
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Design pattern-oriented Software subsystems

Cornet, Louis; Mathieu, Benoît

Award date:
2003

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 28. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/3b7f3232-1952-4455-8d2c-ab36d61238b7

University of Namur - FUNDP

Computer Science Department

Rue Grandgagnage, 21

5000 Namur (Belgium)

Design Pattern-Oriented
Software Subsystems

Louis C ORNET & Benoît MATHIEU

Mémoire présenté en vue de l'obtention

du grade de Maître en Informatique

Année académique 2002- 2003

A bstract

This thesis suggests a new approach to Software Development using Software

Design Patterns: "Design Pattern-oriented Subsystems". Software Design

P atterns are proven and generic design solutions to recurring object-oriented

development problems. "Design Pattern-oriented Subsystems" are a subtle

aggregation of three Design Patterns in one entity. The new concept is to be

used as a subsystem foundation for easing the creation of new subsystems

in software applications.
To check on its pertinence, this document confronts "Design Pattern­

oriented Subsystems" with a range of typical and unavoidable subsystems.

This paper subsequently inspects the requirements one could have from

a Design Pattern-capable CASE tool and verifies that tools existing on the

market meet these expectations.

Finally, this work puts in perspective the notions introduced such as

"Design Pattern-oriented Subsystems" and Design Patterns automation.

K eywords : Design Patterns, Software subsystems, Layered architec­

ture, Software ·development, Software architecture, Design phase, Business

subsystems, GUI subsystems, Preferences subsystems, Persistence subsys­

tems, Design Patterns Automation, Design Pattern-capable CASE tools,

Together ControlCenter, XML, XML databases, BML

Acknowledgements

We are very grateful to our advisor, Vincent Englebert, for his valuable

opinions and durable support. His comments and proposais have greatly

contributed to improving the quality of this document. In addition, this

work being the completion of our internship, we also want to thank him for

offering us the opportunity to live a wonderful and enriching work experi­

ence abroad.

A very special acknowledgement goes to Didier Burton. Didier intro­

duced us to Design Patterns and showed us the beauty of them. During the

internship, his attentive and day-to-day coaching allowed us to fully profit

of such an experience. We also have to mention his unfailing enthusiasm

and vast knowledge of computer science. Thank you for everything, Didier!

There arc also many "victims" that deserve our gratitude. Their sugges­

tions on the reading of our document helped us tremendously. We think of

Sybille Henry, for her judicious corrections regarding the English writing and

the style of the text, as well as Siân Collins and Peter Kelly. Paul Cornet

and Dominique Snyers greatly contributed to the quality of the document

too.

Next, we need to thank Jean Baltus and Nicolas Gilson which gave us

useful advices to prepare our internship abroad, as well as useful tips for

mastering ~'IEX 2€.

We want also to cite everyone that supported us during the elaboration

of this study, especially Marie-Noëlle Berlier and our families.

Our last words will be for Misters Harrap and Babylon.

Conte nts

List of Figures

Introduction

1 The Equipment Manager softwar e

1.1 Purpose

1.1.1 The A-8 amplifier

1.1.2 Acme Configuration Manager

1.1.3 Acme Layout Manager ..

1.1.4 Acme Equipment Manager

1.2 Overview

1.2.1 The graphical user interface .

1.2.2 The product categories .

1.2.3 The product hierarchy .

1.2.4

1.2.5

1.2.6

1.2.7

The product properties

The data.base properties

A pplication-specific properties

Features to be implemented ..

1.3 Constraints

1.4 Used technologies and methodologies .

1.4.1 Technologies

1.4.2 Methodologies

1.5 Global Architecture

1.6 Summary

2 Design Pattern-oriented Subsystems

2.1 Subsystems

2.1.1 Motivations ...

7

15

17

21

21

22

22

23

23

24

24

27

28
28
30

31

32

32

32

33

34

35

35

39

39

39

8 Contents

2.1.2 Description of the Equipment Manager subsystems . 40

2.1.3 Illustration . 43

2.2 Design Patterns . 46

2.3 Using Design Patterns in the conception of subsystems . 47

2.3.1 The Observer pattern 48

2.3.2

2.3.3

The Mediator pattern

The Façade pattern

2.4 Design Pattern-oriented Subsystems

2.5 Summary

53

63
66

67

3 Business subsystems 69

69

69

70

71

72
74

3.1 Purpose of the subsystem

3.2 Business in the Equipment Manager . .

3.3 A Design Pattern-oriented Subsystem? .

3.4 The Decorator Pattern .

3.4.1 Presentation

3.4.2 Application

3.5 Summary . . 76

4 GUI subsystems 77

4.1 Purpose of GUI subsystems 77

4.2 Building up a graphical interface 77

4.3 Expectations 79

4.4 Existing technologies 80

4.4.1 UI Builders 80

4.4.2 Description in the programming language 80

4.4.3 Using XML to define GUI 81

4.5 Using BML in the Equipment Manager 85

4.6 Advantages and limits of BML 87

4.7 GUI subsystems as Design Pattern-oriented Subsystem . 88

4.8 Summary

5 Preferences subsystems

5.1 Purpose of the subsystem

5.2 Storage types

5.3 Preferences in the Equipment Manager .

5.3.1 XML Data Binding

88

91

91

91

93
93

Contents

5.3.2 Castor XML Source Code Generator

5.4 Preferences as a Design Pattern-oriented Subsystem

5.5 Summary

6 Persist ence subsystems

6.1 Purpose of the subsystem

6. 2 Persistence paradigms . .

6.2.1 File Systems . . .

6.2.2 Hierarchical databases

6.2.3 Relational databases .

6.2.4 Object-Oriented databases

6.2.5 XML databases

6.3 Persistence in the Equipment Manager

6.3.1 Requirements

6.3.2 Technology selection .. .

6.3.3 The implemented solution

9

94

95
95

97

97

98
98

98

100

102

103

114

114

115

116

6.3.4 Putting in perspective . . 117

6.4 Persistence as a Design Pattern-oriented Subsystem 118

6.5

6.4.1 A Design Pattern-oriented Subsystem? 118

6.4.2 Technology independence thanks to the Strategy patternll9

6.4.3 Reduce coupling with the Abstract Factory pattern .. 122

6.4.4 Decomposing database controller into logical sub-controllers

with the Decorator pattern 126

6.4.5 Handling incompatible interfaces with the Adapter pat-

tern

6.4.6 A Design Pattern-oriented Subsystem? (2)

Summary

130

133

134

7 D esign Patterns Automation 135

135

136

136

138

139

140

140

141

7.1 P reliminaries

7.2 Requirements for CASE tools support

7.2.l Theoretical context

7.2.2 Help to conception

7.2.3 Generation of code and documentation.

7.2.4 User-friendliness and ease of use . . .

7.2.5 Wide but structured patterns library .

7.2.6 Support to decision process

10

7.2.7

7.2.8

Patterns composition

Consistency checking

Contents

142

142

7.2.9 Traceable graphical and textual representations . 144

7.2.10 Portability 145

7.3 Study of the existing 146

7.3.1 Design Patterns generation 148

7.3.2 Design Patterns application 152

7.3.3 Combination of Design Patterns 154

7.3.4 Traceability features 156

7.3.5 Extension capabilities 158

7.4 Putting in perspective of the existing .

7.4.1 Situation in theoretical context

7.4.2 Help to conception

7.4.3 Generation of code and documentation .

7.4.4 User-friendliness and ease of use ..

7.4.5 Wide but structured patterns library .

7.4.6 Support to decision process

159

159

160

160

161

162

164

7.4.7 Patterns composition. . . . 164

7.4.8 Consistency checking . . . 165

7.4.9 Traceable graphical and textual representations . 165

7.4.10 Portability 165

7.4.11 Summary

7.5 Pertinence of Design Patterns automation

7.6 Pertinence of Design Pattern-oriented Subsystems

7.7 Summary

165

166

168

169

Conclusion 173

G lossary

A The U ML notat ion

A.l Class diagrams

A.2 Sequence diagrams

A.3 Use cases

A.4 Robustness diagrams

A.4.1 Actors . .

A.4.2 Interfaces

179

187

187

189

190

191

191

191

Contents

A.4.3 Controls .

A.4.4 Repositories .

A.4.5 Interactions

A.4.6 Example.

B Principles of Layered architecture

B.l Layers architectural pattern

B.2 Layered architecture for Information Systems

C Java Beans

C .l Software components .

C.2 Java Beans ...

C.3 XML Java Beans ..

D Simple BML example

E B rowser-based Application Toolkit

E.l Principles

E.2 Advantages and limits

F JEasy

F .l Principles

F.1.1 Java 2 Swing Components .

F .1.2 JEObjects .

F.1.3 XML

F.1.4 Messages .

F .1.5 Repository

F.2 Advantages and limits

Bibliography

11

192

192

192

192

195

195

. 196

199

199

199

200

201

209

209
. 212

215

215

215

215

215

215

216

217

222

~ - - - - -- - ~- -~- - - --- - --- - - - - --- ---- --- --- - -------------

List of Figures

1 Structure of the thesis

1.1 The A-8 Suite

1.2 The Equipment Manager GUI .

1.3 Addition of a product to the database

1.4 Pricing Markup

1.5 T he System Pricing panel

1.6 Architecture of the Equipment Manager

2.1 Architecture of the Equipment Manager

19

22

25

26

26

26

37

44

2.2 Creations of the subsystem's components 48

2.3 Observer's class diagram 50

2.4 Model-View-Controller: Sequence Diagram 52

2.5 Simplified view of the Mediator 53

2.6 First draft of a part of the Equipment Manager's architecture 54

2.7 Part of Equipment Manager's architecture: second version . . 55

2.8 Part of Equipment Manager's architecture: third version . . . 57

2.9 Equipment Manager's architecture: introduction of Mediators 57

2.10 Select Product Sequence Diagram 61

2.11 Part of Equipment Manager's architecture: last version 61

2.12 Communication increased with Mediators 62

2.13 Communication in the first draft of architecture . 63

2.14 Intent of the Façade pattern . . . 64

2.15 Intent of the Façade pattern (2) . . . 64

2.16 Façade and subsystems. 66

2.17 Design Patterns Oriented Subsystem 67

3.1 Decorator pattern's class diagram .

3.2 Product Data's class diagram .

13

72

75

14

4.1 BML processing model: the BML Player ..

4.2 BML processing model: the BML Compiler

6.1 A File System structure

6.2 An HDBMS example

6.3 An RDBMS example ..

List of Figures

85

85

99

100

101

6.4 The structure of a typical Equipme1:t Manager database 117

6.5 A Design Pattern-oriented Subsystem 118

6.6 The Strategy Pattern 120

6.7 A technology independent persistence subsystem 121

6.8 The Abstract Factory Pattern 123

6.9 An application of the Abstract Factory Pattern . 125

6.10 The Decorator Pattern 126

6.11 The Decorator Pattern applied to the Equipment Manager. 128

6.12 The Adapter Pattern 130

6.13 The Adapter pattern applied to the database index . 131

6.14 The Adapter pattern applied to product keys 132

7.1 Example of consistency verification 143

7.2 The Decorator pattern: class diagram (recall) 144

7.3 Example of pattern low traceability 144

7.4 Together ControlCenter 6.1 by Borland . . . 147

7.5 Creation of new classes by selecting a Design Pattern . 148

7.6 Design Pattern selection and configuration 149

7.7 Generation of the Decorator pattern 150

7.8 Application of a pattern to a set of existing classes 152

7.9 Design Pattern selection and configuration 153

7.10 The Decorator pattern applied to existing classes . 154

7.11 An application of the Strategy pattern 155

7.12 A combination of the Abstract Factory pattern with the Strat-

egy pattern

7.13 Together's pattern library .. .

A.l Example of UML class diagram

A.2 Simplified UML class diagram .

A.3 Example of UML sequence diagram .

A.4 Robustness Components

156

163

188

189

190

191

List of Figures 15

A.5 Robustness Example 193

B.l Layered architecture 195

B.2 Four-tier architecture . 196

E .l BAT container: the wizard 210

E.2 BAT container: the notebook 210

E.3 BAT container: the tools UI center 211

E.4 BAT basic element: the dynamic list 212

F.l Messages in JEasy 216

F.2 Interface of JEasy 217

Introduction

The importance of software architecture is common knowledge, since it

constitutes the necessary foundation of every software application. From an

architectural point of view, an application can be compared with a building.

Without good foundations, a building simply collapses. The same applies

for a software application: without a solid architecture reflecting a relevant

analysis of the problem, it is nearly impossible to build a robust application1 .

The necessity to have a robust architecture has already been exposed by

J ean Baltus and Nicolas Gilson in their master's thesis [BG02] and will not,

therefore, be discussed further in this study. One can say that building an

architecture at the very beginning of the development process avoids bad

surprises later on. If the architecture is of high quality, the resulting appli­

cation will be robust: it will smoothly accommodate changes and addition

of new functionalities will become easier.

Sorne concepts of software engineering are very profitable to the devel­

opment process. Subsystems are semantically useful grouping of classes or

other subsystems. It is an application of the well-known "<livide and con­

quer" principle: dividing a problem into smaller problems makes it easier

to solve. T he main advantage of subsystems is that they tend to make ar­

chitecture more reusable and robust. Principles of layered architecture2

may help to structure a subsystem.

This document will also present software Design Patterns. A software

1The comparison with building architecture stops there: in building construction, the
processes a nd requirements are weU-known and established, whereas software development
suffers from changing requirements and technologies.

2See Appendix B

17

18 Introduction

Design Pattern is an abstract design solution - in terms of communicating

objects and classes - to a particular and recurrent design problem. They

offer easy, proven, powerful and high-level solutions in software design. In

addition, they capture the experience of many skilled software engineers and

make it accessible to non-experts. As a matter of fact, they encourage the

reuse of good software architecture practices, particularly significant for suc­

cessful software development. Among other sources, the book from Erich

Gamma, Richard Helm, Ralph Johnson and John Vlissides3 [GHJV95] has

provided interesting material for this study. Each Design Pattern used in

this thesis has been defined in [GHJV95].

The subject of this thesis is tightly linked to Design Patterns. This

work first introduces the concept of Design Patterns and their contribution

to software development. Subsequently the document defines a new concept:

" D esign P attern-or iented Subsyst ems". These subsystems hold an as­

tute arrangement of Design Patterns. This new concept will be confronted

with a range of typical subsystems of software applications such as an appli­

cation subsystem, a presentation subsystem, a preferences subsystem, and a

persistence subsystem. Other types of subsystems obviously exist, such as a

subsystem managing communications with other applications or a security

subsystem. These types of subsystems will not be covered in this study.

Afterwards, this thesis looks into automation of Design Patterns and "De­

sign Pattern-oriented Subsystems". Finally, this work puts in perspective

the introduced concepts. Limits and flaws of Design Patterns having been

pertinently exposed in [BG02], one is referred to this document for details

on this topic. Criticisms will be focused on the relevance of patterns au­

tomation and on the "Design Pattern-oriented Subsystems".

Throughout this study, one example is used in order to illustrate the­

oretical concepts. This example is a real application: T he Equipment

Manager. It was our responsibility to develop this software application

during our internship, from analysis to implementation. The purpose of this

thesis is not to describe and explain in detail the Equipment Manager, but

only to use it as an illustration. T he Equipment Manager offered quite an

original standpoint of Design P atterns. Indeed, there are many books about

3 Often referred to as the Gang of Four, or GoF

Introduction 19

patterns; however, almost all of them offer qui te a theoretical study of pat­

terns. Even if they often give concrete applications, they are rarely inspired

from a whole, concrete and "real-world" application.

Presentatlon of the
Equlpment Manager 0

0

Design Patterns •
automation

Preferences •
subsystems

Persistance •
subsystems

Figure 1: Structure of the thesis

The structure of this document is illustrated by Figure l. Chapter

1 presents the illustrating software: the Equipment Manager. Main con­

cepts, such as subsystems, Design Patterns and "Design Pattern-oriented

subsystems", are exposed in Chapter 2. The following four chapters will

confront "Design P attern-oriented subsystems" with typical software appli­

cation subsystems. Chapter 3 is about application subsystems. In addition,

it discusses other Design Patterns used in such subsystems. Chapter 4 fo­

cuses on presentation subsystems and studies different technologies to define

20 Introduction

graphical user interfaces4 • Chapter 5 treats of preferences subsystems, while

Chapter 6 handles persistence subsystems. This chapter reviews the most

popular persistence paradigms and presents several Design Patterns useful

in a persistence module. Finally, Chapter 7 covers patterns automation and

a study on Design Patterns-capable CASE tools. This chapter lays down re­

quirements for Design Patterns-capable CASE tools and offers a case study

on the subject. Moreover, this chapter puts "Design P attern-oriented Sub­

systems" in perspective and analyzes the pertinence of patterns automation.

At last, a piece of advice to the hurried reader must be provided. He

should rather spend reading time on chapters 2 and 7, as they constitute

the core of this thesis.

Chapter 1

The Equipment Manager

software

1. 1 P urpose

The Equipment Manager software is a product database editor intended to

be used in the sound industry. It was our privilege to develop this applica­

tion for Acme Corporation1 during our internship in the United States of

America.

This piece of software is part of the A-8 suite. The A-8 suite is com­

posed of four parts: the A-8 amplifier and three softwares. These are Acme

Configuration Manager, Acme Layout Manager, and the Equipment Man­

ager. The data flow amongst the suite is shown in Figure 1.1. On this

illustration, squared objects represent the four elements of the A-8 suite.

They are the entities processing data. A logical set of data is represented

by the half-curved rectangles. They typically are a file or a database. More

accurately, the Equipment Manager creates and edits a product database

that is to be used by both Acme Configuration Manager and Acme Layout

Manager. Based on the product database, Acme Layout Manager outputs

a design file. Using both the design file and the product database, Acme

Configuration Manager produces a configuration for the amplifier. The in­

teraction between the participants of the suite is detailed in the following

paragraphs.
1 For proprietary reasons, the true name of this company will be undisclosed throughout

this text.

21

22 C hapter 1. T he Equipment Man ager software

Layout Manager &,guralion {:S:J--orllguratloofie B· M
A-8am i8f

an.-ge<

Figure 1.1: The A-8 Suite

1.1.1 T h e A-8 amplifier

The revolutionary A-8 amplifier is an amplifier that is entirely configurable

by software. It is designed for business use, and can mostly be seen in restau­

rants, pubs, hotels, stores and so forth. It offers original features such as

auto volume2, scheduling, source levelling, signal routing, various equaliza­

tion possibilities, remote contrai connections, and more. More details about

these features can be found in [BG02].

The amplifier,s configuration process is done by Acme Configuration

Manager.

1.1.2 A cme Configurat ion M anager

Acme Configuration Manager communicates with the A-8 amplifier in order

to flash a user-defined configuration inside it.

The amplifier can treat up to four input sources and four different play­

ing zones or areas. The software assigns input sources to playing zones. The

2 T he amplifier is connected to several sense microphones in order to dynamically adjust
the music level in each output zone. This allows people to always hear the music, regardless
of t he background noise.

1.1. P urpose 23

user interface also allows different ways of processing sound signais with fea­

tures like in and out gains, equalizers, auto volume, etc.

More than that, Acme Configuration Manager can verify the perfor­

mance of systems designed by Acme Layout Manager. The necessary in­

formation about these systems is stored in both a design file outputted by

Acme Layout Manager, and the product database created by Acme Equip­

ment Manager.

1.1.3 Acme Layout Manager

Acme Layout Manager is needed to describe the layout of a facility, the

desired audio components per room, and other requirements. It is used by

sales representatives and their customers to define an audio system that suits
their needs.

An audio system solution is computed by the software according to ail

defined requirements. It contains a summary of device types and quantities,

their costs, interconnections, and locations inside the .facility. The sum of

these computations gives bir th to the design file, which later will be used by

Acme Configuration Manager in order to optimize sound.

Ali information about every product (loudspeakers, amplifiers, sources,

and so forth) handled by Acme Layout Manager corne from an external

product database. This is where the Equipment Manager cornes in. It is its

responsibility to produce this database.

1.1.4 Acme Equipment Manager

The Acme Equipment Manager is intended to create and edit a product

database. This database can be seen as a "shared resource". Resource shar­

ing occurs when several applications or platforms agree to communicate

through a third-party resource, such as a database or file.

As a matter of fact, a set of three software shares access to the resource.

The Equipment Manager produces and edits a product database for two

other applications. Acme Configuration Manager needs the database for

equalizer information regarding the various loudspeaker families, in order

24 Chapter 1. The Equipme nt Manager software

to optimize sound in each playing zone. For Acme Layout Manager, this

database is the pool of products considered when creating a design. It is

also used for computing the system's price.

The following sections of this chapter will attempt to caver in depth

Acme's Equipment Manager.

1.2 Overview

1.2.1 The graphical user interface

Figure 1.2 shows the graphical user interface (GUI) of the Equipment Man­

ager. It illustrates the edition of one selected product. The user first needs

to select a product in the' database tree (left side) and then may change the

product properties at will.

To add a new product to the database, one may merely click on the

"Add" button (right below the products tree). As shown in Figure 1.3, a

new dialog appears. It asks the user to choose the category of the new prod­

uct, and to enter its vendor name, model name, and product code. As will

be explained further, these four values are key information. T he Equipment

Manager relies on the four of them to build its product keys. This is why a

product cannot be created without having these four values set.

The purpose of the "Edit" button3 is to set up how the marked-up cost

will be computed: by mark-up or by margin. The pop-up dialog box is

illustrated by Figure 1.4. Section 1.2.4 explains in detail how this works.

A "System Pricing" panel appears in the very bottom of the database

tree (Figure 1.5). T his tab permits database-1evel4 properties to be edited,

such as the currency for all prices stored in the database, lease terms, labor

rates, the default labor rate, or the miscellaneous hardware charge5. The

set of supported languages of the database can also be defined in this panel.

3 Located on the right of the mark-up and marked-up cost fields
4 By opposition with product-level and application-level
5See section 1.2.5 for a definition of database properties

>1 Oemo_,tcme..:1p <>.cme:9 Eq■1pmenl ldan,çer 0..1.2 ,- • ~

S" lect =..prm:luct :o d it:

B Pl: jur: Databa! ~
13 Pr::uœ

I!! Accc,i • rlei
l!I (or: rob
I!! Elcc: ro1lo
ÉI Lou<li:p: 3.kct,

El <ieaerfc
El .11.c me
1±1->O~ • dS~ • ?re
8 >o~ ·doho:r

e- Satellite : 20F
8- :'.ieneric Soundolie- Loud1pellker
~

ŒI :;20 :iatellite
1B '4odf!I C:: 3
!il- Satelite : 50F
œ-S20 c3SS
[E Satellte :.SOF
li)- $10 c3.SS
[!J :;a1elhe :50F Plu,
E!l SI 0 Satellite

1
~ Qu~11
l!I IBL

$ >OUtCC!
1B fa.mi IYEO:ts
sy;i:m Pric1119

Protlott lafeniallen

·.ielldo1 [se .ndoller Produc: Twt:

'-loctl: [Gf!nenc Soundc .=' i.î; C~ 11:-:

Paclril••t l■f■rmalî■n

======'.,__ loe<11or

:,n,.uct •:ode. r5..-1<11- : .. :""1 _____________,

Sccencbry Code: 1sec. Froduct C lde ===---======-....:..:=: U IU pe, Pl: klÇ !

::oi.r. IINack

:>t: : r1ptlon: kYritc l1 de1crl,ilo • 1cre

A<<unrloes

Cr!.1Gt lco· ..

Prlclag lafora1111■

:iro4uct i:os::
\4zut<- 11p·

1,c:.00
D~ UG Gn," fro111 the p-.,auct lllt .

-.fali<c4-up :on:
' rcl~ht Ch~gc:

:>n,iluct Pnt!

ns-~llation T me·

n,alled Prl: e
~;- 1 def aul: l abor ral e).

D~lce l• f-ulea

:>owtr T,·pt: IN1.r. IY!

lie

s

1.5

~ J:l,OSUO
!li

Jt,120.80

J l,120 00

26 Chapter 1. The Equipment Manager software

Afcl c1-,u1,.se e-,ry;
Product Type: l,..lll_u_d-,p-e-alœ-,~,..Y .. !
Vendor; (Acme
Mode 1: ;:;(114=o=d=el:::;2::;0=:0E;::U:::;8=a.s=s===::::::;

Product Code: ~(s_kuxxx ________ ~

Creator

Figure 1.3: Addition of a product to the database

Of.ï•r1<.-•e4 III]
...) Ma19i•: @J"

r ot<J ,~anceD

Figure 1.4: Pdcing Markup

°"3mo_/\crnc.zlp Acme.0 Equlpiu:nt '1\.,nag-,1 O 1.2

Il

lan_gliacJe'. l&iiJlislljTI Currency: S

l.ul9U&ICJ

Supponcd l.ai,auaocJ: IEngllshl Tl~

l'rld■t

Cuwoacy:

l ease l errn5;

labor Raie,:

1uso l"I
1~ 1 mont1,1

-'=ID
l:IICJ
c:l]I:J

Oefault Labor Rate: IS fTl

Figure 1.5: The System Pricing panel

-- •

1.2. Overview 27

1.2.2 The product categories

As stated earlier, the Equipment Manager is a product database editor. Its

main purpose is to edit properties of all kinds of audio components. Every

component is part of a category. There are six categories, described here

below:

Loudspeakers The main category holds all loudspeakers. Loudspeakers

are devices that change electrical signals into sounds loud enough to

be heard at a distance.

Electronics This category consists of Signal Processors as well as Ampli­

fiers (which are often signal processors that also have an amplification

feature).

Sources This category lists any type of audio source: CD player, DVD,

tuner, microphone.

Controls Controls are devices like Remote Volume Control, Remote Source

Select (items that are mounted on a wall, using a wall plate, for in­

stance, away from the electronics; not items such as a volume knob on

the am pli fier i tself).

Family EQs The idea behind the concept of Family EQs is quite simple.

There is an equalization curve that improves the sound quality for a

given speaker. An electronics device applies this processing to alter

the signal as it passes through the device. A "Family EQ" refers to the

fa.et that one EQ may be suitable for more than one speaker model.

For example, three different models might all use the same EQ. Be­

cause of this, it is possible to add different loudspeaker models to an

output channel of an amplifier if they are of the same Family, and

all will sound good. If incompatible speakers were put on the same

output channel, the signal would not be processed properly for some

of the loudspeakers. So each loudspeaker has a best EQ, but each EQ

(FamilyEQ) ma.y have a list of compatible loudspeakers.

Accessories T his category holds accessories for all other categories.

28 Chapter 1. The Equipment M a nager software

1.2.3 T he pr oduct hierarchy

As shown on the left sicle of Figure 1.2, the tree hierarchy is quite similar

to the database structure. Within each category, products are sorted by

vendor names, then by model names, and finally by SKU6 numbers:

Vendor name The vendor of the product is the manufacturing company.

Model nam e The model is the reference of each product, independently

of the way this product is packaged.

SKU number T he SKU number is the identifier of the package (an SKU

number is unique per vendor only). A package contains one or more

pieces of a model, with or without accessories.

The word "product" in this text systematically refers to a package or SKU

number, which is the lowest level of the tree structure in the GUI.

One must keep in mind that there is no coordination between the vendors

to make SKU numbers unique across vendors. This means that an SKU

number can identify different products for different vendors. T he proper

key to identify a product becomes a combination of the vendor name and

the SKU number.

1.2.4 T he product properties

Regardless of the category it belongs to, every product is specified by a set

of properties. Among them, the vendor name, the mode} name, and the

SKU number. See above for the definition of these three key attributes.

A product can also be characterized by the following properties.

Cat egory T he product is either a loudspeaker, an electronics, a source, a
control, an accessory, or a family EQ.

Creator The creator is the name of the person who entered the entry in
the database.

Secon dru:y code A secondary code is used by a dealer or sales representa­

tive to identify the product according to his specifications.
6Stock Keeping Unit

1.2. Overview 29

Ite ms p er package The number of items per package represents the num­

ber of items of the model inside the package.

Color The color of the product.

D escription A brief description of the product.

Image An image illustrating the product.

A ccessories A list of accessories enumerating the accessories included in

the package.

Power type The power type of the device (70 Volts, 100 Volts, Not Appli­

cable) .

Pricing information is divided according to several attributes:

Product cost T he product cost is the cost of the product dealer or sales

representative. It is also the price at which the vendor sells the product

(to the dealer) .

M arked-up cost The marked-up cost can be computed in two different

ways: either with a mark-up or with a margin. The ma.rk-up is a

multiplier to be applied on the product cost. The margin, instead, is

no multiplier but a percentage. In a more forma! way, here is how the

marked-up cost is computed:

markedup_cost = producLcost * markup

markedup_cost = producLcost * (1 + margin/100)

The mark-up/margin value is not a product property, it is set by a

dealer for all pools of products (databases) he/she is dealing with.

That is what is called an application-level property (cf. Section 1.2.6).

This value can be set by means of the "Edit" button (on its right on

the GUI) which pops up the dialog box illustrated in Figure 1.4.

Freight charge The freight charge is a percentage of the marked-up cost

to be added to the marked-up cost. The result is the product price.

30 Chapter 1. The Equipment Manager software

Product price The product price is the price at which the dealer will sell

the product, regardless of installation fees:

producLprice = markedup_cost * (1 + f reighLcharge/100)

I nstallation t ime The installation time is the amount of time, in hours,

that it takes to install this type of product.

Labor class The (installation) labor class allows a choice between three

labor rates (price/hour). The price for each class is defined in the

"System Pricing" panel.

Installed price T he installed price is computed by the following formula:

installed_price = producLprice + (installation_time * labor _rate)

The last product properties are the technical attributes. They need to

be specified for every product in order to allow the Acme Layout Manager to

optimize system solutions. For example, a loudspeaker's technical attributes

are taps 7 , loudspeaker directivity8 , other band data9 , and so on. Since the

requirements on that topic are not stable yet, nothing has been implemented

to handle these attributes.

1.2.5 The database properties

System Pricing System Pricing defines a set of database-level pricing

information. Among them:

• the currency used for all product prices and costs,

7
Some loudspeakers have a built in transformer device with a switchable power setting.

For example, a loudspeaker may have 1, 2, 4 and 8 Watt taps. This means that the
loudspeaker will be roughly 8 times more powerful when set to the 8 Watt tap than the
1 Watt tap. Taps are used when loudspeakers in an audio system need t o play sound at
different power levels.

8Loudspeaker directivity is an indication of how directional the loudspeaker is, or to
look at it another way, how effective the speaker is at taking t he sound it produces and
sending it in one particular direction instead of all directions.

9The set of band data (sensitivity, efficiency, power, etc.) determines the contribution
of a loudspeaker at a given location and orientation in space to a given listener location.
One can accumulate t he contribut ions of ail loudspeakers to get an idea of the quality of
sound for a listener.

1.2. Overview 31

• the lease t erms: If a customer does not want to pay the purchase

price for the system, he/she may be given the option to lease the

system at a monthly fee. The fee is a fraction of the system price,

paid monthly, for a set number of months.

• a set of three labor ra tes (A, B, C) for the installation of the device,

• the default labor r ate,

• and a m iscella n eous hard ware charge to be added to the product

price. It includes wiring costs among others.

A vailable languages The user may choose a list of supported languages

for the database in use. This list is a subset of the list of languages supported

by the application.

Version number A database version number is useful to handle structure

changes and to develop backward-compatible10 applications.

1.2.6 Application-specific properties

Application-specific properties, or user settings, will be managed by a pref­

erences subsystem. This type of subsystem is covered by Chapter 5. Prefer­

ences that need to be defined in the Equipment Manager are the following:

A vailable languages The application holds a list of supported languages

at the application level. The user selects languages within this list that need
to be supported by the edited database.

Default values T he Equipment Manager needs to offer to save default

values for each product-related properties. The purpose of saving default

values is to speed up the product mass addition process.

Mark-up type As mentioned in Section 1.2.4, the mark-up type can be

of two forms: a mark-up or a margin. The mark-up is a multiplier to be

applied on the product cost in order to compute the resulting marked-up

10 An application is backward-compatible if it can read and handle previous/obsolete
versions of documents it has produced.

32 C hap ter 1. The Equipment M anager software

cost. The margin, instead, is no multiplier but a percentage. Application

settings store both the mark-up type and its value.

1.2. 7 Features to be implemented

Mult i-langu age capabilities The edited database will need to be shipped

to dealers and sales representatives all over the world. Data like mode! names

or product description are language dependent. The Equipment Manager

needs to allow users to edit the products in their native language.

Application preferences panel An application preferences panel11 is

required to define each application-specific property (cf. section 1.2.6).

1.3 Constraints

Datab ase readability by t he A-8 software suite The most important

restriction that the Equipment Manager needs to consider is to be fully

compatible with the other tools of the A-8 suite. Typically, the format of

the produced database has to be known by any tool willing to read it. Acme

Configuration Manager and Acme Layout Manager are the first targets. The

choice of the database format will be discussed in Chapter 6.

Backward-compat ibility The application is required to handle database

structure changes. It should be able to read any version of the database,

whether the structure is up-to-date or not. The database version number

identifies the structure and helps the application to deal with different struc­

ture definitions.

1.4 U sed t echnologies and m ethodologies

During the development of the Equipment Manager, several choices about

the right technology to use or the most efficient methodology have been

made. As will be shown later on, these choices are tremendously important

for the success of a product. Here is a detailed list of the choices that have

been made.

11Not to confound with database-level preferenccs

1.4. Used technologies and methodologies 33

1.4.1 Technologies

XML and XML Schemas For many reasons12 , XML has been used in

almost every subsystem of the application, from the GUI to the persistence,

passing by storage of application settings. This file format provides great

flexibility and reusability at every level. XML Schemas13 were used to define

the database structure, as well as generating abjects with the help of the

Castor Source Generator.

Castor XML Source Code Generator Castor is an open-source project

of the Exolab organization. Its Source Generator creates a set of Java classes

which constitutes an object model for an XML Schema, as well as the neces­

sary Class Descriptors used by the marshaling framework to obtain informa­

tion about the generated classes. This process is fully covered by Chapter

5. In the case of the Equipment Manager, objects generated by the Castor

Source Generator are business objects for the business model (See Chapter

3), preferences serializer (See Chapter 5), or database serializers objects (See

Chapter 6).

BML The Bean Markup Language (BML) is an XML-based component

configuration customized for the J avaBean component mode! 14 . This tool is

very handy to define and generate graphical user interfaces. (See Chapter

4)

J2SE T he Equipment Manager is implemented in J ava from A to Z. The

reason for this is to make it available on several platforms.

