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The slow deformation of terrestrial orbits in the medium range, subject to lunisolar

resonances, is well approximated by a family of Hamiltonian flow with 2.5

degree-of-freedom. The action variables of the systemmay experience chaotic variations

and large drift that we may quantify. Using variational chaos indicators, we compute

high-resolution portraits of the action space. Such refined meshes allow to reveal the

existence of tori and structures filling chaotic regions. Our elaborate computations

allow us to isolate precise initial conditions near specific zones of interest and study

their asymptotic behaviour in time. Borrowing classical techniques of phase-space

visualization, we highlight how the drift is mediated by the complement of the numerically

detected KAM tori.

Keywords: lunisolar secular resonance, Hamiltonian chaos, drift, terrestrial dynamics, Earth satellite

1. INTRODUCTION

Various groups of scientists have become enchanted anew by the lunisolar resonances affecting the
dynamics of terrestrial orbits. The study of them and the resurgence of their significance has not
been visible since the notorious and colossal triptych of Breiter [1–3]. Later rebranded by Rossi
[4] in the context of the medium-Earth orbits (MEOs), the study of their long-term dynamics,
and in particular their eccentricity growths in the elliptic domain [5], represent current deep
motivations for the community. In our opinion, the most complete and up-to-date panorama
of the literature is excellently presented by Armellin and San-Juan [6]. The existence of such a
condensation allows us to adopt here a rather direct style in this present contribution. We are
particularly interested by questions related to the stability of orbits. Based on the divergence of
nearby trajectories, the existence of a mixed phase space where there is a cohabitation of stable and
chaotic components has been recently pictured [7–11] and partially explained applying Chirikov’s
resonances overlap criterion [12]. The Hamiltonian flow obtained under the simplest assumptions
for the disturbing effects of the perturbers (i.e., a development restricted to its lowest order and
averaged over fast variables), Moon and Sun, encapsulates all the details of the dynamics in which
we are interested [7]. In particular, the Hamiltonian possesses 2 degrees-of-freedom (DOF) and
depends periodically on the time t (see [11] for omitted details). We recall in the next section how
the Hamiltonian

H : D× T2 × T → R, (x, y, t) 7→ H(x, y, t) = h0(x)+ εh1(x, y, t) (1.1)

with h1(x, y, t) =
∑

m∈A⊂Z
3
⋆
hm(x) cos(m · (y, t)+φm) is obtained. The form of Equation (1.1) is the

standard form of a nearly-integrable problem written in action-angles variables. The non-linearity
parameter ε belongs to a certain subinterval I of R+ and is function of the semi-major axis, which
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is a first integral in the secular approximation. The functions
{hm}m∈A are real valued functions of the sole action x ∈
D ⊂ R2 (and some constant physical parameters), the φm are
phase terms. When ε sweeps I, a transition from a globally
ordered phase space to a mixed phase space is known to exist.
It turns out that the presence of a chaotic regime for large values
of ε, say for ε close to max I, corresponds to the range of
semi-major axes where the navigation satellites are located. The
occurrence of the two apparent antonyms, “how awkward it is”1

and “how useful and fruitful it can be”2, crystallizes assuredly
the challenges, implications and beauty of the dynamical and
engineering problems we face.

Gravitational problems are kaleidoscopes of pure and
applied science. Our Solar System has been the source and
receptacle of many theoretical and practical dynamical facets and
aspects (KAM theory, hyperbolic dynamics, shadowing theory,
numerical analysis, phase visualization techniques). Spaceflight
dynamics is not excluded and has gained from this rich heritage
[13–15]. We cannot take a definitive position on the space-
debris mitigation via “chaos targeting” and transfers in phase
space, nevertheless, let us underline that the concept embraces
the continuous necessary exchanges between (technological and
scientific) communities.

In this paper, we depart from former goals where the main
impetus was the explanation of the mechanisms supporting the
apparition of chaos. Instead, we focus rather on (i) the physical
consequences in terms of transport in the phase space and (ii)
on the visualization of these excursions via double sections in
the action-like phase space. The techniques we used have been
extensively employed in Dynamical Astronomy and overall in
the context of the dynamics of quasi-integrable Hamiltonian
systems and symplectic discrete maps (confer [16–20], just to
name a few). To achieve our tasks, we provide a cartographic
view of the prograde and retrograde region in section 3.2,
based on a lighting-fast ad-hoc secular model that we recall in
section 3.1. The fine resolutions of the meshes used to discretize
the domains D allow for highly detailed views of the phase space.
We then focus on the computation of diameters-like quantities to
relate the degree of hyperbolicity (a local property) with a more
practical transport-like index (a global property). Thanks to our
resolved grids, precise initial conditions (ICs) can be extracted,
which lie near specific structures of interest, in particular where
large diameters are expected. Once obtained, we proceed to their
asymptotic analysis (in time) using ensemble orbit propagation
(section 4). We close with section 5 where we summarize our
contributions and discuss an open problem that inspires our
future efforts.

2. THE MODEL

We recall briefly, for the sake of completeness, under which
hypotheses the 2.5-DOF Hamiltonian is obtained. After the

1 The Lyapunov times τL, which dynamically speaking constitute the barriers of
predictability, are on the order of decades [7].
2 There is a birth of a new ideology to remedy the space-debris problem, based on
a “judicious” use of the instabilities to define re-entry orbits and navigate the phase
space.

presentation of the model, we present to the newcomers a few
facets of the resonant aspects.

2.1. Derivation of the Hamiltonian Model
Numerical evidence has shown that, for the range of the treated
perturbation I (recall I ≃ [2.2r⊕, 4.65r⊕]), refinements of
the gravitational potentials beyond the quadrupolar level are
not necessary to capture details of the global dynamics we are
interested in, even on long timescales [7]. It means that when
the potentials of the Earth and those of the external bodies,
Moon and Sun, are developed using Legendre expansions, terms
with l > 2 are disregarded. By recognizing the timescales of
the dynamics, further simplifications are even possible to get a
more pertinent analytical model (and numerical as well; see also
section 3.1). Based on the Lagrangian averaging principle [21–
23], the potentials are averaged over the mean anomaly of the
test particle ℓ and those of the third bodies3, ℓ⊙ and ℓ$.

