, ν)q
(k,k−1)
jmm′ (τ, ν) dνdτ,

where again the superscript in q
(k,k−1)
jmm′ gives the number of jumps. In order to

determine n
(k≥2)
j (t) we will need

(3.41) qjmm′(τ, ν) =
∑
k≥2

q
(k,k−1)
jmm′ (τ, ν).

Once we have computed this quantity, then the third term in (3.37), nj(t) =

n
(0)
j (t) + n

(1)
j (t) + n

(k≥2)
j (t), will indeed follow as

(3.42) n
(k≥2)
j (t) =

∑∑
m′→m→j

∫∫
0≤ν≤τ

qjmm′(τ, ν)Φjmm′(t|τ, ν) dνdτ,

and we have the probability nj(t) as a function of the initial condition n(0).
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Let us therefore determine the arrival-times density in a given number of

jumps, q
(k,k−1)
jmm′ (·, ·). Let us write equation (3.41) by splitting the sum as

(3.43) qjmm′(τ, ν) =

∞∑
k=2

q
(k+1,k)
jmm′ (τ, ν) + q

(2,1)
jmm′(τ, ν).

In this expression, for all k ≥ 2,

(3.44) q
(k+1,k)
jmm′ (τ, ν) =

∑
m′′∈V ′

m′

∫ ν

0

Tj|mm′m′′(τ |ν, ν′)q(k,k−1)
mm′m′′(ν, ν

′) dν′

and using again (3.41), equation (3.43) becomes

(3.45) qjmm′(τ, ν) =
∑

m′′∈V ′
m′

∫ ν

0

Tj|mm′m′′(τ |ν, ν′)

× qmm′m′′(ν, ν′) dν′ + q
(2,1)
jmm′(τ, ν).

The extended initial condition of arrival times for the first two jumps is given by

q
(2,1)
jmm′(τ, ν) = T̃im(τ − ν)

∫ ν

0

T̃mm′(ν − ν′)q(0)
m′ (ν

′)dν′

= T̃im(τ − ν)T̃mm′(ν)nm′(0)(3.46)

where T̃ji(t) := Tij(t, 0) is the transition kernel for the acyclic case.

Equation (3.45) is a linear Volterra integral equation of the second kind, with
kernel given by the conditional transition kernel that we determine hereafter.
We have a vector of unknown functions where each component qjmm′(·, ·) :
[0,∞)2 → [0,∞) corresponds to a path of length 2 in the underlying graph. As
will become clear, this equation cannot be cast under the form of a convolution.
Consequently, the Laplace-transform-based method cannot be applied.

3.4.2. Transition kernel with correction for 2-cycles

We want to compute the conditional transition kernel Ti|jmm′(t|τ, ν), where
the trajectory before ν is not taken into account, that is, we need to determine

(3.47) T̃i|jmm′(x|y) = Ti|jmm′(x|y, 0), 0 ≤ y ≤ x.
Assumption 2.5 still applies again throughout this section. Note that the letters
t, τ, ν will indicate absolute times, whereas x and y are durations. We will keep
both in order to avoid having to assume a jump a time 0. There are three cases
represented on fig. 3.6, depending on whether m′ → m→ j is a cycle or not. In
the first case there is no memory effect due to 2-cycles and the density reads as
before

(3.48) T̃i|jmm′(x|y) = T̃ij(x− y)

where the right-hand side comes from the modeling for DAGs. In the second
and third cases the kernel cannot be written in terms of the one obtained for
acyclic graphs. As before, in these cases we will write

(3.49) T̃i|jmm′(x|y) = (1) + (2),
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Figure 3.6. Three cases for the transition kernel Ti|jmm′(t|τ, ν) with
corrections for cycles. The arrows are labeled by the jump time. Not all
possible out-neighbors of node j are represented, although they would
influence the transition kernel.

where the first term corresponds to a jump at the end of the waiting time on
the node, whereas the second term is for the jump of a trapped walker. The
computation of both terms requires first to determine the probability for an
edge to be (un)available some time after exact knowledge of its state.

3.4.2.1. Two corrections on r

When the walker returns to a node after completion of a 2-cycle, the next
destination node depends on the choice previously made from the same location.
Firstly, the outgoing edge that was selected at the beginning of the cycle has an
increased probability with respect to r = 〈U〉/(〈U〉+ 〈D〉), to still be available.
The smaller the time y = τ − ν to go through the cycle and the subsequent
walker’s waiting time, the more pronounced this effect. Secondly, the converse is
also true: any other edge that wasn’t selected is more likely to have been and
still be unavailable some short time later.

3.4.2.2. First correction with p∗

The proof of fact 2.9 presents the derivation for the first correction,

(3.50) p∗(s, ν) = P {j → i is up at s | j → i was up at ν} ,
where the knowledge of the state of the edge stems from a move from j to i at
time ν and where p∗(s, ν) ≡ p∗(s− ν). This probability does not depend on the
number of nodes under assumption 2.5 that the distributions are exponential, see
remark 2.7. Observe that in chapter 2, we have actually computed the probability
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for an edge to still be unavailable, knowing is was originally unavailable. But
it suffices to swap U and D in the reasoning, and moreover this operation is
transparent when both distributions have the same rate, η = λ. In that case it
was found that p∗(x) = 1

2 (1 + e−2λx), see fig. 2.5.

3.4.2.3. Second correction with p†j

Consider two consecutive jumps of the walker following a cycle j → i→ j of
the underlying graph G, where node j has at least one neighbor i′ other than i.
Let ν be the time of the first jump of the walker trough j → i. The aim is to

determine the second correction captured by p†j(s, ν), namely

(3.51) p†j(s, ν) = P {j → i′ is up at s | j → i selected at ν} ,

where we write p†j(s, ν) ≡ p†j(s− ν).

For simplicity we consider that the random variables Xu and Xd follow the

same exponential distribution, assumption 2.8. The expression of p†j will be
given in fact 3.4 after a preliminary identity is established in fact 3.3.

Fact 3.3 (Combinatorial identity). For n ∈ N, n ≥ 2 and 0 ≤ p ≤ 1, it holds
that

(3.52)

n∑
k=1

(
n− 1

k − 1

)
1

k + 1
pk(1− p)n−k = (1− p)n+1 + (n+ 1)p− 1.

Proof. First note that for all 1 ≤ k ≤ n− 1 we have

(3.53)

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Then, still for n ≥ 2, write the left-hand side of eq. (3.52) as

n∑
k=1

(
n− 1

k − 1

)
1

k + 1
pk(1− p)n−k =

n−1∑
k=1

(
n− 1

k − 1

)
1

k + 1
pk(1− p)n−k

+

(
n− 1

n− 1

)
1

n+ 1
pk

=

n−1∑
k=1

(
n

k

)
1

k + 1
pk(1− p)n−k︸ ︷︷ ︸

(a)

−
n−1∑
k=1

(
n− 1

k

)
1

k + 1
pk(1− p)n−k︸ ︷︷ ︸

(b)

+
1

n+ 1
pk,(3.54)
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where we have used eq. (3.53) to obtain the second equality. Let us consider
term (a) and write

(a) =

n−1∑
k=1

n!

(n− k)!(k + 1)!
pk(1− p)n−k

=

n−1∑
k=1

1

n+ 1

(n+ 1)!

(n+ 1− k − 1)!(k + 1)!
pk(1− p)n−k

=
1

n+ 1

n−1∑
k=1

(
n+ 1

k + 1

)
pk(1− p)n−k

=
1

n+ 1

n−1∑
k=1

(
n+ 1

k + 1

)
1

p
pk+1(1− p)n+1−k−1,

translating the indexes k,

=
1

(n+ 1)p

n∑
k=2

(
n+ 1

k

)
pk(1− p)n+1−k,

then letting ñ := n+ 1

=
1

(n+ 1)p

ñ−1∑
k=2

(
ñ

k

)
pk(1− p)ñ−k

=
1

(n+ 1)p

(
ñ∑
k=0

(
ñ

k

)
pk(1− p)ñ−k −

(
ñ

0

)
(1− p)ñ

−
(
ñ

1

)
p(1− p)ñ−1 −

(
ñ

ñ

)
pñ
)
,

and reverting to the variable n

=
1

(n+ 1)p

(
1− (1− p)n+1 − (n+ 1)p(1− p)n − pn+1

)
.

Next, consider (b) in eq. (3.54). We find

(b) =

n−1∑
k=1

(n− 1)!

(n− 1− k)!k!

1

k + 1
pk(1− p)n−k

=
1

n

n−1∑
k=1

(
n

k + 1

)
pk(1− p)n−k,

translating the index k,

=
1

np
(1− p)

n∑
k=2

(
n

k

)
pk(1− p)n−k

=
1

np
(1− p)

(
n∑
k=0

(
n

k

)
pk(1− p)n−k −

(
n

0

)
(1− p)n −

(
n

1

)
p(1− p)n−1

)

=
1

np
(1− p)

(
1− (1− p)n − np(1− p)n−1

)
.
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Inserting the expressions for (a) and (b) in eq. (3.54) yields
n∑
k=1

(
n− 1

k − 1

)
1

k + 1
pk(1− p)n−k =

1

n(n+ 1)p

(
n− n(1− p)n+1

− n(n+ 1)p(1− p)n − npn+1

− (n+ 1)(1− p) + (n+ 1)(1− p)n+1

+ n(n+ 1)p(1− p)n + npn+1
)

= (1− p)n+1 + (n+ 1)p− 1,

which is the desired form. �

Fact 3.4. Under assumption 2.8, for every j ∈ 1, . . . , N such that kj > 2, the
length-two-cycle correction to r = 1

2 is given by

(3.55) p†j(s, ν) = (2aj − 1)p∗i (s, ν)− aj + 1,

where aj :=
kjr+(1−r)kj−1

kj−1 .

Proof. Let Es and Eν denote respectively the events that j → i is up at
time s and at time ν. Let E′s and E′ν be the corresponding events for edge j → i′

and let also Fν be the event that edge j → i was selected by the walker for the
move performed at time ν. Using the law of total probabilities for conditional
probabilities we have1

p†j(s, ν) = P {E′s|Fν}
= P {E′s ∩ E′ν |Fν}+ P

{
E′s ∩ E′ν |Fν

}
= P {E′s|E′ν ∩ Fν}P {E′ν |Fν}+ P

{
E′s|E′ν ∩ Fν

}
P
{
E′ν |Fν

}
.

Now, using the assumption that the up- and down-times follow the same dis-
tribution, P {E′s|E′ν ∩ Fν} = p∗(s, ν) and P

{
E′s|E′ν ∩ Fν

}
= 1− p∗(s, ν). Also

observe that P
{
E′ν |Fν

}
= 1− P {E′ν |Fν}. So it only remains to compute

(3.56) aj := P {E′ν |Fν} ,
the probability for an edge to be available at some time, knowing a jump was
performed through a competing edge at the same time. This will yield the final
expression

(3.57) p†j(s, ν) = (2aj − 1)p∗i (s, ν)− aj + 1.

Let Hν be the event that the jump at time ν happened after the walker was
trapped. Since we assume second order time-homogeneity, namely no knowledge
of the past trajectory up to time ν, we have

(3.58) P {Hν} = (1− r)kj =: bj .

Using again the law of total probabilities,

(3.59) aj = P {E′ν |Fν ∩Hν}︸ ︷︷ ︸
=0

P {Hν |Fν}+ P
{
E′ν |Fν ∩Hν

}
P
{
Hν |Fν

}︸ ︷︷ ︸
=1−bj

.

1We write Ā the complement of event A, such that P
{
A ∪ Ā

}
= 1 and P

{
A ∩ Ā

}
= 0.
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In the second term,

(3.60) P
{
E′ν |Fν ∩Hν

}
=
P
{
E′ν ∩ Fν ∩Hν

}
P
{
Fν ∩Hν

}
where the denominator is decomposed as

(3.61) P
{
Fν ∩Hν

}
= P

{
Fν ∩Hν |E′ν

}
P {E′ν}+ P

{
Fν ∩Hν |E′ν

}
P
{
E′ν
}

with P {E′ν} = r = 1− P
{
E′ν
}

. Moreover, let E
(`)
ν be the event that ` out of

kj − 2 out-neighbors of node j are reachable at time ν, so that

P
{
Fν ∩Hν |E′ν

}
= P {Fν |E′ν} =

kj−2∑
`=0

P
{
Fν |E(`)

ν ∩ E′ν
}
P
{
E(`)
ν |E′ν

}

=

kj−2∑
`=0

r
1

`+ 2
×
(
kj − 2

`

)
r`(1− r)kj−2−`

=

kj−2∑
`=0

(
kj − 2

`

)
1

`+ 2
r`+1(1− r)kj−2−`

=

kj−1∑
`=1

(
kj − 2

`− 1

)
1

`+ 1
r`(1− r)kj−1−`.(3.62)

Using fact 3.3 the right-hand side of (3.62) reads

(3.63) P
{
Fν ∩Hν |E′ν

}
=
kjr + (1− r)kj − 1

kj(kj − 1)r
, kj ≥ 2.

Similarly, for the remaining factor of (3.61) we have

P
{
Fν ∩Hν |E′ν

}
=

kj−2∑
`=0

P
{
Fν ∩Hν |E(`)

ν ∩ E′ν
}
P
{
E(`)
ν |E′ν

}
= P

{
Fν ∩Hν |E(0)

ν ∩ E′ν
}

︸ ︷︷ ︸
=r

×P
{
E(0)
ν |E′ν

}
︸ ︷︷ ︸

=(1−r)kj−2

+

kj−2∑
`=1

P
{
Fν ∩Hν |E(`)

ν ∩ E′ν
}

︸ ︷︷ ︸
= 1
`+1 r

×P
{
E(`)
ν |E′ν

}
︸ ︷︷ ︸

=(kj−2

` )r`(1−r)kj−2

=

kj−2∑
`=0

(
kj − 2

`

)
1

`+ 1
r`+1(1− r)kj−2−`

=

kj−1∑
`=1

(
kj − 2

`− 1

)
1

`
r`(1− r)kj−1−`,

(3.64)
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and relying again on fact 2.6,

(3.65) P
{
Fν ∩Hν |E′ν

}
=

1− (1− r)kj−1

kj − 1
, kj ≥ 2.

Inserting (3.63) and (3.65) in (3.61) leads to writing (3.60) as

(3.66) P
{
E′ν |Fν ∩Hν

}
=

kjr + (1− r)kj − 1

(1− kj) ((1− r)kj − 1)
,

and eventually (3.56) becomes

(3.67) aj =
kjr + (1− r)kj − 1

kj − 1
, kj ≥ 2.

The expression of p†j(s, ν) results from inserting (3.67) into (3.57). �

Under assumption 2.8 that U and D share the same rate λ, it follows directly
from (3.55) that

(3.68) p†j(s, ν) =
1

2
− 1

4
e−2λ(s−ν),

when we have set kj = 2, and hence aj = 1
4 , a choice that maximizes the

importance of this correction. The second term represents the difference with

respect to r = 1
2 , and is such that p†j(s, ν)→ 1

4 if s− ν → 0+ and p†j(s, ν)→ 1
2

if s− ν → +∞, see fig. 3.7.

0 2.5

0.25

0.5

x

p
† j(
x

)

kj = 2
kj = 4
kj = 8
kj = 16
kj = 32
kj = 64

Figure 3.7. Second correction on r. Contrary to the first correction
determined by p∗, here there is dependence not only on the dynamical
parameters, but also on the topology through the local connectivity: the
larger the degree, the weaker the correction p†(x)− r , which vanishes
in the limit kj →∞. The rates for the edges are η = 1 = λ.
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3.4.2.4. The second case: Ti|jij(t|τ, ν)

Having computed the necessary corrections on r, we are now in position to
further develop equation (3.49). Assumption 2.5 allows us to neglect the bus
paradox, and hence sensibly simplifies the derivation. The first term, when the
walker was not trapped before the move, reads

(1)(i|jij) = ψj(t− τ)

kj∑
`=1

1

`
p∗(t, ν)

(
kj − 1

`− 1

)
× (p†j(t, ν))`−1(1− p†j(t, ν))kj−`

=
p∗(t, ν)

p†j(t, ν)
ψj(t− τ)

[
1− (1− p†j(t, ν))kj

kj

]
.(3.69)

We notice that this expression is the same as for the acyclic graphs, up to a

correction factor p∗(t, ν)/p†j(t, ν), and with r replaced by p†j(t, ν).

Using the same approach as for p∗ in section 2.3, we obtain the second term
of Ti|jij(t|τ, ν) corresponding to a walker who was trapped before moving:

(3.70)

(2)(i|jij) =

∫ t

τ

ψj(s− τ)×
[ ∞∑
k=0

∫ s−ν

0

(
U ∗ D∗k ∗ U∗k

)
(r)× D(t− ν − r) dr

]

×
[
(1− p†j(s, ν))P {w > t− s}

]kj−1

ds.

Relying on the previous computation of p∗(s, ν), expression (3.70) simplifies to

(3.71) (2)(i|jij) =

∫ t

τ

ψj(s− τ)(1− p∗(s, ν))D(t− s)

×
[
(1− p†j(s, ν))P {w > t− s}

]kj−1

ds.

In this expression, (1− p∗(s, ν))D(t− s) refers to the probability that edge j → i
is down at time s, and will remain so exactly until time t when it becomes
available to the jumper again.

3.4.2.5. The third case: Ti|jmj(t|τ, ν) with m 6= j

The first term of the transition kernel in the case of fig. 3.6c, when the
walker was not trapped, is given by

(3.72) (1)(i|jmj) = ψj(t− τ)
[
p∗(t, ν)× P {choose i | j → m is up}+

(1− p∗(t, ν))× P {choose i | j → m is down}
]
,
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(a) The differentiation between the

transition kernel towards nodes 1
and 3 is more pronounced when
the walker goes faster around the

cycle 2 → 1 → 2, than when it
takes longer, τ − ν = 0, 01 (teal) vs
τ − ν = 0, 49 (orange). The bias

decreases with time t− ν.
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(b) After completion of the cycle

2→ 1→ 2, the memory effect trans-
lates into a probability to stay put
on node 2 that is lower when τ − ν
is small (teal), as compared to when
τ − ν is large (orange, weaker mem-
ory).

1 2 3

τ

ν

(c) The walker initialy moves from node 2
to 1 at ν then back at τ . The rates are
µ = 8, η = 1 = λ.

Figure 3.8. Stronger (teal) vs weaker (orange) memory effect on the
transition kernel and survival probability depending on the time to go
through a cycle of the graph.

where the two still undetermined probabilities are for events at time t. They are
determined by

P {choose i | j → m is up}

= p†j(t, ν)

kj−2∑
`=0

(
kj − 2

`

)
1

`+ 2
(p†j(t, ν))`(1− p†j(t, ν))kj−`−2

=
kjp
†
j(t, ν) + (1− p†j(t, ν))kj−1

kj(kj − 1)p†j(t, ν)

(3.73)
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and

P {choose i | j → m is down}

= p†j(t, ν)

kj−2∑
`=0

(
kj − 2

`

)
1

`+ 1
(p†j(t, ν))`(1− p†j(t, ν))kj−`−2

=
1− (1− p†j(t, ν))kj−1

kj − 1
,

(3.74)

where the final forms (3.73) and (3.74) were obtained as in the derivation
of section 3.4.2.3.

The second term (2)(i|jmj) associated to a trapped walker can be shown to
have the same expression as in (3.71).

Combining the effects of p∗ and p†j results in figure 3.8 where it appears
clearly that a shorter time to go around a cycle induces a stronger bias in favor
of repeating a previous jump, hence inducing a positive correlation between the
successive moves.

3.5. Numerical validation

We solved the Volterra vector integral equations (3.22) of the modeling for
the DAGs, and (3.45) of the modeling with corrections, by applying a trapezoidal
scheme for discretization of the integrals [35]. In the case of (3.45) this resulted
in a linear system of equations, and we relied on its block-triangular structure
due to causality of events, to solve it with a limited need of memory.

The initial condition q(0)(t) = n(0)δ(t) arising in these equations was
approximated using a positive normal distribution with probability density
function δε(t) parametrized by a small parameter ε, such that

(3.75) q(0)(t) ≈ n(0)δε(t),

∫ ∞
0

δε(t)dt = 1.

A validation of the comprehensive analytical framework through a simple
numerical example is the purpose of figure 3.9, which we interpret as follows. Due
to the cycles, the increase of n1(t) for node 1 is much slower when compared with
the curve resulting from the transition kernel valid for acyclic graphs. Indeed,
the memory effect comes into play only if and after the walker has followed the
path 2→ 3→ 2. The effect then acts in favor of increased probability in node 4.
The memory tends to bring the curves corresponding to the two nodes 2 and 3
belonging to the cycle closer together. By the same mechanism, the relaxation
of n2(t) and n3(t) to 0 is notably slower. The dashed curves resulting from the
modeling with corrections fall in line with the Monte-Carlo simulation, which
shows the effectiveness of the developed framework in this simple case.
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(a) Monte-Carlo simulation based on 4 · 104 independent trajectories
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dictions accounting for cycles (dashed). The shaded areas determine
an interval of width equal to twice the standard deviation and centered

around the mean.
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Figure 3.9. Validation of the analytical framework accounting for
second-order corrections.

3.6. Conclusion

A very common assumption in the study of dynamical processes on net-
works is to take only the direction of the edges and their weights into account.
Accordingly, one often assumes that temporal events on the edges occur as a
Poisson process. An important contribution of the field of temporal networks
is to question this assumption and to propose more complex temporal models,
including renewal processes with arbitrary event-time distributions. Yet in a
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majority of works, one considers implicitly or explicitly instantaneous interac-
tions. The main purpose of this chapter was to incorporate the finite duration
of those interactions in stochastic models of temporal networks, and to estimate
its impact on random walk processes.

We have derived the analytical expression of the propagator in the case of
directed acyclic graphs. In general, graphs may have cycles and then, as we have
showed with numerical (counter-)examples, the trajectories of the walker deviate
from Markov or semi-Markov processes. We have discussed qualitatively and
backed numerically the existence of regimes of the dynamical parameters where
the quality of predictions for DAGs is somewhat preserved, even when there are
cycles. Still, the need for analytically addressing the problem was established.
With this in mind we have presented corrections to encompass in the modeling
the presence of cycles in the underlying network.

This work is mostly theoretical but it has plenty of potential applications
in real-life systems, potentially every time links activate for finite times. Yet
in our view, the key message of chapters 2 and 3 that brings an answer to
the overall objective of the first research question, is the now established and
better understood importance of the three timescales to characterize diffusion
on temporal networks with finite duration of edge activation: one for the moving
entity and two for the edges. Future research directions include a more thorough
investigation on when certain timescales can be neglected over other ones, hence
leading to simplified mathematical treatment, and models including a fourth
timescale, associated to the possible non-stationarity of the evolution of the
graph, for instance due to circadian rhythms.





CHAPTER 4

Random walks on graphons

4.1. Introduction

Temporal properties of networks have led to intricate microscopic models
of diffusion in chapters 2 and 3, which notably helped refine our understanding
of network-theoretic methods in practical applications such as ranking. This
chapter focuses on another oftentimes critical attribute of networks, that is not
related to time fluctuations but lies at the core of our research theme centered
on the continuum-limit : their potentially very large size.

As huge graphs become increasingly common in scientific research and real-
world applications, a range of algorithms and computational problems indeed
face scalability issues. An elegant workaround is to consider the continuum limit
of graphs, defined when the number of nodes goes to infinity. This approach has
for instance been used for network identification [43], spectral clustering [53],
but also to study different classes of diffusion-based problems in networked
systems [91, 94]. As we will see in that case, the dynamics on a large graph is
rightfully approximated by the dynamics on its continuous limit.

In this chapter, we first revisit existing results for the continuum limit of
the discrete heat equation and some nonlinear variants. This limit was the
subject of a series of recent papers [91, 93, 94]. We then concentrate on
the continuum limit of the node-centric case, hence considering the limit of
the random-walk Laplacian operator. In general, for non-regular graphs, this
operator differs from the combinatorial Laplacian, which is often preferred in
algorithmic implementations such as spectral clustering because it properly
accounts for the heterogeneous degree distributions observed in real-life networks.
The random-walk operator in this work shouldn’t be confused with a another
operator1 common in the machine learning community, sometimes also called
random-walk Laplacian, which has an established convergence to the Laplace-
Beltrami operator [53, 11].

Our approach is based on graph-limit theory [84], which does not rely on the
assumption that the data generating the graphs is sampled from a distribution
on a manifold [46, 117]. Our main contribution that answers part of the second
research question, concerns the convergence of the space-discrete problem to a
continuous problem in some appropriate setting. The problem on the continuum
then falls in the realm of nonlocal evolution equations. More precisely, it is a

1We further discuss the different Laplacian integral operators in sections 7.1.1 and 7.1.2.

69
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volume-constrained diffusion problem [32], and its analysis is voluntarily limited
to some immediate consequences of spectral theory applied to our operators.
Importantly, graph-limit theory defines a framework for the convergence of
graphs of increasing size, but it may as well be seen as a possibly random
graph-generating method. From that perspective, our work demonstrates that
one may analyze the continuum model, to draw valid conclusions regarding the
dynamics on the graphs generated by that model.

The chapter is organized as follows. Section 4.2 contains preliminary back-
ground material before it concentrates on graph-limit theory and introduces
graphons as the limit objects of dense graph sequences. A random walk interpre-
tation of the continuum limit of the heat equation on graphs opens section 4.3.
We then focus on our main concern, the continuous-time node-centric walk.
Well-posedness of the continuum problem is the subject of section 4.4. The main
convergence results are presented in section 4.5. These results apply to dense
graphs, and follow from a semigroup approach. We distinguish between different
scenarios: first the discrete problem on graphs is sampled from the continuum
version, and then the other way around. We then proceed with an analysis of
the relaxation of the process using spectral theory in section 4.6. In section 4.7
we comment on the application of our method to the discrete-time random-walk,
before coming to a conclusion in section 4.8.

4.2. Preliminaries

This section establishes the notation for concepts from operator and semi-
group theory and identifies some known results used throughout the text, follow-
ing [115, 38]. For the sake of self-consistency we then introduce the necessary
basics of graph-limit theory and graphons [84].

4.2.1. Related to functional analysis

Let L(X,Y ) denote the space of operators between the Banach spaces X and
Y with norms ‖ · ‖X and ‖ · ‖Y , which is in turn a Banach space with operator
norm ||T || = sup||x||X=1 ||Tx||Y . We let kerT and ranT denote respectively the

kernel and range of T . When X = Y , we let L(X) := L(X,Y ). Further if
X = Y is a Hilbert space H, then (·, ·)H denotes the scalar product, and we
drop the subscript when there is no risk of confusion. The Hilbert space adjoint
of T is denoted T ∗ and I is the identity operator.

Definition 4.1 (Resolvent set, spectrum). Let T ∈ L(X). Then the complex
number λ is in the resolvent set ρ(T ) of T if λI −T is a bijection with a bounded
inverse. The resolvent of T at λ is the operator Rλ := (λI − T )−1. If λ /∈ ρ(T ),
then λ is in the spectrum σ(T ) of T .

The spectrum of an operator can be partitioned in various ways, that we
will use in this chapter and in chapter 7. Since not all authors follow the same
conventions, we will give the definition we use or explicitly refer the reader to
appendix B.
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Definition 4.2 (Eigenvalue, eigenvector and point spectrum). Let T ∈ L(X).
A nonzero vector x satisfying Tx = λx for some λ ∈ C is an eigenvector and λ
is a corresponding eigenvalue. If λ is an eigenvalue, then λI − T is not injective
and so λ ∈ σ(T ). The point spectrum of T is the set of all eigenvalues of T .

From a spectral analysis perspective, the following theorem is an important
result regarding those operators of L(X,Y ) which map bounded sequences to
sequences with a convergent subsequence, namely the compact operators. Next
we give a definition that encompasses one of the central operators of this chapter.

Theorem 4.3 (The Hilbert-Schmidt theorem [115, Theorem VI.16]). Let
A be a self-adjoint compact operator on a Hilbert space H. Then, there is a
complete orthonormal basis of eigenvectors {φn} such that Aφn = λnφn and
λn → 0 as n→∞.

Definition 4.4 (Hilbert-Schmidt operator). Consider the Hilbert space H =
L2(M,dµ). Let K(·, ·) ∈ L2(M ×M,dµ⊗ dµ). The compact integral operator

defined by f →
∫ 1

0
K(·, y)f(y)dµ(y), for all f ∈ H is called a Hilbert-Schmidt

operator.

4.2.2. Related to semigroups

Definition 4.5 (One-parameter semigroup). A family (T (t))t≥0 of bounded
linear operators on a Banach space X is called a (one-parameter) semigroup
on X if the following functional equation is satisfied:

T (t+ s) = T (t)T (s), ∀t, s ≥ 0,(4.1a)

T (0) = I.(4.1b)

Definition 4.6 (Uniformly continuous semigroup). A one-parameter semigroup
(T (t))t≥0 on a Banach space X is called uniformly (or norm) continuous if for
t ∈ R+ the map t → T (t) ∈ L(X) is continuous with respect to the uniform
operator topology on L(X), that is, limt↓0 T (t)− I = 0 uniformly.

Definition 4.7 (Strongly continuous semigroup). A one-parameter semigroup
(T (t))t≥0 on a Banach space X is called strongly continuous, noted C0-semigroup,
if the orbit maps t → T (t)x are continuous from R+ into X for every x ∈ X,
namely limt↓0 T (t)− I = 0 strongly.

Definition 4.8 (Infinitesimal generator). The infinitesimal generator A of a

strongly continuous semigroup (T (t))t≥0 is defined by Ax := limt↓0
T (t)x−x

t for
every x in its domain given by domA := {x ∈ X : t→ T (t)x is differentiable}.

In the following pages and in chapter 7 we more than once rely on the fact
that for a C0-semigroup on X with generator A, the following are equivalent
[38, Corollary II.5.5]: (a) the generator is bounded; (b) domA = X; (c) the
domain is closed in X; (d) the semigroup is uniformly continuous.
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4.2.3. Related to graphons

We now introduce graphons as the limit object of convergent sequences of
graphs of increasing size. Then we show that graphons can actually be used to
generate deterministic and random graphs of any size. Finally we consider them
as kernels of associated integral operators. The reference works cited within this
section should be referred to for a complete treatment of the subject.

4.2.3.1. Graphons as limits of dense graph sequences

Recent research [85, 20, 19, 84] provides a theoretical framework to study
convergence of symmetric2 dense graphs sequences. As a starting point, the so-
called cut (or rectangular) metric allows to define the notion of Cauchy sequence
of graphs of increasing number of nodes. Their limit object, called graphon, is a
symmetric Lebesgue-measurable function3 W : [0, 1]2 → [0, 1]. Therefore, the
space of graphons is essentially the completion of the set of finite graphs seen
as step functions (see Section 4.2.3.2), endowed with the so-called cut metric4

which we introduce hereafter in its graphon version. Let us review the main
concepts, as exposed also in [84, 91, 44]. The cut norm for graphons is given
by

‖W‖� = sup
S,T⊂M[0,1]

∫∫
S×T

W (x, y)dxdy,

where the supremum is over measurable subsets of [0, 1]. The notation ‖W‖p
refers to the usual Lp norm of function defined on [0, 1]2, for 1 ≤ p ≤ ∞. The
following inequalities are immediate consequences of this definition, and of the
inclusion theorem of Lp spaces on finite-measure spaces:

(4.2) ‖W‖� ≤ ‖W‖1 ≤ ‖W‖2 ≤ ‖W‖∞ ≤ 1.

Graphons are unique up to a composition with an invertible measure preserving
mapping φ : [0, 1] → [0, 1], which amounts to invariance of the limit graphon
with respect to a relabeling of the nodes of the graphs. The graphons Wφ defined
by Wφ(x, y) = W (φ(x), φ(y)) and W are in the same equivalence class. The cut
metric δ� between two graphons U and W is therefore defined by

(4.3) δ�(U,W ) = inf
φ∈L
‖Uφ −W‖�

where L is the space of the Lebesgue measurable bijections on the unit interval.
The definition is similar for the δp(·, ·) metrics based on the Lp norms, 1 ≤ p ≤ ∞.
Since two different graphons U,W can satisfy δ�(U,W ) = 0, strictly speaking δ�

2This chapter is restricted to graphs with symmetric adjacency matrices, but when it
comes to a random walks, edges are considered oriented, and symmetric effectively means
directed with reciprocal links.

3Note that this choice of domain and range is somehow restrictive by comparison with
other works where for instance W : [0, 1]2 → R. However, we will work with the standard

definition because it achieves the desired degree of generality.
4There is a different though equivalent notion of convergence for dense graph sequences.

It is called subgraph convergence, and is defined via associated sequences of induced subgraph
densities [20].
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is a metric only when we identify such graphons U and W [20]. Let us denote
by W the space of graphons after this identification.

It holds that the metric space (W, δ�) is compact, namely sequences of
graphons possess at least one convergent subsequence in the cut metric. Unless
explicitly mentioned, in this work we assume convergence of graphons in the
L2 norm topology. Hence by completeness, Cauchy sequences in (W, ‖·, ·‖2)
converge in the L2 metric, and thus also in the δ2 and δ� metrics, the limit
being the same.

