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Abstract 

 

The thin oxide layers forming on the metal surfaces of metals determine their interactions with the 

environment and have a strong influence on the materials properties such as corrosion resistance. 

Such oxide layers typically have a thickness in the range of a few nanometres, which is a challenge for 

the analysis of their chemical nature and structure. To characterize such materials and surfaces, XPS 

using depth profile sputtering is a sensitive and powerful technique. However, it is rather elaborate 

and raises the risk of changing the nature of the surface layer during the analysis process. This work 

reports on a protocol for a faster approach to depth profile X-Ray photoelectron spectroscopy (XPS) 

analysis to obtain accurate and reproducible information on the oxide layer structure by using the 

snapshot mode of the XPS instrument. This protocol is applied to three stainless steels differing by 

their chemical composition: FeCr AISI 430, FeCrNi AISI 304 and the chemically more complex FeCrNiMo 

AISI 316. The respective oxide layer structures observed using this methodology are consistent with 

literature data. In addition, the structures have been confirmed using non-destructive techniques such 

as angle-resolved XPS (AR-XPS) and Hard XPS (HAXPES). Finally, the analysis protocol has been applied 
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to obtain information on the evolution of the surface chemistry of those stainless steel grades resulting 

from mechanical polishing and subsequent aging in contact with atmosphere.  

 

Keywords: XPS; Evolution with time; fast depth profile; Oxide layer structure; stainless steel; polishing 

 

I. Introduction 

 

Today, stainless steels are widely used materials in various applications such as architecture, 

construction, automotive, transportation, medical, energy and heavy industries [1]. The overall world 

production of stainless steel in 2017 was 48 million tons with a 5% yearly increase [2]. The wide use of 

such materials is due to their excellent physical and mechanical properties, versatility and corrosion 

resistance [3]. Corrosion resistance stems from the presence of a chromium rich oxide layer on the 

surface acting as a diffusion barrier for iron and chromium ions [4]. The oxide layers of stainless steels 

are only a few nanometers thin [5,6] and their composition and structure strongly depend on the bulk 

composition and the elaboration processes [7–9]. Therefore, the formation and structure of the oxide 

layers as well as the role of the alloying elements have to be investigated to better understand the 

corrosion resistance of stainless steels. Coarse-grinded surfaces and polishing of different grades are 

of interest for applications. 

In the past decades, several studies have been devoted to the knowledge of the stainless steels oxide 

layers mostly using surface analysis techniques: ISS (Ion-Scattering Spectrometry), XPS (X-Ray 

Photoelectron Spectroscopy), AR-XPS (Angle-Resolved X-ray Photoelectron Spectroscopy), HAX-PES 

(High energy X-ray photoelectron spectroscopy), HAR-XPS (High energy Angle-Resolved X-ray 

Photoelectron Spectroscopy) and AES (Auger Electron Spectroscopy) [5,7,10–12]. These techniques 

can be classified into non-destructive (AR-XPS, HAX-PES and HAR-XPS) and destructive ones (AES and 

XPS depth profile). The later can lead to preferential etchings [8,12]. In the case of stainless steels, both 

types of techniques provide generally similar results [6]. TEM and SEM studies have proved that 

stainless steels are quite homogenous in term of the elements lateral distribution [13]. Accordingly, 

there will be no negative consequence due to the large analysis spot area of the XPS.  The various 

technical approaches proposed in the literature present drawbacks such as (i) costly equipment (HAX-

PES), (ii) analysis limited to extreme surface features (AR-XPS, XPS, AES) or (iii) time-consuming analysis 

in the case of  AES and XPS depth profile using the scan acquisition mode.  
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Many details about the oxide layer structure of stainless steels have been reported in the literature 

using these approaches [5–8,10–12]. Features of the oxide layer depend on the presence of some 

alloying elements like nickel and molybdenum. Three main observations can be highlighted from the 

literature about the natively formed oxide layer onto different steel surfaces: (i) the presence of a layer 

rich in chromium oxide beneath a surface layer rich in iron oxide. (ii) For nickel-containing stainless 

steels, the presence of a layer rich in metallic nickel between the oxide layer and the bulk. (iii) For the 

molybdenum containing stainless steels, there is a lack of agreement about the role of molybdenum 

in the oxide layer.  

There is a consensus in the literature about the presence of at least two layers in the oxide structure 

natively formed on steel surfaces, with an external iron-rich layer and an internal chromium-rich one. 

This result has been confirmed using non-destructive methods such as HAXPES [14], AR-XPS [14], 

inelastic electrons background analysis [15], ion scattering spectroscopy [6,16] and analysis of the XPS 

signal [8,11,17].  Confirmation of the structure has also been obtained using comparison between XPS 

and SXPS (Soft-XPS, as the use of various X-ray energies allows the emission, for the same metal, of 

photoelectrons with various energies and thus various mean free paths) [18] on different steels 

including AISI 316 and 304. Similar results have also been obtained using destructive methods like AES 

and XPS depth profile [5,7,19–21]. The precise nature of this layer is still to be investigated. Some 

authors suggest a “chromium rich” layer [5,16,20] and others clearly point to a a Cr2O3 layer 

[15,18,19,21]. The formation of this chromium-rich layer is usually interpreted as a consequence of 

easier iron ions diffusion or migration to the surface [5,15]. However, as stated by Calinski et al. [16], 

the oxide layers structure also depends on the preferential dissolution and diffusion of iron and/or 

chromium in the electrolytes. This can account for the fact that in some conditions, the oxide layer 

consists only of chromium oxide. It is worth noticing that a trilayer model of the oxide layer, with an 

intermediate iron/chromium oxide layer has been suggested by Lince [18].  