For an oblate Earth, we recall the classical averaged potential

HJ2 (G,H) = αJ2

(

G−3 − 3G−5H2) (2.1)

expression, with αJ2 = J2r
2
⊕µ4

⊕/4L3 ∈ R. Here (G,H)
denotes the second and third variables of the Delaunay actions
(L,G,H), µ⊕ denotes the (Earth’s) gravitational parameter. The
canonically conjugated vector of angles is classically denoted
(ℓ, g, h). Omitting details that might be found in Celletti et al.
[9, 11], the disturbing function of the Sun’s attraction,R⊙, reads
as

R⊙(G,H, g, h)

=
2

∑

m=0

2
∑

p=0

α⊙smF2,m,p(i)F2,m,1(i⊙)H2,p,2p−2(e) cos
(

fm,p(g, h)
)

(2.2)

with

fm,p : T2 → T, (g, h) 7→ (2− 2p)g +m(h− h⊙). (2.3)

The scalar α⊙ = µ⊙
(

a2

a3⊙

)

(1− e2⊙)
−3/2 has a constant magnitude

of ∼ 3.96 × 10−14 in the international system of units. The
coefficients sm are defined as sm = Km(2 − m)!/(2 + m)!.
The functions F2,m,p(•) refers to Kaula’s inclination function [24]
and H2,p,2p−2(e) is related to the Hansen coefficients. For the
disturbing function of the Moon, the following formula holds
true

R$(G,H, g, h, h$) =
2

∑

m=0

2
∑

p=0

2
∑

s=0

α$mm,sF2,m,p(i)F2,s,1(i$)H2,p,2p−2(e)

×
(

Um,−s
2 cos

(

gm,p,s(g, h)
)

+ Um,s
2 cos

(

hm,p,s(g, h)
))

(2.4)

3In the following, we use the subscripts •⊕, •$, •⊙ to denote parameters referring
to the Earth, Moon and Sun, respectively.
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with

gm,p,s : T2 → T, (g, h) 7→ (2− 2p)g +mh+ sh$ + s
π

2
− ysπ ,

(2.5)

hm,p,s : T2 → T, (g, h) 7→ (2− 2p)g +mh− sh$ − s
π

2
− ysπ .

(2.6)

The expressions Um,±s
2 are function of the obliquity of the

eccliptic, and are present due to a rotation of the spherical
harmonics needed in this mixed-reference frame formalism.
Note that the size of the coefficient α$ = µ$

2

(
a2

a3
$

)

(1 −

e2
$
)−3/2 ∼ 4.32×10−14 is close to α⊙ (The ratio α$/α⊙ ∼ 1.09).

The coefficients mm,s are defined as mm,s = (−1)[m/2]KmKs(2 −
s)!/(2 + m)!. It turns out that the time derivative of the angle
h$ is well approximated by a constant frequency defining a
period of 18.6 years. In other words, we consider the explicit time
dependence of the lunar potential as linear. At this stage, it is
recognizable and transparent that the Hamiltonian formed on the
perturbations,

H = HJ2 (G,H)−R⊙(G,H, g, h)−R$(G,H, g, h, t), (2.7)

possesses 2 DOF and is periodically-time dependent (i.e., a 2.5-
DOF problem). The explicit time dependence due only to the
node of the Moon4 plays a fundamental role in shaping the
dynamics. The well-known distinctive feature with the case of
2 DOF is that, a priori (in absence of additional known first-
integrals apart the energy function itself), the tori cannot act as
practical barriers preventing transport in the phase space (for
an N-DOF autonomous problem with N ≥ 3, the codimension
between the N-dimensional tori and the dimension of the phase
space restricted to an energy surface (2N − 1) is at least 2). The
Delaunay variable ℓ being a cyclic variable, its conjugate variable
L = √

µa is a constant of motion. Let us introduce normalized
new actions x̃ = x/

√
µa. The reduced system is kept canonical

as long as the new angles ỹ = √
µa · y are introduced and the

physical-time multiplied by the same factor. It is clear that the
new Hamiltonian has the same form as in Equation (2.7). The
previous factor αJ2 absorbs now a contribution from L and we get
the new αJ2 = J2r

2
⊕µ4/4L6. Factorizing the external perturbation

by the greatest α$, the Hamiltonian can be rewritten as

H(G̃, H̃, g̃, h̃,
√

µat) = αJ2 f0(G̃, H̃)
︸ ︷︷ ︸

h0(G̃,H̃)

+α$

(

−
α⊙
α$

R̃⊙(G̃, H̃, g̃, h̃)− R̃$(G̃, H̃, g̃, h̃,
√

µat)
)

︸ ︷︷ ︸

h1(G̃,H̃,g̃,h̃,t)

.

(2.8)

4 We emphasize that the Hamiltonian depends on time just through the lunar
contribution as we assumed that, over our timescale of interest, the rate of variation
of the ascending node of the Sun is zero (see discussions in Celletti et al. [11]).

The hierarchy α$ ≪ αJ2 enables us to write α$ = εαJ2 , ε ≪ 1,
and Equation (2.8) becomes

H(G̃, H̃, g̃, h̃,
√

µat) = h0(G̃, H̃)+ εh1(G̃, H̃, g̃, h̃, t). (2.9)

ClearlyH shares the form of the standard perturbed Hamiltonian
system as announced in the introduction. The very useful
information that we got from these manipulations is that the
dimensionless perturbative parameter ε is proportional to the
secular invariant semi-major axis,

ε(a) ≡
α$

αJ2

=
2n2

$

(1− e2
$
)3/2

·
1

J2n2

(a

r

)2
. (2.10)

(The mean motions of the test particle and disturbing bodies
are noted n and n$, respectively.) Note that this perturbing
parameter is of the same nature as that introduced by Breiter
[3], but we are treating herein the regime of the lunisolar secular
(not semi-secular) resonances. The Hamiltonian model based on
the quadrupolar level is physically relevant up to a semi-major
axis close to amax = 6r⊕ (beyond, octupolar refinements, l = 3,
are needed) corresponding to ε(amax) = 0.8. In the following,
we will be interested in semi-major axes up to a = 29, 600 km,
leading to ǫ = 0.22. From our numerical investigations, we noted
that for a = 13, 600 km, the chaos is thin and confined to a few
inclination-dependent-only resonances. These two constraints
together define the subinterval I = [0.004, 0.22] ⊂ R+ of
interest for ε. Adding quite “virtually” the point {0} to this

set, ε ∈
(

{0}
⋃

I

)

, we obtain when ε = 0 an integrable

dynamics with a linear flow on a torus. The actions are constant
and determine the invariant tori. On these tori the dynamics
consist of a rotation at constant speed characterized by the
vector of constant frequencies (the unperturbed frequency vector)
�(G,H) = (̟g ,̟h) given by







̟g =
1

2
κ(5 cos2 i− 1)(1− e2)−2,

̟h = −κ cos i(1− e2)−2,
(2.11)

where κ = 3
2 J2nr

2
⊕/a2 ∈ R [24].