Many attributes of graphs already have natural counterparts in the realm
of graphons5. A prominent example is the notion of degree, or strength, which
plays a key role in this chapter. For a given graphon we let

(4.4) k(x) :=

∫ 1

0

W (x, y)dy

denote the (generalized) degree function. Since in this work graphons are bounded
function W : [0, 1]2 → [0, 1], the degree function is bounded, 0 ≤ k(x) ≤ 1 for all
x ∈ [0, 1].

Before we close this section, we should point out two important remarks.
The first one relates to an alternate, though equivalent approach to graph-limit
theory, whereas the second one shows that graph-limit theory is general enough
to accommodate for random graph sequences.

Remark 4.9 (Convergence of graph sequences via homomorphism density).
Convergence of dense graph sequences (Gn) can be equivalently introduced in
terms of convergence of an associated sequence t (H,Gn), where H is any simple
graph and

(4.5) t(H,Gn) =
hom(H,Gn)

|VG||VH |
.

Here, VH is the vertex set for H (and similarly for G). For two unweighted
graphs, hom(H,G) denotes the number of homomorphisms from H into G.
This definition generalizes to weighted graphs [85]. Each term t(H,Gn) in the
sequence therefore represents the density of edge-preserving maps (or homomor-
phisms) VH → VGn , that is, the density of H as a subgraph of Gn, and the limit
of the sequence reads

(4.6) t(H,W ) :=

∫
[0,1]|VH |

∏
i∼Hj

W (xi, xj)dx1 . . . dx|VH |,

where ∼H denotes the symmetric adjacency relation in H.

Remark 4.10 (Convergence of random sequences). From the beginning, graph-
limit theory was developed to also provide a concept of limit for sequences of
dense random graphs, namely those sequences where each graph is randomly
generated based on the same set of rules. Rather than going into details, we refer
the interested reader to [19] and to example 4.11, which we re-visit in chapter 7.

5There is however work left in defining graphon equivalents of graph related concepts, see
page 177.
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Example 4.11 (Uniform attachment graphon). The graphon given byW (x, y) =
1−max(x, y) is the limit of a randomly grown graph sequence, where each of
the graphs follows from a uniform attachment scheme [19], see fig. 4.1. The
construction starts with a single node, and nodes are then added one node at
a time. After the i-th node was added, every pair of non-adjacent nodes at
that point is connected with probability 1/i. We give details to build intuition
around the resulting expression of W (x, y). Let {v0, v1, . . . , vn−1} be the nodes
after n steps, in order of appearance given by the indices. Consider two different
nodes vi, vj and assume 0 ≤ i < j ≤ n. Then after the n-th step, the probability
that they are not connected is given by

(4.7) P{vi � vj} =

(
1− 1

j + 1

)
·
(

1− 1

j + 2

)
· . . . ·

(
1− 1

n

)
=
j

n
,

and thus

(4.8) P{vi ∼ vj} = 1− j

n
= 1− max(i, j)

n
.

Now choosing x, y such that i = xn and j = yn, we have P{vi ∼ vj} =
1−max(x, y). That W (x, y) given above is with probability 1 the limit of the
sequence in the cut metric is established by [19, Theorem 3.1].

4.2.3.2. Graphs as step graphons and graphs from graphon models

The connection between graphs and graphons is a two-way street. First,
graphs can be mapped to the graphon space through a step function represen-
tation of their adjacency matrix. Let P = {P1, . . . , Pn} be a uniform partition
of [0, 1], where Pi =

[
i−1
n , in

)
for i = 1, . . . , n− 1, and Pn =

[
n−1
n , 1

]
. Then let

η : Mn →W be a mapping such that

(4.9) η(G)(x, y) =

n∑
i=1

n∑
j=1

AijχPi(x)χPj (y),

where χS is the indicator function of set S and A the adjacency matrix of graph
G. The mapping thus defines the step (or empirical) graphon η(G) associated to
G. Similarly, η maps vectors u = (u1, . . . , un) to piecewise constant functions
on [0, 1], so that

(4.10) η(u)(x) =

n∑
i=1

uiχPi(x).

On the other hand, graphons can be considered as deterministic or (exchange-
able [37]) random graph models. In this work we mainly treat the deterministic
setting, and do not go beyond commenting on the random version as in re-
mark 4.12. We leave the topic of random walks on the continuum limit of sparse
graphs for future work, see page 95. Let W ∈W be a graphon and let the integer
n denote the desired number of nodes in the graph. Then W generates a dense
graph by assigning weights to the edges, which can be done in two ways.
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(a) Uniform attachment
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Figure 4.1. Growing uniform attachment random graph sequence.

Quotient graph: In a first approach, the weight Aij of the edge between
two nodes i and j equals the mean value of W on the corresponding
cell of the partition of the unit square:

(4.11) Aij = n2

∫
Pi

∫
Pj

W (x, y)dxdy, i, j = 1, . . . , n.
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This results in the so-called quotient graph W/P. One can prove that
there is almost everywhere point-wise convergence of the associated
step graphon η(W/P) to W ([20], lemma 3.2).

Sampled graph: A second approach to generate a graph from a given
graphon W ∈W, is to define

(4.12) Aij = W

(
i

n
,
j

n

)
, i, j = 1, . . . , n,

in a way that is reminiscent of W -random graphs [85]. Let us denote
W[n] the corresponding graph. Observe that η

(
W[n]

)
→W point-wise

at every point of continuity of W [91].

Remark 4.12 (Graphons as sparse graph models). As we know, the bounded
graphons W ∈ L∞[0, 1] considered in this work emerge in the continuum limit
of dense graphs. However, graphs modeling real-life systems tend to be sparse,
and graph-limit theory has addressed this fact in [17, 18], which requires to
work with graphons in Lp[0, 1]2 (p > 1). Dynamical systems with diffusion and
Lp graphons were notably investigated by [63, 94], with obvious connections
to the scope of this work. In this construct, Lp graphons generate graphs with
a given number of nodes n and a density controlled by a sequence of positive
numbers (ρn) satisfying ρn → 0, nρn →∞ as n→∞. For `,m ∈ {0, 1, . . . , n},
` 6= m, an edge is created between two nodes v`, vm, independently of the other
pairs, with probability

(4.13) P {v` ∼ vm} = min

{
1, ρnW

(
`

n
,
m

n

)}
.

Let Ωn = {0, 1}n. A random graph model on n nodes is actually a probability

space
(

Ωn, 2
n(n+1)

2 , P
)

and Γn(ω) denotes a sampled graph, with ω ∈ Ωn. The

edges set of Γn is determined by the Bernoulli random variables E`m(ω) =
χ`∼m(ω). The expected value of E`m is equal to the probability given by
eq. (4.13) and

(4.14) d` := E {deg v`} = E

{∑
m 6=`
E`m

}
denotes the expected degree of node v`. This quantity has an important role to
play when it comes to convergence results related to dynamics in the continuum-
limit of sparse random graph sequences, see remark 7.24.

4.2.3.3. Graphons as kernels of operators

Every graphon W ∈W can be considered as a kernel, allowing to formally
define an integral operator W on functional spaces on [0, 1] through

(4.15) Wf(x) =

∫ 1

0

W (x, y)f(y)dy

The composition (product) of two such operators is given by

(4.16) UWf(x) =

∫ 1

0

(U ◦W )(x, y)f(y)dy,



4.3. CONTINUUM LIMIT OF RANDOM WALKS 77

where ◦ is the operator product between the graphon kernels, defined by

(4.17) (U ◦W )(x, y) =

∫ 1

0

U(x, z)W (z, y)dz, ∀x, y ∈ [0, 1].

Observe that in general, U ◦W is not a symmetric function. We denote W ◦n the
operator product of the kernel, as opposed to the point-wise product Wn(x, y) =
(W (x, y))n, which is associated to the operator Wn. It follows from eq. (4.17)
that

(4.18) W ◦n(x, y) =

∫
W (x, z1)W (z1, z2) . . .W (zn−1, y)dz1dz2 . . . dzn−1.

4.3. Continuum limit of random walks

The aim of this section is twofold. First, we recall existing results on the
continuum limit of the discrete heat equation, namely the edge-centric walk.
Secondly, we formally derive the continuum limit of the node-centric random
walk. As mentioned in section 4.2.3, our random-walk perspective implies that
edges are directed, because they are associated with possible moves of the walker,
with an origin and a destination. Therefore, the symmetry of the adjacency
matrix indicates there exists a reciprocal to each edge and that both have the
same weight.

4.3.1. Continuum limit of the discrete heat equation

The master equation for the edge-centric random walk is the graph version
of the heat equation on a continuum. From chapter 2 we know that in terms of
microscopic modeling, the trajectories are determined by a Poisson process on
the edges with constant rate λ, such that the resting-time on the node follows
an exponential distribution with rate µj proportional to the degree or strength
of the node vj : µj = κ str(vj). This allows for a constant rate of jump across all
edges of the graph. In matrix form, we have that

(4.19) u̇ = λu(A−D).

Here we have written u for the row vector of residence probabilities, and
L = A−D is the combinatorial Laplacian of the graph. This model exhibits a
homogeneous asymptotic state.

For simplicity assume an unweighted graph. If λ > 0, then λ deg(vj)→∞ if
deg(vj)→∞, which will happen for some if not all nodes of a dense graph. The
walker would perform jumps at an infinite rate, which is physically unrealistic.
Normalizing the rate of the process according to the number of vertices avoids
this situation. If λ becomes dependent on n, say λn = 1

n , the resulting rate
in each node remains bounded, λn deg(vj) ≤ 1 for all j independently of the
number of nodes. This explains the normalization that was required to justify
the continuum limit of eq. (4.19) in [91].
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4.3.2. Continuum limit of the node-centric walk

In contrast with the edge-centric model, no normalization of the rate param-
eter λ of the node-centric walk is needed when the number of nodes grows to
infinity, since the rate does not depend on the structure of graph. The continuum
limit therefore directly applies to the unmodified discrete model. For a formal
derivation in this case, consider again the vector u(t) satisfying

(4.20) u̇i(t) =

N∑
j=1

uj
1

str(vj)
Aji − ui,

and the uniform partition P = {P1, . . . , Pn} of [0, 1], with u(·, t) := η(u(t)) an
associated step function on the interval. Let the degree function kη of the step
graphon η(G) be defined by

(4.21) kη(x) =

∫ 1

0

η(G)(x, y)dy for x ∈ [0, 1].

This degree function is actually the normalized strength (or also degree, when
the graph is unweighted) of the nodes in G:

str(vi) = n

n∑
j=1

∫
Pj

Aijdy = n

n∑
j=1

∫
Pj

η(G)(x, y)dy = nkη(x)(4.22)

for all x ∈ Pi. It follows that

n∑
j=1

Aij
str (vj)

uj(t) =

n∑
j=1

n

∫
Pj

Aij
str (vj)

u(y, t)dy

=

n∑
j=1

n

∫
Pj

Aij
nkη(y)

u(y, t)dy =

∫ 1

0

η(G)(x, y)

kη(y)
u(y, t)dy,(4.23)

for every x ∈ Pi. Hence, the node-centric walk on the graph has an equivalent
continuum domain formulation

(4.24)
∂

∂t
u(x, t) =

∫ 1

0

η(G)(x, y)

kη(y)
u(x, t)dy − u(x, t).

The goal of this work is to prove convergence in the appropriate norm of the
solution of eq. (4.24) to the solution of the evolution equation on the continuum

(4.25)
∂

∂t
w(x, t) =

∫ 1

0

W (x, y)

k(y)
w(y, t)dy − w(x, t),

where W is the limit graphon of η(G) in the L2 metric, and k its degree function.

Observe that similarly, a discrete equation of the form eq. (4.20) is obtained
starting from eq. (4.25), when the graph is W/P or W[n].
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4.4. Well-posedness

Before we prove the above-mentioned convergence, let us determine whether
the up-to-now formal eq. (4.25), together with initial condition w(x, 0) = g(x),
defines a well-posed initial-value problem (IVP).

4.4.1. Connectedness and integrability of W/k

Care will be taken first regarding how connectedness in the graph translates
to graphons. The following definition follows from [60, 84].

Definition 4.13. A graphon W is connected if∫
S×([0,1]\S)

W (x, y)dxdy > 0

for every S ∈M[0, 1] with lebesgue measure µ(S) ∈ (0, 1).

Notice at this point that the connectedness (or lack thereof) of the graphs Gn
of the sequence does not imply that of their limit [60]. Indeed, one could always
make all the (otherwise disconnected) graphs of the sequence connected by a
adding each time a node connected to all other nodes. This would leave the limit
unchanged. And conversely, disconnecting one node in each connected graph of
the sequence would not change the limit either. Also note that if a graphon W
is (dis)connected, then so are all the kernels in the same equivalence class ([60],
theorem 1.16). Let us now look into the implications of connectedness of the
graphon on the positiveness of the degree function and hence on the definition
of the random walk Laplacian operator.

Proposition 4.14. Let W be a connected graphon, then k > 0.

Proof. For every x ∈ [0, 1], define the neighborhood of x in W as

Nx = {y ∈ [0, 1] : W (x, y) > 0} .
Since W is connected, µ(Nx) > 0 for µ-almost every x ([60], lemma 5.1) and
therefore,

(4.26) k(x) =

∫
Nx

W (x, y)dy > 0 for µ-a.e. x.

�

Remark 4.15. The connectedness of the graphon does not imply however that
the degree function is bounded away from zero, namely that there exists a
constant c such that 0 < c ≤ k on [0, 1]. Take for instance W (x, y) = xmym

with m > 0, for which k(x) = xm

m+1 .

That k can be arbitrarily small influences the integrability of the kernel

K(x, y) := W (x,y)
k(y) in eq. (4.25), as the following remark explains.
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Remark 4.16. The connectedness of the graphon does not imply that the
integral kernel K(x, y) is in Lp[0, 1]2 for p > 1. Consider for example the binary
graphon W = χxα+yα≤1 for α > 0, where the subscript xα + yα ≤ 1 is short for
the set of couples (x, y) ∈ [0, 1]2 such that the inequality is satisfied. By a direct

integration, k(x) = (1− xα)
1
α . The integral

(4.27) ‖K‖pp =

∫∫
xα+yα≤1

(1− yα)−
p
α dxdy =

∫ 1

0

(1− yα)
1−p
α dy

is finite if and only if p < 1 + α. Hence, K is in L2[0, 1] only if α > 1, and in
particular, the kernel K of the threshold graphon [36] obtained with α = 1 is
not square-integrable. However, using Fubini-Tonelli it is easy to show that
‖K‖1 = 1 for all connected graphons, such that K is always in L1[0, 1]2.

Based on the preceding remark, in order to ensure that the kernel is square
integrable, we will make the following assumption:

Assumption 4.17. There exists a constant c such that 0 < c ≤ k on [0, 1].

If W is bounded away from zero, so is k, but graphons with localized support
may still fulfill the assumption, as shown by Figure 4.3.

4.4.2. The IVP on L2[0, 1]

Resting on the operator in the right-hand side of eq. (4.25), we come to the
following definition.

Definition 4.18. Let W ∈ W be a connected graphon that verifies assump-
tion 4.17. Let the random-walk Laplacian operator Lrw : L2[0, 1]→ L2[0, 1] be
defined by

(4.28) Lrwf(x) =

∫ 1

0

W (x, y)

k(y)
f(y)dy − f(x).

By definition, W is bounded on [0, 1]2 and following our hypothesis, 1
k(x) is

bounded on [0, 1]. Therefore, K(x, y) = W (x,y)
k(y) is a Hilbert-Schmidt kernel and

K : L2[0, 1]→ L2[0, 1] defined by

(4.29) Kf(x) =

∫ 1

0

W (x, y)

k(y)
f(y)dy, ∀x ∈ [0, 1] and f ∈ L2[0, 1]

is a compact Hilbert-Schmidt operator. Following definition 4.18, the continuum
IVP has the form

∂

∂t
w(x, t) = Lrww(x, t)(4.30a)

w(x, 0) = g(x) ∈ L2[0, 1](4.30b)

Theorem 4.19. Let W ∈W be connected and satisfying assumption 4.17.
Then there exists a unique classical solution to the initial-value problem eq. (4.30).
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(a) Threshold random
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Figure 4.2. Threshold random graphs with uniformly distributed
weights on the vertices, and their associated graphon. Two vertices
vi, vj are adjacent if their weights wi, wj satisfy wi + wj > t = 1. The
nodes are sorted by their degrees. Details on the construct in [36].

Proof. The operator K is linear, and continuous hence bounded. It follows
that Lrw is linear and bounded. Hence it is closed6 and therefore Lrw is the

6The linear transformation T : H → H is closed if its graph Γ(T ), namely the set of pairs

{〈ϕ, Tϕ〉|ϕ ∈ domT} is a closed subset of H ×H.



82 4. CONTINUUM LIMIT OF THE NODE-CENTRIC RANDOM WALK

0 0.5 1

0

0.5

1

y

x

.

(a) W (x, y) = χ|x−y|≤r(x, y)

with r = 1
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(b) Generalized degree
function

Figure 4.3. The stripe graphon and its degree function. Observe that
the support of W is localized on a subset of the square, but k is bounded
away from zero.

infinitesimal generator of the (uniformly and thus) strongly continuous semigroup

(4.31) T rw(t) = eL
rwt :=

∞∑
`=0

t` (Lrw)
`

`!
.

Proposition 6.2 in [38] allows to conclude. �

Remark 4.20. (Classical solution) By definition of classical solution of the
abstract Cauchy problem eq. (4.30), the orbit maps

t ∈ R+ 7→ w(t, x) ∈ L2[0, 1]

are continuously differentiable. The forthcoming convergence results of section 4.5
are established in norm

(4.32) ‖w‖C([0,T ],L2[0,1]) = sup
t∈[0,T ]

‖w(t, ·)‖L2[0,1]

defined for any positive real T .

Remark 4.21. The asymptotic steady state w∞ of eq. (4.30) follows from
Lrww∞ = 0 and is proportional to the degree, w∞ ∝ k.

4.4.3. Positivity

The continuum IVP eq. (4.30) would loose physical relevance if its solution
were to loose the possible positivity of the initial condition, w(·, 0) ≥ 0. Before we
proceed to a proof of positivity, let us first introduce a notation. For g ∈ L∞[0, 1],
and 1 ≤ p ≤ ∞, let Mg : Lp[0, 1]→ Lp[0, 1] denote the multiplication operator
defined by

(4.33) Mgf(x) = g(x)f(x).
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Proposition 4.22. Let W be a connected graphon satisfying assumption 4.17
and let w(·, 0) = g ≥ 0 be the initial condition of IVP eq. (4.30). Then the
classical solution w(x, t) of the IVP satisfies w(·, t) ≥ 0 for all t ≥ 0.

Proof. Let us define7 Lcons :=M1/kLrwMk, yielding by a direct calcula-
tion

(4.34) Lconsf(x, t) =
1

k(x)

∫ 1

0

W (x, y)f(y, t)dy − f(x, t), ∀f ∈ L2[0, 1].

Further let u =M1/kw with w(x, t) the solution of eq. (4.30) such that

∂

∂t
u =M1/k

∂

∂t
w =M1/kLrww =M1/kLrwMku = Lconsu.

Since w(·, t) ≥ 0 iff u(·, t) ≥ 0, it remains to prove the positivity of u(·, t). Choose
ε > 0 arbitrarily and let v(x, t) = u(x, t) + εt. Observe that Lconsv = Lconsu,
and hence

∂

∂t
v − Lconsv =

∂

∂t
u+ ε− Lconsu = ε.

Let us show that v(x, t) reaches its minimum at some (a, 0), a ∈ [0, 1]. Assume
by contradiction that there exists (a, τ) ∈ [0, 1] × (0, T ) for some T > 0 such
that v(x, t) ≥ v(a, τ) for all x and t. It follows that

Lconsv(a, τ) =
1

k(a)

∫ 1

0

W (a, y)v(y, τ)dy − v(a, τ)

≥ 1

k(a)

∫ 1

0

W (a, y)v(a, τ)dy − v(a, τ) = 0.

Hence, ∂
∂tv(a, τ) = Lconsv(a, τ) + ε = ε > 0 which is in contradiction with the

assumption of v attaining its minimum in (a, τ) with τ > 0, so τ = 0. We have
thus proved v(x, t) ≥ v(a, 0), so that

u(x, t) + εt = v(x, t) ≥ v(a, 0) = u(a, 0) =
g(a)

k(a)
≥ 0.

Since ε is arbitrary, this allows to conclude. �

4.4.4. The IVP with probability density functions

Let us observe that when w(·, t) in eq. (4.30) is a probability density function,
it is natural to consider w(·, t) ∈ L1[0, 1], and one may define Lrw as a mapping
L1[0, 1]→ L1[0, 1]. Indeed, as in eq. (4.29) let us still write K the integral part
of Lrw defined on L1[0, 1]. By Fubini-Tonelli, the operator norm ‖K‖1,1 :=
‖K‖L1[0,1]→L1[0,1] satisfies

‖K‖1,1 ≤ sup
||f ||1=1

∫
[0,1]2
|K(x, y)f(y)|dxdy = sup

||f ||1=1

∫
[0,1]

|f(y)|dy = 1.(4.35)

This, combined with the fact that ‖Kf‖1 = 1 if f = 1, shows that ‖K‖1,1 = 1,

and so even without assumption 4.17, Lrw is a bounded mapping of L1[0, 1]

7This Laplacian operator is know as consensus Laplacian, and is further discussed in
section 7.1.1 on page 142.
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into itself. Additionally, theorem 4.19 about the existence and unicity of a
solution to the IVP has a similar formulation and proof in the present case.
Further, the positivity established in section 4.4.3 also applies here, and this
would still not require assumption 4.17. The only significant change in the proof
of proposition 4.22 would be to use the auxiliary operator LrwMk instead of
Lcons =M 1

k
LrwMk. When w(·, 0) ≥ 0 we further have conservation of the L1

norm:

(4.36)
∂

∂t
‖w(·, t)‖1 =

∂

∂t

∫ 1

0

|w(x, t)|dx =
∂

∂t

∫ 1

0

w(x, t)dx = 0.

In the remainder of the chapter, for the sake of simplicity and in order to
benefit from the Hilbert space framework at a later stage, we will however assume
that W satisfies assumption 4.17. This allows to define Lrw as an operator
acting on L2[0, 1] and we do not use L1 but rather the stronger L2 norms also
present in other works about dynamics on graphons [91, 94].

4.5. Convergence on dense graphs

This section is divided in three parts. In loose terms, the first two show that
the solution of the discretized problem on W/P or W[n] converges to that of the
continuum IVP, in the norm of eq. (4.32). The goal of the third part is to prove
that the discrete problem can be approximated by its continuum version.

4.5.1. Convergence on the quotient graph W/P

Let us start with two simple lemmas.

Lemma 4.23. Let Aη : L2[0, 1]→ L2[0, 1] be an integral operator with bounded
kernel Aη. Assume that Aη is a.e.-constant on every cell Pi × Pj of the uniform
partition of [0, 1]2. Further let f ∈ L2[0, 1] and define fη by

fη(x) = n

n∑
i=1

∫
Pi

f(y)dyχPi(x), ∀x ∈ [0, 1].

Then for all ` ∈ N0, it holds that A`ηf = A`ηfη.

Proof. The proof in the case ` = 1 follows from a direct calculation, see
for instance [44], lemma 3. The claim for ` > 1 is a direct consequence since
then

A`ηf = A`−1
η Aηf = A`−1

η Aηfη = A`ηfη.
�

Lemma 4.24. Let A,B : L2[0, 1] → L2[0, 1] be two Hilbert-Schmidt integral
operators with respective kernels A and B defined on the unit square, with A ≤ β
for some constant β > 0. Then, for all f ∈ L2[0, 1] and ` ∈ N0

‖A`f − B`f‖2 ≤ β`−1‖A−B‖2‖f‖2 + ‖(A`−1 − B`−1)Bf‖2.
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Proof. Using the Minkowski inequality, we have

‖A`f − B`f‖2 = ‖A`−1Af − B`−1Bf‖2
= ‖A`−1Af −A`−1Bf +A`−1Bf − B`−1Bf‖2
= ‖A`−1(Af − Bf) + (A`−1 − B`−1)Bf‖2
≤ ‖A`−1(Af − Bf)‖2 + ‖(A`−1 − B`−1)Bf‖2.(4.37)

Now A`−1 is a Hilbert-Schmidt integral operator with kernel A◦(`−1), as defined
by eq. (4.18). For such operator, as a product of the Cauchy-Schwarz inequality it
is known about the operator norm ‖·‖ that ‖A`−1‖ ≤ ‖A◦(`−1)‖2, or equivalently

(4.38) ‖A`−1f‖2 ≤ ‖A◦(`−1)‖2‖f‖2.

The first term in the right hand side of eq. (4.37) therefore satisfies

(4.39) ‖A`−1(Af − Bf)‖2 ≤ ‖A◦(`−1)‖2‖Af − Bf‖2 ≤ β`−1‖Af − Bf‖2
where we use ‖A◦(`−1)‖2 ≤ ‖A‖

`−1
2 ([44], lemma 6) and A(x, y) ≤ β for all

0 ≤ x, y ≤ 1 to obtain the last inequality. Using again eq. (4.38) with ` = 2,
we also have ‖Af − Bf‖2 ≤ ‖A−B‖2‖f‖2 which, together with eq. (4.37) and
eq. (4.39) leads to the conclusion. �

Now we are in a place to formulate the convergence results. The continuous
formulation of the discrete problem associated to eq. (4.30) on the quotient
graph reads8

∂

∂t
u(x, t) = Lrw� u(x, t)(4.40a)

u(x, 0) = g�(x)(4.40b)

where the random walk Laplacian operator on W/P satisfies

(4.41) Lrw� f(x) =

∫ 1

0

η (W/P) (x, y)

k�(y)
f(y)dy − f(x), ∀f ∈ L2[0, 1],

and the initial condition is averaged on each cell of the partition as

(4.42) g�(x) = n

n∑
i=1

∫
Pi

g(y)dyχPi(x), ∀x ∈ [0, 1].

Based on the following proposition, operator Lrw� is well-defined.

Proposition 4.25. Let W be a connected graphon satisfying assumption 4.17,
then the strength of every node of the quotient graph determined by the uniform
partition P = {P1, . . . , Pn} of [0, 1] is positive.

8The subscript � refers to fact that the averaging is performed on square cells of [0, 1]2.
To lighten the notations, we do not refer explicitly to the number of nodes of the graph, so we
write u(x, t) instead of for instance, u(n)(x, t).
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Proof. The strength of the i-th node vi, i = 1, . . . , n, is given by str (vi) =
nk�(x), for every x ∈ Pi. We have

(4.43) k�(x) =

∫ 1

0

n∑
j=1

AijχPj (y)dy =
1

n

n∑
j=1

Aij , ∀x ∈ Pi,

where Aij was defined by eq. (4.11). Hence,

k�(x) = n

∫
Pi

n∑
j=1

∫
Pj

W (x′, y′)dy′dx′

= n

∫
Pi

∫ 1

0

W (x′, y′)dy′dx′

= n

∫
Pi

k(x′)dx′ ≥ c,

where c > 0 is the constant from assumption 4.17. �

Remark 4.26. It follows that the finite-dimensional IVP eq. (4.40) on the
quotient graph has a unique solution given by etL�g�.

Theorem 4.27 (Convergence with W/P). Let W be a connected graphon
satisfying assumption 4.17, and let w(x, t) be the solution of IVP eq. (4.30).
Further let u(x, t) be the solution of the associated discrete problem eq. (4.40).
Then for all t ∈ R+ it holds that

‖u(·, t)− w(·, t)‖2 → 0 as n→∞.

Proof. Using remark 4.26, by the Minkowski inequality we have

‖u(·, t)− w(·, t)‖2 =
∥∥etL�g� − etLg

∥∥
2

=

∥∥∥∥∥
∞∑
k=0

tk

k!
Lk�g� −

∞∑
k=0

tk

k!
Lkg

∥∥∥∥∥
2

≤ ‖g� − g‖2 +

∞∑
k=1

tk

k!

∥∥Lk�g� − Lkg∥∥2︸ ︷︷ ︸
(∗)

.(4.44)

Let us write Lrw = K−I where K is the operator previously defined in eq. (4.29)
and I is the identity operator. We have a similar decomposition Lrw� = K� − I
for the Laplacian of the step graphon. For k ≥ 1 and 0 ≤ m ≤ k let us write
αmk = (−1)m

(
k
m

)
, and consider (∗) in the right-hand side of eq. (4.44). Using

Newton’s binomial theorem we have∥∥Lk�g� − Lkg∥∥2
=
∥∥(K� − I)kg� − (Kk − I)g

∥∥
2

=

∥∥∥∥∥
k∑

m=0

αmkKk−m� g� −
k∑

m=0

Kk−mg
∥∥∥∥∥

2

≤
∥∥∥∥∥
k−1∑
m=0

αmk
(
Kk−m� g� −Kk−mg

)∥∥∥∥∥
2

+ ‖αkk (g� − g)‖2
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with |αmk| =
(
k
m

)
and using lemma 4.23,

≤
k−1∑
m=0

(
k

m

)∥∥(Kk−m� −Kk−m
)
g
∥∥

2︸ ︷︷ ︸
(∗∗)

+‖(g� − g)‖2.(4.45)

By assumption 4.17 and proposition 4.25 there exists some constant c > 0 such
that k�(y) ≥ c for all y ∈ [0, 1]. Further, 0 ≤W ≤ 1 on [0, 1]2, and so

(4.46) ‖K�‖2 =

∥∥∥∥η(W/P)

k

∥∥∥∥
2

= ‖η(W/P)‖2
∥∥∥∥1

k�

∥∥∥∥
2

≤ 1

c
=: β�,

where K� denotes the integral kernel of K�. For ` ∈ N0, let us define E` :=
K`� − K` and E` := K`

� −K`. Then, applying lemma 4.24 successively ` − 1
times to (∗∗) in eq. (4.45) with ` = k −m, we obtain

‖E`g‖2 ≤ β`−1
� ‖E1‖2‖g‖2 + ‖E`−1Kg‖2

≤
(
β`−1
� + β`−2

�

)
‖E1‖2‖g‖2 + ‖E`−2K2g‖2

...

≤

`−1∑
j=1

β`−j�

 ‖E1‖2‖g‖2 + ‖E1K`−1g‖2,

and since E` is the kernel of E` if ` = 1,

≤

`−1∑
j=1

β`−j�

 ‖E1‖2‖g‖2 + ‖E1‖2‖K`−1g‖2

and with ‖K`−1g‖2 ≤ ‖K◦(`−1)‖2‖g‖2 ≤ ‖K‖
`−1
2 ‖g‖2,

≤

‖K‖`−1
2 +

`−1∑
j=1

β`−j�

 ‖E1‖2‖g‖2

≤ `β`−1‖E1‖2‖g‖2,(4.47)

where the last inequality stems from β := max {‖K‖2, β�} ≥ 1. Combining
eq. (4.45) and eq. (4.47) yields

∥∥Lk�g� − Lkg∥∥2
≤

k−1∑
m=0

(
k

m

)
(k −m)βk−m−1‖K� −K‖2‖g‖2 + ‖(g� − g)‖2

≤ βk−1
k−1∑
m=0

(
k

m

)
(k −m)‖K� −K‖2‖g‖2 + ‖(g� − g)‖2.(4.48)
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From eqs. (4.44) and (4.48) we obtain

‖u(·, t)− w(·, t)‖2 ≤ ‖g� − g‖2 +

∞∑
k=1

tk

k!
‖(g� − g)‖2

+ ‖K� −K‖2‖g‖2
∞∑
k=1

tk

k!
βk−1

k−1∑
m=0

(
k

m

)
(k −m)

= ‖g� − g‖2et + ‖K� −K‖2‖g‖2
∞∑
k=1

tk

k!
βk−1

k−1∑
m=0

(
k

m

)
(k −m)

and with
∑k−1
m=0

(
k
m

)
(k −m) = k2k−1,

= ‖g� − g‖2et + ‖K� −K‖2‖g‖2
∞∑
k=1

tk

k!
k(2β)k−1

≤ ‖g� − g‖2et + ‖K� −K‖2‖g‖2t
∞∑
k=1

(2βt)k−1

(k − 1)!