For nickel-containing stainless steels, the presence of an accumulation of metallic nickel between the 

external oxide layer and the bulk has been widely reported in the literature. This has been 

demonstrated by using destructive methods of analysis such as AES and XPS depth profile [5,7,21–23], 

as well as by non-destructive methods such as electron background analysis [15] AR-XPS and HAXPES 

[14] or HIKPES (High Kinetic Energy Photo Electron Spectroscopy) [24]. The reason usually given for this 

accumulation is the lower oxidation ability of nickel compared to chromium and iron. The absence of 

detectable nickel oxide in the oxide layer is also reported [5,7,14,15,21–24]. This absence of oxide can 

originate from a higher solubility in most electrolytes of the nickel ions compared to iron and chromium 

ions.  
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In the case of molybdenum containing stainless steels, some authors report the presence of 

molybdenum oxide throughout all the oxide layer (Fredrikson [14], on AISI 316) while others point to 

the absence of molybdenum in the oxide layer [7,12,25]. A similar observation can be made concerning 

the presence of a molybdenum accumulation beneath the oxide layer [19,25]. Interestingly, in a 

stainless steel (Duplex 2205) containing molybdenum nickel accumulation is not observed beneath the 

oxide layer [26]. However, an accumulation of nickel and molybdenum beneath the oxide layer is 

observed on other steels. Its presence is related to the potential at which the samples have been 

polarized [27]. Hence, more investigations are needed since the oxide layer of these complex stainless 

steels appears strongly dependent on the analysis conditions. 

Concerning the stability of the oxide layers, Olsson et al. [5] stated that the small thickness of  the oxide 

layer makes it a fast-adaptating system in equilibrium with its environment. Accordingly, some authors 

[6,8, 28] pay attention to the preparation time of their samples and the time delay until the analysis. 

The influence of preparation conditions (time, polarization…) has already been reported [7,8] where 

the process appears to take hours. In order to further clarify this point, a study of the influence of the 

resting time after mechanical polishing has been considered in this work.  

In this contribution, several points are developed: (i) a methodology for a fast XPS analysis of thin oxide 

layers on stainless steels based on a fast depth profiling, (ii) a mathematical treatment to determine 

the oxide layer structure,  (iii) a morphology study of the oxide layer of the as-received and 

mechanically polished stainless steel samples (iv) their evolution with atmosphere exposure time and 

(v) a comparison of the obtained structures with those acquired using non-destructives methods (AR-

XPS and HAXPES).  

 

II. Experimental 

II.1. Preparation of reference samples for etching rate calibration 

Pure Cr and Fe samples are analyzed, during etching with Ar ions, in order to remove impurities and to 

set up a mathematical and physically meaningful fit for these elements 

In order to calibrate chromium and iron etching speeds, reference samples (Crref and Feref) have been 

prepared by plasma vapor deposition (Quorum Q150T ES) using 99.95 % pure chromium (Neyco) and 

99.95 % pure iron (Ted Pella) sources. A quartz-crystal microbalance is coupled with the PVD system, 

to measure the thickness of the sputtered materials. On a mirror polished AISI 316L substrate, 

successive layers of chromium (or iron) with different thicknesses (5, 10 and 15 nm) have been 

elaborated by sputtering. Between the formation steps of each layer, a spontaneous chromium (or 
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iron) oxide layer forms by contact with the atmosphere during 60 seconds. The Cr and Fe standards 

are analysed by depth-profile XPS to measure the etching speed of these elements. 

II.2. Modification of the native oxide layer 

Three commercial stainless steels (AISI 304, 316 and 430) are studied to assess their oxide layer 

structure. Their bulk composition (AISI norms) is provided in Table 1. Those steels have been selected 

for their increasing composition complexity. As received samples exhibit a polished and a grinded side 

(Figure 1). The grinded side, referred to “as-received”,  is the one often used in industrial applications 

requiring non–polished stainless steels and consequently will be the one of interest in this work. The 

grinded surface presents a repetitive linear structuration along the grinding axis. Therefore, two sets 

of roughness parameters are measured per sample: one parallel and the other perpendicular to the 

grinding axis (Table 1). A Mitutoyo SJ-210 apparatus is used to measure the roughness parameter (Ra) 

according to the ISO-4288 norm. An arithmetic mean is calculated based on twelve measurements of 

Ra performed on each sample, both in a parallel and perpendicular directions with respect to the 

grinding axis. 

 

 

 

 

Element AISI 430 AISI 304 AISI 316 

    

Fe 81.7 to 82.7 68.4 to 72.1 62.8 to 69.6 
Cr 16.3 to 17.3 18.4 to 20.2 17.7 to 19.5 
Ni - 7.4 to 9.4 9.5 to 12.1 

Mo - - 1.2 to 1.4 
Mn 1.0 < 2.0 2.0 

Ra (µm) parallel 0.258 ± 0.080 0.197 ± 0.067 0.529 ± 0.142 
Ra (µm) perpendicular 0.575 ± 0.025 0.774 ± 0.093 0.919 ± 0.049 

 

Table 1: AISI norm bulk composition (atomic percentages) and roughness (parallel and perpendicular to the grinding axis) 
for the three studied stainless steels 

In the second part of the work, the grinded sides of AISI 304, 316 and 430 samples are mechanically 

polished using a Buehler Ecomet 300. They are first polished using silicon carbide papers (180, 300, 

800 and 1200 granulometry grid) and milliQ water as lubricant, then with commercial water-based 

suspensions of diamond (9, 3 and 1 µm). At the end of the polishing steps, the samples exhibit a 

uniform and mirror-like appearance without visible defects or scratches. After polishing, the samples 

Figure 1: A representative as-received sample (2 cm in length), with 
polished  (left) and a grinded side (right) 
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are thoroughly washed with ethanol, sonicated 15 min in ethanol and dried in a nitrogen flow. The 

measured roughness (Ra) after polishing with the diamond suspension is less than 0.010 microns, 

which corresponds to the detection limit of the Mitutoyo SJ-210 profilometer.  