Let us be more precise regarding the definition of the interval
I and the energy function considered. An important factor
leading to the 2.5 DOF model lies in the omission of the tesseral
contributions in the Hamiltonian (2.7). Tesseral resonances
occur when the commensurability Ṁ/θ̇ ∼ q/p takes place. Given
the upper and lower bounds of I, the main tesseral resonances
affecting the motion are given by the set of commensurabilities
T = {2 : 1, 3 : 1, 4 : 1} (see e.g., [25, 26]). Near a tesseral resonance,
the semi-major axis is no longer secularly invariant and, in
fact, might experience (confined) chaotic variations near their
corresponding resonant action value L

p : q
⋆ . Putting all of these

together, a more precise definition of our interval of interest
for the perturbing parameter ε is instead I

′ = I \ IT where
IT =

⋃

p : q∈T
[ε(L

p : q
⋆ − δp : q, ε(L

p : q
⋆ ) + δp : q] where δp : q

characterize the strength (width) of the resonance. The eventual
local coupling of the tesseral contributions and the lunisolar
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resonances on the evolutions of the actions (G,H), for perturbing
values precisely within the tesseral resonant domain (i.e., for
ε ∈ [ε(L

p : q
⋆ − δp : q, ε(L

p : q
⋆ ) + δp : q]), is not discussed in this

contribution, but is the object of a further study (accordingly,
tesseral contributions are disregarded in the energy function).
Using estimations obtained in former works [25, 26], let us
stress that the ratio of the measures m(I ′)/m(I) ∼ 0.99 is very
close to 1. Moreover, accurate low-altitude or very local studies
could require additional refinements of the energy function (e.g.,
near the critical inclination, see [27]). Although our model is
subject to these possible limitations, we should highlight that
the considered dynamics are accurate enough to describe general
MEO orbits, and from a mathematical point of view provide a
simple testbed to investigate transport theories and capture the
big picture.

We abused the vocabulary and treat the eccentricity e and
inclination i as “actions,” instead of using the veritable actions
variables (G,H). This is rather to stick to classical notations
[24]. Nevertheless, these variables are functionally independent
and the “true” actions easily obtained as e2 = 1 − (G/L)2

and cos i = H/G. Let us precise that, when dealing with the
autonomous Hamiltonian by introducing an extra conjugated
variables (Ŵ, γ ) ∈ R × T for ε 6= 0, one couple of actions
x = (G,H) characterize an invariant torus of T3 since Ŵ does
not enter into the equations of motion. In other words, we can
consider the orbits in the reduced phase space defined by X =
{

(G,H, g, h, γ ), x = (G,H) ∈ D ⊂ R2, y = (g, h, γ ) ∈ T3
}

.
In section 3, we will offer views of the dynamics in action-action
sections, meaning that within the space X , we fix the angles to
a specific vector to obtain the section S =

{

(G,H) ∈ D ⊂
R2 | (g, h, γ ) = v⋆, v⋆ ∈ T3

}

. Let us now discuss fundamental
phenomenon for ε 6= 0.

2.2. Secular Lunisolar Resonances
A determinant feature in the long-term properties of nearly-
integrable systems of the form h(x, y) = h0(x) + ǫh1(x, y) is
the presence of resonances5 [30]. They arrive when a vector
k ∈ Zn

⋆ satisfy with the (unperturbed) frequency vector a
commensurability condition over the rationals. The resonant
condition reads k · �(x) = 0. For a fixed vector k ∈ Zn

⋆ , the
sets (potentially empty) of the actions x such that k · �(x) = 0
form the resonant manifolds. The resonance under consideration
is then characterized by an index, the resonance order, usually
though the ℓ1-norm of k,

∥
∥k

∥
∥
1 =

∑

i |ki|. Under the quadrupolar
assumption, the system (2.9) is prone to resonate with a maximal
order of 6. Let us consider the frequency vector �(x) =
(̟g(x),̟h(x),̟$), then, as already recognized by Ely [25], the
resonant conditions read as

k1̟g(x)+ k2̟h(x)+ k3̟$

= 0, k1 ∈ {−2, 0, 2}, k2 ∈ [[0, 2]], k3 ∈ [[−2, 2]], k 6= 0. (2.12)

5In the “multiscale analysis” community, resonances are sometimes named “slow
hidden variables,” see e.g., [28, 29]. This semantic is pretty accurate as this is
precisely what resonances are: resonances form “new slow variables” solely under
specific combinations of the fast variables. Having this in mind, it is clear that in
the presence of resonances the direct averaging may be crude (“naive” averaging)
and conducts to a wrong dynamics.

These algebraic equations admit non-trivial solutions that define
the lunisolar resonant manifolds. The resonant manifolds are
mirrored with respect to the resonance (0, k, 0) · �(x) =
k̟h(x) = 0. (However, as we will clearly illustrate it, the
symmetry of the resonant manifolds does not imply a mirroring
of the geography of the KAM tori and hyperbolic structures.)
In Daquin et al. [7], the extent of the resonant zones have been
estimated (in a subdomain of the prograde 0 < i ≤ π/2
domain) by reducing the Hamiltonian to the first fundamental
model of resonance, a pendulum. This procedure involved
the introduction of resonant coordinates through canonical
transformations Tk ∈ SL(3,Q) leading to an intuitive physical
interpretation of Chirikov’s overlap as a driver of chaos. However,
since the work of Celletti et al. [9], it has been observed that such
a reduction does not always capture the features of the dynamics.
In order to get a more refined and precise view of the extent of
chaos, a superior way is instead to look at the destruction of KAM
curves, e.g., using fast dynamical indicators.