≤ ‖g� − g‖2et + ‖K� −K‖2︸ ︷︷ ︸
(∗∗∗)

‖g‖2te2βt.(4.49)

By the Lebesgue differentiation theorem, g� → g pointwise for almost every
x ∈ [0, 1] as n→∞, so that

(4.50) ‖g� − g‖2 −−−→n→0
0

by dominated convergence [91]. Let us consider (∗ ∗ ∗) in eq. (4.49):

‖K� −K‖22 =

∫
[0,1]2

(
η(W/P)(x, y)

k�(x, y)
− W (x, y)

k(y)

)2

dxdy

≤ ess sup
y∈[0,1]

1

k2
�(y)k2(y)

∫
[0,1]2

(
η(W/P)(x, y)k(y)−W (x, y)k�(y)

)2
dxdy

≤ β2

∫
[0,1]2

(
η(W/P)(x, y)(k(y)− k�(y))

)2
dxdy

+ β2

∫
[0,1]2

(
(W (x, y)− η(W/P)(x, y))k�(y)

)2
dxdy

and because ‖η(W/P)‖2 ≤ 1 and ‖k�‖2 ≤ 1,

≤ β2
(
‖k − k�‖22 + ‖W − η(W/P)‖22

)
.(4.51)

By the Cauchy-Schwarz inequality,

‖k − k�‖22 =

∫ 1

0

(∫ 1

0

(W (y, z)− η(W/P)(y, z)) dz

)2

dy

≤
∫ 1

0

∫ 1

0

(W (y, z)− η(W/P)(y, z))
2
dzdy

= ‖W − η(W/P)‖22,
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which together with eq. (4.51) yields

(4.52) ‖K� −K‖22 ≤ 2β2‖W − η(W/P)‖22.
By the same argument leading to eq. (4.50), we have ‖W − η(W/P)‖2 → 0 as
n→∞ which with eq. (4.52) implies

(4.53) ‖K� −K‖2 −−−→n→0
0.

Combining eqs. (4.49), (4.50), and (4.53) allows to conclude. �

4.5.2. Convergence on the sampled graph W[n]

The case of the discrete problem on W[n] can be handled similarly as the
discrete problem on W/P , and the convergence theorem follows mainly from the
observation in section 4.2.3.2 that W[n] →W at every point of continuity of W .

The necessary convergence in L2 will follow from the supplemental assumption
that the graphon is almost everywhere continuous. The discrete problem (in its
step function form) associated to eq. (4.30) on the sampled graph W[n] reads

∂

∂t
u(x, t) = Lrw[n]u(x, t)(4.54a)

u(x, 0) = g�(x)(4.54b)

where the random walk Laplacian operator on W[n] satisfies

(4.55) Lrw[n]f(x) =

∫ 1

0

η
(
W[n]

)
(x, y)

k[n](y)
f(y)dy − f(x), ∀f ∈ L2[0, 1],

and the initial condition is again averaged on each cell of the partition as
in eq. (4.42). One needs to assume sufficiently large n to guarantee k[n] to be
bounded away from 0 and so the Laplacian to be well-defined.

Theorem 4.28 (Convergence with W[n]). Let W be a connected, almost
everywhere continuous graphon satisfying assumption 4.17 and let w(x, t) be the
solution of IVP eq. (4.30). Further let u(x, t) be the solution of the associated
discrete problem eq. (4.54). Then for all t ∈ R+ it holds that

‖u(·, t)− w(·, t)‖2 → 0 as n→∞.

The proof is similar as for theorem 4.27.

Remark 4.29. The initial condition could have been sampled in a similar
fashion as the graphon, to yield the step function

(4.56) g[n] =

n∑
i=1

g

(
i

n

)
χPi .

Almost everywhere continuity of g would ensure that ‖g − g[n]‖2 → 0 when
n → ∞, and would be part of the hypothesis of a convergence theorem. The
proof of theorem 4.28 would only require minor changes, which are similar to
those discussed next in the new context of section 4.5.3.
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4.5.3. Convergence for a sequence of discrete problems

This time we consider a sequence of problems defined on graphs with
increasing number of nodes. We assume the sequence of dense connected graphs,
say (Gn), converges to a limit graphon W in the L2 metric, in the sense that
‖η(Gn)−W‖2 → 0 as n→∞. Let kn denote the degree function of the empirical
graphon η(Gn). Consider the family of discrete problems under the mapping η

∂

∂t
u(x, t) = Lrwn u(x, t)(4.57a)

u(x, 0) = gn(x) ∈ L2[0, 1],(4.57b)

where the random walk Laplacian operator Lrwn satisfies

(4.58) Lrwn f(x) =

∫ 1

0

η (Gn) (x, y)

kn(y)
f(y)dy − f(x), ∀f ∈ L2[0, 1].

Similarly as before, we write Lrwn = Kn − I.

Theorem 4.30 (Convergence with (Gn)). Let (Gn) be a sequence of con-
nected graphs that converges to a connected graphon W satisfying assumption 4.17.
Let w(x, t) be the solution of the IVP eq. (4.30) associated to W with initial
condition w(·, 0) = g ∈ L2[0, 1]. Further let u(x, t) be the solution of the corre-
sponding discrete problem eq. (4.57), and assume that ‖gn − g‖2 → 0 as n→∞.
Then for all t ∈ R+ it holds that

‖u(·, t)− w(·, t)‖2 → 0 as n→∞.

Proof. The proof follows the same steps as for theorem 4.27. However,
using lemma 4.23 to obtain eq. (4.45) is now prohibited due to the initial
condition of a discrete problem no longer resulting from an averaging of the
continuous IVP. Consider a sufficiently large n such that the degree function of
the empirical graphon satisfies kn ≥ c for some constant c > 0. Not relying this
time on lemma 4.23, we write

‖K`−mn gn −Kk−mg‖2 = ‖K`−mn gn −K`−mn g +K`−mn g −Kk−mg‖2
≤ ‖K`−mn (gn − g)‖2 + ‖(K`−mn −K`−m)g‖2,

with the first term in the right-hand side newly present. Following the same
steps leading to eq. (4.45), we obtain

∥∥Lkngn − Lkg∥∥2
≤

k−1∑
m=0

(
k

m

)
‖K`−mn (gn − g)‖2

+

k−1∑
m=0

(
k

m

)∥∥(Kk−mn −Kk−m
)
g
∥∥

2
+ ‖(gn − g)‖2,
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where again the first term right of the inequality is new. In fashion similar to

the proof of theorem 4.27, with β := max
{
‖K‖2,

∥∥∥ 1
kn

∥∥∥
∞

}
we have

‖u(·, t)− w(·, t)‖2 ≤
∞∑
k=1

tk

k!

k−1∑
m=0

(
k

m

)
‖K`−mn (gn − g)‖2

+ ‖gn − g‖2et + ‖Kn −K‖2‖g‖2te2βt.

Using ‖Kk−m‖ ≤ βk−m ≤ βk and
∑k−1
m=0

(
k
m

)
≤ 2k, we have

∞∑
k=1

tk

k!

k−1∑
m=0

(
k

m

)
‖K`−mn (gn − g)‖2 ≤

∞∑
k=1

tk

k!
2kβk‖(gn − g)‖2 = ‖(gn − g)‖2e2βt,

leading to

‖u(·, t)− w(·, t)‖2 ≤ ‖gn − g‖2
(
et + e2βt

)
+ ‖Kn −K‖2‖g‖2te2βt.

�

4.6. Relaxation

The evolution of a system towards its asymptotic state w∞ starting from
any initial condition is known as relaxation. The so-called relaxation time
characterizes the rate of this evolution. In the continuum limit of the node-
centric walk, it is determined by the spectral properties of K, in a way reminiscent
of random walks on finite graphs. For the node-centric continuous-time walk,
we will show now that this rate can be exponential. Let us define a normalized
adjacency operator, which is then used in the definition of a normalized Laplacian.

Definition 4.31 (Graphon normalized adjacency operator). Under assump-
tion 4.17, let the normalized adjacency operator be the integral operator
Anorm : L2[0, 1]→ L2[0, 1] defined by

(4.59) Anormf(x) =

∫ 1

0

W (x, y)√
k(x)

√
k(y)

f(y)dy, ∀f ∈ L2[0, 1],

namely Anorm =M1/
√
k KM√k.

Observe that under assumption 4.17 the kernel is square-integrable and
symmetric. Hence Anorm is a compact, self-adjoint Hilbert-Schmidt integral
operator and the Hilbert-Schmidt theorem on page 71 applies. Therefore, there
exists an orthonormal basis of eigenfunctions {φm} with associated eigenvalues
λm, so that operator Anorm has the canonical form

(4.60) Anorm =

∞∑
m=1

λm (φm, ·)φm.

The operator Lnorm := Anorm−I is the associated normalized (or sometimes also

called symmetric) Laplacian. Note that for ` ∈ N, (Anorm)
`

has eigenfunctions
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φm and eigenvalues λ`m, and that (Lrw)
`

=M√k (Lnorm)
`M1/

√
k. Combined

with eq. (4.60) this yields the singular value decomposition

eL
rwt =M√k

 ∞∑
`=0

t`

`!

( ∞∑
m=1

λm (φm, ·)φm − I
)`M1/

√
k

=M√k

 ∞∑
`=0

t`

`!

( ∞∑
m=1

(λm − 1) (φm, ·)φm
)`M1/

√
k

=M√k

( ∞∑
m=1

∞∑
`=0

t`

`!
θ`m (φm, ·)φm

)
M1/

√
k

=

∞∑
m=1

eθmt
(
φm√
k
, ·
)√

kφm(4.61)

with θm = λm−1 the eigenvalues of Lnorm. By letting ψm = φm√
k

and ζm =
√
kφm,

the solution of IVP eq. (4.30) reads

(4.62) w(x, t) =

∞∑
m=1

eθmt (ψm, g) ζm(x).

The following proposition allows for a characterization of the rate of the relaxation
towards w∞.

Proposition 4.32. Let W be a graphon satisfying assumption 4.17, then the
eigenvalues θm of Lnorm are non-positive reals, and the largest eigenvalue is
zero. If moreover W is connected, then the eigenvalue zero has multiplicity one.

Proof. That the eigenvalues are reals results from Lnorm being a self-
adjoint operator on L2[0, 1]. Let θ be an eigenvalue of Lnorm associated to φ.
Then θ is given by the Rayleigh quotient

(4.63) θ =
(θφ, φ)

(φ, φ)
=

(Lnormφ, φ)

(φ, φ)
.

Consider the numerator in the right-hand side of eq. (4.63). For all f ∈ L2[0, 1]
we can write

(Lnormf, f) =

∫ 1

0

∫ 1

0

W (x, y)√
k(x)

√
k(y)

f(x)f(y)dxdy −
∫ 1

0

f2(x)dx

=
1

2

(
2

∫ 1

0

∫ 1

0

√
W (x, y)√
k(x)

√
W (x, y)√
k(y)

f(x)f(y)dxdy

−
∫ 1

0

∫ 1

0

W (x, y)

k(x)
f2(x)dxdy −

∫ 1

0

∫ 1

0

W (x, y)

k(y)
f2(y)dxdy

)

= −1

2

∫ 1

0

∫ 1

0

(√
W (x, y)√
k(x)

f(x)−
√
W (x, y)√
k(y)

f(y)

)2

dxdy,(4.64)
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which is non-positive. The claim that zero is an eigenvalue follows from the fact
that Lnorm

√
k(x) = 0 on [0, 1]. Finally, let us show that the nullspace of Lnorm

has dimension one if W is connected. By defining g = M1/
√
kf on [0, 1], we

have to show that if the right-hand side of eq. (4.64) is zero, namely

(4.65) −1

2

∫∫
[0,1]2

W (x, y) (g(x)− g(y))
2
dxdy = 0,

then g has to be a constant function on [0, 1]. By contradiction, assume that
there exists some non-constant function g that verifies eq. (4.65). For simplicity,
consider the case that g = c1 on some S ∈M[0, 1] with µ(S) ∈ (0, 1), and g = c2
on Sc := [0, 1] \ S, with c1, c2 ∈ R, c1 6= c2. The reasoning would be similar if
g is a piecewise constant function on any other partition of [0, 1], and can be
extended by density to any not piecewise constant g. Based on eq. (4.65), we
can write
(4.66)

0 =

∫∫
[0,1]2

W (x, y) (g(x)− g(y))
2
dxdy ≥

∫∫
S×Sc

W (x, y) (g(x)− g(y))
2
dxdy,

and the integral in the right-hand side is zero. Since W is connected, we have∫∫
S×ScW (x, y)dxdy > 0, and hence there exists a positive-measured subset

E × F of S × Sc such that W > 0 on E × F . Therefore, g(x) − g(y) = 0 for
almost every (x, y) ∈ E × F . But then, since g = c1 on E ⊂ S, g = c1 on
F ⊂ Sc, a contradiction. �

Remark 4.33 (Spectral gap). The last claim of proposition 4.32 means that
the spectral gap of Lnorm, namely the positive difference between the largest
and the second largest eigenvalue, is nonzero when the graphon is connected
with degree function bounded away from zero. Observe that if k is not bounded
away from zero, we may no longer write Anorm =M1/

√
k KM√k because 1/

√
k

is not bounded. This implies that the spectrum of Lrw can no longer be deduced
directly from the spectrum of the compact self-adjoint operator Lnorm. However,
the eigenvalues of Lrw may in some cases be computed directly, see example 4.34.
If the graphon is not connected, one can analyze the dynamics on each connected
component independently, as follows from the decomposition introduced in [60].
Therefore, it only remains open to fully characterize relaxation in the case of a
connected graphon where assumption 4.17 is not satisfied, meaning k(x) becomes
arbitrarily small on positive measured subsets of [0, 1], and such that K is still
well-defined. This situation could lead to a vanishing spectral gap for Lrw whilst
in the discrete (or discretized) version, the spectral gap would be positive as a
result of connectedness in finite graphs.

Example 4.34 (Eigenvalues of Lrw on a separable graphon). Consider the
separable9 graphon W (x, y) = xy. The degree function is k(x) = x/2, in which

case Lrw = K − I with Kf(x) = 2x
∫ 1

0
f(y)dy. Any eigenvalue λK of K satisfies

(4.67) 2x

∫ 1

0

φK(y)dy = λKφK(x), x ∈ [0, 1],

9We say the graphon W (x, y) is separable when it can be written as W (x, y) = ζ(x)ζ(y)

for some function ζ.
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where φK is an eigenfunction. It suffices to subtract one to the eigenvalues
of K and to hold the same eigenfunctions to obtain the eigenpairs of Lrw.
From (4.67), one finds λK = 1 with the one-dimensional eigenspace span{x}, or
λK = 0 with the infinite-dimensional eigenspace {1}⊥. Observe these spaces are
not orthogonal, but their sum is L2[0, 1].

Note that this particular example is not representative of all the technicalities
of the spectral analysis of the generally non-self-adjoint operator Lrw, when the
degree function is not bounded away from zero. A more complete picture can be
obtained by revisiting the above limited analysis with the tools of spectral theory
introduced to study another graphon-based Laplacian operator in chapter 7.

4.7. Extension to the discrete-time walk

The analysis of the node-centric continuous-time walk carries over to the
discrete-time version. Recall that the discrete-time walk is actually a Markov
chain where the set V of vertices is the state-space and the transition probability
from node vi to vj is encoded in the matrix

(4.68) Tji =

{
Aij/ str (vi) if vj ∼ vi,
0 otherwise.

If we let pi(`) denote the probability that the walker is located on node i after `
steps, and p(`) := (p1(`), . . . , pn(`)), then

(4.69) p(`+ 1) = p(`)T,

where T = D−1A, with D the diagonal matrix of the strengths of the nodes.
It follows that for any ` ∈ N, p(`) = p(0)T `. The corresponding IVP on the
continuum reads

w(·, `+ 1) = Kw(·, `), ` ∈ N(4.70a)

w(·, 0) = w0 ∈ L2[0, 1],(4.70b)

with solution given by w(·, `) = K`w0 for every ` ∈ N.

Following the same steps as in sections 4.3.2, 4.4, and 4.5, we obtain similar
convergence results on the quotient graph W/P , on the sampled graph W[n] and
for a sequence of discrete problems. Analogously as for eq. (4.62), the spectral
expansion of the solution of the discrete-time IVP eq. (4.70) is of the form

(4.71) w(·, `) =

∞∑
m=1

λ`m (ψm, w0) ζm, ` ≥ 0,

where the notation refers to (4.62).
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4.8. Conclusion

The motivation to apply graph-limit theory to random walks as part of
our third research question was twofold. On the one hand, random walks and
Laplacians play a central role in the study of graphs, and a better understanding
of their behavior on graphons has a clear mathematical interest, with theoretical
and algorithmic objectives. On the other hand, as large networks become ever
more common in numerous fields of research, a rigorous study of the continuum
limit of the different types of random walks on graphs was needed.

This chapter was intended as a first step towards a systematic study of
classes of random walks on discrete domains, relying on the adequate framework
provided by graph-limit theory. We have first shown that the continuum-limit
of the discrete heat equation [91] could be interpreted as the limit of a rescaled
edge-centric continuous-time Poisson random walk. We have then studied the
continuum limit of the remaining two fundamental classes of random walks
on graphs, which complement the discrete heat equation: the continuous-time
node-centric walk and its more basic discrete-time version. A final part of
the document was devoted to spectral aspects of the introduced random walk
Laplacian operator, thereby allowing for a characterization of the relaxation
time of the process.

The world of random walks is a very broad one, and in this respect the scope
of this initial work had to be narrowed. Hence, a promising research direction
would consist in generalizing the semigroup approach developed here, or the
one in [91, 93, 94], to the diverse classes of random walk processes omitted
here, for instance walks on temporal or directed networks. A second line of
research could focus on the case of sparse graphs. Sparsity is indeed known to
be the norm rather than the exception in real-life networks. Such extension
was already provided for the graph-limit version of the heat equation, using
Lp graphons [17, 93, 63]. In these works, sparsity follows from randomness in
the sampling procedure. This induces some technicalities due to the quotient
structure of the kernel of the random walk Laplacian, and the fact that it is
normalized by the degree. They are certainly not insurmountable but do require
a careful treatment in deriving the continuum limit and obtaining convergence
results. Another possible venue of investigation to deal with sparsity could
follow from recent works on sparse exchangeable graphs generated via graphon
processes or graphexes [19, 16, 23].

With that, we conclude the part of the thesis devoted to linear diffusion
processes. In what comes next, we will build on the foundation of the first
chapters to study stability and self-organization in nonlinear problems with
diffusive coupling on graphs.





CHAPTER 5

Diffusion- and delay-driven
instabilities on graphs

5.1. Introduction

Reaction-diffusion (RD) equations as introduced in chapter 1 arise out of the
combination of two phenomena : local reactions and diffusion. When the domain
is a graph, diffusion is commonly in the line of the process studied in chapter 2.
In all models we will consider, the reaction term of the equation is nonlinear.
Abandoning the linearity of the system has several dramatic implications. To
start with, new classes of problems such as epidemics, and spreading processes
in general can be modeled. Secondly, nonlinearity naturally comes with the
cost of a generally more involved analysis. Thirdly, a distinctive feature of
RD processes is that the number of agents (particles, reactants, or any other
described quantity) is not necessarily preserved. We will also have to keep a
check on the boundedness and positivity of solutions when we introduce delay
systems. And finally, in terms of dynamical behavior, patterns and fronts are
intimately linked to RD systems and even occupy the central position in this
chapter. The overall objective, as part of our second research question, is to
gain insight into the mechanism that governs the emergence of these patterns,
and to determine whether time delay may increase the likelihood to observe
instability seeded by diffusion in a given system.

In this introduction, we start with definitions of stability in section 5.1.1,
which then allows to introduce and discuss diffusion-driven instabilities in sec-
tion 5.1.2. Section 5.1.3 is a follow-up devoted to the limitations of the approach,
and closes the introduction. Next in section 5.2 we will make a first step beyond
the classical linear stability analysis, by using a bifurcation argument to describe
the asymptotic steady state analytically. In section 5.3 we introduce delay
systems, and present our findings related to the emergence of phenomena that
could not arise without the delay. The final section summarizes the results and
offers some conclusions.

5.1.1. Definitions of stability

Contrary to the modeling and analysis of the asymptotic steady state of
the linear systems in the previous chapters, our dealings with nonlinear system
will now revolve around stability. This requires some standard definitions we
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will mention now, and also reuse in the following chapters in finite and infinite
dimensions.

Let us consider a possibly nonlinear dynamical system on a Banach space
X with norm ‖ · ‖X given by

ż(t) = F(z(t)), t ≥ 0,(5.1a)

z(0) = z0,(5.1b)

where F : domF ⊂ X → X is densely defined and z0 ∈ domF is the initial
condition. It is assumed that eq. (5.1) is well-posed and admits a unique
solution z(t) = S(t)z0, where S(t) is the (possibly nonlinear1) C0−semigroup of
operators on X generated by F . Let ze be an equilibrium of eq. (5.1), F(ze) = 0.
The equilibrium is not necessarily unique; there may be an infinite number of
equilibrium points. So let E be a set of such equilibrium points and define

(5.2) d(·, E) := inf {‖· − x‖X : x ∈ E} .
Definition 5.1 (Lyapunov stability). The equilibrium set E is (Lyapunov)
stable if for every ε > 0, there exists δ > 0 such that if d(z0, E) < δ, then
d(z0, E) < ε for all t ≥ 0. The equilibrium is globally stable if d(z0, E) < ε for
all t ≥ 0 and all z0 ∈ domF . Otherwise it is called (globally) unstable.

Definition 5.2 (Asymptotic stability). The equilibrium set E is asymptot-
ically stable if it is stable and there exists δ > 0 such that if d(z0, E) < δ,
then limt→∞ d(z(t), E) = 0. The equilibrium is globally asymptotically stable
limt→∞ d(z(t), E) = 0 for all z0 ∈ domF .

Definition 5.3 (Exponential stability). The equilibrium set E is exponentially
stable if there exists δ, α, β > 0 such that if d(z0, E) < δ, then d(z(t), E) ≤
αe−βtd(z0, E) for all t ≥ 0. The equilibrium is globally exponentially stable
if there exists α, β > 0 such that d(z(t), E) ≤ αe−βtd(z0, E) for all t ≥ 0 and
z0 ∈ domF .

Remark 5.4 (On the stability of points). One may particularize definitions 5.2
to 5.3 to the stability of points by replacing in those definitions the expressions
d(·, E) := inf {‖· − x‖X : x ∈ E} by ‖· − ze‖X .

We will be interested in exponential stability and not asymptotic stability,
because the former is the one needed to apply the principle of linearized stability
in (in)finite dimensions.

5.1.2. Diffusion-driven instability

Did Turing ever expect that the 1952 paper [131] where he proposed his
diffusion-driven mechanism for pattern formation in reaction-diffusion systems
would have such dramatic and lasting impact? Patterns, namely the patchy
motifs we come across in nature, for instance on the coating of some animals or on
whorled leaves2, are both common and compelling. The amount of mathematics

1See [2, Definition 2.2] for a definition of nonlinear strongly continuous semigroup.
2To use an example of Turing’s.
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behind his explanation of the destabilizing effect of diffusion on the otherwise
stable point of the local reaction kinetics was relatively contained, which certainly
helped his idea propagate. And he proposed a broad investigation, by considering
RD on both continuous and discrete domains, which demonstrated stationary
and oscillatory behaviors alike. Still, that the so-called Turing instabilities
evolved into a field of research of their own is remarkable. This may have to do
with the debate that surrounds the actual validity of the Turing approach, as
we discuss in the next section. But let us first present the basics about Turing’s
diffusion-driven instability (DDI), focusing on systems on graphs [102, 103].

5.1.2.1. On graphs

We consider a two-species RD system evolving on a connected symmetric
network with N nodes and no self-loops. The adjacency matrix is A and the
degrees are denoted by kj . The combinatorial Laplacian matrix L is given by
Lij = Aij − kiδij , and is the matrix operator for diffusion. The levels of the
species in node i read respectively ui(t) and vi(t). The reactions in each node
are modeled via two smooth nonlinear functions f, g ∈ C∞(R), which are taken
identical in all the nodes following an assumption of spatial homogeneity. The
diffusion coefficients Du and Dv characterize the mobility of the two species
across the links. Recall that they can be interpreted as the exponential rate for
the activation of the links in the edge-centric random-walk. The model is the
discrete version of (1.27) and reads

u̇i(t) = f(ui(t), vi(t)) +Du

N∑
j=1

Lijuj(t)(5.3a)

v̇i(t) = g(ui(t), vi(t)) +Dv

N∑
j=1

Lijvj(t)(5.3b)

for all i = 1, . . . , N and t > 0, with initial conditions ui(0) = ui,0, vi(0) = vi,0
given in every node.

First one assumes there exists a uniform constant solution (ui(t), vi(t)) =
(ue, ve) to the local problem associated to (5.3),

u̇i(t) = f(ui(t), vi(t)),(5.4a)

v̇i(t) = g(ui(t), vi(t)),(5.4b)

with the same initial conditions as the original problem, such that

(5.5) f(ue, ve) = 0 = g(ue, ve).

Assume further that the steady-state (ue, ve) is linearly stable, meaning the
Jacobian matrix given by

(5.6) J =

(
fu fv
gu gv

)
where the partial derivatives are evaluated in (ue, ve), has eigenvalues with
negative real parts. This condition is expressed as

(5.7) trJ < 0, detJ > 0.
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Linearizing (5.3) around (ue, ve) and dropping the dependence on t in the
notation, one obtains

(5.8)

(
u̇i
v̇i

)
= J

(
ui
vi

)
+

(
Du 0
0 Dv

)(
(Lu)i
(Lv)i

)
,

for i = 1, . . . , N . This system is diagonalized using an orthonormal basis
{ϕ0, . . . , ϕN−1} of eigenvectors of the Laplacian matrix, associated to eigenvalues
ordered as

(5.9) λN−1 ≤ . . . ≤ λ1 < λ0 = 0,

where the last strict inequality is due to the connectedness of the graph. Note
that

(5.10) ϕm ◦ 1 =

{√
n if m = 0

0 if m > 1
,

where all entries of 1 ∈ RN are equal to 1 and ◦ denotes the usual scalar product.
The solution of (5.8) is written as3

u(t) =

N∑
m=1

ame
λmtϕm,(5.11)

v(t) =

N∑
m=1

bme
λmtϕm.(5.12)

where the am’s and bm’s are real constants. It is a matter of inserting these
expressions in eq. (5.8) to diagonalize the system and obtain the characteristic
equation for each mode m,

(5.13) det (λmI − Jm) = 0,

where

(5.14) Jm = J +

(
Du 0
0 Dv

)
λm, m = 1, . . . , N.

Let us observe that

(5.15) trJm = trJm + (Du +Dv)λm,

and so trJm < trJ < 0 for all m > 1. The solutions of (5.13) read

λ+
m =

1

2

(
trJm +

√
(trJm)2 − 4 detJm

)
,(5.16)

λ−m =
1

2

(
trJm −

√
(trJm)2 − 4 detJm

)
.(5.17)

The following definition formalizes what is meant by diffusion-driven instability.

Definition 5.5 (Turing instability). An unstable homogeneous fixed point of
a reaction-diffusion system is Turing unstable if it is an exponentially stable
equilibrium of the associated local problem.

3Here bold font is used to distinguish between λm in these expression and the (topological)
eigenvalues λm of the Laplacian matrix.
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In case of problem (5.3), this means (5.7) applies, and there exists m ∈
{1, . . . , N − 1} such that the rightmost eigenvalue λ+

m of Jm has positive real
part,

(5.18) trJm + Re
√

(trJm)2 − 4 detJm > 0.

In terms of terminology, Reλ+
m is called the linear growth rate, and the map

λm 7→ Reλ+
m is often referred to as the dispersion relation. Condition (5.18) is

the same as detJm < 0 for some m > 0, or equivalently

(5.19) detJ + (fuDv + gvτDu)λm +DuDvλ
2
m < 0.

Together with the stability condition (5.7) of the local system, this implies
fuDv + gvDu > 0. Since trJ = fu + gv < 0, from another use of (5.7), we have
fu > 0 and gv < 0, or fu < 0 and gv > 0. Assuming u is the activator and v the
inhibitor, fu > 0, gv < 0, one has fuDv + gvDu > 0 iff Dv/Du > −gv/fu > 1.
Summing up, we have the implication

(5.20) detJm < 0 =⇒ Dv

Du
>
−gv
fu

> 1

which provides a necessary and practically restrictive condition for Turing
instability.

Inequality (5.19) determines a range for the topological eigenvalues:

(5.21) λm ∈
(−(fuDv + gvDu)−√ρ

2DuDv
,
−(fuDv + gvDu) +

√
ρ

2DuDv

)
,

where ρ = (fuDv +gvDu)2−4DuDv detJ . The critical ratio for the diffusion co-
efficients for which the above interval reduces to a single point, σc := Dv/Du|ρ=0,
is given by

(5.22) σc =
2 detJ − fugv + 2

√
detJ(detJ − fugv)

(fu)
2 .

For a given diffusion coefficient Du, the Laplacian eigenvalue corresponding to
σc reads

(5.23) λc =
(fu − gv)σc − (σc + 1)

√−fvguσc

Duσc(σc − 1)
.

Remark 5.6. The value of Du can be tuned so that the resulting new λc

corresponds exactly to any nonzero eigenvalue λm of the Laplacian, for instance
the eigenvalue closest to the original λc. It suffices to replace Du by λc

λm
Du,

because then (
λc

λm
Du

)
λm = λcDu.

In section 5.2 we will make the assumption that λc is an eigenvalue with
algebraic multiplicity one for m = mc, and we write write ϕmc

=: ϕc the
corresponding eigenvector of the Laplacian.
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Figure 5.1. Network with 500 nodes corresponding to figs. 5.2 and 5.3.
Node color by degree.

5.1.2.2. Example

These considerations are best supported by an example. To this end, we
selected Mimura-Murray kinetics, eq. (1.17), on top of a network with 500 nodes
visible on fig. 5.3. The parameters are a = 35, b = 16, c = 9, d = 2

5 , while the
diffusion coefficients are set to Du = 0.1 and Dv = 3. The growth rates are
plotted on fig. 5.2. Observe that the shape of the curves on figs. 5.2a and 5.2b is
determined by the parameters of the Mimura-Murray model and by the diffusion
coefficients, but not by the underlying network.

Next we integrated the system subject to a small initial perturbation around
the equilibrium given by (1.18a). As predicted by the positive growth rates, the
interaction of reactions and diffusion drove the system away from the homoge-
neous equilibrium, towards a non-uniform steady state written u(∞), v(∞). If
the term “pattern” is natural for RD systems on a continuum, the steady-states
of discrete problems visibly do not come with an obvious shape to them. Finding
the best way to represent the resulting pattern is a legitimate quest, and the
answer is at least partly topological, as can be guessed from the fact that the
Fourier modes correspond to the eigenvectors of the Laplacian matrix of the
graph.

To make sense of that, first note that the graph of our example was generated
with a spatial model where the nodes are connected depending on an embedding
in the hyperbolic plane [72]. As is standard in this construct, each node is
referred to by an angular and a radial coordinate (Θ, R) which are two random
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values since it is truncated left and
below.

−30 −20 −10 0

−5

0

5

λ

λ
−

Reλ−

Imλ−

(c) Growth rates λ− valid were the

system defined on a continuum

−30 −20 −10 0

−5

0

5

λm

λ
− m

Reλ−m
Imλ−m

(d) Actual discrete set of growth
rates λ− for the discrete problem.

Figure 5.2. Linear growth rates for problem (5.3) with Mimura-Murray
kinetics. The eigenvalues of the Laplacian of the graph on fig. 5.1
determine how the continuous curves of panel (a) are populated on
panel (b). The stability of the system on the graph is determined by the
teal-colored series Reλ+

m on panel (b), since the real part of all growth
rates on panel (d) is negative.

variables with respective PDF’s

fΘ(θ) =
1

2π
χ[0,2π)(θ),(5.24)

fR(r) =
α sinh(αr)

cosh(αr)− 1
χ[0,ρ)(r).(5.25)
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Figure 5.3. Finding order in a Turing pattern on graph, with Mimura-
Murray kinetics on top of a spatial network embedded in the hyperbolic
plane.

The parameters4 have been set to α = 5.5 and ρ = 15.5. Every pair of nodes
(θ1, r1), (θ2, r2) forms an edge if their hyperbolic distance dH(θ1, r1, θ2, r2) given
by

(5.26) cosh(dH) = cosh(r1) cosh(r2)− sinh(r1) sinh(r2) cos(θ1 − θ2)

is below the deterministic threshold, 1.4ρ in our case. Representing the asymp-
totic steady state after the nodes were embedded in the hyperbolic plane is

4The values of these parameters come from a choice of intermediate variables with physical
meaning, which control the type of network.
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thus a natural way to try and find structure in the discrete pattern. If for this
particular example the procedure is clearly effective, as fig. 5.3 indicates, it
suffices to change the parameters in the network generation procedure to see
it loose its efficacy. Interpreting the shape of a Turing pattern on a network,
let alone making a prediction, is nontrivial and is made even trickier since the
pattern generally depends on the initial random perturbation.

5.1.3. Pro’s and flaws of the Turing approach

The arguments in favor of Turing’s mechanism can be summarized as
mathematical simplicity coupled with a wide range of non-uniform steady states,
that is, many different patterns which match the types of motifs encountered in
real-life. But how meaningful and practical are delay-driven instabilities as a
route to pattern formation? The literature on the matter is abundant, and we
only aim at giving some general considerations to make sure the reach of this
and the forthcoming chapters is adequately apprehended.

