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Abstract: 

This work has been done in the framework of a large project on abstract interpretation of Java. 
The aim of this project is to develop a compiler and a static analyser for Java, which allows 
some verifications and optimisations of the analysed programs. Isabelle Pollet has already 
defined the abstract syntax usedfor the analysis: the LAS (Labelled Abstract Syntax). Here, we 
have studied a sub-language of the Java language, the Vas-T'y-Frotte. ln the framework of this 
project, we have created a compiler composed of a parser and a type checker for this sub
language. The type checker checks ail the types of the program, and translates the pro gram into 
ils abstract form. Doing this, it creates ail the abjects corresponding to the LAS. As the subset of 
Java corresponding to the LAS has much more constraints than the VIF (Vas-T'y-Frotte) , we 
had to define functions to translate the VIF program into an equivalent program verifying ail 
the constraints of the LAS. To create the parser, we used the Java Compiler Compiler 
(JavaCC). We have coded the abjects of the LAS and the compiler in Java. We did not have the 
time to create an analyser for this large sub-language, so we have created an analyser for a 
simple subset of Java, as a separate work. This analyser has been written in CaML. lt takes a 
CaML representation of a Java program into its abstract form. We supposed that the phases of 
parsing, translating to the very simple subset of Java, compiling have already been performed. 
The analyser implements a multivariant algorithm, to create ail the possible states of the 
program. 

Résumé: 

Cette thèse a été effectuée dans le cadre d'un projet plus vaste en interprétation abstraite. Le 
but de ce projet est de développer un compilateur et un analyseur statique pour Java, qui 
permettent l'optimisation des programmes analysés. Isabelle Pollet a déjà défini la syntaxe 
abstraite utilisée pour l'analyse: le LAS (syntaxe abstraite labellisée). Ici, nous avons étudié un 
sous-langage de Java appelé Vas-T'y-Frotte. Dans le cadre de ce projet, nous avons créé un 
compilateur composé d'un parseur et d'un vérificateur de types pour ce sous-langage. Le 
vérificateur de types vérifie tous les types du programme, et traduit le programme sous sa forme 
abstraite. Faisant cela, il crée tous les objets correspondant au LAS. Comme le sous-ensemble 
de Java correspondant au LAS a beaucoup plus de contraintes que Vas-T'y-Frotte, nous avons 
du définir des fonctions pour traduire un programme en VIF en un programme équivalent, mais 
qui respecte les contraintes de LAS. Afin de créer le parseur, nous avons utilisé le Java 
Compiler Compiler (JavaCC). Nous avons implémenté les objets de LAS et le compilateur en 
Java. Nous n'avions pas le temps de créer un analyseur pour ce grand sous-langage, nous 
avons donc créé un analyseur pour un sous-ensemble plus réduit de Java, en tant que travail 
séparé. Cet analyseur a été implémenté en CaML. Il prend une représentation en CaML d'un 
programme Java sous sa forme abstraite. Nous supposons que les phases de parsing, de 
traduction dans le sous-ensemble de Java et de compilation ont déjà été effectuées. L'analyseur 
implémente un algorithme univariant, pour créer tous les états du programme. 
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1. INTRODUCTION 

Dear reader, in this introduction, we would like to talk about the project we are working on. In 
order to do that we first explain the reasons why we are analysing the Java language, we then 
introduce the project and we finally exp Iain the structure of the thesis. 

1.1. Java 
Java is a simple object-oriented, platform-independent, multi-threaded, general-purpose 
programming environment ([MCZQ96]). lt is best for creating applets and applications for the 
Internet and any other complex, distributed network. An Hyper Text Transfer Protocol server 
can send a Java program to a client. This client can easily execute that program. This execution 
can seem very simple. Thus for example, the executable code on a PC is not at all the same as 
that executable code on a Macintosh. Of course, we could invent a way of communicating 
between the PC and the Mach applications, but this would be Jess evolutionary. 

Java goes well beyond this domain to provide a powerful general-purpose programming 
language suitable for building a variety of applications. Java is described as having the 
following features: 

Simple: Java was designed to be like C++ for easy learning. 
Robust: Java works hard to check for problems at compile and run-time. 
Secure: Java code passes several tests before actually executing on the machine. 
Multi-Threaded: Java multi-threading allows many simultaneous activities in one program. 
Dynamic: Java takes advantage of as much object technology as possible. 

But Java is, for the moment, not perfect. In fact, Java has still got lots of Jacks of efficiency and 
some Jacks of security. Sorne of the problems due to the Jacks of security of the Java language 
are the following: There are no limits for the assignment of the memory of applets. The applets 
are free to take control of the actions delivered by the client. For example, an applet could save 
ail the keyboard touches of the client. The applet could also take control of the web-cam or 
other hardware configurations of the client. A badly disposed person cou Id take advantage of 
these Jacks to get one's credit card number or one's password ([BCS97]). Like we have 
explained above, the Java programs are thus been freed from the problems of compatibility 
between the instruction sets of the various processors and operating systems. A machine 
language called Java Byte codes is associated with the source language Java. The source 
language Java is compiled in this machine language, and it is in this representation that the 
program is interpreted. As Java Byte Code is interpreted, the execution time of a program 
written in Java is 5 to 10 times superior to the execution time of a program written in C and then 
compiled ([OTE]). lt would be interesting to cure these Jacks. In order to accomplish that, we 
decided to analyse the language. And that is how our project is born. 

11 



'l/l/l/l/i/lT/l/l/l/l/,ill/Vl/l/l/l/,l/r/l/,l'/l/l/l/#/l/l/l/#/#/l/l/l/l/l/,,,,./l/,/,,,,./l/l/l/#/IYl/,,,,./l/l/l'/l/l/,,l/r/,,,,./,,,,./,,,,./l/l/l/,,,,./l/l/6'71/l'/,,,,./#/l'/l/l/l/l/l'/l/l/#/illf/T/IY,I/V~ 

1.2. The Project 
The project we are working on is an inter-university project between three universities: The 
universities of Louvain La Neuve, Namur and Venice. The actual group is composed of three 
students, three teachers and one teaching assistant. The teaching assistant is Isabelle Pollet', and 
most of our work is based on her DEA-thesis [IP099] (DEA: Diplôme d'Etudes Approfondies) 
of last year (1999). The teachers involved into this project are Agostino Cortesi2, Baudouin Le 
Charlier3 and Pascal Van Hentenryck4

• The three students are Karl Noben and of course the two 
ofus. 

Pascal Van Hentenryck is the internship tutor of Karl Noben, the student who works on the 
graphical interface of the project in Louvain La Neuve. Agostino Cortesi is our internship tutor 
in Venice. Baudouin Le Chartier is the supervisor of the project in Namur. 

The goal of the project is to create a generic analyser for the Java language. This whole project 
is composed of four parts. The first part is the DEA thesis of Isabelle Pollet ([IP099]). This 
thesis makes the theoretical bases for our work. 

The second part of the project is the implementation of a compiler for the sub-language of Java 
called Vas-Ty-Frotte ([LC99a]). This language and the compiler are explained later in this 
thesis. The compiler is decomposed into two major parts: the implementation of a parser and the 
implementation of what we called a type checker. The language Vas-T'y-Frotte has been 
written by Professor Le Chartier in March 1999, in the framework of his programming course. 
We have created the compiler by our own. 

The third part of the project is the graphical interface that can be applied on the analysis. Karl 
Noben makes this part. It is designed to allow us to click on a certain point into a given program 
in order to visualise the actual state of the local variables, the state of the parameters and lots of 
other things that constitute the abstract state of a program. 

For the fourth part of the project, we crated a simple static analyser for another, even smaller, 
subset of the Java language called Very Small Subset. We have invented this Very Small Subset 
in order to have a subset that would be simple enough to create a first outline of a static 
analyser. For latter work, we could imagine a second static analyser onto a bigger subset or even 
onto the actual Java language definition. 

We could of course also say that there is a fifth part of the project, because some of the parts we 
are working on are not finished and some other students are succeeding us next year, but we 
will discuss this into the conclusion of the thesis. 

After having explained the scoop of the project, we try to explain, in the next chapter, what 
exactly an abstract interpretation is. 

1 Research and Teaching Assistant at the university of Namur. 
2 Professorat the university "Ca'foscari" of Venice. 
3 Professorat the university of Namur. 
4 Professorat the university of Louvain La Neuve. 
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1.3. Structure of the Thesis 

ChaJJ._ter 2: Preliminary notions 

The second chapter gathers ail the basic notions and the notations we use in this work. Y ou wiil 
also find a summary on the bases of the abstract interpretation. These bases are useful for a 
novice in the subject, who wants to go further in the reading of this thesis. 

Chapter 3: The Compiler: a Parser and a Type Checker 

The third chapter of the thesis is the chapter about the compiler we have created. This chapter is 
divided into six major parts. The first part is the introduction. In this part we explain what is a 
compiler and why we need a compiler in order to make a generic static analyser. The second 
section of this chapter is devoted to the presentation of the concrete syntax of the sub-language 
we are analysing. This sub-language is the so-called Vas-Ty-Frotte that we have introduced 
into the section about the project. 

The third and the fourth sections of this chapter make the link between the concrete and the 
abstract syntax of the to analyse program. Indeed, a concrete representation of a program has 
got an abstract equivalent representation. And that is the reason why we need to define an 
abstract syntax that can be related to the concrete syntax by a concretisation function. It is 
difficult to make the link directly between the concrete and the abstract syntax and that is the 
reason why we have created an intermediate representation between the concrete and the 
abstract representation. The third section is the section about the abstract syntax (Labelled 
Abstract Syntax [IP099]) and the fourth section deals with the intermediate representation. 

Once we know ail the basics about a compiler, we can carry on with the implementation of the 
compiler. This compiler is split into two parts: the parser and the type checker. The fifth and the 
sixth sections of the chapter are the section about this parser and the section about the type 
checker. 

Chapter 4: Static Analysis by Abstract Interpretation 

In the fourth chapter we explain the work of a static analyser. This chapter is divided into five 
sections. The first section is an introducing section. 

In the second section we introduce the notion of a syntax. There are two syntax's into a static 
analysis. The first syntax is the concrete syntax. The second syntax is the abstract syntax. 

There is of course a way to transform a program, written into the concrete syntax, into an 
equivalent program representation of the abstract syntax. Here we have a concrete syntax 
written into a subset of the Java language. This subset is called Very Smail Subset of Java 
(Hence: VSS). The abstract syntax is written in CaML. 

The third section of this chapter explains everything about the semantics and the transition rules 
between the different states. We have also incorporated a sub-section explaining the manner of 
proving the correctness of the transition ru les. 

The fourth section of the chapter is devoted to the implementation of the static analyser. In this 
section you can find the algorithm we have chosen, the domain we are analysing, the 
implementation itself and some test programs we have written. 
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Thus we have had to write a translator between the concrete and the abstract syntax. In order to 
create an easy translator for those syntax' s we had to create a simplified language. This 
language is a Fortran based equivalent language to the VSS. The goal of this simplified 
language is to make the VSS language easier to parse and to translate into the abstract syntax. 

Chap ter 5: Çonclusion 

This is the fifth and also the last chapter of the thesis. In this chapter you can read a conclusion 
of our thesis. Y ou can also find what exactly is the advancement of our work. And some tips for 
later works in this domain. This chapter could for instance be interesting for the students who 
are following us up in our research and work. 
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2. PRELIMINARY NOTIONS 

2.1. Definitions 

2.1.1. Store and environment 

The environment and the store are the two functions that define the state of the memory. 

The first function, the environment, associates a value to a variable. This value can be seen, for 
example, as the address of the variable in the memory. The domain of the environment consists 
of the list of the names of all the accessible variables: the local variables, the formai parameter 
names of the current method and the variable this. nul/ corresponds to a non initialised variable, 
or a variable with the value nul/; undef corresponds to a non defined variable. 

The store associates afloat, a boolean, an integer -for basic types-, string, instance ... to a value. 
With the store and the environment, you can find the instance, . .. of ail the active variables of 
the program. 

The store will most of the time be noted 's' (sa for the corresponding abstract store) and the 
environment 'e' ( ea for the abstract environment ). 

Var ILoc Value 

2.1: Store and environment definition 

2.1.2. State of a program 

integer v1 = 105 
boolean v2 = true 

The state of a program, at a certain point of its execution, can be defined as all the information 
about the state of the memory at this point and the information needed to find the next state in 
the execution of the program. In general, the information contained is: 
• The current statement (or a label which allows to find the statement) 
• A stack containing ail the information about the successive method and constructor calls. 

This information is needed to find the following statement when we are at the end of a 
method or a constructor. 

• The current environment 
• The current store 

The state will be noted this way: < p, P, e, s > 
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2.1.3. Syntax and semantics 

A general language is defined buy its syntax and its semantics. Those can be cons idered as 
given with the language. If you study a sub-language of an existing language, you will probably 
have to redefine the concrete syntax and semantics, with the constraints of the sub-language. In 
other cases, you will maybe want to add some information in the abstract syntax, in the aim to 
improve the analysis. The abstract syntax has to be redefined in that case. 

The concrete syntax of a language is ail the rules that define the way a program has got to be 
written in that language. These rules give the explanation of the 'text' of the program. 

The semantics rules are rules about the way the language works. They tell what to do when you 
encounter one or another statement, they tell how the store, the environment are modified ... 
They define the transitions between the states of the program. 

2.1.4. Specialisation of a type 

As there can be some inheritance between two types in Java, the structure of the types can be 
seen as a set of trees. We consider that a type tisa specialisation of another type t' if the type t' 
is an archetype of t. We use this notation: 

t :s; t' ~ t extends t' or 3 t" tq t extends t" and t" :s; t' 
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2.2. Notations 

2.2.1. Syntax de/initions 

In our work, we often have to define some syntax's. In this aim, we use a representation close to 
the BNF (Backus-Naur Form). Here is an explanation of the syntax we use: 

• Terms in bold and italic are keywords or symbols of the defined syntax. 
• Terms just in italic represent non-terminal terms. 
• ( term )? represents 0 or l time the term. 
• ( term )* represents 0, l or several times the term. 
• ( term f represents at least l time the term. 
• 1 represents the notion 'or' 

Here is a simple example, for a better comprehension of our notations: 

Litterals: firstname, name, streetname, townname (strings), number, pc, phone_number 
(integers), box (character) 

somone ::= firstname name, address, phone 

address ::= 

1 

street streetname, number (box)?; pc - townname 
road roadname, number (box)?; pc - townname 

phone::= no_phone 1 (phone_number)+ 

Sorne examples of someone could be: 

Anne Dupont, MainRoad, 2; 4345 -Florennes, no_phone 
Christine Ferie, SwordStreet, 54 B ; 5000 -Namur, 08165473 l 071568435 

This notation will be used all along our work. 

2.2.2. Transition ru/es 

A transition rule explains the passage between two successive states of the program during its 
execution. 
In our work, we use this notation: 

< initial state > ~ < final state > 

Where { current_label } current statement { following_label } 

Constraints on final_state, using the initial_state and the current_statement 

Example: 
< p, P, (e, s) > ~ < q, P, (e[vi/Val(e, s, v2)], s) > 

Where { p } affect v1 v2 { q } 
V1 E VarName 
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2.2.3. Lists, sets •.. 

A set of abjects will often be written { obj1, ... objn} 
When you have a set S, P(S) represents the set of ail the subsets of S. 
For example: 

IfS={a, b} 
P(S) = { {}, {a}, {b}, {a, b} } 

A stack of a list I will be noted thjs way: 1 = head::list_rest 
where head is the first item of the list and list_rest is the rest of the list (and is a list itself). 

2.2.4. Notations of variables 

Concerning another notation, from now on, we use the terms 'return label', 'return 
environment' ... to represent the label where we corne back after the end of a method call (i.e. 
after the return statement), or the environrnent of the calling method. This environment 
becomes the current environment when we corne back to the method at the end of the method or 
constructor call. 

The target variable in a method call is defined like this: 
A method call bas the following syntax: var1 = var2.meth(param_l) 
As var1 is the return variable, var2 is the target variable. 

We also want to notice that when we want to speak about the local variables of a program, we 
will use explicitly the 'local' word. When we simply use the word 'variable', we mean a general 
variable, which can be a local variable or a field. 
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2.3. An Introduction to Abstract Interpretation 

2.3.1. Aim of the Static Analysis 

The abstract static analysis has got two principal aims: the optimisation and the correction of 
programs. 

In almost every static analysis, a program execution is considered as a succession of states. lt is 
a succession of concrete states in the concrete case, and a succession of abstract states in an 
abstract analysis. 

The static analysis allows, for example, to give an approximation of the types of the variables at 
each point of a program. Instead of making an analysis of the types, you can analyse the values 
of the variables. If you are analysing integer variables, you can try to know, at a certain point of 
a program, if one of the variables is positive, negative, null, or ifit can be any ofthem ... 

Keeping this in mind, you can optimise your program. If you see that, at a certain point, a 
variable is always positive. And you know that you have to apply a certain function on integers 
at that point of the program. Then you can simplify that function (this means that you can use 
another function that returns exactly the same results for positive values but that does not check 
the negative values) because lots of functions are easier to apply on positive integers than on 
negative integers. 

Y ou can prove the correctness of the pre- and the post-conditions of the methods of your 
program, studying the characteristics of the variables at the beginning and at the end of the 
methods. 

2.3.2. Steps of a Static Analysis 

In this introduction we give you an overview of what is the abstract analysis. It can seem a little 
bit boring for people being every day in this do main, but it certainly can do no harm to return ail 
the way back to the basics. 

The abstract analysis is made of three major parts: 

• The definition of the concrete semantics 
• The definition of the abstract semantics 
• The derivation of a static analysis 
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2.3.3. The Definition of a Concrete Semantics 

The execution of a program is considered as a succession of states of the pro gram. 

We first have to define, exactly, the information contained in astate of the program. 

Afterwards, we have to define the transition mies between the concrete states, i.e. the semantics 
itself. 

A program can have an infinity of different executions, and an execution can be infinite. The 
number of possible states of the program can be infinite. 

A simple example is this one: 

class class name 
{ 
int x = O; 

public static void main (String args []) 

} 

{ 
while true 

{ 
X= X+ l; 
} 

} 

The execution of this program is infinite, and the store will be different (the variable x will take 
all the integer values one by one during the execution), at each passage in the loop. The program 
passes trough an infinity of different states. 

As it is impossible to consider all the different executions of a program, in the concrete case, it 
is impossible to analyse the general behaviour of the program. 
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2.3.4. The Definition of an Abstract Semantics 

To analyse the general behaviour of a program, we have to consider ail the possible executions 
of the program. We define an abstract semantics, in order to do this. 
The difference between concrete and abstract semantics is that we make some approximations 
to make ail the sets finite, in the abstract case. The aim is to limit the number of possible states 
of a program. The most important set to define is the AType, i.e. the set of the abstract types. 
Most oftime, this set is the same than the concrete set Type, or a set of subset of Type. 

One way of defining ail the sets of the abstract semantic is to create a function that would make 
the correspondence between the concrete and the abstract objects. 

There are two ways to define this function: 
Y ou can define an abstraction function, which associates the corresponding abstract object to a 
concrete object (state, type, environment, store, and so on), or a concretisation function, which 
associates the corresponding set of concrete objects to an abstract object. 

In fact, the two functions can be defined, but most of the time, only one is necessary. 

Here is an example: 

In the concrete case, a concrete store associates its value to a location of a variable. 

Let's go back to the previous example: 

class class name 
{ 
int x = O; 

public static void main (String args []) 
{ 

} 

while true 
{ 
1 x=x+l ; 
} 

} 

The concrete store always changes during the execution, at the label 1, associating ail 
the poss ible natural numbers to the variable 'x' . As there is an infinity of different 
concrete stores (which belongs to the concrete state), there is an infinity of states. 

Let's define an abstract domain that is fmite, associated to the variables. Tt could be, for 
example, the set {-, 0, +} , corresponding to the negative/null/positive values of the 
variables. 

The concretisation function is: 

Cc ( -) = { v I v < 0} 
Cc (0)= {vjv=0} 
Cc(+) = { V j V > Ü} 
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If we note s a store and sa an abstract store, the concretisation function (Cc) for the 
stores is: 

Cc (sa)= {s IV I E ILoc: s (1) E Cc (sa (1)) 

The abstract store, in the abstract case, will associate: 
the value O the first tune } 

to the location of 'x', at the labeJ 1. 
the value + afterwards 

In this simple example we have defined, there is onJy one label (one statement), we can 
see that there are only 2 possible abstract states with the given abstract domain. The 
states correspond to the two possible abstract stores. 

Once we have defined the function for ail the objects contained in the states, all the ru les of the 
concrete semantics have got to be translated. The created rules wiJl be based on the abstract 
states instead of the concrete sates. 

2.3.5. Computing the Abstract Semantics 

Once we have created ail the possible states of a program, we can try to draw some interesting 
information. 

If the abstract domain is defined as being all the types of the programs, we can get, for example, 
ail the dynamic types of the variables at a certain point of a method. 

In the example we have developed before, we can conclude that, in this program, the variable 'x' 
is always >= O. This information is obvious in such a simple program, but can be less evident in 
large programs. Y ou can use this information to prove an invariant of the program that could 
say that x >= 0, or sunply use it to create the invariant of the program. 

In fact, the algorithm, which creates all the possible abstract states of a program, already exists. 
Depending on the choice of the algorithm, the result is more or less precise but the speed of 
execution also depends on the choice of the algorithm. Once you have ail that states, you can 
just takes ail the states corresponding to a certain point of the pro gram. 
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3. COMPILER: A P ARSER AND A TYPE CHECKER 

3.1. Introduction 
Like explained in the introductory cbapter, the aim of the project, at long term, is to make a 
static analysis of the Java language. lt is not possible to achieve such an ambitious goal directly. 
So, we try to do it step by step. We therefore begin the analysis by constructing a compiler. This 
compiler is very important for latter work. In fact the compiler is a tool that allows us to create 
the required structures for the static analyse. This compiler is not a common compiler like we 
know them. lt does not generate some executable code like most of the compilers do. This 
particular compiler generates a tree corresponding to the abstract syntax of the language we are 
analysing. 

It is of course not possible to make, directly, an analysis of Java, so we decide to analyse a 
subset of this language. This language is a subset of the Java language and is thus easier to 
analyse than the real Java. In fact, for an analysis of the complete Java language, we just need 
some more time and some more experience in the Java finesses. But the biggest part of the 
delivered work is, and would stay, identical for a bigger language to analyse. So, in fact, we are 
making a first sketch of the big and ambitious project. 

Sorne big parts of our work are based on existing materials. These materials are the concrete 
syntax and the abstract syntax we are using. The concrete syntax we are using is the VTF 
created by Professor Le Charlier in 1999 ([LC99a]) . This language contains all the important 
features of an object oriented language. The language is very much based on the Java language 
definition. The only thing that makes the two languages differ is that the VTF is a subset of the 
Java language and that the VTF thus has got a smaller definition as the Java language. The 
abstract syntax we decide to use as correspondence to the VTF concrete syntax is the Labelled 
Abstract Syntax that has been written by Isabelle Pollet in the framework of her DEA thesis of 
1999 in Namur ([IP099]). This thesis has been written in order to make some theoretical 
basements for a static analyse of the Java language (the project we are working on right now). 

This chapter is divided into five major sections. The first section is the presentation of the 
concrete syntax. The second section is the presentation of the abstract syntax. For people who 
are interested into more detailed information about those syntax's we refer to: [LC99aj and 
[IP099]. After tbese two sections, there is a section explaining an intermediate representation 
of the syntax's we needed in order to pass from the concrete to the abstract syntax. And finally, 
we have got the two sections explaining the implementation of the compiler. This compiler is 
split into two parts: the parser and the type checker. The parser takes a text of a program and 
translates this one into the intermediate representation. The type checker takes the intermediate 
representation and translates this one into the abstract syntax representation. 

r/l/1'/l'/l'/l/l'/l/l/l'/l/l/l'/l/l'/l/l/l/l/1'/l'/l'/l'/l'/l'/l'/l/l/l/l/l/l/l/l/l/l'/,1/I/T/l/l/l'/l/l/l/l/l/l/l/l/l/l/l/,illlr/l/l/#/l/l/l/l'/l/l/l/l/l/l/l'/l'/l'/.il!T/, 

23 



3.2. Presentation of the Concrete Syntax 
Every parser or type checker needs a language to analyse. We decide to analyse the language 
called VTF. In this section we try to explain what exactly the syntax of VTF is, what this syntax 
means and why we take this particular syntax. 

3.2.1. The VTF Basic Types 

The VTF language contains three basic types: booleans (boolean), integers (int) and floating 
point numbers (jloat). The operations defined on the basic types are: 

• boolean equality --

difference != 
logical and & 
logical or 1 

• int addition + 
subtraction 
multiplication * 
division / 
rest of the division % 
equality 
difference != 
lower than < 
lower or equal <= 
greater than > 
greater or equal >= 

• float addition + 
subtraction 
multiplication * 
division / 
equality 
difference != 
lower than < 
lower or equal <= 

greater than > 
greater or equal >= 
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3.2.2. VTF (long) Names 

In the VTF language we decide to use two different sorts of names : the (short)-names and the 
long-names. From now on, we decide to use the word 'name' instead of short-name. A name is 
an identifier, this means that it is a set of letters and figures with the only constraint that a name 
must begin with a letter. A long-name is a set of names separated by dots. 

The use of the (long)-names is defined as following. The local variables and the parameters 
have only got names, the packages have only got long-names. The other nameable notions have 
got the two sorts of names. These notions use names for the declarations and long names for the 
use of those notions. The constructors and the methods are not identified by their long-names 
but by their na mes and the list of types of the parameters. 