Together ControlCenter Together Contro!Center is a CASE tool which

supports several programming languages such as Java, C-H-, C#, CORBA

IDL, Visual Basic, and Visual Basic .NET. It also provides support for

common software design tasks. The modeling tool always keeps its source

and mode! diagrams in sync. It is a true architectural guide, revealing the

physical and logical layout of a project. Dozens of Sequence Diagrams, Use

12T hese reasons will be discussed in Chapters 3 through 6.
13See http: / /"w',TT,1. w3. org/XML/Schema for more information about XML Schemas
14See http://www. alphaworks. ibm. com/tech/bml

34 Chapter 1. The Equipment Manager software

Cases, Class Diagrams and Robustness Diagrams15 have been produced by

us with tlùs tool during the design phase of the development.

CVS CVS is the Concurrent Versions System, a tool to manage versioning

in any kind of project, from individual developers to large and distributed

teams. More than keeping track of the history of every file, CVS also helps

developers avoid overwriting each other's changes in the same files. Finally,

CVS stores all files of a project in one centralized repository, which promotes

good organization and makes back-ups easier.

1.4.2 Methodologies

Throughout the development of the Equipment Manager, business analysts

endeavoured to follow the "Unified Software Development Process"
phases as defined by [JBR99] . As a reminder, these are

1. Use Cases

2. Analysis

3. Design

4. Deployment

5. Implementation

6. Testing

Along with the Unified Process, many concepts have been analyzed and

formalized according to the UML16 representation, using Sequence Di­
agrams, Class Diagrams or Robustness Diagrams.

As for the design and implementation phases, business analysts have re-­

lied heavily on Design Patterns 17 as generic solutions to recurrent prob­

lems. Solutions provided by this key methodology will be exposed through­

out this text.

15See Appendix A for more details on UML
16

Unified Modeling Language, see Appendix A for more details on UML
17See Chapter 2 to know more about the motivations of this choice

1.5. Globa l Architecture 35

1.5 Global Architecture

This section will give a global view of the architecture of the Equipment

Manager. There is no intention to motivate any choice made by the devel­

opment team. The situation will be presented as such, and will be motivated

and discussed in the following chapters.

The Equipment Manager project is divided into six modules. The Equip­

mentüverview and EquipmentEdition modules are the GUI modules.

Equipmentüverview handles everything that is related to the tree repre­

senting the structure of the database. EquipmentEdition takes care of the

edition of product properties. Another subsystem, the Product Data sub­

system, contains the business model of the application. It holds all the

information and manages it with a cache system. The Preferences subsys­

tem is in charge of storing user settings. The ApplicationFramework is

a reusable framework, common to every application of Acme Corporation,

that controls the frame of the GUI and other generic GUI components. Last

but not least cornes the Persistence module. This subsystem is responsible

for all interactions with the database.

Figure 1.6 shows a Robustness Diagram representing the splitting up of

the application into subsystems. Every column pictures a subsystem. Sub­

systems are organized in four logical layers (View, Application, Domain,

Persistence), the horizontal divisions. This diagram shows all the abjects,

while showing to what subsystem and logical layer they belong.

Subsystems are wanted to be independent of each other. There should

be no link (coupling) between one another. Basically, they should not know

about the existence of any other subsystem. All the coupling lies in the

Mediators. The Mediator is just one of the numerous Design Patterns

used in the described architecture. "Design Pattern-oriented Subsystems"

will be studied carefully in the following chapters.

1.6 Summary

This chapter presents the Equipment Manager software, for which both of

us were responsible during our internship at Acme Corporation. The ap-

36 Chapter 1. The Equipment Manager software

plication has been situated in its context: the set of four products of the

A-8 Suite. An overview in depth of the software and the major concepts

that it is based on has been provided. The chapter then exposes the cho­

sen technologies and methodologies that were used to achieve such a goal.

Finally, one will find an overview of the global architecture of the software

and a brief explanation as to how this system was split into six independent
software subsystems.

1.6. Summary 37

ûJ

Figure 1.6: Architecture of the Equipment Manager

Chapter 2

Design Pattern-oriented

Subsystems

The purpose of this chapter is to define what is hidden behind fondamental

concepts of software engineering such as subsystem and Design Patterns and

how using Design Patterns can improve the conception of subsystems. First

the general ideas about subsystems will be exposed: what they are, and

why they are useful. Then, this chapter will offer a glance at the separation

into subsystems of the Equipment Manager. Each subsystem will be briefly
described.

The main concept of this chapter will then be studied: Design Patterns.

After a short definition, the reason for their existence will be discussed.

The link between these two concepts will be explained afterwards, when the

structure of a general subsystem has been thorougbly covered.

2.1 Subsystems

2.1.1 Motivations

At first, it must be shortly explained what subsystems are. A subsystem is

a semantically useful grouping of classes or other subsystems. It is therefore

a set of objects working together, that can be considered as a separate en­

tity. Subsystems are an application of the well-known "<livide and conquer"

principle: it is much easier to <livide a big problem into smaller in order to
handle it.

39

40 C ha p t er 2. D esign P attern-oriented Su bsyst e m s

For this reason, subsystems are used a lot in software architecture. One

of their main advantages is to make architecture more reusable. In an appli­

cation, a subsystem that has been built in an appropriate way can be used

by any another application that needs the same operations to be clone. The

only thing left to do is to link the subsystem to the application, so that it

is known by the application. T his point will be discussed la ter.

In addition, using subsystems can lead to a more robust architecture,

that accommodates better changes. For example, when an application needs

a connection to a device, ail the work and the specific operations necessary

to deal with this connection can be put in a separate subsystem, which can

be called the Connection subsystem. If the device radically changes or if

another kind of connection to the device has to be supported, the only thing

has to be changed is the Connection subsystem, and not the rest of the code!

This is always true if another dcvice is added.

Dividing a system into subsystems increase the modularity of that sys­

tem. It is decomposed into smaller ent ities, easier to handle. It also facil­

itates the team work: each developer does not work on the same module

and the tasks distribution becomes easier. In addition, modularity makes

testing easier : each module can be tested separately from the others.

Besicles reusability, modularity and robustness, other advantages can be

underlined, such as a better legibility and clarity, which can be useful in case

of debugging.

2.1.2 D escription of t he Equipment Manager subsystems

Now a short overview of the different subsystems of the Equipment Man­

ager will be given. The Equipment Manager counts six of them: two GUI

subsystems (Overview and P roduct Edit ion), one Business subsystem, the

Preferences subsystem, the Ftamework subsystem and the Persistence sub­

system.

2. 1. Subsystem s 4 1

A) The GU I subsystems

Three subsystems are in charge of the GUI: the Product Edition subsystem,

the Overview subsystem and the Framework subsystem. The GUI subsys­

tems will be treated in Chapter 4.

The P roduct Edition subsystem The purpose of the Product Edition

subsystem is to edit all the properties of a product. In other words, it shows

on the screen all information about a product, an abject, etc. and allows

the user to modify them. It is obviously highly reusable. It can in fact

be used in every application in which some properties of an abject have to

be edited. The edited product corresponds to the selected product in the

Overview subsystem.

In the case of the Equipment Manager, the edited properties are in­

formation about products, like the product code, the model na.me or the

colour.

The Overview subsystem This subsystem is responsible for showing all

the products of the data.base opened by the Equipment Manager depicted

as a tree. Only one product can be selected at a time. The user selects

a product to edit and all its properties are edited in the Product Edition

subsystem. T he information displayed in the Product Edition depends on

the type of product selected.

Division into two separate subsyst ems instead of one An important

question can be raised at this point. Why is the graphical interface handled

by two subsystems? Don't they depend on each other? They actually do,

even if they are totally separated. The edited product in the Product Edi­

tion is actually the selected product in the Overview and what is displayed

depends on the type of product selected. The design of the Equipment Man­

ager has been thought of in terms of reusability and resistance to changes,

whatever they might be. So, both of the GUI subsystems can be reused

separately, because they are not coupled in the way they are conceived.

Each time some information about an abject needs to be edited, the P rod­

uct Edition can be reused, with only a few modifications to integrate it into

the application. And each time a tree overview is needed, the Overview

42 Chapter 2. Design Pattern-oriented Subsystems

meets the expectations too. Moreover, what if it is decided to change the

presentation of the overview of the database in the Equipment Manager?

One can imagine, for example, that a tree becomes totally old-fashioned.

The change is quite easy to make: only a part of the Overview has to be

updated, but that is all! No need to change anything in the Equipment

Edition. Of course, there must be some interaction between the Product

Edition and the Overview. The question of the communication between two

independent subsystems will be covered in Section 2.3.2).

B) The Product Data subsystem

This subsystem is the true business of the application, since it deals with

the actual products coming from the database. It is also called the Business

subsystem. The Product Edition does not need to know the type of product ,

it only knows a set of properties, and the Overview knows a sort of generic

type. It plays the role of cache for the database. It is the only one to

know the persistence subsystem, through an interface. This way, the rest of

the application does not know the persistence but only the Product Data

subsystem. Chapter 3 will look into Business subsystems.

C) The Framework subsystem

Its only purpose is to extend some classes of a framework, in order to deal

with the behaviour of the main frame, the way files are opened, checked and

saved. This subsystem will not be exposed in this study since it is beyond

the scope of this study. Indeed, this framework is common to other Acme

applications, such as the Acme Installer, the Acme Layout Manager (cf.

Chapter 1) , which must complete this framework so that they have common

policies and behaviour for their main windows, etc. It is thus totally Acme­
dependent.

D) The Preferences subsystem

The Preference subsystem allows the user to fix some application-dependent

variables. Application-dependent means that, once fixed, these values will

not change, whatever database is opened. It has to be distinguished from

database-dependent. These values are, for example, the different languages

supported by the Equipment Manager, the information about the markup

2.1. Subsystem s 43

in the pricing system, etc. It offers also the possibility to define some default

values for some properties of products: if present, all the products will have

the same default values. T his will be studied in Chapter 5.

E) The P ersistence subsystem

The persistence subsystem is responsible for storing data in a permanent

way. Moreover, such a module is required to be able to retrieve, query, and

update information. To bring these requirements to life, a persistence sub­

system can rely on a database, but also on a custom-made system.

A persistence module should be used as a service. Clients will request

to store or retrieve data to an independent service, working as a black box.

This ensures that the subsystem is fully reusable for any other application.

Chapter 6 covers in depth this type of module. It also explains the

specific implementation used for the Equipment Manager.

2.1.3 Illustration

Figure 2.1 shows the robustness diagram of the Equipment Manager. In

this diagram, the division into subsystems (see the vertical lines clearly

distinguishing them) and layers is illustrated. Moreover, ail components

are shown. These components will be detailed below. Principles of layered

architecture can be found in Appendix B. Even if it cannot describe the

whole design of the application, this diagram is still a very good and useful

overview of the architecture of the application. It also enables to see at first

glance "who knows who", meaning which component knows about which
other.

44 Chapter 2 . Design Pattern-oriented Subsystems

[]

[l

Figure 2.1: Architecture of the Equipment Manager

Application Framework

,
Equlpmentl\tana erframS'WOrlMew

,
EqufpmentManagerFrameworkConlroller 6- --r-

,
EqulpmentMan gerFrameworkCommaMSet

,
EquipmenWanagerFrameworkModel ,

PerslstenceModel1

,
Pers1s1enceoatabase1

Persistence

,
PerslstenceMoaeI2

,
PerslstenceOatabase2

Q ,
PerslstenceData0ase3

1 VlewLayer '::'i

1 Al)plicabon Layer '",

1 Domain Laver '",

1 Persistence Layer '",

en
s::
O'
{/J

«
{/J
c+
('!)

:3
tll

46 Chapter 2. Design Pattern-oriented Subsystems

2.2 Design Patterns

The term "pattern" was first use by an architect: Christopher Alexander.

"Each pattern describes problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem,

in a such way that you can use this solution a million times over, without

ever doing it the same way twice." [AIS+77j Even if he was talking of an

environment of buildings and town, what he said about patterns stays true

in software development.

Design Patterns have been designed in order to prevent the wheel being

invented over and over again every day. They capture the collective experi­

ence of many skilled software engineers. Every Design Pattern describes a

recurrent problem and the core of the solution. A Design Pattern is made

up of four fondamental elements: [GHJV95]

Name Naming each Design Pattern makes communication much easier,

between people, in documentations, etc. It is always easier to talk

about something that has a name everyone agrees on. Each Design

Pattern must thus be named for future reference and use.

Problem It explains briefly the problem and its context and thus points

when to apply the pattern. In some cases, there is a list of conditions

that must be satisfied before applying the pattern.

Solution As expected, the solution is made of the elements of the design,

the relationship they have with each other, their responsibilities and

collaborations, etc. It is important to underline the fact that the

suggested solution is never a concrete design or implementation. Oth­

erwise, it would not be generic and reusable! The solution consists in

an abstract design - a configuration of collaborating objects that have

to be adapted to the real situation - and how the elements it is made

of collaborate to solve the initial problem. It means that it is possible

to use the given solution a million times, but never exactly in the same

way. The given solutions are the result of years of experience, and are

therefore well-proven. They are furthermore presented in a short, easy

and understandable form.

Consequences definition In this section, the consequences of the applica-

2.3. Using Design Patterns in the conception of subsystems 47

tion of the described pattern are explained. Ail the advantages, but

also the drawbacks of using the patterns are discussed (flexibility, ex­

tensibility, portability, etc.). It is a kind of benefits/ costs analysis.

In addition, with the description of a Design Pattern, a short example,

with a sample of code is almost always given .

The kind of problems captured in Design Pattern are very frequent for

someone designing architectures for software applications. This way these

problems have been treated many times, leading to the elaboration of elegant

and effective solutions, which are Design Patterns. Each pattern focuses on

a specific object-oriented design problem.

Because they offer an easy, well-proven and powerful solution to recur­

rent problems in object-oriented design, because they capture expertise and

make it accessible to non-experts, because they are well defined and contain

their own advantages and drawbacks, because their solutions are 1'high-level"

enough (at the object composition level) and can be used a thousand times

but never exactly in the same way, for all these reasons, Design Patterns

have proven that they are more than relevant and that no object-oriented

designer can afford to ignore them ...

The use of Design Patterns is not restricted to the object-oriented do­

main. They are present in solutions for distributed systems, as well as in

security issues (security Design Patterns).

2.3 Using Design Patterns 1n the conception of

subsystems

How the different subsystems are built, and how it is possible to use Design

Patterns to improve their architecture will be now covered. One will take a

look here on how the components of a subsystems are created. This subsys­

tem will be called S, to make it simple (cf. Figure 2.2). The components are

represented under the shape of a tree. Each component initiates the com­

ponents placed below itself. The most important elements of a "classical"

subsystem are described, but the View. Actually, the View is created using

the BML compiler, but this is deeply covered in Chapter 4. Most of the

48 Chapter 2. Design Pattern-or ient ed Subsystems

subsystems in the Equipment Manager are built this way. The application

creates the Façade of the subsystem. After that, the Façade is in charge of

creating everything the subsystem needs to work properly. The Mediator is

used for the communication with the application or with other subsystems.

These Design Patterns (the Observer, Mediator and Façade) will be tackled

one by one in the following sections, as well as the benefits their use brings.

--->~ : creates

Application $Façade

SController SModel

Figure 2.2: Creations of the subsystem's components

2.3.1 The Observer pattern

Mot ivation

It would be wise to not build a whole system or a subsystem as a single and

monolithic object that does everything on its own. That would not respect

the philosophy of object-oriented programming. If one imagines now that it

is possible to write such a system composed of only one single class. This

class would be so huge, and thus impossible to understand and maintain.

Every system is actually a set of objects which collaborate with each other.

Partitioning a system (or a subsystem, it does not make any difference) into a

collection of cooperating classes has an obvious side effect: the consistency

of the system has to be maintained all the time. Using strong coupling

between objects in order to ensure consistency is not a good idea: it goes

2.3. Using Design Patterns in t he conception of subsystems 49

in the opposite direction of reusability - objects that are coupled together

cannot evolve on their own without affecting other objects - which is a very

important criterion to validate an architecture.

Participants

The Observer pattern has been introduced for this purpose. It defines two

types of components: subjects and observers. A subject can have several

observers. All the observers of a subject are notified when the subject un­

dergoes a change of state. Each of these observers will afterwards query

the subject to synchronize its state with the state of the subject. This kind

of interaction is also well-known as publish-subscribe. T he reason for this

name is quite simple: the subject publishes a change of state in order to

notify its observers without having to know a single thing about them. And

the observers have to subscribe, so they receive the notifications from the

subject. If an object is able to notify other objects without making any as­

sumptions about who these objects are, it means that they are not coupled.

There is only an "abstract coupling" between the subject and the observers:

the subject keeps a list of observers which respect the Observer interface.

The most famous application of this pattern is what is called the Model­

View-Controller (MVC). Generally, the Controller, or a subclass of it, plays

the role of the Observer, listening to the changes of the Mo del or the View

(the Subjects), updating the other accordingly. The Model can be considered

as a "picture" of the View. The View is constituted by what the user is

presented on the screen. The Model is part of the domain layer, the View

part of the presentation layer and the Controller, part of the application

logic layer. The name Model-View-Controller is sometimes even used, in an

abusive way, for the Observer appellation.

Consequences

This pattern (and its application in a MVC) allows multiple Views of the

same Model to be presented. [BMR+96] An observer can indeed listen to

several subjects or propagate updates to several objects. In the case of dif­

ferent Views sharing the same Model, the Controller listens to the unique

Model and can update all the Views or listen to the different Views and

modify the Model and the other Views if a View has been changed. It is

50 Chapter 2 . D esign Pattern-oriented Subsystems

important to realize that these Views are synchronized. This process might

be very useful when various users have different expectations or opinions
about the presentation of the same data.

Applying the Observer pattern implies of course some drawbacks. Here

is the most bothering. Sorne unexpected updates might happen. Observers

have indeed no knowledge of each other's presence and a little change to

the subject - even if it looks totally harmless - can lead to a real cascade of

updates to observers and their objects.

interface
Subject

+ removeObserver0 :void
+ noti(y0:void
+ addObse,ver0 :void

AbstractSubject

-observerslist:List

+removeObserverO:void
+notifyO:void
+addObserverQ:void

ConcreteSubject

-subJectstate:int

+getSubjectStateO:void
+setSubjectStateO:void

O .. "

interface
Observer

+ update0 :vold

6
1

1
1

1

1

1

ConcreteObserver

-observerState:int

O .. " +updaleO:void

P observes

Figure 2.3: Observer's class diagram

Figure 2.3 shows the classes taking part in the Observer pattern. Now

that the observer knows that its subject has changed, it can update its own

2 .3 . Using D esign P atterns in the conception of subsystems 51

state or reflect this change on another object that it knows, like a Mediator

(see Section 2.3.2) would do. Doing this ensures the consistency of a sys­

tem. Every change of state of an object has to be useful. An object that has

nothing to do, that nobody knows about or needs does not have its place in

the (sub)system. On the other hand, each modification to a useful object

cannot be lost, otherwise the application would not be consistent. As stated

previously, the Observer pattern is thus a way to ensure consistency with

low coupling between abjects. The observer is warned in case of the change

of one of its subjects, knows exactly what has changed and can reflect it on

its own state or other abjects. The following sample of code shows how an

observer reflects a change coming from a subject to another object.

1 privat e class ProductEditionModelEventHandler

2 implements PropertyChangeListener {

3

4 public void propertyChange(PropertyChangeEvent e) {

5

6

7

8 if (propertyName.equals(ProductEditionModel.

VENDOR_NAME_PROPERTY)){

9 String newValue = productEditionModel .getVendorName();

10 String oldValue = (String)e.getOldValue();

11 if (oldValue !=null && !oldValue.equals(newValue)){

12 vendorName.setîext(newValue);

13 vendor .setîext(newValue) ;
14 }

15

16

17

18 }

19 }

The class P roductEditionModelEventHandler is an inner class of a class

named ProductEditionController. This Controller acts as an observer: it

adds one of its inner class to the listeners of an abject, the ProductEdi­

tionModel in this case. When the vendor name property in the Madel is

52 Chapter 2. Design Pattern-oriented Subsystem s

changed, the Controller, as an observer, sees it and knows the new value of

the property. The Controller updates another object by setting its vendor

name property to its new value. This is how every GUI is updated in the

Equipment Manager. The vendor name field cornes from the interface and
is a text field.

0,
productEditionModel productEditionCorrtroller productEditionGUI

1 1 1
1 1
1 1

.1: firePropertyChange<yENDOR_NAME_PROPERTf, old, vn)

1 1
1.1 .1: new PropertyChan~eEvent(thls, V _N_P, old, vn)I

1
1

1.1.2· propertyChange(evr3nt) 1

1.1 .2.1: vn = event.getNevtValue0

Figure 2.4: Model-View-Controller: Sequence Diagram

Figure 2.4 illustrates the change of the vendor name property in the Pro­

ductEditionModel, reflected on the GUI by the ProductEditionController.

The Model-View-Controller thus maintains consistency within a (sub)system,

through the diff erent layers. The Controller, part of the application logic

layer, is responsible for maintaining both the Model (domain layer) and the

View (presentation layer) up to date.

2.3. Using Design Patterns in t h e conception of subsystems 53

2.3.2 The Mediator pattern

Presentation

M otivation A Mediator is an object that encapsulates how a set of ob­

jects interact. The purpose of this object is to avoid that each object knows

his neighbour; this way, objects do not refer to each other explicitly. Medi­

ators go in the direction of loose coupling between objects.

Participants Figure 2.5 presents the classes that are part of the Media­

tor Pattern. Each colleague knows its Mediator and communicates with it

whenever it would have otherwise done it with one of its colleagues. The

Mediator knows each of its colleagues and is in charge of maintaining them.

It implements cooperative behaviour by coordinating colleagues.

Medlator Colleague
-

::. "\

1
Concrete Medlator Concrete Colleague 1

- Concrete Colleague 2

1 - Concreto Colleague 3

.

Figure 2.5: Simplified view of the Mediator

"Application history"

In the S subsystem, the only purpose of the SMediator is to interact, to

communicate with other subsystems. It does not make sense to have it if

the S subsystem is alone. Communication is the real purpose of this object.

This pattern is not applied directly as explained in [GHJV95] (cf. Section

2.3.2). It has been adapted according to the circurnstances it is used in. It

absorbs the coupling between the Models in the domain layer that belong

to separate subsystems.

54 Chapter 2. Design Pattern-oriented Subsystems

a) First draft of architecture This example will illustrate at the same

time the benefits it is possible to obtain by separating programs in adapted

subsystems and the way a Mediator works. This example will be based on

the Equiprnent Manager. The utility of the Observer pattern and its appli­

cation (Model-View-Controller) has already been discussed in Section 2.3.l.

Figure 2.6 shows the very first possible architecture of the Equiprnent Man­

ager. The Application View contains everything that is shown on the screen

View Layer

Application Layer

Domain Layer

Figure 2.6: First draft of a part of the Equipment Manager's architecture

(every window) , the Application Model is a sort of "picture'' of the appli­

cation, meaning that it is a record of the state of the Equipment Manager.

The Controller links the View to the Model and makes these two interact.

What happens now if it is decided to make some modifications to the

application? The code of a product, called product code or SKU, can be

represented either by a string or by an integer. Just for this srnall change,

the Model and the Controller need to be updated. Worse: is there any way

to reuse the GUI of the Equipment Manager in a totally different application

that also needs to edit the properties of a set of products or so on? T hat

definitely sounds very hard to do. It could be feasible if the View had its

own Model (separate from the application Model) reflecting the state of the

GUI. This way, every single change made by the user in the GUI would be

instantly reflected in the View Model. A separate subsystem (a GUI sub­
system) is slowly appearing. (see Figure 2.7)

2 .3. Using D esign Patterns in the conception of subsystems 55

The GUI subsystem is clearly independent from the application; this

means that it can be reused. Each time a set of products, clients or other

having different properties has to be shown on the screen, the GUI subsys­

tem can be used with only a few modifications.

There is, however, a primordial difference between the two Models, called

Application Model and View Model (or GUI Model). If the GUI Model

contains every single piece of information that is displayed on the screen, the

application Model itself only holds what is relevant at the application level.

The example of the information about the pricing system of the Equipment

Manager is a perfect example to illustrate this principle. The user cannot

only see the cost of the selected product, but also some additional costs,

such as the freight charge. It is trivial that the installed price cornes from

the addition of the initial cost and all the other costs. This price can thus

be deducted from the cost and all the extra charges. The GUI Model will

contain all information, such as the cost and ail the charges, but also the

installed price. On the other hand, there is no t race of the installed price in

the application Model because it is irrelevant at the application level, this

price being deductible from other properties.

GUI SUBSYSTEM APPLICATION

View Layer

Application Layer

Domain Layer

Figure 2.7: Part of Equipment Manager's architecture: second version

56 Chapter 2. D esign Pattern-oriented Subsystems

b) Division in two GUI subsystem s Obviously there is something

missing in this architecture! There is absolutely no way for the two sub­

systems to communicate, implying that none of the modifications made by

the user through the GUI will be reflected in the Application Model. This

lack of communication causes incoherence between the Application Model

and the View Mode!. That is why a Mediator will be introduced.

But first it is possible to make a subtler division in subsystems. As

explained in Section 2.1.2, we can separate the GUI subsystem into two in­

dependent subsystems, each of them with a different aim. This division is

made vertically: instead of one single GUI subsystem, there are two of them,

each being respectively divided into layers. Horizontally division refers to

layers.

The first subsystem, called Overview, presents and displays all the prod­

ucts of the database, in the shape of a tree in this case. The second one,

named Product Edition, has the responsibility to show on the screen ail the

properties of a product. This division is needed for reusability and resistance

to change. Each time an application will have to enumerate elements of a

set, the Overview can be taken and adapted. And when a list of properties

of an object, a product, etc. needs to be displayed, the Product Edition

is a good candidate. Each of the GUI subsystems can be easily reused in

a large set of different applications. F\irthermore, in terms of resistance to

change, we can decide to change the way either the Overview or the Product

Edition work. For the Overview, it can be decided that a tree is no longer

appropriate. The P roduct Edition will know nothing of the changes in the

Overview, and reciprocally. It is in fact possible to add or remove properties

of a product without having to make a single change in the Overview. (cf.

Figure 2.8)

c) Communication At this point one can resolve the problem of com­

munication between subsystems by introducing Mediators. The principal

difference with the GoF pattern is that in the subsystem S, none of the

components knows the SMediator. In the GoF pattern [GHJV95], each ab­

ject collaborating with the Mediator holds a reference to it. At first, the

communication between the Overview and the application will be discussed

2.3. Using Design Patterns in the conception of subsystems 57

OVERVIEW
SUBSYSTEM

Overview Model

PRODUCT
EDITION

SUBSYSTEM
APPLICATION

View Layer

Application Layer

Domain Layer

Figure 2.8: Part of Equipment Manager's architecture: third version

and illustrated by Figure 2.9. The problem will be examined in more details

subsequently.

OVERVIEW
SUBSYSTEM

APPLICATION

View Layer

Application Layer

Domain Layer

Figure 2.9: Equipment Manager's architecture: introduction of Mediators

The Overview Mediator is part of the Overview subsystem. It is the only

component of the subsystem that cannot be reused in other applications. It

is actually application-dependent because it is responsible for the commu­

nication between the subsystem and the application. So, if the Overview is

reused, the Overview Mediator will have to be totally rewritten.

58 Chapter 2. Design Pattern-oriented Subsystems

The Overview Mediator listens to t he Overview Model and the Applica­

tion Model, with the mechanism of listeners, exposed in Section 2.3.l. Here

is a sample of code, showing how the Overview Mediator handles a change

of property (in this case, the user of the Equipment Manager selects another

product in the tree or reciprocally the Application Mode] bas changed and

the Overview Model has to be updated).

1 public class 0verviewProductDataModelMediator {

2

3

4

5 11---+
6 Il Private inner classes

7 11---+
8

9 I**
10 * This class is a listener to a 0verviewModel.

11 *
12 ••I
13 private class 0verviewModelEventHandler implements

PropertyChangeListener {

14 public void propertyChange(PropertyChangeEvent event) {

15 String propertyName = event.getPropertyName();

16

17 if (propertyName .equals(0verviewModel.

SELECTED_0BJECT_PR0PERTY)) {

18 0bject o = event.getNewValue();

19 if(o != null) {

20 if(o instanceof 0verviewController.0bjectWrapper) {

21 0verviewController.0bjectWrapper value=

22 (0verviewController.0bjectWrapper)event.

getNewValue();

23 List edited = value.list;

24 int size = edited.size();

25 ProductKey[] edt = new ProductKey[size];

2.3. Usin g Design Patterns in t h e conception of subsystems 59

26

27

28

29

30

31

32

33

34

35 }

36 }

37 }

38 }

39

}

for(int i = 0; i < size; i++) {

ProductKey p = (ProductKey)edited.get(i);

edt [i] = p;
}

if(edited != null) {

table.put(edt,value);
}

productDataModel.setEditedProductKeys(edt);

40 //---+
41 //---+

The inner class declared in line 13 is a listener to the Overview Model.

When the selected object in the Overview Model changes, the Overview Me­

diator knows it and reflects this change on the Application Model (called

here ProductDataModel, line 33) after a few operations (line 18 to 32).

42

43 f**
44 * This class is a l istener to a ProductDataModel.

45 *
46 **I
47 private class ProductDataModelEventHandler

48 implements ProductDataModelListener {

49

50 public void propertyChange(PropertyChangeEvent event) {

51 String propertyName = event.getPropertyName();

52

53 if(propertyName.equals(ProductDataModel.

EDITED_PR0DUCT_KEYS_PR0PERTY)) {

54 ProductKey[] selected = (ProductKey[])event.getNewValue();

55 if(selected ! = null) {

60 C h apter 2. D esign Pattern-oriented Subsystems

56 if(table . containsKey(selected)) {

57 OverviewController . ObjectWrapper objectWrapper

58 (OverviewController.ObjectWrapper)table.

get(selected);

59 overviewModel.setSelectedObject(objectWrapper);

60 }

61 }

62 }

63 }

64

65

76}

The inner class declared in line 47 is a listener to the Application Madel

(named here ProductDataModel). When the edited abject in the Applica­

tion Model changes, the Overview Mediator knows it and reflects this change

on the Overview Madel (line 59) after a few operations (line 54 to 58).

The Mediator is thus responsible for reflecting the changes of one Model

on the other. With the mechanism of listener and properties, when a prop­

erty changes in a Madel, an event is raised (propertyChangeEvent) and is

treated by the Mediator. It identifies the source of the event and reacts

accordingly. The Mediator is a kind of link between properties of Models.

It knows which property to change (and how) in which Mode! when a cer­

tain property of a given Madel is modified. A simplified sequence diagram

illustrates the use case when the user selects another product in the tree (cf.

Figure 2.10) .

The solution can be extended to as many subsystems as necessary. Fig­

ure 2.11 shows how it looks with the application, the Overview subsystem

and the Product Edition subsystem. The way the Mediators are placed is

important. There is no Mediator between the Overview subsystem and the

Product Edition subsystem. This is not an omission. The communication

will still be possible between the two GUI subsystems: each property that

is changed in the Overview is transmitted to the Application Madel and

conversely. This is also true for the Product Edition subsystem. The Ap­

plication Madel is updated by the Product Edition Mediator as soon as the

2.3. Using Design Patterns in the conception of subsystems

□□□□ 1: selSelectedProduqt(sp) t

OVERVIEW
SUBSYSTEM

1 1
. : ftrePropertyCh~nae(SELECTED_OBJECT_PROPER'IY,old,sp)

1 '
1 '

1. 1.1 . new Prope hangeEvenl(lhls,S_O_PR PER'IY,old,sp

1
1

, .1.2: •1a11 nstenenl) propertvChanae(eveno

1 .1 2.1 · propert';'Name" g tPropertyNameO

1

1 .1 2.2: newValue = getN
I

atueo

1
1.1.2.3: setEdltedProduct(ewValueJ

Figure 2.10: Select Product Sequence Diagram

PRODUCT
EDITION

SUBSYSTEM
APPLICATION

View Layer

61

Application Layer

Domain Layer

Figure 2.11: Part of Equipment Ma.nager's architecture: last version

Product Edition Model changes, and the opposite is also true. Introducing

a Mediator between the two GUI subsystems would not make any sense and

would be equivalent to adding redundancy.

62 Chapter 2. Design P attern-oriented Subsystems

At first glance these updates seem to continue indefinitely: when the

Overview Model is modified, the Overview Mediator changes the Applica­

tion Model, the P roduct Edition is thus updated by the Product Edition

Mediator. The Product Edition Model has changed, the Application Model

has thus to be modified, and so on. They will stop eventually. When a

Mediator receives an event, it checks if the old value of the property is the

same as the new one. If it is the case, nothing has actually been modified.

The Mediator thus will not propagate anything.

The introduction of Mediators brings a lot of advantages, they allow and

simplify the communication between subsystems, they abstract how objects

interact. But, on the other hand, they also present some drawbacks, no

solution can be perfect . . . Mediators centralize control; complexity in Medi­

ators is preferred to complexity of interaction. Such a complexity can make a

Mediator itself a real monolith that is very hard to maintaiu and understand.

Furthennore, this architecture witb separate subsystems interacting to­

gether t hrough Mediators implies a lot of communication. As shown in

OVERVIEW
SUBSYSTEM

PRODUCT

EDITION
SUBSYSTEM

APPLICATION

View Layer

Application Layer

Domain Layer

Figure 2.12: Communication increased with Mediators

Figure 2.12, changing selected product implies a lot of events and listeners.

One single change in the Overview GUI bas repercussions on the Overview

Model, thrnugh the Overview Controller. The Overview Mediator, listen­

ing to every modification of the Overview Mode!, updates the Application

Model in order to keep it accurate. The Application Mode! has tbus just

been modified. Two Mediators are listening to this Model: the Overview

2.3. Using D esign Patterns in the conception of subsystems 63

View Layer

Application Layer

Domain Layer

Figure 2.13: Communication in the first draft of architecture

Mediator and the Product Edition Mediator. Nothing happens to the first

of them but the second keeps the P roduct Edition Mode] up to date by

changing some of its properties. The Product Edition Controller just bas to

bring the changes to the GUI level and the properties of the new selccted

product are shown to the user.

ln the case of the first draft of the Equipment Manager's architecture,

the same operation would be much easier; a simple look at Figure 2.13 is

sufficient to prove it. However, this architecture presents so many disadvan­

tages that there is absolutely no reason to prefer this one. The purpose of
these few remarks was to draw the attention to the fact that Design Pat­

terns are not perfect solutions, but efficient means to improve the design of

an architecture.