When it comes to meaningfulness, we know reaction-diffusion models suffer
from limitations inherent to the modeling they arise from. Turing further had
criticism about his own work, for instance that his closest examples to our
graph-based problems, namely an isolated ring of cells, was “mathematically
convenient though biologically unusual”. And many years later, there appears
to be consensus on the fact that real-world biological systems respond to genetic
programming rather than diffusion of morphogenes obeying Fick’s law of diffusion.
But experimental evidence of Turing instabilities exists, even if rather in the
context of a laboratory experiment with chemical reactors.

Overall, any experiment designed to validate the Turing mechanism will
have to overcome a significant barrier, be it on continuous or discrete domains,
arising from the required difference in diffusion coefficients between the two
species, see (5.20). The therefore arguably small region of instability in the
parameters space is a common criticism of DDI’s. Several workarounds have
been proposed, in order to relax the demanding conditions for Turing instability.

The research community has considered stochastic effects, models with cross
diffusion, and in the particular case of discrete domains, it has introduced multi-
plex, directed or non-normal networks to the effect of less stringent instability
conditions. In this chapter, we will contribute to this stream with delay models,
section 5.3, and with RD on top of a temporal graph in chapter 6.

Moving forward, it is worth noting that recent developments keep flowing
in, like in [50] where a new paradigm for mass conserving systems is introduced.
The proposed analysis is based on so-called moving equilibria of elementary
building blocks which partition the system in space. A remarkable feature is
that the approach is not bound by the hypothesis that the nonlinear terms be
stabilizing, and therefore shows that even if the Turing paradigm certainly offers
a convenient framework for the mathematical analysis of non-uniform steady
states in RD systems, it should not exclude other approaches.
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5.2. Asymptotic steady state

Reaching beyond the conditions for instability, in this section we want to
investigate the long-term behavior of the solutions of the reaction-diffusion
problem (5.3), by looking for non-constant solutions to the stationary problem

0 = f(ui, vi) +Du

N∑
j=1

Lijuj(5.27a)

0 = g(ui, vi) +Dv

N∑
j=1

Lijvj(5.27b)

for i = 1, . . . , N .

We first recall the definition of Fréchet derivative, not to be confused with
the weaker Gâteaux derivative of definition 7.26 on page 157.

Definition 5.7 (Fréchet derivative). Let X be a normed linear space. Then
operator F : X → X is Frechet differentiable at x ∈ X if there exists a bounded
linear operator DF (x) such that for all h ∈ X,

lim
h→0

‖F (x+ h)− F (x)−DF (x)h‖
‖h‖ = 0.

If F is Fréchet differentiable in every x ∈ X, then F is said to be Fréchet
differentiable in X.

Note that in finite dimensions, the Fréchet derivative is represented in
coordinates by the Jacobian matrix, and that existence and continuity of all
partial derivatives is a sufficient condition for Fréchet differentiability.

5.2.1. Bifurcation from a simple eigenvalue

The approach relies on the use of a theorem in bifurcation theory ([30],
Theorem 1.7), which was also used in [75] to study a growth-diffusion-chemotaxis
model on a continuous, rectangular domain.

In the sequel Du is considered a constant given value and we let X =
RN × RN , endowed with the usual scalar product, and use the notation w :=
(u, v) ∈ X where u = (u1, . . . , uN ) and v = (v1, . . . , vN ), and we := (ue, we) ∈
R2. Associated with the stationary problem (5.27) we define the operator
F : R+ ×X → X by
(5.28)

Fi(σ,w) =

f(ue + ui, ve + vi) +Du

∑N
j=1 Lijuj , i = 1, . . . , N,

g(ue + ui, ve + vi) + σDu

∑N
j=1 Lijvj , i = N + 1, . . . , 2N.

The partial Fréchet derivative DwF , namely the Fréchet derivative of the map
w 7→ F (σ,w) for a fixed σ and evaluated in w = 0, is the operator Dw=0F
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given by
(5.29)

(Dw=0F )i (σ,w) =

fuui + fvvi +Du

∑N
j=1 Lijuj , i = 1, . . . , N,

guui + gvvi + σDu

∑N
j=1 Lijvj , i = N + 1, . . . , 2N.

We can now state the main result of the section. The proof will largely
consist in verifying the hypotheses of the bifurcation theorem cited above. We
will establish the proof under the assumption of an activator-inhibitor system,
sign J =

(
+ −
+ −

)
, but the result holds for cross activator-inhibitor systems such

as the Brusselator where sign J =
(

+ +
− −

)
. The only change is that the signs

of bc and Bc would be reversed. It only matters that the partial derivatives be
nonzero.

Theorem 5.8. If λc is an eigenvalue of the Laplacian matrix with algebraic
multiplicity one associated to the eigenvector ϕc, then there exists an interval
(−s, s) and a positive constant bc = −gu/ (gv + σcDuλc) such that nonconstant
solutions of (5.27) near (ue, ve, σc) can be represented as(

u(α), v(α)
)

=
(
ue, ve

)
+ α

(
ϕc, bcϕc

)
+ α2

(
U(α), V (α)

)
,(5.30)

σ(α) = σc + αβ(α),(5.31)

for all α ∈ (−s, s), where β : (−s, s) → R and U, V : (−s, s) → Rn are
continuous functions, such that ranU × ranV is a subspace of the orthogonal
complement of kerDw=0F (σc, ·) in X.

Proof. In order to apply the bifurcation theorem, let us first determine
the dimension of kerDw=0F for σ = σc. For this we have to determine the
nonzero solutions of the linearization of (5.27). Let us consider the perturbations
w̃i = (ũi, ṽi) of the equilibrium we and consider the linear system

0 = fuũi + fv ṽi +Du

N∑
j=1

Lij ũj(5.32a)

0 = guũi + gv ṽi + σDu

N∑
j=1

Lij ṽj(5.32b)

for i = 1, . . . N . We expand the perturbation in the basis of the eigenvectors of

the Laplacian with constant coefficients, ũ =
∑N
m=1 amϕm, ṽ =

∑N
m=1 bmϕm.

Using the orthogonality of the chosen basis and the relation Lϕm = λmϕm, we
come to

(5.33)

(
fu +Duλm fv

gu gv + σDuλm

)(
am
bm

)
=

(
0
0

)
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for m = 1, . . . , N . Notice for later use that this equation shows that Dw=0F is
also defined by

(5.34) Dw=0F (σ,

N∑
m=1

amϕm,

N∑
m=1

bmϕm)

=

N∑
m=1

(am, bm)

(
fu +Duλm gu

fv gv + σDuλm

)
ϕm.

The linear problem (5.32) thus yields the characteristic equation detJm = 0. If
we take σ = σc then detJm = 0 only for the value of m such that λm = λc, and
it remains to solve

(5.35)

(
fu +Duλc fv

gu gv + σcDuλc

)(
ac
bc

)
=

(
0
0

)
for ac and bc. Let us normalize the solution assuming ac = 1. It follows that
bc = −gu/ (gv + σcDuλc) , and one has

(5.36) kerDw=0F (σc, ·) = span (ϕc, bcϕc),

which is one-dimensional. Applying the rank-nullity theorem,

(5.37) dim (ranDw=0F (σc, ·)) = dim (X)− dim (kerDw=0F (σc, ·)) = 2N − 1,

and dim (X \ ranDw=0F (σc, ·)) = 1.

Next we need to verify that the partial derivative with respect to σ of
Dw=0(σ, w̃) evaluated in σ = σc is not in the range of Dw=0F (σc, ·):

(5.38)
∂

∂σ
Dw=0F (σc, ϕc, bcϕc) /∈ ranDw=0F (σc, ·).

By the Fredholm alternative theorem, this is equivalent to

(5.39)
∂

∂σ
Dw=0F (σc, ϕc, bcϕc) /∈ kerDw=0F

∗(σc, ·)⊥,

where Dw=0F
∗ denotes the adjoint operator of Dw=0F defined for σ = σc by

(5.40) Dw=0F
∗(σc,

N∑
m=1

amϕm,

N∑
m=1

bmϕm)

=

N∑
m=1

(am, bm)

(
fu +Duλm fv

gu gv + σcDuλm

)
ϕm.

Using (5.34) the left-hand-side of (5.39) becomes

∂

∂σ
Dw=0F (σc, ϕc, bcϕc) =

∂

∂σ
(1, bc)

(
fu +Duλc gu

fv gv + σDuλc

)
ϕc

= (1, bc)

(
0 0
0 Duλc

)
ϕc

= (0, bcDuλcϕc) .(5.41)
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To determine kerDw=0F
∗(σc, ·) in the right-hand side of (5.39), we again first

have to solve

(5.42) det

(
fu +Duλm fv

gu gv + σcDuλm

)
= 0

for λm. The solution is λm = λc and kerDw=0F
∗(σc, ·) = span (Acϕc, Bcϕc)

where the constants Ac, Bc are given by

(5.43)

(
fu +Duλc gu

fv gv + σcDuλc

)(
Ac

Bc

)
= 0.

Normalizing by taking Ac = 1, we get kerDw=0F
∗(σc, ·) = span (ϕc, Bcϕc) with

Bc = −fv/ (gv + σcDuλc) < 0. Combining with (5.41) allows to write condition
(5.39) as

(5.44) (0, bcDuλcϕc) /∈ span (ϕc, Bcϕc)
⊥
.

We will use interchangeably the notations ◦ or 〈·, ·〉 to denote the scalar product
in X and in Rn. Due to the fact that bc > 0, Bc < 0, one observes that

(5.45) (0, bcDuλcϕc) ◦ (ϕc, Bcϕc) = bcBcDuλcϕc ◦ ϕc = bcBcDuλc > 0,

which shows that condition (5.44) holds true.

Let us now denote Z the orthogonal complement of kerDw=0(σc, ·) in X.
For some positive s, from the bifurcation theorem we have that nonconstant
solutions of the stationary problem (5.27) near (σc, we) can be represented as

(5.46)
(
u(α), v(α)

)
= we + α

(
ϕc, bcϕc

)
+ α (ψu(α), ψv(α))

and σ(α) = σc + ϕ(α) for all α ∈ (−s, s), where ϕ : (−s, s) → R and ψu, ψv :
(−s, s)→ Rn are once continuously differentiable functions such that ranψu ×
ranψv is in the orthogonal complement of kerDw=0F (σc, ·) in X. Moreover
from the theorem we have that ϕ(0) = 0 and ψu(0) = 0 = ψv(0), allowing
us to write ϕ(α) = αβ(α) and ψu(α) = αU(α), ψv(α) = αV (α) with β, U, V
continuous functions, so that we have

β(0) = lim
α→0

β(α) = ϕ′(0),(5.47)

U(0) = lim
α→0

U(α) = ψ′u(0),(5.48)

V (0) = lim
α→0

V (α) = ψ′v(0).(5.49)

Now it remains to check that ranU × ranV is a subspace of the orthogonal
complement of kerDw=0F (σc, ·) in X. Since this is the case for ranψu × ranψv
we can write

(5.50) 〈(ψu(α), ψv(α)) , (ϕc, bcϕc)〉 = 0

for all α ∈ (−s, s), which implies that

(5.51) 〈(U(α), V (α)) , (ϕc, bcϕc)〉 = 0,

for all 0 < |α| < s. The functions U, V being continuous, we further have

(5.52) 〈(U(0), V (0)) , (ϕc, bcϕc)〉 = lim
α→0
〈(U(α), V (α)) , (ϕc, bcϕc)〉 = 0,

and the proof is complete. �
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5.2.2. Next-order characterization of the solution

The values of U(α), V (α) and β(α) in α = 0 provided by the next propo-
sition partially characterize the solutions of (5.27) in the neighborhood of the
bifurcation. It is helpful to write these vectors in the basis of the ϕm’s, such
that

(5.53) U(0) =

N∑
m=1

amϕm, V (0) =

N∑
m=1

bmϕm,

for some to-be-determined constants5 am, bm. In particular, for m = mc such
that λm = λc given by (5.23), we write ac := amc and bc := bmc . We further
define the constants k1, k2 by

2k1 = fuu + (fuv + fvu)bc + fvvb
2
c ,(5.54)

2k2 = guu + (guv + gvu)bc + gvvb
2
c ,(5.55)

with the second partial derivatives of f and g evaluated in (ue, ve). We then let

(5.56) `m :=

N∑
i=1

ϕ2
c,iϕm,i

and in particular `c := `mc .

Based on this premises, we have the following result.

Proposition 5.9. If λc associated to the Laplacian eigenvector ϕc has algebraic
multiplicity one, and if β given in (5.31) is one time differentiable in zero, then
(5.57)(
U(0)
V (0)

)
= −

∑
m 6=mc

`m J
−1
m

∣∣
σ=σc

(
k1

k2

)
ϕm − k1`c

(
fu +Duλc fv

1 bc

)−1(
ϕc

0

)
,

and

(5.58) β(0) = −k2`c + guac + (gv + σcDuλc) bc
Dubcλc

where ac =
(
fv(b

2
c + 1)

)−1
bc`ck1 = −bcbc.

Proof. To begin with, since (U(0), V (0)) is in the orthogonal complement
of kerDw=0F (σc, ·) in X, we have:

0 = 〈(U(0), V (0)) , (ϕc, bcϕc)〉

=

N∑
m=1

am 〈ϕm, ϕc〉+

N∑
m=1

bmbc 〈ϕm, ϕc〉

= ac + bcbc(5.59)

5Note the sans serif font to distinguish between am and bm from am and bm appearing
in the expressions of ũ(t) and ṽ(t) introduced on page 107.
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Since (u(α), v(α)) is a solution of (5.27) with Dv = σ(α)Du, we also have

(5.60) 0 = g(ui(α), vi(α)) + σ(α)Du

N∑
j=1

Lijvj(α),

for i = 1, . . . N . Differentiating and omitting to write the dependency on α we
find

(5.61) 0 = gu(ui, vi)u
′
i + gv(ui, vi)v

′
i + σ′Du

N∑
j=1

Lijvj + σDu

N∑
j=1

Lijv
′
j .

The second derivative reads

(5.62) 0 = guu(ui, vi) (u′i)
2

+ guv(ui, vi)u
′
iv
′
i + gu(ui, vi)u

′′
i

+ gvu(ui, vi)u
′
iv
′
i + gvv(ui, vi) (v′i)

2
+ gv(ui, vi)v

′′
i

+ σ′′Du

N∑
j=1

Lijvj + 2σ′Du

N∑
j=1

Lijv
′
j + σDu

N∑
j=1

Lijv
′′
j ,

for i = 1, . . . , N . Notice that σ′ = β + αβ′, σ′′ = 2β′ + αβ′′, and that

(u′, v′) = (ϕc, bcϕc) + 2α (U, V ) + α2 (U ′, V ′) ,(5.63)

(u′′, v′′) = 2 (U, V ) + 4α(U ′, V ′) + α2(U ′′, V ′′).(5.64)

Inserting α = 0 into the previous four equations, we get

σ′(0) = β(0)(5.65)

σ′′(0) = 2β′(0)(5.66)

(u′(0), v′(0)) = (ϕc, bcϕc)(5.67)

(u′′(0), v′′(0)) = 2(U(0), V (0)).(5.68)

Hence for α = 0, (5.62) becomes

(5.69) 0 = guuϕ
2
c,i + (guv + gvu)bcϕ

2
c,i + gvvb

2
cϕ

2
c,i + 2guUi(0) + 2gvVi(0)

+ 2β′(0)Du

N∑
j=1

Lijve + 2β(0)Dubc

N∑
j=1

Lijϕc,j + 2σcDu

N∑
j=1

LijVj(0)

for i = 1, . . . , N , where we notice that
∑N
j=1 Lijve = 0 and

∑N
j=1 Lijϕc,j =

λcϕc,i. If we write the elements of Rn as column vectors, and use the constant
k2 defined by (5.55), then (5.69) reads

(5.70) 0 = k2 diag(ϕc)ϕc + guU(0) + gvV (0) + β(0)Dubcλcϕc + σcDuLV (0),

where diag (x) is a square diagonal matrix with the elements of x on the main
diagonal. We are to project equation (5.70) on the chosen eigenbasis of the
Laplacian. First for all m = 1, . . . , N , we have

(5.71) 〈LV (0), ϕm〉 =

N∑
j=1

bj 〈Lϕj , ϕm〉 = bmλm.
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Taking the inner product of the right-hand side of (5.70) with ϕm yields

0 = k2`m + guam + (gv + σcDuλm)bm, for m 6= mc,(5.72)

0 = k2`c + guac + (gv + σcDuλc)bc +Dubcλcβ(0), for m = mc.(5.73)

Let us repeat the same procedure that led to (5.72) and (5.73), this time with the
first N equations of the stationary problem (5.27), producing N new equations
with unknowns am, bm. For all α ∈ (−s, s) we have:

(5.74) 0 = f(ui(α), vi(α)) +Du

N∑
j=1

Lijuj(α)

for i = 1, . . . , N . Differentiating twice with respect to α and taking α = 0 yields
(5.75)

0 =
(
fuu + (fuv + fvu)bc + fvvb

2
c

)
ϕ2

c,i+2fuUi(0)+2fvVi(0)+2Du

N∑
j=1

LijUj(0)

for i = 1, . . . , N . Noticing the constant k1 given by (5.54), in vector form the
above equation reads

(5.76) 0 = k1 diag(ϕc)ϕc + fuU(0) + fvV (0) +DuLU(0).

Similarly to (5.71), 〈LU(0), ϕm〉 = amλm and the scalar product of the right-
hand side of (5.76) with ϕm yields

(5.77) 0 = k1`m + (fu +Duλm) am + fvbm

for m = 1, . . . , N . We are left with 2N + 1 equations (5.59), (5.72), (5.73) and
(5.77) which we solve for β(0), am, bm, m = 1, . . . , N . Combining (5.72) and
(5.77) yields

(5.78) Jm|σ=σc

(
am
bm

)
= −`m

(
k1

k2

)
, m 6= mc ,

and (5.59) and (5.77) give

(5.79)

(
fu +Duλc fv

1 bc

)(
ac
bc

)
= −`c

(
k1

0

)
.

or

(5.80)

(
ac
bc

)
= − (bc(fu +Duλc)− fv)−1

`ck1

(
bc
−1

)
.

Since bc satisfies (5.35), we have fu +Duλc + fvbc = 0, and we finally get

(5.81)

(
ac
bc

)
=
(
fv
(
b2c + 1

))−1
`ck1

(
bc
−1

)
.

It remains to introduce this expression in (5.73) to determine β(0), which
concludes the proof. �

This proposition articulates a procedure that can be repeated any number of
times to yield the derivatives of all orders of U , V and β. Doing so, we obtain a
Taylor formula for the solutions of the stationary problem. However, we should
point out that theorem 5.8 provides no estimate on the basin of attraction of
such steady states with respect to the original problem (5.3). Therefore, we
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do not know whether a given solution of the stationary problem may actually
emerge as a pattern of the RD system for some initial condition. Further, the
neighborhood of the bifurcation point where eqs. (5.30) and (5.31) apply is
not explicit, and moreover, the emerging pattern and thus its deviation from
the uniform steady state depend on the random perturbation. And thirdly,
theorem 5.8 does not apply to the case that the eigenvalue is not simple, as can
happen in the case of a network-defined system. These considerations limit the
practical use of the approach in predicting the pattern(s) of a system.

Before proceeding with diffusion-driving instabilities in chapters 6 and 7, we
will examine in the next section another mechanism inherent to delay models.

5.3. Delay-driven instabilities

A Hopf bifurcation occurs in a system when a fixed point looses stability
because a pair of eigenvalues of the linearized system (around the fixed point)
cross the imaginary axis of the complex plane, when a parameter of the system
is varied. The bifurcation predictably gives birth to an oscillating behavior, such
as a limit cycle, provided the solution remains bounded.

Reaction-diffusion systems are not immune to Hopf bifurcations. Take for
instance [52, 6] where sufficient conditions were obtained for wave instabilities in
three-component reaction-diffusion systems. Keep in mind that these two works
address systems evolving on a continuum, but the conclusion that three species
is a minimal requirement for sustained oscillations originating from the Turing
mechanism holds on networks. If the number of species is down to two, stochastic
amplification of finite-size effects can however produce oscillations even with only
one diffusing species [22]. But this phenomenon of noise amplification occurs
because the key fact that each discrete portion of space has a finite carrying
capacity, an assumption that deviates from our mesoscopic point of view. Our
contribution in this section is to prove that the minimal number of components
can be relaxed when the dynamics is affected by a time delay, without having to
revert to stochastic formulations.

Time delays, also called time lags, keep making their way into more and
more mathematical models. They come into play in applications of classical
mechanical engineering, for load balancing in parallel computing, in traffic flow
models and in numerous fields belonging to applied network theory. Time delays
are part of our understanding of the interactions between neurons in biology, they
naturally belong to processes with distributed, cooperative or remote control, and
appear when using networks of sensors. Roughly speaking, delays are inherent
to virtually all systems where the time needed for transport, propagation,
communication, reaction or decision-making cannot be neglected [97, 8].

Introducing some time delay in the modeling can be a very reasonable way
to improve the models and avoid unnecessary or complex variants of delay-free
approaches to refine the match between predictions and observations. In the
case of reaction-diffusion systems, this challenge was addressed by some previous
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work related to delay-driven instabilities, notably [125, 137] regarding two-
component systems, and more recently [104] devoted to one-component systems
with constant and evolving delay. In these works the reaction kinetics features
the delay, and not the diffusion part of the equation. We will examine two
alternative ways a delay may find its way in the dynamics.

5.3.1. Local reactions

To start with, we will consider a two following single-component RD system
on a graph,

u̇i(t) = f(ui(t)) +D

N∑
j=1

Lijuj(t− τ), t > 0,(5.82a)

ui(t) = ϕi(t), t ∈ [−τ, 0],(5.82b)

for i = 1, . . . , N , where every ϕi is a continuous function that encodes the history
of the single-component, infinite-dimensional system. The delay in the second
term shows the move of a particle is delayed with respect to the difference in
concentration that triggered the move per Fick’s law of diffusion. This retarded
scheme was introduced in [129] from the standpoint of synchronization of a
network of dynamical units. The delay models the time needed to exchange and
process information. A prototypical example is that of coupled neurons, where
instantaneous interaction is impossible due to potential of the membrane having
finite propagating speed [70]. Another practical example is the delayed reaction
of a car driver trigger by a perceived variation of distance or relative velocity
with respect the vehicle ahead.

As was the case with the regular two-component Turing instability, we will
hold the following.

Assumption 5.10 (Steady-state of the local kinetics). The local system given
by the reaction term of (5.82), namely

u̇(t) = f(u(t))(5.83)

u(0) = u0(5.84)

possesses a positive stable fixed point.

Recall that if τ = 0, there can be no bifurcation in (5.82), and ue is stable
for the coupled system (5.82). The following proposition formulates a topological
condition for a delay-driven Hopf bifurcation, but requires a remark on well-
posedness of problem (5.82).

Remark 5.11 (Boundedness and positivity of the solution of (5.82)). The next
proposition characterizes the bifurcation from the homogeneous steady state, in
the linear regime. But in order to make predictions on the long-term behavior
of the system, t→∞, the solutions of eq. (5.82) need to be bounded. It is well
know that this boundedness cannot be established in general, but depends on
the systems parameters; the restriction holds true for positivity. Results on the
boundedness of the solution of (5.82) in particular, and general methods for
well-posedness of DDE’s can be found in [129, section 2] and references therein.
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Figure 5.4. Principal branch of the Lambert W function. The teal
colored curves correspond to the image of the negative real axis. The
image of the positive real axis appears in dotted gray. The orange curves
represent the image of imaginary axis.

Proposition 5.12 (Delay-driven instability). Let (5.82) be defined on a graph
with N nodes where λN−1 ≤ λN−2 ≤ . . . ≤ λ1 ≤ λ0 = 0 denote the ordered
eigenvalues of the combinatorial Laplacian. Under assumption 5.10, let u(t) = ue
be the stable fixed point of the local system, f(ue) = 0, and let η ∈

(
π
2 , π

)
be

the solution of η cos η − τf ′(ue) sin η = 0. Then ue is linearly globally exponen-
tially stable if τDλN−1 >

η
sin η , and the system undergoes a Hopf bifurcation if

τDλN−1 <
η

sin η .

Proof. The solution of the linearized system

ẇi(t) = f ′(ue)wi +D

N∑
j=1

Lijwj(t− τ), t > 0,(5.85a)

wi(t) = ϕi(t)− ue, t ∈ [−τ, 0],(5.85b)

can be written under the form w(t) =
∑N
m=1 cme

µmtϕm, where ϕm is the
eigenvector of the Laplacian associated to λm, chosen as before such that
{ϕ0, . . . , ϕN−1} form an orthogonal basis. The characteristic equation reads

(5.86) µm = f ′(ue) + λme
−τµm ,

and rearranging the terms we get

(5.87) τ (µm − f ′(ue)) eτ(µm−f
′(ue)) = τDλme

−τf ′(ue).

To solve this equation for µm we use the Lambert W function, defined for z ∈ C
by [29]

(5.88) W (z)zW (z) = z.
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This function has an infinite number of branches Wk indexed by k ∈ Z. It is
partially real-valued only for k = −1 and for the index k = 0 which corresponds
to the principal branch satisfying [126, Lemma 3]

(5.89) max
k∈Z

ReWk(z) = ReW0(z), ∀z ∈ C.

Combining eqs. (5.87) and (5.88) yields

(5.90) µm,k =
1

τ
Wk

(
τDλme

−τf ′(ue)
)

+ f ′(ue), k ∈ Z,

where the countable number of solutions is a consequence of problem (5.82)
being infinite-dimensional. Due to (5.89), we further have

ReµN−1,0 ≥ max
m=0,...,N−1,k∈Z

Reµm,k.(5.91)

As illustrated by the teal-colored curves on fig. 5.4, the image of
(
−∞,−π2

)
by

W0 has positive real part and nonzero imaginary part, and that the image of(
−π2 , 0

)
has negative real part. Therefore stability of ue is equivalent to

(5.92) ReW0

(
τDλN−1e

−τf ′(ue)
)
< −f ′(ue)τ,

and the Hopf bifurcation occurs when the equality is reversed. This expression
is transcendental, and does not yield the critical value of τ or λN−1 explicitly.
However if we let ξ + iη = W (x+ iy) with x, y, ξ, η ∈ R, from (5.88) we get

x = eξ (ξ cos η − η sin η) ,(5.93)

y = eξ (η cos η + ξ sin η) ,(5.94)

which in the case of (5.92) allows to write

τDλN−1 > −τf ′(ue) cos η − η sin η,(5.95)

0 = η cos η − τf ′(ue) sin η,(5.96)

where η := ImW0

(
τDλN−1e

−τf ′(ue)
)

. Since the function x 7→ tan x
x is a one-to-

one correspondence from
(
π
2 , π

)
to R−0 , eq. (5.96) defines a unique value of η in(

π
2 , π

)
. Using this value of η and plugging (5.96) into (5.95) yields the stability

condition

(5.97) τDλN−1 >
−η cos η

sin η
cos η − η sin η = − η

sin η
,

which determines a threshold value for the smallest eigenvalue of the Laplacian,
allowing to conclude. �

With fig. 5.5, we provide an example of a wave instability, where the system
and parameters are such that the solutions remain bounded. Increasing the
delay, raising the relative importance of the diffusive coupling by selecting a
larger diffusion coefficient, or augmenting the size of the network sufficiently will
break the boundedness displayed by the example.
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Figure 5.5. Wave instability in system (5.82). The graph has only
two nodes, and the Laplacian eigenvalues are −2 = λ1 < λ0 = 0,
therefore going lower than the threshold value of proposition 5.12 for
λN−1 = λ1 and given by −1.9. This value results from η = 2.57
obtained with eq. (5.96) for the following set of parameters: f(x) =
1
5 (x− 5)(26− 5x)(x− 6), ue = 6, τ = 5 and D = 0.05. The history of
the system is determined by two constant functions set to independent
random values close to ue.

Remark 5.13 (Delay-driven vs diffusion-driven instability). The mechanism
that is at play in proposition 5.12 differs in nature from the diffusion-driven
Turing instability. Indeed, the delay-free diffusive coupling has an homogenization
effect, and only the interplay with the otherwise stable reaction dynamics turns
diffusion into the driving force of instability. This is not the case with delayed
diffusion in a one-component setting. Indeed if we select τ such that the delayed
diffusion dynamics

u̇i(t) = D

N∑
j=1

Lijuj(t− τ), t > 0,(5.98a)

ui(t) = ϕi(t), t ∈ [−τ, 0],(5.98b)

admits ui(t) ≡ 1 for t ≥ 0 as a stable equilibrium, meaning delayed diffusion
also has an homogenization effect, then it cannot drive the RD system towards
instability. Indeed, assume

(5.99) ReW0(τDλm) < 0

for all λm, or equivalently

(5.100) −π
2
< τDλm

such that the homogeneous fixed point of eq. (5.98) is exponentially stable. We
have to show that ReµN−1,0 < 0, that is,

(5.101) ReW0

(
τDλN−1e

−τf ′(ue)
)

+ f ′(ue)τ < 0

where we have used the stability condition (5.92). As depicted by fig. 5.4, observe
that

(5.102) ReW0

(
τDλN−1e

−τf ′(ue)
)
< ReW0

(
−π

2
e−τf

′(ue)
)
,
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which combined with (5.101), implies we have to prove that

(5.103) ReW0

(
−π

2
eα
)
− α < 0, ∀α > 0.

Let ξ, η ∈ R be given by ξ + iη = W0

(
−π2 eα

)
, with ξ > 0 because −π2 eα < −π2

and where we can select π
2 < η < π for the same reason. Condition (5.103) is

then written as ξ − α < 0. Equations (5.93) and (5.94) take the form

−π
2
eα = eξ (ξ cos η − η sin η) ,(5.104)

0 = eξ (η cos η + ξ sin η) ,(5.105)

which combined, noticing that π
2 < η < π, yield

(5.106) ξ − α = ln

(
π

2

sin η

η

)
.

It suffices to observe that

(5.107)
π

2

sin η

η
<
π

2

1
π
2

= 1

to conclude that in spite of the interplay with the reaction, (5.82) cannot be
destabilized by the delayed diffusive coupling.

In [110], we studied variants of such system where the delay also affects the
reaction terms, and a follow-up on the single species models was the subject
of [109] where we showed that depending on the size of the time delay, stationary
or oscillatory patterns could emerge in a two-component setting. From a technical
point-of-view these cases bring no novelty, except that the stability domain for
the possibly complex topological eigenvalues is no longer a subset of the negative
real axis as was the case with only one species, but extends to a portion of the
complex plane. The interested reader is referred to the above references.

5.3.2. Global feedback

With an example, in this section we want to make clear that the delay needs
not necessarily appear in the diffusion to induce a bifurcation to oscillations.
Indeed, during the numerical exploratory phase of a collaborative work we found
out global delay feedback could drive the system towards a wave instability.
Consider the following variant of (5.82),

(5.108) u̇i(t) = ui(t)(h− ui(t))(ui(t)− 1) +D

N∑
j=1

Lijuj(t),

for i = 1, . . . , N , with a bistable reaction term, as can readily be seen on fig. 5.6.
Here h : R+ → R is used as a feedback of the form

(5.109) h(t) =

{
h0 if 0 ≤ t ≤ τ,
h0 + µ (s(t− τ)− s0) if t > τ,

where s(t) :=
∑N
j=1 uj(t) is called the total activation of the network.
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Figure 5.6. Bistable reaction kinetics in (5.108), f(x) = x(h− x)(x− 1)

The solution to (5.108) proved sensitive to the initial activation and choice
of parameters, and a diversity of responses was obtained. With fig. 5.7 we
demonstrate that up to a careful selection of the dynamical and topological
parameters, sustained oscillations with positive activation in all nodes, also
known as breathing, are obtained. Observe that such behavior was long known
to occur in RD systems, but required two species6.

Starting from breathing such as in fig. 5.7, reducing the delay would typically
induce pinning, that is, a stationary pattern, while increasing it would lead to a
stable limit cycle where s(t) would periodically reach zero. The total activation
fades out, s(t) ≡ 0 for sufficiently large t, when the delay gets even larger.

5.4. Conclusion

One of the goals of this first chapter, referring to our second research question,
was to pave the way for what comes next: a new chapter devoted to the stability
analysis of RD systems with two species. Further, we wanted to determine how
the Turing mechanism behaves with delayed diffusion. To achieve that goal,
we have followed a path starting from the classical finite-dimensional systems
on graphs with diffusion driven by the Laplacian matrix, to eventually study
variants with time delay.

6For instance, the authors of [49] revealed the emergence of breathing spots in a 1 spatial

dimension model given by:

ut = u− u3 − v + uxx

vt = ε(u− a1v − a0) + δvxx

where ε controls the difference of time scale between the reaction kinetics of the two species.
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Firstly, in the classical setting we went beyond the well-know conditions for
Turing bifurcations. We applied a bifurcation argument to study the structure
of the solutions of the stationary problem that the steady state needs to solve.
Much remains to be done however to obtain the same degree of understanding
as for systems on continuous domains.

