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1 Introduction

The classic approach to study a dynamical system described
by a map T : X — X is based on the Poincaré represen-
tation, which focuses on orbits n — T"(§) (where § € X
is an initial condition). An alternative approach is to lift
the system to a functional space by focusing on observ-
ables f : X — C which evolve through the Koopman op-
erator J f = foT. This alternative representation captures
entirely the dynamics of the system through a linear (but
infinite-dimensional) operator. This framework also allows
data-driven techniques such as (Extended) Dynamic Mode
Decomposition (EDMD), see [1] for review.

In practice, EDMD techniques are based on a finite-
dimensional representation of the operator and require to
choose a finite set of dictionary functions [2]. This choice
is crucial, but has to be made a priori. Recently Dictionary
learning methods for EDMD have been proposed to provide
a set of functions that yields the best representation of the
Koopman operator. In particular, [2] have considered a feed-
forward network for this purpose. In this work, we propose
to use a reservoir computer [3, 4] instead of a feed-forward
network. This allows to train the dictionary with a dynam-
ical network rather than with a static one. This approach
can be used for spectral analysis, prediction, and possibly
data-driven control.

2 Reservoir computer

Although conceptually simple, reservoir computing is pow-
erful enough to compete with other algorithms on hard
tasks such as channel equalization and phoneme recogni-
tion, amongst others (see [5, 6] for reviews). Reservoir com-
puting is implemented by a recurrent neural network with
fixed connections called reservoir computer. The internal
states of the network are driven by a time dependent input,
which is generated by the dynamical system of interest. The
reservoir provides an output which is obtained through a lin-
ear combination of the internal states of the network. The
weights of this linear combination are trained to minimize
the least squares error between the output and a desired tar-
get, which is the state of the dynamical system at the next
time step, in our case.

3 Dictionary learning in EDMD
using a reservoir computer

Our approach is to combine the EDMD method with a reser-
voir computer. In contrast to the method proposed in [2], the
optimization parameters are only the output weights W,,,;.
The optimization problem is written as
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where S(¢) is the vector of internal states of the reservoir
at time n, K is the finite-dimensional approximation of the
Koopman operator and A is a Tikhonov regularizer. The
norm ||-||  is the Frobenius norm.

The optimization is solved with two alternating steps:

1. Fix W,,, and optimize K using the least squares
method ;

2. Fix K and optimize W,, to minimize the norm
of WouS(n+ 1) — KW,,,S(n) which is reduced to a
Sylvester equation of the form AX +XB = C.

We will report on preliminary results and illustrate the meth-
ods in the context of spectral analysis and prediction.
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