2.3.3 T he Façade pattern

The initial intent of the Façade pattern is to provide a unified interface for

a set of interfaces in a subsystem. [GHJV95] The Façade defines a higher­

level interface that makes the subsystem easier to use. Ai; shown in the

Figure 2.14, many classes from the outside of the subsystems (let us cal!

them client classes) might need many classes inside the subsystem. The

Façade added to the subsystem (cf. Figure 2.15) acts like a front door for

the subsystem; the only way to call a subsystem class is through the Façade.

64 Chapter 2. Design Pattern-oriented Subsystems

Client classes

Subsystem classes

Figure 2.14: Intent of the Façade pattern

Client classes

Subsystem classes

Figure 2.15: Intent of the Façade pattern (2)

2.3. Using D esign Patterns in the conception of subsystems 65

As stated before, using subsystems in software architecture helps to re­

duce complexity. Likewise it allows reusability of subsystems. The condition

to reuse subsystems of an application in others is that these subsystems are

independent of each other. In fact, if the subsystem A absolutely needs the

subsystem B in order to be able to work, it cannot be reused without the

subsystem B. This situation cannot be called reusability!

A common design goal is thus to promote weak coupling between subsys­

tems, which means minimizing communication and dependencies between

subsystems. Weak coupling between objects or subsystems can eliminate

complex or circular dependencies. The Façade pattern has been introduced

to achieve this goal. The Façade delegates all the requests coming from the

client to the appropriate object in the subsystem. The subsystem classes

have to handle the work assigned by the Façade class. They do not even

have any knowledge of the existence of the Façade and thus do have any

reference to it.

Here follows a sample of pseudo-code to show how subsysterns access

others through the Façade pattern. In a subsystem A, the AMediator has

to handle the communication between the AModel and the BModel from

the subsystem B. The AMediator thus needs to know the BModel. It can

access it through the BFacade of the subsystem B. When the AMediator is

created in the AFacade class, it is given the BModel.

1 public class AFacade {

2

3

4

5 public AFacade(BFacade bFacade) {

6

7

8

9 aMediator = new AMediator(A.getAModel(),

10 bFacade.getB().getBModel());

11

12

66 Chapter 2. Design Pattern-oriented Subsystems

13

14 }

15

16

17}

Both Façades are created in the main application.

SUBSYSTEMA SUBSYSTEM B

Figure 2.16: Façade and subsystems

2.4 Design Pattern-oriented Subsystems

View Layer

Application Layer

Domain Layer

T he term "Design Pattern-oriented Subsystem" will be used throughout this

study. The covered concept is illustrated by Figme 2.17. It gathers to­

gether the three Design Patterns exposed in this section: the Model-View­

Controller, the Mediator and the Façade. It is divided into three layers: the

GUI is part of t he presentation layer, the Controller part of the application

layer and the Madel part of the domain layer. Layered architecture cornes

from another pattern, known as t he Layers architectural pattern. [BMR +96]

This way of structuüng a subsystem is highly reusable. Almost every sub-­

system of the Equipment Manager is built on this structure, with a few

exceptions only. For example, not every subsystem needs a user interface.

As well, a subsystem might not need a Mediator, because it is alone or be­

cause it is the application Model (in this case, every subsystem wanting to

communicate with it needs a Mediator but not the application subsystem

itself). This structw·e is powcrful: it is possible to build a whole application

by simply combining such subsystem (the Equipment Manager demonstrates

2.5. Summary

DP SUBSYSTEM

View Layer

Application
Layer

Domain Layer

Figure 2.17: Design Patterns Oriented Subsystem

67

it) . "Design Pattern-oriented Subsystems" have all the benefits of subsys­

tems, layered architecture and Design Patterns that compose it.

2.5 Summary

This chapter introduced the key concepts that are software subsystems and

Design Patterns. Using the Equipment Manager as an example, it described

three Design Patterns: the Observer, Mediator and Façade, showing differ­

ent phases of their application and the resulting successive improvements.

It explained how their use can improve the conception of an architecture by

promoting low coupling between objects, allowing reusability and robustness

and ensuring consistency.

A new concept, "Design Pattern-oriented Subsystems", has been defined.

It combines subsystems and Design Patterns by aggregating an Observer

pattern, a Mediator, and a Façade into one entity. "Design Pattern-oriented

Subsystems" are to be used as a subsystem foundation for easing the cre­

ation of new subsystems in software applications.

This concept will be confronted with different types of subsystems in

order to check on its pertinence in specific types of subsystems. Chapter 3

is about business subsystems, which constitute the real heart of an applica-

68 Chapter 2. Design Pattern-oriented Subsystems

tion. Chapter 4 looks into GUI subsystems. Chapter 5 is about preferences

subsystems. To conclude, Chapter 6 leans on persistence subsystems. This

study will be focused on these "classical" and unavoidable subsystems. There

are obviously other types of subsystems (subsystem in charge of communi­

cation with other applications or a network, security subsystem, etc.) but

those will not be covered by this document.

Chapter 3

Business subsystems

This chapter will confront the concept of "Design Pattern-oriented subsys­

tem" defined in Section 2.4 with an Application subsystem, Business sub­

system. It will also present a new Design Pattern used in this subsystem:

the Decorator.

3.1 Purpose of the subsystem

An Application subsystem contains everything that is typically application­

specific. The Application Madel is also called the "Truth" since it reflects

the application state at every moment. Because this kind of subsystem is

so application-specific, it is more difficult to reuse from one application to

another.

3.2 Business in the Equipment Manager

Section 2.1.2 gave an overview of the purpose of the Product Data subsys­

tem, also called the Business subsystem or the Application subsystem, since

it constitutes the real heart of the Equipment Manager.

The P roduct Data subsystem directly deals with products coming from

the database, called business objects. The Product Data subsystem is the

only one to know the database and it accesses it through an interface. These

business objects are actually serializers that are generated with Castor. Cas-

69

70 Chapter 3. Business subsystems

tor is responsible for serializing XML1 documents, but this will be tackled

in Chapter 5.

The serializers are generated by Castor in the Persistence subsystem

and reused in this subsystem, as the business abjects. This is an example of

reusability across subsystems.

Accessing the database only through an interface makes the Equipment

Manager highly technology-independent. Indeed, the technology used in the

Persistence subsystem may totally change, if the database interface is still

respected, nothing has to be updated in the other subsystems. This point

will be developed in Chapter 6.

It has to be underlined that the Product Data Subsystem is the subsys­

tem which the two GUI subsystems (Product Edition and Overview) interact

with. This subsystem is what was called application in Section 2.3.2, since

it is the Application subsystem. It is thus very specific to the Equipment

Manager.

3.3 A Design Pattern-oriented Subsystem?

A Business subsystem being so application-dependent, it may take several

form, depending on the application domain. Hence, it is difficult to confront

such a varying subsystem with a "Design Pattern-oriented Subsystem" in

general. The following section thus will focuses on the Business subsystem

of the Equipment Manager.

The Product Data Subsystem differs in several matters from a typical

"Design Pattern-oriented Subsystem" (cf. Section 2.4). Firstly, it has no

View at all, since the Overview and Product Edition, that are interacting

with it, play that role. In addition there is no Façade for that subsystem.

As exposed in Section 2.3.3, a Façade acts like a front door to a subsys­

tem: it defines the only way to call a class of the subsystem. However, this

subsystem being a little bit "special", since it is the Business subsystem, it

has been decided not to give it a Façade. It is composed of a little number

1See Section 6.2.5 for motivations about XML

3.4. The Decorator Pattern 71

of abjects and its Madel has to be given to every Mediator of other sub­

systems. Indeed, the two GUI subsystems, for example, need to interact

with the Madel of the subsystem, named the Business Model, in order to

assume the Equipment Manager's communication and consistency (see Sec­

t ion 2.3.2). The GUI subsystems are thus given the Model of the P roduct

Data subsystem through their own Façade. Communications between this

subsystem and the GUI subsystems will not be explained in this chapter as

it has already been studied in Chapter 2.

With no View at all, no Façade, and, as it will be exposed in Section

3.4, no real Controller, it does not really fit into the category of a "Design

Pattern-oriented subsystem".

Moreover, since it is the Application subsystem, this subsystem is highly

Equipment Manager specific and is thus hardly reusable.

3.4 The Decorator Pattern

What deserves some attention is that this subsystem contains an application
of another pattern: the Decorator.

The Equipment Manager's robustness diagram (see Figure 2.1) indi­

cates that the Product Data subsystem is made of two components: the

CacheController and the ProductDataModel. In this architecture, it appears

that the ProductEditionMediator and the OverviewMediator interact with

the ProductDataModel. Actually, it is not exactly true. The CacheCon­

troller seems to be useless, since no abjects communicate with it. This is

due to the fact that the robustness diagram cannot capture certain features

:this kind of schema could not clearly represent what the architecture of that

subsystem really is.

As a matter of fact, the CacheController is not really a Controller as

explained in Section 2.3.1. It is the Decorator of the ProductDataModel.

T he Decorator pattern will now be introduced.

72 Chapter 3. Busin ess subsystem s

3.4.1 Presentation

Intent

The purpose of the Decorator is to dynamically attach some additional re­

sponsibilities to an object. Responsibilities of an object are the behaviour

other objects expect from that object, it is another term for functionalities.

There are two ways to add responsibilities to an object: using inheritance

and subclasses, or applying a Decorator. However, inheritance does not

allow to add functionalities dynamically: it is done statically. Moreover,

extending classes is not always practical. The Decorator provides thus a

flexible alternative to subclassing for extending functionalities. [GHJV95]

Decorators are the perfect way to add responsibilities to objects, dynam­

ically, transparently, that is, without affecting other objects.

Participants and collaborations

ComP011tn1

comporienl

,operalionO - - - - - - - - ➔, Co"l)Oll8fll •> oporationO J
concret• Decorator B

Decotat0< .operation()
.. ,aJlon() _ _ -) addedBehavlor()
•aodeCIBella,lotO

Figure 3.1: Decorator pattern's class diagram

Figure 3.1 presents the participants of the Decorator and their struc­

ture. Component defines an interface for objects to which responsibilities

can be added dynamically. Concrete Component defines an object to which

additional functionalities can be attached. Decorator defines an interface

conform to the Component's interface and holds a reference to a Compo-

3.4. The D ecorator P att ern 73

nent object. As for the Concrete Decorator, it adds responsibilities to the

Component. [GHJV95]

As the Decorator is conform to the Component's interface, "clients" of

the Component do not even know its presence. These "clients" send requests

to the Component. These requests arrive to the Decorator, which forwards

them to the Component. It may perform some addit ional operations before

or after forwarding requests.

Example

The following example will clarify the purpose of the Decorator and how

it can be an alternative for subclassing. This example is inspired from

[GHJV95]. Suppose we have an object that displays a text in a window.

It is called TextView. By default, TextView has no scroll bars and no bor­

ders, because this is not always needed. A scroll bar is a vertical or horizontal

bar that allows the user to navigate into the text, when the text is longer

that the available space on the screen. Suppose now we want to add scroll

bars and black borders to the text. We want thus to add responsibilities to

the TextView. It is feasible, either by using Decorators, or by subclassing.

To add border and scroll bars with Decorators is really easy to perform.

Two Decorators are to be defined: a ScrollDecorator and a BorderDecora­

tor. They are respectively responsible for adding scroll bars and borders.

As a reminder, the Textview and the two Decorators have to respect the

same interface. The ScrollDecorator may the first to apply. "Clients" of the

TextView will be given now a reference to the ScrollDecorator. Of course,

on their sicle, they will not see the difference because of the shared interface.

T he ScrollDecorator holds a reference to the Text View. The ScrollDecora­

tor adds a responsibility to the TextView: from a client point of view, the

Text View displays a text in a window and the user can navigate through the

text using scroll bars. Request are now arriving to the Decorator and are for­

warded to the Component: clients that want to see a text call the TextView,

but they are actually using the ScrollDecorator, which forwards the request

to the TextView (the text appears on the screen) and perform· additional

operations (scroll bars also appear on the screen). The same operation can

be done with the BorderDecorator: the BorderDecorator holds a reference

74 C hapter 3. B usiness subsystem s

to a Component which is the Text View decorated by the ScrollDecorator.

On the other hand, it is possible to add scroll bars and borders to the

TextView using subclasses. TextView will have several subclasses: a Bor­

deredText View, a ScrolledText View, a BorderedScrolledText View, etc. Bor­

deredText View will be used when the user wants to see borders surrounding

its text, BorderedScrolledText View is the class to be used when scroll bars

and borders are needed, etc.

Consequences

The main advantage of the Decorator Pattern is that it is much more flexi­

ble than static inheritance for extending objects responsibilities. Inheritance

creates indeed a new class for each functionality, which, increases seriously

the number of classes and the complexity of a system.

Moreover, the application developer does not need to foresee ail possible

features and the creation of subclasses to support them. With Decorators,

features can be added incrementally, avoiding the application to have to pay

for features it does not use.

On the other hand, a design that uses plenty of Decorators often results

in a system composed of a lot of little abjects that all look alike, since the

Component and the Decorator share the same interface. But from an object

point of view, a decorated component is not identical as the component itself.

It should thus avoided to rely on object identity when using Decorators. Such

systems, although easy to customize by those who understand them, can be

really hard to learn or debug. [GHJV95]

3.4.2 Applicat ion

Figure 3.2 shows the main classes of the Product Data subsystem playing a

role in the application of the Decorator pattern. ProductDataModel defines

an interface that both the Decorator and the Component will have to con­

form to. The Decorator will be played by the ProductDataCacheHandler, as

the role of the Component will be assumed by the BasicP roductDataModel.

3 .4. The D ecorator Pattern 75

ProductDataModel

AbstractProductDataModel

Ba.slcProductOataModel ProductOataCacheHendler ProductOatabaselnterfaca

component componen1

Figure 3.2: Product Data's class diagram

Together, the Decorator and the Component assume the cache of the

database. When a product needs to be edited, it is sought in the product

database only if it is not present in the cache. The problem that the Busi­

ness Model (in this case the BasicProductDataModel) cannot play alone the

role of the cache; a Model should not be "intelligent" and should not have

other responsibilities than holding information and warn when this informa­

tion changes - otherwise it could not be called Model anymore. That's why

some more responsibilities must be attached to the Business Model: hence

a Decorator (the ProductDataCacheHandler in this application) is needed.

As they both conform to the same interface, other subsystems are not

aware of the Decorator's existence. The two mediators dealing with the

Model of that subsystem only know it through the ProductDataModel in­

terface. T his way, the Decorator is still transparent.

The Decorator is the only one to know the database through its inter­

face: the ProductDatabaselnterface. Every request coming to the Decorator

is simply forwarded to the Component, except for requests that ask for a

product. In this case, the Decorator tries to send it to the Component. If

the wanted product is not in the Model (the database cache), it forwards a

request to the database itself and puts the received object in the cache.

76 Chapter 3. Business subsystems

New responsibilities have therefore been attached to the BasicProduct­

DataModel, transparently and without changing any other abjects. The

Decorator pattern has also been used in the Persistence subsystem, tackled

in Chapter 6.

3.5 Summary

This chapter presented business subsystems. The business, also called the

"Tru th", is the heart of an application as it holds the essential data and

interacts with all other modules.

Since business subsystems are very application-dependent, no generality

can be expressed about them. Because of that, this chapters is unfortu­

nately very Equipment Manager-oriented. The business subsystem of the

Equipment Manager was the perfect place to apply the Decorator pattern.

This pattern is a good alternative to subclassing when functionalities are to

be added to an abject. In the case of the Equipment Manager, it empowered

the construction of a cache system.

The chapter also demonstrates that "Design P attern-oriented Subsys­

tems" cannot be systematically used in such a subsystem because business

subsystems are so application-specific.

Chapter 4

GUI subsystems

The purpose of this chapter is to expose the problerns related to the con­

ception of a graphical user interface and how it is possible to handle them.

Expectations about a better solution will be written down and after that,

different technologies meeting these expectations or part of will be exposed.

Then, the choice of the Bean Markup Language for describing the graphical

interface of the Equipment Manager will be discussed.

4.1 Purpose of GUI subsystems

GUI subsystems are in charge of the graphical user interfaces. GUI are very

important, because it is the part of the application the user interacts with.

Hence, this subsystem is very important: the GUI has to reflect the real

state of the application and conversely, user interactions must be brought

to the application.

4 .2 Building up a graphical interface

The GUI is made of everything that is showed to the user on the screen. It

can be a couple of windows with textfields, buttons, menus, etc. They are

usually described in separate code files. For the prograrnming language Java,

for example, these are Java classes. Sorne simple and common principles

used to elaborate an interface follow. In the coming section the term "GUI

component" will be used for every part of the interface - button, textfield or

even a whole window. In the Java code, each GUI component is associated

with a class that describes it. Each GUI component is declared in the abject

77

78 Chapter 4. GUI subsystem s

it will appear in. For example if a window contains three buttons, all these

three buttons have to be declared in the window's body.

There must be some intelligence behind the GUI component. A user

clicking on a button and having no feedback in return is rarely a happy

user. It is imperative that the application knows which GUI component has

been used by the user and which action it is to be associated to it. That

is what is called - in an abusive way - "intelligence". To meet this require­

ment a system of events and listeners (similar to the mechanism exposed in

Section 2.3.1) is used. In the case of a simple click on a button, an event is

created. It has to be possible to figure out easily which component is related

to this event. Moreover the event has to be caught otherwise nothing will

happen. There is thus an abject listening to this component that will react

accordingly. This listener can be the same object the component is declared

in or another one. In other words, a window (for example) can listen to

itself or have a separate listener.

On one side the intelligence lies in the same object containing the GUI

component. To gather together the GUI components and the listeners (that

handle the events generated by these components) is definitely not a good

idea! This would violate the layered architecture principle 1: there is no

more separation between the Presentation Layer and the Application Layer.

The GUI component takes place in the P resentation Layer whereas the def­

inition of the behaviour is clearly a part of the Application Layer since it

defines how the application should behave after a user action.

On the other side, the layered architecture principle is respected: the in­

telligence is in a separate object than the definition of the GUI components,

which is already much better. The listeners have to make a test to identify

the source of the event - in other words which GUI component generated the

event - and then give the right answer. However, there are some problems

subsisting, that will be exposed in the following paragraphs.

During all the application development process, the GUI may have to go

through a lot of changes, even in a short lapse of time. The interface of the

1 See Appendix B for details

4.3. Exp ectations 79

Equipment Manager went at least through four of these changes. If changing

the GUI is proved to be especially painful, the programmer having to do it

can become bald in a very short time. The main reason of this difficulty

is ail the intelligence behind the interface. If there was nothing behind the

components, it would just cornes to the creation of new components or the

reorganization of the old ones. The real difficulty is not creating new GUI

components (which is really painless) or moving components (which is a lit­

tle bit less painless) but lies in moving their intelligence at the same time!

It can even become qui te quickly a real nightmare if the listeners of the GUI

component are in the same object> meaning that the presentation and the

logic behind are mingled. In this case, changes in the graphical interface,

even minor, rhyme with a lot of code modifications. The code defining the

GUI component and the code defining its behaviour bave actually to change

or at least move.

In order to cure this evil it might be a interesting to define ail the GUI

components totally separately from their behaviour. The purpose would be

to have nothing to modify when moving a GUI component.

4.3 Expectations

The most expected quality for a mean of GUI description and implementa­

tion (as well the declaration of the components as the intelligence hidden

behind) is thus the capability to accommodate changes. This quality was

also expected from a software architecture.

Resistance to changes is no synonym for highly reduced set of possibilities

or esoteric practices. It means that the robustness must not be met at the

expense of the simplicity and the effectiveness. It must still be possible

to create interfaces without limitations imposed by the need of robustness.

And the way to create these interfaces has still to be understandable and

usable.

80 Chapter 4 . GUI subsystems

4.4 Existing technologies

This section will highlight some alternatives to create graphical user inter­

faces. After a small discussion about the "drag and drop GUI builders" (or

UI Builders) and the "classical way" of building interfaces, some technologies

using XML2 will be presented. The given Jist of technologies has absolutely

not the pretension to be exhaustive, it only gives some ideas of possibilities

to develop graphical user interfaces using the XML technology.

4.4.1 UI Builders

The "drag and drop" tools are a common way to build graphical user inter­

faces. Users of such tools don't write any code: it is automatically generated

by the tool. They just have to compose their graphical elements, for exam­

ple, they can drag a button and drop it at the place they want it to appear.

These tools are very powerful, allowing to make really great user interfaces.

Their principal flaw is that the produced code is almost impossible to

change: once designed, it is really difficult to bring some changes in the inter­

face. Basically, these tools make themselves decisions as how to implement

the layout of the GUI components, which may not reflect the intentions

of the designer, and hence may not behave accordingly when unexpected

changes arise (such as window resizing, etc.). Therefore, programmers are

better of implementing design intentions on their own rather that letting a

program guess them based on a snapshot of the wished result.

Moreover, some existing GUI components might not be handled by the

tool. ln this case, the user is confronted to choice limitations.

One can conclude that they don't appear to be meet the requirements
stated in Section 4.3.

4.4.2 D escription in the programming language

Another common way to develop GUI is to directly write the code in a

programming language (Java, for example) . The importance of separating

the declaration of the GUI components and their "intelligence" has already

2See Section 6.2.5 for motivations about XML

4.4. Existing technologies 81

been discussed (see Section 4.2). If this principle is respected, writing Java

code without any help from tools or other technologies might present some

good results.

4.4.3 U sing XML to define GUI

There are, in addition, some really interesting techniques that use the XML

format to describe graphical user interfaces. Basically, such techniques can

be divided into three major classes, determined by the utilization of XML

they make.

Technologies from the first class are supported by tools that use XML

only "internally". It means that the description of the GUI is stored inter­

nally under the XML format (a repository containing a collection of XML

files) by the tool. The user does not write its GUI in XML; he/she actu­

ally never sees the XML representation. Such tools usually propose only a

reduced set of available GUI components. The user interacts with the tool,

chooses and assembles the components that will constitute its graphical user

interface. XML files are used to store the GUI description, to configure the

predefined GUI components, etc. Browser-based Application toolkit and

JEasy are examples of such tools. They are both briefly explained in Ap­

pendixes E and F .

This type of tool may be very useful for who wants to quickly build a

simple graphical user interface. The main advantage is that their use does

not require any knowledge of GUI techniques.

However, they are definitely not powerful enough and too restrictive

to fulfil the expectations defined in 4.3. Too restrictive because they only

offer a set of predefined GUI components. And not powerful enough for

many reasons. Indeed, once the GUI is built, it seems very difficult to bring

some changes. Once the predefined GUI components are chosen and their

arrangement is made, ta modify something reverts to change almost every­

thing. Such tools basically suffer from the same drawbacks as the UI Builder.

UI Builders might even be less restrictive because offering a wider panel of

predefined components. In addition, the user might think that, with tools

82 Chapter 4. GUI s ubsystems

such as the BAT3 and JEasy, he/she will use XML in order to define its

GUI, which is absolutely not the case.

The second class technologies makes more use of XML. The GUI is

still not directly written in XML, but XML is no longer hidden to the user.

The XML serialization of Swing components is part of this class.

The third class of technologies really enables the description of GUI

under the XML format. XML is no longer used only as an internal represen­

tation format but as a description mean. The user directly writes his/her

GUI using XML. This class contains the Beau Markup Language.

The following sections will focus on the XML serialization of Swing com­

ponents and on the Bean Markup Language, that is an XML--based language
of GUI description.

A) XML serialization of Swing components

Principles Swing is SUN's library for building user graphical interfaces

in Java. As for the serialization, it is a process that supports the encoding

of abjects, and the abjects reachable from them, into a stream of bytes; and

it supports the complementary reconstruction of the abject graph from the
stream.

Swing graphical user interfaces can be serialized as XML documents.

The purpose of this XML serialization is the interoperability. "At the heart

of the issue is the question of persistence and how a design can be saved in

a format that is not tied to the tool that created it. " [MW99] In order to

ensure the GUI to be serialized to an archive, a new class has been defined:

XMLOutputStream. Even listeners can be serialized this way.

Advantages and limits This technique serializes existing Swing compo-­

nents in XML. This implies obviously that the GUI is developed before its

serialization, either with the help of a UI Builder or not. The drawbacks

and benefits of such ways to build GUI are thus still valid.

3 Browser-basecl Application Toolkit

4.4. Existing technologies 83

On the other hand, the fact that the GUI is archived in a XML document

makes the GUI independent of the tao! that generated it. XML is not used

only "internally", it is the output format of a process whose main purpose is

interoperability.

B) Bean Markup Language

The Bean Markup Language has been chosen to build the user interface of

the Product Edition and the Overview subsystems.

Principles Bean Markup Language 4 is an XML-based language use to

describe the structure of interconnected J avaBeans 5 • BML is absolutely not

just an XMLized Java syntax and is directly executable as it will be shown

later.

The main goal of creating BML was to dispose of an XML language

allowing to describe declaratively - meaning without procedural code - a

whole structure of interconnected beans capable of functioning together as

a component, or even as a complete application. "The development and evo­

lution of BML grew out of a simple challenge: create a mechanism, in Java,

using the newly evolving set of XML standards, that can take a description

of a hierarchically structured set of data and automatically synthesize a user

interface to collect and display the data. Yet, in retrospect, this given di­

rection was pretty close, but not quite correct. A faithful implementation

of such a mechanism would only yield an interface for a single instance of

data. The true intention had been to be able to generate an inter/ ace for the

entire class conforming to all the potentially allowable data hierarchies. The

correct challenge should thus have been to automatically synthesize interfaces

/rom the DTD 6 or schema describing the hierarchy". [EW J99]

Contrary to Java- which loses some of the structure's information in the

syntax of the language - BML is a first-class mechanism for capturing the

structure of a complete application: it actually gives a complete description

of how a set of beans are to be created, configured and interconnected.

4 For short BML
5 See Appendix C for more details on Java Beans
6 Data Type Definition

84 Chapter 4 . GUI subsyst ems

BML defines an application structurally rather than procedurally and

can be used to automatically generate interactive interfaces for arbitrary
data structures.

As BML is an XML language, it defines a set of tags. Table 4.1) gives

an overview of the main BML tags and their signification. [WD99]

Table 4.1: List of most important BML tags

1 Tags Description
<bean> Used for creating or looking up a bean
<args> Specify constructor arguments
<property> For the bean property configuration
<field> For the bean field configuration
< event-binding> Bind an event from one bean to another
<string> Create a new string bean or look one up
< call-method > Call a bean method
<cast> Explicit type conversion
<add> Creating bean hierarchy
<script> Defines a (BML or other) script to be used somewhere

Processing model It has already been underlined that BML was a di­

rectly executable language, in opposition to a modelling language. There are

actually two different ways to execute the bean markup language. On one

hand, the BML Player and on the other hand, the BML Compiler. The BML

Player evaluates the BML script at startup-time of an application, since the

BML Compiler is a static tool which generates Java code at startup-time,

producing this way a bean configuration equivalent to that described in the
script. [Joh99a]

Figure 4.1 shows the processing mode! with the BML Player. The BML

Player reads the BML document using an XML parser, which couverts the

XML to a DOM 7 tree. The BML player then goes through the DOM tree,

creating and interconnecting JavaBeans as specified by the tree. The GUI

thus appears as described in the BML script. The drawback of this method

is that building the DOM tree and then building the resulting structure of
7Document Object Mode!

4 .5. U sin g BML in the Equipment Manager

BML
Document

XML
Parser

BML
Player

Figure 4.1: BML processing model: the BML Player

85

GUI

beans might result in some time overhead, especially if the operation in­

volves a large number of components.

BML
Document

GUI

XML
Parser

Java Virtual
Machine

BML
Compiler

Java
Class

Java
Source

Java
Compiler

Figure 4.2: BML processing model: the BML Compiler

Figure 4.2 shows the processing with the BML Compiler this time. The

BML Compiler also uses an XML parser to read the XML file, converting it

into a DOM tree. But instead of interpreting this tree as the BML Player

would do, the Compiler generates Java source code which, when compiled

with a Java compiler, results in a class file that will execute as a standalone

program.

4.5 Using BML in t he Equipment Manager

In the Equipment Manager, the event-binding capabilities of BML were not

used. As discussed in Section 4.4.3, it is possible to bind event generated

by beans to other beans by using the <event-binding> tag. Instead, an

86 C hapter 4. GUI subsystems

application of the Observer pattern (detailed in Section 2.3.1) was applied,

resulting in a Model-View-Controller architecture. This will be developed

further.

All the GUI of the Equipment Manager are described in BML. All the

components of the application's main window are described in the same

XML file. BML is thus used mostly for its capacity of describing the struc­

ture of a set of hierarchically interconnected beans in a declarative way.

For robustness sake, the "intelligence" of the GUI components is sepa­

rated from their declaration. Declarations (and thus the components struc­

ture) may be found in the BNIL file, while the components behaviour is

defined in the Controller.

A simple example of BML utilization is provided in Appendix D. The

complete BML code, as well as the Model and Controller codes are given.

The View is constituted by the Java classes resulting of the BML file

compilation, using the BML Compiler (see Section 4.4.3). The BML file

only contains components declaration. Each bean - which represents a GUI

component such as a button or a whole window - receives a unique name

in order to identify it. For example, the following line of the BML script

defines a bean whose unique name is "product.Top" and whicb is a Label.

<bean class=" .. /bml/macros/RLabelText.bml" id="product.Top">

As for the Controller, it contains the behaviour definition of all the com­

ponents. Since their declaration is made elsewhere, the Controller bas to

look up for the beans. This is clone using a BML parser that traverses the

BML file. This is possible thanks to the unique names. The Controller has

thus to look up for every bean, no matter where it bas been declared, since it

does not care of the structure but only of the "intelligence". This constitutes

the only difference with a "classical" Model-View-Controller.

Now that the Controller has the components declared in its own body it

can handle it. As soon as the user interacts with the GUI, the state of the

Controller is changed and reflects this modification on the Mode! which is a

subject for the Controller.

4.6. Advantages and limits of BML 87

4.6 Advantages and limits of BML

First, it is important to keep in mind that when the advantages and draw­

backs of BML will be explained, it is about the use of BML without its

event-binding capabilities and combined with the application of the Model­

View-Controller to replace these capabilities. Anyway, some of the remarks

made in this section are still valid for BML in general.

The principal benefit of BML is surely its huge capacity to accommo­

date changes. Most of the time, when a GUI component has to be moved,

only the BML is adapted, as long as the component does not change its

behaviour. This is feasible thanks to the clear separation made between

the declaration of the GUI components (view layer) and their "intelligence"

(application layer). Every single GUI component is declared in the BML

file, whereas all its behaviour is described in the Controller that is in charge

of it. While a component keeps the same unique name and especially the

same behaviour, it can move from one place to another without involving

any change in the Controller (the only code to modify is of course the BML

files). It is obvious that each modification of one ''component's intelligence"

cannot go without updates of the Controller, but that is bound to happen,

whatever technology is used.

The way BML is used in the Equipment Manager implies the application

of the Model-View-Controller (exposed in Section 2.3.1). At the same time,

it brings all the benefits that go with it, but also the limits and flaws. The

consistency in the subsystem is ensured. First, the View will always be the

perfect image of the Model and reflect all its changes. Next, the Model will

be updated as soon as the View is modified by a user action. On the other

hand, the remark passed about the possible unexpected updates is still valid.

In addition, the BML Player enables the developer to have a preview of

the GUI he/she is building, without having to launch the application that

contains this GUI, which can be very useful when prototyping.

One thing that might dissuade a graphical interface developer is the

learning process that it imposes. The user has actually to be used to the

XML syntax. and has to know at least what a Java Bean is. In addition,

88 Chapter 4. GUI subsystem s

there is no graphical tool supporting the Bean Markup Language. It means

that the GUI developer must write the whole BML file without any sup­

port, which might seem forbidding because of the XML syntax, especially

for beginner user. As an example, the BML file describing the Equipment

Manager GUI con tains more than three thousand lines ... However, this dif­

ficulty should not be to hard to pass over because the learning process is
really short and the benefits substantial.

Finally, an important comment bas to be highlighted: with the Bean

Markup Language, there is absolutely no limitation in the GUI component

to use for building the graphical interface. This means that every Swing

component can be used, or even others - a "home-made" component for

example, developed for specific needs.

4. 7 GUI subsystems as Design Pattern-oriented

Subsystem

Both of the GUI subsystems are typical "Design Pattern-oriented subsys­

tems", as defined in Section 2.4. They have even more been taken as exam­

ples to introduce this concept in Chapter 2.

Such subsystems already contain a Model-View-Controller. Then, using

BML in order to build the interfaces of these subsystems will be made easier

because the Model-View-Controller already exists and does not have to be

added. In a typically "Design Pattern-oriented subsystem", the GUI can be

described very easily using the Bean Markup Language.

4.8 Summary

This chapter covered the construction of graphical user interfaces. It ex­

plained important principles of interfaces construction and listed potential

pitfalls. The key principle concerns the clear separation between GUI com­

ponents declaration and the "intelligence".

In the same line, some expectations about GUI elaboration tools have

been established. Among them, it must be commode to operate changes on

4 .8. Summary 89

the graphical user interface, building up GUI has to be easy and accessible

to everyone, there should not be any restrictions regarding the available GUI

components, etc.

Afterwards, different possibilities to build interfaces have been exposed.

UI Builders, description in the programming language and technologies us­

ing XML have been discussed. Different classes of techniques using XML

were defined, according to the level of use of XML. The XML serialization

of Swing components and the Beau Markup Language have been covered

in depth. Except BML, none of these solutions entirely fulfilled the re­

quirements. Hence, BML has been chosen for describing the GUI of the

Equipment Manager.

At last, the confrontation of "Design Pattern-oriented Subsystems" with

GUI subsystems reveals that "Design Pattern-oriented Subsystems" truly

can improve the architecture of GUI subsystems. This concept is perfectly

adapted to Presentation subsystems.

Chapter 5

Preferences subsystems

This chapter covers preferences subsystems of a software application. It

analyzes what a preferences module aims at and what are the different means

to achieve these goals. The chapter also illustrates this by a case study

on the preferences subsystem of Acme's Equipment Manager. Finally, the

chapter studies how good does a "Design Pattern-oriented Subsystem" fit in

a preferences subsystem.