Secondly we have shown with proof-of-concept examples that the number of
interacting species is no longer critical for the emergence of a wave instability,
provided time delay affects the dynamics, be it on the side of the reactions through
global feedback, or on the side of diffusion under the form of a processing delay.
In all cases we presented, the nature of the bifurcation changed to Hopf-type,
and oscillations emerged in selected examples.

Although a beautifully simple explanation of pattern formation, the Turing
paradigm suffers from stringent applicability conditions. Existing workarounds
have been commented on in this chapter, but the eventuality that the temporality
of the graph could have a facilitating impact was left unexplored. This will no
longer be the case with the next chapter.
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(a) Oscillations of the total activation s(t) =
∑N

j=1 uj(t) in case of breathing.

That s(t) > 0 for all t ≥ 0 is result of all nodes of the network remaining above
zero activation at all times, uj(t) > 0. Global feedback was activated only after
t = τ .
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Figure 5.7. Breathing in a bistable RD system with global time delay
feedback, eq. (5.108). The snapshots in panels (c) to (j) illustrate the
behavior of the system in regime over one period. The parameters are
τ = 2.85, h0 = 0.1, µ = 0.15, D = 0.11, N = 40, with s(0) = 5 nodes
initially activated, one at the root and four in the lower left branch.





CHAPTER 6

Diffusion-driven instability on
temporal networks

6.1. Introduction

That time-varying graphs could facilitate diffusion-driven instabilities is a
natural chapter 2-chapter 5 crossover idea, and the central point of the second
research question. Even if we have introduced somewhat intricate models of
diffusion on temporal graphs, it makes sense to begin with the simple case of
switched networks outlined in remark 2.4. In that setting, diffusion is actually a
passive edge-centric random walk, where a new set of edges is substituted to
the current one at every discrete time step. Some or even all edges may then be
rewired at the same time, so that the adjacency matrix has the form

(6.1) A(t) = Aξ(t),

where the switching function ξ : R+ → I ⊂ N selects the adjacency matrix of
the graph at time t, out of a predetermined set of matrices Ai indexed in I. The
Laplacian becomes a matrix valued function of time,

(6.2) L(t) = A(t)−D(t),

with D(t) the diagonal matrix of the degrees at time t.

Dynamical systems on time-varying networks have evidently already been
studied, and the systems and control literature on the subject is abundant, see
for instance [130] and the references therein. Numerous works have contributed
to different interpretations for the time-dependent diffusion operator L(t), and
not all of them are based on random-walks. For example, the authors of [65]
have introduced so-called function dynamics, where the network evolution is
self-determined by the dynamical system. And in the same line of thoughts, the
dynamics may revolve around activity-driven temporal networks [108, 82].

The list goes on, but what sets us apart is the angle of approach. According
to our work, the sustained rewiring of the edges clears the way for a variant of
diffusion-driven instability. The main effect in that respect will be that even if
Turing instability is impeded in the system on any of the static configurations
Ai, this will generally no longer hold true with A(t), provided that the timescale
of the network is fast enough. This fact contributes a method based on the
topology to help overcome a limitation of the Turing mechanism identified in
the previous chapter, namely its tight applicability conditions.

123
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Our approach results from the following considerations. With well-posedness
in mind, it is convenient to start first with continuously varying edge weights, such
that L(t) is a continuous function. In that case the concept of solution remains
the classical one, and standard averaging theorems can be used out-of-the-box.
We further assume periodicity, so that Floquet theory is applicable. Those two
restrictions will be relaxed to encompass switched networks and generalized
periodicity, in a sense defined below and which includes quasi-periodic topologies.

The layout of this chapter is as follows. Section 6.2 deals with the case of
continuous L(t), and establishes the main stability result of the chapter. In
section 6.3 we extend the study to switched systems with solutions in the weaker
sense of Caratheodory. Finally, section 6.4 contains a discussion about the
relevance of the underlying hypothesis of the chapter, that the timescale for
the evolution of the graph is sufficiently fast with respect to the timescale of
the local dynamics. We present an example for both situations, first when the
assumption does not hold, and second when it arguably applies.

6.2. The continuous case

This section is designed to first build intuition through the use of the method
of averaging in a tailored environment, where the evolution of the temporal
network is sufficiently smooth and is T -periodic. We then discuss the stability of
a critical point of the reaction dynamics. We will also discuss the computation of
the threshold for the timescale separation between local dynamics and diffusion.

The reaction-diffusion equations under consideration in this chapter model a
two-species system. They are similar to (5.3), and all variables and parameters
carry over their meaning of chapter 5. Yet one should notice the time dependency
of the Laplacian in the following nonautonomous system:

u̇i(t) = f(ui(t), vi(t)) +Du

N∑
j=1

Lij(t/ε)uj(t)(6.3a)

v̇i(t) = g(ui(t), vi(t)) +Dv

N∑
j=1

Lij(t/ε)vj(t)(6.3b)

for all i = 1, . . . , N and t > 0, with as before the initial conditions in t = 0. The
newly introduced positive parameter ε controls the timescale associated to the
temporal graph. The cornerstone is to relate the stability behavior of (6.3) with
a time-averaged counterpart. Let us first define the average Laplacian associated
to L(t),

(6.4) 〈L〉 :=
1

T

∫ T

0

L(t)dt,
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and introduce a new set of autonomous ODE’s

u̇i(t) = f(ui(t), vi(t)) +Du

N∑
j=1

〈L〉ijuj(t)(6.5a)

v̇i(t) = g(ui(t), vi(t)) +Dv

N∑
j=1

〈L〉ijvj(t)(6.5b)

for all i = 1, . . . , N and t > 0, called the average system of (6.3), which shares
the same initial conditions.

We use the notation of the previous chapter for the variables of problem (6.3),
w = (u1, . . . , uN , v1, . . . , vN ) and we write w = (u1, . . . , uN , v1, . . . , vN ) for the
variables of (6.5). Letting w0 denote the initial condition, we have w(0) =
w0 = w(0) . Note that the solution of (6.3) is parametrized by ε and we write
w(·, ε) only when explicit notation is needed. Here the nonlinear vector function
F : R2N → R2N is given by

(6.6) Fi(w) =

f(ui, vi), i = 1, . . . , N,

g(ui, vi), i = N + 1, . . . , 2N.

The Jacobian of F is the matrix-valued function written as

(6.7)
∂F

∂w
:=


∂F1

∂w1
· · · ∂F1

∂w2N

...
...

∂F2N

∂w1
· · · ∂F2N

∂w2N

 .

To further lighten the notation we write L⊗(t) :=
(
DuL(t) 0

0 DvL(t)

)
and 〈L⊗〉

denotes its time average.

6.2.1. The method of averaging

In this section we establish the proximity of the solutions of eq. (6.3) and of
its average (6.5) on finite time intervals. We use the Landau notation for order
functions1. In particular for a function h : A× (0, ε?) ⊂ Rn ×R→ Rm and θ an
order function, we say h(x, ε) = O(θ(ε)) when ε↘ 0 if there exists a constant
C > 0 such that

(6.8) sup
A
‖h(·, ε)‖ < Cθ(ε)

on (0, ε), where ‖·‖ is any (equivalent) norm on Rm. Unless stated otherwise, to
fix ideas we work with the supremum norm, and B ⊂ R2N is a bounded domain.

Proposition 6.1 (Averaging in the continuous case). Consider IVP’s (6.3)
and (6.5) and assume the functions F , ∂F

∂w are continuous and bounded by

a constant independent of ε on B ⊂ R2N , and assume L is continuous and
bounded independently of ε on [0,∞). If L is T -periodic with average 〈L〉 with

1An order function θ in a is a positive continuous function which decreases monotonically
when ε goes to the limit point a, and for which the corresponding limit ε→ a exists.
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T independent of ε, then there exists t? > 0 such that (6.3) and (6.5) have
respectively unique solutions w(t) and w(t) on [0, t?) which satisfy

(6.9) w(t)− w(t) = O(ε)

on that interval.

Proof. Let τ := t/ε denote a scaled time variable and define the functions
W (τ) := w(t) and W(τ) := w(t) on [0,∞), so that (6.3) rewrites

(6.10)
dW (τ)

dτ
= ε (F (W ) + L⊗(t)W ) ,

and similarly for (6.5),

(6.11)
dW(τ)

dτ
= ε (F (W) + 〈L⊗〉W) ,

with initial conditions W (0) = W(0) = w0. The continuity and boundedness
assumptions of the proposition ensure that there exist unique solutions to (6.10),
(6.11) by [133, Theorem 1.1] on a finite interval [0, t?/ε) for some constant t? > 0
independent of ε. Moreover the estimate

(6.12) W (τ)−W(τ) = O(ε)

is valid on that interval by the averaging theorem [133, Theorem 11.1]. It suffices
to go back to the original variable to conclude. �

Remark 6.2 (Higher-order approximation). The averaging theorem does not
limit the order of the approximation of the original system given by (6.10) in
the τ variable, to only first order like in (6.11). It is possible to construct
second-order, and even higher order approximations. For instance, a second
order approximation would result in an O(ε2) estimate instead of the O(ε) bound
in (6.12). However, the length of the validity interval would still scale as 1

ε , and
is therefore independent of the order of the approximation when expressed back
in the original time variable t. This means the validity domain of the estimate
does not scale as the order of the approximating system. Therefore we will carry
on with a first order approximation, which simplifies the analysis.

Remark 6.3 (Generalized periodicity). The periodicity assumption in the
averaging theorem may be relaxed by the weaker existence condition of the
generalized average

(6.13) 〈L〉∞ := lim
T→∞

1

T

∫ T

0

L(t)dt.

Therefore, proposition 6.1 encompasses the case of quasi-periodic networks,
where the Laplacian L(t) can be written as the sum of L1(t) and L2(t) with
respective non commensurable periods T1, T2 with T1/T2 /∈ Q.

If proposition 6.1 indicates the responses of systems (6.3), (6.5) to the same
random perturbation of a fixed point are similar in the short run, in the next
section we seek at giving a spectral characterization of stability that would
consolidate the agreement between the two systems.
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6.2.2. Stability via averaging

Consider we = (ue, ve) a critical point of the reaction dynamics of (6.3) and
of its average (6.5) and let

(6.14) we := (ue, . . . , ue︸ ︷︷ ︸
N times

, ve, . . . , ve︸ ︷︷ ︸
N times

).

In our case, the linearization of (6.3) around we features a time-dependent
Jacobian, and we will use Floquet theory to link its stability to the linearization
of the average problem. We will then discuss the extension to the nonlinear
problems.

6.2.2.1. Linear stability

Let z := w −we and consider the linearization of (6.3):

ż = M(t, ε)z(6.15a)

z(0) = w0 −we =: z0,(6.15b)

where

(6.16) M(t, ε) :=
∂

∂w
F (we) + L⊗(t/ε)

is εT -periodic. Under the notation of chapter 5 we have ∂
∂wF (we) = J ⊗ IN

with ⊗ the Kronecker product, J given by (5.6) and IN the N × N identity
matrix. Similarly with z := w −we the linearization of (6.5) is the autonomous
problem

ż = 〈M〉z(6.17a)

z(0) = z0,(6.17b)

where this time

(6.18) 〈M〉 = J ⊗ IN + 〈L⊗〉.

The spectral approach to linear stability requires that we determine the
general form of the solution of the system. For simplicity, we start with the case
ε = 1 and we write M(·) := M(·, 1). First notice that the solution of (6.15) can
be written as

(6.19) z(t) = exp

(∫ t

0

M(t) dt

)
z(0)

if and only if the matrices M(t) and M(t′) commute for any pair t, t′. This
assumption is generally not satisfied even if the Laplacian matrices commute,
because the commutation between the Laplacians and the Jacobian of the
reaction part is also needed. However we have

(6.20) z(t) = exp (Ω(t)) z0

where Ω(t) =
∑∞
n=1 Ωn(t) is known as the Magnus series or Magnus expan-

sion [87, 14]. The series is convergent for all t ∈ [0, T ) provided that [98]

(6.21)

∫ T

0

‖M(τ)‖2 dτ < π.
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Here we use the induced matrix norm ‖A‖2 := supv 6=0
‖Av‖2
‖v‖2

where the norm of v

is the 2-norm for vectors. If [A,B] := AB−BA denotes the matrix commutator,
indicatively the first terms of the series read

Ω1(t) =

∫ t

0

M(τ)dτ(6.22)

Ω2(t) =
1

2

∫ t

0

∫ τ

0

[M(τ),M(τ ′)] dτ ′dτ(6.23)

Ω3(t) =
1

6

∫ t

0

∫ τ

0

∫ τ ′

0

(
[M(τ), [M(τ ′),M(τ ′′)]]

+ [M(τ ′′), [M(τ ′),M(τ)]]
)
dτ ′′dτ ′dτ.(6.24)

Remark 6.4. (Explicit formulas for the Magnus series) It should be noted
for later use in this section that the above expressions for Ω1, Ω2 and Ω3 are
obtained after integrating the identity

(6.25)
dΩ(t)

dt
=

∞∑
n=0

Bn
n!

adnΩM(t),

where the Bn’s are the first Bernoulli numbers with B1 = −1/2, and adXM =
[X,M ] with ad0

XM = M , adnXM = [X, adn−1
X M ], n ≥ 1. Working out the

recursive expression (6.25) is known to yield

(6.26) Ωn(t) =

n−1∑
j=1

Bj
j!

∑
k1+...+kj=n−1
k1≥1,...,kj≥1

∫ t

0

adΩk1 (τ)adΩk2 (τ) . . . adΩkj (τ)M(τ)dτ,

for n ≥ 2. This will serve in proving lemma 6.5.

Alternatively, under the periodicity assumption for L(t), the Floquet theorem
ensures thus that the solution of (6.15) can be written as

(6.27) z(t) = P (t) exp (tF ) z0,

where P is T -periodic and bounded, and F does not depend on time. The
eigenvalues ρm of the so-called monodromy matrix eTF are the characteristic
multipliers of the system. Each associated λm such that ρm = eTλm is a Floquet
or characteristic exponent. These exponents are determined up to a term 2i`π/T ,
` ∈ Z, but can simply be chosen to coincide with the eigenvalues of F . Their
real part characterizes the stability of the null solution in the usual way.

Combining the expressions of the solution in terms of the Magnus series and
in the Floquet form leads to the Floquet-Magnus expansion [24]

(6.28) z(t) = exp (Λ(t)) exp (tF ) z0.

Here the involved matrices each are obtained as the sum of series2 Λ(t) =∑∞
n=1 Λn(t) and F =

∑∞
n=1 Fn. The matrix Λ(t) is T -periodic, with Λ(0) = 0.

2The convergence for the series for F follows from the above quoted condition∫ T
0 ‖M(τ)‖2 dτ < π, whereas for the series related to Λ(t) we have the more restrictive

sufficient condition
∫ T
0 ‖M(τ)‖2 dτ < 0.20925, see [24].
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Since z(T ) = exp (Ω(T )) z0, we have the identity

(6.29) TFn = Ωn(T ), n ≥ 1 .

Let us now consider system (6.15) in the case ε < 1. We write Ω(t, ε) for
the Magnus expansion corresponding to M(t, ε), and apply where applicable the
same notation to the other functions and variables. We prove a short lemma
before proceeding with a result on stability.

Lemma 6.5 (Homogeneity of the terms of Ω(·, ·)). For t, ε > 0 such that the
series converge, it holds that

Ω(εt, ε) =

∞∑
n=1

εnΩn(t).

Proof. It suffices to prove homogeneity for each term of the series, that is
Ωn(εt, ε) = εnΩn(t) for all n ≥ 1. For n = 1, from (6.22)

(6.30) Ω1(εt, ε) =

∫ εt

0

M(τ, ε)dτ =

∫ t

0

M(ν)εdν = εΩ1(t),

by virtue of the change of variable ν = τ/ε. Take n ≥ 2 and assume by induction
that Ωk(εt, ε) = εkΩk(t) for all 1 ≤ k ≤ n− 1. Then

(6.31) adΩk(εt,ε) = [Ωk(εt, ε), ·] = εk [Ωk(t), ·] = εkadΩk(t).

From eq. (6.26) with ϑ(k1, . . . , kj) =
{
k1, . . . , kj ∈ N0 :

∑j
`=1 k` = n− 1

}
, we

have

Ωn(εt, ε)

=

n−1∑
j=1

Bj
j!

∑
ϑ(k1,...,kj)

∫ εt

0

adΩk1 (τ,ε)adΩk2 (τ,ε) . . . adΩkj (τ,ε)M(τ, ε)dτ

=

n−1∑
j=1

Bj
j!

∑
ϑ(k1,...,kj)

εk1+...+kj

∫ εt

0

adΩk1( τε )adΩk2( τε ) . . . adΩkj (
τ
ε )M(τ, ε)dτ

= εn−1
n−1∑
j=1

Bj
j!

∑
ϑ(k1,...,kj)

∫ εt

0

adΩk1 (ν)adΩk2 (ν) . . . adΩkj (ν)M(ν)εdν

= εnΩn(t),

where we have used (6.31) and the change of variable ν = τ/ε. �

Proposition 6.6 (Linear stability and averaging). Assume the hypotheses
of proposition 6.1 to hold and let we be a fixed point of (6.3) for a given ε > 0.
Then there exists ε∗ > 0 such that if ε ∈ (0, ε∗) and the null solution of the
average linear problem (6.17) is exponentially stable (resp. unstable), then the
null solution of (6.15) is exponentially stable (resp. unstable).

Proof. The Floquet-Magnus expansion for the linear problem (6.15) reads

(6.32) z(t, ε) = exp (Λ(t, ε)) exp (tF (ε)) z0,
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where Λ(t, ε) =
∑∞
n=1 Λn(t, ε) is εT -periodic, and following (6.29) each term of

the series F (ε) =
∑∞
n=1 Fn(ε) satisfies

(6.33) εTFn(ε) = Ωn(εT, ε), n ≥ 1.

The stability of the null solution of (6.15) is determined by the characteristic
exponents rightfully chosen as the eigenvalues of F (ε), or equivalently by the
eigenvalues of Ω(εT, ε) due to (6.33). By lemma 6.5,

(6.34) Ω(εT, ε) =

∞∑
n=1

εnΩn(T ) = ε (Ω1(T ) +O(ε)) .

Let s(·) denote the spectral abscissa3. There exists ε∗ such that if ε ∈ (0, ε∗)
then

(6.35) sign s (Ω(εT, ε)) = sign s (Ω1(T ))).

Now observe that Ω1(T ) =
∫ T

0
M(τ)dτ = 〈M〉T to conclude. �

We will first comment on the stability of we in the nonlinear system, and
refer to the upcoming section 6.2.3 for practical implications of this result.

6.2.2.2. Nonlinear stability

In nonautonomous ODE’s there is no direct equivalent of the Hartman-
Grobman theorem and the application of the principle of linearized stability is
tied to the problem at hand. Hence we will not draw conclusions with regard to
the stability of the we in the nonlinear system, and limit the discussion to the
following remarks which could inspire further reading.

Remark 6.7 (Fixed point vs periodic solutions). Under mild conditions appli-
cable to our case, [133, Theorem 11.5] shows that there exists a periodic solution
φ(t, ε) to (6.3) in the neighborhood of we. Further, [133, Theorem 11.6] states
that φ(t, ε) is asymptotically stable (resp. unstable) if the eigenvalues of the
critical point we in the average system all have negative real part (resp. have,
for at least one of them, postive real part). Hence if the perturbation of the
fixed point is the initial condition of this periodic solution, the perturbation will
vanish in (6.5) but not with (6.3).

This remark shows that a principle of linearity will require stringent condi-
tions. A classical theorem in this sense is brought up next.

Remark 6.8 (Palmer’s theorem). A standard results for stability of nonau-
tonomous equations is Palmer’s linearization theorem, which an extension of
the Hartman-Grobman, see [105] and following papers, aimed at weakening the
applicability conditions of the theorem. Note that recent works focus on variants
of these theorems applicable to Caratheodory-type differential equations, as
shortly discussed in the forthcoming section 6.3.

3The spectral abscissa maps the set of complex matrices to the real numbers and is
defined as the maximum of the real parts of the eigenvalues. We use the same notation for the
spectral bound, definition B.12 on page 185.
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Finally, we conclude with a remark which establishes a bridge between
autonomous and nonautonomous equations.

Remark 6.9 (Autonomous formalism). Consider a nonautonomous system such
as u̇ = f(u, t), u ∈ Rm and u(0) = u0 with f(u, ·) a T -periodic function for every
u. This system may be rendered autonomous by the addition of a new variable
ζ which may be seen as an angular variable modulo T , such that

u̇ = f(u, ζ)(6.36a)

ζ̇ = 1,(6.36b)

a now formally autonomous problem. The system is said to be suspended in the
extended (or autonomous) phase space {u, ζ}. For the details on the approach,
see [27, Section 2.4].

6.2.3. Critical network timescale

Consider the instance that we is a linearly exponentially stable fixed point
of eq. (6.3) when ε = 1, but that simultaneously, we is also linearly unstable
with respect to the average system. Proposition 6.6 essentially indicates that
accelerating the network timescale 1

ε , namely letting ε↘ 0 will destabilize the

fixed point. As a result, it makes sense to determine the critical value4 ε∗ ∈ (0, 1)
for which there is linear marginal stability, namely the solution of

(6.37) s (Ω(εT, ε)) = 0.

Solving the equation numerically requires to compute the Magnus series. Observe
that the direct computation of the terms Ωn(t) based on (6.26) is a numerically
demanding task since it involves multiple integrals of nested commutators. In
this section we introduce an efficient time-stepping method to compute an
approximation of the series in the case ε = 1, see [69, 15]. We then extend the
technique to arbitrary ε < 1.

6.2.3.1. Time-stepping

The time-stepping method partitions the interval [0, T ] uniformly in ` sub-
intervals of length h, with ` large enough to satisfy to the convergence condition.
The discretization points are 0 = t0 < t1 < . . . < t` = T . For each sub-interval5

∆k = [tk−1, tk) a Taylor series for M(t) centered on the midpoint τk = (k−1/2)h
is computed such that

(6.38) M(t) =
∑̀
k=1

χ∆k
(t)

∞∑
j=0

mj(∆k)(t− τk)j

with

(6.39) mj(∆k) =
1

j!

djM(t)

dtj

∣∣∣∣
t=τk

.

4Here we assume unicity of such value of ε.
5The last sub-interval ∆` = [t`−1, T ] is closed.
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The series (6.38) is then truncated to any even order 2s of h, and plugged in
the recursive formulas (6.26) for the terms of the Magnus series. It results that
the state transition matrix from z(tk−1) to z(tk) is given by

(6.40) ψ(∆k) = exp

(
2s−2∑
n=1

ωn(∆k) +O
(
h2s+1

))
,

with as an indication, up to order 2s = 6 we have the following approximation
for terms of the series [15]

ω1 (∆k) = hm0 (∆k) + h3 1

12
m2 (∆k) + h5 1

80
m4 (∆k)(6.41)

ω2 (∆k) = h3−1

12
[m0 (∆k) ,m1 (∆k)]

+ h5

(−1

80
[m0 (∆k) ,m3 (∆k)] +

1

240
[m1 (∆k) ,m2 (∆k)]

)
(6.42)

ω3 (∆k) = h5

(
1

360
[m0 (∆k) ,m0 (∆k) ,m2 (∆k)]

− 1

240
[m1 (∆k) ,m0 (∆k) ,m1 (∆k)]

)
(6.43)

ω4 (∆k) = h5 1

720
[m0 (∆k) ,m0 (∆k) ,m0 (∆k) ,m1 (∆k)] ,(6.44)

having used the simplified notation

(6.45) [x1, x2, . . . , xj ] = [x1, [x2, [. . . , [xj−1, xj ] . . .]]].

The Baker-Campbell-Hausdorff formula eventually facilitates the computation
of a limited-order development of the monodromy matrix

(6.46) Ψ(T ) =
∏̀
k=1

ψ (∆k) .

Note that here no integration of M(t) is required.

6.2.3.2. Computing the critical timescale

Using the time-stepping method, we obtain the monodromy matrix Ψ(εT )
for a given ε < 1. We then compute the characteristic exponents, or leading to
the same conclusion on stability, the Floquet multipliers. This procedure needs
to be repeated for varied values of ε in order to determine the value ε∗ that
achieves marginal linear stability.

As one may expect, we only need to approximate the terms of the Magnus
series for the original system, that we then multiply by the appropriate integer
power of ε. Indeed, let us fix ε < 1 and choose again ` sub-intervals in [0, εT ],
each of length εT/` = εh and with midpoints ετk, k = 1, . . . , `. Observe
that the convergence condition for the series will automatically be satisfied.
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The monodromy matrix reads Ψ(εT, ε) =
∏`
k=1 ψ (ε∆k, ε), where each state

transition matrix on the scaled interval ε∆k is given by

(6.47) ψ(ε∆k, ε) = exp

(
2s−2∑
n=1

ωn(ε∆k, ε) +O
(
h2s+1

))
.

To support our claim that only the terms of the series for ε = 1 need to be
computed, observe that
(6.48)

mj(ε∆k, ε) :=
1

j!

djM(t/ε)

dtj

∣∣∣∣
t=ετk

=
1

j!

djM(t)

dtj

∣∣∣∣
t=τk

1

εkkj
= ε−jmj(∆k).

It easily follows that the truncated terms of the series also have the homogeneity
property ωn(ε∆k, ε) = εnωn(∆k). Hence (6.47) becomes

(6.49) ψ(ε∆k, ε) = exp

(
2s−2∑
n=1

εnωn(∆k) +O
(
h2s+1

))
.

Every aspect developed in this section is revisited next, as we relax the
continuity assumption on the evolution of the weights of the edges.

6.3. Extension to switched networks

Two key differences distinguish the case of switched networks as described
by eqs. (6.1) and (6.2). To start with, solutions exist only in the weaker sense of
Caratheodory, due in this case to the discontinuities of L(t). A Caratheodory
solution to eq. (6.3) is absolutely continuous and hence almost everywhere (a.e.)
differentiable on its existence domain, and satisfies (6.3a)-(6.3b) a.e. on that
interval. For existence and uniqueness results, the reader is referred to the
well-established literature on the matter. We will rather present a behavioral
description of the solution when the timescale parameter is varied. The second
main difference is a simplified analytical treatment, by our initial assumption
that the evolution of the network is periodic.

6.3.1. Linear stability on switched networks

We start with the simplest case of a periodically switched network with
period T . Let 0 = t0 < t1 < . . . < t` = T denote the initial time, the points of
discontinuity of the piecewise-constant switching function ξ on [0, T ], and the final
time of the interval. Mimicking the notation of section 6.2, we let ∆k = [tk−1, tk)
denote the k-th interval of length hk = tk − tk−1, where ξ(t) ≡ ξ(tk−1).

For a fixed ε < 1 the state transition matrix over ∆k is given by

(6.50) ψ(ε∆k, ε) = exp

(∫ εtk

εtk−1

M(t, ε)dt

)
= exp (εhkM(tk−1)) ,
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where we have used M(εtk−1, ε) = M(tk−1). It follows from (6.50) that
ψ(ε∆k, ε) = ψ(∆k)ε and the monodromy matrix reads

(6.51) Ψ(εT, ε) =
∏̀
k=1

ψ(∆k)ε.

The value of ε∗ for which the null solution of the linearized system is marginally
stable solves the equation

(6.52) % (Ψ(εT, ε)) = 1.

It is assumed to be unique and is less than one, taking for granted that the null
solution is stable when ε = 1.

If the interval between any two consecutive discontinuities of ξ(t) is on
average above a given threshold called the dwell time of the system, then the
zero solution of (6.17) remains stable. We will now consider examples where the
fixed point of the nonlinear system is destabilized by a sufficient increase of the
frequency of the switching. Let us first make two brief remarks.

Remark 6.10 (Algebraic observation). Consider again eq. (6.51) yielding the
monodromy matrix for a given ε. Observe that in the case that the state tran-
sition matrices ψ(∆k) would commute, we would be able to write Ψ(εT, ε) =(∏`

k=1 ψ(∆k)
)ε

= Ψ(T )ε. It would follow that % (Ψ(εT, ε)) = % (Ψ(T ))
ε
, show-

ing that letting ε ↘ 0 would induce no instability. Therefore, an algebraic
quantity based on the commutators between those matrices could hint at the
necessary timescale separation to induce instability.

Remark 6.11 (Beyond periodic switching). The averaging theorem used in propo-
sition 6.1 may be given a proof for Caratheodory-type solutions. Hence we may
extend the approach to generalized periodicity in the sense of the existence
of (6.13), see remark 6.3. Note however that when the spectral radius needs to
be replaced by the joint spectral radius in the above formulas, to account for the
loss of periodicity, it generates numerical difficulties even with only two possible
graph configurations.

6.3.2. Examples

In an attempt to illustrate the above discussion in simple terms, we selected
a model of periodically switched network described as follows.

Example 6.12 (The twin model). Consider two static graphs on a set of N
nodes regularly arranged on a ring according to their label. The number of nodes
is even. In the first configuration with adjacency matrix A1, the edges link each
pair of nodes with labels 2k − 1, 2k, where k = 1, . . . , N/2. This configuration
has a twin with adjacency matrix A2, the edges connect the pairs with labels
2k, 2k+ 1 for k = 1, . . . , N/2− 1, with the addition of the pair labeled by 1 and
N . A switched network is created by a periodic switching function on [0, T ],

(6.53) ξ(t) = χ[0,γT )

(
t mod T

)
+ χ[γT,1)

(
t mod T

)
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(a) Global limit cycle
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Figure 6.1. Two qualitatively different solutions of (6.3) plotted at
t = 100. Only the value of u is shown. In the regime of panel (a) all
nodes synchronize, whereas on panel (b) synchronization is achieved
only within some pairs of nodes, see fig. 6.2. We recall that we use
Brusselator kinetics on the twin model, with parameters given in the
main text.

where a mod b is a modulo b. Here γ ∈ (0, 1) is a parameter that controls the
fraction of time spent on each configuration. By letting L1, L2 denote the
Laplacian matrices associated with A1, A2, we readily have

(6.54) 〈L〉 = γL1 + (1− γ)L2,

which corresponds to a weighted ring network. Both static Laplacians have the
same spectrum: the zero eigenvalue has multiplicity N/2 corresponding to the
number of connected components. Next there is the eigenvalue −2 with the
same multiplicity.

We selected the Brusselator kinetics introduced in section 1.3.3.1, written
under the following form,

f(u, v) = 1− (b+ 1)u+ cu2v(6.55a)

g(u, v) = bu− cu2v,(6.55b)

where the free parameters are chosen as (b, c) = (8, 10). The diffusion coefficients
are set toDu = 3, Dv = 10. Resulting from this choice of parameter, we = (1, b/c)
is stable for the system on any of the two static networks with ε = 1, but Turing-
unstable on the average graph.

If we select ε = 0.15 and integrate (6.3), qualitatively two behaviors emerge,
as visible on fig. 6.1. Either the system evolves towards a limit cycle, or only
some nodes synchronize in pairs. In both cases, the system settles in a period
regime. The small amplitude oscillations around the reference value w(100) of
fig. 6.1b are represented on fig. 6.2. Although not pictured here, the numerical
simulations also show that w(t) is not everywhere differentiable, as expected
from the discussion on Caratheodory solutions.

We then repeatedly integrated the system on the interval [0, t∞] for decreas-
ing values of ε. We computed the amplitude of the deviation, averaged on a
small time window [t∞ −∆t, t∞] to account for the low-amplitude oscillations
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Figure 6.2. Oscillations in the local limit cycle regime of fig. 6.1b.
Panels (a)-(i) show u(t) − u(100), the deviation with respect to the
reference value u(100). The time-interval corresponds to approximately
one period of the oscillations, such that the deviations on panels (a)
and (i) are relatively smaller. The behavior for v is similar.

observed on fig. 6.2. Finally, we normalized the result relatively to the pattern
obtained in the average system for the same initial perturbation. In formula, we
let

(6.56) A(ε) =

∫ t∞
t∞−∆t

‖w(τ)−we‖2dτ
∆t‖w(t∞)−we‖2

denote the normalized pattern amplitude, and plot it on fig. 6.3a. That A(ε) > 0
for ε sufficiently small was expected based on fig. 6.3b, which shows the linear
growth rates of the RD system on any of the twin configurations, and on the
average graph. The critical network timescale given by ε∗ is visibly located in
the interval [0.2, 0.3], and is in agreement with the analytical prediction of the
linear stability analysis, see fig. 6.4.
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(a) Normalized pattern amplitude
with N = 16, eq. (6.56)
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(b) Linear growth rates on the static
and average networks.

Figure 6.3. Diffusion-driven instability from fast switching. Recall
that both static configurations of the twin model have the same spectrum.
The parameters are those of fig. 6.1.
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(a) Spectral radius of the mono-
dromy matrix, eq. (6.51)
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(b) Closer view of the crossing of the
axis % = 1 of marginal stability

Figure 6.4. Spectral radius of the monodromy matrix of the linearized
problem. The value ε∗ read on the plot corresponds to the behavior
on fig. 6.3a. When ε → 0, the period εT → 0 and the monodromy
matrix tends to the identity matrix. Otherwise if ε→∞, the dynamics
is driven by the stable reactions and the spectral radius nears zero.