3. PHASE-SPACE VIEWS

We revisit and complement the transition order/chaos in
terrestrial orbits by scanning the dynamics under the rays of
a first order variational chaos indicator. The motivation is
twofold:

(1) The resolutions used in former studies are generally sufficient
to detect and isolate chaotic components; yet, they are too
coarse to detect the eventual presence of structures immersed
within them. In addition, the dissection of the dynamics with
a fine resolution makes possible the extraction of the chaotic
skeleton with surgical precision6. This property will be used
to study transport properties (confer section 4).

(2) Gkolias et al. [10] claimed that “the retrograde orbits are not
intrinsically more stable then their prograde counterparts.” This
diagnosis was established by scanning the region with an
averaged FLI (over some angles) focusing on low eccentricity
(up to e = 0.1). We feel necessary to investigate further
this assertion beyond e = 0.1 without the averaged indicator
(which naturally tends to smooth and absorb the details).

To overcome and constrain these two symptoms, we first briefly
recall how we efficiently deal with the equations of motions, after
which we present and discuss our highly-resolved phase-space
views on a macroscale.

3.1. Numerical Treatment of the Equations
of Motions
Ordinary and partial differential equations with disparate scales
(spatial, temporal) are numerically challenging. The difficulty
arrises from the fact that the inhomogeneities in the scale
constrain parameters of the numerical methods employed (say,
e.g., the size of the timestep, the discretisation of the mesh)
to be small and highly resolved. In the present case, we deal
with (highly) oscillatory ODEs. They are omnipresent in the

6In a somehow different but connected context, Armellin and San-Juan [6] have
shown that fine discretisations are also needed for optimizers to operate properly.
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context of Newton’s equations7 and are ubiquitous in the context
of Celestial Mechanics. To circumvent the problem, effective
models and model reductions techniques are often employed.
The core idea is to substitute to the original dynamics a more
amenable, numerical and/or analytical, dynamical system [33–
35]. One method of choice to design effective dynamics relies
on the Lagrangian averaging principle [21–23, 36], which has a
long-lasting tradition in Celestial Mechanics. This principle is
usually used when the components of the equations themselves
allow to recognize explicitly the time scales. When it is so, the
fast dynamics is integrated into the slow variables to design an
averaged approximation. In this setup, the new slow constituents
somewhat incorporate the informations of the fast-dynamics
and serve as a new input for the investigations. To deal
efficiently with our problem at hand, we adopt here our own
secular MILAN model, as presented by Gkolias et al. [10]. The
MILAN model is based on the vectorial Milankovitch element
and admits a minimal force model (consisting of the averaged
J2 contribution, to which is added the secular quadrupolar
third-bodies perturbations). The MILAN formulation bears also
net advantages compared to the numerical treatment of the
Hamiltonian equations in forms of those given in section 2.1.
First, the formulation is free of singularity and, secondly, the
averaging is done in a closed form in the eccentricity. The
external third-bodies potentials are both averaged over the fast
variables of the problem, i.e., over the mean-anomaly of the
test particle and the mean anomalies of the third bodies. This
“doubly” averagedmodel allows the propagation of a test-particle
over 106–107 orbital periods in a few seconds only. Such a
performance is essential in investigating properties of the phase
space for range of parameters. When invoking effective models,
we always face the question of the relevance of the reduced model
(how sound are the qualitative or quantitative informations
derived from it). Gkolias et al. [10] established the testimony of
this doubly-averaged model against a singly-averaged approach.
By simulating the two dynamics on different domains of the
action-action, action-angle and angle-angle spaces8, we showed
that dynamical features of interests were reproduced and in
perfect agreement. Even if the simulation of the full dynamics
(i.e., the original, non-reduced and “exact” dynamics) on such
domains is still missing in the literature, recent reassuring
numerical agreements have been presented by Armellin and San-
Juan [6]. Namely, they presented nice agreements between their
in-house doubly average model and the original non-averaged
dynamics. All these together allow us to be confident enough on
the numerical results presented hereafter.

3.2. Highly Resolved Phase-Space Views
We use the Fast Lyapunov Indicator (FLI), a first-order
variational indicator initially introduced by Froeschlé et al.
[37], to discriminate orbit stability. This scalpel has been used
extensively over the past decade across different dynamical

7They arrive also inMolecular Dynamics (see [31] and [32] for introductory papers
and issues).
8In Gkolias et al. [10], we presented only sections in the angle-angle space but we
have evidences of the agreement on complementary sections also for a range of
different semi-major axes.

problems, ranging from Symplectic Maps studies to Dynamical
Astronomy, including Astrodynamical practical problems [38–
41]. The work of C. Froeschlé, M.Guzzo and E. Lega over the last
decade provides a good overview of its possibilities and range of
applications. When the dynamics under consideration is written
in first order and autonomous form as ẋ = f (x), x ∈ Rn, the FLI
is simply derived from the variational system in R2n,

{

ẋ = f (x),

ẇ = ∂xf (x)(w),
(3.1)

as

FLI(x0,w0, τrun) = sup
0≤t≤τrun

log
∥
∥w(t)

∥
∥ . (3.2)

Contrarily to Lyapunov exponents, the FLIs (computed at some
time τrun for a specific set of initial conditions x0,w0) keep trace
of the resonant nature of the orbits, while taking approximately
the same value FLI ∼ log(τrun) on KAM tori [38, 42]. By
computing the FLIs on a discretised specific 2d-section of ICs
(e.g., related to the action-action, action-angle, or angle-angle
planes) on a domain D, we can reveal the geography of the
survival KAM tori and their complement hyperbolic set. The
information given by the FLIs (“intensity”) is then color-coded
to obtain a map of stability. Note that sometimes, in order to
get a sharper visualization, the FLIs that initially take variation
in J ⊂ R+ are restricted to a subinterval K of J (see e.g.,
[16, 19]). This rescaling is achieved by fixing the two following
thresholds. The notion of chaoticity is based on the exponential
evolution of the norm between two nearby orbits. Therefore, to
reveal anomalies with respect to the linear trend (log-scale of an
exponential growth), the criteria