5.1 Purpose of the subsystem

Many software applications need to store user-defined settings; settings that

are related to the application itself, not to an edited document. They rather

concern the behaviour or appearance of the application than the datait is

handling. Because users want to be offered to save its settings and wants

the application to retrieve them automatically at startup, preferences need

to be stored in a permanent way.

The responsibility of managing application settings can be encapsulated

in one module. Encapsulation avoids coupling and thus allows this know­

how to be fully reusable.

5.2 Storage types

Whatever the file format, user preferences are most often stored in a text

file. Advanced systems, tbough, prefer the use a database.

91

92 Chapter 5. Preferences subsystems

Text files may rely on an application-defined file format (txt files, ini

files) or be based on a standard file format (XML and others) in order to

improve portability. Unix systems rather use "conf files" or "dot files"1 , but

the principle stays the same.

To illustrate this concept, the example of XMMS will be used. XMMS

is a cross platform multimedia player that mostly plays audio files such as

MP3 files. The application automatically saves user settings in a simple text

file (called ".xmms"). The followed convention is to write one setting per line

in the file. One setting is defined as follows:

field- name = value

Among these preferences, XMMS stores window size and position, playing

options, and display options. Here is an extract of the ".xmms" file.

[xmms]

allow_multiple_instances=FALSE

use_realtime=TRUE

save_playlist_position=TRUE

get_info_on_load=TRUE

get_info_on_demand=TRUE

player_x=749

player_y=O

player_shaded=FALSE

player_visible=TRUE

shuffle=FALSE

repeat=TRUE

autoscroll_songname=FALSE

playlist_x=749

playlist_y=116

playlist_width=275

playlist_height=580

playlist_shaded=FALSE

playlist_visible=TRUE

playlist_transparent=FALSE

1 Config files often start with a dot on Unix systems: ".application-name".

5.3. Preferences in the Equipment Manager

playlist_position=33

always_on_top=FALSE

sticky=TRUE

5.3 Preferences in the Equipment Manager

93

The Equipment Manager needs to save several application- level settings.

According to section 1.2.6, these are:

• The list of languages supported by the application,

• Default values for each product property,

• The mark-up type and value.

Albeit the Equipment Manager GUI does not offer any application prefer­

ences panel yet, a preferences module already exists to manage the storage

of the user settings.

For standardization and potential sharing purposes, Acme chose to store

preferences under the XML format2• The XML files are serialized and

unserialized with the help of the ((Castor Source Generator".

5.3.1 XML Data Binding

Castor Source Generator is used to perform XML Data Binding. Arnaud

Blandin [Blaül] explains XML Data Binding as follows. Many current ap­

plications which manipulates XML documents rely on XML Schemas which

define the structure, the content and even the meaning of these XML docu­

ments. In order to deal with the XML "constraints" defined in the schema,

applications need some tools to create and manipulate XML documents that

are instances of the given XML Schema.

Such tools might be written using the DOM3 API4 or the SAX5 API,

however these approaches are more focused on the structure of an XML

document than the data itself, which is a loss of time. Moreover ail data

2See Section 6.2.5 for a more complete list of motivations for the XML format.
3 Document Object Mode!, an XML parser
4 Application Programming Interface
5Sirnple API for XML, an event-driven alternative to the rnernory-hungry DOM

94 C hapter 5. P references s ubsystems

in these APis are treated as strings and will likely need to be cast to an

appropriate data type.

It is much easier if these applications can map directly an XML document

to its in-memory object representation that contains ail the information

provided by the XML Schema. This is what does XML Data Binding.

!Blaül]

5.3.2 Castor XML Source Code Generator

This presentation of Castor XML Source Code Generator is borrowed from

Exolab.org's user guide for the Source Generator. IBla0l] To represent the

data mode! of an XML document in memory, developers need to hard-code

the description of the XML document. They need to describe the structure

and the data of the document provided by the XML Schema.

Mapping a String or a Boolean is easy because it is possible to find an

exact mapping in any Object Oriented language. But when it is time to

describe a more complex structure with some inner XML Schema types, it

can become very tedious and complex.

The aim of Castor Source Generator is to provide the necessary code to

describe XML instances of a specific XML Schema with the proper fields

and access methods.

To sum up, one can draw a parallel between the relations XML Schema­

XML and Class-Object: an XML document is an instance of an XML

Schema and an Object is an instance of a Class. Thus to represent an

XML document as an Object in memory, the Class that describes this ob­

ject is needed.

The Source Code Generator is merely generating the code for this class.

It generates Java source code from an XML Schema. The generated source

includes an object mode! of the schema as well as the necessary Class De­

scriptors used by the marshalling framework6 to obtain information about

6Castor marshalling framework is responsible for doing the conversion between Java
and XML. This is the serialization/unserialization process.

5.4. Preferences as a Design Pattern-oriented Subsystem 95

the generated classes.

The object model together with its descriptors will be, from now on,

referred to as the "serializer objects". Serializer objects are directly used by

the controller of the subsystem in order to store or retrieve information from

them. [Blaül]

5.4 Preferences as a Design Pattern-oriented Sub­

system

The architecture of a preferences subsystem can be improved by application

of the "Design Pattern-oriented Subsystem". The concept defined in Chap­

ter 2 answers well the subsystem needs.

In the Equipment Manager, the structure of the preferences subsystem

is just like any other "Design Pattern-oriented Subsystem". A Model-View­

Controller pattern encapsulates the knowledge, the display, and the control

of the subsystem. One must keep in mind that the View is defined by means

of the Bean Markup Language (cf. Section 4.4.3) . A Façade pattern also

provides a unified interface to the subsystem, making it easier to use from

the outside. And a mediator handles communication between this subsys­

tem and the other subsystems of the application.

"Design Pattern-oriented Subsystems" fit perfectly in a preferences sub­

system. They can be applied as such.

5.5 Summary

This chapter states that a preferences module is intended to store application­

level settings of a user. Encapsulating this responsibility in a subsystem

allows reusability across applications.

This chapter highlighted the fact that user settings can be stored in a

number of formats. T he example of the XMMS software application was

provided to illustrate the concept by a typical configuration file.

96 Chapter 5 . Preferences subsystems

Storage of preferences in the Equipment Manager is disclosed in this

chapter. The properties requiring to be stored, the underlying concept

(XML Data Binding) and the central tool of this process (Castor Source
Generator) are all covered in depth.

At last, a confrontation of the idea of "Design P attern-oriented Subsys­

tems" with preferences subsystems in general reveals that "Design Pattern­

oriented Subsystems" fit perfectly in this type of module.

Chapter 6

Persistence subsystem s

This chapter studies the expectations a developer could have from a per­

sistence subsystem. It also reviews the most popular persistence paradigms

before presenting the implemented solution in the Equipment Manager. Fi­

nally, the chapter will attempt to prove how useful Design P atterns can be
in this type of module.

6.1 P urp ose of the subsystem

A persistence subsystem of a software application is responsib le for stor­

ing data in a permanent way. It can be any type of data, stored under any
existing format, using a database or not.

Independently of the logical and physical storage mode!, such a mod­

ule should be able to store and retrieve data, able to query and update

the information. Advanced systems could perform transact ions (group of

commands which are to be treated as a single atomic event). Multi-user
and cross-application access could be required too.

A persistence module should be used as a service. Clients will request

to store or retrieve data to an independent service, working as a black box.

Ideally, requests to this service should be technology independ ent. No

client should know which technology is used inside the black box. Therefore,

no change of technology should affect a client.

97

98 Chapter 6. Persistence subsystems

6.2 Persistence paradigms

Persistence can be handled by many different types of systems. It can be

managed by a Database Management System (DBMS) or any other persis­

tence system (such as file systems).

A DBMS is a software system that is used both to create databases

and manage the information stored within them. The architecture of the

DBMS will frequently determine or limit the possible uses of the databases

it creates.

In R. Allen Wyke's words, the most significant difference between them is

the model used to store, manage, and query databases. [. .. j The model used

affects the way you will think about data and can be surprisingly difficult to

change later. [WRL02]

This Section will review the most popular Database Management Sys­

tems (DBMSs) that have emerged over the years. Other systems, non­

database systems, will also be studied.

6.2.1 File Systems

At the very beginning of computer science (1950s) , data management was

clone through "File Systems". The approach was to handle sequential records,

each of them containing sequential fields. One can take a look at Figure 6.1

to visualize the type of construction. Such a system relies on indexes for

random access.

Disadvantages were numerous: uncontrolled data redundancy, data in­

consistency, poor data sharing, difficulty to keep up with changes, low pro­

ductivity, high maintenance cost. [Hon] Still, file systems are easy and light.

They answer well the needs of small systems with few data.

6.2.2 Hierarchical databases

A new concept came into place at attempting to solve part of these prob­

lems. Greatly used in the mainframe era (1960s-1970s), Hierarchical DBMSs

(HDBMS) "links records, also called nodes, together like a family tree such

6.2. Persistence paradigms

John Doe
27, Main Street
(234)987-2314

Lisa Smith
67, Border Ave
(234)987-9074

Peter Chaves
34, Appaloosa Circle

(234)987-2839

Mike Beauregard
189, Country Lane

(234)987-2839

Figure 6.1: A File System structure

that each record type has only one owner." [WRL02]

99

R. Allen Wyke et al. illustrate this DBMS with an easily understand­

able example. Figure 6.2 shows a sample hierarchical database containing

customers and the orders they have placed.

The database example shown in Figure 6.2 has five nodes of type Cus­

tomer and five of type Order (because each record has only one owner) .

These nodes are linked together by pointers that the user must explicitly

specify. For example, Order (0706) is linked to Customer(055). All the nodes

linked together form a strictly defined tree structure. [WRL02]

Hierarclùcal DBMS clearly are far from perfect. Sorne negatives points

remain: [Hon]

• Complex record structures

• Difficulty to change (record structures and links)

• High maintenance cost

100 Chapter 6. P er sistence subsystems

Ord11111

Customer

~
~

0213

Item

~
~

Item

~
~

081070

Switchlng Hub

Oder

0706

2002-08-22

001048

Internet Router

Figure 6.2: An HDBMS example

6.2.3 Relational databases

The relational data model, developed by Todd Codd in 1970 [Cod70], allows

multiple tables to be related to one another within a database. Data are

modelled as a set of tables where each table consist of a fixed collection

of columns, or fields. An indefinite number of rows, or records, can occur
within each table.

Relationships between the tables are built by linking key columns from

one table to another. The database uses two types of key columns. The

first one, called a primary key, is used to uniquely identify rows in a table.

The second type, called a foreign key, corresponds with the primary key of

6.2. Persistence paradigms 101

another table to forma parent-child relationship. [WRL02]

Figure 6.3 illustrates the above concepts. Note that CustomerNo is the

primary key column of the Customer table, while OrderNo is the primary

key column of the Ortler table. The Ortler table also has a foreign key col­

umn, CustomerNo, which links to the CustomerNo column of the Customer

table. Hence, in this case the Customer table is said to be parent and Ortler

the child.

Customor Table

.fr]:'"',,~,i'~';•;r . .,,_ .Ï ; ;),'i1f ~~'

055 John

071 Mary

088 David

OrderTable

·./ i /. ~·~·, t <.~; :c ~ ·;~ .. '~;. ;

071 0105 2002-09-17

055 0213 2003-01-10

071 0221 2003-01-29

071 0358 2003-02-07

055 0706 2003-04-22

Item Table
.,,:,. ,";, ,'1 '~ l >

0706 000763 Print Server

0706 001048 lntemet Router

0221 042209 Keyboard

0213 081070 SWitching Hub

0213 156006 Network Adapter

0358 180504 Monitor

0213 700924 10-Port Hub

Figure 6.3: An RDBMS example

The relational model provides a much more flexible framework for data

access and manipulation than do the previously studied models. To access

the information, users can build queries using the Structured Query Lan-

102 Chapter 6. Persistence subsystems

guage (SQL). With SQL, queries are such that the user specifies what data

are wanted, and the DBMS figures out where and how to access the data.

These are called associative queries.

For example, to find all Items ordered by Customer John (Figure 6.3),

use the following SQL query:

SELECT ProductNo, Desc

FROM Customer, Order, Item

WHERE Customer.CustomerNo = Order .CustomerNo

AND Order.ItemNo = Item.ItemNo

AND Customer.FirstNa.me = 'John'

Dr. Shuguang Hong lists the disadvantages of relational DBMSs as fol­
low: [Hon]

• Primitive data values

• Lower level representation

6.2.4 Object-Oriented databases

The Object-Oriented database model emerged in the mid-1980s due to the

dissatisfact.ion of some database users with the limitations of relational

DBMSs. The Object-Oriented mode! defines each piece of data and its

associated processes as an individual object. According to the basic tenets

of this model, al! information about an object is stored in one place instead

of being stored across multiple tables, as is clone in the relational model.

An Object-Oriented DBMS (OODBMS) has the advantages to group

data and processes, it understands complex objects, it is easy to maintain

and change, and it improves productivity. OODBMS also integrates more

easily with applications that have been written with an Object-Oriented

programming language such as C-1+or J ava.

Despite the advantages of the Object-Oriented approach, no standard

model for the construction of an OODBMS yet exists, except maybe ODMG.

For this reason, at least in part, relational DBMSs still dominate the database
market.

6.2. P ersistence paradigms 103

6.2.5 XML databases

This section first lists advantages and motivations for the use of the XML

format. Then, it explores how XML data modeling is influenced by the type

of XML documents developers are dealing with: data-centric documents or

document-centric documents. Subsequently, this section will explain how

to make the difference between Native XML databases and XML-Enabled

databases. The section also will introduce the reader to some interesting

standards used to interact with an XML database, such as XPath, XQuery,

and XUpdate. At last, the section leans on the XML:DB initiative, which

develops specifications for XML databases and data manipulation technoler

gies.

A) Motivations for XML

Over the past five years, XML has become a hugely popular format for

marking up all kinds of data, from web content to data used by applica­

tions. It is finding its way across all parts of development: storage, display,

and transport. Lets have a look at the reasons why XML is so useful for

storage.

One obvious advantage to XML is that it provides a way to represent

structured data without any additional information. Because the struc­

ture is "inherent" in the XML document rather than needing to be

driven by an additional document that describes how the structure appears

as you do with, for example, a fiat file, it becomes very easy to send struc­

tured information between systems.

Another advantage to the use of XML is the ability to leverage tools,

either already available, or starting to appear, that use XML to drive more

sophisticated behaviour. For example, XSLT1 may be used to style XML

documents, producing HTML documents, WML2 decks, or any other type

of text document. XML servers such as Biztalk allow XML to be encapsu­

lated in routing information, which then may be used to drive documents

1Extensible Stylesheet Language Transformations. See the W3C recommendation at
http://www . w3.org/TR/xslt

2Wireless Markup Language

104 Chapter 6. Per sistence subsystems

to their appropriate consumers in the specific workflow.

Data serialized in an XML format provides flexibility with regard

to transmission and presentation. With the recent boom in wireless

computing, one challenge that many developers are facing is how to eas­

ily reuse their data to drive both traditional presentation layers (such as

HTML browsers) and new technologies (such as WML-aware cell phones) .

XML provides a great way to decouple the structure of the data from the ex­

act syntactical presentation of that data. Additionally, since XML contains

both data and structure, it avoids some of the typical data transmission

issues that arise when sending normalized data from one system to another

(such as denormalization, record type discovery, and so on).

No one can deny the explosion in demand for access over the Internet

to the data stored in enterprise databases, nor the explosion in demand for

the ability to use the databases to support electronic business operations.

These operations include transactions between systems within an enterprise

("enterprise integration"), between businesses in a supply chain ("B2B e­

commerce"), and directly to customers ("B2C e-commerce"). XML can pro­

vide a huge advantage when numerous users need different views of

the same data.

B) Types of XML documents: data-centric versus document-centric

It is necessary for the reader to be able to distinguish the two categories of

XML documents from each other: data-centric documents from document­

centric documents. This categorization is important because it will often

define what is possible and what isn't when using XML with a DBMS.

Therefore, it is also an important factor in selecting a database. Ronald

Bourret3, an XML database expert, describes these two concepts in his re­

port "XML and Databases" [Bou03a]. The following two definitions are much

inspired from [Bou03a].

3Ronald Bourret is a freelance XML researcher specializing in databases and schemas.
He/Sbe has written a number of papers about XML and XML databases. His papers are
available at http: / /wvv. rpbourret. com/xml

6.2. P er sistence p aradigms 105

D a t a-centr ic documents are documents that use XML as data trans­

port. [Bou03a] They are designed for machine consumption and application­

to-application data exchange. The fact t hat XML is used at all is usually

superfluous. That is, it is not important to the application or the database

that the data are, for some length of t ime, stored in an XML document .

Examples of data-centric documents are sales orders, invoices, flight

schedules, scient ific data, stock quotes, or application configuration files.

Data-centric documents are characterized by fairly regular structure,

fine-grained data4
, and little or no mixed content. T he order in which sib­

ling elements occurs is generally not significa.nt, except when validating the

document . [Bou03a]

Here is an example of a document that is designed to hold data.

<?xml version="l .O"?>

<contacts>

<contact contactnumber="981240">

<ful lname>Pat rick Naughton</fullname>

<companyname>Acme Corporation</companyname>

<email>pna©acme.com</email>

<phone type="business">l-508-766-1601</phone>

<address>

<street>1605 Broadway Ave</street>

<city>Boston</city>

<state>MA</state>

<zipcode>02139</zipcode>

<countrycode>US</ countrycode>

</address>

</contact>

<contact contactnumber="981241">

<fullname>Herbert Schildt</fullname>

<companyname>Osborne Corporation</companyname>

<email>hsc©osborne.com</email>

<phone t ype="business">l- 212-875-1334</phone>

4 The smallest independent unit of data is at t he level of a n element or an attribute.

106 Chapter 6. Persistence subsystem s

<address>

<street>S West 63rd Street</street>

<city>New-York</city>

<state>NY</state>

<zipcode>01250</zipcode>

<countrycode>US</countrycode>

</address>

</contact>

</contacts>

The stored data are contact information for a persona! phone book. No­

tice that every information item, such as full name or the zip code, is rep­

resented by an element, and there is no mixed content. The order in which

contacts are listed is not meaningful. Similarly, information about one con­

tact can also be permuted between one another without any loss of sense

(as long as they stay associated to the top-level entity, the contact).

Document-centric documents are documents designed for human

consumption [Bou03a], i.e. books, email, advertisements, and HTML/XHTML5

documents. They are chara.cterized by Jess regular or irregular structure,

larger grained data6
, and lots of mixed content. The order in which sibling

elements occurs is almost always significant. Document-centric documents

are usually written by hand in XML or some other format which is then

converted to XML. [Bou03a]

For example, marking up a paragraph in an article or a book might look
like the following:

<paragraph>

<quote speaker="Eustace">"I don't believe I've seen that orange

pie plate before"</quote>, Eustace said. He/She examined it closely,

noting that <plot>there was a purple stain about halfway

around one edge.</plot><quote speaker="Eustace">"Peculiar,"
5 Extensible Hypertext Markup Language
6The sma.Ilest independent unit of data might be at the level of an element with mixed

content or the entire document itself.

6.2. Persisten ce paradigms

</quote> he declared.

</paragraph>

107

There are two important points to note in this example. Firstly, if the

markup was removed, the text of the paragraph itself would still have the

same meaning outside the XML document. Secondly, the order of the in­

formation is of critical importance to understand its meaning. Reordering

elements of the above marked up text radically changes its sense.

Categorizing documents as data-centric or document-centric documents

helps deciding what kind of database is best to use. As a general rule (not ab­

solute though), data are stored in a traditional database (relational, object­

oriented, or hierarchical) that can handle XML, an XML-enabled database.

Documents are stored in a native XML database, a database designed espe­

cially for storing XML, or a content management system 7.

C) Types of XML d atabases: Native XML d atabases versus XML­

Enabled databases

The XML:DB initiative8 differentiates three different types of XML database:

Native XML Database, XML-Enabled Database, and Hybrid XML Database.

A Native XML Database (NXD) is a database that:

1. "defines a {logical) model for an XML document - as opposed to the

data in that document - and stores and retrieves documents according

to that model. At a minimum, the model must include elements, at­

tributes, and document order. Examples of such models are the XPath

data modetJ, and the models implied by the DOM10 and the events in

SAX11 .

2. has an XML document as its fundamental unit of {logical) storage, just

like a relational database has a row in a table as its fundamental unit

7 A content management system is an application designed to manage documents and
built on top of a native XML database.

8See page 113 for more information about the XML:DB initiative
9See page 110 for more information about XPath

10Document Object Mode!, an XML parser
11Simple API for XML, an event-driven alternative to the memory-hungry DOM

108 Chapter 6. Persistence subsystems

of {logical) storage.

3. is not required to have any particular underlying physical storage model.

For example, it can be built on a relational, hierarchical, or object­

oriented database, or use a proprietary storage format such as indexed,

compressed files." [Ini]

An XML-Enabled Database (XEDB) is a database that "has an

added XML mapping layer provided either by the vendor of the database

or a third party. This mapping layer manages the storage and retrieval of

XML data. Data that is mapped into the database is mapped into applica­

tion specific formats and the original XML meta-data and structure may be

lost. Data manipulation may occur via either XML specific technologies {i.e.

XPath, XSLT12
, DOM or SAX) or other database technologies{e.g. SQL).

The fundamental unit of storage in an XEDB is implementation dependent."

[Ini]

A Hybrid XML Database (HXD) is a database that can be treated

as either a Native XML Database or as an XML Enabled Database depend­

ing on the requirements of the application. " [Ini]

To summarize, Native XML databases are new custom-designed databases

built from the ground-up to manage XML and which allow XML documents

to be stored as XML internally. XML-enabled databases are conventional

relational or object-oriented databases that have been fitted with some kind

of front-end XML adaptor to manage the storage of data from XML docu­

ments. Hybrid XML databases can be treated as both.

A close-to-exhaustive list of XML Database products is available on

Ronald Bourret's Website [Bou03b]. Before <living into this list, one must

understand the difference between text-based and model-based DB types.

A text-based native XML database (TB) is one that stores XML as text

while a model-based native XML database (MB) builds an interna! objects

model from the XML document and stores this model. Here is a summary

of Ronald Bourret's list.
12Extensible Stylesheet Language Transformations. See the W3C recommendation at

http://YWW.w3.org/TR/xs1t

6.2. Persistence paradigms 109

Table 6.1: Native XML Databases

1 Product I Developer I License 1 DB Type
4Suite FourThought Open Source Object-Oriented
DBDOM K. Ari Krupnikov Open Source Relational
eXist W. Meier Open Source Relational
GoXML DB XML Global Commercial Proprietary (TB)
Ipedo XML DB Ipedo Commercial Proprietary
MindSuite XDB Wired Minds Commercial Object-Oriented
Natix Data ex machina Commercial File System
Tamino Software AG Commercial Proprietary /Relational
XDBM Matthew Parry Open Source Proprietary (MB)
X-Hive/DB X-Hive Corporation Commercial 00 /Relational
Xindice Apache Soft. Foundation Open Source Proprietary (MB)

Table 6.2: XML-Enabled Databases

1 Product 1 Developer j License j DB Type
Access 2002 Microsoft Commercial Relational
DB2 IBM Commercial Relational
FileMaker FileMaker Commercial FileMaker
FoxPro Microsoft Commercial Relational
Informix IBM Commercial Relational
Objectivity /DB Objectivity Commercial Object-Oriented
Oracle 8i, 9i Oracle Commercial Relational
SQL Server 2000 Microsoft Commercial Relational
Sybase ASE 12.5 Sybase Commercial Relational

Table 6.3: Hybrid XML Database

1 Product I Developer I License I DB Type

I Ozone I ozone-db.org I Open Source I Object-Oriented 1

An outstanding research summary paper, titled "XML Database Trends

and Influences" has been written by the Intellor Croup [IG0l]. The reading

of this study is strongly recommended for those willing to learn how Native

XML Databases and XML-Enabled databases are gaining importance on

110 Chapter 6. P ers istence subsystems

today's database market.

D) XML D atabases Query Languages

Native XML Databases' efficiency t ightly depends on several factors. Effi­

ciency obviously depends on the chosen model, but also on how clients will

access data, how clients will store, retrieve and update information. That is

the database query language.

A multitude of standards have emerged around the XML concept. These

standards are defined by the World Wide Web Consortium (W3C) and

are followed by a considerable majori ty of the developers. Amongst these

standards, there are two XML Query Languages: XPath and its successor

XQuery.

XPath and XQuery quickly revealed themselves as insufficient. Both of

them only enable retrieval of data in the XML database. Editing or updat­

ing the value of an element or attribute in an XML document is impossible.

The only way around this is to work at the document level: delete the whole

document and replace it by the new one.

An XML update language recently appeared on the market (September

2000) at the initiative of the XML:DB project. In March 2003, the W3C

has shown its interest in supporting XUpdate and offered to develop a new

standard based on the actual specifications.

The attentive reader probably wonders how corne there is not only one

clearly defined language for ail data accesses as there is in the relational

model (SQL). To work with an XML database, a set of two languages is

needed; one to query and one to update. This is due to the youth of the

XML standard and to the multiplicity of developers, each of them adding

one brick to the XML wall.

The three of the above mentioned standards (XPath, XQuery, and XUp­

date) will be briefl.y exposed in the following paragraphs.

6 .2. P er sistence paradigms 111

XPath XPath, the XML Path Language, has been defined by the World

Wide Web Consortium (W3C)13. It aims at locating elements, attributes,

and other XML document nodes in a concise, interoperable way. XPath

uses a compact, string-based syntax, rather that a structural XML-element

based syntax14 . This allows XPath expressions to be used both in XML

attributes and in URis.

Without focusing on the details of the syntax, here are some basic exam­

ples of XPath queries. The XPath //customer/order selects every element

named "order" within top-level elements named "customer" in the selected

XML document. Similarly, //customer/order[@orderID='981240'j returns

the customer order whose attribute "orderID" is 981240, and //customer/2]

selects the second "customer" element of the treated XML document.

As stated here before, the XPath language provides ways to select nodes

in an XML document based on simple criteria such as structure, position, or

content, but does definitely not permit any modification or update of these

nodes.

XQuery The XML Query language, also defined by the W3C15, is a pow­

erful and convenient language designed for processing XML data. As for

XPath, the initial design of XQuery is focused only on information retrieval

and does not provide features for updating existing XML documents.

XQuery is a functional language consisting of several types of expressions

that can be composed with full generality. XQuery expressions include path

expressions (XQuery is defined as a superset of XPath), element construc­

tors, fonction calls, arithmetic and logical expressions, conditional expres­

sions, quantified expressions, expressions on sequences, and expressions on

types.

One can imagine an auction database from which one wants to extract

a list of popular items. The query should generate an XML element, called

"popular-item", containing the item number, a description, and a bid count

13See the W3C recommendation at http://www.w3.org/TR/xpath
14 As XUpdate does
15See the W3C recommendation at http://www. w3. or g/TR/xquer y

112 Chapter 6. Persistence subsystems

for each item that has more than 10 bids. The example here below illustrates

how such a query would be expressed with XQuery.

The for clause and let clause produce a binding pair for each item in

items.xml. In each binding pair, the variable $i is bound to the item and

$b is bound to a sequence containing ail the bids for that item. The where

clause retains only those binding tuples in which $b contains more than ten

bids. The return clause then generates an output element for each of these

bindings, containing the item number, description, and bid count.

for \$i in document(''items.xml'')/*/item

let \$b := document(''bids.xml'')

l*/bid[itemno = \$i/itemno]

where count (\$b) > 10

return

<popular-item>
{

\$i/itemno,

\$il description,

<bid-count> {count (\$b)} </bid-count>
}

</popular-item>

More information about the XML Query language can be found in [Cha].

XUpdate The XUpdate project16 of the XML:DB initiative gave itself the

mission to provide open and flexible query and update facilities to modify

data in XML documents. The standard helps updating fragments of docu­

ments and avoids performing modifications at the document level.

XUpdate uses the expression language defined by XPath to query a doc­

ument. An update is rather expressed as a well-formed XML document.

Here is an example of an update operation. The following expression

<xupdate:update select="/addresses/address[2]/town">

New York
16The project home page is http: / /VV1o1. xmldb. org/xupdate

6.2. Persistence paradigms

</xupdate:update>

on this input document

<addresses>

<address>

<town>Los Angeles</town>

</address>

<address>

<town>San Francisco</town>

</address>

</addresses>

will change the content of the context node to

<addresses>

<address>

<town>Los Angeles</town>

</address>

<address>

<town>New York</town>

</address>

</addresses>

113

XUpdate can also insert, append, remove or rename elements/attributes/ processing

instructions/comments in an XML document.

E) The XML:DB Initiative

XML:DB17 is an industry initiative formed by SMB GmbH, the dbXML

Group L.L.C and the OpenHealth Care Group. XML:DB provides a com­

munity for collaborative development of specifications for XML databases

and data manipulation technologies. They stimulate the use of standards in

the XML database industry.

The XML:DB Initiative's long term goals can be summarized as:

• "Development of technology specifications for managing the data in

XML databases
17 http://w'IN.xmldb.org

114 Chapter 6. Persist ence subsystems

• Contribution of reference implementations of those specifications under

an Open Source License

• Formation of a community where XML database vendors and users

can ask questions and exchange information to leam more about XML

database technology and applications

• Evangelism of XML database products and technologies to raise the

visibility of XML databases in the marketplace" [Ini]

One of the XML:DB Initiative projects is the creation of an XML
database API18. The project is intended to develop a unique program­

ming interface for XML databases. This API is wanted to be vendor neutral

in order to support the use with the largest array of databases possible.

The XML:DB API is designed to enable a cornmon access mechanism

to XML databases. It enables the construction of applications to store, re­

trieve, modify and query data that is stored in an XML database. These

facilities are intended to ease the construction of applications built around

any XML database that daims conformance with the XML:DB API.

Two Native XML databases from Ronald Bourret's list of products19 ,

Apache Xindice20 and eXist, implement the XML:DB API. Ozone, a Hybrid

XML database, does too.

6.3 Persistence in the Equipment Manager

6.3.1 Requirements

Business analysts and developers of the Equipment Manager formalized sev­

eral fundamental requirements of the persistence module of the application.

The Equipment Manager obviously needed to store, update and retrieve

data in the product database in a convenient way. The database is needed

18 Application Programming Interface
19Ronald Bourret's list of products is available on page 109
20Pronounced the ltalian way: zeen-dee-chay

6.3. P ersist ence in the Equipment Man ager 115

as a "shared resource" between three applications and the number of appli­

cations might increase in the long run. Hence, a solution favouring trans­

mission of data between applications was also needed.

On top of that, the database is required to be portable since it will hold

the pool of products needed by sales representatives working on client sites.

On the financial level, executive officers strongly recommended the use

of open-source tools in order to reduce license costs.

6.3.2 Technology selection

Two important decisions had to be taken to choose the most appropriate

persistence system. The first one is the database model to use. The second

one is the tool that is best adjusted to the specific requirements of the ap­

plication.

T he choice of the database model lead very naturally to XML Databases

as XML suits well the needs of a "shared resource". As for the tool, the team

decided to use a Native XML database rather than an XML-Enabled. The

reason for this is the efficiency provided by a system that allows data/documents

to be stored as XML internally, without additional format conversion layers.

After an evaluation in depth of the market, it appeared that most of the

available Native XML databases were still very immature. Even those which

are compliant to the XML:DB API, such as Apache Xindice or eXist, pre­

sented severe incompletions. For example, "eXist" from W. Meier does not

offer any update mechanism. Neither XUpdate nor any other update mech­

anism is implemented yet. "Xindice" from the Apache Software Foundation

provides more features and is, in general, a more complete tool than eXist.

"Xindice" did not meet the expectations either. Among other elements, its

system requirements were too restraining for Acme's software team (requires

old version of the J ava Development Kit: jdk 1.3). Unfortunately, no Native

XML database found in the industry could answer the requirements.

Based upon these observations, the team decided to build its own custom­

built Native XML database.

116 C hapter 6. P er sistence subsystems

6.3 .3 The imp le m ent ed solution

The Equipment Manager database is a Native XML database based on a

file system with a specific naming convention21 . The database is a simple

collection of XML files. Every file holds data for one product. These files

are data-centric documents. The collection is indexed in a separate XML

file. The index holds references to each product stored in the database.

It also holds ail the information that is relevant at the database level. The

collection, with its index, is compressed in one single file using the zip format.

For reusability purposes, product images are stored separately from the

product data. lndeed, the database structure is constituted of two parts

or folders: product information and product images. The product data file

(from the product information folder) contains a reference to its image in

the database. This way, pictures can be shared and reused easily between

products. Figure 6.4 illustrates the internai structure of a typical database.

Files paths are ail constructed the same way, according to well defined

naming conventions. A data file path is formed like /products/vendor/model/sku­

number.xml and an image file path like /images/vendor/model/image.ext.

Files within each part are sorted by vendors, then by models. The intention

is to have a unique path for every product. Since two vendors can give their

products the same SKU number or model name, the only possible unique

identifier has to be composed of the three following properties: the vendor

name, the model name, and the SKU number.

The XML files are serialized and unserialized with the help of the "Cas­

tor Source Generator"22
. To be more precise, Castor generates serializer ob­

jects (Java source files) from the database definition (XML Schemas). The

generated serializer objects handle automatically the marshalling (serializa­

tion/unserialization) process. No query language, such as XPath, XQuery or

XUpdate is therefore needed since database accesses are executed through

get/set methods from the serializer abjects.

21
The reader remembers from its reading of Section 6.2.5 (page 107) that a Native XML

database is not required to have any particular underlying physical storage mode!.
22This is covered in detail in Chapter 5

6.3. P ersis tence in the Equipment Manager 117

Figure 6.4: The structure of a typical Equipment Manager database

6.3.4 Putting in perspective

One must keep in mind that the exhibited choice does not pretend to be the

one solution. Acme favored a database model that satisfies its needs for a

light and portable "shared resource". This solution is not to be imperially

selected for every software projet. As a matter of fa.et, larger-scale projects

might need more efficient solutions regarding maintenance problems (index

fragility), database definition versioning, transaction capabilities, multi-user

access, cross-application access, and so on.

118 Chapter 6. Persistence subsystems

6.4 Persistence as a Design Pattern-oriented Sub­

system

In a persistence subsystem, Design Patterns can play a substantial role.