Native oxide layer aging of the grinded sides of these stainless steels has also been studied. Technically, 

samples are polished down to mirror appearance and analysed just after the polishing steps, then 

stored in contact with air during 24, 48, 72, 210 and 384 hours after the last polishing step prior to XPS 

surface and depth profile analyses. 

II.3. XPS surface and depth-profile analyses 

XPS surface and depth profile analyses are performed with a Thermo Scientific K-Alpha spectrometer 

(1486.61 eV X-Ray source). Depth profiling is performed by Ar+ (500 eV kinetic energy) sputtering. The 

pressure in the analysis chamber is ~ 5 x 10-8 mbar. The sputtered surface area is 1 mm2 and the 

analyzed area (200 x 150 µm) is of elliptic form. The depth profile analysis consists in 20 sputtering 

steps of 1 s followed by 10 sputtering steps of 5 s. After each sputtering step, a snapshot acquisition 

for each element was performed [28]. In this acquisition mode, the photoelectrons are recorded in 

parallel with 128 channeltrons, without scanning in an energy range. This acquisition mode is fast, but 

must be used with a high pass energy (150 eV), which decreases the resolution in energy. In order to 

reduce surface effects and be more bulk sensitive, photoelectrons are collected at 0° with respect to 

the surface normal using a hemispherical analyser. The Smart Background option of the Thermo 

Avantage software is used to measure the peaks area and is based on the Shirley Background with the 

additional constraint that the background is not allowed to have a higher intensity than the actual data 

for any point in the analysed region [29]. 

II.4. Complementary analyses by non-destructive methods  

Both angle-resolved XPS (AR-XPS) and Hard XPS (HAXPES) have been used as non-destructive methods 

to study the oxide layer structures and thereby validate our XPS depth profile analyses. 

AR-XPS measurements were performed with a Thermo Scientific K-alpha spectrometer, recording the 

data while tilting the substrate from 0.0 to 80.0° by 4.2° steps. Prior to AR-XPS measurement, a soft 

etching using Ar+ beam (500 eV) on a large sputtering surface (4 mm2) has been used to remove the 

carbonaceous impurities without damaging the oxide layer. The snapshot acquisition mode was used, 

as explained above. 

HAXPES measurements were performed at the Galaxies beamline, Soleil Synchrotron, using a EW4000 

Scienta hemispherical electron analyzer oriented at 90° with respect to the incident photon beam and 

collinear to the horizontal polarization axis [30,31]. The usual pressure inside the analysis chamber is 
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in the range of 1 to 3 x 10-9 mbar. The beamline energy is tuned by adjusting the Bragg angle of the 

cryogenically cooled double-crystal monochromator (DCM). For the present experiment, the first order 

reflexion of the Si(111) crystal of the DCM was used for the 2.3keV photon energy, whereas the third 

order reflexion of the DCM was used to select the 6.9keV photon energy. The corresponding 

resolutions are 200meV and 150meV, respectively. The photon beam grazing incidence is 5° with 

respect to the surface. Energy calibration was performed using the Au4f7/2 spectral line at 84.0 eV 

binding energy. The HAXPES data were analyzed using the Casa software, a Shirley background and the 

common Scofield sensitivity factors. 

 

II.5: Determination of the oxide layer structure based on the Strohmeier equation 

Strohmeier [32] established a formula to determine the thickness of an oxide layer using the metallic 

and oxide components of the XPS signal, 

𝑑 =  𝜆𝑜 ∗ sin 𝜃 ∗ ln [
𝑁𝑚 ∗ 𝜆𝑚 ∗ 𝐼𝑜

𝑁𝑜 ∗ 𝜆𝑜 ∗ 𝐼𝑚
+ 1] 

In this equation, d is the oxide layer thickness (Å), No and Nm the densities of the metal atoms in the 

oxide and metallic states, respectively, θ the electron take-off angle (with respect to the sample 

surface), Io and Im  the peak area of the oxide and the metal, respectively, and λo and λm the inelastic 

mean free path (IMFP) of electrons in the oxide and the metal, respectively.  

The Strohmeier formula implies a homogeneous oxide layer and requires the decomposition of the 

XPS signal into the metallic and oxide components. Using a similar approach, Lince et al. [18] obtained 

different oxide layers thickness for the same sample depending on the use of iron or chromium signal. 

They interpreted this as the result of a depletion in iron at the vicinity of the oxide-metal interface.  

In this paper, we propose a new application of the Strohmeier formula adapted to depth profiles. The 

novelty of our approach is to apply the formula to each step of the depth profiling. The measured 

(residual) thickness d(t) is expected to be related to the initial thickness d0 and to the etching rate εR(t) 

as expressed in the equation below: 

𝑑(𝑡) =  𝑑0 − ∫ 𝜀𝑅(𝑡)𝑑𝑡 

 In the presence of a uniform oxide layer, the etching rate is constant hence leading to a linear decrease 

of the calculated thickness, the slope corresponding to the etching speed. In the case of a bilayered 

oxide, the plot of residual oxide thickness versus etching time should present two different consecutive 
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slopes, giving information on the change in composition and the respective thickness of each layer of 

the oxide.  

 

III. Results 

III.1. Standard materials characterization 

III.1.1. Fitting parameters for the iron signal 

To establish a table with fitting parameters for the Fe2p3/2 signal, a mirror-like polished pure iron 

sample was analysed by depth-profile XPS. The depth profile evolution of the C1s, Fe2p and O1s peaks 

is presented in Figure 2.  