FLI(τrun) ≥ log(τα
run) = α log(τrun), α > 1, (3.3)

can be used to derive a lower threshold for chaotic orbits
(i.e., all FLIs larger than α log(τrun) are assigned to α log(τrun)).
Symmetrically, we obtain an upper threshold to judge regularity
with the criteria

FLI(τrun) ≤ log(τrun/β), β > 1. (3.4)

(And again, all the FLIs smaller than log(τrun/β) are assigned
to log(τrun/β).) The Figures 1, 2 resume in many ways the
transition from order to chaos in the prograde and retrograde
region of terrestrial orbits. This original unscrewed fence
views of the action-action phase space are very illuminative
(and pedagogical) to visualize, with respect to the non-linear
parameter ε(a), the proliferation of chaos. Each map represents
the result of 1, 000 × 500 ICs propagated over a long timescale.
Different simulation times τrun have been used according to
the perturbing parameter (the stronger is the perturbation, the
shorter is the time required to get a sharp contrast of the
dynamics). For the smallest perturbing parameter, a = 18, 600
km, τrun represents 30 lunar nodes, while for a = 29, 600
km 16 lunar nodes are sufficient to get a sharp contrast (most
probably those propagation times could be slightly shortened).
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FIGURE 1 | A highly-resolved fence view of the stability of the prograde and

retrograde regions obtained under the FLIs. The three slides depict the stability

for a particular value of the non-linearity parameter ε(a) which depends on the

secularly invariant semi-major axis. KAM tori correspond to white to light-red

color, stable resonant orbits appear in blue while red colors correspond to

chaotic orbits. The values ε(a) correspond to the three semi-major axis

{18.6, 22.6, 24.6} × 103 km (the z-scale is only symbolic, in particular the

scale is not linear). This unscrewed view presents in a global, original and

concise way the transition from order to chaos. See text for comments.

It represents about 7 × 105 and 1.8 × 105 test particle
revolutions. The “actions” have been uniformly distributed along
the rectangle [50◦, 130◦]× [0, emax], with emax determined by the
apogee-altitude condition emax = 1 − (r⊕ + δ)/a, δ = 120
km. In all our maps, we have set the initial angles y0 ∈ T3 to
zero. Anticipating a bit the next section, we are here interested
in the dynamical mechanisms leading to transport; in particular
we have not discriminated collisional orbits as we did in earlier
work. As it has already been discussed several times and pointed
out in several contributions [7, 8, 10], the inclination dependent-
only resonances widen and develop chaos when ε is increasing,
letting less and less room for invariant KAM tori. Eventually for
a = 29, 600, there is a macroscopic chaotic component. At this
macroscale, we even have the feeling of a chaotic path-connected
space (i.e., for every two points in the hyperbolic set, there exists
a hyperbolic path connecting them). This property is not exactly
true as isolated chaotic islands do exist. Nevertheless, the volume
of such isolated chaotic sea is rather small. Let us precise that,
given the fact that we used different τrun, the color palette has a
symbolic meaning only. Also, in the same way, the z-scale which
sets the different levels of the perturbing parameter ε(a) is not a
linear scale, and again, has only a schematic pictorial purpose.

For the two extreme perturbing parameters considered in this
work, ε(a) with a = 18, 600 or 29, 600 km, we have superimposed
for the newcomers the resonant manifolds obtained under the
quadrupolar assumption (confer Equation 2.12). It is interesting
to notice that, despite the symmetry of the resonant manifolds
along the (0, k, 0) resonance, the chaos is not mirrored at all
in the retrograde region (see Figure 3). The coefficients of each
harmonic, excepting the critical inclination, are dependent on the

FIGURE 2 | The same as in Figure 1 apart that the values ε(a) correspond to

the three semi-major axis {27.6, 28.6, 29.6} × 103 km.

cosine of the inclination and hence the resonant topologies for
prograde and retrograde orbits are necessarily different. A further
striking illustration of this fact, on a microscale, is exemplified
in Figure 4. Such fine resolutions allow to reveal incredible
structures and details of the phase space. These two simulations
clearly show us, at least for this realization of angles, that the
retrograde region is more stable than its prograde counterpart.
Applying the criteria given by Equation (3.3) with α = 1.1,
we found on that domain that the volume of chaotic orbits is
4 times larger than in its retrograde counterpart. We further
quantified this question by applying various criteria on our
former simulations. Table 1 summarizes our results by giving
the volume of chaotic orbits in the prograde vs. the retrograde
region, for slightly different values of α on a macroscale. From
our survey (which should be extended for completeness), the
numerics tend to show that, for small to moderate values of the
perturbing values of ε, the volume of chaotic orbits is roughly
the same. However, for larger values of ε, the prograde region
is more chaotic than its counterpart, the difference being now of
several percent. (But again, we are aware of the dependence of our
result against the choice of y0. Further numerical investigations
could constrain even more the result.) At a smaller scale, as
already recognizable in Figure 4, the discrepancies may be largely
more significant. It would be interesting to support or invalidate
this phenomenology by characterizing (i) the widths of the
resonances of the retrograde domain and (ii) by exploring their
numerical widths as a function of the angles. Such an enterprise
is yet to be performed.

4. DRIFT AND VISUALIZATION OF
TRANSPORT

The computation of the FLIs provided a quantification of the
degree of hyperbolicity and a discrimination of orbit stability.
From a “practical” perspective, one might be more interested
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FIGURE 3 | Detailed views of the prograde and retrograde regions for the

two-extreme values of the parameter ε considered in this work (Top

a = 18, 600 km, Bottom a = 29, 600 km). The resonant manifolds defined by

Equation (2.12) are superimposed on the FLIs. Despite the symmetry of the

resonant manifolds, the chaos of the prograde region is not mirrored in the

retrograde region.

in drift estimation and visualization of transport to quantify
changes of the unperturbed first integrals. This section is devoted
to this task by investigating asymptotic properties of initial
conditions close or immersed in hyperbolic structures. We
base our approaches on individual propagations and on spatial
ensemble averages.