The scoop of the names is the package in witch the notions are declared. If a variable tree is, for 
instance, declared in the package Java.List, the scoop of tree is the package Java.List. This 
means that the variable tree is not accessible from elsewhere than in this package. 

The uniqueness of the (long)-names is defined as this: packages have got different long-names. 
Classes in the same package have got different names. Fields of the same class have got 
different names. Methods (and constructors) of the same class have got different signatures (a 
signature is like we have explained above: a name and the list of the types of the parameters ). 
Field and method names of a class are different than the class-name itself. Variables declared in 
the same black of instructions have got different names. The parameters of a constructor or a 
method have al I got different names. 

There is a notion that is called hide. If a local variable is declared with the same name as a field 
of that class, then we say that the field !oses his scoop. This means that, for using the field, we 
have to use the long name of the field, in the scoop of the variable, instead of the name. This 
rule is also applicable to the parameter names instead of the local variables. 

The scoop of the nameable notions is defined by the accessibility attributes. These attributes 
have got the same names and the same functions as in Java: private, public and protected. 
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3.2.3. The Syntax of VTF 

Atomic sets litt 
nclasse, nvar, nmethode, nchamp, npackage 

Build sets 
prog 

26 

defclass 

type 

declchamp 

declmethcon : : = 

declmethabs : : = 

declconstr 

instr 

primdes 

vardes 

desinst 

expr 

(package npackage)1 (import longnclasse; 1 import npackage. * ;)* 
{ defclass +} 

(public)1 (abstract)1 class nclasse (extend (longnclasse I nclasse))1 
{ (declchamp declmethcon declmethabs declconstrt} 

int I bool lfloat I nclasse l longnclasse 

(public I protected I abstract)1 (final/ (static )1 type nchamp ( = expr )1 ; 

(public I protected I private)1 (final/ (abstract)1 U[fe I void) n_methode 
( (type nvar (, type nvar) ) ) { (Jnstr) } 

(public I protected)1 (abstract)1 (type I void) nmethode 
( (type nvar (, type nvar) *)?) ; 

(public I protected I private)1 nclasse ( (type nvar (, type nvar) *)7
) 

{((super I this) ((expr (, expr)°)7
); )1 (lnstr) } 

type nvar ( = expr )7 ; 
nvar = expr; 
(desinst. l nclasse. l longnclasse.)7 nmethode ((expr (, expr)°)1 ); 
return ( ( expr) )1 ; 
if ( cond) lnstr 
if ( cond) lnstr else lnstr 
while ( cond) lnstr 
{(lnstr)*} 

nvar 
nchamp 
longnchamp 
nclasse.nchamp 

primdes 
desinst.nchamp 

this I super I vardes 
new (ne/asse l longnclasse) ( (expr (, expr)°)7) 
(desinst. l nclasse. l longnclasse.)7 nmethode ((expr (, expr)°)7 ) 

null l litt I expr op expr I desinst 

lm 3.1: Concrete syntax of VTF 



3.3. The Labelled Abstract Syntax 

3.3.1. General ldea 

The abstract syntax we are explaining in this section is called Labelled Abstract Syntax, hence 
LAS. We decide to make this syntax a "labellecf' syntax. It is important to have a labelled 
syntax in order to make an analysis on the transitions of the operational semantics. We need the 
labels to make it possible to locate the statements in a univocal way in a given program. And 
that is the reason why the labels have got to follow a certain logic. 

Ali the statements and ail the method and constructor declarations contain a label. For each 
statement in the middle of a statement list we have got the label of the statement and the label of 
the following statement. There are two special statements, the return and the if-statement. The 
return-statement does only contain one label. This is the label of the statement itself. The if
statement contains three labels: the label of the statement, the label of the if part of the statement 
and the label of the else part of the statement. 

For instance: 

then 1 
r else 

l 15 if condition 16 25 J 
1 

~, ~, 
16 toto:= true ; 17 25 toto := /aise ; 26 

24 return (toto) ; 

lm 3.2: the three labels ofthe ifstatement 

The LAS does not correspond exactly to the concrete syntax VTF. In the VTF syntax there are 
loops (white) while the LAS does not accept those loops. We must simulate those by an if
statement with some special labels. We can see that the following VTF loop is equivalent to the 
following LAS if-statement. As we think a little bit about the while-statement, we discover that 
the labels are placed in a special way. Indeed, we can see that the second label of the last 
statement refers to the beginning of the loop and that the condition of the loop in fact exactly 
looks like an if-statement. We can more easily see that on the image lm 2.3 . 

....................................................... . . . . 
i 11 ... 12 i 

12 white condition 13 16 
► do ~ ...................... . 

13 statementl 14 ·7 
14 statement2 15 j 

. . 
~ 11 ... 12 ~ 

! 12 if condition 13 16 
\ then ~ ......... 

:. ............ ► ~! ::!::::!fr r ........... 1 

15 statement3 12 ........ ... , 15 statement3 12 .. ......... , 
od fi 

...... ► 16 ... 17 L ............ ► 16 ... 17 

lm 3.3: while versus if/oops 
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In the VTF syntax there are access modifiers, static properties, package declarations and import 
declarations, while the LAS ignores those. Another difference between those two syntax' s is that 
the LAS has only got abstract classes with at least one abstract method while the VTF can have 
an abstract class without any abstract method. An LAS class also contains an explicit 
constructor, what is not necessary in the VTF. In the LAS all the fields are initialised when they 
are declared, what, once again, is not necessary in the VTF. In the LAS there is another 
constraint that tells us that, in every method or constructor, the last statement is a return 
statement, VTF does not need this. The order of the variable declarations is also important in the 
LAS white not in the VTF. Ali the variable declarations are done in front of the rest of the 
statements of the methods in the LAS. A constructor call is always assimilated to an assignment 
in the LAS white it could be an expression in the VTF syntax. 

In fact we have got to translate the programs written in VTF into the LAS. For this translation ail 
the differences between the two language definitions (syntax definitions) must disappear. So 
instead of making a simple translation, we are creating a translator that makes some adaptations 
before the real translation job. This translator is explained in the section 3.6. about the type 
checker. In fact the type checker is made of two essential parts, the syntax checking part and the 
translation part. 

Knowing ait the differences between VTF and LAS we can take a look at the LAS-definition. 
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3.3.2. LAS Definition 

Atomic sets /ab 
litt 
ne/asse, nvar, nmethode, nchamp 

Build sets 
prog 

defclass 

type 

declchamp 

declmethode 

declconstr 

instr 

appel 

des 

desinst 

expr 

defclass+ 

ne/asse [ extend ne/asse] declchamp • declmethode • declconstr + 

bot I int I bool l ne/asse I void 

type nchamp expr 

type nmethode (type nvar)• 
1 type nmethode (type nvar/ (type nvar/ /ab instr+ 

ne/asse (type nvar) • (type nvar) • /ab prem /ab instr + 

1 ne/asse (type nvar/ (type nvar/ !ab super expr /ab instr+ 
1 ne/asse (type nvar/ (type nvar/ /ab this expr /ab instr+ 

/ab affect des expr /ab 
l lab if expr /ab /ab 
l lab skip !ab 
l lab proc appel /ab 
l lab return [ expr] 
l lab Jonc nvar appel /ab 
l labconstr nvar ne/asse expr • /ab 

type this nmethode expr • 
1 type super nmethode expr • 
1 type nvar nmethode expr • 

type nvar 
1 type nchamp 
1 type desinst nchamp 

type this I type super I des 

type null l type litt I desinst 1 (expr)1 op expr 1 ( expr) ( op expr)1 

lm 3.4: LAS definition 
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3.3.3. Tree of the Created Classes 

Here, we are developing the structure of aU the classes created to represent the objects defined 
in the LAS. Ali these objects will be created by the type checker during its translation of the IIR 
program into LAS. 
Afterwards, we present a brief description of ail these classes, to explain exactly what they 
represent. A more detailed specification of ail these classes can be found in the annexes. 

3.3.3.1. Package JavAblnt 

Val i Extended by ... 

Inst Base 

Type 

simpleType Nclasse 

declProc 

declConstr DeclMethode 

(..,. __ ce_1_1o_tL_ i_st_o_rr_ y_p_es __ ) [..,. __ c_e_11_o_fi_G_r_ap_hP_ r_o_c __ ) [..,. __ T_y_p_e_P_o_u_rE_nv ___ ) 

[ listüfrypes ) [..,. __ gr_a_p_hP_r_o_c __ ) [..,. __ <l_e_tc_I_as_s __ } [..,. ___ E_nv ___ } 

lm 3.5: Classes ofthe package JavAblnt 
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3.3.3.2. Package Jav Ablnt.SAP 

t Extended by ... 

( cet IOfL istOfExpr ) 
( tableOfNvars ) 
( elementüfEnsOfNvars ) 

Expr Instr 

Null Affect 

lm 3. 6: Classes ofthe package JavAblnt.SAP 
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3.3.4. Explanation of the Classes 

3.3.4.1. Package JavAblnt 

• Abstract class Val: an instance of Val represents a Java value that can be one of those: 
A boolean 
An integer 
A floating point number (the basic types are defined in the [LC99a}, p.3) 

An undefined value (type bot) (as defined in the typed and in the labelled abstract 
syntax in [IP099], parts 1.3 and 1.4) 

An instance of a class 

• Abstract class Base: an instance of Base represents a value of a basic type that can be one of 
those: 

A boolean 
An integer 
A floating point number (the basic types are defined in the [LC99a], p.3) 

• Class Bool: an instance of Bool represents a Java value of boolean type 

• Class !nt: an instance of !nt represents a Java value of integer type 

• Class Ni: an instance of Ni represents a not initialised value (for a basic type) or null (for a 
non basic type) 

• Class Inst: an instance of Inst represents a Java value of a non basic type i.e. an instance of 
a class 

• Abstract class Type: an instance of Type represents a Java type. This can be : 

boolean, int, jloat 
void 
bot 

a class name 

(the basic types defined in the [LC99a], p.3) 
(as used in [LC99a] and defined in [IP099], part 1.2.4) 
(as defined in the typed and in the labelled abstract syntax in [IP099}, 
parts 1.3 and 1.4) 
(as defined in the [LC99a], part 2.2) 

• Class Nclasse: an instance of Nclasse represents a Java class type. It contains ail the 
information available for the class. 

• Class cellOfListOJTypes: an instance of cellOJListOjTypes is a type of a list of types 

• Class listOJTypes: 

32 

-Implements a domain "list of types" 
-Implements the ordering induced by the ordering on types on lists of types: 

By definition, 
(Tl, ... , Tm)<= (T'l, .:., T'n) 
iff 

m = n and 
Ti <= T'i (for all i: 1 <= i<= m(=n)). 
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• Abstract class dec/Proc: an instance of dec/Proc represents a procedure (i.e. a method or a 
constructor) declaration 

• Class dec/Constr: an instance of declConstr represents a constructor declaration. 

• Class dec/Methode: an instance of dec/Methode represents a method declaration. 

• Class dejClass: an instance of defClass represents a class, with ail its proprieties. 

• Class Env: an instance of Env represents a local semantics environment. 

• Class TypePourEnv: Contains the static information relative to an environment 

• Class cellO.f(JraphProc: class that represents a cell in the list graphProc, corresponding to 
one procedure 

• Class graphProc: 
- Implements a graph ofprocedure of "same kind" (constructors ofsame name and type). 
- Allows one to find a procedure with a given signature. 
- Allows one to find the list of procedures whose list of types is minimally greater that a 
given list of types. 

3.3.4.2. Package Javablnt.SAP 

• class cellOJListOjExpr: an instance of cellOJListOjExpr represents a cell of a list of 
expressions used in a method or a constructor call 

• Abstract class Expr: This class irnplements the expressions of the VI'F grammar. It's useful 
to have a type that gathers all the expression types. 

• class Nul/: an instance of Nul/ represents the null expression in Java 

• Abstract class lnstr: this class implements the set of statements accepted by the VI'F 
grammar. Every statement is uniquely represented. 

• Class Affect: this class implements the statement "assignment" 

• Class tableOjNvars: This class is used when translating a declaration of procedure from IRR 
to SAP. Ali parameters must be added before the first local variable is (added). 

• Class elementOfEnsOjNvars: this class implements an element of the set "ensOfNvar" 

r'/#/l/l/l'/l/l/illr/l'/l/l'/l'/l'/.IIIT/#/l/l/l/l/l'/I/I/I/I/I/.IIIT/l'/1'/.IIIT/.IIIT/.IIIT/.#/l'/l/l'/ill'/l'/l/l/l'/I/I/I/I/I/.IIIT/l/l'/l'/.IIIT/.IIIT/.IIIT/.II/T/l'/I/.IIIT/l/l/l'/l'/I/.IIIT/l/l/,IIVl/l/,IIVI/. 
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3.4. An Jntermediate Internai Representation 
The internai representation we have defined is a direct translation of the VTF syntax into a tree 
structure form. 
• The basic structure for the litterals, the identifiers, the operators and the keyword is the 

lexeme structure. 
• Another structure is the sentence structure. It is used to represent more complex pieces of 

the program (an expression, a declaration, a statement...). It is a list of objects of type 
construct. 

• A terminal is an occurrence of a lexeme in a sentence. 
• The construct is a general structure that can be either a terminal or a sentence. 

To verify the correctness of the IIR structures created by the parser, we need to visualise them. 
In that aim, we have created a class containing several display methods. In fact, we could have 
added those display methods into the classes construct, lexeme and terminal, instead of creating 
a whole new display-class. We did not do this because we did not create the classes of the 
package JavAbint.concreteSyntax by our own. Those classes have been created by Professor Le 
Charlier. So, because we did not want to change the inside of those classes, we had to create a 
new class that uses the toString methods created by Professor Le Charlier to display the wanted 
information. 

3.4.1. Tree of the Created Classes 

3.4.1.1. Package JavAblnt.concreteSyntax 

lexeme ] t Extended by ... 

construct 

sentence terminal 

lm 3. 7: Classes ofthe package JavAbint.concreteSyntax 

3.4.1.2. Package JavAblnt.concreteSyntax.Display 

IIRDisplay } 
lm 3.8: Classes o(the package JavAbint.concreteSyntax.Diplay 
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3.4.2. Explanation of the Classes 

3.4.2.1. Package Jav Ablnt.concreteSyntax 

• Class lexeme: This class implements the set of lexical items that are relevant for the 
/ntermediate Internai Representation of VIF programs. These are: 
- Identifiers ([JLS96} chapter 3 section 8) 
- Keywords ([ JLS96] chapter 3 section 9) 
- Literais ([JLS96] chapter 3 section 10) 
- Operators ([JLS96} chapter 3 section 12) 

Here we use the classification of Chapter 3 of Java Language Specification [JLS96], from 
which we eliminate irrelevant symbols. Moreover, only the symbols defined in VIF are 
recognised. Every lexical item is uniquely represented. 

• Class construct: A construct either is a terminal (lexeme) or a sentence. In the latter case, it 
is, in fact, an instance of a non-terminal, i.e. a data structure exhibiting the value and 
structure of this non-terminal instance. 

• Class sentence: A sentence consists of 
- A "main cell" containing 

+ The sort of the sentence (statement, expression, etc.) 
+ The reference to the first construct of the sentence 
+ The reference to the last construct of the sentence 

P.S.: both pointers are nul/ if the sentence is empty 
- A sequence of objects of type construct represents the sentence in a structured way. 

• Class terminal: A terminal (lexeme) is an occurrence of a lexeme in a sentence. 

3.4.2.2. Package Jav Ablnt.concreteSyntax.Display 

• Class IIRDisplay: this class contains ail the methods that allow the displays an object of 
type IIR. 
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3.5. Implementation of the Parser: Newlookl 

3.5.1. Lexical Analyser 

The questions we try to answer in this sub section are: 
• What is a lexical analyser? 
• Why do we use those analysers? 
• Do we really need a lexical analyser? 

A lexical analyser is a tool that partitions an input program text ioto the smallest meaningful 
sequences of characters. This tool then attaches these smallest meaningful sequences of 
characters to the tokens. And this tool also eliminates the white spaces and the comments from 
the text program ([SA98a] slides 1 till 7). This enables us to resolve a large class of problems 
like text processing, code enciphering and compiler writing. In our case, we use such a lexical 
analyser in order to make a parser. Making a parser consists in two major steps. The first step is 
the lexical analysis and the second step is the generation of the parser. !ex is one of the best 
known lexical analysers 

It is not essential to use a pre-made tool like !ex to handle problems of this kind. It is of course 
possible to write a program in a standard language to handle them. The advantage using this 
kind of tools is that it offers a faster and easier way to create programs to perform lexical 
analysis. Its weakness is that it often produces programs that are longer and execute more 
slowly than hand-coded programs that do the same task. In many applications size and speed are 
minor considerations, and the advantages of using pre-made tools considerably outweigh these 
disadvantages. 

3.5.2. A Parser Generator 

Here, we try to answer some questions about a parser generator: 
• What is a parser generator? 
• What do we use those tools for? 

A parser generator is a tool that takes a language, as argument, and that produces a parser for 
this language. A parser is a tool that translates a program from one language into an other. The 
source languages are often programming languages like Fortran, Pascal, C or Java. And the 
derivation languages are often tree forms of the source programs. These tree representations can 
be analysed by a compiler. In our case, we can see that the tree representation of the source code 
is the IIR. The name of our parser is Nlookl and the explanation of this parser and the 
generation of it can be found in the next sub-sections. 
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3.5.3. Java Compiler Compiler Documentation 

Like we try to explain in the sub-sections above, there are two parts in the making of a parser. 
The making of a parser is divided into the syntactical analyser and the parser generating part. ln 
our case we use a tool called Java Compiler Compiler (JavaCC for more information and for a 
downJoadable version of the Java Compiler Compiler, we refer to the following address 
[ JavaCC 1]) in order to generate the parser. This tool creates a parser for the language you give 
him as source file. 

Now we know that the creation of a parser is split into two different steps. The first step is to 
decompose the language into tokens (lexical analysis ), and the second step is to generate a 
syntactical tree corresponding to the language given as argument (parser generation). The 
language we chose to make a parser for is VIF. This language is explained at section 3.2. With 
this JavaCC tool we create our parser called Newlook]. 

There are two different kinds of parsers: top down parsers and bottom up parsers. The major 
difference between the two is the way they look at the string of tokens. The top down parser 
starts with the start symbol and ends with the string of tokens, white the bottom up parser starts 
with the string of tokens and ends with the start symbol. For more information on the top down 
and bottom up parsers, we refer to section 3.5.5. Bottom Up versus Top Down Parsing. 

The source file for JavaCC is composed of a number of sections: 

• Option Parameters 
• Main Methods 
• Definition of the Tokens 
• Parsing Methods 

JavaCC is much like /ex and yacc ([LexYacc]) together because like those tools JavaCC creates 
a parser from a template file. However, white yacc produces a bottom up (LALR(I)) parser, 
JavaCC creates a top down (LL(k)) parser. But in our case we decide not to use the possibility 
of creating an LL(k) (for k et; 1) parser but an LL(I) parser. We try to explain the meaning of the 
k in LL(k) in the sub-section 3.5.6. called the k in LL(k) ([JavaCC2]). The notions like LL(k), 
top down and bottom up are explained in the next sub sections or for more detailed information 
we refer to [INF02108}. 
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3.5.4. Left-Most Derivation versus Right-Most Derivation 

ln the left-most derivation you have got to find the leftmost non-terminal, in the string, and 
apply a production to it. This explanation is not that intuitive, but gets comprehensible with the 
following simple example ([SA98b]). In this example you can see how a left-most derivation 
takes place: 

<expr> 

<expr> <op> <expr> 

0 1 0 1 ____.-----r--.. }0 
num * ( <expr> ) 

~ }0 
<expr> <op> <expr> 

~~ Œ]l @_s.~ _J 
lm 3.9: Left-Most derivation 

ln a right-most derivation, on the other hand, you have got to find the right-most non terminal, 
in the string and apply a production on it. In the following example you can see how a right
most derivation takes place: 

W{ <expr> 

}wl <expr> <op> <cxpr> 

WI WI ____.-----r--.. 
num * ( <cxpr> ) 

~ }w 
<expr> <op> <expr> 

GJ I WI wu num + 

lm 3. I 0: Left-Most derivation 
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3.5.5. Bottom Up versus Top Down parsing 

We normally scan from left to right. ln these left to right parsers, we have got two different kind 
of parsers. The LL and the LR parsers. The LL parsers are what we call Left to right, Left most 
derivation. These parsers reflect the top down parsers. This means that the parser starts with the 
root (or the top) and processes the sentence ail the way down to the leaves (or the bottom). This 
is explained on the image 3.11. LR on the other hand is the acronym for Left to right, Right 
most derivation. These kind of parsers reflect the bottom up kind of parsers. This means that the 
parser starts with the leaves (or the bottom) and processes the sentence until it cornes to the root 
(or the top). This is explained on the image 3.12. The difference between the top down and the 
bottom up parsers is explained with some more detailed examples into [SA98b] slides 90 till 
108. 

1 5 
4 

6 

.. 
. .. ~ .. ., 

·•. ··········.·.·.·.·.~·.·.·.·.·.·.·.·.·.· ....... •·········· 
···················· 

.... ..•········ · .. . .. 
·····.... . .. •· 

········· ................ • 

lm 3.11: The top down way to look at a sentence 

8 
···················► 

4 ·······~·· .. ( ... 
:··················· 
·• ... 

·· ... ... .. 
............ -::··· 

································ 1 
2 

3 

◄·····--····· 7 ·············• . 

\.·········· 

; ·······················~ 

.. ··· ..· 

lm 3.12: The bottom up way to look at a sentence tree 

.. 
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3.5.6. The k in LL(k) 

When we speak about a Left to right, Left most derivation parser, we often use the acronym 
LL(k) . In this term, the k means that the parser looks k tokens in advance before taking a 
decision. This means that the parser keeps a stack with the read tokens and that this stack can 
grow up to a height of k levels. This stack helps the parser decide when there is an ambiguity. 
When there is no ambiguity, it is clear that the parser can decide directly and that it does not 
need the stack. 
For instance: 

class identifier extends identifier 

this example is easy to parse because there are some keywords to identify what sort of 
line this is. In fact, we can say that this production could be recognised by an LL(J) 
parser. 

The second example, on the other hand, is more difficult. As we can see there are two 
productions that begin with an identifier, so, the parser has got to remember these identifiers and 
look ahead. The second token is different in the two productions. This example could thus be 
solved by an LL(2) parser. 

1 identifier = identifier; 
vs. 

2 identifier identifier = ... 

VTF is not an LL(I) grammar but VTF is not an LL(k) grammar either. In fact VTF is an LL(oo) 
grammar. Thus it is not possible to implement a parser, simply using the lookahead option of 
JavaCC. So we decide not to use this option at all. 

r/l/l/l/#/l/l/,l/l/,til/Vl/,l/l/l/#/,I//T/l/l/l/l/l/,l/,l/,I//T/#/l/,I//T/l/,I//T/,l/l'/#/l/l/,I//T/l/,I//T/l/,I//T/l/l/l/#/,I//T/,I//T/l/l/l/l/#/l/,I//T/,l/l/l/l/,I//T/,l/l/,I//T/l/l/l/,I//T/,I//T/l/l/l/l/,I//T/,. 
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3.5. 7. Structure of the Parser 

3.5. 7.1. Options Parameters 

As we have seen in the previous sub section, it is not possible to make an LL(oo) parser directly 
using the options of JavaCC. Thus we decide to let ail the parameters of JavaCC to their default 
values. 

In the following example we show you that the VTF grammar is an LL(oo) grammar because 
even if the k is big, i could still be bigger. And thus, we do not know how many tokens we have 
to read before being sure that we have a field designator or a method cal!. 

A field designator can have the following form: 
name 1. meth 1 (par am _l 1). meth2(param _/2). name 2. . .. name;field _ name 

And a method call 
name,.meth1(param_l1).meth2(param_l?).name2 . .•. name;.meth_name(param_l) 

lm 3.13: LL(oo) 

The only difference is that in the case of a method call, it ends with an identifier (a string) 
followed by a list of parameters (between brackets). Wh ile it only ends by an identifier, in the 
case of a field name. We can not know the number of tokens we have to read before to decide. 
In fact, we have got to adapt the number of tokens to look ahead dynamically during the parsing 
of the to analyse pro gram. 

From an implementation point of view, we decide to make a skeleton of the to parse program 
using the default value of the lookahead option of the JavaCC. And we add some code to this 
skeleton in order to take care of ail the problems involved with the fact that the grammar is an 
LL(oo) grammar. JavaCC is implemented so that it allows us to add some Java code in the 
middle of the parser. So we use thjs opportunity to create an LL( oo) parser that accepts the VTF 
grammar. 
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3.5.7.2. Main Methods 

The class Nlookl , i.e. the parser, contains two main methods: 

• The TestVarDesign method tests if an object of type sentence representing a variable 
designator contains a parameter Ust. If the object does not contain such a list, then it means 
that the sentence can represent a long class name 

pre : the sentence in entrance is a variable designator 
it only contains identifiers and effective parameter lists 

post : true if the sentence does not contain a parameter list 

• The IIRParser method is the main method of the class, which will be automatically called at 
the execution of the Parser. It can return a ParseException, which is a class of exceptions 
defined by the compiler compiler, JavaCC. 

Pre: this method takes the text file of a Java program, that is supposed to be syntactically 
correct, following this definition of "syntactical correctness ", as argument: 

A program in entrance of this method is "syntactically correct" in our terms if it 
respects the mies that are not checked by the parser. These rules can be found in the 
documentation of the parser (sub-section 3.5.8. Nlookl class documentation). 