This section will check jf "Design P attern-oriented Subsystems", as intro­

duccd in Chapter 2, can improve the architectw·e of such a module. It also

will demonstrate that several recurrent problems, specifi.c to this kind of

suhsystems, can be fixed with the help of Design P atterns.

6.4.1 A Design Pattern-oriented Subsystem?

As illustrated in Figure 6.5, a "Design P attern-oriented Subsystem" gathers

three Design P atterns in one entity: the Model-View-Controller , the Media­

tor, and the Façade. Direct advantages of this composition are low coupling,

high reusabilîty, rnbustness and consisteucy.

DP SUBSYSTEM

DP Mediator

View Layer

Application
Layer

Domain Layer

Figure 6.5: A Design P attern-oriented Subsystem

Unlike other typ<:'.s of subsystems, as detailed in Chapters 3 through 5, it

is delicate to create a persistence subsystem as a "Design Pattern-oriented

Subsystem". First of all, a persistence module does not need a.ny view layer

because, very often, the application has a sepa.rated GUI subsystem. It does

not rcquire a Model (domain layer) either, since, for efficiency purposes,

most databases are accessed directly by the controller.

6.4 . Persistence as a D esign Pattern-oriented Subsyst e m 119

With no View nor Madel, there's no need to apply the Model-View­

Controller pattern. And with one abject only in the subsystem (i.e. the

Controller), the presence of a Façade does not present much interest any­

more. Similarly, the responsibility of the Mediator pattern is to communicate

between Models. If there is no Madel in the subsystem, there shouldn't be

a Mediator either.

Towards the end of the chapter, one will progressively realize that the

above paragraph is not entirely true. Although it is not recommended to

apply as such the "Design Pattern-oriented Subsystem" to a persistence mod­

ule, one will discover that exerting good architecture principles leads to a

slightly similar solution.

A study of the contribution of specific Design Patterns to the architecture

of a persistence subsystem will now follow.

6.4.2 Technology indep endence thanks to the Strat egy pa t-
t ern

Purpose As mentioned amongst the requirements of a persistence module,

it needs to be technology independent. As a matter of fact, the chosen

technology can change at different levels. It goes from the logical storage

model (hierarchical, relational, XML database, and so forth) to the DBMS

tool (Oracle, DB2, Xindice, etc.) .

Definit ion This is where the Strategy pattern cornes in . T his pattern

obviously is no solution in terms of storage model or DBMS tools. By def­

inition, a Design Pattern is a high-level and generic solution to recurrent

problems. T he "Gang of Four" describes it as follow: "The Strategy pattern

defines a family of algorithms, encapsulate each one, and make them inter­

changeable. Strategy lets the algorithm vary independently from clients that

use it." [GHJV95]

Using this pattern is very convenient when several related classes provide

the same services, but differ in their behaviour. In other words, it is very

handy when different variants of an algorithm coexist. Strategy is also useful

120 Chapter 6. P ersistence subsystems ---------------

when an algorithm uses data that clients shouldn't know about. It avoids

exposing complex, algorithm-specific data structures. The structure of the

Strategy pattern can be sketched as shown in Figure 6.6.

Context strategy Strategy

+Contextlnterface () +Algorithmlnterface ()

6

1

ConcreteStrategy A ConcreteStrategyB ConcreteStrategyC

+Algorithmlnterface () +Algorithmlnterface () +Algorithmlnterface ()

Figure 6.6: The Strategy Pattern

Figure 6.6 illustrates that a Strategy defines an interface common to all

supported algorithms. The Context uses this interface to call the algorithm

defined by a ConcreteStrategy. A ConcreteStrategy implements the algo­
rithm using the Strategy interface.

The Context's role is to forward requests from its clients to its Strategy.

The Context interacts with the Strategy to implement the chosen algorithm.

A Context may pass all data required by the algorithm to the Strategy when

the algorithm is called. Clients usually create and pass a ConcreteStrategy

object to the context, then clients interact with the context exclusively.

[GHJV95]

Application In the case of a persistence subsystem, the function of the

Strategy is played by an interface (Databaselnterface) through which every

database access goes. Concrete implementations of the interface may, for ex­

ample, vary depending on the database model. They could, as well, reflect

different space/time trade-offs. Figure 6. 7 considers three ConcreteStrate­

gies: a relational database controller, an object-oriented database controller,

and an XML database controller.

6.4. Persistence as a Design Pattern-oriented Subsystem 121

Context ProductDatabaselnterface -
+Contextlnterface () + getProduct(key)

6

1 1

Relational-DB•Controller 0O08-Controller XMkDB•Controller

+ getProduct(key) + getProduct(key) + getProduct(key)

Figure 6.7: A technology independent persistence subsystem

Clients should use the subsystem as a service and should not know any­

thing about the concrete implementation. They definitely should not be

able to change database mode! from one request to another. Once selected,

every client should keep up with a ConcreteStrategy, or totally migrate from

one to another. One must note that the choice of the ConcreteStrategy can

be improved with the Abstract Factory pattern. This is detailed in section

6.4.3.

The database interface should provide operations as generic as possible.

A carefully specified interface does not reveal any details of its concrete

implementations. For exarnple, operations in the case of product database

should look like:

public Object getProduct(ProductKey key);

public ProductKey setProduct(ProductKey key, Object product);

public void addProduct(ProductKey key);

public void removeProduct(ProductKey key);

Such methods signatures are generic enough because they do not make

any assumptions on the implementation that lies beneath it. These signa­

tures are high-level enough to be valid for ail concrete strategies. Except

for the generic product key interface, return types and pararneter types are

Objects. Method names also avoid using too specific names. Here are a few

examples of technology dependent signatures:

public XMLResource getProductXMLFile(FilePath path);

122 Chapter 6. P er sisten ce subsyst em s

public void setProductRow(PrimaryKey key, Row product);

Benefits Using the Strategy pattern in a persistence subsystem has the

following benefits23
:

l. Families of related algorithms. The database controllers (Relational,

Object-Oriented, XML, etc.) forma family of algorithms or behaviours

for contexts to reuse.

2. An alternative to subclassing. Using inheritance to manage the database

controllers infers subclassing a Context class directly. This hard-wires

the behaviour into the Context and mixes the controllers implementa­

tion with Context's. Using the Strategy pattern instead makes it easier

to understand, maintain, and extend. Plus, encapsulating controllers

in separate Strategy classes makes it possible to vary controllers inde­

pendently of their context, easing the switch of controller.

3. No conditional statements. As a matter of fact, it would be hard to

avoid using nested conditional statements to select the right behaviour

if the different algorithms were gathered in one same class. [GHJV95]

Drawbacks A potent ial disadvantage of this pattern is that clients must

be aware of different Strategies: database clients must know the difference

between controllers, and must be able to choose one. [GHJV95]

6.4.3 R educe coupling wit h the Abstract Fact ory pattern

P urpose The use of the Strategy pattern leaves to clients of the persis­

tence module the responsibility to choose which ConcreteStrategy should be

used. In order to avoid coupling between clients and the ConcreteStrategy,

enforcing the access to the Strategy through a Factory might be pertinent.

D efinition Erich Gamma et al define the Abstract Factory pattern as

follow. The pattern intent is to provide an interface for creating fami­

lies of related or dependent objects without specifying their concrete classes.

[GHJV95]

23The following benefits have been adapted from benefits of the Strategy pattern as
listed in (GHJV95].

6.4. Persistence as a Design Pattern-oriented Subsystem 123

~

ë r••········· •·· ··· ... ---.... ·-- ·,- -.
~
ü

~ ,.. ,..
ID <(
0 - ti r--
:, :,
'O 'O e 0

à: Il.

- ~

:; ~
ID -0 0 :, :,

'O 'O

e n- e f<}-Il. Il.

ti ti
CO ~ ...

ûi ûi
,Q ,Q -<(- <(

~ -
g (N

ID
ti 0 - :, - :,
'O 'O 0 0 à: à:

.. --- ... -.. --

(N

ê.':' 0 al' 0 ~ ô " ü
CO :, :,

~
IL ~ "8
.2! o. à:
l!! * * 0 e! e! C
0 (.) (.)

0 + +
ê.':' 0

~ ~ ar
CO 3 g
~ ~ ~ <}-0 o. o.
~ Q) Q) --. ---... --...

;;; ;;;
(1) e! e ,Q
<((.) (.)

+ + ,..
ê.':' 0 al' 0 ~ ti " u
CO :, :,
IL ~ ~ - .2! o. o.
l!! .!!! .!!!
0 CU CU

C e! e!
0 (.) (.)

0 + +

Figure 6.8: The Abstract Factory Pattern

124 Chapter 6 . P ersist ence subsystems

Figure 6.8 illustrates the UML class diagram of the Abstract Factory

pattern. Clients only use24 interfaces declared by AbstractFactory and Ab­

stractProd uct classes. The AbstractFactory declares an interface for opera­

tions that cr ea t e ab stract products objects. The ConcreteFactory classes

implement25 the operations to create concrete products objects. The Ab­

stractProduct classes, instead, declare an interface for a type of product

object. Finally, the ConcreteP roduct classes define a product object to be

created by the corresponding concrete factory. A ConcreteP roduct imple­

ments the AbstractProduct interface.

The main reason to apply this pattern is the need for a system to be

independent of how its products are created, composed, and represented.

[GHJV95]

A pplication The Abstract Factory pattern is designed to handle several

product types, and several products for each type26. For the Equipment

Manager, there is only one product type (ProductDatabaseinterface), which

does contain several products (concrete database controllers). The applied

pattern is illustrated in Figure 6.9.27

The attentive reader noticed that Figure 6.9 represents a combination

of the Strategy pattern together with the Abstract Factory pattern. The

set of four classes constituted by ProductDatabaseinterface and the three

concrete database controllers plays the role of a set of participants in both

the Strategy pattern and the Abstract Factory pattern. Put another way,

the application of the Strategy pattern is constituted of ProductDatabasein­

terface (the Abstract Strategy) and of Relational-DB-Controller, OO-DB­

Controller and XML-DB-Controller (the Concrete Strategies). The Context

object from the Strategy pattern is absent, since its role of intermediate be­

tween clients and Strategies is played by the Abstract Factory pattern. As

for participants of the Abstract Factory pattern, ProductDatabaseinterface
24Drawn as plain Lines
25Drawn as dotted lines (creation process)
26On Figure 6.8, these two dimensions are represented by letters for product types (A-B)

and by numbers for products of each type (1-2).
27Note the arrow symbolizing the association of the client with ProductDatabaselnter­

face. Unlike one could interpret from t he graphie, the relationship between these two
classes can obviously exist only through t he Factory. Tbere is no d iiference here between
the application and the original pattern, as defined by the Gang of Four.

6.4. P er sist ence as a Design P attern-oriented Subsyst em 125

Client

l
AbstractDatabaseConnectlonFactory

ProductDatabaselnterface

+ getProduct(key)
+crea1e(): ProductDa1abascln1crface 6

~
DatabaseConnectlonFactory 1 1

Retatlon■l-08-COntroller 00.0B-Controller XML-08..Controller

+crea1e(): Produc!Databast ln1trf ace
+ getProduct(key) + getProduct(key) + ge\Product(key)

~ ~ ~

Figure 6.9: An application of the Abstract Factory Pattern

and the database controllers play respectively the role of the Abstract and

Concrete products.

As example, the "create()" method of the DatabaseConnectionFactory is

as simple as follows:

public static ProductDatabaseinterface create() {

return new Zi pXml DbController(new XmlDbControll er());
}

The return type of the Factory's create() method is a ProductDataba­

seinterface (Abstract Strategy). What the method truly returns, is the

Concrete Strat egy.

The simultaneous use of two DatabaseControllers/ConcreteStrategies

(ZipXmlDbController and XmlDbController) is an application of the Dec­

orator pattern. The reader is referred to the following section about the

Adapter pattern (page 130) for more explanations on this subject.

B enefits Using the Abstract Factory pattern in a persistence subsystem

isolates database controllers. Encapsulating the responsibility and the pro­

cess of creating database controllers inside a factory isolates clients from

126 Chapter 6 . Persistence subsystems

their implementation. It enforces clients to manipulate instances through

their abstract interfaces. Therefore, it reduces coupling. [GHJV95]

Drawbacks Supporting new database controllers is difficult. Because the

AbstractFactory interface fixes the set of products that can be created, sup­

porting new database controllers involves changing the AbstractDatabaseC­

onnectionFactory class and all of its subclasses. [GHJV95]

6 .4.4 Decomposing database controller into logical sub-controllers
with the Decorator pattern

Purpose Section 6.4.2 over the Strategy pattern reveals that a persistence

subsystem might need to handle different database controllers in order to

be technology independent. This may be pushed further by decomposing

controllers in logical units.

Definition The Decorator pattern has been introduced and defined in Sec­

tion 3.4. As a reminder, this pattern "attaches additional responsibilities to

an object dynamically. It provides a flexible alternative to subclassing for

extending functionality". [GHJV95]

Concrete Component

+operation()

Component

Concrete Deeorator A

-addedState

+operation()

Decorator
component

+Operatfono - - - - - - - - ➔, Component ·> operatlon() J

Concrele Deeorator B

+operatlon()
+addedBehavior()

Decofator.operation()
-) addedBehavlor()

Figure 6.10: The Decorator Pattern

Figure 6.10 outlines a UML class diagram of the Decorator pattern. The

6 .4. P ersis te nce as a D esign Pattern-orie nted Subsystem 127

Component object defines the interface for objects that can have respon­

sibilities added to them dynamically. The ConcreteComponent defines an

object to which additional responsibilities can be attached. The Decorator

maintains a reference to a Component object. It also defines an interface

that conforms to Component's interface, so that its presence is transparent

to the component's clients. At last, the ConcreteDecorator adds responsi­

bilities to the component.

In other words, the Decorator merely forwards client's requests to the

component. It may also perform additional actions before or after forward­

ing.

T he Decorator pattern is actually more powerful than that. It is pos­

sible to use nested Decorators. Each of them defines one layer of a global

component. The pattern acts as a wrapper28 and is totally transparent to

the client. [GHJV95]

Application The reader remembers from its reading of Section 6.3.3 that

the database of the Equipment Manager is an indexed collection of XML

files, compressed in one zip file. The development team chose this solution

for now, but this decision can be changed at any time.

To be fully flexible, it helps decomposing the database controller in sev­

eral parts. For example, the database controller of the Equipment Manager

is divided in two layers: one controller handles the database at the XML

files level (XmlDbController), and another one handles the upper level, the

zip level (ZipXmlDbController) .

This way, it is possible (and even very easy) to decide to replace the

zip compression format by Gzip, or by any new revolutionary compression

algorithm. Similarly, the only cost of replacing the XML format would be

to replace the XmlDbController.

Figure 6.11 illustrates how the Decorator pattern is applied to the Equip­

ment Manager.

28The Decorator pattern is also known as the Wrapper.

128 Chapter 6. Persistence subsystems -----------------=--

ProductDatabaselnterface

+ ge!Product(key)

XmlDbController ZlpXmlDbController
---,

+ getProduct(key) + ge!Product(key) ., -. -1 pdi.getProduct(k•y> 1

Figure 6.11: The Decorator Pattern applied to the Equipment Manager

Once again, all this is totally transparent to the client, since all con­

trollers comply to the same interface (ProductDatabaseinterface). Clients

access controllers through this interface. They use an instance of ZipXmlD­

bController, which forwards all requests to the XmlDbController (before or

after completing operations that are specific to its layer).

For example, here follows the code of the getProduct(key) method from

the ZipXmlDbController. The controller simply forwards the request with­

out performing any additional operations.

public Object getProduct(Product Key key) {

return xmlDb .getProduct(key);
}

Unlike the previous example for which it does not make sense to perform

any operations at the zip file level, the openDatabaseConnection(databasePath)

method does perform zip file-specific operations before and after forwarding

the request to the XmlDbController.

public void openDatabaseConnection(File databasePath) {

if (isDatabaseOpen) {

throw new RuntimeException("Database is already opened.") ;
}

zipDatabasePath = databasePath;

6.4. Persistence as a Design Pattern-oriented Subsystem 129

}

databaseWorkingDirectory = getWorkingDirectory();

deleteDatabaseWorkingDirectoryContents();

try {

ZipFileUtilities.extractZipFileîoDirectory(zipDatabasePath,

databaseWorkingDirectory);
}

catch(IllegalArgumentException iae) {

iae.printStackîrace();
}

xmlDb.openDatabaseConnection(databaseWorkingDirectory);

isDatabaseDpen = true;

Benefits Using the Decorator pattern in a persistence subsystem has the

following benefits:

1. Reusability. Decomposing database controllers into smaller compo­

nents gives more reusable logical units. Switching logical units (for

example, changing the compression algorithm) becomes easy.

2. Maintainability. Decomposing a problem in subproblems always makes

it easier to understand, and hence to maintain.

3. More fiexibility than static inheritance. [GHJV95] The Decorator pat­

tern can dynamically attach responsibilities to a database controller,

with much more flexibility than static (multiple) inheritance. Inheri­

tance requires creating a new class for each additional responsibility.

This gives rise to many classes and increases the complexity of a sys­

tem. Furthermore, providing different Decorator classes for a specific

Component class (database interface) enables the developer to mix

and match responsibilities.

Drawbacks A Decorator and its component are not identical. A Decorator

acts as a transparent enclosure, but from an object identity point of view, a

decorated component is not identical to the component itself. Therefore, it is

not a good idea to rely on abject identity when using Decorators. [GHJV95]

130 Chapter 6. P er sist ence subsystem s

6.4 .5 Handling incompatible interfaces with the Adapter pat­
tern

Purpose Sometimes, clients need to access an existing class through a

generic interface the class can't comply to. The existing class has to con­

form to another interface or its implementation cannot be modified. It makes

this class and the client incompatible.

Put another way, one may need to use an existing class, but the interface

of this class does not match the needed one. This is precisely what the

Adapter pattern has been thought for.

D efinition The Adapter pattern "converts the interface of a class into an­

other interface clients expect. Adapter lets classes work together that couldn't

otherwise because of incompatible interfaces". [GHJV95]

Clion! ta,get raruet
....
,

•Request() -,
Adaplor adaptee Adaptoo

-
~

•Requesl() 1 +SpeclficReque&1()
1

adaptee,Specin<:Request()

Figure 6.12: The Adapter Pat tern

The object adapter29 is illustrated in Figure 6.12. Client collaborates

with objects conforming to the Target interface. The Target defines a

domain-specific interface that the Client uses. The Adaptee defines an ex­

isting interface that needs adapting. The Adapter adapts the interface of

Adaptee to the Target interface.

29Not to confound with the class adapter . (See (GHJV95) for more details)

6.4. Persistence as a Design Pattern-oriented Subsystem 131

Practically, clients call operations on an Adapter instance. The Adapter

simply calls Adaptee operations that carry out the request. [GHJV95]

Application The persistence module of the Equipment Manager uses "Cas-

tor Source Generator" to generate serializer abjects (Java source files) from

the database definition (XML Schemas). The purpose of these generated se­

rializer objects is to handle automatically the database serialization/unserialization

process. As these are automatically generated abjects, it is not possible to

modify t hem in order to comply to an interface.

Let's take the example of the database index. Based upon the XML

Schema Definition (XSD) of a database index, Castor generates at compila­

tion t ime the corresponding Java class. This class is the IndexSerializer. For

robustness and consistency purposes, the persistence system should access

the database index through an interface (Index). Ideally, the concrete im­

plementation of Index would be the Castor generated serializer. 0 bviously,

the serializer object can't implement the Index interface. An intermediate

actor is required, the Adapter.

Client
1

. Index lndexSerializer

+ getProductKeys()
+ getlndexProductlistSerializer()

6

Defaultlndex indcxSeria izer

+ getProductKeys() O ·· · --. --.. -.. -.. ---.. ·I indaS<rialiffl.gellndell'rodoctllirSeriallw()

Figure 6.13: The Adapter pattern applied to the database index

On Figure 6.13, the database controller (Client) may access the table

of contents of the database with the getProductKeys() operation. The con­

troller holds an instance of Defaultlndex, the implementation of the interface

Index. The controller addresses requests to Default index, which in turn calls

the IndexSerializer operations that carry out the request.

132 Chapter 6. P ersist ence subsystem s
- - --------------

Similarly, the Product Key suffers from the same problem. The database

index holds a list of product keys, a kind of table of contents. When un­

serialized, each of these product keys constitutes an IndexProductSerializer

instance. Since these are Castor generated abjects, they cannot comply to

the ProductKey interface through which database controllers access every

key. Figure 6.14 shows how the Adapter pattern helps "changing" the in­

terface of IndexProductSerializer. Here, IndexSerializerProductKey adapts

ProductKey requests to IndexProductSerializer.

Client ProductKey r---> lndexProductSeriali:r.er

+ getCategoryO + getCategorySerializer()

lndexSerializerProductKey
ios

+ getCalegory() ,·, · · · · · · · · · · · · · · · ·I lps,&<ic.terO!YS<rù1iu,Q

Figure 6.14: T he Adapter pattern applied to product keys

Albeit the list of examples is stopped here, the reader understood that

the Adapter pattern can be applied to a long list of abjects of the Equipment

Manager: to every database object managed by Castor Source Generator.

Benefits The Adapter pattern's most certain benefit is that it allows ob­

jects with incompatible interfaces to communicate.

Drawbacks In the case of the Equipment Manager, the potential num­

ber of generated classes that would require an adapter is quite important.

Sometimes, the number of potential adaptees is so big that the development

team may decide that applying the Adapter pattern and other architecture

principles implies too much fastidious work. They could, in a more simpler

way, skip the use of an interface and make database controllers directly work

6.4. Persistence as a Design Pattern-oriente d Subsystem 133

on generated objects. This obviously would father much coupling.

6.4.6 A Design Pattern-oriented Subsystem? (2)

The idea behind Section 6.4.1 is that it is not efficient to enforce the "De­

sign Pattern-oriented Subsystem" structure as such to a persistence module.

Nevertheless, striving for exertion of good architecture principles, such as the

application of specific Design Patterns to a persistence module showed that

the final solution is quite close to the concept of "Design Pattern-oriented

Subsystems".

Indeed, high reusability was compelled thanks to both the Strategy

and Decorator patterns, low coupling thanks to the Abstract Factory and

Adapter patterns.

On top of that, the assertion stating that no Model30 is pertinent in a

persistence subsystem must be relativized. We could envision intermediaries

between database and controllers (the set of Castor generated serializer ab­

jects as for the Equipment Manager, a cache system, etc.) as the domain

layer of the module, and somehow as the Madel. This makes sense for two

reasons. The intermediate abjects hold the knowledge of the module, as it

is the role of the do main layer. The other reason being that they directly

interact with the Controller, just like a Model would.

Additionally, the Abstract Factory pattern (and its combination with the

Strategy pattern) is the only way clients may access and use the subsystem.

It provides a unified interface to the subsystem, making it easier to use, just

like a Façade would.

Unlike the Model and the Façade, implementing a Mediator with a per­

sistence module is, as a general rule, more of a challenge. Put another way,

encapsulating the interaction between domain layers of several subsystems

is hard to implement with a persistence module. This is because databases

(when accessed directly by a controller) or intermediate abjects (i.e. gener­

ated serializer) are no "flexible and adaptable" abjects. As a matter of fact,

they cannot be modified in order to apply the Mediator pattern on them:

30In the sense of the Mode!-View-Controller pattern

134 Chapter 6. P ers is tence subsystems

no operations for the interaction with the Mediator (events generation and

so on) can be implemented.

It seemed at the beginning of this chapter that a "Design Pattern-oriented

Subsystem" would not fit best in a persistence subsystem. Albeit this, it

is now proved that enforcing high reusability, low coupling and other key

architecture principles favours, with few exceptions, a solution that is quite
close to the concept introduced in Chapter 2.

6.5 Summary

This chapter first exposes the purpose of persistence subsystems and posi­

tions the different persistence paradigms: from file systems to XML databases,

through hierarchical, relational, and Object-Oriented databases. As a key

technology in the development of the Equipment Manager and as the new

way-to-go for the future, the "XML databases" tapie has been covered in

depth, introducing different types of XML documents, types of XML databases,
and specific query languages.

Subsequently, the chapter looks into how persistence was managed in the

case of the Equipment Manager. After revealing requirements, the chapter

discloses the decision process that lead Acme's technology study to its cur­

rent choice: a Native XML database based on a file system with a specific

naming convention. The process of XML Data Binding is managed by Cas­
tor Source Generator.

Finally, this chapter demonstrates the benefits Design Patterns can have

on a persistence subsystem. The chapter started by wondering if the con­

cept of "Design Pattern-oriented Subsystem", could fit in or improve the

architecture of a persistence module. At first sight, it seemed that it was

more appropriate for other kinds of modules than for persistence. After fo­

cusing on specific Design Patterns (Strategy - Abstract Factory - Decorator

- Adapter), deductions were made that, even though a "Design Pattern­

oriented Subsystem" was not the most appropriate solution for a persistence

subsystem, the global solution provided by each of these four patterns sep­

arately is slightly similar and hence, answers part of the needs.

Chapter 7

Design Patterns Automation

This chapter's intention is to provide a critical analysis about Design Pat­

terns. It will focus on three distinctive tapies.

First of all, the chapter leans on the use of Design Patterns in C ASE

tools1 . This joins into one the potential expectations that a user may have

from the software, a study of what exists on the CASE tools marketplace,

and a review of the existing (comparison existing-expectations).

Secondly, the chapter puts in perspective the concept of "ready-to-use"

D esign Pattern-oriented Subsystems introduced in Chapter 2.

Finally, a thought on the pertinence of Design Patterns automa­

tion with the help of CASE tools will conclude the chapter.

7 .1 Preliminaries

The basic notions on which rely the following sections must be introduced

first. Design Pattern-capable CASE tools may offer several features. Among

them, two need to be differentiated.

The term Design Patterns generation refers to the creation from

ground-up of a new pattern. The user selects the pattern that is to be pro­

duced. The CASE tool then assemble from scratch the abjects constituting

1 A CASE tool is a computer-based product aimed at supporting one or more software
engineering activities within a software development process.

135

136 Chapter 7. Design Patterns Automation

the pattern and creates associations between them.

The above concept is not to be confounded with Design Patterns ap­

plication. This means selecting existing abjects and transforming them

into a structure that complies to the pattern requirements. It also builds

the necessary associations between elements.

Now that the difference between these two concepts is assimilated, the

requirements one could have from a Design Pattern-capable CASE tool will

be examined.

7.2 R equirements for CASE tools support

This section presents the main requirements that might be requested from

a tool dealing with Design Patterns automation. Applying patterns is not

as easy as understanding what they are made for , as muchas the situation

in which patterns have to be applied changes every t ime. A tool pretending

to manage patterns automation must hence meet some requirements and

perform some basic functionalities.

7 . 2 .1 Theoretical context

Patterns representation

Before examining the desired functionalit ies of a CASE tool, some precisions

have to be made. [BR] distinguishes two distinct levels of needs regarding
patterns representation.

The first one is about the expression of patterns in languages, es­

pecially the expression of the solution's structure given by the pattern itself.

The second level concerns the r epresentation of pattern s as manip­

ulable entities. Different approaches (more or less complete) exist for this

second level. Every single information given in the pattern's description (as

well the intent as the solution, etc.) might be part of this representation of

patterns as manipulable entities. Yet, very often, only some kind of informa­

tion is present (generally about the structural design recommended by the

7.2. Requirements for CASE tools support 137

pattern). What knowledge is part of this pattern representation can depend

on different design points of view and/or some effi.ciency restrictions.

Patterns instantiation

The solut ion brought by a pattern can be qualified of "abstract", as explained

in Section 2.2. A subtle distinction can be made between application and

instantiation. The term "application" covers the process, whatever it is,

leading to the code for the pattern, in a concrete conception context, while

"instantiation" corresponds to the obtainment process of an abject from a

class. Application bas thus a more general meaning than instantiation.

1) Levels of instantiation As for the expression itself, several levels of

instantiation can be found. They are three of them. [BR]

The first one is the meta-representation of the information con­

stituting a pattern. This is the level of a pattern's meta-model.

The second level is the abstract representation of a pattern. This

is the level of the general mode! of a pattern, instantiating a meta-model.

Finally, the concrete pattern's representation is found. It concerns a

concrete pattern model instantiating a meta-model and specializing a general

model. [BR]

2) Types of tools Knowing this, the patterns application handled in

CASE tools can be of two types: either the tool offers an explicit pattern

meta-model and in this case, the instantiation of this mode! consists of repre­

senting the wanted abstract and concrete patterns; either the tool contains

an abstract patterns library that might be derived in order to obtain the

program's skeleton to be completed, leading to the concrete patterns. [BR]

3) Strategies of instantiation To finish with instantiation, according

to [Mei96] and [BR], three ways of instantiating a concrete pattern can be

enumerated.

138 Chapter 7. Design Patterns Autom ation

a) Top - down approach

In this approach, the user typically chooses a pattern to apply, and re­

ceives in return the pattern's structure that he/she has to adapt to his

concrete conception context.

b) Bot tom - up approach

This approach goes in the opposite direction than the top - down ap­

proach. The known components of the user's conception have to be linked

to the pattern components. In this case, a pattern has been recognized a

priori in an components assembly.

c) Mixed approach

The difference of this approach, compared to the bot tom - up one, lies in

the fact that the component structure given to the program only partially

reflects a pattern description. The system completes the structure on its

own with some of the pattern missing components.

The first approach meets what has been defined as Design Pattern gen­

eration and the two others caver the Design Pattern application { cf. Section

7.1).

The study below will be focused on tools from the second type, {i.e.

tools presenting a library of abstract patterns - see patterns instantiation -

in opposition with tools giving an explicit pattern's meta-model). Tools from

the second type have been chosen because they are accessible to the very

beginner user. l t may be difficult to handle a pattern meta-representation

without having any knowledge about patterns.

7.2.2 H elp to conception

The first functionality expected from a tool is to provide some help in

the conception. Obviously it must be possible to generate patterns "from

scratch". This means that the user can decide to create a pattern without

giving the program anything but the name of the pattern he/she wants to

create. Patterns generation has been defined in Section 7.1.

7.2. R equirem ents for CASE tools support 139

On the other hand, ex.isting classes can be transformed to play a role in a

pattern. T his is what is called D esign P atterns application (cf. Section

7.1). It must obviously be possible to chose which class or object will play

which role.

Sorne care must be given to this point. Applying patterns to ex.iting

classes is intended to improve their structure (bringing the advantages of

the Design Patterns) but cannot change functionalities! Enhancing design

and structure does not mean the same thing as modifying the behaviour.

This exigency is called "be haviour preservation" [Popül]. A tool that

would not perform such operations could not even be considered as a Design

Patterns automation tool!

7.2.3 G eneration of code and documentation

If the tool brings some help to the conception, it must also give some output

to the user. And as exposed in [Popül], this output is supposed to be from

a high level of abstraction: ''the methodology should aim at the design

Level rather than the implementation Level, since most of the problems of an

object-oriented system which can be solved by reorganization concern the de­

sign of that system."

So, what results can a user expect from the tool when he/she wishes to

generate a Design Pattern? At least a graphical and a t extual represen­

tation that, for the sake of argument in this case, will be the corresponding

class diagram2 and code. This point will be studied further in Section 7.2.9.

The given diagram has of course to be readable, correct, complete and as

simple as possible, without being too much simplified or over-simple. The

class diagram reflects the classes that are part of the pattern, the relations

they have and the operations they provide. In a way, it is the negative of

all the actors of a Design Pattern. Soit has to be clear and reusable by the

user, otherwise he/she will not even be able to understand the transforma­

tion operated by the pattern. In addition, the code itself is also supposed

to be well-written. If the generated code is incorrect, the whole operation

becomes useless. The user might thus demand a readable, complete, cor-

2See Appendix A for more details on UML

140 Chapter 7. Design Patterns Automation

rect, commented and simple code. This code will obviously be twisted by

the user: it cannot be totally finished. The tool provides the code related

ta the Design Pattern, it cannot know about the real situation it is applied in.

Moreover, the tao! has ta be language independent: the results it

gives cannot contain some tricks specific to a prograrnming language. The

tao! cannot be tied up to a unique and particular language. Besicles, in

order to be as portable as possible, the tool should provide several target

programming languages (as Java, C, C++, C# or others).

7.2.4 User-friendliness and ease of use

It is well-known that, the more a program is user-friendly, easy to use and

fast, the more the user will tend to use it. And the more he/she uses it,

the more he/she will get used ta it and he/she will want to master the tool.

This point is valid for ail tools, in general. Although it concerns a sensitive

tapie (Design Patterns), the most common requirements have ta be met tao.

Using the tool must then be intuitive and easy.

7.2.5 Wide but structured patterns library

Supporting only a few Design Patterns would not make any sense. If the

user does not find a large range of patterns to use, he/she will not use the

tool at ail. That is why it should not be restricted ta some patterns, ignoring

others. There are a lot of Design Patterns; those known as the GoF Design

Patterns [GHJV95] far from being the only ones. It goes further, Design

Patterns are not limited to object-oriented programming, as mentioned in

Section 2.2. The more patterns the program is able to handle, the more

powerful it will be. There must be a whole library of patterns.

Ail Design Patterns do not have the same purpose, otherwise there would

not be sa many of them. Only in the small set of the GoF patterns, some

subdivisions can be made. There are two criteria ta classify these Patterns.

[GHJV95] The first one is the purpose of the pattern. Patterns can be­

long to creational, structural or behavioural patterns. "Creational patterns

7.2. R equirements for CASE tools support 141

concern the process of object creation. Structural patterns deal with the com­

position of classes or objects. Behavioural patterns characterize the ways in

which classes or objects interact and distribute responsibility." [GHJV95]

The second criterion - the scope of the pattern - specifi.es whether the

pattern is to be applied to classes or abjects. The distinction is therefore

made between a class pattern and an object pattern. Class patterns handle

relationships between classes and their subclasses. These relationships are

established through inheritance, so they are totally static and fixed. On

the other hand, abject patterns deal with object relationships, which are

more dynamic. It could be inferred that the Mediator, for example, is a

behavioural object pattern (as the Observer pattern), whereas the Façade is

part of the structural abject patterns. Knowing all the possible distinctions

between patterns, it might be necessary to present them to the user follow­

ing their category, hence giving him a first idea of the real aim of the pattern.

Sorne other diagrams can help to understand the pattern: a sequence

diagram {for example) might be useful.

7.2.6 Support to decision process

It is however not sufficient to present all the available Design Patterns by

categories if the user is not given any further information. Each pattern

available must in all circumstances be introduced by a presentation (in­

cluding its purpose, participants, consequences, etc.) which can constitute

the first real guidance in the user,s decision process.