4.1. Drift Estimation
There exist a tension between the local degree of hyperbolicity
and the eventual large transport. In fact, the astronomical concept
of stable chaos teaches us that positivity of a Lyapunov exponent
does not necessarily implies large excursion in the phase space
[43]. Large excursions in the phase space can be the signature
of transport along the level curves of an integrable system.
Nekoroshev’s long-time stability theorem does not exclude
the existence of chaotic variation. Finally, beyond a critical
value, Chirikov’s overlap criterion of resonances give rise to

FIGURE 4 | Two detailed views of the phase space under the FLI analysis.

701× 701 orbits have been propagated revealing the existence of very thin

structures and KAM tori filling the chaotic regions. On this domain, the

retrograde region contains 4 time less orbits satisfying the condition

FLI(τrun) ≥ α log(run), α = 1.1.

large connected chaotic domains, allowing possibly macroscopic
transport [12].

The problem of chaotic transport (sometimes referred as
chaotic diffusion) in nearly-integrable Hamiltonian systems and
Dynamical Maps still occupy efforts of various dynamicists (see
e.g., [40, 44, 45]). Given an orbit computed up to a final time
τrun, γ (t) =

{(

x(t), y(t)
)}

0≤t≤τrun
, we use the diameter along

the action-variables to measure the drift of the unperturbed first-
integrals.More precisely, given an action-like vector x ∈ D ⊂ Rn,
the diameter D of the orbit is defined as

D(x0, y0, τrun) = max
0≤t,s≤τrun

∥
∥x(t)− x(s)

∥
∥ . (4.1)

For our computations we chose the ℓ∞-norm and computed the
drift along the normalized action variables, i.e., along x = (G̃, H̃)
with G̃ = G/L and H̃ = H/L (we recall that in the secular
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TABLE 1 | The estimation of the volume of chaotic orbits in the prograde and

retrograde regions, for various perturbing parameters and on various domains.

Domain D Size of a

fixing

ε(a) [km]

Threshold

α

Volume of

chaotic

orbits

V
+
α

V−
α

[0, 0.65]× [0,π/2] 18, 600 1.1 0.009 0.009

1.25 0.005 0.005

1.3 0.004 0.005

[0, 0.74]× [0,π/2] 24, 600 1.1 0.05 0.05

1.25 0.038 0.04

1.3 0.035 0.038

[0, 0.76]× [0,π/2] 27, 600 1.1 0.18 0.12

1.25 0.12 0.09

1.3 0.1 0.08

[0, 0.78]× [0,π/2] 29, 600 1.1 0.22 0.14

1.25 0.16 0.09

1.3 0.14 0.08

The domain D refers to the definition of the domain in the prograde region, in the

eccentricity-inclination action phase space. This domain is then mirrored in its retrograde

counterpart to serve as a new domain to determine the volume of chaotic orbits in the

retrograde region, V−
α . The Equation (3.3) is used as a discrimination criteria. All results

have been established with a fine mesh (all domains have been uniformly discretised with

a grid consisting of at least 500× 500 initial conditions). The prograde region appears to

be slightly more chaotic than the retrograde counterpart on a macroscale the more we

increase the perturbing parameter. Significant differences may also exist at smaller scales.

approximation, L is a constant parameter determined by the
semi-major axis).

The results of the computation of the diameters, according
to Equation (4.1) for two-extreme non-linearity parameters are
shown in Figure 5. Comparing the results with the FLIs maps, we
note that the relation between hyperbolicity and large transport
is not that straightforward. For a = 18, 600 km, we remark that
regions with the larger FLIs do not necessarily correspond to
regions where the transport is maximal. Conversely, the almost
vertical resonant manifold emanating near i ∼ 56.1◦ does not
have the largest degree of hyperbolicity; yet it carries the largest
transport index. Switching to a = 29, 600 km, we note that
the lowest diameter is already one order of magnitude larger
than in the former case. The largest diameter is also significantly
larger which confirm the known fact of the instabilities in the
MEOs. We emphasize that the diameters have been computed
on the same predefined grids of ICs used to estimate the FLIs
(i.e., a highly-resolved grid of ICs). The emanating feeling of
a resolution deterioration in the maps is once again a nice
testimony of the sensitivity of variational indicators.

For large perturbing parameters, globally speaking, large
hyperbolicity corresponds to large diameters. This fact has to be
nuanced slightly near e ∼ 0.7 and i ∼ 70◦. Using an empirical
criterion, we extracted from the maps the actions that satisfy
the condition FLI(x, τrun) ≥ 1.2 log(τrun) (i.e., chaotic orbits) as
those satisfying D(x, τrun) ≥ 0.35. The tracing orbits are shown
in Figure 6 and illustrate the link between large hyperbolicity and
large diameters, and the necessity of finely resolved meshes (thin

stable structures stripe the chaotic domains and can be detected
with the diameters also).

Let us now comment on the diameter indicator that we used.
Very often diameters-like quantities in terrestrial dynamics have
been estimated using a more restrictive definition, namely a
one-dimensional diameter of a specific observable f (see e.g.,
[41, 46]). This strategy reduces to nothing else than the amplitude
estimation, equivalent to the estimation of 1f = maxt f (x) −
mint f (x). For the MEO problem, the eccentricity diameter along
the time is, rightly, tracked (as efforts are directed toward the
perigee height and the need of re-entry solutions). However,
when used as an empirical “measure of chaos,” this diameter
may be too loose. In fact, having in mind the geography of
the resonant manifolds derived from the resonant condition in
Equation (2.12) and the fact that two actions characterizes an
invariant torus of T3, it is easy to “create” a quasi first-integral
by choosing ICs near certain manifold. As an example, let us
fix a = 29, 600 km and consider a cluster of ICs in a small
neighborhood of V(x⋆), where x⋆ = (e⋆, i⋆) = (0.616, 88◦). The
time evolution (over 25 lunar periods) of the eccentricity and
inclination for the whole cluster of orbits (k = 200 orbits) is
displayed in Figure 7. The spatial averaged orbit is displayed and
superimposed with a bold red line9. Clearly, the eccentricities of
the whole cluster evolve in an apparent regular fashion. All the
orbits incorporate similar dynamical informations, both on the
quantitative and qualitative point of view. On the contrary, the
inclination time-histories experience significant variations and
a net sensitive dependence upon the ICs. From this example,
easily generalisable, we easily infer why a one-dimensional
diameter (based on the eccentricity) would fail in capturing
these particularities. Pushing further the idea, we extended this
approach on a grid of ICs near the point x⋆ by computing
accordingly the diameters (and the FLIs). The obtained maps
are presented in Figure 8. They confirm the rationale behind
the intuition developed through the former example. Whilst the
diameter based on both actions is in agreement with the FLI
map, the method based on the one-diameter approach give an
irrelevant and uniform signal.