Post: this method returns the syntactic tree of the program given as argument, 
corresponding to the IIR definition. The retum value is a sentence. 

3.5.7.3. Definition of the Tokens 

Before defining ail the tokens of the language, we have got to define the characters the parser 
has got to skip. There are the white spaces, the end-of-line characters and the tabulations and, of 
course, the two types of comments ('// .... ... eol' or'/* ....... */'). 

Then, we have got to define ail the tokens of the grammar. 
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• The tokens corresponding to the operator keywords: general mathematics operators 
and comparison operators. 

• The tokens of the literai values of our language: booleans, floating point numbers and 
integers. 

• The basic keywords of the language: the access modifiers (public, abstract, ... ) and 
the keywords associated to the statements (if, else, super, .. . ). 

• The tokens corresponding to the basic types: int, boolean andjloat. 
• The tokens of the identifiers in general: strings beginning by a letter, containing letters, 

digits or the character '_'. 



3.5. 7.4. The Parsing Methods 

Each method corresponds to the treatment of a part of the program. 

Our methods are: 
• MainProg() 
• Declaration() 
• Statement() 
• Design() 
• Operator() 
• ExprLitt() 
• Expression() 
• Input() 

The only argument of the methods is the text of the to analyse pro gram. The methods return the 
syntactic tree of the (part of) program, they have analysed, into the IIR form. 

The Input method treats the whole program text followed by the end-of-file character. It calJs 
the MainProg method and is calJed by the main method IIRParser of the parser. 

Each method has the following form: 

returned _structure_ type method _name() 
{ 
Local variables 
} 
{ 

} 

code fine 
( 1 code fine 

( { Java code } )1 
{ Java code } )* 

A code fine is a succession of tokens or calls to other methods. It represents a sequence of words 
in the program text. The Java code is what has got to be executed when the parser encounters 
that sequence of words in the program. In our program, it is the creation of the corresponding 
IIR structure. 

The best way to understand ail this is to look at a concrete example. 

~/""1T/I/I/I/I/I/I/.IIT/,l/,#/,I/IY,l/.,,/l/l/,l/,#/,l/l/,l/,l/l/l/l/,l/l/l/,IIIIV11IVl/l/l'/l/l/,,11t1Vl/l/l/l/l/l/,IIVl/l/l/l/l/l/l/l/l41/Vl/l/l/l/l/l/l/l/l/l/,I/J/IIT/l/l/17. 
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3.5.7.5. Example 

Here is a typical example you can find in the JavaCC documentation ([InriaJavaccEx]). 

This simple grammar recognises a set of left braces followed by the same number of right 
braces and finally followed by an end of file. 

A legal string has got the form: 
"{} ", "{{{{{}}}}} " ... 

Sorne illegal strings are: 
"{{{{", "{}{} ", "{}}", "{{}{}} " ... 

The method Input() also prints the number of pair of braces on the screen. 
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P ARSER _ BEGIN(Simple3) 

public class Simple3 { 
public static void main(String args[]) throws ParseException { 

Simple3 parser = new Sirnple3(System.in); 
parser .Input(); 

} } 

PARSER_END(Sirnple3) 

SKIP: 
{ " " 
1 "\t" 
l "\n" 
1 "\r" } 

TOKEN: 
{ <LBRACE: "{"> 
I <RBRACE: "}"> } 

void Input() : 
{ int count; } 
{ 
count=MatchedBraces() <EOF> 
{ System.out.println("The levels of nesting is "+ count);} 

} 

int MatchedBraces() : 
{ int nested _ count=0; } 
{ 

} 

<LBRACE> [ nested_count=MatchedBraces()] <RBRACE> 
{ return ++nested_count; } 

lm 3.14:example of simple grammar 

Y/l/,11IVl/l/l/l/lhll'/l/l/l/l/l/l/l/l/#/l/l/l/lhll'/l/#/l/lhll'/#/l/l/l/l/#/l/,,11/r/l/l/l/l/l/l/l/l/l/l/l/l/l/l/lhll'/l/l/l/l/l/l/#/l/l/l/l/l/l/l/l/l/l/4 
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3.5.8. Nlookl Class Documentation 

public class Nlookl 

An instance of the class Nlookl is a special object, containing the stream of characters with the 
code of the to parse program given as input and different information on the tokens and on the 
options of the parser. 

sentence IIRParser (InputStream) 

Pre: this method takes the text file of a Java program that is supposed to be syntactically 
correct, following the definition of "syntactical correctness" as argument. 

Post: this method returns the syntactic tree of the program given as argument, corresponding 
to the IIR definition. The return value is a sentence. 

In the IIRParser precondition, we use the notion of "syntactical correctness". Here is a 
definition of what this notion exactly means in this method. The parser methods check that the 
construction given in entrance follows the mies of the VI'F syntax. But they do not check the 
following mies: 

• They do not check that the declarations ( after the package and the import declarations) are 
class declarations. 

• They do not check that the declaration in entrance has got allowed access modifiers. 
Ex: the method would accept a class defined as protected and static. 

• They do not check that the declarations in the body of a class are allowed declarations (not a 
class declaration). 

• They do not check that a field is not declared with the type void. 

• They do not check that a field or a method is declared with an identifier. 
Ex: you can declare int = 1; 

• They do not check that the statements defined in a simple method (not a constmctor) are 
different from a constructor call. 

• They accept that a designator is only followed by a semicolon but they should not accepted 
that. 
Ex: it accepts toto; which does not mean anything. 

• They do not check that a designator has got two consecutive lists of parameters. 
Ex: you can have toto.add(x,y)(z) 

A program in entrance of this method is "syntactically correct" in our terms if it respects the 
rules that are not checked by the parser. Our parser could be improved by adding code that tests 
ail these constraints. This is, of course, possible in a theoretical point of view, but in a practical 
point of view, it is much easier to make all these verifications in the type checking part of the 
compiler, while creating the objects of the LAS. 

r/ill/T/ill/T/l/#/,l/l/l/l/l/l/l/l/l'/l/l/ill/T/#/#/illlT/ill/T/l/l/l/l/l/l/,11//T/l/l/ill/T/l/l/l/l/ill/T/l/l/l/l/l/l/l/,II/T/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l'/I/I/I/IIIIT/. 
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3.5.9. Tree of the Created Classes 

package Jav Ablnt.concreteSyntax.Parser 

Ali theses classes are created by JavaCC, using the file Nlookl jj. 

( Nlookl ) ( ASCII CharStream 

Nlookl Constants ) ( Nlookl TokenManager 

( ParseException ) ( Token 

( TokenMgrError ) 
lm 3.15: Classes o[_the 12.ackage JavAblnt.concreteSy_ntax.Parser 

) 

) 

} 

See more detailed documentation about JavaCC for an explanation of these classes ([JavaCC 1 J 
and [JavaCC2}). 

J'/J/IIT/I/J/IIT/l/l/l/l/l/l/l/l/,IIVI/I/I/I/I/I/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/J/IIT/I/J/IIT/J/IIT/J/IIT/I/J/IIT/I/J/IIT/J/IIT/,illVJ/IIT/J/IIT/I/I/J/IIT/J/IIT/J/IIT/J/IIT/I/IYl/l/l/l/l/l/l/#/J/IIT/I/I/.IT/J/IIT/J/IIT/1/I/I/. 
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3.6. Type checking and translating the IIR 

3.6.1. Structure of the Type Checker 

The type checker bas got several functions. These are the syntax checking, the translation and 
the type checking. Thus, in fact, we have chosen a wrong name for this tool. But we actually 
implemented the tool using this name, so we decide to keep the name, keeping in mind that it 
does not only check the types of the IIR. 

3.6.1.1. Syntax Checking 

The type checker completes the syntax checking because the parser does not check everything. 
The list of things that are not checked by the parser can be found in the sub-section 3.5.8. 
Nlookl Class Documentation. 

3.6.1.2. Translation 

The type checker translates the IIR-program into a LAS form. This translation is not that easy 
because the LAS contains a lot of constraints. Therefore we have to transform the program and 
to make some restrictions. 
For example, every class contains at least one constructor in the LAS. So if the initial program 
does not contain a constructor, a default constructor is created by the type checker. In fact that is 
exactly what the real Java compiler does. 

The translation mies between IIR and LAS can be seen as the translation mies between VTF and 
LAS because the IIR is a direct translation of VTF in a tree structure. 

For the rest of this sub section we speak about an abstract syntax called SA. This syntax is 
defined into [IP099} (p.13-17 called 1.2 une première syntaxe abstraite). lt is a simple vertion 
of an abstract syntax and the LAS is derived from this simple syntax. 

In the following table, you can find an easy comparison between VTF and SA, with all the 
translations mies. The translation mies between SA and LAS can be found in the thesis of 
Isabelle Pollet ([IP099]). The blue text references to the different transformations that have to 
be done for the translations. These transformations are explained in more details after the tables. 
The structures written in red are the structures that undergo the transformations. 

,.-/,l/,IIIT/l/l/l/#/,,//'71/l/l/l/l/l/l/l'/#/,111//V,IIVl/,J/IT/l/l/,111//V#/l/l/#/#/l/l/l/..,/l/,IIV#/l/l/l/l/#/,11Vl/l/#/l/#/l/l/#/l/l/l/;IIVl/#/#/#/l/l/,,11V#/#/#/l/#/#/I/#/. 
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Here is an explanation of the translation mies: 

Vas-T'y-Frotte Abstract syntax (S. A.) 

prog :: = prog :: = (defc/ass/ 
(package npackage ,-)1 
(import nclasse ; 1 import npackage. * ; )* Restriction : package, import (a) 

(defclass/ 

defclass : : = 
(public/ (abstract)1 class nclasse 
(extends nclasse)1 

1 (declchamp I dec/meth 
1 dec/constr)* 

dec/champ : : = 
(public I protected I private )1 (fina/)1 (static )1 
type nchamp ( = expr)1 ; 

declmeth : : = 
( (public I protected I private )1 (fina/)1 

(static)1 (void I type) nmethode 
( (type nvar)*) { (instr)*} 

(public I protected)1 abstract (void I type) 
nmethode ( (type nvar)*) ) 

) 

defc/ass :: = 
ne/asse (extend ne/asse/ 
declchamp* dec/methode* declconstr* 

Restriction : access modifier (a) 

abstract property (PJ 

Transformation: explicit constructor (JJ 

de cl champ : : = 
type nchamp expr 

Restriction : access modifier (a) 

Transformation: initialisation is needed (2) 

dec/methode :: = 
type nmethode (type nvar)* 

1 type nmethode (type nvar)* 
(type nvar)* instr+ 

Restriction: access modifier (a) 

Transformation : at /east one statement in a concrete 
method declaration (3J 

ln SA., declvar is nota statement 
but transformed into : (type nvar) * 
~ , 

declconstr : : = 
(public I protected I private)1 ne/asse 
( (type nvar)*) 
{ ( ( this I super) ( (expr)*) ;)1 (instr)*} 

Remaries: ln S A. , void is a basic type 

declconstr : : = 
( ne/asse (type nvar)* (type nvar)* prem instr+ 
1 ne/asse (type nvar)* (type nvar)* 

super expr* instr+ 
1 ne/asse (type nvar)* (type nvar)* 

this expr* instr+ ) 

Restriction : access modifier (a) 

Transformation : Constructor type prem (SJ 

At least one statement 

~/,l/l/"'1T/I/.IJT/I/.IIIT/.IIIT/.IIIT/I/I/.IIIT/I/.IIIT/.IIIT/l,4111V#/I/I/I/I/I/I/.IIIT/I/I/I/.IIIT/.IIIT/.IIIT/.IIIT/I/I/I/.IIIT/"'1T/I/.IIIT/I/I/.IIIT/I/I/.IIIT/.IIIT/.IIIT/I/.IIIT/.IIIT/.IIIT/l/,111/1V.IIIT/I/I/.IIIT/.IIIT/I/.IIIT/l/l/l/l/l/#/I/IA 
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Vas-T'y-Frotte Abstract syntax (S. A.) 

type:: = (int 1 boolean lfloat I nclasse) type : : = (int 1 bool l float I nclasse I void) 1 

Remaries: ln SA. andin V.T.F. : we don'tconsider 
the so-cal/ed type String 
ln SA. : addition of the typejl.oat 

··-··-··-·------------- - -- - --- --- ·--··-·-- ------ --- --- --- --- --- --------- ----- _,,_ ,, _,,_,,_,,_ ,,_ ,,_,,_ ,, _,,_,,_,,_ ,,_, ,_ ,, _,,_,,_,, _,, _ __ _________ _ __ _ __ _______ __ _ ____ 1, 

instr :: = instr :: = 
type nvar ( = expr )1 ; skip 

1 des = ( type )1 expr; 1 affect des expr 
1 1 (desinst I nclasse)1 nmethode ( (expr)*); 1 if expr (instr)* (instr)* 
1 

1 return ( ( expr) )1 ; 1 proc appel 

1 if ( expr) instr (else instr)1 1 return (expr)1 j 
1 white ( expr) instr 1 while expr (instr)* i 

1 {(instr)*} 1 cast des type expr 1 
1 Jonc rrvar appel 

1 

1 constr rrvar ne/asse expr* 
il 

1 1 
1 appel:: = 

this nmethode expr* 
1 

1 super nmethode expr* 

1 nvar nmethode expr* 1 

Transformation : ln S.A, declarations and at;ectations 
J 

1 

are split into two parts. '4) 

ln S.A., ail the variables are 
, 

declared be/ore the statements f4J 

ln S.A., the function and the 
constructor cal/s are not considered 

1 as expression, unlilœ in V. T.F. {6J 

ln S.A., in a cal/ of a method of this 
class or of the super class, the this 

1 
or the super is always explicit (lJ 

ln S.A., ail the while statement are 1 

translated in their corresponding 1 

ifform {BJ 

·-··-··-··- ··- ··- ·-- -------·-··-··----------·--··-··-··-··-··-··-··-··-··-·· -··-·--··-·---·-----------·-·-- -------·- ·-- --- --- ··- ··--·-··-··- ·-- ··- ··- ··-··-··-·------

des : : = nvar I nchamp I desinst.nchamp des :: = nvar 1 nchamp I desinst nchamp 
1 

--- --- --- --- ··--·- ··- --- -·- ··- ··- ··- --- --- -·-·-- ··- ··-··-··- ··-··-··-··-··- ··- -··-·· - ·· - ··-··- ·· -··-··-·· - ·· - ·· - ·· - ·· - · · - ··-··- ··-··-··- ·· - ·· - · ·-··- ·· - ·· - ·· - ··-·· - ·· - · 1 

desinst :: = desinst :: = 
super super 

i 
1 this 1 this 

1 

1 des 1 des i 
1 

1 new ne/asse ( (expr)*) 

1 (desinst I nclasse)1.nmethode ( (expr)*) 1 
1 

--- -·-··------------- -- - ··- ··- ··-··-·--··-··-·-------- ·-- --- ------------------ ------------- --- ------ -- --- --·-·----- ··-··--·- --- --- --- --------- --- -· -----------·--·-----
expr :: = expr :: = :, 

nul/ nul/ 1 

1 litt 1 litt 

1 desinst 1 desinst 
1 

1 (expr)1 op expr 1 op expr* 

1 1 ( expr) ( op expr)1 
1 

Restriction : the brackets in the expressions 1 

operators are a/ways prefixed 1\ 

1 

·- · -

ff'/IYl/.tlll!T/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/4lr/#/l/l/l/l/l/l/l/4//171/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/,llr/l/l/l/lh//T/lhtl/T/I/I/I/I/I/I/. 

49 



W/.IIIV#/#/l/#/l/l/#/l/l/l/l'/l'/,ll'/l'/l/l/l.ll/,I/T/l/l/l/l/l/l/l/l/,111/l'/l/l/l"/J,r/1/I/I/I/I/I/I/I/I/I/I/I/I/.IIIVl/l/l/l/l/#/#/11/l'/l/l/l/l/l/l/,IIVl/l'/I/I/I/I/I/I/.IIIVl/l/4 

• Restrictions 

(a) The "package" and the "import" declarations and the access modifier information are not 
considered in the abstract syntax. There are no static methods or fields in S.A. The compiler 
simulates these with a dynamic method called Static_Ref This method takes a picture of all the 
static fields and methods. With this picture, we are able to make dynamic references to ail the 
static fields and methods. In this way, a static method call is transformed into a dynamic method 
cati, but with a reference to the Static_Ref method. For the fields, we instanciate those, once and 
for ait, into this Static _ Ref method. 

CPl The abstract property of a class is not completely saved in the abstract syntax. A class is 
abstract if and only if it contains at least one abstract method. On the other hand, a class can 
contain no abstract method, but being declared as an abstract class in VFF. However, a class that 
contains an abstract method must be declared as an abstract class. 

• Transformations 

( l l A class contains at least one explicit constructor in the SA. If the class does not contain one, 
the compiler creates a default constructor. 

In the case of a class extending another class, which contains a constructor without arguments, 
the default constructor is: 

ClassName () 
{ 
super ( ); 
} 

In the other cases, it is: 
ClassName ( ) 
{ 
} 

C
2
l Ali the fields of a class are declared and initialised at the same time in the abstract syntax. If a 

field declaration in VTF does not contain an initial value, the compiler assigns one to this field. 
If the field type is a class type, the initial value is null. 
For the basic types, its default value is: 

int: 0 
float: Of 
boolean : false 

C
3
l A constructor or a concrete method contains at least the return statement in the abstract 

syntax. If needed, this statement is added at the bottom line of the statement list by the compiler. 
For a constructor, or a method with void as return type, the added statement is: 

return; 

C
4
l Ali the local variables are declared before the statements in the abstract syntax. In the case of 

a VFF program containing a variable declaration combined with an assignment, this statement is 
transformed into two parts, during the translation from the VFF into the abstract syntax LAS. 

r/#/I/I/I/.IIIVI/.IIIVl/l'/l/l/l/#/l/l/l/l/,I/T/l/l/l/l/l/#/l/l/l/l/l/l/l/l/l/,111//VI/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I~ 
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For instance: 

type nvar = expr ; 

Becomes: 

type ... 
type nvar 
type ... 

affect nvar expr 

( in the other variable declarations ) 

( in the statements) 

<
5l A constructor is one of the three different types in the abstract syntax: 

prem: when it is a primai constructor (it does not call another constructor) 
this: when the constructor calls another constructor of the same class 
super: when the constructor calls a constructor of the super class 

<6l A function call or a "new" call is not considered as an expression in the abstract syntax. This 
call is always associated to an assignment. When the compiler encounters one of these 
procedure calls elsewhere than in an assignment, while translating a VTF program into its LAS 
form, it creates a new internai variable and decomposes the statement as follows: 

return ( x. toString O ) ; 

becomes: 

Jonc Tmp_l x toString 
return Tmp_l 

Similarly, 

NewList = list.addCell (new Cell (info, next)); 

becomes: 

constr Tmp _ 2 Cell info next 
Jonc NewList list addCell Tmp_2 

<
7
l In a call of a method of this class or of the super class, the this or the super keyword is 

explicit in the abstract syntax. That keyword is added by the compiler when it is absent in the 
VTF program. 

For instance, 

MethCall (EffParam); 

Becomes: 

proc this MethCall EffParam 

fl'/l/l/l/#/l/,llr/l/l/l/l/l/l/,lll'/l/l/l/l/l/#/,,11//Vl/l/l/l/l/l/,11//r/l/""/,ill/V,illlr/l/l/l/,ill/Vl/l/,IIIV#/l/.1//lr/,l/,llr/,IIIVl/#/l/#/#/l/l'/l/#/l/#/#/l/l/l/#/#/l/#/l/l/l/#/#h 
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csJ In the definition of the abstract syntax, the while statements do not exist anymore. To 
translate a program from its VI'F form to its abstract syntax form, we have to translate the while 
statements into their corresponding if statement. 

For instance: 

while ( bool ) 
{ stat} 

Becomes: 

01 if( Tmp_3) 
{ 
stat 
jump to 01 
} 

3.6.1.3. Type Checking 

The type checker checks all the types in the program and translates the program at the same 
tune. The type checker veri:fies different things: 

• It verifies that the value returned by a method corresponds to the return type found in the 
declaration of the method. 

• It verifies, in the case of a method or a constructor call, that the types of the real parameters 
correspond to the types of the formai parameters of the called metbod or constructor. This 
verification includes the target parameter of the method. 

• It verifies, in the case of an assignment, that the type of the assigned value ( or variable) 
corresponds to the type of the target variable. 

• It verifies the type of the conditions (they must be of type boolean, of course) in the if 
statements. 

• It verifies that ail the types used in the program ( extended type, type of a declared variable 
or field, type returned by a method ... ) have been declared before their use. 

• It verifies the validity of the types of the expressions used with the arithmetic operators. 

It also verifies other things: 

• It verifies that a variable is not declared two times somewhere in the program 
• It verifies that there are no duplicate definition of a method in the program 
• lt verifies that there are no unreachable statements in the program. The type checker can 

detect some unreachable statements but it can not detect ail of them. 

When the type checker encounters an error in the program, it throws an exception. We have 
created a sub-class of the basic class exception (CheckTypeException) so we can add some 
useful information in the exception message returned. In this way, we have optioned for 
simplicity, because it could have been possible to continue parsing the whole program and 
return a list of errors instead of stopping after the first encountered problem. This seemed to be 
too difficult to handle for a first version of our type checker. It can, of course, change in later 
versions of this type checker. 

WI/Al'/I/I/I/I/I/I/I/I/Al'/l/l/l/l/l/l/l/l/l/#/#/l/#/.llll'/l/l/l/l/l/.llll'/l'/l/l/l/l/l/l/l/l/#/l/l/l/l/l/l/l/l/l/#/l/l/l/l/l/l/l/l'/l'/l/l'/l'/l/l/#/I/I/, 
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3.6.2. Algorithm of the Type Checker 

The first method of the type checker, the method CheckProgram, checks the validity of the 
given program, creating ail the LAS structures corresponding to the program. lt calls several 
other methods, including the most important one: the method CheckStatement. The other 
methods do not use specific algorithms; they are intuitive (CheckExpr, CheckClass ... ). 

Our method CheckStatement receives a statement as argument. At the first call, this statement is 
the first statement of the considered method (constructor). This statement is a sentence of sort 
"STATEMENT'. lt returns the LAS structure lnstr corresponding to the IIR statement. 

Before applying this method, we suppose that another method has already been applied. 
This other method, CheckReturn, checks that: 
• Ali the return statements, contained in the method, are well placed 

I.e.: ail statements of the method can be reached 
To check that, we have got to check that any of the return statements and any of the 
"blocked if statement" are followed by other statements. 
We call a "blocked if statement" an if ... else where the then AND the else statement lists 
finish with a return or a "blocked if'. 

• If the treated method must return a result, it finishes with a return statement or with a 
"blocked if'. 
Here, we do not check if the type of the returned expression corresponds to the return type 
of the method. 

The method CheckStatement considers the case of an empty list of statements (the given 
sentence is nul[) as a special case. We have not implemented this part of the method yet, but it 
does not seem to be too difficult to do. The principle is: 
• At the level 0, the method creates a return statement 
• At a higher level, it returns a skip statement found in the hashtable defined just below. 

The current if structure information is kept in a hashtable (used as a stack) in which: 
• The key is the level of the corresponding if 
• The object is a structure containing: 

• Two skip statements, corresponding to the last statements of the then and the else 
statement lists 

• A boolean which says if we are treating the then or the else part of the if 
The current level is the size of the hashtable (corresponding to the number of nested if 
statements encountered). 

~/I/I/I/I/I/I/I/I/I/I/I/I/I/I/.IIIT/l/l/l/,11//Vl/l/#/l/l/l/l/l/l/l/l/l/l/l/l/,IIV,illV,illr/l/l/l/l/l/l/l/#/l/l/l/.l/l/l/l/,,IIVl/,I//Vl/l/l/l/,11/r'/I/I/Al'/I/I/I/I/I/. 
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The method CheckStatement is a recursive method, for which the basic case is when the given 
statement is the last one (no following statement). 

In the basic case, 
• If the current statement is not a return, we have got to check the current level. 

• If we are at level is O we have got to add a return statement, with a default value, if 
needed. This cornes from the fact that in the LAS definjtion, all methods are 
supposed to finish with a return statement. The VI'F language does not have this 
constraint. 

• Otherwise, we have to check if we are in a then or an else part of an if. 
We put the skip statement found in the hashtable corresponding to the then or the 
else, as following statement. 

• In the case of a return, there is no following statement. 
The label of the return is the first statement of the method. This information is kept in a 
global variable. 

In the general case, 
• The method treats the current statement. 
• It calls the method recursively on the following statement. 
• It adds the reference to the Instr structure of the following statement as label of the current 

one. 

It is simple to put the label of a basic statement, but it is quite difficult for if (and nested if) 
statements. 
• In the case of an if, this corresponds to put the statement following to the if as label for the 

two associated skip statements. 
• If an if is the last statement of a then or an else statement list, the statement following to the 

nested ifis the skip of the if at the upper level. 
We are going to show here how the hashtable with the if structure is built. 
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if we have: 

statl; 
stat2; 
if exprl 

{stat3;} 
else 

{stat4; 
ifexpr2 

{} 
else {stat5;} 
} 

stat6 
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Its SAP representation will be: 

l statl 2 
2 stat2 3 
3 if expr 1 (4, 6) 

4 stat3 5 Il then part 
5 skip 11 
6 stat4 7 Il else part 
7 if expr2 (8, 9) 

8 skip 11 Il then part 
9 stat5 10 Il else part 
l0 skipll 

11 stat612 
12 ... 