Nevertheless, despite the patterns classification and presentation, choos­

ing the "right" pattern is still not a sinecure. There are so many of them

that sometimes some patterns seem to do the same task. For this reason,

it is suggested to work out a kind of wizard which could lead the way for

the beginner user. The experienced user must of course have the possibility

to skip it. This wizard could ask the user which kind of solutions he/she is

looking for and suggests him some patterns close to what his requirements.

It would operate on a step-by-step basis through questions. But this wizard

obviously can,t replace the user's thinking ...

142 Chapter 7. Design Patterns Automation

7.2.7 Patterns composition

Design Patterns might often need to be combined between one another. A

single look to a "Design Pattern-oriented subsystem" proves it. In this kind

of subsystem, the Model is part of the Model-View-Controller (application

of the Observer pattern) and plays the role of the subject that the observer

is listening to. At the same time, the Mode! plays the role of one of the

Mediator's colleagues. It is so implied as well in the Observer pattern as

in the Mediator pattern. This is certainly not the only case. If, in reality,

Design Patterns eau be combined, it be a loss if the tool was not offering

possibilities for pattern composition. Design Patterns cannot be grouped

in any way. The previously envisaged wizard could ask the user whether

he/ she is sure about what he/she is asking in case of suspicious operation.

For example, an object having the role in a Façade, a Model, a Mediator

and a Controller would not make any sense, or at least at first sight. The

wizard might prevent the beginner user to perform incoherent actions.

If it is feasible to combine several Design Patterns, it becomes possible

to generate a whole "Design Pattern-oriented subsystem", which

is an arrangement of a Façade, a Mediator, and an Observer. Generating

the whole structure of an entire "Design Pattern-oriented subsystem" by a

simple click would be great. And there is actually no reason to restrict it to

the only "Design Pattern-oriented subsystems". There must be capabilities

to extend the tool. User-defined plug-ins should be easily added; this way

the user will be allowed to generate every possible (combination of) patterns

or subsystem. This point will be placed into perspective further, in Section

7.6. In any case, the patterns library should be highly extendible.

7.2.8 Consistency checking

As said in Section 2.2, the solution given in a Design Pattern is an abstract

design, meaning that it bas to be adapted to the real context. If the solu­

tion is very often easy to understand, its application might be proving more

difficult. A novice user might therefore have t rouble to apply a pattern the

correct way.

A functionality of consistency verification might hence be very useful: its

purpose will be to validate models respecting structures given by patterns

7 .2 . Requirements for CASE tools support 143

solutions. The user would give the tool his own pattern application, expect­

ing that the tool validates it, meaning that the proposed design respects the

pattern's structure and general ideas. In order to illustrate what coherence's

verification should be, a simple example follows. Figure 7.1 represents the

input of a user who wants to validate his pattern's application. So, could

this class diagram (see Figure 7.1) be an application of the Decorator pat­

tern? (See Figure 7.2 for the solution suggested by the Decorator pattern.)

It is obvious that this cannot be an application of the Decorator, since the

presumed Component and Decorator do not even respect the same inter­

face! The user's input should thus not be validated and the user should be

explained why.

Component Oecorator
~ --

+operation() component +operalion() • • - - - Component •> operallon()

Figure 7.1: Example of consistency verification

This is only possible as long as the tool itself recognizes the pattern

application. As exposed in [BG02], one of the biggest fl.aws of Design Pat­

terns is the poor traceability. "In a large scale application, several Design

Patterns can be mixed and can even overlap each other. Different imple­

mentations of the same pattern can also coexist as they are each adapted

to a particular context. Theref ore, in the final design, it is really difficult

to see which patterns are involved. Two different programmers could even

arrive to two different sets of patterns when trying to identify them. Except

perhaps for the documentation or comments scattered throughout the code,

the patterns are lost during implementation." [BG02]

Let us take a small example using the Decorator pattern. Figure 7.2

recalls the participants of the Decorator pattern and their relations, and

Figure 7.3 presents an application of the Decorator (as exposed in Section

3.4). Even if it is about only one pattern, it does not leap to the eyes that

this diagram represents the Decorator pattern in its application, even with

the Decorator class diagram before one's eyes! And it gets even worst when

applying several patterns.

144 C hapter 7. Design P atterns Automation - -------------- '--------"---

Concret, Componont

+opetatlono ➔1 Co..-.,ooent •> operallon() J
ne,.,. 0ecora1or A Conc:,ete Decorator B

1

Deoonltor.ope,atlln(J ~ ==YÎl><Q ___ -) addedBehaviorO 1

Figure 7.2: The Decorator pattern: class diagram (recall)

ProductOalAModel

AbltractProductOataModel

BaslcProductOataMoclel ProductOataC.cheHandler ProductOalabaselntertace t=======~~j------<~1--_ -_ -_ -_ -_ -_ -_ -_ -_ -_ --1 k>----..t-1----_-_-_-_-_-_-_-_-_î-1
component

Figure 7.3: Example of pattern low traceability

Thus, in order to realize this operation the tool should dispose of a way

to clearly identify each pattern application. This point will be covered more

in depth in Section 7.2.9.

7.2.9 Traceable graphical and t extual representations

In Section 7.2.3 the need to have some graphical and textual results of the

application of t he pattern was introduced. The first proposa! was to output

7.2. R equirem ents for C ASE t ools support 145

a class diagram and the corresponding code. The class diagram gives a good

overview of the participant classes, their relations and operations. As for

the code, it is necessary given that the user will have to complete it. This

documentation would be suffi.dent if Design Patterns were not suffering from

poor traceability.

That is why this kind of documentation is necessary, but not sufficient.

In addition to the code and the class diagram, the tool should provide an­

other pattern representation. This third representation should clearly iden­

tify which pattern has been used, and which classes or objects are playing

what roles in the pattern, thus reducing the lack of traceability of Design

Patterns. It should be evident to see, as well for the user, as for the toll

itself which pattern(s) has/have been applied. Each class or object playing

a role in a pattern should, for example, be linked in some way to a small

box representing the pattern application.

7.2.10 Portability

The tool providing Design Patterns support might not offer the developer

a full programming environrnent. This means that the whole application

development process is not necessarily done with the same tool. If, for

example, the architecture conception is supported by another tool than the

Design Patterns tool, it might be difficult to use both of these tools. Schemas

from the first one need to be opened and modified by the second one and to

re-opened by the first one again. As far as the format used by the tools are

compatible, it seems possible, but it is very rarely the case.

Either the tool can be used through the whole development process (but

this forces the developer to use only one defined tool) either formats are

standard and compatible with other tools (but this supposes the existence

of standard formats and agreements). It might be a challenge to meet this

requirement.

146 Chapter 7. Design Patterns Automation

7 .3 Study of the existing

The purpose of this section is to study Design Pattern-related features of

CASE tools. Table 7.1, borrowed from [Des], lists the Design Pattern­

capable CASE tools available on the marketplace.

Table 7.1: Design Pattern-capable CASE tools

1 Product 1 Corn pany 1 Platform 1
ModelMaker Mode lMaker Tools Delphi
Describe Emba rcadero Windows
Rational XDE Professional Ratio nal Windows
Together ControlCenter Borla nd Java VM
Objectif TOOL Micro Windows
Objecteering Enterprise Edition Softea m Windows, Unix

To avoid redundancy and go straight to the point, the focus will be

placed on one tool only. Decision was taken to inspect the most complete

tool on the marketplace. According to Paul Pop [Pop0l], one of the more

mature tools that offer support for Design Patterns is "Together Control­
Center", a software by Borland3 . Together is a CASE tool which supports

several prograrnming languagues such as Java, C++, C#, CORBA IDL, Vi­

sual Basic, and Visual Basic .NET. It also provides support for common

software design tasks.

Figure 7.4 shows a screenshot of Together ControlCenter 6.1. The mod­

eling tool's GUI is divided in three main panes. The Explorer Pane (left)

illustrates the "Model',4 of the project. It lists the objects of the current

project and the operations each object provides. The Designer Pane (upper

right) holds modelization diagrams. These may be UML diagrams or any

other types of modelization diagrams, such as XML Structure Diagrams,

or even Entity-Relationship Diagrarns. This section concentrates on UML

class diagrams, since Design Pattern-related features in Together only are

3 A trial version of Together ControlCenter is available for download at http://www .
borland. com/products/ download.s/ download_ together. html

4 As called by Together ControlCenter; not in the sense of the Model-View-Controller
pattern

~ E>:>loret _, C ,c

~ ~ ,~,~ 111J
6 J !!?

-~ 1i'f5i ,.
8 '!l' t~,.1-mal~<I<

~ <:dd uilt>
J!o ~I npl ~ ; • "!pl•

El !I r.lus l
0 :l<!s?

"\".:) ::hl.SS 1.0
~ : xr•:ic•:.(1

e !l .:lus2
0 "J::\'lt.J-:E 1

-w ::,eu :,c·:.(1
"\Q ::,era-:Jc•,(1

~ <:i î} ~ llf I i! 1
~ ~ <<M·a~_.,,. I ck; "'"'~ !rn,pl•I_
a.
ti
.w
:!'!
~
l'

au5L

-tCla«: C
+ c ,cr'Sll:>nl(:·,·ol:

._ ______ ...

E]l:Jbl·: , · ~• i:lassl {
8 p, bl·c i:la5s1 () {

..

13 p , bl · c •,oi:l :,ptrl.tionl()

11
1.:

Cl&U2

- at-:nb ... u.:. i1t
1---------1-

-------....L, ~
• • • • .. • ' • T •

1 i ► C

. ... ,_
:i

i1
'l IH
,l

1
i

l ►

148 Chapter 7. D esign Patterns Automation

available in class diagram mode. Eventually, the Bditor Pane (lower right)

displays source code always in sync with model diagrams from the Designer
P ane.

Together ControlCenter (TCC) offers several featmes that proved to be

useful when designing an architecture with the help of Design Patterns.

These operations are described here below.

7 .3.1 D esign Patterns generation

flic: _sdlc ~a,ch ï!ni froJect !un ~c:plrr, 1 ~eni.en l !ool.s Hetp

Select ln Mode.l Y,n

8;g DH ig.ne.r Now

Worbpace: I

t I P1thge

il Clau SI 1 ~ ♦ ~ ![f I &'il l 'a!! I Add 10 flwrlm

l
Properdu Ah:+Ent,r l!J lntctfacc

~ ; 88_ ~d-c<J._uh~ ! ~ ~P G~~,a.~io~ 1 . Sl:uch lot Usagu,.. ~ dus bv Pattern

"' Show Hfddvt. El ObJect

Ct,l-+E

CttJ+-L

cut+Shfft+L

~ • '. • • . . . • . • l.a>"U\ ■Note

il • • • : : • ; : : · ; • : · : : ~ : : , • : · : '. 1--U..:.pd_at_e ----,,---f---:Sh::o:':'rt,::::UU-::--.. ---:;C;::u;:l+-;;:Sh:;;:ilt:--;-+A:71

~ : : : : • : : : • : : : : : . : • : : , • Dtagr-.m Options ..•
,JI

/

EJ , ~ : , ; : : : : .. : : : : : ' : · : : · · · · Oel~c . . . • .. • ..
1111 • .

· • • • • • • • • • , • • , • , • . • Clofe Ort+f'4' . , . , . • .. , , •..

/ : : : : '" : : : : ' : : '. : : ; : : : : : • • . I---H-YJ>-.,-Hn-k-To------1 • . : : • : ~: : : : : : : : : : : : : : : '

........................ .. Tool-s: .. '
• •••••••••• •◄

~--------~
,._

Figure 7.5: Creation of new classes by selecting a Design Pattern

When modeling in class diagram mode, TCC allows to generate Design

Patterns from scratch. Design Patterns generation corresponds to the first

strategy of patterns insta..ntiation, the top-clown approach5 . The action "New

Class by Pattern" (Figme 7.5) opens a new dialog box, from which the user

chooses the Design Pattern to be generated.

Figure 7.6 shows the "Design Pattern selection" dia.log box. It proposes

an imposing list of patterns, grouped by type. A "Gang of Four" folder

(GoF) lists 11 Design P atterns dcfined by Erich Gamma et al.: the Abstract

5Strategies of instantiation have been introduœd in Section 7.2.1 (page 137)

7 .3. Study of the existing

"11011111'

S ' • Ueut~-
[1' ~ Clld

•~o•
L~., El' Cllt,,i.l
IJ:r ~J:U.
œ ~ Or-.d e !h
1 ~S....J.1-.f, C:ffl!l r,,J)[!h11t•M
o! 1.111M,Sa-Nlte1

_., dCodCIIUU
a 4J<.,;r

l:)Allthll1! f •flfWf'

6;)Atl.l~
ttJ Ch.ln 61 ~tD01Ht&I itv
ltJ (MIJ-»ltt­
lJ~ou !~
l:J hiu «,Mnllcd
liJOM_,
11:J"''"'
ltJStl\7rlOl'l
l)Eule
i:JVIJ!IOII

""~'

l>e<o rator patt@r•

'C~l)!W:--

• 'Ce.na-M:~COff"t,l'WY!(

C.
u

:~::.f:r::,':t~::t;~1:ll·= ::;:!.t:;:,~J~-h,)~~~~r,:~=~~1:,---w.u,.,,. n,I«. ,,, l!'lill~ li•«: ""'t.~ d 111j ,,~.,.e,;, ...
,u,u. -n,1 tt:fflC~«'t 141'11"U lbt 1e1,:,...,l'II,-

Co•<rt:t• COfflltOH11t

lt\lN C~f"t'#tl~ t.r.~":t'l"flf c;c.1,-p,c d'I(na'1'1".04Ktl'lt. ''°""'' t:H <OmPOJKI"\'. cJa.nt:t-.:/Jllltl■ ft 1o «uu: l.11c: c~ 10 HP4•r.t"""'t•siJt:,,,,. wu!. lit WH: Ù"l
t,,<Wi• .. IIAtCIII 1o ~Nu1 n,,;1,,.. C'I• '\'" Cti,w1lfil> fC!-...,S-11"#...,. è•''"" ll'1,nl ~ lti,, l~t'lt" ~J.,,.f• Ir ,._.i,,_d...,11► •IW'f1'\l\ill ~t•("WM",t, ' "''
HC.lt. OC.-vt.ttC~~ u ·""-'lb.<uJ.-.fl,tl'

Figme 7.6: Design Pattern selection and con.figuration

149

Factory, the Adapter, the Chain of Responsibility, the Composite, the Deco­

rator, the Factory method, the Observer, the Proxy, the Singleton, the State,

and the Visitor. The selection of a pattern displays automatically a descrip­

tion of the pattern togetber with a list of parameters to be configured. The

description gives a brief introduction to the pattern and to its participant

abjects. Understanding the role of each participant helps configuring the

parameter list. As a matter of fact, parameters include every participant.

Each one must be given a name6 . A set of other pattern-specific options 7 also

needs to be con.6.gured. At last, other properties like "Copy documentation"

or "Create pattern links" can also be set. The "Copy documentation" option

copies comments from methods in interfaces participating in the pattern to

methods that the pattern created in classes irnplementing such interfaces.

The reader is directed to section 7.3.4 over Together's t raceability featw·es

for a complete overview of the concept of Pattern Links. Once all param­

eters are set to the desired value, the designer presses "Finish" which leads

to the automatic generation of the pattern.

6 Or assigned to an ex:isting class in the case of Design Patterns application (Section
7.3.2)

7 Attribute, laitialization varia.nt, etc.

150 Chapter 7. Design P a tterns Automation -------------------

88 Designer 8

j►.; ' • ~. ~~•~•.ul.t~ ! ~ ~~<~•.•:a'. [_ __ ... _ .. __ ... _ . ~ °' : : : : : : : : : ~ : : : · lnte ace : : : : : : : : : :~
IJ · · · · · · · · · · · · · Component , .. .I~
fiil : : : : : : : : : : : : : : _____ _ --1:: : : : : : : : :';
El : : : : : : : : ; : : ; : : +s11111pl•O~ndon.·vo/d . : '. : : : ; : : j

; : : : : :: : : : : : : : : :~.:::: : : 1\::.:::::::::: .
/ : : : : : : : : : : : : : : : l : : : : : : : :: : :) : : : : : : : : : : : : : f
~ : ""'ncrcte\.,,Umponent · · ue:corator ' · · · \

El +sampleOperatlon:vold
i---co_m_P_o_n•_n_t:C_o_m_p_o_ne_n-lt : : : I

Il} • ,_ ____ __,

..................
, .. , . . . • • ncreteurecorator
....... J----- --...1

, ' ···1-------~
: : : : : : : : : : : : : : : : '. : : : +sampleOpennlon:vold

Figure 7.7: Generation of the DecoraLor pattern

The genernted Decorator pattern, depicted in F igw·e 7. 7, is composed of

one interface and three classes. TCC creates the appropriate attributes and

methods in every object. It also croates the necessary associations between

classes.

The corrcsponding source code is embryoruc but neat. Javadoc is in­

cluded by default8. Here follows the generated code. The Component inter­

face appears first, then come the ConcreteComponent class, the Decorator,

and finally the ConcreteDecorator.

//---+
// Component

//---+
1 /* Generated by Together *f
2

8 Assuming tbat project languagc is Java

7 .3. Study of the existing 151

3 public interface Component {

4 void sampleOperation();

5 }

11---+
Il ConcreteComponent

11---+
1 I* Generated by Together *I
2

3 public class ConcreteComponent implements Component {

4 public void sampleOperation(){

5 Il Write your code here

6 }

7

8 private int attribute1;

9 }

11---+
Il Decorator

11---+
1 I* Generated by Together *I
2

3 public class Decorator implements Component {

4 public Decorator(Component component) {

5 this . component = component;

6 }

7

8 public void sampleOperation(){

9 component.sampleOperation();

10 }

11

12 I**
13 * ©link aggregation

14 *I

152 Chapter 7. D esign Patterns Automation

15 private Component component;

16}

//---+
// ConcreteDecorator

//---+
1 I* Generated by Together *I
2

3 public class ConcreteDecorator extends Decorator {

4 public void sampleOperation(){

5 super.sampleOperation();

6 }

7 }

7.3.2 Design Patterns appUcation

Togethcr also offers to select cxisting classes from a UML class diagram and

refactor them with a pattern. For that, the user must right-click on one

object t hat needs to be pru·t of the pattern and select tbe "Choose Pattern

{Ctrl+R)" option {Figure 7.8).

j;:; 88 ~delaulo 1
o. .
ti
~
El
~
I"
/
i'
.!'
El
Il!!

lnt .. ,-e
ProductDJttAb•••l111•rfaa · · • · • • • , · -. • •

i1f•lProdu~ t:Objtt t
+s 1lProdv< rP,odvrr:JOy

Add to ravomu
Alt+Ent•r
n

Pro?9rt11H, •.

""""""' ·!----------~
Add Unktd ...

onPa em , +R

Figw-e 7.8: Application of a pattern to a set of existing classes

Il

7.3. Study of the existing 153

The user is prompted with the "Design Pattern selection/configuration"

dialog box (Figure 7.9). The dialog box asks him to choose which role should

be playing the selected object. This is clone by means of the "Use selected

classas" field. To each other participant, ma.y be attributed a new class, or

an existing class.

.. -
P•U.•rn:~ Pat•m c\crS

13 ~Ga• . - N■~-- ~ füe -
(fJ l\bJtrlCt factory use ulrrtttd tian u tomoonent .
i:) Adaot•r <:om~•" l'-".m111on•tn
~ ChLin of Re:spons1b11ity Cofl<'t de toit'l:Mt'l'IIU

~ ~
O'cco,a,;or Ill Corn~ t'U1U . ~

·ooueu· com ponMts
on<tl.etci: decor11tors

!i} De<.ou to, ,. O.r:coratot e f <C0'4tor 3 1iJ FactorvNcth.od
iConcnte d•cou.tors: • lfflObiervtf"

IDJ Proxr ' ~ ttrtbut• fOfflOOntJ'K
lâ:) Sln!)letor,

n11.11!lntionvar11 m: Connruc1or p:uun~~• ~ lît) Sltat~ - --
llf:J Vi lltOf ~ opy doc1Mt·tn1:1t1ott 0

œ ttl Cattus .. , eatt: oatt-rin links 1□ 1:1.1 fti HnptJntt . -

Figure 7.9: Design Pattern selection and configuration

To apply the Decorator pattern to the three classes represented in Figme

7.8, ProductDatabaseinterface must play the role of the Component inter­

face and XmlDbController the role of a Concrete Component. ZipXmlDb­

Controller is the Decorator. Once parameters are set, the refactoring results

in the class dia.gram shown in Figure 7.10. Both XmlDbController and

ZipXmlDbController implement the same interface (ProductDatabaseinter­

face) , and the Decorator (ZipXmlDbController) maintains a reference to

Prod uctDatabaselnterface.

It is worth showing the generated code for the Decorator (ZipXmlD­

bController). The class holds a reference (aggregation) to the Component

object. It also implements ProductDatabaseinterface's methods by forwru·d­

ing calls to the Component object.

1 public class ZipXmlDbController implements ProductDatabaseinterface {

2 public Object getProduct(ProductKey key){

3 return component.getProduct(key);

4 }

5

154 Chapter 7. D esign Patterns Automation

88 Oeslgnu

f; &g <~e~•~l_t: 1 . .
Q.. : : : :: : : :-: ~ ~ : : : ! : : .. : : : : : : : : : : " .:

lntt: ace ~: : : : :·: : : : :: :::::::: : ;,: li
fiil
~

Produaoarab11S• fnc11n aa • • • • • • • • • · • • • • · · • · • · ·
. --------· •• .

: :: :;:: : : :: : : . : ~-------: :: ::: : : · :: : : : :: ::::. :-
•• • • • • " -- ••• »<

~ ... : : :: :: ::::::
+9~tProdu~rOl:J,#<t
I-J1tProducCProductX4y

. . ~

.. •
El
lil .
..
~

"

m ntro er

+getProduct:Obj ect
+setProduct:ProductKcv

-component:ProductO.-ab&!'elnlt:rface:

+gctProdvct:ObJect
+sttPr'OdUct:ProductKt.y

F igure 7.10: The Decorator pattern applied to existing classes

6 public ProductKey setPr oduct (ProductKey key, Object product){

7 return component.setProduct(key, product);

8 }

9

10 f**
11 * ©link aggregation

12 *f
13 private ProductDatabaseinter face component;

14}

The here above example illustrates a bottom-up strategy of instant i­

ation in the sense that every participant of the pattern already exists and

that the process of Design Pattern application here consists in establishing

links between participants. A m ixed strategy example would be slightly

similar. As a matter of fact, applying the Decorator pattern on only one or

two of the three classes depicted in Figure 7 .8 would make use of the mixed

approach of pattern instantiation instead of the bottom-up approach.

7.3.3 Combination of D esign P atterns

Combining two or more Design Patterns is another feature permitted by

Together ControlCenter. This is merely due to the fact that TCC allows

Design Patterns application. AU Design Patterns combination means, is

7.3. Study of the existing

Design Pattern application exerted on an existing pattern.

R3 Detlgner

fÇ 88 <ddault:--l Jo :Suatt.P,' l
Q. ..
il
El
~
.1'
/

i'

El
Ill

'"" ace l'rodua011111.basetnrerf11œ

-fpdll'roduct:O.b_Jut
H#lPrDducc:Prod1u1K"Y

Am,uu ... on1ro11er nuo er

+9t:tProduct Ob>ect
+setProduct·Productl(iey

♦0ttPtoduct ObJtct
+u-tProduct,ProduaKey

ntext

-struegy ProductOatabastlntufau

Figure 7.11: An application of the Strategy pattern

155

Figure 7.12 illustrates the combination of the Strategy pattern (Figure

7.11) with an Abstract Factory. The role of the AbstractP roduct (from

the Abstract Factory pattern) is played by ProductDatabaselnterface (the

Strategy interface). Similarly, Concrete P roducts are the Concrete Strate­

gies (XmlDbController and ZipXmlDbController) . One must note that the

Context object does not have its place anymore in such a structure. Its role

to be a relay between clients and the ProductDatabaseinterface has been

replaced by the Factory itself.

The combination action can merely be performed by right-clicking on

any object of the first created pattern, then by selecting the "Choose Pat­

tern (Ctrl+R)" option, and configuring the new pattern by assigning toits

participants the appropriate roles.

Design Patterns combination may result in complex objects structmes,

and may be tough to understand. Additional link.s9 have been drawn in

Figw-e 7.12 to better illustra.te collaborations between elements .

9These links are Pattern Links. Pattern Links are covered in section 7.3.4.

156 Chapter 7. D esign Patterns Automation

~ 8S ~a.hwi«>IJ!.•bnmth~~St,at11trl
Q. ..
m
l!I
'!'

fflt .u
,roduaDllfMl&nl,t-,,f".o, ,.lt ac•

,4/,nnaDMaba.Co11.11Hr.1t11F«r(lfY

~ ; : :
1

f'roewa •

1 I
1

---1:-------7----~ - : : - : --- --.. --- :

F igw·e 7.12: A combination of the Abstract Factory pattern with the Strat­
egy pattern

7.3.4 'fraceability features

To answer a quite common issue of Design P atterns, traceability, Together

offers a feature called "Pattern Links". Pattern Links attempt to identify

patterns in a set of classes, and identify participants in a pattern.

If the opti.on is set when generating/applying a pattern (cf. Figure 7.6),

TCC generates additional links that can be used by tbis pattern later to

determine classes and interfaces participating in the pattern. This rncans

that if the user checks thls option and uses the pattern to create a set of

classes and interfaces, the pattern invoked for some participant later (using

the "Choose Pattern" command on the right-click menu) will automatically

find all other participants (if possible) and 6.11 in participant fields with their

names.

Furthermore, if a user applies the pattern with this option checked and

la.ter invokes the pattern using the "Cboose Pattern" cornmand on the right­

click menu for some participant, the additional field ca.lled "Use selected

cla.ss as" contains possible roles only for the selected element.

This option is very useful when the user plans to change something in

the classes/interfaces participating in the pattern . For example, if this op­

tion is on and after creating the classes and interfaces, the user adds several

methods to a certain interfac<rpart icipant (and this change must be reflected

7.3. Study of the existing 157

somehow in other participants), all he/she needs to dois select this changed

interface, invoke the "Choose Pattern" dialog for this element and select the

original pattern. After that, the pattern determines other participants and

t he user only needs to click "Finish". The pattern will modify all other

classes and interfaces according to changes.

At this point, t he reader probably wonders how does Together represent

P attern Links. Pattern Links are defined in the source code of each partici­

pant of the pattern. More precisely, their definition reside in documentation

comments of every object. A Pattern Link's definition is composed of two

parts: the type of link, and the identification of the recipient object. The

type of link is described by a set of five special tags. The "@link" tag indicates

a link between the present object and the referred object (cf. identification of

the recipient object). The "@shapeType" tag takes the value "PattemLink".

An "@pattern" tag ident ifies to which pattern does the object participates.

Eventually, "@clientRole" and "@supplierRole" give the role played, in this

relationship, by the present object and by the recipient object, respectively.

The identification of the recipient object is done through a commented out

reference to the desired object. An example will be given here below to help

visualizing how Pattern Links are defined textually.

Pattern Links also can be represented graphically between elements of a

UML class diagram. They are illustrated by green dotted arrows between

participants. Arrow labels indicate the roles played by participants.

In the case of the class diagram illustrated by Figure 7.12, the Abstract­

DatabaseConnectionFactory interface owns two links to other participants

of the pattern: one with its abstract product, the other with its concrete

factory. The source code of the AbstractDatabaseConnectionFactory inter­

face holds the definition of these two links. They are detailed here below.

f**
* ©link
* ©shapeîype PatternLink

* ©pattern AbstractFactory

* ©supplierRole Product

158 Chapter 7. Design P atterns A u tomation

*I
/*# private ProductDatabaseinterface _productDatabaseinterface; *I

I**
* ©link

* ©shapeType PatternLink

* ©pattern AbstractFactory

* ©supplierRole Concrete factory

*I
/*# private DatabaseConnectionFactory _databaseConnectionFactory; *I

7.3.5 Extension capabilit ies

Together ControlCenter delivers a unique capability to externally extend its

native functionalities to other patterns. Two approaches coexist: pattern

templates and the pattern API. Their presentation gathers information from

1Bor03, Popül].

Pattern templates This approach expresses the pattern as a simple tem­

plate (i.e. an ASCII file). Unfortunately, no instance-specific customization

(and thus Design Patterns application) is possible with this technique, and

there is no completeness or consistency checking applied. These disadvan­

tages are addressed by the second approach, the pattern API.

The Pattern API The pattern API approach expresses the pattern in

Java using a special API provided by Borland. Before using the API to

write the pattern, two things need to be determined. First of ail, the level of

language dependence must be decided. The pattern can be written for only

a single language, or it can be a generic pattern which can be used with any

language. Secondly, it is the type of the pattern that needs to be decided.

Based on this decision, different classes in the pattern API will be used to

derive the new pattern. The pattern type can either be a "class", a "link",

or a "member".

After the pattern has been written using the provided API, the .class

7 .4. P utting in p erspective of t h e exist ing 159

files resulting from the compilation of the J ava10 code have to be placed in

a special d irectory structure11 tbat holds all the patterns. TCC interrogates

the patterns, which respond appropriately if they adhere to the standard

pattern API.

This interaction is done through the SciPattern interface, which has the

following properties and members:

• SciPatternProperty.PATTERN_CATEGORY propert y

Indicates the kind of abject this pattern is applicable to.

• prepare()

Checks if it is possible at ail to apply this pattern to the target abjects

and makes some start-up preparations for the pattern.

• canApply()

Checks whether t he pattern can be applied to the target abjects with

the current values of pattern's properties.

• apply()

Makes the pattern perform desired actions.

• PropertyM ap properties set

Defines the behaviour of a pattern.

7 .4 Putt ing in p ersp ective of the existing

One must now check if the tool examined in section 7.3 conforms to the

expectations established in section 7.2. T his placement in perspective will

naturally keep the focus on the one tool Section 7.3 leaned on, Together

ControlCenter 6.1.

7.4.1 Situat ion in theoret ical context

As mentioned in Section 7.2.1, this chapter focuses on tools p resenting

a library of a bstract patterns rather than on tools handling explicit

patterns meta-model. Directly result ing of this, the chosen tool, Together

10 As Together is a full Java application, ail extensions have to be written in the same
language. This does not affect the language independence of the pattern itself.

111n %TOGET H ER..J-IOM E%/modules/com/togethersoft/modules/patterns

160 Chapter 7. Design P atterns A ut omation

ControlCenter, belongs to the category of tools which expresses p atterns

in a language and not through a representation of manipulable entities.

As a matter of fact, it can only store patterns in two forms: through the

programming language and the modelization language. TCC directly gen­

erates the objects and relationships between them. It also constructs the

corresponding UML class diagrams. No meta-model or manipulable entities
are created by Together.

As for the strategies of inst antiation, TCC both offers Design Pat­

terns generation and automation. Automatically, this implies that it handles

all three types of concrete pattern instantiation: top-clown, bottom-up, and
mixed.

7.4.2 Help to conception

Section 7.2.2 asserts that any tool supporting Design Patterns automation

should at least offer two basic functionalities: D esign P at terns gener­

ation and transformation. Together ControlCenter clearly fulfills these

requirements. Nothing more than examples given in sections 7.3.1 (Design

Patterns generation) and 7.3.2 (Design Patterns application) is needed to

prove that Together offers these features, that they work properly, and that

the "behaviour preservation" requirement (in the case of transformation) is

satisfied.

7.4.3 Gener a tion of code and document ation

Patterns are defined 12 inside Together by an abstract representation which

models abjects and relationships without being tightened to a program­

ming language. When time has corne to generate the pattern, the abstract

representation is adapted or transformed into source code in the project

language. Once adapted to the target language13 , the result is high quality

code. Albeit the code is rather embryonic, it yet respects conventions such

as naming conventions14 (case, indentation, and so on).

12Through the Pattern API in most cases
13The target language can be any language, provided that TCC supports it .
14Sun Microsystems' conventions if the project language is Java

7.4. Putting in perspective of t he existing 161

Comments are optional. They consist of Pattern Links, as introd uced in

Section 7.3.4. Pattern Links play a double role. They bath resolve traceabil­

ity issues, and comment the source code. They actually are quite complete

comments, since they describe everything that's needed to know: identifica­

tion of the pattern, participants, and relationships between abjects.

A graphical representation is generated corresponding to the source

code. Together systematically represents patterns in UML class diagrams.

Addicted users of the Entity-Relationship mode! might deplore that TCC

does not handle this representation. Others might condemn that TCC does

not generate sequeuce diagrams for the patterns for which this may be useful

(mostly behavioral patterns).

This chapter decided to keep the focus on tools presenting a library

of abstract patterns rather than on tools handling explicit patterns meta­

model. Nevertheless, other CASE tools users might deplore that Together

ControlCenter does not offer such a meta-representation of patterns.

7.4.4 User-friendliness and ease of use

As a general rule, Together ControlCenter is a fairly user-friendly and easy­

to-use application. Sorne may blame TCC for offering so many options

that the user quickly gets lost in all these menus; but that's the price to pay

to be the most complete tool on the market.

Besides, to compensate for this, the software offers to the user a set of

four "user roles" he/she can choose from. Together roles are predefined

setups of the user interface that helps the user work from a specific point of

view. For example, an architect designing a new system probably doesn't

care about source code, and doesn't need or want to see the Editor or any­

thing related to implementation. After a role option is selected, Together

automatically sets up to provide ready access to only the relevant elements

of the UI, and to show only the information in the model that best sup­

ports the chosen role. UI elements and/or model information that are not

generally relevant to the role are hidden. The four roles are:

l. Business Modeler

The Designer pane is central, with minimal menus for simplicity's sake.

162 Chapter 7. Design Patterns Aut omat ion

2. Designer

Both the Designer and Editor panes are central. Design and/or imple­

mentation are available up to the point of compilation, but no further.

3. Developer

Both the Designer and Editor panes are central. Compile, Debug,

Assemble, Deploy, and Run features are available in the UT.

4. Programmer

The Editor pane is central, but the user can view the Designer pane

upon demand. Compile, Debug, Assemble, Deploy, and Run are all
available.

These role options definitely help to the general user-friendliness of the in­

terface and to the ease of use of the software.