Observe the peculiar behavior of the critical network timescale in function of
the number of nodes of the model, as reported by fig. 6.5a. There is qualitative
agreement with the evolution of the largest linear growth rate, as depicted by
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fig. 6.5b. Complementing this observation are simulations run in [111], where
various factors influencing the magnitude of ε∗ are discussed. We have considered
the case of quasiperiodic temporal networks. We have also examined an example
where the switching function ξ(t) is a stochastic process. Loosely speaking, the
consistent observation was that the larger the departure from periodicity, the
larger the timescale separation needed to make we Turing-unstable.
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(a) Critical network timescale ob-

tained from eq. (6.52). These
analytical curves were confirmed
with numerical simulations similar

to fig. 6.3a.
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Figure 6.5. The critical network timescale (a) vs largest linear growth
rate (b), depending on the parity of half of the number of nodes.

6.4. Conclusion

We have considered the instability that conditions the emergence of patterns
in RD systems, when the underlying network varies over time. Specifically
we proved that a symmetry-breaking instability can be incited by properly
tuning the timescale of the network’s dynamics, thereby answering affirmatively
the key question of the second aim of the thesis. We would like to refer the
interested reader to [111, Supplementary material, section V] for our extension
to randomly varying networks, and to a co-authored piece of work focused on
desynchronization [86], which goes the same way in terms of approach6.

That we have been able to address pattern formation and (de)synchronization
underlies the general relevance of including the temporality of the network in
the modeling. Our study includes not only switched networks, but also networks
where the links may vary smoothly over time. The computed threshold for the

6We do not discuss it for it does not address fundamentally different technical difficulties
and because the credit for the findings should rest with our co-authors.
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timescale of the graph to instigate instability was confirmed through numerical
simulation in both cases, and an example based on a ring topology was presented
here.

The local dynamics needs to be sufficiently slow relatively to the timescale
of the network rearrangements, for the effects of temporality of the graph to
manifest. Take Hebbian theory in neuroscience, which models synaptic plasticity
as a slow process comparatively with the neuronal dynamics, to convince yourself
that our main assumption is certainly a limitation. Still, our setting remains
relevant in, for instance, modeling virus spreading mediated by pairwise contacts,
or in the same line of thought, for the spread of an airline-carried disease in
the United States as in [28]. The pathogens will take time to develop while
in the meantime, infected individuals will go about their normal life of social
interactions. We regard accounting for the temporal variations of the underlying
graph in such practical scenario as a natural next step.

If chapter 2 was about models of diffusion on dynamical graphs, chapter 4
considered graphs so huge that a continuum-limit approach to diffusion was
justified. In the next chapter, we will discuss the stability properties of RD
on massive graphs through the same continuum limit formalism, and RD on
graphon models of finite graphs.





CHAPTER 7

Stability in reaction-diffusion
equations on graphons

7.1. Introduction

The nonlinear part of the thesis is about to end the same way our tour
of random walks did : with a chapter on the continuum limit. And just like
chapter 4 pertains to the simple node-centric walk, we will specifically look
into reaction-diffusion on static graphs, leaving the more challenging continuum
limit of RD on temporal networks aside1. Mirroring our previous approach,
the analysis will exclusively include dense graphs, making bounded graphons
the appropriate limit object. We suggest the non-chronological reader to revert
to section 4.2.3 on page 72 for a short recapitulation on the topic.

In this chapter we study diffusion-driven instabilities on graphons, as sug-
gested by our third research question. There is a shift in balance in the targeted
achievements, compared to chapter 4. In that chapter, the goal was first and
foremost to prove the validity of the approximation procedure of the continuum
limit, and the analysis of the continuum problem was kept to some basic facts
around relaxation. When it comes to the (semilinear) heat equation, recent
works have already validated the graph-limit approach, and we will provide
citations accordingly. But it remains to analyze the graphon-based models, and
that is where our contribution stands.

The chapter puts the emphasis on the interplay between stability and
nonlinearity, but as far as diffusion-driven instability is concerned, the first step
is once again to linearize. This fact is reflected by the layout of the chapter which
is as follows. To complete this introduction, there are two sections designed
to contextualize the focus on the normalized combinatorial Laplacian, and to
properly motivate two key assumptions. Next in section 7.2 we cover the way
leading to the spectral properties of the combinatorial Laplacian that are then
needed in section 7.3. In that section, as a first step we discuss the graph-limit
version of the heat equation. We then carry out a linear stability analysis of
single-variable and two-variable RD equations. The passage to conclusions on
the stability in the nonlinear problem is taken care of in section 7.4, where we
distinguish between two representative cases, first with very little and then with
significant difference with respect to the finite-dimensional analysis.

1Working towards a graph-limit version of dynamical systems on time-varying graphs
could start with a look at [31].

141
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Some parts of the chapter necessitate preliminary material in spectral theory.
To help keep this work reasonably self-contained, the existence of appendices A
and B is advertised to the reader. References will be made when appropriate in
the main text.

7.1.1. On graphon Laplacian operators

A common feature of the works [91, 93, 63, 94, 106] in contexts ranging
from synchronization to game theory is that they relate to diffusion processes
driven by Laplacian integral operators. These operators generalize the finite-
rank matrix operators on networks. In chapter 4 we have already encountered
the random walk Laplacian Lrw = K − I, eqs. (4.28) and (4.29), but also the
consensus Laplacian Lcons, eq. (4.34). When there was need for a symmetric
kernel adjacency operator, Anorm was introduced, (4.59). It corresponds to the
normalized Laplacian

(7.1) Lnorm = Anorm − I,

which was shown to possess a spectrum of non-positive eigenvalues. The focus
of the chapter lands on the combinatorial Laplacian L given by

(7.2) Lf(x) =

∫ 1

0

W (x, y)(f(y)− f(x))dy,

acting on to-be-defined function spaces. We will name adjacency operator and
write A for the integral operator associated to W and given by eq. (4.15). If
we let D be the degree multiplication operator, D = Mk, then we have the
decomposition

(7.3) L = A−D.

As we know from the discussion in section 4.3.1, this operator has a central role as
the nonlocal, continuum analogue of the finite-dimensional matrix operator 1

n (A−
D), which is nothing but the combinatorial Laplacian on graphs, normalized
by the number of nodes2. This integral Laplacian emerges in previous works
such as those cited above, but also in power network dynamics [73], or voting
models [81].

7.1.2. On our assumptions

The extent to which the chapter is relevant mainly results from assumptions
that we will review quickly, since they match those of chapter 4.

2From chapters 2 and 4, we know the combinatorial Laplacian on a graph encodes
the dynamics of the continuous-time, edge-centric random walk. The normalization of the

Laplacian by 1
n

ensures that the rate of the exponentially distributed waiting time on the

nodes remains finite when the number of nodes goes to infinity.
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7.1.2.1. Density

Convergence of graph sequences is limited to dense graphs, restricting our
needs to bounded graphons. However, building on remark 4.12 about graphons
viewed as random models of sparse graphs, we make the following remark
linking Laplacian operator and sparsity, and clarifying some consequences on
the portability of our reasoning to the sparse setting.

Remark 7.1 (Graphon Laplacian operators with sparse graphs). Consider
again a random graph model on n nodes

(
Ωn, 2

n(n+1)/2, P
)
. For ω ∈ Ωn and

W ∈ Lp[0, 1], p > 1, define the finite rank Laplacian operator Lρn,ω : Rn → Rn
by [63, 94]

(7.4) (Lρn,ω(u))` =
1

d`

∑
m6=`
E`m(ω) (um − u`)

for all u = (u1, . . . , un) ∈ Rn and ` = 1, . . . , n. Recall that here E`m denotes
the Bernouilli random variable χ`∼m(ω). Consider the deterministic operator
L̄ρn : Rn → Rn obtained by averaging over all possible realizations of Γn as
defined by

(7.5)
(
L̄ρn(u)

)
`

=
1

d`

∑
m 6=`

E {E`m(ω)} (um − u`) ,

for ` = 1, . . . , n. In the sense of [63], the continuum limit version of the averaged
operator is given in our terms by the consensus Laplacian. Since the integral
kernel of Lcons is generally not symmetric, the ensuing operator on a Hilbert space
is not normal. Therefore, it is not characterized by the general spectral theorem
that extends theorem 7.8 to normal operators. As mentioned in section 4.1 this
consensus Laplacian was also studied in the machine learning community [53],
and is known as Laplace-Beltrami operator. This very Laplacian was also called
reactive Laplacian in the finite-dimensional setting of [26]. Observe that diffusion
equations where the Laplacian operator is scaled with the expected degree as in
eq. (7.4) are not mass-conserving. Further, note that if the scaling 1

nρn
is used

instead of 1
d`

in the same equation, then the operator in the continuum limit is

formally given by the combinatorial Laplacian of eq. (7.2). However, the degree
function is no longer bounded, as the following example shows, which bears
important consequences, notably when it comes to the existence of classical
solutions of problems where diffusion is based on this Laplacian. This aspect is
discussed in remark 7.24.

Example 7.2 (Power-law graphon). Let 0 < α < γ < 1 and consider the
sequence (ρn) with ρn = n−γ , and the graphon given by W (x, y) = (xy)−α.
The associated random graph model generates sparse graphs with power-law
expected degree distribution [63, Lemma 2]. The degree function is given by

k(x) = x−α

1−α and is unbounded.

7.1.2.2. Connectedness

Recall definition 4.13 for connected graphons, which is the subject of the
second assumption. When we consider dynamical systems with diffusion ruled
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by the graphon Laplacian operator, and the graphon is not connected, the
system can be split in a family of problems each corresponding to one of the
so-called connected components of the graphon. Therefore, we will again assume
connectedness to hold.

Observe that we avoid altogether our previous discussion about the degree
function of the graphon being bounded away from zero.

7.2. Spectral analysis of the combinatorial Laplacian

In the finite-dimensional setting of dynamical systems on symmetric graphs,
the study of diffusion-based problems is facilitated by the ability to diagonalize
the symmetric Laplacian. Thanks to the existence of a complete set of orthogonal
eigenvectors, spectral methods are well suited to address questions such as
relaxation time or stability.

In this section we study the spectral properties of the graphon combinatorial
Laplacian, building the analysis based on the decomposition (7.3). Observe that
due to the boundedness of k, the degree operator is well-defined.

7.2.1. The adjacency and degree operators

Let us consider first A and D separately, since depending on the type of
graphon, the spectral properties of L are mostly determined by either A or
D. Regarding A, we simply note that the Hilbert-Schmidt theorem on page 71
applies. Let us now turn to D, which first requires a definition before its spectrum
be given by proposition 7.4 that we recall from [115].

Definition 7.3 (Essential range). Let f be a real-valued function on a measure
space 〈M,µ〉. Then λ is in the essential range of f , written ess ran f , if and only
if

µ {m|λ− ε < f(m) < λ+ ε} > 0, ∀ε > 0.

Proposition 7.4 (Spectrum of multiplication operators). Let f be a bounded
real-valued function on a measure space 〈M,µ〉. Let Mf be the multiplication
operator by f on L2(M,dµ). Then σ(Mf ) is the essential range of f .

Remark 7.5 (On the eigenvalues of D). It is well known that multiplication
operators such as D are not compact. Hence the Hilbert-Schmidt theorem does
not apply, and there may exist no eigenvalues. Indeed consider a multiplication
operator Mf and let f−1({λ}) := {x|f(x)− λ = 0}. Now, f(x)φ(x) = λφ(x)
implies φ(x) = 0 on the complement of f−1({λ}). If for every λ ∈ ran f , f−1({λ})
has measure zero, then there are no eigenvalues. Otherwise, if f−1({λ}) has
positive measure, then for every measurable function φ, the product φχf−1({λ})
is an eigenfunction of Mf with eigenvalue λ.

Before we proceed with the analysis of the Laplacian, let us consider the
following example where we analyze the spectral properties of A and D for the
smooth graphon of fig. 4.1.
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Example 7.6 (Uniform attachment graphon). This is a smooth graphon, for
which the eigenfunctions of the adjacency operator are obtained by solving the
equations

(7.6)
dn

dxn

∫ 1

0

W (x, y)φ(y)dy = λ
dn

dxn
φ(x)

obtained for n = 1 and n = 2. Differentiating twice is needed to transform the
integro-differential into a differential equation. The method yields the eigenpairs

λ` =
(
π
2 + `π

)−2
and φ`(x) =

√
2 cos

((
π
2 + `π

)
x
)

for every ` ∈ N, where the
normalization of the eigenfunctions ensures ‖φ`‖2 = 1. The degree function is
k(x) = 1

2 (1− x2). By proposition 7.4, σ(D) = [0, 1/2]. Because k is monotonic,
let us also observe that by remark 7.5, D has no eigenvalues.

7.2.2. Diagonalization of the Laplacian

In this section, we consider all operators act on the Hilbert space L2[0, 1].
A key observation is that L = A−D is not compact. Indeed, if it were compact,
then so would be the multiplication operator L − A. Therefore, L does not
necessarily have a complete set of eigenfunctions like A does. As a result,
diagonalizing L requires a more general framework, which applies thanks to the
following proposition.

Proposition 7.7. The combinatorial Laplacian L = A−D defined on L2[0, 1]
is

(a) self-adjoint, bounded and hence continuous;
(b) dissipative, that is, (Lf, f) ≤ 0 for every f ∈ L2[0, 1].

Proof. That L is self-adjoint follows from A being self-adjoint, and from k
being a real function. The boundedness of L is a consequence of the boundedness
of A and D. This proves (a). To show (b), for all f ∈ L2[0, 1] we write

(Lf, f) =

∫ 1

0

∫ 1

0

W (x, y)(f(y)− f(x))dyf(x)dx

=

∫ 1

0

∫ 1

0

W (x, y)f(y)f(x)dydx−
∫ 1

0

∫ 1

0

W (x, y)f2(x)dydx

= −1

2

∫ 1

0

∫ 1

0

W (x, y)
(
f2(x)− 2f(x)f(y) + f2(y)

)
dxdy

= −1

2

∫ 1

0

∫ 1

0

W (x, y) (f(x)− f(y))
2
dxdy ≤ 0,

where we have used the symmetry of W to obtain the third equality. �

Consequently, due to (a), the spectral theorem applies, which essentially
says that every bounded self-adjoint operator is a multiplication operator. This
theorem generalizes the fact that every symmetric matrix is unitary diagonaliz-
able. The theorem exists in several forms, and we give the one most suitable for
our purpose [115, Theorem VII.3].
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Theorem 7.8 (Spectral theorem – multiplication operator form). Let A be
a bounded self-adjoint operator on a separable Hilbert space H. Then, there exist

measures {µn}Nn=1, with N = 1, 2, . . . or ∞ on σ(A) and a unitary operator

U : H → ⊕Nn=1L
2(R, dµn)

so that
(UAU−1ψ)n(λ) = λψn(λ),

where an element ψ ∈ ⊕Nn=1L
2(R, dµn) is an N -tuple 〈ψ1(λ), . . . , ψN (λ)〉.

The measures dµn are called spectral measures. They result from a proper
choice of cyclic vectors . These two notions are presented in appendices A.1
and A.2. Generally speaking, appendix A covers the material preliminary to the
spectral theorem, including the definition of unitary operator used above.

What changes with the operator when it takes a multiplication form is
the measures. By a proper scaling of these measures, one can ensure that the
operator is mapped by U to a finite measure space, resulting in the following
corollary.

Corollary 7.9. Let A be a bounded self-adjoint operator on a separable Hilbert
space H. Then, there exist a finite measure space 〈M,µ〉, a bounded function F
on M , and a unitary map U : H → L2(M,dµ) so that

(UAU−1f)(m) = F (m)f(m).

Remark 7.10 (Definition of U). As explained in appendix A and illustrated
by fig. A.1, for a given choice of a cyclic vector ψ, the operator U is defined by

(7.7) Uφ(f)ψ = f,

where f ∈ C(σ(L)) and φ is the mapping of eq. (A.5). Examples 7.14 and 7.15
make a practical use of this definition.

Sections 7.2.2.1 and 7.2.2.2 illustrate the use of the spectral theorem in two
different cases, depending on whether the spectral properties of L are dominated
by A or D. We will make use of appendix B.1 which describes how to decompose
the spectrum and hence H, based on spectral measures, in order to apply the
spectral theorem.

7.2.2.1. The case of a constant degree function

In this section, A and D are simultaneously diagonalizable, because the
degree function is constant. If we assume there exists some c ∈ R such that
k(x) = c for a.e. x ∈ [0, 1], then the spectral properties of L derive directly from
those of A. Indeed, L admits a complete set of eigenvectors {φ`}∞`=1 associated
to the eigenvalues λ` − c, where the φ` and λ` are those obtained by application
of the Hilbert-Schmidt theorem to A. Therefore L can be diagonalized without
explicitly reverting to the spectral theorem. However, we will illustrate the use of
the theorem on an example for which the unitary transform is actually a Fourier
transform. In order to do so, we will assume that the graphon is translation
invariant, which we define as follows.
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Definition 7.11. Let W be a graphon and let the even function K : [−1, 1]→
[0, 1] be defined by K(x) = W (1, 1−x) for a.e. x ∈ [0, 1]. Then W is translation-
invariant if it satisfies W (x, y) = K(x− y) for a.e. x, y ∈ [0, 1].

Remark 7.12. As pointed out with the stripe graphon of fig. 4.3, translation
invariance does not imply constant degree. The converse is not true either:
constant degree does not imply translation invariance as shown by the example
of fig. 7.1.

0 0.5 1

0

0.5

1

y

x

(a) SBM graphon W =
χ

[0, 12 ]2
+ χ

( 1
2
,1]2

0 0.5 1
0

0.5

1

x

k
(x

)

(b) Generalized degree
function

Figure 7.1. Stochastic block model graphon with two blocks. The
graphon is not translation invariant but has constant degree function.
Observe that this graphon is not connected.

Under the assumption of translation invariance, the next proposition shows
when to treat the adjacency operator as a convolution.

Proposition 7.13. Let W (x, y) be a translation invariant graphon such that
W (x, y) = K(x− y), where K is the even function of definition 7.11. Then k(x)
is a constant function on [0, 1] if and only if

(7.8) K(x+ 1) = K(x), for a.e. x ∈ (−1, 0),

i.e. K has a 1-periodic extension to R.

Proof. Let us first notice that if W is translation invariant, then the degree
function is symmetric with respect to x = 1

2 . Indeed, for a.e. x ∈ (0, 1),

k(x) =

∫ x

0

W (x, y)dy +

∫ 1

x

W (x, y)dy

=

∫ x

0

K(x− y)dy +

∫ 1

x

K(y − x)dy

=

∫ 0

−x
K(−z)dz +

∫ 1−x

0

K(z)dz

=

∫ 1−x

−x
K(z)dz,(7.9)
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(a) Nearest neigh-
bor graphon
W (x, y) = χd(x,y)<1/4
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(b) Generalized degree
function

Figure 7.2. Nearest neighbor graphon, with d(x, y) in the caption
of panel (a) given by d(x, y) = min {|x− y|, 1− |x− y|}. This is the
graphon of example 7.14.

and hence

k

(
1

2
− x
)

=

∫ 1
2 +x

− 1
2 +x

K(z)dz = −
∫ − 1

2−x

1
2−x

K(z)dz = k

(
1

2
+ x

)
for a.e. x ∈

(
0, 1

2

)
. Let us further assume that the degree function is constant.

For a.e. x ∈ (0, 1), we have

(7.10) k(x+ ε)− k(x− ε) = 0,

for any positive ε such that x− ε, x+ ε ∈ (0, 1). Using (7.9), the left-hand side
of eq. (7.10) reads

k(x+ ε)− k(x− ε) =

∫ 1−x−ε

−x−ε
K(z)dz −

∫ 1−x+ε

−x+ε

K(z)dz

=

∫ −x+ε

−x−ε
K(z)dz −

∫ 1−x+ε

1−x−ε
K(z)dz.

By taking the limit ε→ 0 in eq. (7.10) and applying the Lebesgue differentiation
theorem, it follows that K(−x)−K(1− x) = 0 for a.e. x ∈ (0, 1).

Conversely, assume a translation-invariant graphon for which K is 1-periodic.
That k(x) is constant follows directly from (7.9). �

As anticipated, we now consider a simple example when the spectral theorem
amounts to a Fourier transform.

Example 7.14 (Spectral theorem with the nearest-neighbor graphon). Consider
a translation invariant graphon with constant degree, such as the nearest-neighbor
graphon of fig. 7.2. The combinatorial Laplacian is given by

Lf(x) =

∫ 1

0

K(x− y)f(y)dy − cf(x),
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with c ∈ [0, 1], and where according to proposition 7.13, the first term is the
convolution (K ∗ f)(x). Let us show that L has a pure point spectrum, and
determine a complete basis of eigenvalues. In this example the hat symbol (ˆ)
denotes the Fourier transform, such that

K̂(`) :=

∫ 1

0

K(x)e−2iπ`xdx

for ` ∈ Z, and K(x) =
∑
`∈Z K̂(`)e2iπ`x. If we let ψ`(x) = e2iπ`x for ` ∈ Z, we

have

Aψ`(x) = (K ∗ ψ`)(x) = K̂(`)ψ`(x),

which shows that λ` := K̂(`) − c and ψ` represent an eigenpair for L. Recall
that the ψ` form a Hilbertian basis for L2[0, 1], and we have

(7.11) L =
∑
`∈Z

λ`(·, ψ`)ψ`.

The functional calculus introduced in appendix A.2 defines φ : C(σ(L)) 7→
L(L2[0, 1]) as

(7.12) φ(f)(L) := f(L) =
∑
`∈Z

f(λ`)(·, ψ`)ψ`.

We may select ψ :=
∑
`∈Z ψ` as a cyclic vector. The spectral measure µψ follows

from the combination of eqs. (7.12) and (A.7):∫
σ(L)

fdµψ = (ψ, f(L)ψ)

=
∑
`∈Z

f(λ`) (ψ, (ψ,ψ`)ψ`)

=
∑
`∈Z

f(λ`) (ψ,ψ`)
2

=
∑
`∈Z

f(λ`).

Hence, µψ =
∑
`∈Z δ(x−λ`) where δ is the Dirac measure. The unitary transform

U of the spectral theorem (or equivalently of lemma A.3 in this case; lemma A.4
is not needed here) maps L2[0, 1] to L2(σ(L), dµψ) which is just `2(Z), the square
summable sequences indexed in Z. Consider again the defining equation for U
given by (7.7). Take f as the constant function equal to one, namely f ≡ {1}`∈Z
on σ(L). Equation (7.7) yields Uψ = 1 ≡ {1}`∈Z, and as can be seen on fig. 7.3,

(7.13) U : v =
∑
`∈Z

v̂(`)ψ` → (v̂(`))`∈Z ,

which is simply the Fourier transform.

To our best knowledge, linear stability analysis for nonlinear systems with
graphons was so far done in the mean-field approximation [94, 73] assuming a
translation invariant graphon with constant degree, using the Fourier transform.
In the following section, we go beyond this particular case.
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1 ∈ C(σ(A)) ≡ {1}`∈Z λ · 1 ≡
{
K̂(`)− c

}
`∈Z

∑
`∈Z

(
K̂(`)− c

)
ψ`ψ =

∑
`∈Z ψ`

Mλ

L = A−D

U U−1

Figure 7.3. Illustration of lemma A.3 in the case that U is the Fourier
transform, as in example 7.14, with f = 1, the constant function equal
to one. Here Mλ is the multiplication operator by the identity function
λ→ λ.

7.2.2.2. The case of a nonconstant degree function

We consider the instance that the eigenvectors of A no longer help in
writing L under multiplication form, because the degree function is not constant.
When L not longer possesses a basis of eigenfunctions, we have to decompose
the Hilbert space H = L2[0, 1] as the direct sum H = Hpp ⊕Hac ⊕Hsing, as
follows from theorem B.2. Each subspace is invariant under L, and it remains to
find a cyclic vector and a spectral measure for each subspace. To make thinks
more explicit, let us consider an example.

Example 7.15 (Spectral theorem with the threshold graphon). The threshold
graphon W (x, y) = χx+y≤1 of fig. 4.2 has triangular support in the unit square,
and its degree function is k(x) = 1 − x. The direct sum decomposition is

L2[0, 1] = span {1} ⊕ {1}⊥, where span {1} =: Hpp with basis the constant
eigenfunction ψ(x) = 1, and µψ = δ(x) is the discrete spectral measure. Further,

{1}⊥ =: Hac admits the cyclic vector ϕ(x) = x − 1
2 . Indeed, Lnϕ(x) is a

polynomial of degree n + 1 for all n ∈ N. To see that, let us assume that for
n ≥ 1, we can write

Ln−1ϕ(x) = αn−1,nx
n + . . .+ αn−1,1x+ αn−1,0

with αn−1,n 6= 0. This is the case for n = 1 for which α0,1 = 1. We further have

Lnϕ(x) =

∫ 1−x

0

Ln−1ϕ(y)dy − k(x)Ln−1ϕ(x)

=

n∑
`=0

αn−1,`
(1− x)`+1

`+ 1
− (1− x)

n∑
`=0

αn−1,`x
`,

where the leading coefficient of order n+ 1 is given by

αn,n+1 :=
n+ 2

n+ 1
αn−1,n 6= 0.

Recall that the polynomials are dense in C[0, 1] and that L2[0, 1] is the completion
of C[0, 1] with respect to the L2 norm. As an indication, the first elements of
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{
ϕ,Lϕ,L2ϕ, . . .

}
are given by:

Lϕ(x) =
3

2
x2 − 2x+

1

2

L2ϕ(x) = x3 − 3x2 +
5

2
x− 1

2

L3ϕ(x) =
5

4
x4 − 4x3 +

21

4
x2 − 3x+

1

2
.

As hinted by fig. 7.4, note that for all n ∈ N, (Lnϕ, 1) = 0, meaning that {1}⊥
is invariant under L as expected. Indeed, for n ≥ 1,

(Lnϕ(x), 1) =

∫ 1

0

Lnϕ(x)dx

=

∫ 1

0

∫ 1

0

W (x, y)Ln−1ϕ(y)dydx−
∫ 1

0

k(x)Ln−1ϕ(x)dx

=

∫ 1

0

k(y)Ln−1ϕ(y)dy −
∫ 1

0

k(x)Ln−1ϕ(x)dx = 0.

Let us now determine the spectral measure dµϕ. Following from eq. (A.7) we
have

(7.14)

∫
σac(L)

f(λ)dµϕ = (ϕ, f(L)ϕ)Hac

for all f ∈ C(σac(L)). However eq. (7.14) does not make the measure explicit
since we do not have an expression similar to eq. (7.12) for f(L). If we consider
eq. (7.14) with the triangular graphon, and we specialize this equation to the
case that f is the identity function, we obtain∫

σac(L)

λdµϕ = (ϕ, (L � Hac)ϕ)

= (ϕ, (A−D)ϕ)

=

∫ 1

0

Aϕ(x)ϕ(x)dx−
∫ 1

0

k(x)ϕ2(x)dx.

The first integral in the right-hand side is zero, and letting θ := −k(x) gives∫
σac(L)

λdµϕ =

∫ 0

−1

θϕ2((−k)−1(θ))dθ

=

∫ 0

−1

θϕ2 (θ + 1) dθ.

So we have the candidate

(7.15) dµϕ = ϕ2 (θ + 1) dθ =

(
θ +

1

2

)2

dθ.

Further, we observe that for all n ∈ N, the following identity holds:

(7.16) (ϕ,Lnϕ) =

∫ 1

0

(−k(x))
n
ϕ2(x)dx.
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Figure 7.4. Representation of the iterates Lnϕ, n = 0, . . . , 3 on the
cyclic vector ϕ(x) = x− 1

2 with the threshold graphon with triangular
support of example 7.15.

Letting again θ := −k(x) in (7.16), it follows that∫
σac(L)

λndµϕ =

∫ 1

0

θnϕ2((−k)−1(θ))dθ

and by density of the polynomials in L2[0, 1], this validates the choice in (7.15).

In the above example, the spectrum of L was not needed to formally
decompose the measure in a discrete and an absolute continuous part. However,
the support of the absolute continuous measure is dictated by the knowledge of
the spectrum. The next section contains a perturbative approach to obtain the
spectrum of L.

7.2.3. Perturbative approach

In appendix B.2, the spectrum is decomposed into a discrete spectrum σdisc,
namely the set of isolated eigenvalues of finite multiplicity, and an essential
spectrum σdisc = σ \ σdisc. An interesting property of the essential spectrum
resides in it being not sensitive to finite-rank perturbations or limits thereof,
that is, compact perturbations. Indeed, we have the following theorem [114,
Theorem S13]:

Theorem 7.16 (The classical Weyl theorem). Suppose that A and B are
self-adjoint operators on a Hilbert space, such that A − B is compact. Then
σess(A) = σess(B).

From this theorem it results that

(7.17) σess(L) = −σess(D),

where σess(D) follows directly from proposition 7.4 and remark 7.5. This theorem
shows that the multiplication operator may dominate the spectral properties of
L, as in the next example.
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Example 7.17 (Spectrum of L with the threshold graphon). The pure-point
spectrum of L associated with the graphon W (x, y) = χx+y≤1 of example 7.15
is σpp(L) = {0}. The eigenvalue zero is embedded in the essential spectrum,
σess(L) = −σess(D) = [−1, 0], and hence σdisc(L) = ∅ and σ(L) = σess(L).

7.3. Linear stability of reaction-diffusion on graphons

The spectral analysis in section 7.2 will now serve for a linear stability
analysis of reaction-diffusion equations on graphons. To start with, we briefly
consider in section 7.3.1 the continuum limit of the heat equation with a single
variable. We then move to the linear stability of a critical point in the scalar
reaction-diffusion equation in section 7.3.2, and in the vector case with two
components in section 7.3.3.

7.3.1. Stability of the heat equation

Consider the discrete heat equation given by

u̇i(t) =
1

n

n∑
j=1

Aij(uj − ui), i = 1, . . . , n(7.18a)

u(0) = u0,(7.18b)

where A = (Aij) is a symmetric weight matrix and u(t) = (u1(t), . . . , un(t)).
The continuum-limit in the ‖·‖C([0,T ],L2[0,1]) norm3 for any T > 0 was shown

in [91] to be of the form

ẇ(t) = Lw(t)(7.19a)

w(0) = w0,(7.19b)

where w(t) := w(·, t). Here, the matrix A and the graphon W are linked through
a discretization step that we do not discuss since our focus is on eq. (7.19).
Well-posedness of this equation was proved in [91] on the Banach space L∞[0, 1],
with the right-hand side of eq. (7.19a) replaced by the more general nonlinear
term

(7.20)

∫ 1

0

W (x, y)F (w(y, t)− w(x, t))dy

with F : R→ R a Lipschitz continuous function. The proof relies on the Banach
contraction mapping principle. For the sake of completeness, we give a proof of
well-posedness of this IVP in a Hilbert-space setting using a semigroup argument
similar to the one used for theorem 4.19.

Proposition 7.18. Let W be a graphon and w0 ∈ L2[0, 1]. Then there exists a
unique classical solution u ∈ C1(R, L2[0, 1]) of IVP (7.19) with initial condition
w(0) = w0.

3The definition of this norm is ‖w‖C([0,T ],L2[0,1] = supt∈[0,T ]‖w(·, t)‖L2[0,1].
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Proof. Since L is a bounded linear operator, it is closed and therefore, it
is the infinitesimal generator of the uniformly continuous semigroup

(7.21) SL(t) = eLt :=

∞∑
k=0

tkLk
k!

.

Therefore (7.19) is well-posed and admits the unique classical solution

(7.22) w(t) = SL(t)w(0).

�

We will mainly examine stability with respect to bounded perturbations,
which makes the following remark useful.

Remark 7.19. With initial condition w0 ∈ L∞[0, 1] one alternatively obtains
the existence of a solution w ∈ C1(R, L∞[0, 1]) for IVP (7.19). The norm is

(7.23) ‖w‖C1(R,L∞[0,1]) = sup
t∈R
‖w(t)‖L∞[0,1] + sup

t∈R
‖ẇ(t)‖L∞[0,1],

where the derivative ẇ of w satisfies the pointwise defining relation

(7.24) lim
h→0

∥∥∥∥w(t+ h)−w(t)

h
− ẇ(t)

∥∥∥∥
L∞[0,1]

= 0.

Further, we have the a priori estimate ‖w(t)‖∞ ≤ ‖w0‖∞ for all t ≥ 0 [59,
Theorem 3.1].

We will now give a proof of stability with the heat equation, where we
expressly apply the spectral theorem and mention all details. The distance d(·, ·)
in the proof is that of eq. (5.2) with the L2 norm.

Lemma 7.20. Let w ∈ C1(R, L∞[0, 1]) be the solution of eq. (7.19) with w0 ∈
L∞[0, 1]. Then

(7.25)
∂

∂t

∫ 1

0

w(x, t)dx = 0.