While entering an if, 
• A level is added in the hashtable : 

• The key is the size of the hashtable + l (the new current level) 
• The object is a structure with two new skip statements 

• The method is recursively called with the then and the else statement lists. The boolean in 
the hashtable is put to the corresponding value before these calls. 

• The method puts the statement following to the if, as labels of the skip. The level is 
removed of the hashtable when we leave the if statement. 

We have not thought about the while statement yet. One possible way to resolve the problem is 
to transform the IIR while statement into the corresponding IIR if statement, and then call the 
method on the IIR if. 

Another point to consider is the treatment of the variables. We use two global variables. 
One of type tableOjNvars, which contains: 
• Ali the internai variables 
• The fields of the current class 
• The accessible local variables 
One of type Ali Variables, which contains: 
• Ali the internai variables 
• The fields of the current class 
• Ail the encountered variables 

The AllVariables structure is a hashtable in which: 
• The key is the index of the variable 
• The object is a structure that contains its name, its type ... 
On this hashtable, we have defined methods that return the information needed to create the 
typePourEnv structure. 

Keeping in mind that we have to keep ail the information about the translation from IIR to LAS, 
we are thinking about using an hashtable with: 
• For key, the LAS structure a statement 
• For object its IIR structure 
But we have not implemented that yet. Later we will probably just have to add those lines into 
the code. 
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3. 6.3. Left to do 

The program is not finished yet. If most of the algorithm has already been implemented, we 
need to finish it and to test it. 

As the whole algorithm explained above bas been implemented in only one method, the code is 
quite hard to read, and we have to <livide the code into several smaller methods, to make the 
code more comprehensible. 

Anyway, all the classes and methods we have built have been specified. You can find those 
specifications in annexe. You can also get a copy of the code ([ZAP00J). In fact, the code is too 
large to be included in this work. 

r/l/l/l/l/l/l/l/l/.l'/,.fl'/l/l'/l/.tJlll'/l/l/l/l/l/l/,#/.Jill/T/l/l/l/,1lr/""/.,,,,/l/l/l/,ll/l'/l/l/l/l/,,111/l'/l/l/l/l/l/l/l/l/l/l/l/,111/l'/l/l/l/l/l/l/l/l/.l/1'/I/I/I/I/A/l'/.(11'/l/#/IAI,✓,. 

56 



W/#/IN/1'/I/I/I/I/I/I/A'/#/l/l/#/l/l/l/l/l/l/#/l/l/l/l/l/l/l/,I//T/IN/1'/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/#/#/#/l/.tll'/l/l/l/l/l/l/l/l/l/#/#/l/#/#/l/#/l/l/l/l/4 

4. STATIC ANALYSIS BY ABSTRACT INTERPRETATION 

4.1. Introduction 
This second part of our work, the syntactical analyser, has been done in the framework of the 
course of abstract interpretation of Professor Le Charlier. 

An analyser in the framework of the large project would have been impossible to build in the 
small time we had. We chose to analyse a more simple language (the VSS: very small subset of 
Java), to be able to go further in the implementation of the analyser. 

This work is an implementation in CaML of an analyser. In this case, we consider that the 
program bas already been transformed to verify the constraints of VSS, parsed and translated in 
its abstract form. The program is supposed to be correct. 
The analyser takes the tree of the program (abstract form), applies the multivariant algorithm 
(which is explained in details in this chapter) and returns ail the possible states of the program. 
The treatment of ail that states, to draw useful information, is not performed buy the analyser, 
and bas to be done by the user. This improvement of the analyser could be interesting in the 
framework of a further work. 
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4.2. Syntax 

4.2.1. A Very Small Subset of Java 

4.2.1.1. Constraints of the Language 

The programming language we are studying here 1s a very simple sub-language of the 
programming language Java, the VSS. 

In fact, this language has got the following limitations. Most ofthem have be done, among other 
things, because we did not have a lot of time for this part of the work, and we preferred to 
concentrate on the essential. 

• There are no basic types anymore. We only work with class instances. This basic limitation 
is very useful. We don't have to treat anymore with ail sorts of value. Ail values are 
instances. 

• There are no static fields or static procedures. The onJy static method is the main method. 
For an easy treatment, we consider that the main method must be found in a special class: 
the main class. This class only contains the main method, she does not contain any fields or 
constructors and no instance of that class can be created. 
This limitation really simplifies the analysis. In fact, the treatment of static fields and 
methods is a specific treatment, quite complex. We chose to forget ail that and to 
concentrate our efforts on the analysis of general fields and methods. 

• There are no conflicts between method names. lt is impossible to find two methods with the 
same name except in the case of the redefinition of a method in a subclass. In that case the 
two methods have thus the same parameter types. 
This simplifies the treatment of method call. The methods can be identified by their name 
and the name of the class in which there are defined. It is easier to find the method to apply, 
as we don't have to compare the types of the arguments to find the good one. This 
comparison is not very difficult to code in a theoretical point of view, but the code added 
would be heavy and it would make the code less comprehensible, without interesting 
advantages. 

• Ali the fields of the classes are priva te. The only way to access to them is using methods. In 
this way, we do not have to handle long-name (instance_name.field_name). 

• There are no more access modifiers considered (private, protected, public ... ). Ali the 
methods are considered as public. This limitation was already present in the first part of the 
works. The parser accepted the access modifiers but they were completely forgotten by the 
compiler. The access modifiers complicate the analysis, as you always have to verify that 
you are allowed to use the field or the method you want to. 

• There are no procedures, but onJy functions. Ali the methods return a value. From the 
syntactical point of view, all the methods end with the statement return expr. The 
constructors always ends with the statement return this. The onJy method that does not end 
with a return statement is the method main. This allows us to treat only one kind of return. 
Anyway, a program can always be transformed to return something. You can always retums 
nul/ at the end of the method, and at the method call, put the mock returned value in a mock 
internai value. 
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• Ali classes contain exactly one constructor. The fact that there is maximum one constructor 
has the same reason than the fact that the methods have all different names. In fact, we 
decide to have at least one constructor, in the same way than a real Java compiler, which 
creates a default constructor in classes without constructor. 

There is a constraint that we should have added, but we thought about it too late: 
We could say that the retum variables in the method and in the constructor calls have to be local 
variables. This is not very restrictive, as ail calls in which the retum variable is a field can been 
translated to respect this constraint. 

For instance: 

field_ name = designator.method _ name (param _ list); 

Can be translated into: 

var_ name = designator.method _ name (param _list) ; 
field_ name = var_ name; 

We will see that lots of translation rules concerning the method and the constructor calls have to 
be defined two times, once for the case of a local variable, once for the case of a field. This 
simple restriction would have limited ail these transition rules to one case. 
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4.2.1.2. The Syntax of VSS 

The syntax of our language is the following: 

• A program is a number of class declarations followed by a Main Class. 
• A class de.finition is a number of field declarations, a constructor declaration followed by a 

number of method declarations . 
• A constructor declaration is a list of statements. 
• A method declaration is a list of statements. 
• A list of statements is a number of variable declarations and a set of statements. 
• The main method is the only method that is really required, this method is made of a list of 

statements. 
• The Main Class is the only indispensable class. This class is made of the main method. 
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l 1s composed of ... 

Field 
declarations 

Class 
De.finitions 

Constructor 
declarations 

Variable 
Declarations 

Program 

Method 
declarations 

Statements 

lm 4.1: syntax of VSS 

Main Class 

MainMethod 



4.2.2. The Concrete Syntax 

Id: := [a .. z,A. .Z] ([a ... z,A. .. Z,0 ... 9])* 

c :: = true lfalse I DontKnow 

ClassName : : = Id 

MethName : : = Id 

Var Na me : : = Id 

FieldName : : = Id 

FieldDecl : : = ClassName FieldName ; 

VarDecl : : = ClassName VarName ; 

FormalParamList ::= ClassName VarName (, ClassName VarName)* 

Des : : = VarName I this I FieldName 

Expr : : = Des I null 

Cond :: = c 

Stat :: = 

1 Des.instanceOf ( ClassName) 

Des = new ClassName( (Expr (,Expr)*)1) ; 
1 Des =Expr; 
1 Des = Des.MethName ( (Expr (,Expr)*)1) ; 
1 if (Cond) {(Stat)*j (else {(Stat}* })1; 

ConstrDecl : : = ClassName ( (FormalParamList)7) 
{ (VarDecl)* ( super( (Expr (,Expr)*)1); )1 (Stat)* return this;} 

MethDecl :: = (ClassName) MethName ( (FormalParamList)?) 
{ (VarDeclf (Stat)* return ( Expr) ; } 

ClassDef: := class ClassName (extend ClassNamef {(FieldDecl)° ConstrDecl (MethDecl)°} 

MainMethod : : = void main ( (FormalParamList)?) { (VarDec[) • /nit (Stat) • Fi.n} 

MainClass :: = class ClasseMain {MainMethod} 

Prog :: = (ClassDeff MainClass 

lm 4.2: concrete syntax ofVSS 
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4.2.3. The Abstract Syntax 

Here is the abstract syntax we used. 

ClassName : : = Id 

MethName : : = Id + {main} 

Var Na me : : = Id 

FieldName : : = Id 

FieldDecl : : = ClassName FieldName 

VarDecl : : = pt var ClassName VarName pt 

Des : : = VarName I this I FieldName 

Expr : : = Des I null 

Cond :: = c 
1 instanceO/ Des ClassName 

Stat :: = pt affect Des Expr pt 
1 pt new Des ClassName Expr* pt 
1 pt proc Des Des MethName Expr* pt 
1 pt![ Cond pt pt 

ConstrDecl ::= ClassName (ClassName VarName)* (VarDecl)* 
(pt super (Expr)* pt)? (Stat)* (pt return this) 

MethDecl ::= ClassName MethName (ClassName VarName)* (VarDecl)* (Stat)* 
(pt return Expr) 

ClassDef: := C/assName (extend ClassNamef (FieldDecl)* ConstrDecl (MethDecl)* 

MainMethod :: = main (ClassName VarName)* (VarDecl)* /nit (Stat)* Fin 

MainClass : : = MainMethod 

Prog ::= (ClassDef)* MainClass 

lm 4.3: abstract syntax o(VSS 
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4.3. Semantics 

4.3.1. Concrete Semantics 

4.3.1.1. Definitions 

In our concrete semantics, astate looks like: 
,-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··- ··- ··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··· 
! ! 

i_··-··-··-··-··-··-··-··-··-··~-~~~=-:._~~-~:.'.-~.~~-~-~-~--~~~~--~--~~-~~=~----··-··-··-··-··-··-··-·___! 
where 

IEnv = VarName + {this} ➔ ILoc +{nul/}+ {undef} 

We can assume that: Ve E !Env: (e this) E !Loc 

We can consider that the store returns an instance, because the simple language we are studying 
in this work has not got any basic types. The ClassName value is the type of the instance. 

The instance is defined here as a function from the field names to the locations. In fact, it can be 
seen as the environment associated to the fields. 

Store= ILoc ➔ (ClassName X llnstance) + {undef} 
llnstance = fFieldName ➔ ILoc +{nul/}+ {undef} 

Remark: In this work, the instance of a variable contains ail the fields of the class, and the fields 
of the inherited classes, even if those are private. The access will just be limited to the allowed 
fields. For that reason, in the case of calls to the super constructor, the variable this stays the 
same when you enter in the constructor. The only difference will be that you will not have 
access to the same fields . 

Stack = {(u1, Uz, ... un) 1 n EIN A V i: 1 ::; i::; n : Ui E (!Env X IPtsProg X ReturnVar)} 

Each item of the concrete stack contains the following information: 
• An environment 
• A return label 
• The name of the return variable and its descriptor ( var or field) 

The descriptor of the return variable is useful for the treatment of the return statement, which 
corresponds to an assignment of the returned value into the return variable. 

Return Var = {field I var} X Des 

!Des= VarName + {this} + fFieldName 
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4.3.1.2. Useful Functions 

The function Val simply returns the value of the given designator, using the given environment 
and the given store. 

If the function Val is applied on a local variable or this, the function simply applies the 
environment function. If the given variable is a field , we use the environment and the store to 
get the location function associated to the current instance. We apply this location to find the 
value of the field. 
As the program is supposed to be correct, we can assume that the variable belongs to the 
domain of the environ.ment i.e. that we are looking for the value of a declared variable. 

! ! 
! Val !Env X Store X lDes ➔ LLoc + {nul/} + {undej} ! 
! ! ! { ev ifveVarName +{this} ! 
i (e, s, v) ~> 1 v where s (e this) = (t, 1) ifv E IFieldName i 
! ! 
l--··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··- ··- ··-··--·-··-··-·--·· - ··-··-··-··-··-··-··-··-··-··- ··-··-··-··-··-··--·- ··-··J 

The function getType takes an instance as argument. It returns the type of the given instance. 
This type is the name of a class. 
r·-··-··- ··-··- ··--·-··-··-··-··-··-··-··-··------- --------------------------------- -·-··- ··- ··- ··- ··- ··- ··-··-··--·-··-··-··-··----·--··-··-··-··7 

! getType llnstance ➔ ClassName ! 
! ! 
i (t, e) ~> t ! I __ __ _ __ _ ________ _______ ______ ___ __ _ ___________ _ __ _______ ________ _ __ _ __ _ __ __ ____ ____ ___ _______________ __ _ _____ _ __ _ ____ __ __ _ __ _ _____ _ ___________ _ __ 1 

The function Type returns the dynamic type of any variable. In the case of an instance, this 
function uses the getType function defined just above. 

- ··- -·-··-··-··- ··-··-··-··-·-- ··- ··--·-··-··-··----·--·--------------··-··-··-··-··-··- ··- ··-··-··-··-··- ··-··-··-··-··-··-··-··- ··-··-··-··-·· . 
Type IEnv X Store X IDes ➔ ClassName +{nul/} +{undej} i 

i 

__ (::~)_:_ -_ _{):;;,_~·::::~:~)!_ -__ ;~~~~-~-:::_=_~::·: _ --_J 
There is a notion of inheritance between the types in Java. When you define a class, you can 
assume that it extends another class. The aim of the function arche Type is to return the inherited 
(i.e. extended) type of a given type. If the given type bas no inherited type, the function returns 
null. The function is determined by the program to be analysed. 
We assume that ClassName only contains the names of the classes declared in the program. 

! ! 
! archeType ClassName ➔ ClassName + {nul/} i 
! ! 
! t ~ > { t' tq t extend t' ! 
i nul/ else i 
! ! 
Î.--··-··-··-··-··-··-··-··-··-··-··- ··-··-··-··-··- ·-- ··-··-··-··-··- ··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-·--··-··-··_j 
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In a program, there are several method calls. To treat them, we have to know at which statement 
we have to jump (the first statement of the called method). A method is identified by its name 
and by the name of the class in which it is defined. A same method can be redefined in a sub
class. The getMeth function takes a method as argument, and returns the label of the first 
statement of the called method. 
The program is supposed correct and the method is supposed to exist. 
r··- ··- ·· - ··- ··- ··-··-··-··- ··- ··-··-··-· ·-··-··-··-··-··-··- ··-··- ··-··- ··-··-··-··-· ·-· ·- ··- ··-··-··-··- ··- ··- ·· - ··-··-··-·· -··-··-··- ··-··-··-··, 

! getMeth IMethName X ClassName ➔ !Label ! 
! ! 
! (m, t) ~> p: first label oftbe method min the class t ! 
i ··-· ·-··-··-··-··-··-··- ··-· ·-··-··-· ·- ·· - ··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-· ·-· ·-··-· ·-··-··-··i 

The getConstr function is similar to the getMeth function. lt retums the label of the first 
statement of the constructor of the given type. 

In the case of a constructor call (new statement), a new instance of the given type has got to be 
created. In this instance, all the fields have got the default value null. When the instance is 
created, the statements in the constructor are applied on it. The function newlnst creates a new 
instance of the given type and retums the associated value. The store is modified as it now 
associates the created instance to the new value. 
r··- ··-··-··-··-··-··- ··- ··-··-··-··-··- ··- ··- ··-··-··-··- ·· - ··-··-··-··-··-··-··- ··- ··- ··- ··- ··- ··-··-··-··- ··-··- ··-··-··-··-··-··-··-··-··-··-·· 

newlnst Store X ClassName ➔ ILoc X Store 

(s, t) ~ > (1, s') 

where dom (s') = dom (s) U {l} 

1 ~ dom (s) 

s'(e) =< t, i > 
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4.3.1.3. Operational Semantics 

Variable dec/aration 

In the case of a simple declaration, only the environment is modified. A new local variable has 
got to be created. At the beginning, this local variable has got the default value nul/. The 
environment is modified as it now associates nul/ to the new variable. The new label (i.e. the 
following statement) is the one following the declaration . 

.. -- ··-··-··-··-· ·--·-··-··-··--·-··-··-··-··-··-··-·-----------------------------··-··--·-··-··-··-··- ··- ··-··-··-··- ··-··-··-·--··-··-··-··-··-i < p, P, (e, s) > ~ < q, P, (e[v/nu//], s) > i 
! __________ Where __ { p }_ var t _v _ {_ q __ } ··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-·· ! 

Affectation 

There are two different cases for an assignment, depending on the descriptor of the modified 
variable (field or var). The new value of the variable is the one corresponding to the assigned 
value (that value is an instance because there are no basic types). 

In the case of an assignment to a local variable, we only modify the environment. lt associates 
the value of the assigned instance to the target variable. The new label is the one following the 
assignment. 

.. -- -·-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··--·-··-··-··-··-··-··-··-··-··--·-··-··-··-··-··-··-··-··-··--·-··-··-··-··-··-··-··-··-··-··-. . 
! < p, P, (e, s) > ~ < q, P, (e[v1Nal(e, s, v2)], s) > ! 
! Where { p } affect v, v2 { q } i 
! ! 
i ·-··-··-··-··-··-··-··-:.~ .. : .. Y.~~-~~----··-··- ··-··-··-··-··-··-··-··-··-··-··-··-··-··-··- ··-··-··-··-··-··-··-··-··-··-··----··-·· i 

In the case of an assignment in a field, we have to modify the "environment of the fields": the 
function of the instance associated to this. The new function of the instance associa tes the value 
of the assigned instance to the modified variable. The new store is modified to replace the old 
instance of this by the new one. The new label is the one following the assignment. 
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----------------·--·------·-------··--·-·--··--·-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-
< p, P, (e, s) > ~ < q, P, (e, s' ) > 

Where { p} affect v1 v2 { q} 

vl E IFieldName 

(t, e' ) = s(e this) 

e" = e' [v1Nal(e, s, v2)] 

s' = s[e(this)l(t, e" )] 

i 



Statement " if::_ 

A if statement consists of a condition followed by two labels. The first one corresponds to the 
statement to carry out if the condition is evaluated to true, the second label corresponds to the 
statement to execute if the condition is evaluated to /aise. 

In this work, we consider two kinds of condition. 

The first one is the condition "istanceOfv t" , which returns the value true when the variable is 
of the type t or a specialisation of the type t,false elsewhere. 

The second kind of condition is the use of boolean constants c which are evaluated with an 
evaluation function C. We consider this function as written. The function takes the boolean 
constant, the environment and the store as argument. 

An if corresponds to a simple jump to the first or to the second label, following the fact that the 
condition is evaluated to true or /aise. The only thing that will be modified in the state will be 
the label of the current statement. 

InstanceOJ condition evaluated to true. 
r·•-··- •· -· ·- ••- •·- •· - ••- ·•- •·- ··- ·•- ·•- ·•- ••- •· -· ·-··- ·•- ··- ··- ··-· ·- ·•- ·· - ··-··- •·- ••- ·•- ·•- •·- ··- ··- -·- ··-·•- ··- ··- •·- •• -··-·•- ·•-· •- •·-••- ••, 

! < p, P, (e, s) > --► < q, P, (e, s) > ! 
! ! ! Wbere { p } if instanceOJ v t { q } { r } ! 
! ! 
! Type(e, s, v) :$ t ! 
i._ ___ __ _ _____ _ __ _ __ _ ___ __ _ __ _ ___ __ _ __ _ ______ ___ __ _ __ _ __ __ ___ __ ___ ___ ___________ _ ___ ______ __ _ ___ __ _ ______ ______ ___ __ ________ _____ __ _____ ___ __ _____ j 

InstanceOJ condition evaluated to /aise. 

! ! 
! < p, P, (e, s) > --► < r, P, (e, s) > ! 
! ! 
! Wbere { p } if instanceOJ v t { q } { r} ! 
! ! 
! not (Type (e, s, v) :$ t) ! 
j ··-··- ··-··- ··-··-··- ··- ··--·-··--·-··- ··-··- ··-··- ··- ··-··-··- ··-··- ··-··-··- ··-··-··- ··-··-··-··-··-··-··- ··- ·-- ··-··-··-··-··-··--·-··- -·- ··i 

Boolean constant evaluated to true. 
r··- ··-··-··-··-··-··-··-··-··-··-··-··- ··- ··-··- ··- ··-··- ··- ··- ··-··- ··- ··- ··-··- ··- ··- ··- ··- ··- ··- ··- ··- ··- ··-··-··-··- ··- ··-·· - ··- ··- ··- ··- ··! 

! < p, P, (e, s) > --► < q, P, (e, s) > ! 
! ! 
! Where { p } if c { q } { r } ! 
! ! 
! C ( ) where C is the evaluation function ! L.·-··-··-··-··-··-··-··-··-·~~--=:.: .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _. ____________________ _____________ .! 

Boolean constant evaluated to true. 
r •• - •• -••-•• - •• - •• - ••-•• - •• - ••-••-• • - ••- u - u - •• - •• - •• - •• - ••-•• - •• - ••-•• - •• - ••-••-•• - o - ••-•• - •• - •• - •• - • • - ••- •• - •• -• • - •• - ••- ••-•• - ••- ••-•• - •• - • •, 

! ! ! < p, P, (e, s) > --► < r, P, (e, s) > ! 
! ! ! Where { p } if c { q } { r } ! 
i i 
! notC(c, e, s) ! 
'-··-··-··-··- ··- ··-··- ··- ··- ··- ··- ·· - ·--··- ··- ··- ··- ··- ··- ··- ··-··-··-··-· ·-··-··-··-··-··-··-··-··-··-··-··-··- ··- ··- ·· - ·· - ··-··-··- -·- ··-··- ··' 
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Method Calf 

The method/constructor calls and the return statements are treated using a stack. Each time we 
encounter a method or a constructor call, we add some information on the stack: the label of the 
statement following the call, the 'return variable' (with its descriptor: field/local variable) which 
receive the returned value and the current environment. This information is used when we 
encountered the return statement of the called method. It is useful to corne back in the calling 
method and continue after the call statement, to find the current environment, the next statement 
to execute and to perform the assignment of the returned value into the return variable. 

The new environment, in the called method, corresponds to an empty environment ( or _l) which 
has been updated with the local variable declarations corresponding to the parameters of the 
method and the assignments of the effective parameters to these formai parameters. 

The new label corresponds to the label of the first statement of the called method. 

If the return variable is a local variable: 
··-··-·· - ·· - ··- ··-··- ··- ··- ··- ··-··- ··-··- ··-··-··-··-··-· ·- ··- ··-··-· ·- ··-··- ··- ··-·•- ·•- ··- ··- ··- ··-··- ··- ··- ••- ··- ··- ··- ··- ··- ··- ··- ··-

< p, P,(e, s) > ~ < r, <e, q, (var, v_ret)> ::P, (e' ,s) > 

Where { p } proc v_ret v m v1, v2, ••• , v0 { q} 

v ret E VarName 

r = getMeth (rn, Type(e, s, v)) 

i 
i 
i 
i 
i 
! 
! 

! 
e' = l_ [thisNal(e, s, v), u1N al(e, s, v1), • •• uJVal(e, s, v0 )] ! 

! 
. Where the u; are the formai parameters of the method m ! 
i·· -·· - ·· - ··-·· - ·· - ·· -· · - ·· - ·· - · · - ··-· · - ·· - ·· - ··- · · - ·· - ·· - ·· - ·· - ··-· ·- ·· - · · - ·· - · · - · · - ·· - ·· - ·· - ··-· · -··-··-·· - ·· - ··-··-··- · · - · ·-·· - ··- ·· - · · i 

If the return variable is a field : 
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i < p, P,(e,s) > ~ < r, <e,q,(fie/d,v_ret)> ::P, (e',s) > 

Where { p } proc v_ret v m v1, Vz, ... , v0 { q} 

v ret E IFieldName 

r = getMeth (m, Type (e, s, v)) 

e' = 1-[this/Val(e, s, v), u1/Val(e, s, v1) , ••• u,/Val(e, s, v0 )] ! 
! 

-··-··-··-··-··-··-··-··-··-··-··-~~-=--~~-~~-~-~-~~f~~-~!.Y..~~~~~~-~-!.~.~-~~~~-~---·-··-··-·· i 
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Constructor Cali ("new ':) 

The case of a constructor call is similar to the case of a method cal!. 