As for pattern features, they are quite easy to understand. When the

(very) novice user has understood that Design Patterns are only handled

in Class Diagram mode (which almost is the only pitfall he/she could en­

counter), the number of required steps to generate or apply a pattern is

rather intuitive and cannot cause much concern.

Nevertheless, one substantial reproach can be directed to the tool regard­

ing its speed. Together is proved to be, depending on the operating system,

a quite slow application. The software has been written in Java (which

is known not to be the language producing the most efficient applications)

and relies on many resource-consuming modules.

7.4.5 Wide but structured patterns library

Together ControlCenter definitely offers an impressive catalogu e of pa t ­

terns. Figure 7.13 gives an estimate of the list TCC offers. This list holds

by default a set of 127 patterns, sorted in 17 categories. Patterns defined

by the Gang of Four only constitute one category of the catalogue. On top

of that, the high extensibility of the tool allows users to add their own pat­

tern or add any pattern found on the "Borland Developer Network" (BDN)

website15
, making the pool of patterns unlimited.

15http://bdn.borland .com/together

7 .4. P utting in perspective of the ex:isting

Patterns

8 · Pa tte rns
(E [j Coad

Id EJB
Id EJB Clients
(tl J2EE

œ é) Oratle 91
œ (d Sun Java Center J2 EE Patterns
~ WebServices
(É) Coad Classes

ŒJ œ:j Gof
[B [j Cactus

(!j HttpUnlt
(É) JUnit
Œj JUmtX

1B Él j a llll Brans
l!l d Robustness

Id Tagllbs
él Ut Componcnts
~ Application
ÎÎ:JBean
ii:J Servle t
tiJ ~
~ Main Class
~ Ref erence HttpServle l e Std Exception

F igure 7.13: Together's pattern library

163

One regret often heard, though, is that the GoF pattern catalogue

is not complete. It only lists 11 patterns16 out of 23. A user desiring to

generate or apply any other Design Pattern from the Gang of Four has to

go look for it on the BDN, pray that he/she will find it there and, if found,

go through the learning process of adding a pattern to Together 's modules.

Regarding the structure of the pattern libraJ:y, patterns may be sorted

by categories according to their type (J2SE , Enterprise J ava Beans, Oracle,

Coad, JUnit, GoF , etc.), the Gang of Four category does not respect any re­

quirement defined in Section 7.2.5. GoF patterns are neither (sub)classified

by purpose (creational, structmal, behavioral) , nor by scope (class pattern

versus object pattern) .

16The Abstract Factory, the Adapter, the Chain of Responsibility, the Composite, the
Decorator, the Factory method, the Observer, the Proxy, the Singleton, the State, and
the Visitor

164 Chapter 7. Design Patterns Automation

7.4.6 Support to decision process

The expectations of Section 7.2.6 regarding decision support only are covered

half-way by Together ControlCenter. The automation tool certainly does
provide a description for each pattern, participant, and parameters of a

pattern. But TCC, unfortunately, did not take decision support one level
higher by providing a wizard or step-by-step help that could lead the novice

user to the choice of the pattern that suits best his needs.

7.4. 7 Patterns composition

Section 7.3.3 about the combination of Design Patterns demonstrated that

it is possible, with Together ControlCenter, to exert s ingle patterns com­
position.

As for "D esign Pattern-oriented Subsystems", TCC does not offer,
in its huge library, any of the three required patterns 17. Unhappily, in order

to generate a complete "Design Pattern-oriented Subsystem", the user has
only two unsatisfying choices.

One alternative is to try to find each pattern on the Borland Developer

Network and combine them one by one. This has several disadvantages:

1. Not every pattern is available on the BDN,

2. A vailable patterns sometimes are user-twisted patterns rather than
official patterns,

3. The learning process that the user has to go through to use the ac­
quired patterns.

The other way is to implement a complete "Design Pattern-oriented Sub­

system" with the help of Together's API (cf. Section 7.3.5). Implementing,

from scratch, the generation of the complete subsystem risks to be time­
consuming.

On top of this, the issue persists for ail other types of subsystems
composed of Desig11 Patterns.

17Model-View-Controller, Mediator, a.nd Façade

7.4. Putting in perspective of the existing 165

7.4.8 Consistency checking

Consistency checking is the one feature that is totally inexistant in TCC.

Albeit traceability handling would allow such a functionality, Together offers

no patterns validation at all.

7.4.9 Traceable graphical and textual representations

Together resolves traceability issues by offering its Pattern Links feature.

Albeit Pattern Links are fairly intuitive and easily understandable by the

user, they are not portable from one tool to another. Pattern Links are

TCC-specific. Importing source files from a Together project into another

CASE tool would be unsuccessful or at least incomplete. Pattern Links will

stay in the code, as comments, but the tool will most certainly not be able

to do anything with it.

7 .4.10 Portability

Although Together's generated source code is portable to tools that handle

the selected programming language, documentation is not portable at all.

Whether documentation means Pattern Links or U:t-.tfL class diagrams, the

format to represent them is TCC-specific. It exists no standard on the

market for defining Patterns Links nor for a graphical representation of a

UML class diagram.

7 .4.11 Summary

Together ControlCenter is qui te a efficient tool and meets some requirements

very well. Among them, the help to conception, the generation of code and

documentation, ease of use, and the adopted representations (both graphi­

cal and textual). Sorne expectations are, unfortunately, only half-way met.

These are user-friendliness (cf. the speed of the application), the library

of pattern (that certainly is wide, but not complete for GoF patterns, nor

structured enough for GoF patterns), and pattern composition (works fine

for single patterns but cannot handle subsystems). At last, three require­

ments are not handled at ail: consistency checking, decision support {wizard

inexistant), and portability.

166 Chapter 7 . Design Patterns Automation

Table 7.2: Requirements compliance

1 Requirements 1 Level of compliance 1

Help to conception High
Generation of code and documentation High
User-friendliness Medium
Ease of use High
Wide but structured patterns library Medium
Decision support Low
Patterns composition Medium
Consistency checking Low
'Iraceable representation High
Portability Low

As a general rule, albeit it is not perfect, TCC handles patterns qui te pro­

fessionaly. One must not overlook that TCC is a very good Design Pattern­

capable CASE tool compared to other tools on the market. Many other

tools are far away from meeting expectations like Together does.

7.5 Pertinence of Design Patterns automation

The desired results of Design Patterns automation have been stated in Sec­

tion 7.2. After the automation process, the user should have sufficient graph­

ical and textual representations of his pattern generation. These represen­

tations could be the code, a class diagram and another representation, more

pattern-oriented (cf. Section 7.2.9) .

For the generation (exposed in Section 7.1), the outcome is like an empty

shell. As a matter of fact, the tool only provides the abstract design sug­

gested by the pattern's solution part. It cannot be yet adapted to the real

situation of the application. This shell has thus to be completed by the user.

Section 7.3.1 illustrated this.

Regarding pattern application (see Section 7.1), the result might be

slightly different. The user gives existing classes to the tool. On one hand,

these classes are totally "complete", meaning that, after the pattern ap­

plication, it has not to be completed. It implies that all the support for

7.5. P e rtinence of Design P att erns automat ion 167

the pattern has already been written (listeners and events for Model-View­

Controller or Mediator, etc.). This presupposes a knowledge in depth of

patterns. On the other hand, there will be some work on the resulting

classes, in order to support entirely the applied pattern.

Most of the time, it appears thus that the result of the pattern gener­

ation is not complete and needs to be adjusted or even adapted. Knowing

that, the question of the pertinence of Design Patterns automation is raised.

Two cases must be envisaged, depending of the user's qualification: ei­

ther the user is experienced with the practice of patterns, is already con­

victed of their utility and applies them easily, or the user is not that used

to patterns or is even an absolute beginner. This distinction might lead to

different estimations concerning the pertinence of patterns automation.

First, one must ask if the patterns automation gives some time gain?

There might be some gain, but it will not be huge, especially when ap­

plying one single pattern. It becomes more interesting for the automation

of combined pattern or en tire subsystems (even coming from user-defined

plug-ins), when an important number of classes are involved. The tool will

quickly give a structure to fill in.

A good point would be to know if automation enables a simpler approach

of Design P atterns and facilitates their access and understanding. This is

true above all for beginner users, since an experienced user does not really

need an easier access to patterns. Thus, does automation really facilitate

patterns understanding and use? A tool respecting all the requirements de­

fined in Section 7.2 will definitely make the decision process of the beginner

user easier. With the presentation of all the available patterns, a wizard to

conduct the choice of the user and the coherence verification functionality,

the access to patterns is much easier. But it might be difficult to find such a

tool, meeting all the requirements (see Section 7.4 for the cri tic of Together).

A tool that would not provide a wizard and a verification functionality does

not present much interest anymore. It will not make a lot of difference with

a great pattern book. Such a book presents the pattern, its intent, partici­

pants and collaborations, solution, advantages and drawbacks, etc. It even

168 Chapter 7 . D esign Patterns Automation

often gives example of the pattern use. And a book is a more classical way

to learn and might sometimes be more pra-ctical. ..

To conclude, patterns automation has to be taken for what it is. No tool,

no matter how powerful, will replace the user's thinking regarding applica­

tion architecture in general and Design Patterns. The automation results,

as complete as they might be, have still to be adapted to the application
situation by the user. And sometimes (for example when generating a single

simple pattern), the result might be thin and look like an empty shell.

On the other hand, a performing tool could provide some better support

to patterns understanding and facility of use. It might perform some useful

operation - such as validation - and result in small t ime gain, especially

when generating subsystems or several patterns. It must thus be treated as

an useful and potentially powerful support for Design Patterns application.

7 .6 P ertinence of Design Pattern-oriented Subsys­

t ems

Section 7.2 defined some requirements for a Design Patterns automation tool.

One of these was the possibility to handle "Design Pattern-oriented subsys­

tems" and to add some user-defined plug-ins enabling to manage any other

subsystem (see Section 7.2.7). Would that mean that everything cannot be

doue with only "Design Pattern-oriented subsystems" as defined in Section

2.4? Such a subsystem is just an astute arrangement of three Design Pat­

terns: the Mediator, the Observer and the Façade in a layered architecture.

It was perfectly adapted to the Equipment Manager situat ion and needs. It

was for the rest defined for subsystems needing a View and a Madel (Model­

View-Controller) and having to communicate with other subsystems (Façade

and Mediator). However, this is not because the whole Equipment Manager

is mostly constituted with such subsystems that everything must be built
this way ...

"Design Pattern-oriented Subsystems" are definitely nota universal panacea

and, as much as for designing applications architecture than for program­

ming, no solution can be applied blindly and everywhere. In any cases, the

7 .7 . Summary 169

application design should not be adapted to the Design Patterns but the op­

posite. Chapter 6 accurately illustrates this: the "Design Pattern-oriented
Subsystem" was not applied as such.

"Design Pattern-oriented Subsystems" are thus just a configuration among

others. That is why, in Section 7.2.7, it was not only expected that the tool

allows the user to generate such a subsystem, but enables to generate any

other subsystem: it must be possible to extend the tool's skills with user­

defined plug-ins (defining, for example, other kinds of subsystems).

It is now established that "Design Pattern-oriented subsystems" are a

configuration among others. That is, following the same approach as the

one that led to the definition of such a concept, it is possible to invent

several others subsystems made of different patterns composition. These new

configurations would be adapted to other circumstances than the "Design

Pattern-oriented Subsystem" (security, information transport on networks,

etc.), for the reason that the patterns they are made of would be chosen

according to these circumstances. Depending on the situation, it will thus

be possible to chose the most adapted subsystem. In case of proliferation

of subsystems based on specific patterns composition, this could lead to

a catalogue of patterns subsystems, as the GoF proposes a catalogue of

Design Patterns, listing common and recurrent problems in object-oriented

programrning and their solutions. The difference lies in the fact that the

solutions would not be a single pattern anymore, but well a subsystem based
on a specific patterns composition.

7.7 Summary

This chapter looks into Design Patterns automation. After defining basic

concepts as Design Patterns generation and application, it lists requirements

one can expect from a CASE tool supporting patterns automation. Such ex­

pectations are about features (help to conception, generation of code and

documentation, support to decision process, consistency checking, etc.) but

also about the quality of the tool's output (quality of the documentation

and the code) or ease of use, extension capabilities, etc.

170 Chapter 7. Design Patterns Automation

Afterwards, the chapter gives a detailed analysis of a representative tool:

Together ControlCenter 6.1. The analysis covers in depth the processes of

Design Patterns generation and application, the ability to combine several

Design Patterns, traceability features, and the powerful extensions capabil­

ities of Together.

A putting in perspective of the existing then follows. Together is con­

fronted with each stated requirement. It results that Together Control­

Center is quite a efficient tool and meets most requirements very well, but

also suffers from absence of rather important features. For example, that

TCC provides excellent help to conception and generation of code and doc­

umentation. It is also an easy tool to use based on standard and common

representations. Anyhow, TCC does not support any consistency checking

and provides only narrow decision support (i.e. no wizard helps the user se­

lecting the right pattern to be applied). Besicles, outputs of Design Patterns

automation by Together is not portable enough.

After this analysis, this chapter tackles the pertinence of Design Patterns

automation. Most of the time, the automation result is to be twisted again

by the user. And when generating a simple pattern, the output often is very

thin. Besicles the output quality and level of completion, it might also be

interesting to wonder if patterns generation actually results in some gain

of time and allows an easier approach to Design Patterns. In the light of

all these thoughts, one can conclude that patterns automation will not lead

to miracle and has to be taken for what it really is. It will never replace

the user's thinking. However, a tool meeting all stated requirements could

provide good support in patterns understanding and application. With this

condition, patterns automation can be envisionned as a useful and poten­

tially powerful aid to Design Patterns application.

Finally, the main concept of this document, "Design P attern-oriented

Subsystems", is put in perspective. Such a subsystem, subtle arrangement

of three Design Patterns (Façade,-Observer and Mediator), is nota universal

panacea and cannot be blindly applied as such. Moreover, as it is one con­

figuration among others, other subsystems can be build on different patterns

composition and be adapted to different situations. This could even lead to

7 .7. Summary 171

the elaboration of a catalogue of subsystems.

Conclusion

This thesis analyzes the pertinence of Design Patterns in software applica­

tion modules. It defines the concept of "Design Pattern-oriented Subsystem",

a reusable application subsystem combining three Design Patterns in a lay­

ered architecture. This concept of subsystem foundation is intended to ease

the construction of new modules. This work tests the relevance of "De­

sign Pattern-oriented Subsystems" by confronting the new approach with a

range of specific application subsystems. This document also analyzes au­

tomation of Design Patterns and "Design Pattern-oriented Subsystems" by

CASE tools.

Chapter 1 presents the Equipment Manager and its context. It was our

privilege to develop this application for Acme Corporation during our in­

ternship in the United States of America. The database editor is introduced

to be used as illustration throughout this document. Illustrating theory by

the development of this software application contributes in providing a "real­

wor ld" view of the use and application of Design Patterns.

Chapter 2 is about software architecture. It emphasizes the benefits of

bath horizontally layered and vertically eut architecture. Horizontal layering

secludes presentation from application logic, domain, and persistence. Ver­

tical division, instead, cuts an application in several subsystems or modules.

Dividing a system into subsystem tends to make the software architecture

more robust against changes and to make it highly reusable. This key chap­

ter also exhibits GoF Design Patterns and introduces some of them. At last,

the chapter combines benefits of Design Patterns and subsystems by creat­

ing a new concept, "Design Pattern-oriented Subsystems". This subsystem

foundation is built by aggregation of the Observer pattern, the Mediator

pattern, and the Façade. Direct advantages of this composition are low cou-

173

174 Conclusion

pling, high reusability, robustness and consistency.

Chapters 3 through 6 confront "Design Pattern-oriented Subsystems"

with typical and unavoidable subsystems of a software application; namely

to business subsystems (Chapter 3), GUI subsystems (Chapter 4)), prefer­

ences subsystems (Chapter 5), and persistence subsystems (Chapter 6). Each

chapter follows roughly the same approach. They first explain the purpose

of the studied subsystem and cover the existing technologies to make use of

it. These chapters also illustrate the type of subsystem by its concrete im­

plementation in the case of the Equipment Manager. On top of that, these

chapters investigate about Design Patterns that are particularly useful for

each specific type of subsystem. Moreover, these chapters check the perti­

nence of applying a "Design Pattern-oriented Subsystem" in such a module.

Chapter 3 focuses on Business subsystems. The business, also called

the "Truth", is the heart of an application. It holds the essential data and

interacts with all other modules; it reflects the application state at every

moment. This chapter unluckily suffers from low recoil from the Equipment

Manager application because no generality can be stated about this type of

subsystem. Business modules typically are not reusable from one applica­

tion to another. Furthermore, this chapter exhibits the help provided by

the Decorator pattern in the Equipment Manager. The Decorator enables

dynamic addition of functionalities to the subsystem. More precisely, item­

powers the construction of a cache system in the Equipment Manager. The

chapter also demonstrates that "Design Pattern-oriented Subsystems" can­

not be systematically used for such a module because Business subsystems

are too application-specific.

Chapter 4 looks into Presentation subsystems. Such subsystems, also

called GUI subsystems, are those the user interacts with. Firstly, this

chapter highlights the inherent difficulties in the construction of graphical

user interfaces. Three main qualities are expected from graphical interfaces

builders. It must be possible to change the interface as quickly and easily

as possible since a GUI often undergoes a lot of changes during the develop­

ment process of an application. The second quality required from the GUI

is that it must be described in an easy way. Last but not least, the way of

Conclusion 175

elaboration of the interface is meant to be powerful and should not suffer

from too much restrictions on the available GUI components.

This chapter introduced several ways of constructing a GUI, from the

UI Builders to technologies using XML. Among them, the Bean Markup

Language has been chosen to construct the GUI of both Presentation sub­

systems of the Equipment Manager. BML uses XML files to describe GUI

components. Their "intelligence" is ensured by an application of the Ob­

server pattern: the Mode!-View-Controller. In Presentation subsystems,

the "Design Pattern-oriented Subsystem" can be applied as such. As a re­

minder, the two GUI subsystems of the Equipment Manager were used as

examples to introduce this concept.

Chapter 5 concentrates on Preferences subsystems. Preferences modules

are meant to store user settings in a permanent way. The responsibility of

managing application settings can be encapsulated in one module. Encap­

sulation avoids coupling and thus allows this know-how to be fully reusable

across applications.

After briefly positioning popular storage formats, the chapter dives into

the preferences subsystem of the Equipment Ma.nager. It revea.ls that the

Equipment Ma.nager stores preferences under the XML format and ha.ndles

the XML Da.ta Binding18 process with the help of Castor Source Generator.

The confrontation of "Design Pattern-oriented Subsystems" with the

structure of a typica.I Preferences subsystem discloses tha.t the concept in­

troduced in this thesis fits perfectly the needs of a preferences subsystem.

The set of three GoF patterns ca.n be applied as such, in order to be used

as a foundation of any preferences subsystem.

Chapter 6 scrutinizes Persistence subsystems. This sort of module is

responsible for storing a.ny type of da.ta in a permanent way. The chapter

chronologica.lly reviews the most common persistence pa.radigms: file sys­

tems, hiera.rchica.l databases, relational data.bases, object-oriented data.bases,

and XML data.bases. The XML data.bases topic is covered in depth, intro-

18Mapping an XML document to its in-memory object representation

176 Conclusion

ducing different types of XML documents, types of XML databases, and

specific query languages. This paradigm requires to be wholly understood

before illustrating persistence by the Equipment Manager.

Acme's requirements for the implementation of the persistence module

in the Equipment Manager are briefly exposed in this chapter. The chapter

also discloses the decision process for both the database model and for the

tool that is best adjusted to the specific requirements of the application.

Acme's development team directed its choice on a Native XML database

based on a file system with a specific naming convention. The process of

XML Data Binding is once again managed by Castor Source Generator.

Additionally, the chapter examines how specific Design Patterns can im­

prove the architecture of a persistence subsystem. The Strategy pattern

favours technology independence. The Abstract Factory pattern reduces

the coupling with other subsystems. The Decorator pattern e~es the de­

composition of database controllers into logical sub-controllers. At last, the

Adapter pattern manages communication between incompatible interfaces.

The chapter eventually compares "Design Pattern-oriented Subsystems"

witb persistence subsystems. It seemed difficult at first sight to create a

persistence module from a "Design Pattern-oriented Subsystem". Never­

theless, striving for exertion of good architecture principles, such as the

application of the four Design Patterns mentioned here above, leads to a

solution quite similar to what "Design Pattern-oriented Subsystems" recom­

mend: high reusability thanks to the Strategy and Decorator patterns, low

coupling thanks to the Abstract Factory and Adapter patterns.

Chapter 7 achieves a double goal. It bath looks into CASE tools capa­

ble of Design Patterns automation and relativizes the two notions of Design

Patterns automation and "Design Pattern-oriented Subsystems".

The chapter establishes a taxonomy of requirements one could expect

from a Design Pattern-capable CASE tool. Among these expectations, one

can find some help to conception, generation of code and documentation,

user-friendliness and ease of use, a wide but structured patterns library,

Conclusion 177

decision support, patterns composition, consistency checking, traceable rep­

resentations, and portability.

A study of the existing then focuses on one of the more mature De­

sign Pattern-capable CASE tool on the marketplace, "Together ControlCen­

ter 6.1" by Borland. The analysis covers in depth the processes of Design

Patterns generation and application, the ability to combine several Design

Patterns, traceability features, and the powerful extensions capabilities of

Together.

In the same line, the chapter reviews requirements one by one in compar­

ison with the study of the existing. It results that Together ControlCenter

is quite a efficient tool and meets most requirements very well, but also suf­

fers from absence of rather important features. For instance, TCC provides

excellent help to conception and generation of code and documentation. It

is also an easy tool to use based on standard and common representations.

Anyhow, it appears that TCC does not support any consistency checking

and provides only narrow decision support (i.e. no wizard helps the user se­

lecting the right pattern to be applied). Besicles, outputs of Design Patterns

automation by Together is not portable enough.

Moreover, Chapter 7 puts Design Patterns automation back in its place.

Results of patterns automation still have to be checked or modified by the

user. On the other hand, it sometimes provides some time-gain, especially

when generating combined patterns or whole subsystems. Eventually, a tool

meeting ail or almost all requirements defined in section 7.2 would definitely

enable an easier access to Design Patterns and present a great interest. In

the meantime, the interest of patterns automation is more limited and can

be seen as little time-gain only.

The chapter also recalls that "Design Pattern-oriented Subsystems" is

just an astute arrangement of three Design Patterns but does not pretend

to be the one solution for the creation of any type of subsystem of any soft­

ware application. It is a configuration among others. That is, following the

same approach as the one that led to the definition of this concept, it is pos­

sible to define others patterns composition, adapted to different situations

178 Conclusion

than the "Design Pattern-oriented Subsystems". The resulting subsystems

could even be put in a catalogue of patterns subsystems, exactly as the GoF

proposes a catalogue of Design Patterns, except that the suggested solutions

would be entire subsystems.

To recapitulate in a few words, this thesis suggests a new approach to

software development using Design Patterns: "Design Pattern-oriented Sub­

systems". These are a subtle aggregation of three Design Patterns in one

entity. The new concept is to be used as a subsystem foundation for easing

the creation of new subsysterns in software applications. To check on its per­

tinence, this document confronts "Design Pattern-oriented Subsystems" with

a range of typical and unavoidable subsystems. This paper subsequently in­

spects the requirements one could have from a Design Pattern-capable CASE

tool and verifies that tools existing on the market meet these expectations.

At last, this work puts in perspective the notions introduced such as "Design

Pattern-oriented Subsystems" and Design Patterns automation.

Glossary

This glossary gathers definitions coming from the following sources: [BG02,

BMR+96, GHJV95, oEE90, Joh97a, Joh99a].

A bstract class A class whose primary purpose is to define an interface. An

abstract class defers some or all of its implementation to subclasses.

An abstract class cannot be instantiated.

A bstract coupling Given a class A that maintains a reference to an ab­

stract class B, class A is srud to be abstractly coupled to B. It is called

abstract coupling because A refers to a type of abject, not a concrete

abject.

Abstract Factory Creational Design Pattern. Provide an interface for

creating families of related abjects without specifying their concrete

class. See page 122.

Adapter Structural Design Pattern. Convert the interface of a class into

another interface clients expect. Adapter let classes work together that

couldn't otherwise because of incompatible interfaces. See page 130.

Amplifier (Audio) An electronic component that takes a weak audio signal

and increases it to generate a signal that is powerful enough to drive

speakers. (General) An electronic component that accepts a low-level

signal and recreates the signal with more power.

API Application Programming Interface: the set of services that an oper­

ating system or a programming language makes avrulable to programs

that run under it.

Application A program or collection of programs that fulfills a customer's

requirements.

179

180 G lossary

Architecture See Software architecture.

B ackward compatible An application is backward compatible if it can

read and handle previous/obsolete versions of documents it has pro­

duced.

Bean Markup Language The Bean Markup Language is an XML-based

language used to describe the structure of interconnected Java Beans.

The main goal of the Bean Markup Language is to describe declara­

tively a whole structure of interconnected beans capable of functioning

together as a component, or even as a complete application. See page
83.

BML See Bean Markup Language.

CASE Computer-Aided Software Engineering. CASE is the use of computer­

based support in the software development process.

CASE tool A CASE tool is a computer-based product aimed at supporting

one or more software engineering activities within a software develop­
ment process.

Class A class defines an object's interface and implementation. It speci­

fies the object's interna! representation and defines the operations the
abject can perform.

Class diagram A UML dia.gram that depicts classes, their internai struc­

ture and operations, and the static relationships between them. See

page 187. item [Client] Denotes a component or a subsystem that

exploits functionality offered by other components.

Component See Software component.

Concrete class A class having no abstract operations. It can be instanti-
ated.

Coupling The degree to which software components depend on each other.

DBMS Data.base Management System

D ecorator Structural Design P attern. Attach additional responsibilities

to an object dynamically. Decorator provides a flexible alternative to

subclassing for extending functionality. See page 71.

G lossary 18 1

D esign The activity performed by a software developer that results in the

software architecture of a system. Very often the term design is also

used as a name for the result of this activity. The software design

activity is commonly divided into the hjgh-level design and the low­

level design. The high-level design results in the structural subdivision

of the system. It specifies the fondamental structure of the application.

The low-level design results in more detailed planning like definition

of interface, data structures, etc.

D esig n Pattern A Design Pattern systematically names, motivates, ex­

plains, and evaluates an important and recurring design in object­

oriented systems. It describes the problem, the solution, the condi­

tions needed to apply the solution, and its consequences. It also gives

implementation hints and examples. The solution consists in an ab­

stract design: it is a configuration of classes and objects that solve the

problem. The suggested solution is to be adapted to the application

context. See page 46.

DOM Document Object Model provides a standard set of objects for rep­

resenting and manipulating HTML and XML documents.

Domain Denotes concepts, knowledge and other items that are related to

a subject. Often used as 'application domain' to denote the problem

area an application addresses.

D rag and d rop User activity supported by modern UI Buüders. Drag an

drop allows a user to perform an operation on a graphical object by

selecting it and dragging it to another place on the screen.

DTD Document Type Definition. Describes the structure and the types of

an XML document.

Encap sulation The result of hiding a representation and implementation

in an object. The representation is not visible and cannot be accessed

directly from outside the object. Operations are the only way to access

and modify an object's representation.

Equa lizer Electronic device (as in sound-reproducing system) used to ad­

just response to different audio frequencies.

182 G lossary

Façade Structural Design Pattern. Provide a unified interface to a set of

interfaces in a subsystem. Façade defines a higher-level interface that

makes the subsystem easier to use. See page 63.

Framework A set of cooperating classes that makes up a reusable design

for a specific class of software. A framework provides architectural

guidance by partitioning the design into abstract classes and defining

their responsibilit ies and collaborations. A developer customizes the

framework to a particular application by subclassing and composing

instances of framework classes.

Gang of Four This expression refers to Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides who have written the seminal book "De­

sign Patterns: ElementsofReusable Object-Oriented Software" [GHJV95].

GoF See Gang of Four.

GUI Graphical User Interface. The part of the program that the user sees

and interacts with, as opposed to the part of the program that performs

its internal processing.

lnheritance A relationship that defines one entity in terms of another.

Class inheritance defines a new class in terms of one or more parent

classes. The new class inherits its interface and implementation from

its parents. The new class is called a subclass or a derived class.

Class inheritance combines interface inheritance and implementation

inheritance. Interface inheritance defines a new interface in tenns of

one or more existing interfaces. Implementation inheritance defines a

new implementation in terms of one or more existing implementations.

Interface The set of all signatures defined by an object's operations. The

interface describes the set of requests to which an abject can respond.

Java Bean JavaBeans turns classes into software components by providing

several new features. See page 199.

Layer r Layering is one of the most common techniques that software de­

signers use to break apart a complicated software system. When think­

ing of a system in terms of layers, the principal subsystems in the

software a.rranged ca.n be ima.gined in some form of layer cake, where

Glossary 183

each layer rests upon a lower layer. In this scheme the higher layer

uses various services defined by the lower layer, but the lower layer is

unaware of the higher layer. Furthermore, each layer usually hides its

lower layers from the layers above, so layer 4 uses the services of layer

3 which uses the services of layer 2, but layer 4 is unaware of layer 2.

See page 195 for layered architecture.

Loudspeaker Device that changes electrical signais into sounds loud enough

to be heard at a distance.

Loudsp eaker band data The set of band data (sensitivity, efficiency, power,

etc.) determines the contribution of a loudspeaker at a given location

and orientation in space to a given listener location. One can accumu­

late the contributions of all loudspeakers to get an idea of the quality

of sound for a listener.

Loudsp eaker directivity In a loudspeaker system, the directivity is an

indication of how directional the loudspeaker is, or to look at it another

way, how effective the speaker is at taking the sound it produces and

sending it in one particular direction instead of all directions.

Loudsp eaker tap s Sorne loudspeakers have a built in transformer device

with a switchable power setting. For example, a loudspeaker may

have 1, 2, 4 and 8 Watt taps. This means that the loudspeaker will be

roughly 8 times more powerful when set to the 8 Watt tap than the 1

Watt tap. Taps are used when loudspeakers in an audio system need

to play sow1d at different power level.

M ediator Behavioural Design Pattern. Define an object that encapsulates

how a set of objects interact. Mediator promotes loose coupling by

keeping abjects from referring to each other explicitly, and it lets you

vary their interaction independently. See page 53.

M essage Messages are used for the communication between abjects or pro­

cesses. In an object-oriented system, the term message is used to de­

scribe the selection and activation of an operation or method of an

object. This kind of message is synchronous, which means that the

sender waits until the receiver finishes the activated operation.

184 Glossary

Method Denotes an operation performed by an abject. A method is spec­
ified within a class.

Module A syntactical or conceptual entity of a software system. Often

used as a synonym for component or subsystem. Sometimes, modules

also denote compilation units or files. Other writers use the term as

an equivalent to package when referring to a code body with its own

name space. This term is used as stated in the first sentence.

Object An identifiable entity in an object-oriented system. Objects re­

spond to messages by performing a method (operation). An object

may contain data values and references to other abjects, which to­

gether define the state of the abject. An abject therefore has state,
behaviour, and identity.

Observer Behavioural Design P attern. Define a one-to-many dependency

between objects so that when one object changes state , all its depen­

dents are notified and updated automatically. See page 48.

Poor traceability One of the main Design Patterns drawbacks. Poor

traceability points out that the track of design patterns is lost dur­

ing implementation. See page 142.

Relationship A connection between components. A relationship may be

static or dynamic. Static relationships show directly in source code.

They deal with the placement of components within an architecture.

Dynamic relationships deal with the interaction between components.

They may not be easily visible from source code or diagrams.

R equest An object performs an operation when it receives a corresponding

request from another object. Is is a common synonym for message.

Responsibility The functionality of an object or a component in a specific

context. A responsibility is typically specified by a set of operations.

Reusability The degree to which a software module or other work product

can be used in more than one computing program or software system.

Robustness diagram Robustness dia.gram is part of an extension of UML.

It defines the first eut into components of an system. See page 191.

Glossary 185

SAX Simple API for XML (SAX) is a standard interface for event-based

XML parsing.

Sequence diagram An UML diagram that shows a dynamic view of a

system. It enables to represent the collaborations between objects in a

temporal point of view. Sequences diagrarn are useful when illustrating

a scenario. See page 189.

Se rialization Object serialization supports the encoding of objects, and the

objects reachable from them, into a stream of bytes; and it supports

the complementary reconstruction of the abject graph from the stream.

Signature An operation signatme defines its name> parameters, and return

value.

Software component Software components are "black boxes" that encap­

s:ulate functionality and provide services based on a specification. They

are highly reusable and interchangeable. As classes, software com­

ponents hide implementation, conform to interfaces and encapsulate

data. See page 199.

Strategy Behavioural Design Pattern. Define a family of algorithms, en­

capsulate each one, and make them interchangeable. Strategy lets the

algorithm vary independently from clients that use it. See page 119.

Subclass A class that inherits from another class. A subclass is also called

a derived class.

Subsystem Semantically useful grouping of collaborating components per­

forming a given task. A subsystem is considered as a separate entity

within a software architecture. It performs its designated task by in­

teracting with other subsystems and components.

Swing SUN's library for building user graphical interfaces in Java.

Transaction (database) Group of commands which are to be treated as a

single atomic event.

UI User Interface. See GUI.

186 Glossary

UML The U nified Modeling Language is a standard modeling language for

software. It has been thought of for visualizing, specifying, construct­

ing, and documenting the artifacts of a software-intensive system. Ba­

sically, UML enables developers to visualize their work products in

standardized blueprints or diagrams. See page 187.

XML The Extensible Markup Language (XML) is language designed to

describe data.

XML Data Bindin g Representing an XML document directly in-memory.

XML Schema An XML Schema is a specific XML language that describes

the structure and the types of an XML document.

Appendix A

The UML notation

This short introduction to UML1 is directly inspired of [JBR99] and [Hab].

This introduction does not pretend to cover in depth the UML subject.

The Unified Modeling Language is a standard modeling language for

software. It has been thought of for visualizing, specifying, constructing,

and documenting the artefacts of a software-intensive system. Basically,

UML enables developers to visualize their work products in standardized

blueprints or diagrams.

UML proposes a heterogeneous set of models. The most used models

in this document will be introduced: class diagrams, sequence diagrams,

robustness diagrarns and use cases.

A .1 Class diagrams

A class diagram is a collection of elements from static modeling (classes,

etc.), showing the structure of a mode!. It does not han die dynamical and

temporal aspects.