Having presented a general way to quantify the drift, let us
focus now on how the drift is mediated in the phase space.

4.2. Visualization of Transport
In the previous sections, we computed FLIs and diameters in
various sections

S(v) =
{

(x, y) ∈ D× T3 | y = v, v ∈ T3} (4.2)

with D ⊂ R2. By fixing y = 0, particular features in S(0) have
been depicted. In order to visualize transport properties, and
to show how its mediation is related to the detected hyperbolic
web, we use projection and visualization techniques that have
been extensively used over the past decade to study transport in

9 Let us consider a cluster of size k, that we propagate up to time τrun. We obtain k

orbits γk ∈
(

C[0, τrun]
)

. Le us denote by xj(i, t) the instantaneous value of the j-th
component of the orbit γi at a specific epoch t. The spatial averaged orbit of the
component j (1 ≤ j ≤ n), 〈xj〉, is then defined through its components obtained at

any time t by 〈xj(t)〉 = 1
k

∑k
i=1 xj(i, t).
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FIGURE 5 | Estimation of the diameters for the two perturbing parameters ε(a) with a = 18, 600 km and a = 29, 600 km.

FIGURE 6 | Extraction of the ICs satisfying D(x, τrun) ≥ 0.35 (left hand-side) and the chaotic ICs satisfying FLI(x, τrun) ≥ 1.2 log(τrun).

nearly-integrable Hamiltonian system, symplectic Maps and in
Dynamical Astronomy [16, 18, 19, 40, 42]. For a recent overview
specifically around the FLIs and their applications, we advise the
reader to consult [20] for a pedagogical introductory note. The
methodology consists in the following. First, we compute the FLIs
over a section S(v), say on S(0)10. After this step, we are then
able to recognize initial conditions close to hyperbolic borders
or immersed within the chaotic sea. We then select one IC of
interest in S(0). Let x⋆ ∈ S(0) denotes this IC. Next, we define
a small neighborhood V(x⋆) of k ICs of x⋆. In theory, it would
be sufficient to deal with the sole numerical propagation up to
τrun of the orbit emanating from x⋆. However, the procedure is
computationally facilitated by considering a cluster of k orbits.
From these computed orbits γk(t) ∈ C

(

[0, τrun]
)

, we keep trace
only of the points that return close enough to the section S(v). For
that purpose, we introduce the family of sections {Sδ(v)}δ which
are δ-close to S(v). These sections are defined as

Sδ(v) =
{

(x, y) ∈ D× T3 |
∥
∥y− v

∥
∥ ≤ δ

}

, δ ≪ 1 ∈ R+. (4.3)

10 In this work we were interested in the action-action plane, but the approach
can be extended to action-angle or angle-angle planes. For example, a angle-angle
section can be defined as T =

{

(x, y) ∈ D × T
3 | (y1, y2) ∈ B ⊂ T

2, x ∈ D, y3 =
v3

}

.

When δ → 0, we recover the “exact” section S(v). The
introduction of this family of section is essentially to circumvent
numerical limitations. Firstly, we deal with a finite time τrun (that
we would like to keep “as small as possible” but “large enough”
to extract dynamical mechanisms). Secondly, in practice we do
not deal with an orbit γk(t) ∈ C

(

[0, τrun]
)

, but with a discretised
version of this orbit computed, say (to facilitate the exposition), at
eachmultiple of the fixed step size1t, {γk(t), t = i1t}ni=0, n1t =
τrun. All points of the orbits γk(t) ∈ C

(

[0, τrun]
)

that return
during the simulation to a section of {Sδ(v)}δ are identically
projected into the exact section S(v), on which the FLIs are used
as a background. By doing that, we are able to relate transport
with the web detected by the FLIs. In our computation we dealt
with the ℓ∞-norm, δ is problem dependent and best determined
by a calibration procedure11. Finally we worked with a cluster of
size k = 200 initial conditions.

Figure 9 presents results in the range of “small” perturbation
for two initial points of interest applying the methodology
described previously. The clusters has been propagated up to a
timescale of about 5.8 × 105 orbits revolution (25 lunar nodes).

11To give an idea of the size of δ, the results presented in this manuscript have been
obtained with δ = 0.08 for the small range of ε, δ = 0.1 for larger range. Different
admissible δ just change the number of points on the section collected, but leave
invariant the transport properties (angles are expressed in radians).
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FIGURE 7 | Ensemble integration of a cluster of k = 200 orbits in a neighborhood V (x⋆) of x⋆= (0.616, 88◦). The ensemble averaged orbit of the considered

observables are shown in red. The eccentricities do not experience a net sensitive dependence to the ICs, contrarily to the inclinations. From this example, it can be

easily inferred that a diameter-measure based solely on the eccentricity (or equivalently on G) would fail to capture properties of the dynamics.

FIGURE 8 | The figures enable us to quantify how a one-dimensional diameter coefficient (here based on the action G, top left) may be inappropriate in some cases in

capturing dynamical properties. A contrario, the two-dimensional diameter coefficient (bottom left) based on both actions, G and H, captures the subtleties of the

dynamics and reconcile the results with the FLIs analysis.

The ICs serving a definition to the cluster are depicted in red.
The points of the orbits that cross the double sections of the
set {Sδ}δ are depicted in green. (To facilitate the reading and
interpretation of the figures, the FLIs background have been color
coded with a light opacity-like filter. The points returning to
the section are intentionally magnified.) The two clusters focus

on thin manifold that still carry transport (see Figure 5). As the
transport index is rather small, excursions are modest and rather
confined. The returning points are guided by the thin hyperbolic
skeleton detected by the FLI computation.