If the return variable is a local variable 

! 
! < p, P, (e, s) > ~ < r, <e", q, (var, v_ret)> : :P, (e' , s') > 
i 
i Where { p} new v_ret t v1, v2, ••• , v0 { q} 

v ret E VarName 

r = getConstr (t) 

s' = proj2(newlnst(s, t)) 

e" = e [v_ret/proj 1(newlnst(s, t))] 

e' = _l_[this/ proj 1(newlnst(s, t)), ui/Val(e, s, v1) , • • • ur/Val(e, s, v0 )] 

where the ui are the formai parameters of the constructor of the class t 

If the return variable is a field 

! 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
! 
! 
! 
i 
i 
i 

< p, P, (e,s) > ~ < r, <e",q,(field,v_ret)>::P, (e',s')> 

Where { p} new v_ret t v1, v2, ••• , v0 { q} 

v ret E IFieldName 

r = getConstr (t) 

s' = projz(newlnst(s, t)) 

e" = e (v_ret/proj 1(newlnst(s, t))] 

e' = _l_[thisl proj 1(newlnst(s, t)), ui/Val(e, s, v1) , ••• ur/Val(e, s, v0 )] 

where the ui are the formai parameters of the constructor of the class t 
L--- -·-··-· · - ··-· · - ·· - ·· - -------- - -- - -·-··-··--·-·· - ··-··- ·· - ·· - ··-· · - ·· - ·· - ·· - ·· - ·· -· ·-· ·-· ·-· · - ·· - ··-··-· ·-· ·-· · - -·-··-··-··-·· - ·· - ·· - · · 

,../l/l/l/l/,I//T/I/Jill/T/illfllT/illfllT/illfllT/,I//T/,I//T/#/illfllT/,I//T/illfllT/l/illfllT/,I//T/,lf/T/,I//T/,tl///T/l✓..'71/,I//T/,I//T/l/.l/.,/l/l/l/l/,l/l/l/l/l/l/l/illfllT/I/I/.IYillfllT/#/illfllT/l/l'/l/,I//T/l/#/l/,I//T/l/l/,I//T/Jill/T/l/""'7,I//T/l/l/l/,I//T/.IZ 
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"retum " statement 

The case of a return statement corresponds to a simple assignment of the returned value into a 
variable. The "return" information is found on the top of the stack. The new environment is the 
one found in the stack, modified by the assignment of the returned value in the 'return variable'. 
The new label is the one found on the top of the stack. The top of the stack is removed from the 
stack. 

In the case of a return in a constructor, the returned variable is the variable this, which is the 
instance created and initialised by the constructor. 

If the return variable is a local variable 

···-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-· ·-··- ··-··-··-··- ··-··-··-··-··- ··- ··- ··- ··- ··-··---- •- -. 

! < p, <e', q, (var, v_ret)>: :P, (e, s) > ---)- < q, P, (e'[v_ret/ Val(e, s, v)], s) > ! 
i Where { p} return v i 
·-·-··-··--·-··-··-··- .. - -.- -.- -.--.-··-··-··-··-··- ··-··-··- ··-··-··-··-··-··-··-··-··-··-··-··-··- ··- ··- ··- ··-··- ··-··- ··- ··-··-··-··-•· . 

If the return variable is a field 
···-·· - ··- ··-··- ··-··-··-··-··-··-··-··-··-··-··-··-··-----·-·--··-··-··--·-··-··-··-··-··-··-··-··-··-··-··-··- ··-··-··-··- ··- ··- ·· - ··-· 

< p, <e', q, (field, v _ret )> : :P, 

Where { p } return v 

(t, linst) = s(e(this)) 

(e, s) > ---)- < q, P, (e', s' ) > i 
i 
i 
i 
i 
i 
i 
i linst' = linst[v_ret/Val(e, s, v)] 
i 
i s' = s[ e(this)/(t, linst')] 
i_·-··-··-··-··-··-··-··-··-··-··- ··-· ·- ··-··-··-··-··-··-··-•·-•·-··-··-··-··-··-·· - ··-··-··-··-··-··-··--·-·· - ··- ··-- ·- ··-··- ··- ··-··-·· 

"super" construc or cal 

This last case is the case of the constructor call of the inherited class. This case is similar to the 
constructor call. The information added in the stack is the same in both cases, the environment 
is also modified in the same way. The new label corresponds to the label of the first statement of 
the called constructor. 

The internai_ v variable is a new internai local variable that is only used because we have to 
collect the variable this returned by the called constructor. As, when we call the constructor, we 
let the variable this as the current one, it will be directly modified, and we do not need the 
internai variable. 

,-· - -- - -·-··-· · -··-··-··- ·· - ·-- ·· - ··-· · -··-· · -· · -· - --·-··-··- 1 

! < p, P, (e,s) > ---)- < r, <e,q,(var,intemal_v)> ::P, (e' , s) > ! 
i i 
i Where { p} super v 1, v2, . . . , v0 { q } i 
! ! 
i internai v E VarName i 
! ! 
i t = archeType(Type(e, s, this)) i 
! ! 
i r = getConstr (t) i 
! i 
! e' = e(ui/Val(e, s, v1) , ••• uJVal(e, s, v0)] ! 
! Where the u; are the formai parameters of the constructor of the class t ! 
j•• -••-••- ••-• • - ••-••-••-••-••-••-••-••-••-••-••-••-••-••-••-•• - •• - •• - •• -••-• • -••-••- •• -••-••-••-••-••-••-••-••-••-••-••-••-u-••-••-••-••j 
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4.3.2. Abstract Semantics 

4.3.2.1. Definitions 

We should first define an abstract domain. For the theoretical definition of the semantics, we 
have decided to define a generic abstract domain AType, which will be chosen later, at the 
implementation. 

Here, we are defining an abstract state, in order to define a transposition from the concrete 
semantics to the abstract semantics. 

Concrete state: < p, P, ( e, s) > 
Abstract state: < p, Pa, ( ea, Sa), ne 1, nm > 

,-----·-··-··-··-··-··-··-··- ··-··-··-··-·--··-··- ·--··-··-··-··-··-··-··- ··- ··-··- ··--·-··- ··- ··-··- ··-··--·-··-··-··-··-· ·- ··- ··-·---·-··-··-··-·1 
j ! 
; AEtat = IPtsProg X Stack X (IEnv X Store) X ClassName X MethName ; 
l i . --- -·- ··-··-··-··- ··-··- ··- -·- ------ ·-- ··-·•- ··- ··- ··- ··- ··-··-· ·- ·-----·--··--·- ··- ··-··- ··--·- ··-··-·-- ··-··- ··- ··-··-··-··- ··-··-··- ··- ··- -·--' 

• W e add the na mes of the current class and of the current method in the abstract state. This 
information is often useful, for example to get the abstract instance corresponding to this 
but is not accessible anymore. In an abstract state, we can only get the abstract type of this, 
not its concrete type. 

• p: We decide not to do any abstraction on the labels. Thus we represent the labels by labels 
in the abstract syntax. Anyway, the number of labels is finite in a program. 

• ea: the abstract environment is a function which associates an abstract type (the dynamic 
type) to variable names (locale variable or the pseudo-variable this). The number of local 
variables and the number of possible abstract types are finite. 

ea E AEnv: VarName + { this} ➔ AType 

• s.: the abstract store takes a concrete type (the name of a class) as argument and returns an 
abstract instance (Ainst), which is an aggregate of ail the concrete instances of the given 
type. 

Obviously, the number of concrete types is finite. It is the number of classes defined in the 
program (without the main class). 

The number of abstract instances is finite, as there is only one instance by concrete type. 

An abstract instance and an abstract store are defined as follows: 

Alnst: IFieldName ➔ AType 
sa E AStore: ClassName ➔ Alost+ { undef } 

The first time that a concrete instance of a certain type is created, we create the 
corresponding abstract instance. It corresponds to the abstract envirorunent for the types. At 
the beginning, we set the abstract types of the different fields to a default value 
corresponding to ..L 

r'/l/.l/l/.l/l/l/l/l/l/l/l/l/l/l/l/l/.l/l/l/l/l/l/l/l/l/l/"""7#/l/l/l/l/l/l/#/#/l/l/l/l/.ill/lYl/l/l/.l!IIYl/l/l/l/l/l/.ill/lYl/l/l/l/l/l/l/l/l/l/.l!IIYI/I/I/I/.IIIT/. 
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When we encounter an assignment of a value into a field, we do update the existing abstract 
instance. The new abstract type of a field is the union of its previous abstract type and the 
abstract type of the assigned value. 

• P.: We are going to gather ail the information of the concrete stack associated to a method. 
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In fact, we aggregate alJ the abstract environments corresponding to the method. 
We have to notice that what we consider as the abstract environment of a program is the 
abstract environment after the declarations of ail the local variables of the program. 

Ali the information about the return points in the corresponding method (found in the 
concrete stack) is put into a list. 

We also keep the name of the class in which the method is defined. This information is 
useful to update the 'current class' field of the abstract state after a return statement. 

Pa E APile: (IMethName X ClassName) ➔ 
(AEnv X P(ILabel X TypeAppel)) + {undef} 

TypeAppel = {field I var} X Des 

In this way, the size of the stack is limited to the number of different methods, and the size 
of the list in the items of the stack is limited to the number of label of the method. 

We can notice that, in the abstract case, the stack is defined as a function, which takes a 
method name and a class name as argument (i.e. the identifier of a method). The method 
name is not an identifier as a method can be redefined in an inherited class. The function 
retums the abstract environment of the method and a list of information about return points 
(the label of the return point and the information on the variable that will get the returned 
value). 

At the beginning, the fonction returns undef for ail the method identifier. 
The first time we encounter a method / constructor call in a given method, we create an 
entrance in the function for the method, adding ail the information (abstract environment, 
... ). When we encounter others calls in the method, we aggregate the new abstract 
environment and the one that was already associated to the method. Then we add the 
information on the return variable in the set. 
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4.3.2.2. Useful Fonctions 

We can first assume a function of abstraction on the types, which defines the correspondence 
between the sets ClassName and Aîype. The implementation of this function will depend on 
the choice of the abstract domain. We will do that cboice later. 

r· ·-·--··-··-··-··-··-··- -·-··-··- ··- ··- ·-- -·-··---- ··- ··-··- ··- ··-··-··- -·--·-·-- ··- ··- -·- -·- ··-------------··- ··-··-··- ··-··- ·•- u- ••- ··- ··, 

: Abs ClassName ➔ A Type : 
! ! 
i ~ > the abstract type corresponding to the concrete type t i 
i ··- ··- ··-··-··- ··- -·- ··- ··- ··-··- ··- ··-··- ·· -··-·-- ··-··-··-· ·-··-··-·-- ··- ··-··- ··-··- ··- ··- ··- ··- ··- ··-··-··-··-··- ··- ··- ··-··- ·· - ··- ··-· i 

The TypeAbs function takes a designator as argument. It returns the abstract type of this 
designator. As the concrete environment associates values to variables and the abstract 
environment associates abstract types to designator, this function is implemented in the same 
way than the function Val in the concrete case. 

! ! i TypeAbs AEnv X AStore X IDes X TypeCour ➔ A Type i 
! ! ! { ea(v) ifv E VarName + {this} ! 
i (ea, Sa, v) ~> (sa TypeCour) v ifv E !FieldName i 
L ___ __ ___________________ ______ ______ ____________ ____________ ___ __ _______________________________ ________ _________________________ __________ .! 

The SousType function just verifies if two abstract types are compatible. We only know the 
abstract dynamic type of the variables. This fonction is used in the case of a return statement. 
We will see that we do not have enough information in the abstract stack to find exactly the 
return point. We have to test most of the possible return points of the stack. To perform a first 
selection, we decided to test the compatibility between the return variable and the value returned 
by the method / constructor. The SousType fonction is used here to verify the compatibility 
between the two types. 

l - - ··-· · - · - • · - · - • 1 

! Sous Type A Type X A Type ➔ Boolean ! 
i i 
: (t1, t2) ~> true ~:3t3 tq t1st3 A t2 st3 : 
l --- ·· - ··- ··- ··- ·--·•- ··- ··-··-··- ·· -· ·-··-··-··-··-··-··-··-··-··-··-··-··- ·· -··-··-··-··-··-··-··-··-··-··-·· - ··- ··-··- ··-··- ··- ··- ··-··-·.I 

The NewAbslnst fonction is similar to the newlnst function in the concrete case. It is used in the 
case of a new statement. It returns a new abstract instance (Alnst) of the given type. The 
returned Alnst is initialised as follows: it associates the dynamic type bottom to all the field of 
the instance. bottom is the A Type which corresponds to the concrete type of nul/. 

,r, •• - ··- ··-··- ··- ··-··-··-··-··-··-··-··- ··-·· -··-··-· ·-· ·-··- ·· - -·-··-··-··-··-··-··-··-··-··-··- ··- ··--·- ··--·- •·- •·- ··- ··- ··-··-··- ·· -··-··· 
i i ! NewAbslnst ClassName ➔ Alnst i 
! ! 
; t ~ > the new abstract instance of type t ; 
: ··-··- ··-··-··- ·· -· ·-· ·- ··-··-··--·- -·- -·- ··- ··- ··- ··- ··- ··- ··- ··-··- ··- ·· - ··- ·· - ·· - ··-··-··- ··-··-··-·· -·· -··- ··- ··- ··-··- ··- ··- ··- ··- ··- ··: 

The UnionAbs function implements the abstract union of two abstract types. This union 
corresponds to a superior limit of the two types in the abstract domain. Once again, the 
implementation of this function depends on the choice of the abstract domain. 
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W e also use a function that aggregates two envirorunents. 
The two given environments must have the same domain. What does the function is creating a 
new envirorunent on the same domain that the two given ones. For each variable in the domain, 
the new environment will return the abstract union of the two abstract types associated to the 
variable, by the two environments in entrance. 

This function is used when we update the stack in a method/constructor cati. We have seen that 
ait the return information in an abstract stack is gathered for each method. The first time we 
encounter a method/constructor call in a method, we create an entrance in the abstract stack for 
this method (do not forget that the abstract stack is a function), using the current abstract 
environment. 

When we encounter other method/constructor calls, we have to add the information on the 
return point in the list associated to the current method. The abstract environment in the stack is 
the union of the current abstract environment and the environment that already contained in the 
stack. 

,·- ··- ··--·-··-··-··- ··-··-··- ··- ··- ·•-·•-··- ··-··-··- ··- ··-··-··--·-··-··- ··- ··- ··- ··- ··-··-··-··- ··- ··- ··----··-··-··-··-··- ··- ··- ··-··-··-··"\ 
! UnionEnvAbs AEnv X AEnv ➔ AEnv ! 
! ! ! (e., ea') ~> e.'' 1 dom(e.") = dom(ea') = dom(e.) ! 
! ! 
! A V x E dom(ea'') : e."(x) = UnionAbs(ea' (x), e.(x)) ! 
' ·- ··-··- ··- ··- ··--·- ··- ··- ··-· ·- ··-··- ··-··- ··- ··- ··-··-··- ··- ··- ··-··- ·· -·· - -·-··-··-··-··-··-··- ··- ··- ··- ··-··- ··-··- ··- ·· - ··-··- ·-- ··- ··-·· j 

The arche Type function of the concrete case is still used in the abstract case, to get the inherited 
class in the case of a super constructor cati. 
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4.3.2.3. The Concretisation Fonction 

To create the link between the abstract and the concrete objects, we need to define either an 
abstraction or a concretisation function. Here, we chose to use a concretisation function. The 
concretisation function associates an abstract object to a set of concrete corresponding abjects 
(state, environrnent, store, type ... ). 

Cc (< p, Pa, (ea, Sa), ncl, nm >) = 
{ < p, P, (e, s), ncl, nm > 1 (P, s) E Cc (Pa) A (e, s) E Cc (ea) As E Cc (sa) 

A ncl = Type (e, s, this)} 

The information on the current method and the current class bas been added afterwards, after 
implementation. It is why it does not appear in the concrete states. It should be added there to be 
able to add some constraints in the concretisation function, which would define the 'nm' item in 
the abstract state. 
We did not add it because we did not have the time to remake ail the transition rules of the 
concrete semantics. The fact to add the name of the current method in the state obliges us to 
modify the concrete stack. We must add the name of the calling method in the stack to find the 
current method at the end of a method or a procedure call. 

• A concrete store belongs to the concretisation of an abstract store if the instance associated 
to each variable in the concrete store belongs to the concretisation of the abstract instance 
associated to the concrete type of the variable, in the abstract store. 

The concretisation function for the instance is defined here with an intermediate function: 
the AbsType function. This function transforms a given concrete instance into a semi
concrete instance (Cinst). A semi-concrete instance associates its concrete type to a field. It 
is a compromise solution between the concrete instance (Ilnstance: IFieldName ➔ !Loc) 
and the abstract instance (Ainst: IFieldName ➔ AType). 

• The AbsType function is defined as follows : 

AbsType: Ilnstance X Store ➔ Cinst 
Where Clnst = IFieldName ➔ ClassName + {null} + {undef} 

AbsType (i, s) = ic while { le X= 1 X 

Îc x = proj 1(s (i x)) 
if x E {null, undef} 
else (hyp : i = instance of s) 

• Here we define the concretisation function for the instance. It transforms an abstract 
instance into a semi-concrete instance. 

Cc: Ainst ➔ P (Clnst) 

Cc (ia) = { ic E Clnst I dom (Ïc) = dom (Ïa) A V X E dom (ic) : ic X E Cc (Ï8 x) } 

• The concretisation function for the stores is: 

Cc: Astore ➔ P (Store) 

Cc (sa)= { s E Store IV I E dom (s) : AbsType (i, s) E Cc (sa t) where s I = (t, i)} 

P'/I/.IIIT/l/l/l/l/l/l/,II/Vl/l/l/l/l/l/l/l/l/l/l/l'/l/l/l/l/l/l/l/l/,tllVl/l/l/#/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/#/I/I/.IIIT/,IIIVI/I/I/I/. 
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The concrete types of the fields of the concrete instance have to belong to the 
concretisation of the abstract types (respectively) of the field of the abstract instance. 

• The concretisation function for the environrnent is defined as follows : 

Cc: AEnv ➔ !Env X Store 

Cc(ea) = { (e, s) 1 dome(e) = dom(ea) A V v E dom(e): Type(e, s, v) E Cc (ea(v))} 

The concrete (found using the concrete environment and store) type of each variable has got 
to belong toits abstract type (returned by the abstract environment). 

• The concretisation function for the abstract stack is: 
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Cc: AStack ➔ Stack X Store 

Cc (Pa)= { (P, s) 1 V m E IMethName, t E ClassName: V< e, p, v > E P tq e ~ (m, t): 
:3 ea, t, L, tap 1 < ea, L, t > E Pa A< p, (tap, v) > E LA (e, s) E Cc(ea) } 

where tap = type de v (var or field) 

ln this definition, "e ~ (m, t)" means that e is an environment associated to the method m in 
the class t. 

For ail triplet < environment e, label 1, "return variable" v > of the concrete stack, the 
abstract stack associates to the pair method _ name, class _ name: 
• The abstract environment found with the concrete environrnent e 
• A list of labels / abstract type of the "return variable" , which contains at least the pair 

(1, abstract type of v). 
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4.3.2.4. The Abstract Semantics 

Variable dec aration 

In the case of a variable declaration, a new variable is created (added in the environment 
domain). Its initial value is the default value corresponding to the concrete type bottom. In most 
of the abstract type domains, which are defined as sets of concrete types, it corresponds to an 
empty set. The environment is modified as follows: at the declared variable, the environment 
associates the abstract type corresponding to bottom. For the other variables, the new 
environment associates the same value than the last environment. 

-··- ·· - ··--·- ··-··- ··- ··-··- ··- ··-··-··- ··- ··- ··-··- -·-·· -··- ··-··- ··- ··- ·· -··-··-··-··-··-··-··- ··-··-··-··-··- ··- ··-··-·-- ··--·-----· - ··- ·-i i 
! < p, Pa, ( ea, sa), ncl, nrn > ~ < q, Pa, ( ea [ v / bottom ], sa), ncl, nm > ! 
! ! 
! Where { p } var t v { q } ! 
l.-------- ----·-··-··-··-··-··-··-··- ··- ··-··- ··-··-··- ··- ··- ··-··-··- ··-··-··- ·· -· ·-·· - ·· - ··-··-··- -·-··-··-··- ··-··-··-··-··- ··-··-··--·- ··i 

Assignment 

The new abstract type of the variable is simply the abstract type of the assigned value. 
r··-··-··-··-··-··-··-··-· ·-··-··- ··- ··-··- ··-··- ··-----·-··--------·-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··--·--·--·- ·, 

< p, Pa, (ea, Sa), ncl, nm > ~ 

< q, p a, (ea [ v, / TypeAbs (ea, Sa, V2)], Sa), ncl, nm > 

Where { p } affect vl v2 { q} 

v1 E VarName 
L -- ·· - ··-··- ··- ··-··-· ·-··-··-··-··- ··- ·· -··-··-··-··-··- ··- ··-··-··- ··- ··- ··-·· -··-··-··-··- ··- ··- ··-··-··-··-··-··- ··- ··-··-··-··-·· -·· - ·· 

In the case of an assignment in a field, the instance corresponding to the current class is 
modified in the same way that the environment in the previous case. 

-----------------·-··-··-··-··- --------------- --------- ------ --- ---------------------------··-··-··-··-··-··- ··- ··-··-··- ··- ··- ··- ··- ··- ··-·-
! ! 
! < p,Pa,(ea,sa),ncl,nrn > ~ < q,Pa,(ea,sa'),ncl,nm > ! 
! ! 
! Where { p } affect v I v2 { q } ! 
i i 

vl E lFieldName 

Îa = sa(ncl) 

ia' = Îa[v/ TypeAbs (ea, Sa, v2)] 

sa' = s.[ncl/ia'] 
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Statement "if': 

ln the case of the if statements, the treatment is similar to the concrete case. lt is a jump to a 
certain label of the program, depending on the value of the condition. 

Case of an instanceOf condition evaluated to true 
-·-··-··- ··-··- ··- ··- ··-··-··- ··- ·-- ··-··- ··--·-··-··- ··-·--··-··-··- ··- ··- ··- ··- ··- ··- ··-··- ··--·- ··-··- ··- ··- ··-··-··- ··- ··- ··- ··--·-··--·-' ' 

! < p, P., (e., sa), ncl, nm > ~ < q, P., (e., sa), ncl, nm > ! 
j Where { p } if instanceOJ v t { q } { r } j 
! ! i V t' E Cc (TypeAbs(e, s, v, ncl)): t' :$ t i 
i ------·-··-··-··-··- ··-··--·- ··- ··- ··-··-··-··-··-··- ··- ··-··-·--··-··-··-··-··-··-··-··-··--·-··-··-··-··-··-··-··-··--·-··- ··- ··-··------j 

Case of an instanceOf condition evaluated to fa/se 
r·- ··-··-··-··-··-··-··-·--· · - ··-· · - ··------- ------------- -- ----------·-· · - -·-··-·· - ··-··-· · - ·· - ·· - ·· - ·· - ·· - ··-·· -··- ··-··-·--· · - ··-· ·-- · - · ·7 

! < p, Pa, ( ea, S8) , ncl, nm > ~ < q, Pa, ( ea, sa), ncl, nm > ! 
! ! 
i Where { p } if instanceOfv t { q } { r} i 
! ! 
i V t' E Cc (TypeAbs(e, s, v, ncl)): not SousType (t', t) i 
! --··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··--·-··-··-··-·--··-··-··-··-··-··-··-··-·--··-··-··-··-··-··-··-··-·· ! 

Case of an instanceOf condition evaluated to don 't know 
.----·-··-··- ··- ··-··- ··- ··- ··- ··- ··- ··- ··- ··-··- ··-··--·-··-··-··- ··- ··-··- ··- ··- ··- ··- ··-·· -· ·-··- ··-··- ··- -·- ··-··- ··- ··- ··- ··-··- ··- ··- ·· .... 

< p, P., (e., s.), ncl, nm > ~ < q, P., (e., sa), ncl, nm > 

where { p } if instanceOJ v t { q } { r } 

in the other cases 

! 
i 
i 
i 
i 
i 
i 

X E {q, r} i 
'-•-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··--·-··-·----- --- --- -· -··-··-··-··-·· ! 

Case of a boolean constant evaluated to true 

.. - . - - - . 
< p, P., (e., s.), ncl, run > ~ < q, P., (e., sa), ncl, nm > 

Where {p } ifc { q}{r } 

C (c, e., sa) 

where C is an evaluation function of the boolean constants 

i 
i 
i 
i 
i 
i 
i 
i 

-- ··- -·- ··- ··- ··---- -·- ··-··- ·· - ··-··- ··-··-··- ··-·--··--·- ··-··-··-··-··-··-··- ··-··-··- ··-··-··- ··- ··- ··- ·· - -·-··- ··- ··- ··-· ·-··-··- ··-·· i 

Case of a boolean constant evaluated to fa/se 
r·- ··--·-··- ··- ··- ··- ··-··- ··- ··- ·· - ··- ··- -· - ··- ··-··-··-·· - ··- ··-··- ··- ··- ··-··-··-··-··-··-··-··-· ·- ··-··- ··-··-··- ··- ··- ··- ·· -· ·- ··- ··- ··1 

< p, Pa, (ea, sJ, ncl, nm > ~ < q, Pa, (e8 , sJ, ncl, nm > l 
i 

Where { p } if c { q } { r } i 
i 

not C (c, ea, Sa) ! 
i 

where C is an evaluation function of the boolean constants i i 
'- ·- ··-··-··-··-··-··-··-··-· ·-· ·-· ·-- ·- ·· - ··-·· - ·· - ·· - ·· - ·· - ·· - ·· - ·· - ·· - ··-··-··-··-··-··-··-··- ··-·· - ·· - ·· - ··- ··-·•-·· - ·· - ·· - ·· - ··-·· - ··-··_j 

Case of a boolean constant evaluated to don't know 

! 1 

! < p, P., (e., s.), ncl, nm > ~ < q, P., (e., sa), ncl, nm > 
i 
i Where { p } if c { q } { r } 
i 
i C (c, e., sa) = don'/ know 
i 
i where C is an evaluation function of the boolean constants 
! --··-·--··-··-··-··-··-··-··--·-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··--·-··-··-··-··-·--·--··--·-··-··-·· 
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Me hod cal/ 

When we encounter a method call, we have to add the information into the abstract stack. The 
way information is added in this stack has already been explained after its definition. 