 

Figure 2: Evolution of the amount of carbon, oxygen and iron contents during the depth profiling of mirror-polished pure 
iron surface (a) and the evolution of the Fe2p3/2 (b), C1s (c) and O1s (d) spectra.  

Carbon is only detected at the extreme surface of the sample. The oxygen content swiftly decreases 

with etching time even if some traces of oxygen can still be detected after 70 seconds of etching. This 

presence of oxygen at larger depths is possibly originating from the edge of the sputtering site or from 

the residual roughness of the sample, which protects some oxygenated species from the etching.  
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From the evolution of the O1s spectra (figure 2), it is clear that on the two first levels of the depth 

profile, the O1s peak at 533.3 eV corresponds to oxygen linked to carbon whose components appear 

at 286.0 and 289.0 eV in the C1s spectra [33]. After the removal of carbon by etching, the residual 

oxygen components at 530.2 and 531.3 eV only correspond to iron oxides and hydroxides, respectively 

[34]. 

The components corresponding to oxidized forms of iron are determined on the basis of the Fe2p3/2 

signal before etching, using parameters from the literature [35–37] and adapted to the lower 

resolution of our instrument and to the use of a snapshot acquisition mode. Consequently, the 

components of the multiplet corresponding to oxidized iron cannot be distinguished. In addition, the 

overlap of the various components of the different oxidized species makes the fitting almost 

impossible [37]. The only distinguishable feature is the first component of the Fe (II) multiplet, because 

it has a significantly different binding energy than both Fe (0) and Fe (III). The fitting parameters for 

Fe2p3/2 signal used in the present work are shown on Table 3. Since almost no oxygen is detected at 

the last stage of the depth profile, the asymmetric components of the metallic Fe (Fe2p3/2) signal is 

the only one detected and which allows the extraction of their asymmetry parameters.  

Component Binding energy (eV) FWHM (eV) 

Metallic Fe, 1st component 706.6 1.2 

Metallic Fe, 2nd component 707.4 1.2 

Fe (II) oxide, 1st component 708.4 1.5 

Fe (II) and Fe (III) mixed, 1st component 709.8 2.0 

Fe (II) and Fe (III) mixed, 2nd component 711.3 2.0 

Fe (II) and Fe (III) mixed, 3rd component 712.5 2.0 

Fe (II) and Fe (III) mixed, 4th component 714.2 2.0 

Siderite (FeCO3) 715.6 2.0 

Table 2: Fitting parameters used for the Fe2p3/2 signal  

By using these fitting parameters  for the depth profile realized on pure iron, the amount of oxygen 

(from the O1s peak) matches the amount of oxygen linked to iron (oxidized iron from the Fe2p3/2 

peak), as shown in figure 3.  Jo
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Figure 3: Evolution of the oxygen content calculated from the O1s and Fe2p3/2 peaks  

 

III.1.2. Fitting parameters for the chromium signal 

Following the same procedure as for iron, the fitting parameters for Cr2p3/2 (Table 4) are established 

by analyzing pure chromium layers. For chromium (III), the corresponding oxide and hydroxide species 

exhibit two components which appear as overlapping multiplets (figure 1 in [37]). The first component 

of the oxide peak is characterized by a lower binding energy than the one corresponding to the 

hydroxide peak and therefore can be used to estimate the amount of Cr (III) oxide and consequently 

that of Cr (III) hydroxide. Chromium (VI), in oxide or hydroxide forms, arises at a higher binding energy 

and appears as a single peak.   

Cr 2p3/2 components   Binding energy (eV) FWHM (eV) 

Metallic Cr 574.3 1.5 

Cr (III) oxide, first component 575.8 2.0 

Cr (III) hydroxide and other components of Cr (III) oxide  577.4 2.0 

Cr (VI) oxide 579.5 2.0 

Table 3: Fit parameters used for Cr2p3/2 
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III.1.3. Etching speed calibration 

Bilayered (5 and 10 nm) and monolayered (15 nm) Cr and Fe reference samples deposited on a polished 

316 stainless steels have been used to calibrate the etching speed (cfr. Experimental section II.1). The 

evolutions of the carbon, chromium and oxygen contents during the depth profiling of a Cr-based 

multilayered reference samples are presented in Figure 4. The evolution of the oxygen amount clearly 

evidences the interface between the two chromium layers as well as between the chromium layer and 

the stainless steel surface. It should be noted that the deposited chromium is slightly oxidized even 

inside the layers. This presence of oxygen is due the background vacuum impurities and to the surface 

oxidation of the Cr source for PVD. Additionally, it is possible to distinguish the carbonaceous 

impurities at the surface of the stainless steel and at the surface of the chromium bilayer forming 

during exposure to ambient atmosphere. 

 

Figure 4: Evolution of the amount of chromium, oxygen and carbon contents during the depth profile XPS analysis and 
schematic representation of the Cr bilayered standard prepared by PVD onto a stainless steel substrate.  

For both Cr and Fe, three different layers of nominally 5 nm, 10 nm and 15 nm have been analyzed by 

depth profiling in two different locations. Based on the illustration presented here-above, the 
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sputtering times needed to etch each layer have been identified (the beginning of a new layer is taken 

as the moment were a maximum oxygen content is detected, see arrows on figure 4). A linear 

relationship between layer thickness and etching time is observed (Figure 5) and the etching speed can 

be deduced from the slope. The etching speed of iron is slightly higher than that of chromium (0.051 

nm s-1 vs. 0.045 nm s-1).  

 

Figure 5: Calibration curve for the etching speed of chromium and iron  

 

III.2. Analysis of the native oxide layer 

An analysis methodology will be established using AISI 430 stainless steel (Section III.2.1.). This 

methodology will then be applied to the cases of AISI 304 and 316 (Section III.2.2.). 