Here are briefly exposed the main concepts relating to class diagrams.

• object: basic concept of the analyzed problem

• class: set of objects sharing some characteristics

1 Unified Modeling Language

187

188 The UML notation

• association: correspondence between two objects; associations have
two roles

• multiplicity: constraint on a role of an association, determining how
many objects are participating

• under-typing: correspondence between two objects representing are­

lation of generalization/specialization

• attribute: characterizes an object by taking a specific value in a values

class (domain)

• operations: operations associated to classes

Concrete Component

+operalion()

Component

Concrete Decorator A

-addedState

+operalion()

Decorator

+opera lion()

component

Concrete Oecorator B

+ope ration()
+addedBehavior()

Figure A.l: Example of UML class diagram

Figure A.l and Figure A.2 show examples of simplified - where inter­

faces are not distinguished from classes, etc. - class diagrams. Classes are

represented by a rectangle, with their name in the top of the rectangle (see

the class Concrete Decorator A for example) . If existing, Class attributes

are put in the rectangle below (see the attribute AddedState of the Concrete

Decorator A). Eventually, class operations are placed in a rectangle below

(see operation() in the sarne class).

The UML notation 189

Modlator Colleague

-

6
,,

1
Concrete Mod.iator Concrete Colleague 1

-- Concrete Colleague 2

1 -. Concrete Colleague 3

.

Figure A.2: Simplified UML class diagrarn

Simple lines between classes represent associations: classes instances are

connected. lt means that one class has an instance variable that refers to the

other class. For example, the Concrete M ediator holds references to its col­

leagues. The arrowed line express that both Decorator and Concrete Com­

ponent are Component. The "diamond" line indicates that a class contains

a collection of instances of another class (see Decorator and Component).

A.2 Sequence diagrams

Sequence diagrams describe a system: a set of abjects interacting through

messages. They enable to represent collaborations between abjects in a tem­

poral point of view: what is to be shown is the messages chronology. Each

abject has its own "line of life". The order of the messages is determined by

their position on the vertical axe; time runs out from the top to the bottom

of this axe. Sequence diagrams are very useful when illustrating a scenario.

Figure A.3 presents an example of a UML sequence diagram. Vertical

dashed lines indicate the existence of an abject over time. Vertical rectan­

gles show the activity periods of an object. Arrows between vertical lines

represent methods calls, or messages. The message might contain the name

of the method and the parameters passed in. Messages can be synchronous

or asynchronous. A synchronous message blacks the message expeditor until

the addressee treats it, in opposition to the asynchronous message. Object

creation, not to be confounded with abject activation, is symbolized by an

190

0,

The UML notation

productEOrtlonModel productEditlonController productEditlonGUI

l 1
1 1
1 J . . 1: firePropertyChange(l{ENDOR_NAME_PROPER If, Old, vn)

1 1
1.1.1 . new PropertyChanteEvenl(lhis, V_N_P. Old, vn~

1 1
1

1 1.2: propertyChange(e nt)
1
1

1.1.2.1: vn = even1.getNe\o\'ValueO

Figure A.3: Example of UML sequence diagram

arrow reaching the rectangle containing the object name. In the example,

the productEditionModel creates an event. When an object calls a method

on itself, it is drawn with an arrow loop of which begin and end are the same
object.

A .3 U se cases

Use cases offer an external view of the system, in a user's point of view. As

the sequence diagram - and contrary to the class diagram, it gives a dynamic

sight of the system: it describes a set of scenarios - which are sequences of

actions. Finally, it enables the developer to have an "objective-oriented"

view, each use case being associated to a user objective. Use cases are

therefore a set of "stories" describing how a user interacts with the system
in order to achieve its goal.

The UML notation 191

A.4 Robustness diagrams

Robustness diagrams do not really belong to UML, but it is an extension

proposed in 1991 by Ivar Jacobson.

The idea is to refine the use cases to obtain a first eut in components.

Four types of components can be defined and robustness diagrams express

a first sketch of the interactions between these components.

The four components are:

• actors

• interfaces

• controls

• repositories

Figure A.4 shows the graphical representations of the four robustness com­

ponents.

0

A 0 0
Interface Repository Contrai

Figure A.4: Robustness Components

A.4.1 Actors

The actors are components that correspond to the definition of user in the

use cases.

A .4.2 Interfaces

Interfaces are components allowing interactions between a user and the sys­

tem, as, for example, a ticket-window, an alert message, etc.

192 The UML notation

A.4.3 Controls

These components, also called controllers, contain some "intelligence" in or­

der to insure the objective of the use case; it is also possible to introduce a

structure of these controls with a composition/decomposition relation.

A.4.4 R epositories

Repositories are components responsible for the information stock, as a

database, an archives local, etc.

A.4.5 Interactions

Robustness diagrams express interactions between components through links

between them. The possible links follow:

• an actor dialogs with an interface

• an interface sends information to a controller

• a controller communicates with another controller

• a controller uses a repository

• a control initiates or solicits an interface

• a control is composed of several controls

A.4.6 Example

The robustness diagram of the Equipment Manager appears in Figure A.5.

One will have noticed that ail the conventions of the robustness diagram

were not respected "as such" (Models, represented as repositories, seem to

communicate with databases, also expressed as repositories, etc.). But this

diagram still gives an excellent overview of the Equipment Manager archi­

tecture (components and interactions between them).

The UML notation 193

[] -

----,;:,.

0

_.,
~

[]
I i :c

0 I ai u
i l g

~ ·~
, .;: , w

[]

Figure A.5: Robustness Example

~ pltcation Framework

' EqulpmenWana erFrameworlMew

' EqufpmenlManagerFrameworkCon~oller

b
' EQulpmen1111an gerframeworkCommandSel

0
' EquipmentNanagerFrameworklllodel

Q ,
PerslslenceDatabase1

Pers,stence

D
' Pers1stenceoatabase2

D
' PerslS1enceDatabase3

J VlewLayer

1 N)phc311on Layer ~

~
::r
(1)

j Dom a ln Laver ~
C
~
~

~
0
c+
~
c+
0
~

1 Persislence Layer ~

Appendix B

Principles of Layered

architecture

B.1 Layers architectural pattern

These principles are extracted from the Layers architectural pattern, ex­

posed in [BMR+96]. Networking protocols are probably the best-known

example of layered architectures. Each layer deals with a specific aspect of

communication and uses the services of the next lower level. A system built

following this architecture is divided into an appropriate number of layers,

placed one above the other (see Figure B.l).

Client
uses

Layer N highest level of abstraction

Layer N - 1

lowest level of abstraction

Figure B.l: Layered architecture

195

196 Principles of Layer ed architecture

The first level corresponds to the lowest level of abstraction, while the

last one - the highest - corresponds to the highest abstraction level. Within

a layer, all the components work at a same level of abstraction. Most of

the services provided by a layer J are actually composed of services that a

layer J-1 provides. "In other words, the services of each layer implement a

strntegy for combining the services of the layer below in a meaningful way."

[BMR+96]

Apart from networking protocols, other known uses have been made of

the layered architecture, especially for Information Systems (IS), or Enter­

prise Architecture. [Fow02]

B .2 Layered architectu re for Information Systems

Persistance Layer

Figure B.2: Four-tier architecture

Information Systems from the business software domain often use lay­

ered architecture; in this case, layers are also called tiers. The two-tier

architecture is an old widespread division for interactive information sys­

tems. [BG02] The bottom layer is a database, holding company-specific

data, while the top layer consists of many applications working concurrently

to fulfi~ different tasks. This is a very common architecture in Client-Server

systems. However, the tight coupling between user interface and data repre­

sentation leads to several problems, such as a major lack of evolving capacity

and reusability. Furthermore, storage mechanisms are often unable to offer

a true representation of modelled concepts. This is why a third layer has

Principles of Layered architecture 197

been introduced between the database and the interface; it is called the do­

main layer. Its purpose is to mode! the conceptual structure of the domain.

Moreover, the top layer, still mixing user interface and application, is split

in two; the result is a four-tier architecture, as shown in Figure B.2. The

whole Equipment Manager is based on a four-tier architecture.

Appendix C

Java Beans

Java Beans are the software components architecture of the Java language.

Before going further with beans, it is necessary to give some explanations

about software components.

C.1 Software components

"Software components are to software what integrated circuits (!Cs) are to

electronics: "black boxes" that encapsulate functionality and provide services

based on a specification." [Joh97a] They are of course designed to be highly

reusable and even interchangeable: they provide specific functionality that

can be reused in different places.

As classes in object-oriented languages, software components hide im­

plementation, conform to interfaces and encapsulate data. So, where is the

difference between classes and software components? Actually, almost all

software components are classes. The only distinction is that components

conform to a software component sp ecification. [Joh97a] The Jav­

aBeans specification is the document specifying what a Java class must

do in order to be considered as a Java Bean.

C.2 Java Beans

The only requirement needed to make a class into a Bean is that the class

implements the java. io.Serializable interface. Serializable classes know how

199

200 Java Beans

to package themselves into streams of bytes to be transmitted through net­

works or saved to disk, awaiting later reincarnat ion. [Joh97a]

Java Beans thus turn classes into software components by providing sev­

eral new features. Apart from the serialization, beans have properties, which

are attributes of the object. They can be customized through these prop­

erties, using accessors (setProperty() and getProperty()) . In general, cus­

tomization means configuring the internai state of a bean so that it appears

and behaves properly in the situation in which it is being used. [Joh97b] The

new event handling scheme of Java can also ease communication between

beans: a class registers interest in the activities of another class by way of a
listener interface.

C .3 XML Java B eans

It is possible to "mix" Java Beans and XML in order to make Java Beans mo­

bile and interoperable, by representing them as XML documents. [Joh99c]

XML is used as a serialization format for beans. It is also possible to create

XML files specifying values for Java Beans' properties (customization).

Appendix D

Simple BML example

This very simplified example is given in order to show how to apply the

Bean Markup Language in a Model-View-Controller architecture. It illus­

trates the construction and handling of a single window containing nothing

but a textfield.

The assumption is made that a bean has already been declared for the

panel itself with the unique tag "mainPanel". What is Ieft to do in the BML

file is to add the textfield in the panel. One simple layout has been chosen

for the panel: the border layout. Components can be placed on the North,

South, East, West or Center of the layout's space.

<bean source="mainPanel">

<property name="layout">

<bean class="java.awt .BorderLayout">

<args>

<cast class="int">

<string value="O" / >

</cast>

<cast class="int">

<string value="O" / >

</cast>

</args>

</bean>

</property>

<add>

201

202 Simple BML example

<bean class="javax . swing.JTextField" id="textfield" />

<string value="Center" />

</add>

</bean>

The textfield is added to the center of the window. This component is

referred by a unique tag such as "textfield". The Controller of the View will

have to look up for them using only this name. Using the BML compiler,

from this simplified sample of BML file a J ava class is generated. This is

what will play the role of the View. A Controller and a Model need now

to be defined, in order to apply the Model-View-Controller pattern. The

View represents the state of the Model, it is a sort of a picture of it. The

definition of the Model of this example is thus quite simple. It is above all

composed by one field, keeping trace of the textfield from the View. When

the user hits the "enter" key after writing something in the text area, this is

"recorded" in the Model (under the shape of a String).

1 public class ProductEditionModel {

2

3 //---+
4 // Constructors

5 //---+
6

7 public ProductEditionModel() {

8 listenersList = new ArrayList();
9 }

10

11 //---+
12 // Public methods

13 //---+
14

15 public String getîext() {

16 return text;

17 }

18

19 public void setîext (String text) {

20 0bject oldValue = this . text;

21 this.text = text;

Simple BML example 203

22 firePropertyChanged(TEXT_PROPERTY, oldValue, text);
23 }

24

25 //---+
26 // Listeners

27 //---+
28

29 I**
30 * Registers a PropertyChangeListener with this class.

31 **I
32 public void addPropertyChangeListener(PropertyChangeListener pcl) {

33 listenersList.add(pcl);

34 }

35

36 I**

37 * Removes a PropertyChangeListener with this class.

38 **I
39 public void removePropertyChangeListener(PropertyChangeListener pcl) {
40 listenersList . remove(pcl);
41 }

42

43 I**
44 * Notifies all registered PropertyChangeListeners when a bound

45 * property's value changes.

46 **I
47 protected void firePropertyChanged(String fieldName, Object oldValue,

48 Object newValue) {

49 if ((oldValue == null && newValue == null) 11

50 (oldValue != null && oldValue.equals(newValue))) {

51 return;

52 }

53 PropertyChangeEvent event =

54 new PropertyChangeEvent(this, fieldName, oldValue, newValue);

55 Iterator listenersListiterator = listenersList.iterator();

56 while (listenersListiterator.hasNext()) {

57 ((PropertyChangeListener)listenersListiterator.next()).

204 Simple BML example

58 propertyChange(event);

59 }

60 }

61

62 11---+
63 Il Attributes and properties

64 11---+
65

66 public static final String TEXT_PR0PERTY = "text";

67 private String text;

68 private List listenersList;

69}

Of course, the Model has to keep a trace of all its listeners, as explained

in section 2.3.l. (see line 7 to 10 and 25 to 61). It has also some methods

to access the field "text" ("getText(f and "setText()"). On its sicle, the

Controller has to look for all the beans it wants to control. Here follow some

samples of code showing how the Controller looks up for the bean (lines 45
to 52) and manages them (lines 56 to 68).

1 public class Controller {

2

3 11--+
4 Il Constructors

5 11--+
6

7 Controller (Model model){

8 if (model == null) {

9 throw new IllegalArgu.mentException("Model cannot be null");
10 }

11 lookup0bjects();

12 setModel(model);

13 hookup0bjects();

14 }

15

16 11---+
17 Il Public methods

18 11---+

Simple BML example 205

19

20 public void setModel(Model model) {

21 if (theModel != null) {

22 Model.

23 removePropertyChangeListener(getModelListener());

24 }

25 theModel = model;

26 if (model != null) {

27 model.addPropertyChangeListener(getModelListener());

28 }

29 initializeView(model);

30 }

31

32 11---+
33 Il Methods

34 11---+
35

36 protected void initializeView(Model model) {

37 if (model null) {

38 return;

39 }

40 text.setText(model.getText());

41 }

42

43 1/---+
44

45 I**
46 * Lookup for widgets registered in the BML registry .

47 *I
48 private void lookup0bjects() {

49 BmlParser theBmlParser = BmlParser.theinstance();

50 text = (JTextField)theBmlParser.

51 lookupübject("textfield");

52 }

53

54 1/---+

206 Simple BML example

55

56 I**
57 * Attach widgets with their respective listeners who update the model

*I 58

59 private void hookupübjects() {

60 EditBeanCommand command =
61 new EditBeanCommand("productEdition.editBeanCommand",null,true);

62 ArgumentFactory factory = new

63 BeanPropertyArgumentFactory(this);

64 TextFieldîrigger textîrigger =

65 new TextFieldîrigger(text,Model.TEXT_PR0PERTY);

66 textîrigger.setCommand(command);

67 textTrigger.setArgumentFactory(factory);

68 }

69

70 //---+
71

72 private PropertyChangeListener getModelListener () {

73 if (theModelListener == null) {

74 theModelListener = new ModelEventHandler();

75 }

76 return theModelListener;

77 }

78

79 //---+
80 // Private inner classes

81 //---+
82

83 I**
84 * This class listens to propertychange events triggered by a

85 * Model and update the view accordingly.

86 *I
87 private class ModelEventHandler

88 implements PropertyChangeListener {

89 public void propertyChange(PropertyChangeEvent e) {

90 String propertyName = e.getPropertyName();

Simple BML example 207

91 if (propertyName.equals(Model.TEXT_PR0PERTY)){

92 String newValue = theModel.getText();

93 String oldValue = (String)e.get0ldValue();

94 if (oldValue!=null && !oldValue.equals(newValue)){

95 text.setText(newValue);

96 }

97 else if (oldValue == null) {

98 text.setText(newValue);

99 }

100 }

101 }

102}

103

104 //---+
105

106 private JTextField text;

107 private Model theModel;

108 private PropertyChangeListener theModelListener;

109}

The Controller uses a Command to update the Model when the View has

been modified by the user (line 56 to 68). The Command is another Design

Pattern. Briefly, a trigger knows which property to change in the Model and

the value it has to put in. Each time the textfield in the View undergoes a

change of state, the trigger "wakes up" and updates the Model. It is as if a

listener was listening to the View and updating the Model accordingly. The

Command pattern will not be exposed in this study.

The application of the Model-View-Controller with BML replaced the

event-binding abilities of the Bean Markup Language.

Appendix E

Browser-based Application

Toolkit

The BAT1 is a technology that allows to build user interfaces using XML

documents.

E.1 Principles

BAT is is a Web presentation framework with extendible building blocks

for creating a professional, consistent user interface !Lab02]. It propounds a

set of reusable elements to create a GUI. The parameters of these elements

are set with XML data. BAT is therefore a customiza.ble user interface

fra.mework. It is composed of two major parts: the run time portion and

a set of 9 UI2 elements. Four of them are containers elements, whereas the

others are called basic elements. The user cannot define his own components

but canuse the predefined ones in the way he/she wants (defining complex

orderings) . [Lab02]

wizard (container) Figure E.l shows an example of a wizard. A wizard

is useful when the user is supposed to enter information into panels,

in a specific order. The user must follow the order and cannot jump

from one panel to another the way he/she wants. He can just move to

the previous or following panel or cancel the current panel.

1Browser-based Application Toolkit
2User Interface

209

210

CenM•I

• Ragrstrattan
Oemographlcs

Gen<ler

Age

lncome

Chidnln

Housohold

► Addrass

► Culture

► Purchase h"WY

► ~scenan800s

Browser-based Application Toolkit

C:n11111a1QJ1 l111tm111·e Genernl Dcfüut1011

.:.1

St1<l dltt {rtqU<11d)

Vtar Month Day

~ ~ ~ liii) Time~

End date (reqwod)

i:r Run t r.s lnlllltlvt lndofinltoly

Figlll'e E. l: BAT container: the wizard

note book (container)
tfari!al St~h•s

Oefine the cuttOC'T'l•r tnMltal status cntena for tnts customer pt'ofile

r- Ignore maritai status
r T arçet the following mantal statuses

r Nol Prov1ded
r s,ngie
r Mamed
r Common-law
r Separattd
r 01vorcad

r W1dowed
r Other

Figure E .2: BAT container: the notebook

Figure E .2 gives an idea of what a notebook looks like. With a note­

book, the user is allowed to jump from one panel to another. A note­

book might be useful when displaying or collecting large sets of infor­

mation that are not necessarily sequential or closely related.

dialog (container) The dia.log is qui te a simple container. It is used for

Browser-based Application Toolkit 211

displaying summary or confirmation information and to daim more

single input information.

t oo ls U I center (container) The Tools UI Center provides a structured
framework for tools to be presented to the user. The Tools UI Center

consists of a banner frame, which contains a progress indicator and

page history (list of window depth the user is under) , a menu frame,

and a content frame (see Figure E.3).

Vpdate p,oduel det•s it1CI offer lnformat!Of'I. Offet prockltts f0' di,,.,._,, pnc:eJ ba~d on
customer QfOUPt. Vou een .iso m,nafjtl! aucoons, and crt.at• dtsc~t t','PH W'hlch C,lf'I be
as$9'9(S to produc:ts trom thd:,_.

a ,stomes Ordeni
Pt'Ocfls orôin .ind ensunt tN!t ordert. Mv• betn tutflltd. blled. -,)(:1 ffll0tl9d

Custo,ne,· SetTire
Complet• UtflS on bettalf of the WJlOIMf', ~ ~ rvgrStnition ln(ormabOn, pllc.ni;J
ordtr,,, r-,ponding to .nQUl'le;S about Otde<'s, wrthdrlwtng aoctan btds, and m.anag~ -.Claon
OIKUS$ICN"I fof\wn$,

Figure E.3: BAT container: the tools UI center

dynamic list (basic elem ent) The dynamic list is a sortable list element,

with navigation controls (P revious and Next buttons) to flip through

data. There are also buttons to the right that define actions available

for the selected items.

calendar (basic e lement) The calendar control is a visu al control for

choosing a specific da.y, month, and year.

slosh bu cket (basic elem ent) The term "slosh bucket" covers exactly the

same concept as that developed in [BG02] under the na.me of "se­

lectable list".

dynamic tree (basic e lement) A dynamic tree is very similar to a clas­

sical tree where nodes can be collapsed or extended.

212 Browser-based Application Toolkit

v,aw l,tomUst .::] P191 Numbl(iO ~
.. Fnt 4 Pl'W:viouJ O of 66 N•..it .. l.A:St ... lOOO ltom,

r
r .IJll2

r i.1Jll2'1
r ..llllU
r ~

~i:
r .w.
r ~
r m
r lllA
r .w
r illlll

~~

Sh6rt o.,cnotion I J oos
Short O.ficnption , 1099

Sho,1 OtfettC)bOn I 199.8

Short D•sc:ttptJo.n , 1999

, Short o.,-..,. nooo
Short OHetl'Qtlon I UW'9

Short O.Jef't0t1on , 1100

Short Ouet1pbon 1 1101

Short Otunobon 1 1102

Shof\Oescnpt;Ofl 1 110,

ShortO.tcrtpbon 1 1104

Sl-!ortO•tct11)bOn 1 1105

Short Otscnption .11106

Short O.tçr1ption I J 107

Short O.ficnotion I J 009

Figure E.4: BAT basic element: the dynamic list

BAT uses registries during staitup and run time in order to configure

itself. These registries contains XML files that are used to configure the UI

elements. These files are not supposed to be modified.

E.2 Advantages and limits

Without going any further in the functioning of the Browser-based Appli­

cation Toolkit, it appears that, although it might be very useful and easy

to use for a user wanting to create quickly a simple user interface, BAT is

definitely not flexible enough to meet the expectations exposed in section

4.3. As a reminder, these expectations were resistance to change, ease of use

and no limitations in the choice of GUI components.

First of all, the produced GUI does not seem to accommodate very well

late changes. Once the chain of panels is established, redefining it or chang­

ing the structure of a panel equals to changing and redefining almost every­
thing.

Moreover BAT allows the user to use only predefined UI elements. The

range of existing GUI elements is nevertheless very wide (text areas, trees,

dialogs, labels, etc.) The choice is restricted to only 8 of these elements,

B rowser-based Application Toolkit 213

which can appear to be really insufficient.

The user might also think that, using BAT, he/she will be describing his

graphical user interface in a XML format , which is absolutely not the case.

If BAT uses XML effectively, it is only to set some parameters for the UI el­

ements itself. The user actually never sees these XML files. BAT uses XML

only internally and the user is not supposed to configure the framework by

adding some XML files or modifying them.

However BAT seems a great tool for who wants to rapidly build quickly a

simple interface because it is not mandatory to be used to any graphical user

interface's language techniques to produce good results. The only drawback

is that it is not powerful and flexible enough.

Appendix F

JEasy

JEasy uses Swing components and XML files: all GUI components are stored

in a XML file (located in a special directory) . [JEa03]

F .1 Principles

F .1.1 J ava 2 Swing Components

Swing is SUN's library for building user graphical interfaces in Java.

F.1.2 J EObjects

To almost each Swing component, called J Objects, corresponds one JE com­

ponent. For example, the JEMenu corresponds to the Swing JMenu, the

J EButton is for the JButton, etc. JEObjects read some properties out of

the XML file and create JObjects.

F.1.3 XML

All the information concerning the hierarchy (which abject contains which

abject) is part of the XML file. This way, the JEObjects are able to add

themselves together to the complete GUI.

F .1.4 M essages

Messages are associated to components which hold data entries. Two meth­

ods handle these messages. The getMessage() method is responsible for

giving back all ent ries - in other words, all information of a panel - in an

215

216 JEasy

XML format while the putMessage() method does exactly the opposite: to

fil! a panel with information coming from an XML file. This is illustrated

in Figure F .1.

Form: PA Address

Name l\1iller

Prename Jack

City Ne,v York

_Country USA 1

_
y

)

Message: MS_ Address <->PA_ A ddress

<MS Addrcss>
<N ame> Miller</Name>
<Prename>Jack</Prename>
<City>New York</City>
<Country> USA </Country>
</MS Address>

Figure F.l: Messages in JEasy

F.1.5 Repository

The repository contains an XML file with all the abjects, properties and

relations. JEObjects read these entries at the start up of the program and

create ail the wished Swing components. Figure F.2 shows the repository's

interface of JEasy, from where it is possible to choose the JEObjects.

JEasy 217

. "· - ~ .JQJ~

file eroJect opuon, !:!•lp

a ~ C:I

~~ :~◄ ►.

I► ~ !1Jldaœ1Save Id IJ ge1e1e Id Q 9ear Id -~ , •. l'1 i,~

Hl1ra1cny • action
Cl FR_Rtpo•ilor, butlon
•O 110_11.,n

[d [ÔF CBXMLiag 11) outtGngroup
' Cl P,V,,aln _ chtekt,Ok -• Cl P"-101nTo01B11 datactass !oc)Q,l!:!!11 J I)

, CISP_llaln chtcktlo:antAU1111!1ffl

• CITP _Olljt<rT name [- - 1 cola,

' Cl PA_MolnTPObJoc1t ! l!MLlag [.!!J combObox

• Cl P..._11,1nT80t>j1<1111, OF _ACg10oafld . combot111

' CITP _Oblt<IO ,mnemonle [cons1ra1n1a

, 0 P,V,,aln_oction
!OOldp [

OF_ACIO aalairH

♦ Cl P..._Dl,,og_, OF_ ACsp18sMcreen dettC:flH

Do•-~c•d Neldtengtn [OF _ACstaJlldAWlet J dat-il~tld

DOF_.coiol hortzonl1llAHgnment r OF _ACstartldllj)pllCatlon dttlclo0oent

DOFfl•I> OF_BGIO dl~log

D OF,-"CSIO edtable j OF _BTbackgfound t04t0tplnl

DDFfttpl - [OF _BTbuttonConstralnts font

• Cl P,V,,til1.J>utton OF _BTforeground fttme

• Cl P"--Maln_bllftOng behlnd [OF _BTgraOientPalnl
globii.l

e, Cl P,V,,11n_,111cld> out10n [OF_BTtçon
gradllt'tQ81fll

• Cl p ,. ... _,hettdl '"'"' •Cl P Mtln_tOIOf mamngeackground [OF _BTIG lntemttflame

•Cl P"-Moln_combo \'lstble [
OF _BTlnsots libtl

• C PA_Mlllln_combOI OF _ermnemonlc ,.,
• Cl P"-.)11ln_con1tr1 D OF _BTpressedlCon menu
e, Cl P,V,,al11.,d1l11r<

labelFont [OF _BTpre,.edTrud mtrwtia,
• Cl P,V,,oll\,.dttacla OF _erroncr,encon m1nut1em
.,_ 0 P,V,,ail\,.dllO~I labelConstralntS [OF _BTroioverTm mesuge
• Cl P,V,,alrl_dtsl<IOI

tl!1CllleldFont [OF _BTlelll metnodlnvocatlon
.,_ Cl P M1ln_dl110g opWQnpane
e, 0 P,V,,a"'-.tdilO,P textlleldConstralnts [

OF _Bîte)ltUfl!P'alnl
.; p1n11

1
• Cl P...._111,il\Jont

!
[OF_BTtooltlp

~ • DA ••-'- ___ •
OF_ CIIXMl.l3g ,_

• l •= .

Figure F .2: Interface of JEasy

F .2 Advantages and limits

The conclusion about JEasy will be, more or less, quite the sarne as the one

made for BAT. The user does not write his interface in an XML format:

JEasy is in charge of creating the XML file it needs internally and the user

is, again, not supposed to work on it.

The range of GUI elements proposed by JEasy seems however wider t han

the 8 elements of BAT. Indeed, there is a JEObject for almost every Swing

component.

Finally, JEasy suffers from the same lack of flexibility than BAT. Once

the user has chosen the JEObjects he/she wants to use, there is no more

u-turn allowed.

----------- --- ----- --- - - - - ------- - --- - --- - - - - - -- -- --

Bibliography

[AIS+77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max

J acobson, Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern

Language. Oxford University Press, New York, 1977.

[BG02] J ean Baltus and Nicolas Gilson. Pertinence of Design Pat­

terns in Object-Oriented Software Development. Master 's thesis,

FUNDP, 2002.

[Bla0l] Arnaud Blandin. Castor XML Source Code Generator - User

Document. Exolab.org, J uly 2001.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som­

merlad, and Michael Stal. Pattern-oriented Software Architec­

ture, A System of Patterns. Wiley, 1996.

[Bor03] Borland. User Guide for Together ControlCenter and To­

gether Solo. May 2003. http: / /info . borland. com/techpubs/

together.

[Bou03a] Ronald Bourret. XML and Databases. January 2003. http:

//www .rpbourret.com/xml/XMLAndDatabases .htm.

[Bou03b] Ronald Bourret . XML Database Products. March 2003. http:

//www.rpbourret.com/xml/XMLDatabaseProds.htm.

[BR] Isabelle Borne and Nicolas Revault. Comparaison d'outils de

mise en oeuvre de design patterns. In Revue L 'Objet, volume

5, nr. 2, pages 243-266, 1999. http://www- poleia.lip6 .fr/

-revault/papers/10bjet-V5-2-99-DP-IBNR.ps.zip%.

[BurOl] Didier Burton. Software Architecture. 2001.

219

220

[Cha]

[Cod70]

Bibliography

Don Chamberlin. Xquery: An xml query language. In IBM

Systems Journal, volume 41, nr. 4, pages 597-615, 2002.

Dr. Edgar F. Codd. A relational model of data for large shared

data banks. Technical report, Communications of the ACM,
1970.

[Des] Objects By Design. UML Products by Platform. http://www.

objectsbydesign.com/tools/umltools_byPlatform.html.

[EWJ99] David A. Epstein, Sanjiva Weerawarana, and Daniel Jue.

[Fow02]

Bean Markup Language from IBM alphaWorks : Enabling ac­

tive content. December 1999. http://www-106.ibm.com/

developerworks/xml/library/x-bml.

Martin Fowler. Enterprise Application Architecture. Addison­

Wesley, draft edition, 2002.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis­

sides. Design Patterns, Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[Gra99]

[Gra02]

[Hab]

[Hol99]

Mark Grand. Graphie Java, Mastering the JFC. Addison­

Wesley, 1999.

Mark Grand. Patterns in Java, Volume 1, A Catalog of Reusable

Design Patterns Illustrated with UML. Wiley, 2002.

Naji Habra. Cours de génie logiciel. Institut d'Informatique,

FUNDP, Namur.

Allen Holub. Problems with Swing's new XMLOutputStream

class. August 1999. http://www.javaworld.com/javaworld/

jw-08-1999/jw-08-toolbox.html.

[Hon] Dr. Shuguang Hong. Introduction to Database Management Sys­

tems.

[IG0l] Intellor-Group. XML Database Trends and Influences. 2001.

Research Summary.

[!ni] The XML:DB Initiative. http://www. xmldb. org.

Bibliography 221

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified

Software Development Process. Addison-Wesley, 1999.

[JEa03] JEasy. A Jramework for JAVA applications using XML. May
2003. http://www. j easy. de.

[Joh97a] Mark Johnson. A walf..ing tour of JavaBeans, What Jav­

aBeans is, how it works, and why you want to use it. August

1997. http://www.javaworld.com/javaworld/jw-08-1997/

jw-08-beans_p.html.

[Joh97b] Mark Johnson. "Double Shot, Hal/ Decaf, Skinny Latte" :

[Joh98]

Customize your Java, How to tailor JavaBeans to fit your

application. September 1997. http://www. j avaworld. com/

javaworld/jw-09-1997/jw-09-beans_p.html.

Mark Johnson. Do it the "Nescafé" way : with freeze-dried

JavaBeans, How to use object serialization for bean persis­

tence. January 1998. http://www.javaworld.com/javaworld/

jw-01- 1998/jw- 01- beans_p.html.

[Joh99a] Mark Johnson. Bean Markup Language, Part 1, Learn

the ABCs of IBM's powerful JavaBeans connection. Au­

gust 1999. http://www- 106.ibm.com/developerworks/java/

library/j-bean-markupl/.

[Joh99b] Mark Johnson. Bean Markup Language, Part 2, Cre-

ate event-driven applications with BML. October 1999.

http://www.javaworld.com/javaworld/jw-10-1999/

j w-10-beans_p. html.

[Joh99c] Mark Johnson. XML JavaBeans, Partl, Make Jav­

aBeans mobile and interoperable with XML. February

1999. http://www.javaworld.com/javaworld/jw-02- 1999/

jw-02-beans_p .html.

[Lab02] IBM Toronto Laboratory. Browser-based Application Toolkit

Programmer's Guide. May 2002. http://www. alphaworks . ibm.

com/aw.nsf/download/bat.

222

[Mei96]

!Mil99]

Bibliography

M. Meijers. Tool support for object-oriented design patterns.

Master's thesis, Utrecht University, 1996.

Philip Milne. Using XMLEncoder. August 1999. http: //java.

sun.com/products/jfc/tsc/articles/persistence4/.

IMW99] Philip Milne and Kathy Walrath. Long-Term Persistence for

JavaBeans. August 1999. http: //java. sun. com/products/

jfc/tsc/articles/persistence/.

[oEE90]

!Pop0l]

[UML]

IV1i98J

[Waya]

[Wayb]

[WD99]

Institute of Electrical and Electronics Engineers. IEEE Stan­

dard Computer Dictionary: A Compilation of IEEE Standard

Computer Glossaries. New York, 1990.

Paul Pop. A survey of three approaches to the automation of De­

sign Patterns. Computer and Information Science Department -

Linkopings Universitet, October 2001.

Uml en français. http: / /uml. free. fr.

John Vlissides. Pattern Hatching, Design Patterns Applied.

Addison-Wesley, 1998.

Rick Wayne. The real mccoy. In Software Development Maga­

zine, pages 26-28, January 2003. Article about XML Databases.

Rick Wayne. What'll it be? In Software Development Magazine,

pages 26-28, February 2003. Article about XML Databases.

Sanjiva Weerawarana and Matthew J. Duftler. Bean Markup

Language (version 2.3), User's Guide. September 1999. http:

//www.alphaWorks.ibm.com/formula/bml.

[Wil00] Kevin Williams. Professional XML Databases. Wrox Press, 2000.

IWRL02] R. Allen Wyke, Sultan Rehman, and Brad Leupen. XML Pro­

gramming. Microsoft Press, 2002.