In the abstract case, there are several following possible states, as a method can be redefined in 
a sub-class, and we do not have a definite information about the concrete type of the target 
variable. 

There are two cases: the variable that will get the returned value is a 'local variable' or a 'field'. 
The only difference is that the information added in the stack is (var, var_id) or (field, field_id). 

Case of a local variable 
··- ·· - ··-··- ··- ··- ··- ··- ··- ·· - ··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··- ··- ··- ··- ··-··- ··- ··-··-· ·-··- ··-··- ··- ··- ··- ··- ··- ··- -· -1 

< p, P., (e., s.), ncl, nm > ~ < r, Pa', (ea', s.), ne!' , m > : 
! 

Where { p} proc v_ret v m v1, v2, ••• , v0 { q} ! 

P '= a 

v ret E VarName 

ne!' E Cc (TypeAbs (e., s., v)) 

r = getMeth (m, ncl') 

e3 ' = _i[this! Abs(ncl')), 

ui/ TypeAbs (e., s., v1) , ••• u./ TypeAbs (e., s., v0)] 

where the u; are the formai parameters of the method m 
! 
! 
i 

P. [(nm, ncl)/< e., { <q,(var,v_ret)>} >] if P. (nm, ncl) = undef i 
P. [(nm, nel)/<UnionEnvAbs (e., ea._init), 

! 
! 
! 
! 
! 

if Pa (nm, ncl) = <ea._init, { <pi, tap1 >, . .. <p0 , tap0 > } > ! 
! 

1 -·-·•-··- ·· - ··- ··- ··- ··- ··-··- ··-· ·- ··-··-··-··-··-·· -··-··-··-··-··-··-··-··-··-··-· ·-· ·-· ·-··-··- ··-··-··-··- ··-··- ··-··-··-··-··-··-··-· ·-i 

Case of a field 
r··- ··- ··- ··- ··- ··- ··-··-··- ··- ·· -··- ··- ··- ··- ··-· ·- ··- ··-··-··-··-··- ··- ··-··- ··-··- ··-··- ··- ··- ··- ··- ··- ··- ··-··-·•-··-··- ··-··- ··- ··- ··-· ·-1 

< p, P., (e., s.), ncl, nm > ~ < r, Pa', (ea', s.), ncl' , m > 

Where { p} proc v_ret v m v1, v2, ••• , v0 { q} 

v ret E IFieldName 

ne!' E Cc (TypeAbs(e., s., v)) 

r = getMeth (m, t) 

ea' = _i[this!TypeAbs(e., s., v)), 

u/ TypeAbs (e., s., v1) , • •• u./ TypeAbs (e., s., v0)] 

where the u; are the formai parameters of the method m ! 
! 
! 

P. [(nm, ncl)/< e.,{<q,(fie/d,v_ret)> }>] if P. (nm, ncl) = undef ! 

P'= a 

P. [(nm, ncl)/< UnionEnvAbs (e., ea._init), 
! 
! 
! 
! 
! 
i 
! 

1 ·· - ·· - ··-··-··-··-· · - ·· - · ·-·· - ··-· · - ·· - ·· - ·· - ·· - · · -· · - ··-··-·· - · ·-·· - ·· - ·· - ·· - ··-· · - ·· - ·· - ·· - ·· - · ·-·· - ·· - ·· - · ·-· ·-· · - · ·-· · -· · - ··-··-··-··-··- Î 
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Constructor cal/ ("new''.l 

The case of a constructor caU is similar to the case of a method call. The environment and the 
stack are modified in the same way. The new label corresponds to the first statement of the 
called constructor. 

Case of a local variable 
r·- ··-··- ··-··- ··-·---·- ··-··- ··- ··- ··- ··- ··-·--··- ··- -·--·- ··- ··- ------ ------ --- --- ··- ··- ··--·-··- ··- ··- ··- ··-··- -·-··-··---- -·- ··-··- ··--·-·1 
! < p, Pa, ( e0, s.), ncl, nm > ~ < r, P;, ( e;, sa'), t, t > ! 
! ! 
! Where {p}newv_rettv1, v2, ••• ,v0 { q} i 
i 
i v ret E VarName 
! 
! r = getConstr (t) 
! 
! 
! e; = 1-[this/Abs(t), ui/ TypeAbs (ea, s., v1), ... uJ TypeAbs (e., s., v0 ) ] 

where the ui are the formai parameters of the constructor of the class t 

s '= a 

{ 
s. [t/NewAbslnst(s., t)] 

s. 

ifs.(t) = undef 

else 

P. [(ncl, nm)/< ea, {< q, (var, v_ret) > } >] jfp• (ncl, nm) = undef : 

P '= a P. [(ncl, nm)/< UnionEnvAbs (e., ea.__init), 

{<p1,tap1>, . .. <p0,tap0>,<q, (var, v_ret)>}>] 

if P. (ncl, nm) = < ea.__init, { < pi, tap1 >, .. . < Pn, tapn > } > 

! 
! 
i 
! 
i 
i 
i 

1 ---------------------·-··- ··- ------ ---·-------------------- --- --- ------ --- --- ------··-··-··-··-------··- ··- ··- ··- ··- ··- ··-··-··-··-··- ··- ··-·i 

Case of a field 
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! 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

< p, Pa, ( e., s.), ncl, m > ~ < r, P;, ( e;, s; ), t, t > 

Where { p} new v_ret t v1, v2, ••• , v0 { q} 

v ret E IFieldName 

r = getConstr (t) 

e; = 1-[this/Abs(t), ui/ TypeAbs (ea, s., v1), ... uJ TypeAbs (ea, Sa, v0)] 

where are ui are the formai parameters of the constructor of the class t 

s ' = a 

P ' = a 

{ 

s. [t/NewAbslnst(sa, t)] 

s. 

if s0(t) = undef 

else 

P. [(ncl, nm)/< e., {<q, (field, v_ret)>} >] if P. (ncl , nm) = undef 

P. [(ncl, nm)/<UnionEnvAbs (e., ea.__init), 

! -- -------------------------------------------------------------------·-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-· 
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"return " statement 

The case of the return statement corresponds to an assignment of the returned value into the 
"return variable" . The environment in this case is modified in the same way than for an 
assignment. 

The problem is to find the "return information" in the stack. We don not have any information 
about the method we corne from. So we have to test ail the possible return labels of the stack. 
A way to only test a part of them is to test the compatibility (i.e. to see if they have a cornmon 
archetype in the hierarchy of concrete types) of the abstract type of the returned value and the 
abstract type of the variable that should receive it. If they are not, we don't consider that "return 
label". 

In the abstract case, we do not have to remove an item of the list (in the concrete case, the first 
item of the stack is removed). Several successive calls from the same statement of a method (for 
example in a recursive method) is represented by only one label/"return information" in the 
stack. 

The difference between the cases of the local variable and the field is the same than in the 
assignment. 

Case of a value returned into a local variable 

! ! 
! < p, Pa, (ea, s.), ncl, nm > --t < q, Pa', (ea'' ,s.),ncl', nm' > ! 
! ! 
! Where { p } return v ! 
! ! 
! ! 
! ! 
! <ea' ,q> E { <env,pts> 1 :3 nm' E IMethName, ncl' E ClassName ! 
! l 

tq Pa (nm', ncl') = <env,list> ! 
A :3 v_ret E !Des 1 < pts, (var, v_ret) > E list 

A Sous Type (TypeAbs( ea,Sa, v), TypeAbs( ea' ,sa, v _ret) } 

e." = ea' [v_ret/ UnionAbs(TypeAbs (e"a, s., v_ret), TypeAbs (ea, s., v))] 
! 
! 

{

Pa[(nm', cl') / unde/] ifPa (nm', cl') = < ea, {< q, tap >} > ! 
i 

Pa'= Pa [(nm', cl') /< e0, {< Pi, tap, >, . .. < Pn, tapa >} >] ! 
if Pa(nm', cl') =< ea, {<p1, tap1>, . .. <p0 , tap0 >,<q,(var,v_ret)> }> i 

L•·- ··- ·· - ·•- ·•-••-•-- •·- ••- •·-·•- •• - ··-··- ··-··-··-··- ••-··- •·- •·-··-··- •·-··-•·-•• -··- ·•-•• - •·-·•- ·•-••-· •- ··- ··- •·- ··-•·-·•- ··- ··- ·•- ··- •·-' 
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Case of a value returned into a field 
..-·-··-··- ··- ··-··-··-··-··-··-··-··-·-- -·- ·-- ·-- -------·-··-·--··-··--·-----·-------------------··-··-·---·- -------·-··- ------··-··-·------·-·, 
! ! 
! < p, P., (e., s.), ncl, nrn > ~ < q, Pa' , (ea'' , sa' ), ncl', nm' > ! 
! ! 
! Where { p } return v ! 
! i 
! ! 
! ! 
· <ea' ,q> E { <env,pts> 1 3 nm' E IMethName, cl' E ClassName ! 

! 
! 
! 
! 
! 
! 
! 

tq P. (nm', cl') = <env, list> 

A 3 v _ret E IDes 1 <pts,(field, v _ret)> E list 

A Sous Type (TypeAbs( e.,s., v), TypeAbs( ea' ,s., v _ret) } 

(typ, i. ) = s.(ncl') 

ia' = i. [v_ret/ UnionAbs(TypeAbs (i., s., v_ret), TypeAbs (e., s., v))] 

sa' = s. [ncl'/(typ, ia')] 

! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
i 

{ 

P. ((nm', cl ') / undej] if Pa (nm', cl')= < e., {< q, tap > } > ! 
Pa' = P. [(nrn' , cl') / < e., {< pi, tapi >, .. . < Pn, tapn >} >] ! 

if Pa(nrn', cl') = <e0,{<p 1,tap1>, .. . <p"'tap0 >, <q,(fie/d,v_ret)>}> i 
1 ·-··- ··-··-··- ··-··-··- ·•- -· -··-··- ··-··-··-··-··-··-··-··-··-··-··-··--·-··-··-··-··-··-·•-·•-•·-··- ··-••-··- ··- •·-··-•·-· •-•·-··- ··-··-··-·I 

~ per " constructor cal/ 

The call to the super constructor can be considered as a simple method call and can be treated in 
a similar way. lt does not work as a constructor call as the instance has already been created (it 
is the current instance) and does not have to be created anymore. 

, ·-··-··-··-··-··-··-··-- · -··-··-··-·· -··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-·--··-··-· ·-··-··-·· - ·· 1 

: < p, P., (e., s.), ncl, nm > ~ < r, Pa', (ea', s.), ncl' , ncl' > : 
! ! 
! Where { p} superv1, V2, ••• , v0 { q } i 
! ! 
! internai v E VarName ! 
! ! 
! ! 
! ! 
! ncl' = archeType(ncl) ! 
! r = getConstr (ncl') ! 
! i 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 

ea' = e. [u / TypeAbs (e., s., v1), • • • uj TypeAbs (e., s., v0 )] 

where the u; are the formai parameters of the constructor of the class ncl' 

P '= a 

P. [(ncl, nm)/< e., { <q,(var,internal_ v) > },TypeCour() >] 

if P. (ncl, nm) = undef 

P. [(ncl, nrn)/<UnionEnvAbs (e., ea.__init), 

l.--·-··-·· - ··- ··-··-··- ··-··-··-··-··- ··- ··- " - ··- ··- ··- ··-··- ··-··-··-··-··-··-··-··- ·· - ··-··- ··-··- ··- ··-··--·- ··-··-··-··-··- ··- ··-··-·· j 
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4.3.3. Correctness Proof of the Rules 

Here, we only develop the proof of one rule to give an example. The other rules are proved in a 
similar way. 

4.3.3.1. Reasoning 

The proof of the abstract ru les use this reasoning: 

At a concrete level, the rule characterises the passage from the state "c" to the state "c' ": 
C -➔ c' 

At an abstract level, the passage is from the state "a" 
To the state "a' " : a-➔ a' 

Or to the states { a 1 ... , an} : a-➔ {a1 ', ... , an'} 

If we take as hypotheses that: c E Cc (a) 
I.e. c = < p, P, (e, s) > and a= < p', Pa, (ea, Sa) > 

p = p' 
A (e, s) E Cc ( ea) 
A S E Cc ( Sa) 
A (P, s) E Cc ( Pa ) 

We have to show that: c' E Cc(a' ) 
Orthat: 3 aï' E {a1 ' .. ,, an' } le' E Cc(a;') 

• During all the proof, we have: 
c=<p, P, (e, s) > 

A a = < p, p a, ( ea, Sa) > 

( case of a return, 
method cal 1. .. ) 

• In our proofs, when it is written that something is proven 'by hypothesis', it means that it is a 
consequence of the fact that c E Cc (a). 

F'/l/l/l/l/l/l.,W/#/l/l/#/l/l/#hr/l/#/l/l/#/l/l/l/l/#/l/l/l/l/l/l/#/.#/l/l/l/l/l/l/,111'/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/l/#/l/#/l/#/I/I/I/. 
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4.3.3.2. Proof 

The case we are developing here is the case of a variable declaration. We chose a basic case as 
the aim here is not to convince you of the correctness of the mies (this correctness bas already 
been developed in [ZAP00b ]), but to give you an example of the reasoning we used. This 
example is quite easy to understand, without additional explanation. 

{ p} var t v { q} 

c' =<q, P,(e', s) > 
a' =< q, Pa, (ea' , Sa)> 

where e' = e [ v/ undej] 
where ea' = ea [vlbottom] 

c E Cc(a) ⇒ ? c' E Cc(a') 

• q = q ok 

• (e' , s) E? Cc(ea') 
ç::> V Yi E dom(e): Type(e', s, Yi) E Cc(ea' (vi)) 
ç::> V Yi-:;:. v: Type(e' , s, v;) E Cc(ea'(v;)) 

A Type (e' , s, v) E Cc (ea'(v)) 
ç::> V Yi* v: Type(e, s, v;) E Cc(ea(v;)) 
⇒ (e, s) E Cc(ea)) 

A undef E Cc (bottom) 

• (P, s) E ? Cc(Pa) 

ok by hypothesis 

ok by hypothesis 

ok by hypothesis (c E Cc(a)) 

ok by de:finition of the 
concretisation function on 
the types 

The others proofs can be found in the annexes of this work. They are enough detailed to be 
understood. 
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4.4. Implementation 

4.4.1. The Simplified Language 

We decide to make the implementation of the static analyser into the CaML language. In order 
to make some test-programs, it is very important for us to create a translator between the VSS 
and the CaML representation of the abstract structures hidden behind the Java code. Therefore it 
is also important to find a language easier to translate than the real Java language. We need to 
invent a language definition that would allow us to translate the VSS code directly line by line 
into CaML functions. We call this intermediate language: the Simplified Language, witch we 
will from now on call SL. ln the SL definition we write, we use a little artefact for an easier 
recognition of the class declarations, the statements and the comments. Therefore we decide to 
begin every line with a number. This number is made of two figures. That way we can easily 
recognise the different sort of lines, this is done for a rapid and easy parsing and translating of 
the SL into the CaML functional representation. Here we also can see that it is not always 
necessary to use some pre-made tools like JavaCC, /ex or yacc in order to create a parser. ln 
fact, thanks to the little artefact we use, it is possible to recognise every line by reading the 
tokens one by one. For the reading of the tokens we created a little function that reads a string 
until it crosses a white space, so we do not need to use a pre-made lexical analyser either. We 
easily eut the input file into tokens with this function. The system we use, is the following: 
Every variable declaration begins with the nurnber "0 1 ", every field declaration with the 
number "02" ... 

Here is the syntax of the SL, every example we give could be one of the lines of the SL-program 

we give to the " mini_parser" as argument. 

• 01: a field declaration 

Example: 01 String field 1 

• 02: a variable declaration 

Example: 02 1 String variable 1 2 

In this example and for the rest of this document we mark the labels in red, this is only done 
for a didactic reason. Here we have got a "String" typed "variable! ". 

• 03: an affectation statement 

Example: 03 2 c fieldl v variable} 3 

We affect « variable! » into « field 1 ». 
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• 11: a main method declaration 

Example: 11 

There is, of course, a list of statements in the main method, but this list is created 
automatically with the lines that are written above this one. Before a line containing the 
number "11 ", there must at least be a number of declarations, statements and so on. 

• 12: a class definition 

Example: Matrix Array 

Here we create the declaration of the class "Matrix" witch extends the class "Array". 

• 13: "Main Class" definition 

Example: 13 

This class is created automatically. 

• 14: a program declaration 

Example: 14 

Like for the Main Class, the program declaration is created automatically. 

• Il: a comment fine 

Example: Il this is how a comment looks like 
ll****************************ll 
Il*** This could be a comment ***Il 
ll****************************ll 

Once we have the SL, it is easier for us to make some test-programs and thus it is easier to test 
the correctness of the syntactical analyser. lnstead of writing test-programs in CaML, we have 
to write them in SL and use a direct translator. The next step of our work is then writing this 
direct translator: the SL-CaML-Translator. Of course the SL is not that intuitive so it is not 
possible to write a program directly into SL. We first have to write them into VSS and then we 
have to make a band-translation of it into SL. Once this translation is done SL-CaML-Translator 
translates the program in CaML. 

,,,/.,,,/#/#/l/l/l/.,,,/l/l'/l/#/,l/#/l/.#.W/.#/J/llr/l/lYJtr/,lllr/1llr/Jr/l/l/"'7#/I/I/I/I/Jlll'/l'/l/l/#/#/l/l/l/l/,l/lr/l/A'#/l/#/l/l/#/l/l/l/l/.,,,/#/I/I/I/I/I/I/I/I/I/I/I/. 
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4.4.2. The SL-CaML-Translator 

The SL-CaML-Translator takes a text file as argument. This text file is the representation of the 
SL-program. The translator returns a text file of the CaML representation of the abstract 
structures of the program. The abstract syntax types of the program are defined below. They are 
used like defined in the sub-section about the Simplified Language. The nurnbers 01 to 14 are 
used for DeclChamp, Instr, DeclConstr, DeclMeth, DefC lasse, MethMain, MainClasse and 
Prog. 

"01 .,. DeclChamp = Field declarations . 7 
02 to 08 .,. Instr = Staternents or variable declarations. i 
09 .,. Dconstr = Constructor declarations. i 

1 

10 .,. DeclMeth = Method declarations. i 
11 .,. MethMain = Main methods. i 1 

12 .,. DefClasse = Class definitions. ! 
1 

13 .,. MainClasse = Main Class definitions. i 
___ 14 .. -.--.. -.. -··-~ ---·-··-· Prog __ .. _ .. _ .. _,, ___ _ .. = Program declarations . __ ,,_,,_,,_,,_,,_ .. _ .. _,,_,,_ .. _ .. _,,_,,_,, ___ j 

type NomClasse = noTyp e I NCl of str i ng ;; type NornMeth = NM of s tring; ; 

type PtProg = noLabel I Pt of int ;; 

type Des= this I NV of string I NCh of string I null ;; 

type Expr 

type Cond 

DES of Des;; 

C of bool I InstOf of (Des* NomCla s se) ;; 

type Inst r = DVar of (PtProg * NomC l a s se *Des* Pt Prog) 
1 affect of (Pt Prog *Des* Expr * PtProg) 
1 new of (PtProg *Des* NomClasse * Expr l i st * PtProg) 
1 p r oc of (PtProg *Des* De s * NornMeth * Expr list * Pt Prog) 
1 ifins tr of (PtProg * Cond * Pt Prog * PtPr og) 
1 r i en 
1 super of (PtProg * Expr list * PtProg) 
1 r etu rn of (PtProg * Expr) ;; 

In the statements, the value 'rien' is used in a constructor, to replace the super statement, if the 
constructor does not contain one. 

type Dec l Const r = DCons tr of (NomCl a ss e * (NomClasse * Des ) lis t 

type DeclMeth 

type DeclChamp 

type DefClasse 

* Instr list) ;; 

DMeth of (NomClasse * NornMeth * (NomClasse * De s) list 
* Instr l i st) ;; 

DChp of (NomClas s e * Des) ;; 

DClass of (NomClass e * NomClas s e * DeclChamp list * 
DeclCons t r * DeclMeth list) ;; 

type MethMa i n = main o f ((NomClasse * Des) list * Ins tr list) ;; 

type MainClasse = mai nClass of MethMa i n ;; 

type Prog = Prog of DefClasse list * MainC l asse ;; 
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4.4.3. Multivariant Algorithm 

The implementation of the analyser corresponds to the implementation of an algorithm. This 
algorithm takes an abstract state of the program and creates the set of the accessible abstract 
states beginning at the given state. Of course, depending on the algorithm and the definition of 
the abstract state, you will get a more or less precise information. Y ou choose an algorithm 
following the degree of precision you want to get for your analysis. 

Sorne algorithms create ail possible states, it is more precise than programs that aggregate the 
states they find (approximations), but the number of states of a program can be very huge. The 
analysis can become hard. Other algorithms just gather some states together, doing 
approximations. The information you get is less precise, but the number of created states is less 
important, you can gain in memory place and in analysis time. 

The definition of the abstract objects is important too. If there is a too large approximation in 
the definition, it is possible that, for some translation rules, to many states are created. lt is the 
case in our work. In the case of return statement, we do not keep enough information in the 
abstract stack to find the calling method, so we have to test ail the possible return points of the 
stack. A lot of useless states are created. We could add some information in the stack to limit 
the numbers of bad states. 

An important point in the definition of the abstract objects is to compare the gains and the tosses 
adding some information in the states. It can cost a lot in memory place and in treatment time, 
but you can sometimes gain a lot too. 

For the choice of the algorithm, we had to choose between the two algorithms we had studied in 
the course of 'Interpretation Abstraite' of Mr Le Chartier ([INFO3105}): the univariant and the 
multivariant algorithm. lt is possible to find or create other algorithms. 

As this work was to test on small programs, we decided to implement the multivariant 
algorithm. This algorithm returns more precise information, but the number of states created is 
really more important. If this algorithm is used on large prograrns, it could be that the number of 
created states is two large to be handled. 

Here is a more detailed explanation of this algorithm: 

S: the states to develop 
R: the states already developed 

Initialisation: 
S := {< Po, P0, (eo, so) >}; R := {}; 

White S * {} do 
Choose < p, P, (e, s) > E S; 
S := S \ {< p, P, (e, s) >}; 
R := R U { < p, P, ( e, s) >} ; 
S := SU({< p', P', (e', s') >: < p, P, (e, s) > ~ < p', P', (e', s') >} \ R) 

The code we have created is a direct translation of this algorithm into the code CaML. 
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4.4.4. Abstract Domain 

Our abstract domain AType can be seen as the set ClassName itself, as there is a one-to-one 
transformation between the abstract domain and the type domain. At an abstract type 
corresponds the set containing this concrete type and all the concrete types that inherit from this 
type. 

At a certain point of the program, the abstract type of a program represents its dynarnic type. 

If a variable has got a certain concrete declaration type, the types of the values that can be 
assigned to that variable inherit from the declaration type. 

Here are some mathematical definitions: 

• Type= ClassName + {nul/} 
• AType = ClassName + {bottom} 

Here is a recursive definition of the concretisation function for the types: 

Cc : A Type ➔ P(Type) 
t -> { t' tq t' ~ t } 

null 
ift * bottom 
ift = bottom 

Here is the definition of the union of two abstract types: 

V ta, ta' E A : AbstractUnion (ta, ta')= ta" 1 ta" E A A ta~ ta" A ta' ~ ta" A 
(V ta"' E AI ta~ ta"' A ta'~ ta"' 

W e can here defined the union of two abstract types (AbstractUnion ): 
In the abstract case, the union of two abstract types is the more specialised type that is inherited 
by the two given abstract types. 

Another function that has got to be defined here is the SousType function. The concrete type 
structure can be seen as a forest of different trees of types. We consider that two types are 
compatibles if they belong to the same tree. In the abstract domain, it is translated by the fact 
that there exists an abstract type that is the abstract union of the two given abstract types: 
Sous Type (ta, ta') ~ 3 ta" E A I ta" = AbstractUnion (ta, ta') 
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4.4. 5. The Analyser 

Architecture of the implementation in CaML 

• Definition of the types related to the abstract syntax 
• Definition of the types related to the abstract states 
• General functions on lists / functions (functions appartient, taille .. . / update .. . ) 
• Hierarchical structure of the types: 

Tree structure: 
• Leaf: concrete type 
• Nocle: concrete type + tree list (the types which extend the current concrete 

type) 

D E 

/ \ 
lm 4.4: hierarchical structure ofthe types 

Useful function : addition of a type, a function that get ail the ATypes from the 
structure (that get the A domain) . 

• Structure for the information about the method and the constructor calls : this 
information is useful to update the new label and the new environment during the 
treatment of a method call . 

The structure is a n_uplet list with : 

For a method: 
• The method name 
• The label of the first statement of the method 
• The list of the names of the forma} parameters 
• The name of the class in which the method is defined. This information is useful 

to update the "current type" field in the state after the method call. 

For a constructor: 
• Class name (= name of the constructor) 
• Label of the first statement of the constructor 
• List of the names of the formai parameters 
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,. . 

Function to add a method or a constructor in the table, to research some information 
using a method name or a constructor name. 

• Structure of the instances: we keep the list of the field names and types of each 
class . 

Pair list: 
• (field type, field name) 

Function to add a field in the list. 