III.2.1. Analysis methodology set-up on AISI 430 

The analysis methodology is first applied to AISI 430, the less complex of the studied stainless steel 

grades. The parameters for the depth profiling are identical to those used for the calibration of the 

etching speed (section III.1.). According to the calibration, 60 etching steps (30 steps of 2 seconds of 

etching and 40 steps of 4 seconds of etching, corresponding to a total of 180 seconds etching time) are 

needed to achieve a 6 nm depth. Figure 6, first row, shows the evolution of the amount of carbon, 

oxygen, iron and chromium as a function of the etching depth for AISI 430. The data obtained from the 

Jo
ur

na
l P

re
-p

ro
of



13 
 

various depth profiles of AISI 430 are reproducible. A superposition of the various depth profiles is 

presented in the figure 1 of supporting information (S.I. 1). XPS spectra for iron, chromium, nickel and 

molybdenum corresponding to characteristic points of the depth profile are shown  in S.I. 2.  

 

Figure 6: Evolution of carbon, oxygen, iron, chromium, nickel and molybdenum amounts during depth profiling on as-
provided AISI 430, AISI 304, and AISI 316 stainless steels.  

The depth profile shows the presence of carbon and oxygen throughout the analyzed depth. The oxide 

layer is characterized by an accumulation of chromium, which is located at a depth ranging from 1 to 

2 nm. The chromium accumulation is concomitant with a decrease of the iron content. This observation 

is consistent with the higher diffusion rate of iron ions comparatively to chromium ions during the 

formation of the oxide layer [18,38]. The bulk theoretical composition is reached at a depth of 3 to 3.5 

nm.  

Using the tables with fitting parameters for iron and chromium presented in section III.1., the signal 

evolution of the oxide, hydroxide and metallic components of chromium and iron as a function of the 
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etching depth is determined (figure 7). The amount of oxygen determined via the O1s peak or the 

metal oxide peaks (taking into account their stoichiometry) matches, which confirm the reliability of 

fitting parameters (see supporting information, figure 3).  

 

Figure 7: Evolution of the various oxides, hydroxides and metallic components of iron and chromium as a function of 
etching depth (left) and theoretical bulk composition (right) for AISI 430, 304 and 316 samples 

Figure 7 shows that the oxide layer is composed of iron mainly in the form of iron oxides (Fe2O3 and 

Fe3O4) and chromium mainly in the form of hydroxide.  The signals of non-oxidized chromium and iron 
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observed at the beginning of the depth profile (2 nanometers) originate from the underlying metallic 

bulk. Most of the oxidized iron (taking into account the amount of oxidized iron masked by the 

roughness) has disappeared at a depth of 2 to 2.5 nm. The oxidized forms of chromium follow the same 

trend. From these observations, it can be concluded that the oxide layer has a thickness of roughly 2 

to 2.5 nm even if the theoretical bulk composition is only reached at a depth of 3.5 nm. The layer of 

constant composition in iron laying between the surface and a depth of 2 nm is made of oxidized iron.  

Based on these observations, it appears that the underlying material is covered by a chromium 

hydroxide rich layer (1 to 1.5 nm thick), itself covered by a 1 nm thick layer of iron oxide.  

Figure 8 shows the oxide layer thickness by applying the Strohmeier formula (section II.5) to iron and 

chromium AISI 430 depth profiles. (reproducibility is shown in S.I. 4). 

 

Figure 8: The calculated oxide layer thickness (using the Strohmeier relation) as a function of the etching time and the 
corresponding proposed structure for the oxide layer (Iron oxide in red, mixed iron and chromium oxide in hatched color, 

rich in chromium oxide in green and bulk composition in blue) 

In the case of the iron signal, the decrease of the calculated residual thickness (𝛿𝑐𝑎𝑙𝑐) starts from the 

first step of etching (2 seconds). A linear decrease of 𝛿𝑐𝑎𝑙𝑐 obtained from the chromium signal is also 

observed but only starting from the ninth step (18 seconds).  
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These observations can be accounted by a layered structure of the oxide (Fig.8). The first etched layer 

is only composed of iron oxide. After 18 seconds (9 levels of 2 seconds), a layer containing also 

chromium is etched. This layer also contains iron oxide as 𝛿𝑐𝑎𝑙𝑐 calculated from iron still decreases. 

After 40 seconds of etching, 𝛿𝑐𝑎𝑙𝑐   obtained from the iron spectrum reaches a minimum. This implies 

that there is no more iron oxide left. However,  𝛿𝑐𝑎𝑙𝑐 from the chromium peak continues to decrease 

suggesting that there is still chromium oxide. This points the presence of a trilayer structure: the first 

layer contains only iron oxide, the second one a mixture of iron and chromium oxides and the third 

layer only chromium oxide. The calculated residual oxide thickness decreases linearly for both metals, 

which means that iron and chromium oxides have a constant concentration in all layers. 

III.2.2. Application of the methodology to AISI 304 and 316 

The methodology established on the AISI 430 stainless steel has been applied to AISI 304 and AISI 316 

steels of more complex composition. The depth profiles are obtained using the same conditions as 

described in section III.1. Figure 7 shows the evolution of the amount of the various elements during 

the depth profiling. The reproducibility of the approach is provided in the supporting information 

section (figure SI5). 

As seen in the case of AISI 430, the amount of carbon and oxygen monitored throughout the profiling 

can be attributed to contributions from the edge of the sputtering site or due to the roughness. For 

AISI 304, an accumulation of chromium is observed in a 1.5 to 2.5 nm depth range. This accumulation 

is higher than the one detected for AISI 430. In the case of AISI 304, a second accumulation layer, richer 

in nickel, is detected in a 2.5 to 3.5 nm depth range. The bulk composition is reached at a depth of 4 

nm. Using the tables with fitting parameters presented in section III.1, figure 7 shows the evolution of 

the oxide, hydroxide and metallic components of chromium and iron as a function of the etching depth. 