Proof. The proof can be carried out similarly as in [93, Lemma 3.5]. The
proof interchanges integration and differentiation as follows∫ 1

0

ẇ(t)dx =
∂

∂t

∫ 1

0

w(x, t)dx,

which is permitted because ẇ is bounded on R. �

Proposition 7.21 (Stability of the homogeneous equilibrium points). Let W be

a connected graphon such that supσ
(
L � {1}⊥

)
< 0. Then span {1} ⊂ L∞[0, 1]

is a globally exponentially stable set of IVP (7.19).

Proof. As in [93, Theorem 3.3], consider L∞[0, 1] as a subspace of L2[0, 1],
and write L∞[0, 1] = E ⊕ E⊥ where E := span {1} and E⊥ :=

{
f ∈ L∞[0, 1] :∫ 1

0
f(x)dx = 0

}
. Then according to lemma 7.20, E and E⊥ are invariant sets

for (7.19). Let w(0) = w‖ + w⊥ with w‖ ∈ E and w⊥ ∈ E⊥. Observe that



7.3. LINEAR STABILITY OF REACTION-DIFFUSION ON GRAPHONS 155

d(w(0), E) = d(w⊥, E) and d(w(t), E) = d(w⊥(t), E) with w⊥(t) := SL(t)w⊥.
Also note that for all x ∈ E⊥, d(x,E) = ‖x‖L2[0,1]. Hence, we have to prove

that ze ≡ 0 is a globally exponentially stable equilibrium point of

ż(t) = Lz(t)(7.26a)

z(0) = z0(7.26b)

where z0 ∈ E⊥. Letting

(7.27) ẑ(t) := Uz(t)

where U is the mapping of corollary 7.9, we can also consider

˙̂z(t) = F ẑ(t)(7.28a)

ẑ(0) = Uz0.(7.28b)

with F the bounded function of corollary 7.9. Making the second variable explicit
and with ẑ0 := Uz0,

∂

∂t
ẑ(m, t) = F (m)ẑ(m, t)(7.29a)

ẑ(m, 0) = ẑ0(m)(7.29b)

with solution given by

(7.30) ẑ(m, t) = eF (m)tẑ0.

Since U is unitary, for all t ≥ 0 we have ‖z(·, t)‖L2([0,1],dx) = ‖ẑ(·, t)‖L2(R,dµ)

where µ is the spectral measure with support on σ
(
L � {1}⊥

)
. The zero

equilibrium is exponentially stable if sup {ess ranF} < 0, with the measure

having support on the spectrum of L � {1}⊥, or equivalently if

sup
{
σ(U−1(L � {1}⊥)U)

}
< 0.

To conclude, observe that the spectrum is unitary invariant, namely,

σ(U−1(L � {1}⊥)U) = σ(L � {1}⊥).

�

Remark 7.22. Following proposition 7.21 we have limt→∞w(t) =: w∞ ∈ E
and by lemma 7.20, w∞ =

∫ 1

0
w0(x)dx = w‖, where we used the same notation

for constant functions and reals.

7.3.2. Linear stability of reaction-diffusion with one variable

In this section we consider the following nonlinear variant of eq. (7.18):

u̇i(t) =
1

n

n∑
j=1

Aij(uj − ui) + f(ui(t)), i = 1, . . . , n(7.31a)

u(0) = u0,(7.31b)
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where f : R → R is a nonlinear, Lipschitz function. It is mentioned in [91,
Remark 3.1] that the continuum limit of eq. (7.31) is of the form

∂

∂t
w(x, t) =

∫ 1

0

W (x, y) (w(y, t)− w(x, t)) dy + f(w(x, t))(7.32a)

w(x, 0) = w0.(7.32b)

Remark 7.23 (Existence and uniqueness with bounded initial condition). Ex-
istence and uniqueness of a classical solution w ∈ C1(R, L∞[0, 1]) to (7.32) with
bounded initial condition follows from the same Banach contraction mapping
argument that proves the well-posedness of (7.19) in [92]. Moreover, for any
T > 0 we have the a priori estimate

(7.33) ‖w‖C([0,T ],L∞[0,1]) ≤ C‖w(0)‖L∞[0,1]

where the positive constant C depends only on T [63, Theorem 3.2].

Remark 7.24 (Well-posedness of the reaction-diffusion equation in the contin-
uum limit of sparse graphs). Following remark 7.1, in the case of sparse random
graphs when the Laplacian of the discrete model is scaled by the expected degree
as in eq. (7.4), the continuum limit of the averaged discrete model reads

∂

∂t
w(x, t) =

∫ 1

0

N(x, y) (w(y, t)− w(x, t)) dy + f(w(x, t))(7.34a)

w(x, 0) = w0(7.34b)

where it is assumed that the degree function of the graphon is bounded away
from zero. Hence the consensus Laplacian above is well-defined, and N(x, y) =
W (x, y)/k(x) is a nonnegative function such that

(7.35)

∫ 1

0

N(x, y)dy = 1.

For p ≥ 2, let q be the conjugated exponent given by

(7.36)
1

p
+

1

q
= 1

and assume that f is Lipschitz continuous. Existence and uniqueness of a classical
solution w ∈ C1(R, Lq[0, 1]) to (7.34) with N ∈ Lp[0, 1] that satisfies (7.35), and
with initial condition w0 ∈ Lq[0, 1], is given by [63, Theorem 3.1]. However,
when the Laplacian in the discrete model in scaled by 1

nρn
, the continuum model

reads

∂

∂t
w(x, t) =

∫ 1

0

W (x, y) (w(y, t)− w(x, t)) dy + f(w(x, t))(7.37a)

w(x, 0) = w0,(7.37b)

and the existence of weak solutions can be proved [63, Section 6.2]. Weak
solutions are meant in the following sense. Let T > 0 andw ∈ H1([0, T ], L2[0, 1]),
meaning that for all t ∈ [0, T ], w(t) ∈ H1[0, 1], that is, w(t) and its weak
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derivative are in L2[0, 1]. Then w is called a weak solution of (7.37) with
w0 ∈ L2[0, 1] if

(7.38)

(
∂

∂t
w(·, t)−

∫ 1

0

W (·, y) (w(y, t)− w(·, t)) dy + f(w(·, t)), v
)

= 0

for all v ∈ L2[0, 1] and for almost every t ∈ [0, T ].

The existence and uniqueness result [63, Theorem 3.1] mentioned in this
remark applies to eq. (7.32) where W is a bounded graphon and where we may
take p = q = 2 in (7.36). Hence we have the following result.

Theorem 7.25 (Existence and uniqueness on L2[0, 1]). The IVP (7.32) with
initial condition w0 ∈ L2[0, 1] and globally Lipschitz f has a unique classical
solution w ∈ C1(R, L2[0, 1]), which depends continuously on w0.

In the rest of this section, we will concentrate on the problem with w0 ∈
L2[0, 1]; the case with the more restrictive initial condition w0 ∈ L∞ goes along
the same line. By writing

(7.39) w(t) = T (t)w0, ∀t ≥ 0,

we define a nonlinear semigroup (T (t))t≥0 on L2[0, 1] with infinitesimal generator

given by L+f . Let us assume the continuum problem (7.32) possesses a constant
equilibrium we, such that (L+ f)(we) = f(we) = 0. In order to investigate the
stability of we with perturbation in L2[0, 1], eq. (7.32a) will be linearized.

We have introduced on page 106 the Fréchet derivative DF (x), definition 5.7.
Consider also the following weaker notion of derivative.

Definition 7.26 (Gâteaux derivative). Let X be a Banach space. Then operator
F : domF ⊂ X → X is Gâteaux differentiable at x ∈ D in the direction h ∈ X,
x, x+ h ∈ domF , if there exists a linear operator dF (x) : X → X such that for
all h ∈ X,

(7.40) lim
ε→0

F (x+ εh)− F (x)

ε
= dF (x)h.

If (7.40) holds for every direction h ∈ X, then F is said to be Gâteaux differen-
tiable in x. Further if F is Gâteaux differentiable in every x ∈ domF , then F is
said to be Gâteaux differentiable in domF .

When the right-hand side of (7.32) is not Fréchet differentiable, as is the
case in practical reaction-diffusion models, we rely on the following assumption:

Assumption 7.27. The nonlinear function f is Gâteaux differentiable at we,
and its Gâteaux derivative df(we) is bounded on L2[0, 1].

The Gâteaux derivative is used to linearize the equation around we. Equa-
tion (7.32) becomes

∂

∂t
z(x, t) =

∫ 1

0

W (x, y) (z(y, t)− z(x, t)) dy + df(we)z(x, t)(7.41a)

z(x, 0) = w0 − we =: z0.(7.41b)
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By virtue of the spectral theorem, with ẑ(t) and the unitary operator U as in
eq. (7.27), we have

∂

∂t
ẑ(m, t) = F (m)ẑ(m, t) + df(we)ẑ(m, t),(7.42a)

ẑ(x, 0) = ẑ0.(7.42b)

Let us assume that the associated local system, namely

∂

∂t
ẑ(m, t) = df(we)ẑ(m, t)(7.43a)

ẑ(x, 0) = ẑ0,(7.43b)

with solution ẑ(t) = edf(we)tẑ0 is exponentially stable, that is, df(we) < 0. Since
F ≤ 0, we further have that we is a linearly exponentially stable equilibrium
of eq. (7.42) and based on the linear analysis no Turing bifurcation can occur
in the one variable case. This is the conclusion we have observed so far for
single-species RD systems on networks. Let us consider the two-variable case,
where we carry out a linear stability analysis analogously, and then proceed with
conclusions on the (in)stability of the nonlinear system.

7.3.3. Linear stability of reaction-diffusion with two variables

In the two-component vector case, with wi(t) := wi(·, t), i ∈ {1, 2}, and

w(t) := w(·, t) with w(·, t) = (w1(·, t), w2(·, t))T , the reaction-diffusion equations
read

∂

∂t
wi(x, t) = Di

∫ 1

0

W (x, y) (wi(y, t)− wi(x, t)) dy + fi(w(x, t)), i ∈ {1, 2}

(7.44a)

w(0) = w0,

(7.44b)

with D1, D2 > 0 the diffusion coefficients and with f1, f2 nonlinear smooth
functions. We will consider the two cases w0 ∈ Lp[0, 1] × Lp[0, 1] =: Xp with
p = 2 or ∞, using the `-norms on R2,

‖x‖X2
=
(
‖x1‖2L2[0,1] + ‖x2‖2L2[0,1]

) 1
2

(7.45)

‖x‖X∞ = max
{
‖x1‖L∞[0,1], ‖x2‖L∞[0,1]

}
.(7.46)

The choice of the `-norm is not significant since all norms on Rn are equivalent.
We let ‖·‖p,p := ‖·‖Xp→Xp denote the operator norm.

Existence and uniqueness of classical solutions w ∈ C1(R,Xp), p = 2 or ∞,
is obtained as in the scalar case, see remark 7.23 and theorems 7.25 and 7.36.
Assuming a constant equilibrium we = (we,1, we,2)T , that is fi(we) = 0 for
i ∈ {1, 2}, along the same lines as in the scalar case we linearize around we
under the following assumption.
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Assumption 7.28. For p = 2 or ∞, the nonlinear operator f =

(
f1

f2

)
is

Gâteaux differentiable in we with bounded Gâteaux derivative df(we).

We obtain

∂

∂t
z(x, t) = L⊗z(x, t) + df(we)z(x, t),(7.47a)

z(x, 0) = w0 − we =: z0.(7.47b)

where L⊗ :=

(
D1L 0

0 D2L

)
and with the Gâteaux derivative in the forthcoming

cases being given by

(7.48) df(we) =

(
∂1f1(we) ∂2f1(we)
∂1f2(we) ∂2f2(we)

)
,

the matrix of partial derivatives ∂i := ∂
∂wi

, i ∈ {1, 2}, computed at the equilib-

rium. As before, via the spectral theorem and the mapping U as in eq. (7.27)
we have a problem of the form

∂

∂t
ẑ(m, t) = J(m)ẑ(m, t)(7.49a)

ẑ(x, 0) =

(
Uz0,1

Uz0,2

)
=: ẑ0.(7.49b)

By assumption 7.28 and the bounded perturbation theorem, the solution of

eq. (7.49) is given by the C0-semigroup
(
Ŝ(t)

)
t≥0

such that

(7.50) ẑ(t) = Ŝ(t)ẑ0.

Let us introduce a higher-dimensional generalization of multiplication oper-
ators [55, Definition 1].

Definition 7.29. Let (X,Σ, η) be a σ-finite measure space, q be a measurable
matrix-valued function and n ∈ N0. An operator Mq with domain domMq

defined on ⊗nk=1L
p(X, η), 1 ≤ p ≤ ∞, by

(7.51) Mqf(x) = q(x)f(x)

for all x ∈ X and q ∈ domMq = {⊗nk=1L
p(X, η) : qf ∈ ⊗nk=1L

p(X, η)} is called
a matrix multiplication operator.

The generator in the right-hand side of (7.49a) is thus a matrix multiplication
operator MJ : Xp → Xp defined by

(7.52) J(m) =

(
D1F (m) 0

0 D2F (m)

)
+ df(we),

for all m ∈ R, and F ∈ L2(R, dµ) where dµ is the measure provided by the
spectral theorem. In order to obtain the spectrum of a multiplication operator
we first need to consider the essential union of the pointwise spectra of the
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associated matrix-valued functions. Using the notations of definition 7.29, we
have the definition

(7.53) ess−
⋃
x∈X

σ (q(x)) :=
⋂
p∈[q]

clo

( ⋃
x∈X

σ(p(x))

)
,

where [q] is the equivalence class of all measurable functions which are µ-almost
everywhere equal to q. From the definition, one has the practical expression
(7.54)

ess−
⋃
x∈X

σ (q(x)) = {z ∈ C : µ {x ∈ X : σ(q(x)) ∩Bε(z)} > 0, ∀ε > 0} ,

where Br(z0) = {z ∈ C : |z − z0| < ε}. The following is well-known about
bounded operators, where the operator norm is used.

Fact 7.30 (Nonvoid resolvent). Let A be a bounded operator. Then

(7.55) σ(A) ⊂ {λ ∈ C : |λ| < ‖A‖} .

Proof. It suffices to notice that

R(λ,A) =
1

λ

(
1− 1

λ
A

)−1

=

∞∑
`=0

A`

λ`+1
,

which exists for all |λ| > ‖A‖. �

As a result, we further have that

(7.56) %(A) := sup {|λ| : λ ∈ σ(A)} ≤ ‖A‖.

Here % is obtained by taking the supremum over the whole spectrum, and not
only the eigenvalues as in chapter 6.

Observe that by assumption 7.28, MJ is bounded and thanks to fact 7.30,
[55, Proposition 1] is applicable. We have

(7.57) σ(MJ) = ess−
⋃
m∈R

σ (J(m)) .

In particular, the spectral bound, definition B.12, is given by

(7.58) s(MJ) = ess sup
m∈R

s(J(m)),

where s(J(m)) = supλ∈σ(J(m)) Reλ for every m ∈ R pointwise. Finally, notice
that the growth bound, definition B.11, and the spectral bound coincide because
MJ is the generator of a uniformly continuous semigroup. An illustration is
provided by fig. 7.5, which shows that just like with graphs, the linear stability
of the system on a graphon depends on the location of the spectrum of the
Laplacian. It is not tied to the stability of a system with the same local dynamics
evolving on a continuum such as a rectangular domain.
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(a) Linear growth rates on a ran-
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(b) Pointwise spectral bounds of
the matrices J(m), eq. (7.52),
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Figure 7.5. Linear growth bound for the discrete two-species RD
system with Laplacian normalized by the number of node, and for the
associated continuum problem eq. (7.44) on the threshold graphon. The
parameters for the Brusselator kinetics are those of fig. 6.1.

7.4. On the stability of the nonlinear system

The analysis would not be complete without conclusions on the nonlinear
problem in two variables. Emphasis is placed on the analysis of a particular
example. In section 7.4.1 we start this section by explaining the whys and
wherefores, but also the limits of our choice of Brusselator kinetics. As will emerge
from the discussion in section 7.4.2, we need separate treatments depending on
the underlying functional space, therefore allocating sections 7.4.3 and 7.4.4 to
the two cases p = 2 and p =∞ introduced in section 7.3.3.

7.4.1. On the Brusselator

In many models the rate laws depend on the powers of the concentrations,
and we will develop our analysis based on the Brusselator with features with
polynomial nonlinearity. Recall the equations introduced with (6.55),

f1(x, y) = 1− (b+ 1)x+ cx2y(7.59)

f2(x, y) = bx− cx2y,(7.60)

where we =
(
1, bc
)

satisfies fi(we) = 0. If c > b− 1, c > 0, then we is a globally
exponentially stable equilibrium of the linear systems on Xp. The Gâteaux
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derivative of the map

(
x
y

)
→
(
f1(x, y)
f2(x, y)

)
in (x, y) is determined by

(7.61) df(x, y) =

(
−(b+ 1) + 2cxy cx2

b− 2cxy −cx2

)
.

Evaluated at the fixed point, this becomes

(7.62) df(we) =

(
b− 1 c
−b −c

)
.

The Schnakenberg model, a variant of the Brusselator, and the Gray-Scott model
which has three variables, also feature polynomial nonlinearity. Hence, our
conclusions on the Brusselator apply qualitatively to those models as well. On
the other hand, observe that the Gierer-Meinhardt model and the three-variable
Epstein model both present negative powers of the concentrations, which makes
a direct extension of the conclusions on the Brusselator not straightforward.

Remark 7.31. With the Brusselator, the function f is only locally but not
globally Lipschitz continuous. One may partially overcome this problem by
working with a radially truncated model [66, Remark 1.1] (with ‖·‖ the norm of
the Banach space) :

(7.63) fr(w) :=

{
f(w) if ‖x‖ ≤ r
f(rw/‖w‖) if ‖x‖ > r

,

for some r > 0. Then fr is globally Lipschitz, and which is Fréchet differentiable
on the open ball Br(0) if f is Fréchet differentiable.

7.4.2. On the principle of linearized stability

The critical point in applying a principle of linearized stability is the Fréchet
differentiablity of the nonlinear semigroup. Indeed, consider [2, Theorem 2.5],
that we mention in a form that suits our interest.

Theorem 7.32. Let we be an equilibrium for (7.44) on a Banach space, and
suppose that the associated nonlinear semigroup S(t) is Fréchet differentiable
at we, with Fréchet derivative Twe . If we is a globally exponentially stable
equilibrium of the linear system given by Twe , then we is a locally exponentially
stable equilibrium for (7.44). Conversly, if we is an unstable equilibrium of the
linear system, then we is an unstable equilibrium for (7.44).

When p =∞, we will use a strong condition on the generator of the nonlinear
semigroup, namely continuous Fréchet differentiability, that ensures the Fréchet
differentiability of the nonlinear semigroup. But we will also exploit the fact
that the assumption on the generator can be weakened. Indeed, even if the
generator of the nonlinear semigroup is not Fréchet differentiable, the nonlinear
semigroup may still be differentiable. This helps us treat the case p = 2 in a
second step, where only the weaker assumptions are satisfied.

Remark 7.33. The requirement that the fixed point we of the linear system is
exponentially (un)stable and not asymptotically (un)stable is critical, these two
notions of stability being distinct.
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7.4.3. The case p =∞

When the reaction-diffusion system is defined on X∞, we can show that
the nonlinear part f of the generator is continuously Fréchet differentiable on
X∞ [66, Definition 1.1]. This means that f is Fréchet differentiable and further,
there exists a continuous increasing function d : [0,∞)→ [0,∞) such that

(7.64) ‖Df(u)−Df(v)‖∞,∞ ≤ d(r)‖u− v‖X∞ ,

for all u, v ∈ X∞ such that ‖u‖X∞ , ‖v‖X∞ ≤ r. Then, we have the following

theorem which is a particular case of [1, Theorem 3.6].

Theorem 7.34. Consider (7.44) on a Banach space where f is continuously
Fréchet differentiable and let we be a globally exponentially stable equilibrium of
the linear system (7.47). Then we is a locally exponentially stable equilibrium
of (7.44). Conversly, if we is exponentially unstable in the linear system (7.47),
then we is an exponentially unstable equilibrium of the nonlinear system (7.44).

Example 7.35 (Brusselator – Continuous Fréchet differentiability when p =∞).
Let us show that f : X∞ 7→ X∞, with

(7.65) f(z1, z2) =

(
1− (b+ 1)z1 + cz2

1z2

bz1 − cz2
1z2

)
and c > 0 is Fréchet differentiable in z = (z1, z2)T . A calculation using the
Gâteaux derivative (7.61) yields

(7.66) f(z + h)− f(z)− df(z)h =

(
δ1
δ2

)
where h = (h1, h2)T and

(7.67) δ1 = ch1(2z1h2 + z2h1 + h1h2) = −δ2.

Hence, writing . for inequality up to a (positive) constant,∥∥∥∥(δ1δ2
)∥∥∥∥
X∞

= max {‖δ1‖∞, ‖δ2‖∞}

. ‖h1(2z1h2 + z2h1 + h1h2)‖∞
≤ ‖z1‖∞‖h1‖∞‖h2‖∞ + ‖z2‖∞‖h1‖2∞ + ‖h1‖2∞‖h2‖∞
≤ (‖z1‖∞ + ‖z2‖∞ + ‖h1‖∞) ‖h‖2X∞ ,(7.68)

and so

(7.69) lim
‖h‖X∞→0

∥∥∥∥(δ1δ2
)∥∥∥∥
X∞

‖h‖X∞
= 0.

Let us now show the continuity property. Recall ‖·‖∞,∞ denotes the operator

norm ‖·‖X∞→X∞ . For compactness, we adopt the notation ‖·‖p for ‖·‖Lp[0,1].
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Fix r > 0 and let u, v ∈ X∞ satisfy ‖u‖X∞ , ‖v‖X∞ ≤ r. We compute

‖df(u)− df(v)‖∞,∞ = sup
‖h‖X∞=1

‖df(u)h− df(v)h‖X∞

= sup
‖h‖X∞=1

∥∥∥∥( 2c(u1u2 − v1v2)h1 + c(u2
1 − v2

1)h2

−2c(u1u2 − v1v2)h1 − c(u2
1 − v2

1)h2

)∥∥∥∥
X∞

. sup
‖h‖X∞=1

(
2‖u1u2 − v1v2‖∞‖h1‖∞ + ‖u2

1 − v2
1‖∞‖h2‖∞

)
≤ 2‖u1 − v1‖∞‖u2‖∞ + 2‖v1‖∞‖u2 − v2‖∞

+‖u1 + v1‖∞‖u1 − v1‖∞
≤ (2‖u2‖∞ + 2‖v1‖∞ + ‖u1 + v1‖∞) ‖u− v‖X∞
≤ 6r‖u− v‖X∞ ,

and theorem 7.34 allows to use the principle of linearized stability.

Continous Fréchet differentiablity of f actually ensures that the nonlinear
semigroup is everywhere Fréchet differentiable. We have stated in section 7.4.2
that the generator may fail to be Fréchet differentiable while the nonlinear
semigroup is still Fréchet differentiable. We then give a sufficient condition based
on the Gâteaux differentiability of the generator, which will also allow to address
the case p = 2 in section 7.4.4.

Theorem 7.36 (Existence, uniqueness and a priori estimate on X∞). Let w
denote the solution of (7.49) with initial condition w(0) = w0 ∈ X∞. Assume
f : X∞ → X∞ is Lipschitz continuous, and let we denote a critical point of f .
Then w ∈ C(R,X∞) and for any T > 0, there exists C > 0 depending on T and
f but not on W such that

(7.70) ‖w − we‖L∞([0,T ],X∞) ≤ C‖w(0)− we‖X∞ .

Proof. For τ > 0, consider Mp := C([0, τ ],Xp) with p =∞, and consider
the operator K defined on M∞ by

(7.71) (Kw)(t) = w0 +

∫ t

0

(L⊗w(·, s) + f(w(·, s)) ds,

Then, by a standard calculation similar to [63, Theorem 3.1], one can show K
is a contraction on M∞ for a proper choice of τ . Indeed, for all u,v ∈M∞, we
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have

‖Ku−Kv‖M∞ = sup
t∈[0,τ ]

‖Ku(t)−Kv(t)‖X∞

≤ sup
t∈[0,τ ]

{∫ t

0

‖L⊗ (u(s)− v(s))‖X∞ds

+

∫ t

0

‖f(u(s))− f(v(s))‖X∞ds
}

≤ sup
t∈[0,τ ]

{
(D1 ∨D2)‖L‖∞,∞

∫ t

0

‖u(s)− v(s)‖X∞ds

+L

∫ t

0

‖u(s)− v(s)‖X∞ds
}

≤ ((D1 ∨D2) + L) τ‖u− v‖M∞ ,
where we have used the Minkowski inequality, ‖L‖∞,∞ ≤ 1, where L is the
Lipschitz constant of f , and a ∨ b denotes the maximum between a and b. By
choosing τ = 1

2 ((D1 ∨D2) + L), this shows that

(7.72) ‖Ku−Kv‖M∞ ≤
1

2
‖u− v‖M∞ .

Further, we have that KM∞ ⊂M∞, since (7.72) implies

‖Ku‖M∞ ≤
1

2
‖u‖M∞ + ‖K0‖M∞ ,

where ‖K0‖M∞ = ‖w0+tf(0)‖M∞ <∞. Following the reasoning of [63, Theorem

3.1], the unique solution of the IVP on [0, τ ] can be extended to a unique classical
solution in C(R, L∞[0, 1]). To prove (7.70), let us conveniently consider the
translated system, with w̃ := w − we:

˙̃w = L⊗w̃ + f(w̃ + we)(7.73a)

w̃(0) = w̃0 := w0 − we.(7.73b)

From (7.73a), for all 0 ≤ t ≤ T using again the Lipschitz continuity of f and
the Minkowski inequality we have

d

dt
‖w̃(t)‖X∞ ≤ ‖L⊗w̃ + f(w̃ + we)‖X∞

≤ (D1 ∨D2)‖L‖∞,∞‖w̃(t)‖X∞ + L‖w̃‖X∞ ,
and by the Gronwall inequality, with β := (D1 ∨D2)‖L‖∞,∞ + L > 0,

(7.74) ‖w̃‖X∞ ≤ e
βt‖w̃0‖X∞ ≤ e

βT ‖w̃0‖X∞ .
Since this applies for all t ≤ T , (7.70) follows. �

Remark 7.37. Another way to obtain existence and uniqueness of a classical
solution is based on generation theorems for nonlinear semigroups.

Now we formulate a remark that eventually guarantees the formulation of
the next lemma makes sense.
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Remark 7.38 (Trajectories on finite time intervals). Under its assumptions,
the previous theorem shows that for all T > 0, the solution w̃ of (7.73) is such
that

‖f(w̃ + we)− df(we)w̃‖L∞([0,T ],X∞) ≤
(
L+ ‖df(we)‖∞,∞

)
sup
t∈[0,T ]

‖w̃(t)‖X∞

≤
(
L+ ‖df(we)‖∞,∞

)
‖w̃‖L∞([0,T ],X∞)

as pointed out with a similar argument in [51, Lemma 2.2].

Lemma 7.39. Let w̃ denote the solution of (7.73), and let (S̃(t))t≥0 be the

nonlinear semigroup such that w̃(t) = S̃(t)w̃0. Assume further there exists
we ∈ X∞ such that f(we) = 0. If for all T > 0

(7.75) lim
‖w̃0‖X∞→0

‖f(w̃ − we)− df(we)w̃‖L∞([0,T ],X∞)

‖w̃0‖X∞
= 0,

then the nonlinear semigroup (S̃(t))t≥0 is Fréchet differentiable in 0, and its

Fréchet derivative is the strongly continuous semigroup (T̃ (t))t≥0 generated by
L⊗ + df(we), where df(we) is the Gâteaux derivative of L⊗ + f(·+ we).

The proof is an extension of the proof of [51, Lemma 3.1] from a Hilbert
space setting to a Banach space setting. Details are given for completeness.

Proof. Let T > 0 and define

φ(t) := S̃(t)w̃0 − T̃ (t)w̃0.

The first step is to bound ‖φ(t)‖X∞ . Using the fact that f(we) = 0,

φ̇(t) = L⊗S̃(t)w̃0 + f(S̃(t)w̃0 + we)− L⊗T̃ (t)w̃0 − df(we)T̃ (t)

= L⊗φ(t) + df(we)
(
w̃(t)− T̃ (t)w̃0

)
− df(we)w̃(t) + f(w̃(t) + we)

= L⊗φ(t) + df(we)φ(t) +R(w̃(t), we)

where

R(w̃(t), we) := f(w̃(t) + we)− df(we)w̃(t).

Using the triangle inequality and the continuity of the norm to obtain the first
inequality,

d

dt
‖φ(t)‖X∞ ≤ ‖φ̇(t)‖X∞

≤ ‖L⊗φ(t)‖X∞ + ‖df(we)‖∞,∞‖φ(t)‖X∞ + ‖R(w̃(t), we)‖X∞
= k‖φ(t)‖X∞ + ‖R(w̃(t), we)‖X∞

where k := ‖L⊗‖∞,∞ + ‖df(we)‖∞,∞. Multiplying by an integrating factor e−kt

we come to
d

dt
‖φ(t)‖X∞e

−kt ≤ ‖R(w̃(t), we)‖X∞e
−kt
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and taking into account ‖φ(0)‖X∞ = 0, after integration we obtain

‖φ(t)‖X∞ = ekt
∫ t

0

e−ks‖R(w̃(s), we)‖X∞ds

≤ TekT sup
t∈[0,T ]

‖R(w̃(s), we)‖X∞ds

= TekT ‖R(w̃(s), we)‖L∞([0,T ],X∞).

Finally, relying on the hypothesis (7.75), we have

(7.76) lim
‖h‖X∞→0

‖φ(t)‖X∞
‖h‖X∞

≤
TekT ‖R(w̃(s), we)‖L∞([0,T ],X∞)

‖h‖X∞
= 0,

which yields the conclusion. �

Finally, we formulate the following theorem.

Theorem 7.40. Under our working assumptions, and assuming (7.75)
applies, if we is a globally exponentially stable equilibrium of the linear problem
(7.47) on X∞, then it is a locally-exponentially stable equilibrium of the nonlinear
problem (7.44). Conversely, if we is unstable in the linear system, it is also
unstable in the nonlinear system.

Proof. It suffices to consider the stability of w̃ ≡ 0 in the translated
system (7.73), and to combine lemma 7.39 and [51, Theorem 3.1] where we take
X = Y = X∞. �

We illustrate this approach with our chosen example, noting that computa-
tion in the present case is partially reused in section 7.4.4 when p = 2.

Example 7.41 (Brusselator – Condition on the generator for Fréchet differen-
tiability of the semigroup). Using the expression for f as given by (7.65), for
T > 0 we have

‖f(w̃ − we)−df(we)w̃‖L∞([0,T ],X∞)

= sup
t∈[0,T ]

∥∥∥∥( cw̃2
1(t)w̃2(t) + bw̃2

1(t) + 2cw̃1(t)w̃2(t)
−cw̃2

1(t)w̃2(t)− bw̃2
1(t)− 2cw̃1(t)w̃2(t)

)∥∥∥∥
X∞

. sup
t∈[0,T ]

{
‖w̃2

1(t)w̃2(t)‖∞ + ‖w̃2
1(t)‖∞ + ‖w̃1(t)w̃2(t)‖∞

}
= sup
t∈[0,T ]

{
‖w̃1(t)‖2∞‖w̃2(t)‖∞

+‖w̃1(t)‖2∞ + ‖w̃1(t)‖∞‖w̃2(t)‖∞
}

≤ sup
t∈[0,T ]

{
‖w̃(t)‖3X∞ + 2‖w̃(t)‖2X∞

}
. ‖w̃(0)‖3X∞ + 2‖w̃(0)‖2X∞ ,(7.77)
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where the last inequality follows from (7.70) and the continuity of the orbits
t 7→ w̃(t). It follows that

(7.78) lim
‖w̃0‖X∞→0

‖f(w̃ − we)− df(we)w̃‖L∞([0,T ],X∞)

‖w̃0‖X∞
. lim
‖w̃0‖X∞→0

‖w̃(0)‖2X∞ + 2‖w̃(0)‖X∞ = 0,

showing that lemma 7.39 is applicable.

7.4.4. The case p = 2

The reason for considering the Hilbert space setting separately is that even
with our simple working example, the nonlinear operator f fails to be Fréchet
differentiable.

Example 7.42 (Brusselator - Nowhere Fréchet differentiability when p = 2).
Consider

(7.79) ‖f(z + h)− f(z)− df(z)h‖X2
=

∥∥∥∥(δ1δ2
)∥∥∥∥
X2

where δ1, δ2 are given by eq. (7.67). For h ∈ X2, a calculation yields

(7.80)

∥∥∥∥(δ1δ2
)∥∥∥∥2

X2

‖h‖2X2

&

∫ 1

0
h4

1(x)h2(x)2dx∫ 1

0
(h2

1(x) + h2
2(x))dx

.

Consider the sequence (gn)n∈N where for every n, gn ∈ L2[0, 1] is defined by

(7.81) gn(x) =

{
n
α
2 if x < 1

n ,(
1
2

)n
2 if x ≥ 1

n ,

for some 0 ≤ α < 1. We have

(7.82)

∫ 1

0
g6
n(x)dx∫ 1

0
g2
n(x)dx

=
n3α−1 + n−1

n ( 1
2 )3n

nα−1 + n−1
n ( 1

2 )n
.