• Function to create all the structures: it takes a program as argument, and it creates 
the type structure, the instance structure, the table for the method and the 
constructor calls, and a labelisation function (function that associates the 
corresponding statement to a label) . 

creer _ struct : Prog -> Branchement list * TypeArbre list * ClasseStruct * (PtProg -> lnstr) 

• Arguments : 
• A program written following the types of the abstract syntax defined 

before. 
• Results : 

• The table with the information for the method and the constructor calls 
• The type structure of the program 
• The structure of the instances (fields) 
• The labelisation function 

• The functions defined in the 3 .3 .2.2 point (useful functions for the abstract 
semantics). These functions are used bythe functions of the algorithm. 

• Implementation of the algorithm: 
• Implementation of the different rules of transition: 

Rule: xxxxx -> AEtat -> AEtat list 
Where AEtat == PtProg * APile * AEnv * AS tore 

Arguments : 
• Different structures (xxxxx): structures needed, chosen between all the 

structures created. 
• The initial state 

Results : 
• The list of the final states 

The function that implement the rules are: 
• regle _ dvar 
• regle _ affect 
• regle_new 
• regle_if 
• regle_super 
• regle _retum 



• etats smv: function that, using ail the transition rules, implement a general 
transition: 

etats suiv : 
AEtat -> Branchement list * TypeArbre list * ClasseStruct * (PtProg -> Instr) 

-> AEtat list 

Arguments: 
• The initial state 
• The table with the information for the method and the constructor call 
• The types structure 
• The instances structure 
• The labelisation function 

Results: 
• The list of the different states directly accessible from the initial state. 

• algo_mult: implements the multivariant algorithm 

algo _ mult : Branchement list * TypeArbre list * ClasseStruct * (PtProg -> lnstr) 
-> AEtat list -> AEtat list -> AEtat list 

Arguments: 
• The table with the information for the method and the constructor call 
• The types structure 
• The instances structure 
• The labelisation function 
• The list of the abstract states to treat (the set S in the algorithm) 
• The list of the abstract states already treated (the set R in the algorithm) 

Results : 
• The list of the abstract states the program passes through, during an 

execution, if its initial state be longs to the set S. 

• multivariant: that function takes a program as argument. It calls the function 
that creates ail the structure. Tuen it calls the algo _mult function, after having 
initialised ail the arguments (creation of the first state, ... ) 

multivariant : prog -> AEtat list 

Arguments : 
• A program written following the types of the abstract syntax defined 

before. 

Results: 
• The list of the abstract states the program passes through, during an 

execution. 
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IMPLEMENTA TION OF THE ALGORITHM 

Multivariant 
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lm 4.5: Architecture of the implementation in CaML 
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4.4.6. Left to do 

There are still a few bugs we have to correct in the CaML program we have written. We have to 
test it too. At the moment, it only works on very simple examples. The program has problem to 
treat return statements and to corne back after a method call. It also returns invalid abstract 
stores. 

Sorne improvements are scheduled too: 
• Our program doesn't allow the redefinition of a method in a sub-class, as a method is only 

defined by its name in the stack. We have to modify the stack to use, as identify of the 
methods, their name and the name of the class in which they are defined. 

• It could be interesting to create functions that filters the results returned by the multivariant 
function, to help the user in his analysis 
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4.4. 7. Test Programs 

4.4. 7.1. Translation of a Java program into its VSS form 

The translation of a Java program into its VSS form includes a lot of transformations. This is due 
to the fact that our VSS language has a lot of constraints. Sorne information of the Java program 
can be translated to stay in the VSS program, but sometimes, it is impossible to translate and we 
have to delete some information. 
Sorne instances of transformation are the addition of a constructor in ail classes and the addition 
of a return statement in ail methods and constructors, the creation of a empty class void as this 
type is not defined in VSS. 

Here is a simple example of translation: 

Java Example 

public class Testl 
{ 

} 

public void Testl ( ) 
{ 

} 

public class ClasseMain 
{ 
public static void main (String args []) 

{ 

VSS Translation o(Java Example 

class Testl 
{ 

Testl() 
{ 
I return this; 2 
} 

} 

class aasseMain 
{ 

void main () 
{ 
init 

var Testl tl = new Testl ( ); •-------~-► f-2 var Testl tl ; 3 
: ""'-i 3 tl = new Testl (); 4 
• 1 

tl = null; ) - -4 t1 = null; noLabel 
: end 

} } 
} } 
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As you can see we have removed all the access modifiers of the Java example in order to 
translate it into the VSS. Y ou can also see that we have added the labels to the statements and 
the declarations. We have, indeed, also split one declaration combined with an assigrunent into 
two statements. And we have grouped all the variable declarations. 

This way we have translated the small example into the following text: 

class Testl 
{ 

Testl() 
{ 
1 return this; 
} 

} 

class ClasseMain 
{ 

void main () 
{ 
init 
2 var Testl tl ; 3 
3 tl = newTestl ( ); 4 
4 tl = null; noLabel 
end 
} 

} 

We can now translate this text into the CaML form representing the abstract syntax. In order to 
translate this text we first have to translate the VSS program into a SL equivalent. Once this is 
done we have got to use the SL-CaML-Translator which does the rest. 
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4.4.7.2. Translation ofa VSSProgram into its CaML Form 

First, we have to write the program into its SL form. This form is less intuitive than the Java 
form, but it is still possible to write it by hand. 

08 1 this this Il Return statement 
09 Testl END 
12 Testl notype 

11 Constructor declaration 
Il Class declaration 

02 2 Testl tl 3 Il Variable declaration 
04 3 v tl Testl END 4 Il Constructor caU 
03 4 v tl null null nolabel Il Assignment 

1/ be careful, null is a/ways written this way (nul/ nul/) in SL 
11 11 Main Method declaration 
13 Il Main Class declaration 
14 Il Program declaration 

Afterwards, we use the translator to translate the SL program into its CaML form, which is not 
intuitive at ail. The translator returns the following results: 

let Instrl = return (Pt(l) , ( DES (this))) ;; 
let Cons t rl = DConstr (NCl ( "Testl " ) , [] , [Instrl]) ;; 

let DClassel = DClass (NCl ( "Testl " ) , NCl ( " notype " ) , [ J , Constrl , [ J) ;; 

let Instr2 
let Instr3 
let Instr4 
let Me thMa i n 

DVar ( Pt(2) , NCl ( " Testl " ) , NV ( " tl " ) , Pt(3)) ;; 
new (Pt(3) , NV ( " tl " ) , (NCl ( " Testl " )) , [) Pt(4)) ;; 
affect ( Pt(4) , NV ( " tl " ) , ( DES (nul l )) , Pt(nolabel)) ;; 

ma i n ( [ J , [ Instr2 ; Instr3 ; Instr4] ) ; ; 

let MainCl asse = mainCl ass ( MethMain ) ;; 

let Programme= Prog ([DClassel] , MainClasse );; 

Once the program is translated into the SL, we can use the analyser to make the analysis on the 
program. W e have done this for this little test program. 
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4.4.7.3. Analyse of a Program 

Here are the results of the analysis of a very simple program by our analyser. The analyser 
returns ail the states the program goes through. 

The VSS pro gram is: 
class Testl 
{ 

Testl() 
{ 
l return this; noLabel 
} 

} 

class ClasseMain 
{ 

void main () 
{ 
init 
2 var Testl tl ; 3 
3 tl = new Testl ( ); 4 
4 t 1 = nul/; noLabel 
end 
} 

} 

Its CaML form is: 

PRO: Prog= 
Prog 
([DClass 

(NCl "Testl ", noType, [] , 
DConstr (NCI "Testl ", [] , [rien; return (Pt 1, DES this)]), [])] , 

mainClass 
(ClasseMain 

([] , 
[DVar (Pt 2, NCl "Testl ", NV "tl ", Pt 3); 
new (Pt 3 NV "tl" NCl "Testl" [] Pt 4)· 

' ' ' ' ' affect (Pt 4, NV "t l ", DES null, noLabel)]))) 

What the multivariant function retums is: 

[Pt 4, ([NM "main"], <fun>), ([NV "tl"], <fun>), <fun>, NCI "ClasseMain ", 
NM"main"; 
Pt 1, ([NM "main"], <fun>), ([this] , <fun>), <fun>, NCl "Testl ", NM "Testl "; 
Pt 3, ([] , <fun>), ([NV "tl"], <fun>), <fun>, NCI "ClasseMain ", NM "main"; 
Pt 2, ([] , <fun>), ([], <fun>), <fun>, NCI" ClasseMain ", NM "main"] 
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The store, the environment and the stack functions do not appear clearly in the results. We have 
to catch these functions and to catch them to know the values they returned. 

After a few tests, we can see that what the multivariant function returned is this list of states: 

• State 1: 
• Label: 4 
• Stack: 

• Domain: NM "main" i.e. the method main 
• stack(main)=pile_info(([NV "tl "], <fun>), [Pt 4, NV "tl "], NCI "ClasseMain") 

return environment ( abstract env of the method): do main { tl}, func 
call labels: Label 4, return variable tl 
class of the method: ClassMain 

• Environment: 
• Domain: [NV "tl "] i.e. {tl} 
• Environment (tl) = LST [] i.e. abstract type bottom 

• Store: (the domain of the store is the set of ail the defined classes) 
• Store (Test 1) = no_inst 

• Current class: ClasseMain 
• Current method: main 

• State 2: 
• Label: 1 
• Stack: 

• Domain:[] 
• Environment: 

• Domain: {this} 
• Environment (this) = LST [NCI "Testl "] i.e. abstract type Test] 

• Store: 
• Store (Test 1) = no_inst 

• Current class: Test] 
• Current method: Test] 

• State3: 
• Label: 3 
• Stack: 

• Domain:[] 
• Environment: 

• Domain: {tl} 
• Environment (tl) = bottom 

• Store: 
• Store (Test 1) = no_inst 

• Current class: ClasseMain 
• Current method: main 
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• State 4: 

• Label: 2 

• Stack: 

• Domain: [] 

• Environment: 

• Domain: [] 

• Store: 

• Store (Test 1) = no_inst 
• Current class: ClasseMain 

• Current method: main 

As this example is very simple, there is nothing to analyse in these results. The aim here was to 
show you the information returned by out program. 
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5. CONCLUSION 

5.1. Summary 
Our thesis consists of the creation of a compiler and an analyser for subsets of the programming 
language Java. 

We have built the compiler in the framework of a larger project, during our internship in Venice 
- Italy. We have written the compiler in Java. We have created it for a quite large sub-language 
of Java: the VTF (Vas-T'y-Frotte) . The compiler is composed of two main parts: a parser and a 
type checker. The compiler creates the abstract representation of a given program. Doing this, it 
creates the Java objects corresponding to the LAS. 

We have also written an analyser for a smaller subset of Java. We have implemented this one in 
CaML. When we want to use this analyser, we suppose that the given program has already 
passed through a compiler. In fact, we do this compiling work without any compiling tool, and 
then we use a simple translator to get the accurate CaML structures. The analyser implements 
the multivariant algorithm: it creates ail the possible states of the given program. 

5.2. Critics 
It took us, first, a lot of time to learn the Java language, which was about new for us. We also 
lost lots of time learning the bases of the abstract interpretation. We would have needed some 
more time to finish and to test the compiler we created in Venice- Italy. 

It is a pity that we attempted the course about the abstract interpretation after our internship. W e 
would have lost less time trying to understand ail the documentation we found, as our 
knowledge in the subject was about null. 

5.3. Future work 
The analyser we made in the context of our course was meant as a simple example. It is 
important not to begin directly with a complete analyser. It would have been to difficult to 
implement a large analyser, with lots of details and subtleties of a complete language. The 
simple analyser could be a good starting point for latter work. Now, it would be interesting to 
continue the project in which we created our parser and our type checker. Once the type checker 
will be finished, we could imagine creating an analyser. This analyser would be implemented in 
Java, and would be quite more complex than the little one we wrote in CaML. 

It is already scheduled that two other students leave next year to a university in the United 
States to work on the continuation the whole project. 
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7. ANNEXE: SUMMARYOFTHELASCLASSES 

Fields 

7.1.1. Package JavAblnt 

Abstract class Val 

an instance of Val represents a Java value that can be one of those : 

a boolean 
an integer 
a floating point number ( the basic types dejined in the LC99a, p . 3) 

an undejined value (type bot) ( as dejined in the typed and in the labelized 
abstract syntax in JP099, parts 1.3 and 1.4) 

an instance of a class 

these are the unique instances of Val, representing the not initialized values of Java : 

public static final Ni Null 
public static final Ni undefBOOL 
public static final Ni undefINT 
public static final Ni undetFLOAT 

uninitialized value of type bot 
uninitialized value of type boolean 
uninitialized value of type int 
uninitialized value of type float 

Constructors 
protected Val(Type t) 

creates a value of type t 

Arguments : 
t is the type of the new value 

Public methods 
Val undef(Type t) 

returns the uninitialized value corresponding to the type t 

Arguments : 
t is the type of the uninitialized value 

Type getType() 
returns the type of the current value 

abstract boolean equals(Val v) 
returns the truth value of the statement : 
"this value is equal to the value v" 

Argument : 
v is the value to compare with the current one 
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Abstract class Base 

an instance of Base represents a value of a basic type that can be one of those : 
a boolean 
an integer 
a jloating point number 

( the basic types defined in the LC99a, p . 3) 

Constructors 
protected Base(Type) 

creates a value of the basic type t 

Arguments: 
t is the type of the new value 

Çlass Bool 

an instance of Bool represents a Java value of boolean type 

Constructors 
Bool (boolean v) 

creates a boolean of value v 

Arguments: 
v is the value of the new Bool 

Public methods 
boolean getVal() 

returns the current boolean value 

boolean equals(Val w) 
Returns the truth value of the statement : 
"this boolean value is equal to the boolean value w" 

Arguments : 
w is the value to compare with the current boolean value 

C ass /nt 

an instance of Jnt represents a Java value of type int 

Constructors 
public Int(int v) 

creates an integer of value v 

Arguments: 
vis the value of the new Jnt 
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Public methods 
int getVal() 

returns the current integer value 

boolean equals(Val w) 
Returns the truth value of the statement : 
"this integer value is equal to the integer value w" 

Argument : 
w is the value to compare with the current integer value 

Class Ni 

an instance of Ni represents a not initialized value (for a basic type) or nul/ (for a non 
basic type) 

Constructors 
protected Ni(Type t) 

Public methods 

creates an uninitialized value of type t 
pre : t should be bot or a class name 

Arguments: 
t is the type of the new uninitialized value 

boolean equals(Val v) 
Returns the truth value of the statement : 
"this uninitialized value is equal to the uninitialized value v" 

Arguments: 
v is the uninitialized value to compare with the current value 

Cla s Inst 

an instance of lnst represents a Java value of a non basic type i.e. an instance of a 
class 

Constructors 
public Inst (Nclasse n, Inst s, Val[] c) 

Public methods 

creates a value of a non basic type with the following information : 

Arguments: 
n is the type of the value (a class name) 
s is the reference to the super class 
c is the array containing the values of the class fields 

Nclasse getNclasse() 
returns the type of the class 

Inst getSuper() 
returns the reference to the super class 
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Fields 

Val getVal(int i) 
returns the value of the field of index i 

Arguments: 
i is the index of the researchedfield 

void setVal(int i, Val v) 
gives the value v to the field of index i 

Arguments : 
i is the index of the modi.fiedfield 
v is the new value of the field 

boolean equals(Val v) 
Returns the truth value of the statement : 
"this instance of class is the same as the instance v" 

Arguments: 
v is the instance to compare with the current instance of class 

Abstract class Typ_g_ 

an instance of Type represents a Java type. 
This can be : 

boolean, int, jloat 
void 
bot 

a class name 

(the basic types defined in the LC99a, p.3) 
(as used in LC99a and defined in IP099, part 1.2.4) 
(as defined in the typed and in the labelized abstract syntax in 
IP099, parts 1.3 and 1.4) 

(as defined in the LC99a, part 2. 2) 

the se are the unique instances of Type, representing the basic types of Java : 
public static final Type BOOL basic type boolean 
public static final Type FLO AT basic type jloat 
public static final Type INT basic type int 
public static final Type BOT type for uninitialized variables of non basic 

type 
public static final Type VOID type void 

Public methods 
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boolean equals(Type t) 
Returns the truth value of the statement : 
"this type is equal to the type t" 

Arguments : 
t is the type to compare with the current type 
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boolean lowerThan(Type t) 
lmplements the strict ordering corresponding to < = _{pi} 

(defined in JPO99 : De/ 1.4, page 21) 
returns the truth value of the statement "this <_{pi} t". 

Arguments: 
t is the type to compare with the current type 

boolean lowerürEqual(Type t) 
Jmplements the ordering <= _{pi} (dejined in IPO99 : De/ 1.4, page 21) 
returns the truth value of the statement "this < = _{pi} t". 

Arguments : 
t is the type to compare with the current type 

Ni undef() 
creates a instance o/Ni of the current type 
Pre : the current type is a basic type different /rom BOT and /rom VOID. 

String toString() 
creates a String representation of the current type, to allow its display 

C/ass simpleTyJl.e 

an instance of simple Type represents a basic type of Java. 
This can be : boolean, int, jloat, void or bot 

The type bot is defined in the typed and in the labelized abstract syntax in IPO99, parts 
1.3 and 1.4) 

C/ass Ne/asse 

an instance of Nclasse represents a Java class type. 
lt contains al/ the iriformation availabie for the class. 

Constructors 
Nclasse (String c, Nclasse p) 

Public methods 

Creates a class type, with the given characteristics. 
Pre : a class with the characteristics c and p does not exist yet 

Arguments : 
c is the name of the class type that must be created 
p is the reference to the super class 

void putDefClass(defClass d) 
Associates "this" type with ifs companion class. 
ls not public because if should be used only when the companion class is 
created. 

Arguments : 
dis the companion class to associate with. 
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boolean isArcheType() 
Says whether "this" type is an "archetype", i.e., a type without ancestor. 

Nclasse getSuperType() 
returns the reference to the super class 

Ni undef() 
creates a uninitialized value of"this" type 

String nomComplet() 
returns the entire name of the class. 

public static boolean existe (String c) 
tests if the entire name of class given as argument exists. 

Arguments : 
c is the name of the researched class 

public static Nclasse trouver (String c) 
returns the reference to the class with the entire name given as argument. 
returns null if ensNclasse does not contain a class with the entire name given 
as argument. 

Arguments : 
c is the name of the researched class 

defClass getDefClass() 
Returns the class associated to this type or null if the link has not been 

established yet. 

boolean lowerürEqual(Nclasse t) 
lmplements the ordering <= _{pi} (defined in IP099 : Def 1.4, page 21) 
returns the truth value of the statement "this <= _{pi} t". 

Arguments : 
t is the instance to compare with "this" 

boolean lowerThan(Nclasse t) 
lmplements the ordering <= _{pi} (defined in IP099: Def 1.4, page 21) 
returns the truth value of the statement "this <_{pi} t". 

Arguments : 
T is the instance to compare with "this" 

Type epsich (String Nchamp) 
lmplements the fonction epsilon_ ch de.fined in IP099, page 21. De fini fion 1. 6 
returns the type of the field given as argument. 

Arguments : 
Nchamp is the name of the field whose type must be searched 
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Fields 

Type epsim(String m, listüffypes lt) 
lmplements the fonction epsilon _m defined in IP099, page 21. De.finition 1. 6 
returns the return type of the method given as argument. If no compatible 
method has been declared, it returns nul/. 

Arguments : 
m is the name of the method 
lt is the list of the arguments types of the method 

Type epsic(listüffypes lt) 
Implements the fonction epsilon_ c defined in IP099, page 21. De.finition 1. 6 
returns the class type if a compatible constructor has been defined. 
Otherwise, it returns nul/. 

Arguments : 
lt is the list of the arguments types of the constructor 

Class ce/lOfListOJTyp~ 

an instance of cel/0.fListOJTypes is a type of a list of types 

Typev 
cellOfListOffypes next 

The current type 
The next type of the list 

Constructors 
cellOfListOffypes(Type t, cellOfListOffypes c) 

creates a list of types with the fol/owing information : 

Arguments : 
t is the type of the new ce// 
c is the following cell of the list 

Class listOf[ypgs_ 

Class description: 
-lmplements a domain "list of types". 
-lmplements the ordering induced by the ordering on types on lists of 

types : 

By de.finition, 
(l'l, ... , Tm) <= (l''l , .. . , T'n) 

if/ 
m = nand 
Ti <= T'i (forall i : l <= i<= m(=n)). 

Constructors 
public listüffypes() 

creates a new empty list 
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public listüffypes(Type t) 
creates a new list of types containing the type t. 

Arguments : 
t is the on/y type contained in the list 

public listüffypes(Type tl , Type t2) 
creates a new list of types with two types tl and t2 

Arguments : 
tl is the .first type of the list 
t2 is the second type of the list 

public listüffypes(Type tl , Type t2, Type t3) 
creates a new list of types with two types tl, t2 and t3 

Arguments : 
tl is the .first type of the list 
t2 is the second type of the list 
t3 is the third type of the list 

Public methods 
void addBefore(Type t) 

adds a new type in front of the list 

Arguments : 
t is the type added in front of the list 

void addA:fter(Type t) 
adds a new type at the end of the list 

Arguments : 
t is the type added at the end of the list 

Type getType (int i) 
returns the type of index i. 
if i is out of the list bounds, i t returns nul/. 
pre : i > 0 

Arguments : 
i is the index of the needed type 

boolean equals(listüffypes lt) 
returns the truth value of the statement 
""this" list of types is equal to the list of types lt". 

Arguments : 
lt is the list of types to compare with the current list of types 

boolean lowerThan(listüffypes lt) 
return the truth value of the statement 
""this" list of types is strict/y lower than the list of types lt". 

Arguments : 
lt is the list of types to compare with the current list of types 
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Fields 

boolean lowerürEqual(listüffypes lt) 
return the truth value of the statement 
""this" list of types is Lower or equal to the list of types lt". 

Arguments : 
lt is the list of types to compare with the current list of types 

int arity() 
Returns the number of types in the list 

String toString() 
Returns a String representation of the list of types that can be displayed. 

static void main( String[] args) 
main fonction that displays a test program 

Arguments : 
String [] is the given program 

Abstract class dec/Proc 

an instance of dec/Proc represents a procedure (i.e. a method or a constructor) 
declaration 

private graphProc mygraph graphProc corresponding to the current 
procedure 

private listüffypes myListüffypes list of the types of the arguments of the 
procedure 

priva te TypePourEnv myTypePourEnv the local environment of the procedure 
private Instr firstlnstr the .first statement of the procedure 

Constructors 
protected declProc (listOITypes, graphProc) 

creates an instance of dec/Proc, corresponding to the concrete 
method whose properties are given as arguments 

Arguments: 
listOft'ypes is the list of the argument types of the method 
graphProc is the graph associated to the method 

protected declProc (listüffypes, graphProc, TypePourEnv, Instr) 
creates an instance of declProc, corresponding to the concrete 
method whose properties are given as arguments 

Arguments: 
listOft'ypes is the list of the argument types of the method 
graphProc is the graph associated to the method 
TypePourEnv is the local environment of the method 
lnstr is the reference to the list of statements of the method 
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Public methods 

Fields 

void putGraph(graphProc) 
gives a value to the graphProc mygraph 

Arguments: 
graphProc is the new value of mygraph 

void putTypePourEnv(TypePourEnv) 
gives a value to the local environment 

Arguments : 
TypePourEnv is the new value to gtve to the local environment 

void putfirstlnstr(Instr) 
gives a value to the list of statements 

Arguments : 
lnstr is the reference to the list of statements of "this " procedure 

listüffypes listüffypes() 
returns the list of the types of the arguments 

TypePourEnv getTypePourEnv() 
returns the local environment 

Instr getFirstlnstr() 
returns the list of statements 

C/ass dec/Constr 

an instance of declConstr represents a constructor declaration. 

final public static String PREM 
final public static String SUPER 

final public static String THIS 
private String mysort 

private listüfExpr myListüfExpr 

dec!Constr myTwinürFather 

first constructor 
constructor based on a constructor of the super 
class 
constructor based on a constructor of this class 
sort of the construct: one of the above 
mentioned 
list of the expressions used for the call to 
another constructor 
(of the super class or of the current class) 
the constructor to execute first. 