The reliability of the fitting parameters can be assessed by the correspondence between the oxygen 

detected on the O1s spectra and the oxygen amount obtained from the oxide components of the 

respective metal peaks and the corresponding oxide or hydroxide stoichiometry (SI figure 6). Unlike 

chromium and iron, nickel appears only in its metallic form (cfr. SI figure 7). 

For AISI 316, the amount of chromium in the oxide layer does not increase as for AISI 430 and AISI 304 

steels. The iron depletion, also visible for AISI 430 and AISI 304, is observed and the Cr/Fe ratio 

increases in the 1.3 to 2.5 nm depth range. An upper oxide layer, with a higher iron content is observed 

from 0.3 to 1.3 nm. Finally, the upper layer is enriched in molybdenum at the expense of iron (figure 

7). Unlike what has been observed for AISI 304, no nickel accumulation is observed before reaching 

the bulk composition. The bulk composition is reached at a depth of around 3.5 to 4.0 nm. However, 
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the region between 2.5 and 4 nm appears more like a “transition region” probably  due to the high 

roughness of the sample.   

The reliability of the fitting parameters is again confirmed by comparison between the amount of 

oxygen determined from the O1s peak and the amount of oxygen estimated from the oxide amount 

and stoichiometry (see Supporting Information, figure 6).  

Figure 8 shows the evolution of 𝛿𝑐𝑎𝑙𝑐  as a function of the etching time using the Strohmeier equation. 

As in the case of AISI 430, the oxide layer of AISI 304 presents a trilayer structure: a first layer composed 

of pure iron oxide, a transition layer including iron oxide and chromium oxide/hydroxide and a third 

layer rich in chromium oxide. The main differences with AISI 430 are the fact that the first layer is 

thicker and the third layer still contains some iron oxide.  

As for AISI430, AISI 316 shows a trilayer strcture of the oxide layer.  

For both steels, the absence of nickel oxide makes impossible the use of the Strohmeier equation for 

this element. 

III.2.3. Oxide layer structure 

From the above analyses, the oxide layer structure for the three steels can be established as illustrated 

in figure 9.  

 

Figure 9: Oxide layer structure of as-provided stainless steels deduced form the depth profile or from the use of the 
Strohmeier relation for AISI 430, 304 and 316. 
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From the above results, the application of a fast depth profiling appears to be an efficient method to 

determine the oxide layer structures. The structures obtained using two different methods of analysis 

are coherent and compatible with what is reported in the literature [5-24]. 

In the case of the 430 grade, a trilayer structure is observed with (i) an outer layer of iron oxide, an 

intermediate layer consisting in a mixture of chromium hydroxide and iron oxide and finally a 

chromium-rich layer. A similar structure is observed for the 304 grade with an additional, nickel-rich, 

layer between the chromium-rich one and the bulk. The oxide layer structures for those two stainless 

steel grades are similar to those reported in the literature with the additional observation of a 

trilayered structure as suggested in the literature [18,39,40]. 

The as-received AISI 316 grade is characterized by the absence of an accumulation of metallic nickel as 

reported by Mandrino et al [26]. Moreover, a molybdenum oxide rich layer is clearly detected at the 

surface of the sample, a feature that is not reported in the literature.  

III.3. Analysis of modified fresh native oxides layer 

III.3.1. Influence of mechanical polishing 

Directly after mirror-like mechanical polishing, the three stainless steels grades were analyzed using 

the same etching conditions as described in section III.1. For each stainless steel, two analyses were 

carried out on two different samples. The obtained depth profiles are well reproducible (SI, figure 8). 

The elemental distributions (metal, oxide or hydroxide) and the evolution of 𝛿𝑐𝑎𝑙𝑐 are presented in 

Figure 10 for the mechanically polished AISI 430, 304 and 316 steels.  
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Figure 10: Elements distribution (left) and the evolution of 𝜹𝒄𝒂𝒍𝒄 (Strohmeier relation) (right), as a function of depth for the 
three stainless steels. 

These data were analyzed using the methodology described in section III.2. in order to establish a 

structure for the oxide layer of each mechanically polished stainless steel. Both methods provide 

interesting and complementary insights on the oxide layer structure. To assess the impact of 

mechanical polishing on the oxide structure, the oxide layers structures of mechanically polished vs. 

bare stainless steels are compared in Figure 11.  
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Figure 11: Comparison of the obtained structure from depth profiling (DP) and Strohmeier (Stroh.) analyses for the oxide 
layer on as received and polished AISI 430, AISI 304 and AISI 316 stainless steels. 

For AISI 304 and AISI 430, mechanical polishing leads to a decrease of the oxide layer thickness and a 

conservation of the trilayered structure. The decrease of the oxide thickness is larger for AISI 304 than 

for AISI 430 and AISI 316. For the three stainless steels, the accumulation of chromium is more 

important after polishing. The chromium oxide has the same thickness after mechanical polishing, but 

the slope of the linear range of the Strohmeier relation indicates a higher concentration in chromium. 

For AISI 304, the mechanical polishing leads to a thinner nickel layer. In the case of AISI 316, no pure 

iron layer is found at the surface and an accumulation of metallic nickel is detected just beneath the 

oxide layer after mechanical polishing. 

As a conclusion, for the three steels the mechanical polishing produces an oxide layer thinner than the 

native one. In term of individual elements, the mechanical polishing decreases the iron oxide layer 

thickness for AISI 430 and 304. This iron oxide layer is not anymore present in the case of AISI 316. The 

composition of the chromium oxide rich layer increases.  
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In the case of steels containing nickel (AISI 304 and 316), the mechanical polishing produces a metallic 

nickel enriched layer beneath the oxide layer.  