Hence, if we choose h1 = h2 = gn and α such that 1
3 ≤ α < 1, then we see in the

limit of n→∞, namely ‖h‖X2
→ 0, that the left-hand side of (7.80) does not

vanish, meaning f is not Fréchet differentiable in the arbitrarily chosen z ∈ X2.

In order to pursue the analysis, for the completeness we first prove existence
and unicity of the solution the IVP on X2 in theorem 7.43, in a way similar to
the case p = ∞. Secondly, we obtain an a priori estimate on the norm of the
solution of the translated problem, as part of the same theorem. Thirdly, we
give the definitions of (Y,X)-Fréchet differentiability and (Y,X)-exponential
stability introduced by [51]. And finally, we show based on our example that
with an appropriate choice of the spaces, namely with Y = X∞ and X = X2,
within this concept of stability the principle of linearized stability is preserved.
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Theorem 7.43 (Existence, uniqueness and a priori estimate on X2). Let w
denote the solution of (7.49) with initial condition w(0) = w0 ∈ X2. Assume
f : X2 → X2 is Lipschitz continuous, and that there exists a fixed point we such
that f(we) = 0. Then w ∈ C(R,X2) and for any T > 0, there exists C > 0
depending on T and f but not on W such that

(7.83) ‖w − we‖L∞([0,T ],X2) ≤ C‖w(0)− we‖X2
.

Again, the existence and uniqueness part of the proof is similar to the proof
of [63, Theorem 3.1].

Proof. For τ > 0, consider Mp with p = 2 and the operator K defined on
M2 by (7.71). We again need to show K is a contraction. First, notice that due
to the boundedness of L : L2[0, 1]→ L2[0, 1], for all x, y ∈ X2 we have

‖L⊗(x− y)‖X2
≤ (D1 ∨D2)

∥∥∥∥(L(x1 − y1)
L(x2 − y2)

)∥∥∥∥
X2

≤ (D1 ∨D2)
(
‖L‖22,2

(
‖x1 − y1‖22 + ‖x2 − y2‖22

)) 1
2

≤ (D1 ∨D2) ‖L‖2,2‖x− y‖X2
.(7.84)

Using (7.84) with ‖L‖2,2 ≤ 1 and the Lipschitz continuity of f , one obtains

‖Ku−Kv‖M2
≤ sup
t∈[0,τ ]

{∫ t

0

‖L⊗ (u(s)− v(s))‖X2
ds

+

∫ t

0

‖f(u(s))− f(v(s))‖X2
ds

}
≤ sup
t∈[0,τ ]

{
(D1 ∨D2)‖L‖2,2

∫ t

0

‖u(s)− v(s)‖X2
ds

+L

∫ t

0

‖u(s)− v(s)‖X2
ds

}
≤ ((D1 ∨D2) + L) τ‖u− v‖M2

,

and by choosing τ as in the proof of theorem 7.36 and by the same argument,
existence and uniqueness of a solution in C(R,X2) follows. In order to show
(7.83), let w̃ be the solution of the translated problem (7.73) with initial condition
w̃0 ∈ X2. Notice that L⊗ is dissipative, since

(7.85) (L⊗x, x)X2
=

2∑
m=1

Dm (Lxm, xm)L2[0,1] ≤ 0
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for all x ∈ X2, and fix T > 0. Hence, dropping the explicit reference to the space
in the notation of the inner products, for all 0 ≤ t ≤ T we have

1

2

d

dt
‖w̃(t)‖2X2

=
(

˙̃w(t), w̃(t)
)

≤ (L⊗w̃(t), w̃(t)) + (f(w̃(t) + we), w̃(t))

≤ ‖f(w̃(t) + we)‖X2
‖w̃(t)‖X2

≤ L‖w̃(t)‖2X2
,

where we used the Cauchy-Schwarz inequality and the Lipschitz continuity of f .
By the Gronwall inequality

(7.86) ‖w̃(t)‖2X2
≤ e2Lt‖w̃(0)‖2X2

≤ e2LT ‖w̃(0)‖2X2
,

which implies

‖w̃‖L∞([0,T ],X2) ≤ eLT ‖w̃(0)‖X2
.

�

Let us introduce weaker, local versions of Fréchet differentiability [51, Defi-
nition 2.1] and stability [51, Definitions 2.3 and 2.4].

Definition 7.44. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two Banach spaces and let
F : X → X be a nonlinear operator, such that domF ⊂ Y ⊆ X. Then F
is (Y,X)-Fréchet differentiable at z if there exists a bounded linear operator
df(z) : X → X such that for all h ∈ dom f ,

(7.87) lim
‖h‖Y→0

‖F (z + h)− F (z)− df(z)h‖X
‖h‖X

= 0

Definition 7.45. The equilibrium ze of the nonlinear system (5.1) is

(a) (Y,X)-locally stable if for all ε > 0, there exists δ > 0 such that if
‖z0 − ze‖Y < δ, then ‖z(t)− ze‖X < ε for all t ≥ 0.

(b) (Y,X)-locally exponentially stable if there exists δ, α, β > 0 such that
if ‖z0 − ze‖Y < δ, then ‖z(t)− ze‖X ≤ αe−βt‖z0 − ze‖X for all t ≥ 0.

We are now in a position to formulate the Hilbert-space variants of lemma 7.39
and theorem 7.40, in their (Y,X)-local versions, resembling [51].

Lemma 7.46. Let w̃ denote the solution of (7.73), and let (S̃(t))t≥0 be the

nonlinear semigroup such that w̃(t) = S̃(t)w̃0. Assume further there exists
we ∈ X2 such that f(we) = 0. If for all T > 0

(7.88) lim
‖w̃0‖X∞→0

‖f(w̃ − we)− df(we)w̃‖L∞([0,T ],X2)

‖w̃0‖X2

= 0,

then the nonlinear semigroup (S̃(t))t≥0 is (X∞,X2)-Fréchet differentiable in 0,

and its Fréchet derivative is the strongly continuous semigroup (T̃ (t))t≥0 gener-
ated by L⊗ + df(we), where df(we) is the Gâteaux derivative of L⊗ + f(·+ we).

Proof. See the proof of [51, Lemma 3.1]. �
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Theorem 7.47. Under our working assumptions, and assuming (7.88) ap-
plies, if we which satisfies f(we) = 0 is a globally exponentially stable equilibrium
of the linear problem (7.47) on X2, then it is a (X∞,X2)-locally-exponentially
stable equilibrium of the nonlinear problem (7.44). Conversely, if we is unstable
in the linear system, it is also unstable in the nonlinear system.

Proof. See the proof of theorem 7.40. �

Example 7.48 (Brusselator – Local (X∞,X2) principle of linearized stability).
Starting from eq. (7.77) we have

‖f(w̃ − we)− df(we)w̃‖L∞([0,T ],X2)

(7.89)

= sup
t∈[0,T ]

∥∥∥∥( cw̃2
1(t)w̃2(t) + bw̃2

1(t) + 2cw̃1(t)w̃2(t)
−cw̃2

1(t)w̃2(t)− bw̃2
1(t)− 2cw̃1(t)w̃2(t)

)∥∥∥∥
X2

=
√

2 sup
t∈[0,T ]

∥∥cw̃2
1(t)w̃2(t) + bw̃2

1(t) + 2cw̃1(t)w̃2(t)
∥∥

2

. sup
t∈[0,T ]

{
‖w̃2

1(t)w̃2(t)‖2 + ‖w̃2
1(t)‖2 + ‖w̃1(t)w̃2(t)‖2

}
≤ sup
t∈[0,T ]

{(
‖w̃1(t)‖2∞ + 2‖w̃1(t)‖∞

)
‖w̃2(t)‖2

}
≤ sup
t∈[0,T ]

{
‖w̃(t)‖2X∞ + 2‖w̃(t)‖X∞

}
sup
t∈[0,T ]

‖w̃(t)‖X2

.
(
‖w̃(0)‖2X∞ + 2‖w̃(0)‖X∞

)
‖w̃(0)‖2X2

,

where the last inequality follows from eqs. (7.70) and (7.83) It follows that

lim
‖w̃0‖X∞→0

‖f(w̃ − we)− df(we)w̃‖L∞([0,T ],X2)

‖w̃0‖X2

. lim
‖w̃0‖X∞→0

‖w̃(0)‖2X∞ + 2‖w̃(0)‖X∞ = 0,

which guarantees (X∞,X2)-Fréchet differentiability of the nonlinear semigroup.
Observe that we have only verified the local condition on f , and (7.89) was not
shown to exist when ‖w̃0‖X2

→ 0.

7.5. Conclusion

The whole concept of diffusion-driven instability was revisited in this graphon-
flavored chapter, as dictated by the third research objective. Going all the way
back to the definition of the combinatorial Laplacian, we successively discussed
our assumptions on connectedness and density, the heat equation, and finally
scalar and vector semilinear equations on graphons. The aim was to transpose
the usual spectral methods on graphs to the analysis of the continuum-limit
version of the equations.
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The spectral theorem proved well-suited to our needs within the convenient
framework of dense symmetric graphs. This is both a limitation and an opportu-
nity, in the sense that there is little doubt about the pertinence of generalizing
the results. Extending the study could go along at least two directions. With the
first one, we would seek to answer the type of questions about stability without
the density or symmetry assumptions on the graphs. With the second one, we
rather consider this chapter to be a starting point to address different types of
problems, such as synchronization.

Overall, the shift from graphs to graphons goes with two difficulties. First,
the inherent approximation procedure needs to be validated and second, the
analysis of the continuum model bears new challenges, such as technicalities
around the application of the principle of linear stability. We have applied
recent works such as [51] to overcome that problem and draw conclusions in the
context of our main example featuring polynomial nonlinearity. But overall, a
graph-limit version of all main aspects of the theory of RD equations on graphs,
including the topics discussed in the previous chapters, must still be developed.

Further research opportunities are numerous, and some suggestions are
outlined in the following and final chapter.



CHAPTER 8

Conclusions and perspectives

8.1. A look back

Having reached the point of drawing conclusions, we will not abide by
the linear-nonlinear dichotomy that implies a classification along the lines of
chapters 2 to 4 vs chapters 5 to 7. We will rather present the contributions
and perspectives according to the research questions listed in section 1.4 of the
introduction. As fig. 8.1 shows, to answer these questions we went through the
modeling and analysis of diffusion processes on temporal graphs; we discussed
bifurcations and stability in reaction-diffusion systems; we established the validity
and analyzed the continuum limit of two key evolution equations. The common
ground between these topics is graphs, viewed as the support of a dynamical
system. Graphs are everywhere, in this thesis but also in real life, anchoring our
work with a sense of concreteness.

In what comes next, sections 8.1.1 to 8.1.3, we will summarize our contri-
butions, raise questions and perspectives, and make concluding remarks about
each of the research questions. Eventually in section 8.2, we shape a limited
amount of possible follow-ups, this time with more freedom with respect to the
contents of the individual chapters, before writing the final note.

8.1.1. On the first question

The rationale behind the first question was that dynamical graphs are well
known to affect perceptibly the modeling, the analysis and the properties of
diffusion processes. The same holds true for other variants of dynamical systems
on networks, at least when diffusion is involved. Therefore, it was critical before
attempting to address more complex problems to gain a firm understanding of
the microscopic models of diffusion. This includes the scenario when multiple
timescales coexist in the model, even if this case is largely neglected in the
literature.

8.1.1.1. Summary of the findings

That models with multiple timescales are sparse in the literature is the
reason why at the start of the thesis we have reviewed, and then complemented
the taxonomy of random walk processes on graphs. We have added to the well-
known active walks, appropriate for human or animal trajectories, and passive
walks typically used for virus or information spreading, new combinations of
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2

3

4

5

6

7

Modeling

Bifurcations and stability

Continuum limit

Question 1

Question 2

Question 3

Figure 8.1. The thesis at a glance (bis). The nodes 2 to 7 on the
central part are color-filled according to the type of equation (linear
or nonlinear) of the corresponding chapters. The diagram relates the
research questions to the topics that span the whole thesis.

active and passive processes on temporal networks. We have computed the mean
resting time and the stationary state of the models, and have shown that in
applications such as ranking, the outcome is determined not only by the rules of
motion of the diffusing entity and those for the behavior of the edges, but also
by a comparison between the associated characteristic times.

We have introduced a new model that emerged as the conjunction of the
active node-centric and passive edge-centric walks, that is relevant in situations
when an active agent is constrained by the dynamical properties of the underlying
network. A typical example is the mobility of individuals on public transportation
networks. This new model, despite its fairly simple microscopic rules and despite
choosing memoryless distributions for the random processes involved, was shown
to be stripped of its Markov properties both in time and in trajectory, when the
underlying network has cycles. We followed an analytical approach to capture
and quantify the causes that lie at the basis of this emergence of memory.

8.1.1.2. Perspectives

Despite its richness, even our most evolved model neglects certain aspects of
real-life networks that could lead to interesting research directions. In particular,
the assumption that the network can be described as a stationary process, or that
the number of diffusion entities is conserved, calls for generalizations. Further,
without even opening up the modeling framework to new types of processes, we
believe it is of interest to characterize systematically, through metrics that go
beyond the mean resting times, the random walk models we have introduced.
The larger goal would be to, based on these metrics, design rules to decide
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when certain timescales may be neglected and more basic models with only one
timescale can be used.

In terms of applications, our preference would require us to first extend the
modeling to simple epidemics models, to then try and confront our models that
account for competing timescales due to finite edge activation times, with actual
data.

8.1.1.3. Concluding remark

Overall the modeling and analysis of chapters 2 and 3 helped deepen our
understanding of diffusion on temporal graphs, and provided us with a simple
mechanism for emergence of non-markovianity in random walks. But importantly,
it also laid the groundwork to study reaction-diffusion equations on switched
networks in chapter 6.

8.1.2. On the second question

A significant portion of our study of reaction-diffusion models was centered
on diffusion-driven instabilities. In this respect, at the light of the past chapters,
we dare to say that we had some criticism about Turing’s route to pattern
formation. We have exposed the limits of the reaction-diffusion models that
his idea relates to, and we have divulged any constraints on the emergence of
diffusion-driven instabilities we were aware of. Yet we have also emphasized the
simplicity and elegance of Turing’s mechanism, and brought complements to it
with our study of instabilities in RD on temporal networks.

8.1.2.1. Summary of the findings

Our first result about reaction-diffusion equations was to obtain all the solu-
tions of the associated stationary problem, in a neighborhood of the bifurcation
point from a simple eigenvalue. We have then discussed a generalization of the
basic model, where delay is integrated in the diffusion. We have shown that
instabilities driven by delayed diffusion may occur even in single species systems,
and were able to determine the threshold value of the delay. The models with
delay are varied in nature. Complementing our previous finding, we have given
numerical evidence of the existence of a breathing pattern in a one species RD
system with bistable reaction kinetics and delayed global feedback.

We have also shown that the temporal properties of the underlying graph
could loosen the conditions for diffusion to have a destabilizing effect, when
coupled with the local nonlinear reactions. For this to happen, the evolution of
the graph needs to be sufficiently fast with respect to the local reaction. Based
on a linear stability analysis, we were able to determine the threshold on the
timescale separation. This adds to the effort to align the original, arguably too
simplistic reaction-diffusion model with the complex reality.
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8.1.2.2. Perspectives

The immediate perspectives are mostly theoretical. Our main concern would
be to study more closely the properties of the solutions of a RD equation on a
temporal graph, including the amplitude of their possibly periodic oscillations as
a function of a parameter controlling the timescale of the evolution of the graph.
On an equal footing, we deem necessary to formulate (in)stability results that
would allow to draw conclusions on the nonlinear system, based on the linear
stability analysis.

8.1.2.3. Concluding remark

All the criticism in the world about any given model, even if justified, should
not hide another truth. Models represent some idealistic view, and there is no
point in all too complex refinements. The authors of [71] make a clear case for
Turing’s idea, and embrace its simplicity. Besides that, while they acknowledge
its relevance was debated at length, they review a number of compelling examples
which have gradually reduced much of the skepticism surrounding the model, in
the experimental biologists community. We hereby put to rest our discussion of
Turing instabilities, but recommend the paper to the doubtful or curious reader.

8.1.3. On the third question

What we have achieved on this third theme can be viewed as the natural
next steps with respect to the existing literature in the field, which broadly
speaking addresses the need to study evolution equations on very large graphs
as if they were continuous objects.

8.1.3.1. Summary of the findings

Regarding random walks, there was to best of our knowledge no previous
work on the graph-limit version of the node-centric walk, even though it is an
elementary model on static graphs. This is now covered by our work in the case
of dense graphs, having adopted a Hilbert-space setting and having relied on
semigroup methods. The same cannot be said about problems where diffusion
is driven by the combinatorial Laplacian, in which case the continuum-limit
was validated in fairly difficult problems involving fractional or higher order
derivatives. But the central question of chapter 7, the stability analysis of a fixed
point in a two-variable reaction-diffusion problem, was still open and it made
sense to address it in the context of this work. Our investigation brought us back
to using elements of spectral theory to properly characterize the combinatorial
Laplacian, in a way that allowed to mimic the usual spectral methods on graphs,
and apply them to the graph-limit setting. We have ultimately obtained a
principle of linearized stability for bounded perturbations, in the case of models
with polynomial nonlinearity.
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8.1.3.2. Perspectives

In both chapters related to graph-limit theory, we have limited the discussion
to dense graphs, and have devoted to sparse random graphs only short remarks.
However, sparsity tends to be the rule in real-world networks, and the analysis
we performed should be extended to sparse graphs. There already exists a
substantial body of literature on the subject, including works in the field of
dynamical systems. Repeatedly, it is the theory of Lp-graphons that is relied
on in these works. Yet recently generalizations have emerged and offer more
appropriate ways of dealing with sparse graphs [23, 61, 132]. Therefore we
propose to reconsider existing results and pursue the work we did, exploiting
the novel technical framework.

8.1.3.3. Concluding remark

Even if the results we have obtained seem to be merely the confirmation of
our original intuition, some peculiarities due to the infinite-dimensional nature
of the problems on the continuum have emerged, such as a technical condition
of boundedness for the degree function or the type of nonlinearity allowed in
the model. In our view, these are not simply details, and they are worth the
effort. This being said, our methods may also serve practical purposes, such as
numerical applications that require a discretization of a problem on a continuum
based on a graph structure.

8.2. A look ahead

The research opportunities outlined above may be cataloged as think-deeper
questions directly related to the content of the chapters. Nonetheless there
would be merit in broadening our view to propose wider-looking continuation of
our work. And this implies the need to fundamentally question our approach or
basic assumptions.

8.2.1. Other directions

If we want to better understand dynamics on graphons and similar structures,
it is advisable to take a step back and make sure definitions and concepts
associated to dynamics on graphs have an equivalent on graphons. For instance,
how do we characterize communicability in graphons, what is the graphon
equivalent of shortest path, how do we account for long-range interactions, what
is the Mellin or Laplace transform of a graphon [39]? Some pages of the book
on the correspondence from graphs to graphons have been written already, but
there is still some challenging way to go before it is complete. And there is
interest to be expected from a vivid community producing works such as [135],
where PageRank is studied in the continuum-limit of directed graphs.

If we want to follow through with the idea that graphs are not just mathe-
matical representations, but that they may connect nodes that correspond to
actual locations, as is the case in transportation networks for example, we may
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have to give up the assumption that a graph is merely a discrete object. We
have to start taking into account the length of the edges and associated metrics,
turning each edge of the graph into a continuum. This is required in order to
be able to bring into the modeling the time it takes for the diffusing entities
to move from one node to the other. Our evolution equations would then take
the form of boundary value problems on graphs, with imposed conditions on
the ends of the edges. This would achieve a migration towards the world of
dynamics on metric graphs in general, and the related topic of quantum random
walks in particular, which by the way is a relatively unexplored and indubitably
promising field of research.

If we want to gain more insight in the long-term behavior of reaction-diffusion
systems and in the patterns they generate, we have to move beyond questions
exclusively linked to stability. The theory of RD on a continuum is well-developed,
more than it is for networks. On graphs, interesting results have been obtained
using for instance weakly nonlinear approaches. But if we are willing to use
less-standard operator-theoretic methods, we could exploit the framework of the
Koopman operator, which would have us trade in a nonlinear finite-dimensional
problem, for a linear though infinite-dimensional version [79, 90].

8.2.2. Final note

“My first feeling was that there was no
way to continue. Writing isn’t like math;
in math, two plus two always equals four
no matter what your mood is like. With
writing, the way you feel changes every-
thing.”
Stephenie Meyer, about her book The
Midnight Sun

Overall, the questions we looked at originate in a few basic facts. Namely,
some networks inherently possess temporal properties, and hence possibly affect
in major ways the behavior of a hosted process. If there is a processing stage in a
dynamical system, delays will presumably emerge and should be accounted for in
the modeling. Diffusion, when interacting with nonlinear reactions, may have a
destabilizing effect, instead of smoothing properties. Patterns and differentiation
of nodes may be the result of a self-organized process. And graphs may be
extremely large, with seemingly unbounded number of nodes, demanding new
mathematical formulations.

A core idea throughout this dissertation is that the underlying graph is
definitely not a mere discretization of the domain of the usual equation on a
continuum. Dynamical systems on networks have numerous specificities and due
to its complexity, the graph may have a dramatic impact on the methods for
solving the equations and on the solutions themselves. This interplay helped
define in advance what the first steps of this thesis would be, and was gradually
uncovered with some new findings, questions and perspectives along the way.



APPENDIX A

Spectral measures

Linked to the spectral theorem in the main body (theorem 7.8) are some
general concepts of spectral theory of operators. We introduce them in this
appendix because they are required in a first encounter of the theorem, but
also needed in practical applications. For details, we advise [115] as a reference
volume on the matter from which the following material is taken.

A.1. Decomposition of a measure

Consider µ a measure on X. The set of pure points of µ is written Pµ =
{x ∈ X|µ({x}) > 0}. Define

(A.1) µpp(X) =
∑

x∈Pµ∩X
µ({x})

and µcont = µ − µpp. Then we have µcont({p}) = 0 for all p ∈ Pµ, and the
unique decomposition

(A.2) µ = µpp + µcont.

The measure µcont can be further decomposed as µcont = µac + µsing, where
µac is absolutely continuous with respect the Lebesgue measure. That means
dµac = fdx for some locally L1 function, where dx is the Lebesgue measure, and
where µsing is singular relative to Lebesgue measure, i.e. µsing is continuous and
such that µsing(S) = 0 for some set S such that R \ S has Lebesgue measure
zero. Ultimately, any measure µ on R can be decomposed uniquely as

(A.3) µ = µpp + µac + µsing

and the three are mutually singular. It follows that

(A.4) L2(R, dµ) = L2(R, dµpp)⊕ L2(R, dµac)⊕ L2(R, dµsing).
We are now ready to introduce spectral measures, which make the link with
spectral theory, and play a key role in the spectral theorem.

A.2. Spectral measures

In order to be able to define spectral measures, one needs to give a meaning
to f(A), where f is a continuous function and A acts on a Hilbert space H. There
comes the continuous functional calculus, which essentially defines a unique map

(A.5) φ : C(σ(A))→ L(H)
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associated with a natural set of properties. For instance, if P (x) =
∑N
k=1 akx

k

is a polynomial, then P (A) =
∑N
k=1 akA

k, where powers of A are understood in
the sense of composition of operators. Moreover, σ(P (A)) = {P (λ)|λ ∈ σ(A)}.
We will simply write φ(f) as f(A).

Now let us fix the operator A and ψ ∈ H. Then

(A.6) f → (ψ, f(A)ψ)

is a positive linear functional1 on C(σ(A)). The Riesz-Markov theorem2 guaran-
tees the existence of µψ, a unique spectral measure associated with ψ with
support on σ(A), such that

(A.7) (ψ, f(A)ψ) =

∫
σ(A)

f(λ)dµψ.

Using spectral measures, one can extend the continuous functional calculus to
bounded Borel functions on R.

A.3. Towards the spectral theorem

Two lemmas combined, both of which relying directly on spectral measures,
yield a direct proof of the spectral theorem, and importantly show what change
of measures are needed to make it work. These lemmas require the notions of
cyclic vectors and unitary operators.

Definition A.1 (Cyclic vector). A vector ψ ∈ H is a cyclic vector for A if finite

linear combinations of the elements of
{
Akψ

}∞
k=0

are dense in H.

Definition A.2 (Isomorphic spaces and unitary operator). Two Hilbert spaces
H1 and H2 are isomorphic is there exists a linear operator U : H1 → H2 such
that (Ux,Uy)H2

= (x, y)H1
, for all x, y ∈ H1. The operator U is then called

unitary.

As an important result of the definition, observe that unitary operators
are norm preserving. Further note that cyclic vectors a neither unique, nor do
they always exist, but when it is the case, they allow for the diagonalization of
operators, as the following lemma shows.

Lemma A.3. Let A be a bounded self-adjoint operator with cyclic vector ψ.
Then, there exists a unique unitary operator U : H → L2 (σ(A), dµψ) such that

(A.8) UAU−1f(λ) = λf(λ).

The equality is in the sense of the elements of L2 (σ(A), dµψ), meaning for
instance equality between sequences, or between vectors.

1A positive linear functional on C(X) is a linear functional ` such that `(f) ≥ 0 for all f
with f ≥ 0 pointwise.

2This theorem essentially identifies a positive linear functional ` on C(X) with a measure
µ on X such that `(f) =

∫
X fdµ.
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f ∈ C(σ(A)) λf ∈ C(σ(A))

Aφ(f)ψφ(f)ψ = f(A)ψ

Mλ

A

U U−1

Figure A.1. Illustration of lemma A.3. The operator U of the lemma
is essentially the inverse of φ, but it is dependent on the choice of ψ,
which is not the case of φ. If ψ is cyclic, then clo {f(A)ψ|f ∈ C(σ(A))}
is the whole space. Here Mλ is the multiplication operator by the
function g(λ) = λ.

The above lemma can only be applied when A possesses a cyclic vector,
as figure A.1 illustrates. But actually, it will be useful in general, for when
combined with the next lemma it gives the spectral theorem.

Lemma A.4. Let A be a self-adjoint operator on a separable Hilbert space H.
The there exists a direct sum decomposition H = ⊕Nn=1Hn with N = 1, 2, . . . or
∞ such that

(a) A leaves each Hn invariant, meaning that if v ∈ Hn, then Av ∈ Hn;
(b) for each n, there is a ψn ∈ Hn that is cyclic for the restriction A � Hn

of A to Hn, that is,

(A.9) Hn = clo {f(A)ψn|f ∈ C(σ(A))} .

The spectral theorem and a direct corollary are stated on page 146, and
illustrated by examples.





APPENDIX B

Decompositions and bounds on
the spectrum

This appendix details different decompositions of the spectrum used in
chapters of the main text. They are also needed to complement the spectral
measures of appendix A as a prerequisite to the application of the spectral
theorem. We further introduce a straightforward generalization of the spectral
abscissa of matrices to linear operators, and make the link with the growth
bound of the generator of a strongly continuous semigroup. The main reference
for this appendix is again [115], and we rely on [38] for the aspects related to
semigroups.

B.1. Decomposition based on spectral measures

A convention chosen by some authors is to define the the discrete spectrum
as the set of λ ∈ σ(A) such that λI −A is not injective; the residual spectrum
as the set of λ ∈ σ(A) such that λI −A is injective but not surjective, and the
range of λI − A is not dense; the continuous spectrum as the set of λ ∈ σ(A)
such that λI − A is injective but not surjective, and the range of λI − A is
dense. Then λ is in the continuous spectrum if and only if there exists v such
that ||v|| = 1, and ||Av − λv|| is arbitrarily small.

In this work we use a slightly different classification, that is based on spectral
measures and that we summarize here, focusing on a Hilbert-space framework.
Building on the decomposition of L2(R, dµ) given by (A.4), we first introduce a
decomposition of the Hilbert space.

Definition B.1. Let A be a bounded self-adjoint operator on H. Let Hpp =
{ψ|µψ is pure point}, Hac = {ψ|µψ is absolutely continuous}, and let Hsing =
{ψ|µψ is continuous singular}.

The next theorem is an important result [115, Theorem VII.4].

Theorem B.2. H = Hpp ⊕ Hac ⊕ Hsing, and each of these subspaces is
invariant under A. Moreover, A � Hpp has a complete set of eigenvectors,
A � Hac has only absolutely continuous spectral measures and A � Hsing has only
continuous singular spectral measures.

This following sets offer a way of partitioning the spectrum as follows:
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Definition B.3. The sets defined by

σpp(A) = {λ is an eigenvalue of A}
σcont(A) = σ(A � Hcont ≡ Hsing ⊕Hac)

σac(A) = σ(A � Hac)

σsing(A) = σ(A � Hsing)

are the pure point, continuous, absolutely continuous, and (continuous) singular
spectrum respectively.

Remark B.4. Since σpp was not defined as σ(A � Hpp) but rather as the set of
eigenvalues, it may happen that σ 6= σpp ∪ σac ∪ σsing. But cloσpp(A) = σ(A �
Hpp) and we have:

σcont(A) = σac(A) ∪ σsing(A),(B.1)

σ(A) = cloσpp(A) ∪ σcont(A).(B.2)

With the definitions used here, the singular spectrum can have nonzero
Lebesgue measure. Moreover, the definition of the continuous spectrum does not
agree with other author’s choice to define the continuous spectrum as the the
part of the spectrum which is disjoint from the point spectrum and the residual
spectrum, as mentioned above.

B.2. Decomposition into the discrete and the essential
spectrum

Another useful decomposition of the spectrum of an operator A into two
disjoint subsets is given by the discrete spectrum σdisc(A) and the essential
spectrum σess(A). These two subsets can be defined in terms of the dimensions
of so-called spectral projections. We give some details, but we point to the fact
that it is safe to go directly to theorems B.9 and B.10, which provide the needed
characterizations of these subsets.

The functional calculus allows to define functions of an operator, f → f(A).
Specializing to the case of indicator functions leads to spectral projections.

Definition B.5 (Spectral projection). Let A be a bounded self-adjoint operator
and Ω a Borel set of R. PΩ ≡ χΩ(A) ia called a spectral projection of A.

Remark B.6. The family of spectral projections PΩ of an operator enjoy
properties that are evocative of a measure. One can define based on such family
a projection-valued measure (p.v.m.). If PΩ is a p.v.m., then for any φ, (φ, PΩφ)
is an ordinary measure. One can formulate a p.v.m. form of the spectral theorem
[115, page 235].

The reason to introduce spectral projections resides in their connection with
the spectrum.

Proposition B.7. λ ∈ σ(A) if and only if P(λ−ε,λ+ε)(A) 6= 0 for any ε > 0.
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Definition B.8 (Essential spectrum, discrete spectrum). λ is in the essential
spectrum of A, denoted λ ∈ σess(A), if and only if P(λ−ε,λ+ε)(A) is infinite
dimensional for all ε > 0.
If to the contrary λ ∈ σ(A) but P(λ−ε,λ+ε)(A) is finite dimensional for some
ε > 0, then λ ∈ σdisc(A), the discrete spectrum of A.

Theorem B.9 (Characterization of the discrete spectrum). λ ∈ σdisc(A) if
and only if both of the following are true:

(a) λ is an isolated point of σ(A), meaning that for some ε > 0, (λ− ε, λ+
ε) ∩ σ(A) = {λ}.

(b) λ is an eigenvalue of finite multiplicity, meaning that {ψ|Aψ = λψ} is
finite-dimensional.

Theorem B.10 (Characterization of the essential spectrum). λ ∈ σess(A)
if and only if at least one of the following holds:

(a) λ ∈ σcont = σac(A) ∪ σsing(A)
(b) λ is a limit point of σpp(A)
(c) λ is an eigenvalue of infinite multiplicity.

B.3. Bounds

This section relates the growth bound of semigroup and the spectral bound
of its generator, which corresponds with the spectral abscissa of matrices. For
every strongly continuous semigroup (T (t))t≥0, there exists w ∈ R an M > 1
such that ‖T (t)‖ ≤Mewt for all t ≥ 0. Hence, we have the following definition.

Definition B.11 (Growth bound). The growth bound of a strongly continuous
semigroup (T (t))t≥0 is defined by

ω0 := inf
{
ω ∈ R : ∃Mω > 1 such that ‖T (t)‖ ≤Mωeωt, ∀t ≥ 0.

}
Definition B.12 (Spectral bound). The spectral bound of a linear operator A
is defined by

s(A) := sup {Reλ : λ ∈ σ(A)} .
Theorem B.13. For a strongly continuous semigroup (T (t))t≥0 with gener-

ator A, it holds that −∞ ≤ s(A) ≤ ω0 ≤ +∞.

This result comes from [38, Corollary 1.13]. Note that the spectral bound
and the growth bound of the generator of a uniformly continuous semigroup are
equal, and one says that the spectral determined growth conditions hold. This
will repeatedly be used in chapters 4 and 7.
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