In Figure 10, we repeated the same experiment with a
larger ε for 4 different scenarios. The approach enables us
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FIGURE 9 | Two diffusive scenarios illustrating transport scenarios along resonances in the regime of small perturbative parameters. The red spot indicates the initial

condition where the ensemble of initial conditions are defined. Points of the orbits that return sufficiently close to the section (on which the FLIs appear as a

background) are depicted with a green point. See text for comments.

to visualize and quantify the spread of the actions in the
regime of strong chaos. The orbits of the clusters have been
propagated on about 1.4 × 2.8 × 105 orbits revolution. The
spread of the orbits is well more appreciable and develops more
drastically within the action-space. It covers a large portion
of the connected chaotic domain. As it is observed for all
scenarios, the change in inclination can be superior to 15◦,
with extremely large variations for the eccentricity (namely,
the mechanism allows nearly circular orbits to become very
eccentric).

It would be extremely interesting to extend the approaches
and visualization of the diffusive properties by extending the
dimension of the visualized space. Taking advantage of our
model, we were able to extend the traditional stability maps
in one more direction by stitching together ad-hoc others FLI
sections. The results presented in Figure 11 complement the
global stability picture of the actions space by “unrolling” the
dynamics according to one angle, here�. The resonantmanifolds
computed using Equation (2.12) are depicted in black in the
“action-space.” In the regime of small perturbation (left panel), a
pendulum-like structure is clearly identifiable (minor structures
can also be identified). By varying the size of the perturbation,
a bifurcation-like phenomena occurred and the initially elliptic
point becomes of a hyperbolic nature where collisional orbits
develop. Such a systematic parametric methodology would allow,
besides the quantification of chaos and the determination of
the resonant regime (cf. [38]), the determination of precise
perturbing parameters where such phenomena occur.

5. DISCUSSION AND CONCLUSIVE
REMARKS

Dynamical chaos indicators as the FLI are valuable and
formidable allies to gain knowledge on the dynamical system
under investigation. Their systematic use over nearly the past
two decades in transverse fields has brought its share of results.
Applications toward terrestrial dynamics are still at their early
stage but the current situation seems to evolve positively. In
this contribution, we complemented and refined our past studies

related to the long-term dynamics of terrestrial orbits in the
range 2.91–4.64 Earth radii (ε ∈ [0.02 : 0.22]). We showed the
complementarity and benefits of visualizing the global dynamics
via sections, corroborated with the computation of the FLIs
and practical action-diameter quantities. From our numerical
experiments, we have seen that when the detected hyperbolic
manifolds are very thin (but still carry large diameters), the
transport occurs precisely along them. For higher values of
the non-linearity parameter, resonances do overlap significantly
and the transport is across a large domain of the chaotic sea.
This mechanism allows nearly-circular orbits to become highly
eccentric on a few lunar nodes only. In the later case of strong
chaos, preferred directions for the transport are hard to establish.
The FLIs allow to follow and delineate the routes of transport
where the spread in the phase space take place. The natural
complementary step that deserves serious attention concerns
the nature of the transport, the computation of diffusion-like
coefficients and its scaling with ε (Note that if in our actual set-
up, we do have access only to a limited number of different order
of magnitudes of ε. A theoretical possibility to extend its range
is to artificially increase the semi-major axis - even if we know
that physically the procedure is not that relevant as octupolar
contributions should be incorporated). Let us comment and
relate recent difficulties that we encountered in investigating
these last points. Transport properties are generally characterized
through the computations of moments of different order q,

Mq(τ ) =
〈

|x(τ )− 〈x(τ )〉|q
〉

. (5.1)

Let us underline once more that when we deal with the dynamics
numerically, we only have access to finite time moments. Usually,
the second-order moment, i.e., the spread of the actions (the
variance), is used to discriminate the case of diffusion we deal
with. More precisely, under the explicit ansatz that

M2(τ ) =
〈

|x(τ )− 〈x(τ )〉|2
〉

∼ D2τ
ν , (5.2)

the diffusion is called either subdiffusive (ν < 1), diffusive
(ν = 1) or superdiffusive (ν > 1). (The particular case of
superdiffusive behavior with ν = 2 is referred to ballistic
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FIGURE 10 | Diffusive scenarios illustrating transport scenarios within the hyperbolic web in the regime of large perturbative parameters and strong resonances

overlap. The red spots indicate the initial condition where the ensemble of initial conditions are defined. Points of the orbits that return sufficiently close to the section

(on which the FLIs appear as a background) are depicted with a green point. See text for comments.

FIGURE 11 | These two FLI cubes, computed for a = 18, 600 km (Left) and a = 29, 600 km (Right) highlight a bifurcation phenomena. The resonant manifolds

appear in black in the “action-action” space.

diffusion.) The real parameter D2 is the estimated diffusion
coefficient, and its sole determination can be sometimes tricky
due to technical difficulties (see, e.g., Lega et al. [16] and further
references in Cincotta et al. [45]). Anomalies to the strict diffusive
case (ν = 1), i.e., aberrations with respect to Gaussianity,
might be the results of the existence of a mixed phase space
(cohabitation of regular and chaotic components in the phase
space) and correlation effects [47, 48]. Let us note that, to the
best of our knowledge, the study of the correlation function
C(τ ) (even at least for the specific observable of interest, the

eccentricity) and its possible decay which give us the scale of
the correlation time τC (see discussions in [49, 50]) has never
been undertaken for the MEO problem. (The exception is found
in Wytrzyszczak et al. [51] where the autocorrelation function
properties are used to discriminate regularity for geosynchronous
objects.) Daquin et al. [52] claimed the normal character of
the diffusion for the eccentricity observable in the regime of
strong chaos. We redid some experiments along those lines
apart that we used the spatial averaging ideology (and no
longer the temporal averaging) assuming that all ICs of the
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cluster are equivalent. We met difficulties to confirm our former
conclusions and we stress here that they should be taken with
a grain of salt. In fact, in our experiments, we noticed that
such a conclusion depends strongly on the ansatz made on the
evolution of the variance and the choice of the time-horizon
investigated. Regarding the question related to the time-horizon,
there might exist a transient time τtr. that should be constrained
first. Indeed, in order to derivemeaningful statistical conclusions,
we have to ensure that τ ≫ τtr. (as a transient time seems
to exist) and τ ≫ τC. It is possible that, unfortunately, in
our present setting, τtr. ∼ τ , making conclusions hard to
reach.

Constraining those difficulties are the directions being taken
by our current research.
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