III.3.2. Evolution of the oxide layer with aging time 

In order to determine the influence of the aging time on the oxide structure, the three stainless steels 

have been analyzed using depth profiling after mirror-like mechanical polishing and various durations 

(0, 24, 48, 72, 210, 384 and 624 hours) of contact with the atmosphere. For each condition, two 

samples have been analyzed and the mean value of the parameters are considered.  

Two parameters have been defined. The first one is the etching time needed to attain the beginning 

of the element (chromium and nickel) accumulation. It corresponds to the maximum of the XPS signal 

intensity for this element. The second one is the depth at which the bulk composition (+/- 10% [41,42]) 

of the element is reached. 

 

Figure 12: Etching time to reach the maximum of accumulation and the bulk composition for chromium and nickel as a 
function of aging time for the three steels.    

The etching time to reach the accumulation maximum increases with aging time for all elements. On 

the other hand, the etching time to reach the bulk composition remain stable. This can be due to the 

diffusion of chromium or nickel inside the oxide layer from the accumulation layers towards the 

surface.  

Jo
ur

na
l P

re
-p

ro
of



22 
 

The measured amount of chromium (or nickel) during the etching is observed to follow a sigmoid curve 

as expected for the etching of a bilayered material [42]. The evolution of the chromium layer of AISI 

430 has been plotted for various aging time (Figure 13C). A similar sigmoid evolution is also visible for 

the iron and nickel layers (Figure 13B and 13 D) and for the interface between the oxygen containing 

layers and the bulk (Figure 13A).  

These observations confirm the evolution of the interface composition by a slow diffusion process. The 

aging time induces a slow modification of the oxide layer structure, by diffusion to the surface or the 

neighbor layer. This is consistent with statements reported by Asami on AISI 304 and 316 [8], where 

the oxide thickness slightly increases even at long storage time. 

 

Figure 13: Evolution of the amount of detected chromium, iron and oxygen at the interface between two oxide layers and 
between the oxide layer and the bulk. 

III.4. Confirmation using non-destructive methods 

III.4.1. AR-XPS 

Using the mirror-like polished samples, AR-XPS has been used in order to confirm the oxide layer 

structure. Prior to the measurement, a soft etching with Ar+ at low energy (500 eV) on a large sputtering 

area (4 mm2) has been used in order to remove most of the carbonaceous impurities without damaging 

the oxide layer. Survey spectra of 430 stainless steel before and after the carbonaceous impurities 

etching are displayed in figure 14 with emphasis on the carbon signal evolution (inset). The same 
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procedure has been performed on 304 and 316 stainless steel (316 shown in SI, figure 9). AR-XPS 

measurements have been realized at 20 different angles between 0.0 and 80.0 degrees (4.2 degrees 

increase) in a snapshot mode with the same acquisition parameters than for depth profiling.  

 

 

 

 

Analyses of the AR-XPS data have been performed based on the fitting parameters described 

before (Section III.1) for chromium and iron. The atomic ratios for metals have been plotted as a 

function of the rotation angle (figure 14).  

The AR-XPS analyses confirm most of the observations recorded using the depth profile analyses. The 

three stainless steels show an extreme surface enriched in iron and poor in chromium. The evolution 

of the various components of iron and chromium with rotation angle shows the presence of more 

oxidized forms of both metals close to the surface. Chromium VI, which is almost not detected by depth 

profile, is barely present and essentially related to the high angle values. The amount of nickel also 

decreases significantly at high angles for 304 and 316 stainless steels. For 316 steel, the decrease of 

nickel appears at lower angles than the decrease of chromium. These observations confirm a structure 

where the bulk is covered by a layer rich in chromium but poor in nickel, itself covered by a layer rich 

in iron and poor in chromium. There is no clear evidence of molybdenum accumulation on the AR-XPS 

Figure 14: Survey and carbon spectra for 430 stainless steel before and after soft etching of the 
surface in order to remove carbonaceous impurities (top of right column). Evolution of the atomic 
ratio and contributions of the various components for chromium and iron for 304 stainless steel. 

Jo
ur

na
l P

re
-p

ro
of



24 
 

data for 316 stainless steel but the molybdenum spectra shows a strong oxidized component at higher 

angular value (SI, figure 10). 

III.4.2. HAXPES 

HAXPES measurements have been performed on the three mirror polished stainless steels (aged 6 

days) using 2.300 and 6.900 keV X-Ray energies. The analysis focuses on the high-resolution spectra of 

the various components of the stainless steels, as well as on the carbon and oxygen signals. The atomic 

percentages of each element have been calculated on the basis of the area under the peaks and the 

Scofield factors. In order to get rid of the influence of the amount of carbonaceous impurities, for each 

element of the stainless steel, ratios between the atomic percentage of the element and the sum of 

all the metallic elements have been used. A comparison of those ratios for the three X-Ray energy 

(1.487 keV from XPS, 2.300 and 6.900 keV from HAXPES) and the bulk theoretical composition is 

presented in tables 4, 5 and 6.  

 XPS HAXPES  

Ratio 1.487 keV 2.300 keV 6.900 keV Bulk 

Cr/(Cr+Fe) 0.169 ± 0.0067 0.258 ± 0.0076 0.200 ± 0.0070  0.173  

Fe/(Cr+Fe) 0.831 ± 0.013 0.741 ± 0.012 0.800 ± 0.013 0.827 

 

Table 4: Chromium and iron ratio for AISI 430 at the various investigated X-Ray energies 

For AISI 430, by increasing the X-Ray energy from 1.487 keV to 2.300 keV, an increase of the detected 

ratio of chromium is observed. A further increase of the X-Ray energy leads to a decrease of the 

chromium ratio to values close to the bulk composition. An opposite evolution is observed for the iron 

ratio. This can be interpreted as follows: (i) at 1.487 keV X-Ray energy, most of the signal comes from 

an outer layer, rich in iron and poor in chromium. (ii) At a higher X-Ray energy (2.300 keV), a larger 

fraction of the signal originates from a deeper layer richer in chromium, and (iii) at 6.900 keV X-Ray 

energy, most of the signal comes from deeper layers close to the bulk composition. This observation 

is consistent with a structuration of the oxide layer made out of (i) an iron oxide rich layer, followed by 

(ii) a chromium oxide rich one and then (iii) the bulk. This structure matches with the one obtained 

from the XPS depth profile and AR-XPS data. Using the TPP2M equation [43], the electron mean free 

path for the three energies used are calculated: (i) ± 1.5 nm for 1.487 keV, (ii) ± 2.5 nm for 2.300 keV 

and (iii) ± 7.0 nm for 6.900 keV. The calculation have been performed considering a pure metal 

(chromium and iron) or a pure oxide layer. The results differs depending on the considered nature of 

the layer. As an example, values goes from 2.3 to 2.7 nm for 2.300 keV.  Using these values, the depth 

of the chromium-rich layer is located at around 2.5 nm (at least higher than 1.5 nm), which is consistent 

with the estimated depth of this layer obtained from the depth profile.  
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 XPS HAXPES  

Element 1.487 keV 2.300 keV 6.900 keV Bulk 

Cr/(Fe+Cr+Ni) 0.191 ± 0.0079 0.284 ± 0.0093 0.213 ± 0.0082 0.190 

Fe/(Fe+Cr+Ni) 0.745 ± 0.016 0.604 ± 0.014 0.576 ± 0.014 0.716 

Ni/(Fe+Cr+Ni) 0.011 ± 0.0052 0.112 ± 0.0067 0.191 ± 0.0079 0.084 

Table 5: Ratios of the metallic elements at the various investigated X-Ray energies for AISI 304  

 XPS HAXPES  

Element 1.487 keV 2.300 keV 6.900 keV Bulk 

Cr/(Fe+Cr+Ni+Mo) 0.191 ± 0.0088 0.227 ± 0.0095 0.167 ± 0.0083 0.185 

Fe/(Fe+Cr+Ni+Mo) 0.706 ± 0.019 0.624 ± 0.017 0.621 ± 0.017 0.677 

Ni/(Fe+Cr+Ni+Mo) 0.054 ± 0.0061 0.141 ± 0.0078 0.181 ± 0.0086 0.110 

Mo/(Fe+Cr+Ni+Mo) 0.039 ± 0.0058 0.000 ± 0.0050 0.019 ± 0.0054 0.013 

Table 6: Ratios of the metallic elements at the various investigated X-Ray energies for AISI316 

For both AISI 304 and 316 alloys, the chromium and iron ratio evolution is similar to the one observed 

for AISI 430. The evolution of nickel ratio is the same for both steels but differs from the chromium 

ratio evolution. When increasing the X-Ray energy from 1.487 to 6.900 keV, the nickel ratio 

continuously increases. This is due to a layer of nickel accumulation, with a higher nickel ratio than the 

bulk. In addition, this Ni rich layer is deeper than the one rich in chromium. For both steels, those 

observations indicate an oxide layer structure consisting in (i) an outer layer rich in iron oxide, (ii) an 

inner layer richer in chromium oxide and (iii) a deeper layer richer in nickel. This structure is consistent 

with the one proposed based on the depth profile data. For AISI 316, the evolution of the molybdenum 

ratio as a function of X-Ray energy points to an accumulation of molybdenum oxide at the extreme 

surface of the sample. This is also consistent with the depth profile observation of an outer layer richer 

in molybdenum.  

Figure 15 shows the HAXPES spectra for nickel at 2.300 and 6.900 keV energies. The detection of nickel 

as Ni(0) in HAXPES supports the XPS depth profile results, proving that Ni(0) is not a consequence of a 

possible reduction during the etching process [44].   Jo
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Figure 15: Nickel 2p3/2 high-resolution HAXPES spectra at the two investigated X-Ray energies 

 

 

IV. Conclusions 

 

In this work, a protocol for fast depth profiling of thin metal oxide layers using a snapshot acquisition 

is developed. This methodology, applied to three stainless steel grades (AISI 316, 304 and 430, as 

received and mirror polished), provides a fast, simple and reliable determination of their oxide layer 

structures. Moreover, the Strohmeier equation, originally applied to the determination of oxide layer 

thickness, is used as a powerful tool for the determination of the oxide layer structures.  The validity 

of the structures obtained from XPS depth profiling is confirmed using two non-destructive techniques, 

AR-XPS and HAXPES.  

The three studied stainless steel grades present a three level oxide layer structuration. The surface 

layer, composed essentially of iron oxide, is followed by a mixed layer of chromium and iron oxide itself 

followed by a chromium oxide rich layer. This tri-layered structure proposed previously in the literature 

(ToF-SIMS, theoretical approaches) finds confirmation in the present study by using a rapid (snapshot) 

XPS depth profiling. 

For the stainless steels containing nickel (AISI 304 and 316), an accumulation of metallic nickel at the 

interface between the oxide layer and the bulk has been evidenced. For the molybdenum containing 

grade (AISI 316), a slightly different structure is found, where a molybdenum oxide rich surface layer 

has replaced the iron oxide one. 
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The aging of the oxide layer in contact with atmosphere (624 hours) has also been studied. It appears 

that the thin oxide layer and its structure evolve during aging within the first 300 hours and afterward 

stabilize. The observed changes are in line with the assumption of ions or atoms diffusion from the 

accumulated buried layers of chromium and nickel towards the surface.  
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