Constructors 
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public dec!Constr(String, listüffypes, graphProc) 
Constructs an instance of the class, of the sort given as String argument 

Arguments : 
String is the sort of the constructor ( "prem", "this " or "super") 
listOfi'ypes is list of the arguments types of the constructor 
graphProc is the graph associated to the constructor 
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public declConstr(listOffypes, graphProc) 
Creates an instance of the class, for an obsolete constructor 

Arguments : 
listOJI'ypes is List of the arguments types of the constructor 
graphProc is the graph associated to the constructor 

public declConstr(String, listüffypes, graphProc, declConstr, listOfExpr, 
TypePourEnv, Instr) 

Creates an instance of the class, of the sort gtven as String argument, about 
which we have ail the information 

Arguments : 
String is the sort of the constructor ( "prem ", "this " or "super '') 
listOfI'ypes is List of the arguments types of the constructor 
graphProc is the graph associated to the constructor 
dec/Constr is the super or the twin constructor 
ltstOJExpr is the List of effective parameters used to call the super or the 
twin constructor 

Public methods 

TypePourEnv is the local environment of the constructor 
lnstr is the list of statements of the constructor 

void putListOfExpr (listOfExpr) 
instanciates the ltstOJExpr myListOJExpr 

Arguments : 
ltstOJExpr is the new value of myListOJExpr 

void putTwinOrFather(declConstr) 
instanciates the field myTwinOrFather 

Arguments : 
dec/Constr is the new value of myTwinOrFather 

String getSortOfConstr() 
Returns the sort of the construct 

listOfExpr getL istOfExpr() 
Returns the listOJExpr myListOJExpr 

declConstr getTwinOrFather() 
Returns the constructor to execute first. 

static declConstr newPremConstr(listOffypes, graphProc) 
Returns a new constructor of type ''prem" 

Arguments : 
ltstOfI'ypes is the List of the arguments types of the constructor 
graphProc is the graph associated to the constructor 

static declConstr newPremConstr(listOffypes, graphProc, TypePourEnv, Instr) 
Returns a new constructor of type ''prem"for which we give ail the information 

Arguments : 
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listOffypes is the List of the arguments types of the constructor 
graphProc is the graph associated to the constructor 
TypePourEnv is the local environment of the constructor 
lnstr is the List of statements of the constructor 

static declCoostr newSuperCoostr(listüffypes, graphProc) 
Returns a new constructor of type "super" 

Arguments: 
listOffypes is the list of the arguments types of the constructor 
graphProc is the graph associated to the constructor 

static declConstr newSuperConstr(listOITypes, graphProc, declConstr, listüfExpr, 
TypePourEov, Instr) 

Returns a new constructor of type "super" for which we give ail the information 

Arguments : 
listOffypes is the List of the arguments types of the constructor 
graphProc is the graph associated to the constructor 
TypePourEnv is the local environment of the constructor 
lnstr is the list of statements of the constructor 

static declConstr newThisConstr(I istüffypes, graphProc) 
Returns a new constructor of type "this" 

Arguments : 
listOffypes is the List of the arguments types of the constructor 
graphProc is the graph associated to the constructor 

static declConstr newThisCoostr(listOITypes, graphProc, declConstr, listüfExpr, 
TypePourEnv, Instr) 

Returns a new constructor of type "this" for which we give ail the information 

Arguments: 
listOffypes is the list of the arguments types of the constructor 
graphProc is the graph associated to the constructor 
TypePourEnv is the local environment of the constructor 
lnstr is the listof statements of the constructor 

String toString() 
Returns a string representation of a dec/Constr to be displayed 

Class dec/Methode 

an instance of dec/Methode represents a method declaration. 

final public static String ABSTRACT 
final public static String CONCRETE 
private String mysort 

private String myname 
private Type myResultType 

abstract method 
concrete method 
the sort of the method : one of the 
above mentioned 
name of the method 
the result type of the method 
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Constructors 
public decIMethode (String, Type, String, listüffypes, graphProc) 

creates an instance of declMethod, corresponding to the method whose 
properties are given as arguments 

Arguments : 
String is the sort of the method 
Type is the return type of the method 
String is the name of the method 
listOfI'ypes is list of the arguments types of the method 
graphProc is the graph associated to the method 

public declMethode (String, Type, String, listüffypes, graphProc, TypePourEnv, Instr) 
creates an instance of dec/Method, corresponding to the method whose 
properties are given as arguments 

Arguments: 
String is the sort of the method 
Type is the return type of the method 
String is the name of the method 
listOfI'ypes is list of the arguments types of the method 
graphProc is the graph associated to the method 
TypePourEnv is the local environment of the method 
Instr is the list of statements of the method 

public declMethode (Type, String, listüffypes, grapbProc) 
creates an instance of declMethod, corresponding to the concrete method whose 
properties are given as arguments 

Arguments: 
Type is the return type of the method 
String is the name of the method 
listOfI'ypes is list of the arguments types of the method 
graphProc is the graph associated to the method 

public declMethode (Type, String, listüffypes, graphProc, TypePourEnv, lnstr) 
creates an instance of dec/Method, corresponding to the concrete method whose 
properties are given as arguments 

Public methods 

Arguments : 
Type is the return type of the method 
String is the name of the method 
listOfI'ypes is list of the arguments types of the method 
graphProc is the graph associated to the method 
TypePourEnv is the local environment of the method 
Instr is the list of statements of the method 

String getSortüfMethode() 
returns the sort of the method 

String getName() 
returns the name of the method 
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Type getType() 
returns the resu/t type of the method 

static declMethode newAbstractMethode(Type, String, listüffypes, graphProc) 

Fields 

120 

creates an instance of dec!Method, corresponding to the abstract method whose 
properties are given as arguments 

Arguments : 
Type is the return type of the method 
String is the name of the method 
listOff'ypes is list of the arguments types of the method 
graphProc is the graph associated to the method 

static declMethode newConcreteMethode(Type, String, listüffypes, graphProc) 
creates an instance of dec!Method, corresponding to the concrete method whose 
properties are given as arguments 

Arguments: 
Type is the return type of the method 
String is the name of the method 
listOfJ'ypes is list of the arguments types of the method 
graphProc is the graph associated to the method 

static dec!Methode newConcreteMethode(Type, String, listüffypes, graphProc, 
TypePourEnv, Instr) 

creates an instance of declMethod, corresponding to the concrete method whose 
properties are given as arguments 

Arguments : 
Type is the return type of the method 
String is the name of the method 
listOff'ypes is list of the arguments types of the method 
graphProc is the graph associated to the method 
TypePourEnv is the local environment of the method 
Instr is the /ist of statements of the method 

String toString() 
creates a string representation of the declMethod, to al/ow ifs disp/ay 

Class defClass 

an instance of dejClass represents a class, with ail ifs proprleties. 

private Hashtable ensüfNames 
set of simple names of al/ fields and methods for this class. A method name is 
completed with "O" to malœ it different /rom the correspondingfield name 

private Nclasse myType 
private int nbrüfChamps 
private int nextlchamp 
private String [] Nchamp 
private Type[] Tchamp 

The type associated to this class 
number of fields 
counter of fields 
array with the names of the fields 
array with the types of the fields 



private int nbrOfMethodeNames number ofmethods 
private int nextlmethodeName counter of methods 
private String [] MethodeName array with the different method names 
private Type[) MethodeType array with the result types of the methods 
private graphProc [] graphOfMethodes array with the graphProc of the methods 
private int nbrOfConstr number of constructors 
private graphProc graphOfConstr graphProc associated with the constructors 

Constructors 
public detclass(Nclasse, int, int) 

Public methods 

Creates a new dejClass and links it to the type t. No field, method, or 
constructor is created. 

Argument : 
Nclasse is the Type associated to the class 
intis the number of fields declared in this class 
int is the number of different method names 

int addChamp(String, Type) 
If the class does not contain a field named by the String in argument, a new 
field is added to the class. Moreover, the index of this field is retumed. If such a 
field already exists, the value -1 is retumed. 

Argument : 
String is the name of the new field 
Type is the type of the new field 

int getichamp(String) 
Check whether a field already exists. Return the index of the fields or -1 if it 
doesn't exist (yet) . Can be used to "convert'' the name of a.field toits 
corresponding index. 

Argument : 
String is the researched field 

int addMethodeName(String, Type) 
If the class does not contain a ''MethodeName" as the given String, a new 
MethodeName is added to the class. Moreover, the index of this MethodeName 
is returned. Jf such a ''MethodeName" already exists, the value -1 is returned. 

Argument : 
String is the name of the new method 
Type is the return type of the new method 

int getMethodeN ame(String) 
Checks whether a ''MethodeName" already exists. Retums the index of the 
''MethodeName" or -1 if it doesn 't exist (yet). Can be used to "convert" the 
MethodeName to its corresponding index. 

Argument : 
String is the name of the to get method 
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decIMethode addMethode(String, Type, listüffypes) 
Roughly speaking, this method adds a new method to "this" class. 
The following precondition are checked: 
1) another method with the same signature doesn't exist. 
2) other existing methods with the same name have the same type t. 
If any precondition is violated the null value is retumed. 
Otherwise the reference to the declaration of the new method is retumed 

Argument : 
String is the name of the new method 
Type is the retum type of the new method 
listO.fJ'ypes is the list of arguments types of the method 

declMethode addMethode( declMethode) 
Roughly speaking, this method adds a new method to "this" class. lt is assumed 
that the method is "sufficiently" initialized. 
The following precondition are checked: 
1) another method with the same signature doesn't exist. 
2) other existing methods with the same name have the same type. 
If any precondition is violated the null value is returned. 
Otherwise the reference to the declaration of the new method is returned. 

Argument : 
dec/Methode is the object corresponding to the to add method 

declConstr addConstr(Listüffypes) 
Roughly speaking, this method adds a new constructor to "this" class. 
This precondition is checked: another constructor with the same signature 
doesn't exist. Jf this precondition is violated the nul/ value is returned. 
Otherwise the reference to the declaration of the new constructor is returned. 

Argument : 
listO.fJ'ypes is the list of arguments types of the constructor 

declConstr addConstr( declConstr) 
Roughly speaking, this method adds the constructor c to "this" class. 
This precondition is checked: another constructor with the same signature 
doesn 't exist. 
Jf this precondition is violated the nul! value is returned. 
Otherwise the reference to the declaration of the new constructor is returned. 

Argument : 
dec/Constr is the object corresponding to the to add constructor 

Type epsiüch (String) 
returns the type of the field given as argument, this field must have been 
declared in the class itself. 

Argument : 
String is the name of the to get field 
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Type epsich (String) 
returns the type of the field given as argument, this field can have been declared 
in the class itself or in a super class. 

Argument : 
String is the name of the to getfield 

Type epsim(String, listüffypes) 
returns the result type of the method given as argument, if no compatible 
method has been declared, it returns null. 

Argument : 
String is the name of the to get method 
listO.fI'ypes is the list of the arguments types of the to get method 

Type epsic(listüffypes) 
returns the class type if a compatible constructor has been defined. Otherwise, 
it retums nul/. 

Argument : 
listO.fI'ypes is the list of the arguments types of the to get constructor 

declMethode mostSpecificMethode(String, listüffypes) 
This is a "more informative" version of epsim. If there is a (unique of course/) 
most specific method as gtven whose signature is more general or equal to the 
gtven one, the reference to this method is returned. The nul/ reference is 
returned, otherwise. 

Argument : 
String is the name of the to get method 
listO.fI'ypes is the list of the arguments types of the to get method 

declConstr mostS pecificConstr(listüffypes) 
This is a "more informative" version of epsic. If there is a (unique of course!) 
most specific constructor Nameofthisclass(listO.fI'ypes) whose signature is more 
general or equal to the given one, the reference to this constructor is returned. 
The nul/ reference is returned, otherwise. 

Argument : 
listO.fI'ypes is the list of the arguments types of the to get constructor 

N classe getîype() 
Returns the type associated to this class. 

int getNumberüfFields() 
Returns the number of fields 

String getNameüfField(int) 
Returns the name of the field of the given index 

Argument : 
intis the index of the to get field 

123 



Fields 

Type getTypeüfField(int) 
returns the type of the field of the given index 

Argument: 
int is the index of the to get field 

String toString() 
Returns an external (printable) representation of this dejClass 

Class Env 

An instance of Env represents a local semantic environment. 

private TypePourEnv infostat 
private Val[] v 
private Inst thisRef 

contains the "static" information of the environment 
variables values 
the current instance (alias this). 

C onstructors 
public Env(TypePourEnv, Inst) 

Creates a new instance of Env, with the given information 
Ali the variables are set to "undef'. 

Argument : 
TypePourEnv is the information about the "static" environment 
Jnst is the reference to the instance of the current class 

Public methods 
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Val getVal (int) 
returns the value of the variable of the given index 

Argument : 
int is the index of the to get variable 

void setVal(int, Val) 
gives a new value to the variable of the given index 

Argument : 
intis the index of the to modifj, variable 
Val is the new value of the variable 

Type getîype(int) 
returns the type of the variable of the given index 

Argument: 
int is the index of the to get variable 

String getNom(int) 
returns the name of the variable of the given index 

Argument: 
int is the index of the to get variable 



Fields 

int getNbr Var() 
returns the number of variables of the environment 

Type getTypeüffhis() 
returns the type of the current class 

Clas T ePourEnv 

Contains the staffe information relative to an environment 

private int nombreDeVariables number of the variables 
private Type[] type type of the variables 
private String[] nom name of the variables 

private Nclasse typeüffhis type of the current instance (alias this). 

Constructors 
public TypePourEnv(Nclasse, int, Type[], String[]) 

Public methods 

Creates a new instance ofTypePourEnv with the given information 

Argument : 
Ne/asse is the Type associated to the current class 
intis the number of variables 
Type[] is the array with the types of the class variables 
String[] is the array with the names of the class variables 

Type getType(int) 
Returns the type of the variable of index i 

Argument : 
intis the index of the to get variable 

String getNom(int) 
Returns the name of the variable of index i 

Argument : 
intis the index of the to get variable 

int getNbrVar() 
Returns the number of variables 

Type getTypeüffhis() 
Returns the type of the current instance 

public String toString() 
Returns an external (printable) representation ofthis TypePourEnv. 
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Fields 

Class cellQJGraphProc 

class that represents a cell in the List graphProc, corresponding to one procedure 

declProc v 
cellüfGraphProc next 

information on the procedure 
next cell on the List 

Constructors 

Fields 

cel IOfGraphProc( declProc, cel IOfGraphProc) 
creates an instance of cellOJGraphProc 

Arguments : 
dec!Proc is the value of the cell (the information on a procedure) 
cellOJGraphProc is the next cell in the List 

Class gr.aphProc 

Class description: 
-implements a graph ofprocedure of"same kind" (constructors or same name 

and type). 
-allows one to jind a procedure with a given signature. 
-allows one to jind the List of procedures whose List of types is minima/y 

greater that a given list of types. 

static String METHODE 
static String CONSTR 
private final String sortüfGraph 

private final Nclasse classüfGraph 
private String methodName 
private Type methodType 

private cellüfGraphProc first 

procedure of type method 
procedure of type constructor 
One of the above 's. 

class associated with the graph 
common name of the methods of the graph 
common result type of the methods of the graph 

jirst cell of the List of cellOJGraphProc 

Constructors 

126 

public graphProc(Nclasse) 
creates an instance of a graphProc of type constructor, containing the 
information given as argument 

Arguments : 
Nclasse is the name of the c/ass 

public graphProc(Nclasse, String, Type) 
creates an instance of a graphProc of type method, containing the information 
given as argument 

Arguments : 
Ne/asse is the name of the c/ass 
String is the name of the method 
Type is the return type of the method 



Public methods 
cellüfGraphProc listütMostSpecificProcs (listüffypes, cellüfGraphProc) 

Pre: oldlist is a list of Procs with the same arity as the arguments /istOfJ'ypes 
ail those methods have a /ist of types greater or equal to the arguments 
listOfJ'ypes the list of types are not comparable two by two. 

This method merges the list of Procs of this graph, whose /ist of arguments 
types is greater or equal to the arguments listOfJ'ypes, to the arguments 
cel/0.fGraphProc On/y most specific Procs are returned. 
Thus if a Proc is less specific than another, on/y the latter is kept in the /ist. 
If a Proc in oldlist has the same list of types as a Proc in the graph, the latter is 
not added to the returned list. 

Arguments : 
listOfJ'ypes is the /ist of arguments types 
ce//0.fGraphProc is the old list of types that must be merged with the 
new one. 

declMethode addMethode( listüffypes) 
if a method, whose list of types corresponds to the arguments /istOfJ'ypes, 
already exists in the graph, nul/ is returned. 
Otherwise, such a method is *created* and then added to the graph. 
the reference to the method declaration is returned. 

Arguments: 
listOJJ'ypes is the /ist of arguments types of the to add method. 

dec!Methode addMethode(declMethode) 
if a method, whose list of types is the same as the to add method, already exists 
in the graph, nu/1 is returned. Otherwise, this method is added to the graph. The 
reference to the added method is returned. 

Arguments: 
dec!Methode is the to add method. 

declConstr addConstr(listüffypes) 
if a constructor, whose /ist of types corresponds to the arguments 
listOfJ'ypes, already exists in the graph, nul/ is returned. 
Otherwise, such a constructor is *created* and then added to the graph. 
the reference to the constructor dec/aration is returned. 

Arguments : 
/istOfJ'ypes is the list of arguments types of the to add constructor. 

declConstr addConstr( declConstr) 
if a constructor, whose list of types is the same as the to add constructor, 
already exists in the graph, nu/1 is returned. Otherwise, this constructor is 
added to the graph. 
The reference to the added constructor is returned. 

Arguments : 
dec!Constr is the to add constructor. 
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- - --------------------------

boolean existProc(listOITypes) 
Checks whether a Proc declaration with specific list of arguments types 
already exists in this graph. 

Arguments : 
listOfJ'ypes is the to check list of arguments types 

String toString() 
Returns an externat (printable) representation ofthis graphProc. 

7.1.2. Package JavAblnt.concreteSyntax 

Class lexeme 

This class implements the set of lexical items that are relevant for the intermediate internai 
representation of VTF programs. These are 

- Jdentifiers (3. 8) 
-Keywords (3.9) 
- Literais (3. 10) 
- Operators (3.12) 

Here we use the classification of Chapter 3 of JLSpec, from which we eliminate irrelevant 
symbols. Moreover, only the symbols dejined in VTF are recognized. Every lexical item is 
unique/y represented. 

Fields 
static Hashtable ensLexeme 

The sorts of lexeme : 
public final static String IDENTIFIER 
public final static String LITERAL 
public final static String OPERATOR 

public final static String KEY_ TYPE 
public final static String KEY_ ACCES 
public final static String KEY_ COMMANDE 
public final static String KEYWORD 

specific lexemes : 
public final static lexeme ALL _ CLASS 

public final static lexeme CLASS 
public final static lexeme EXTENDS 
public final static lexeme IMPORT 
public final static lexeme PACKAGE 
public final static lexeme SUPER 
public final static lexeme THIS 

public final static lexeme BOOLEAN 
public final static lexeme FLOAT 
public final static lexeme INT 
public final static lexeme VOID 

public final static lexeme STATIC 

set of ail the lexemes 

an identifier 
a literai 
an operator 

a type name 
an access modifier 
a statement keyword 
a general keyword 

the symbol "*" in a package 
declaration 
the keyword "class " 
the keyword "extends" 
the keyword "import" 
the keyword "package " 
the keyword "super" 
the keyword "this " 

the keyword "boolean " 
the keyword "jloat" 
the keyword "int'' 
the keyword "void" 

the keyword "static" 
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public final static lexeme ABSTRACT 
public final static lexeme FINAL 
public final static lexeme PRIVATE 
public final static lexeme PACKAGE_MOD 

public final static lexeme PROTECTED 
public final static lexeme PUBLIC 

public final static lexeme AFFECT 
public final static lexeme WHILE 
public final static lexeme RETURN 
public final static lexeme NEW 
public final static lexeme IF 
public final static lexeme ELSE 

public final static lexeme L TH 
public final static lexeme LEQ 
public final static lexeme GTH 
public final static lexeme GEQ 
public final static lexeme EQ 
public final static lexeme NEQ 
public final static lexeme MOD 
public final static lexeme PLUS 
public final static lexeme MINUS 
public final static lexeme MUL T 
public final static lexeme DIV 
public final static lexeme AND 
public final static lexeme OR 

public final static lexeme F ALSE 
public final static lexeme NULL 
public final static lexeme TRUE 

private String sortOfLexeme 
private String valueüfLexeme 

Cons truc tors 
private lexeme(String, String) 

the keyword "abstract" 
the keyword "final" 
the keyword "private " 
when there is no speci.fic access 

modifier 
the keyword "protected" 
the keyword "public " 

the assignment 
the statement "while " 
the statement "return " 
the keyword "new" 
the keyword "if' 
the keyword "else " 

operator(''< 'ï 
operator(''< ='ï 
operator(''> 'ï 
operator(''>='ï 
operator('' = = 'ï 
operator('' ! = 'ï 
operator(''%'ï 
operator(''+ 'ï 
operator("-'ï 
operator("*'ï 
operator('1/'ï 
operator('' & 'ï 
operator(''l 'ï 

the keyword ''fa/se " 
the keyword "nul/" 
the keyword "true " 

the sort of the lexeme 
the value of the lexeme 

Creates a new lexeme with the given information 

Public methods 

Arguments: 
String is the sort of the lexeme 
String is the value of the lexeme 

String getSort() 
returns the sort of the lexeme 

String getValue() 
returns the value of the lexeme 
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Fields 

static lexeme lexemeüf(String, String) 
Converts a string v of sorts to a lexeme. 
Precondition: v actually is of sorts. (No checking!) 

Arguments: 
String is the sort of the /exeme 
String is the value of the lexeme 

static lexeme identifierüf(String) 
Converts an identifier v to a lexeme. 
Precondition: v actua/ly is an identifier. (No checking!) 

Arguments: 
String is the value of the lexeme 

static lexeme literalüf(String) 
Converts a literai v to a lexeme. 
Precondition: v actually is a literai. (No checking!) 

Arguments : 
String is the value of the lexeme 

static lexeme keywordüf(String) 
Converts a keyword v to a lexeme. 
Precondition: v actually is a keyword. (No checking!) 

Arguments : 
String is the value of the lexeme 

static lexeme operatorüf(String) 
Converts an operator v to a lexeme. 
Precondition: v actually is an operator. (No checking!) 

Arguments : 
String is the value of the lexeme 

Çlass construct 

A construct either is a terminal (lexeme) or a sentence. ln the latter case, it is in fact an 
instance of a non terminal, i.e., a data structure exhibiting the value and structure of 
this non terminal instance. 

public static String TERMINAL 
public static String SENTENCE 
private construct next 
private String sortOfConstruct 

a construct of type "terminal" 
a construct of type "sentence " 
The next construct in a sentence 
either TERMINAL or SENTENCE 

Constructors 
protected construct(String, construct) 

Creates an instance of construct with the given ieformation 

Arguments: 
String is the sort of the construct 
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construct is the next construct in the sentence 

protected construct (String) 
Creates an instance of construct with no following construct 

Arguments : 
String is the sort of the construct 

Public methods 

Fields 

construct getN ext() 
returns the next construct in a sentence 

void setNext(construct) 
set a construct as the next of the current one 

Arguments : 
construct is the new next construct 

String getSort() 
retums the type of the construct 

Class senten e 

A sentence consists of 
- a "main cell" containing 

+ the sort of the sentence (statement, expression, etc.) 
+ the reference to the .first construct of the sentence 
+ the reference to the last construct of the sentence 

both pointer are nul! if the sentence is empty; 
- a sequence of constructs representing in a structured way the sentence. 

final public static String ABSTR_METHOD_DECL 
final public static String CLASS_DECL 
final public static String CONCR_METHOD _DECL 
final public static String CONTRUC_DECL 
final public static String FIELD_ DECL 
final public static String IMPORT_DECL 
final public static String PACKAGE_DECL 
final public static String V AR_DESIGN 
final public static String SUPER_DESIGN 
final public static String THIS_DESIGN 
final public static String PROGRAM 
final public static String NOM 
final public static String LIST_PARAM_EFF 
final public static String LIST_PARAM_FORM 
final public static String PARAM_FORM 
final public static String ST ATEMENT 
final public static String LIST_ ST ATEMENT 

final public static String EXPRESSION 
final public static String APPEL_PROC 
final public static String APPEL_NEW 
final public static String APPEL_CONSTR 

an abstract method declaration 
a class declaration 
a concrete method declaration 
a constructor declaration 
a field declaration 
an import declaration 
a package declaration 
a variable name 
the "super" designator 
the "this " designator 
aprogram 
aname 
a list of effective parameters 
a list of formai parameters 
a formai parameter 
a statement 
a statement list 

an expression 
a method cal! 
a "new" cal! 
a constructor cal! 
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final public static String CAST 

private construct first 
private construct last 
private String sortüfSentence 

a cast 

The first construct in a sentence. 
The last construct in a sentence. 
either STATEMENT or EXPRESSION or ... 

Constructors 
public sentence(String, construct) 

Creates an instance of sentence with the given information 

Arguments : 
String is the sort of the sentence 
construct is the next construct in a sentence 

public sentence(String) 
Creates an instance of sentence with the given information 

Arguments : 
String is the sort of the sentence 

Public methods 
construct getF irstConstruct() 

returns the first construct of the sentence 

construct getLastConstruct() 
returns the last construct of the sentence 

void addFirstConstruct( construct) 
adds a new construct at the beginning of the sentence 

Arguments : 
construct is the to add construct 

void addLastConstruct( construct) 
adds a new construct at the end of the sentence 

Arguments : 
construct is the to add construct 

String getSort() 
returns the sort of the sentence 

Class terminal 

A terminal (lexeme) is an occurrence of a lexeme in a sentence. 
Constructors 
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public terminal(lexeme 1, construct c) 
Creates an instance of terminal with the given information 

Arguments : 
lexeme is the lexeme of the new terminal 
construct is the next construct in a sentence 



public terminal (lexeme l) 

Public methods 

Creates an instance of terminal with the gtven information 

Arguments : 
lexeme is the lexeme of the new terminal 
construct is the next construct in a sentence 

lexeme getLexeme() 
returns the lexeme of "this" terminal 

7.1.3. Package JavAblnt.concreteSyntax.Parser 

class Nlookl 

An instance of the class Nlookl is a special object, containing: the stream of characters 
with the code of the to parse program given as input, and different information on the 
tokens and on the options of the parser. 

Public methods 
sentence IIRParser (InputStream) 

this method returns the syntactic tree of the program given as argument, 
corresponding to the IIR de.finition. The return value is a sentence. 

Arguments: 
InputStream is the text file of a Java program, that is supposed to be 
syntactically correct, following the de.finition of "syntactical 
correctness ". 

In the IJRParser precondition, we use the notion of"syntactical correctness". 
We will de.fine here what this notion exact/y means in this method 
The parser methods check that the construction gtven in entrance follow the 
ru/es of the VTF syntax. But they don 't check the following ru les : 

it doesn't check that the declarations (after the ''package" and the 
"import" declarations) 
are class declarations. 

it doesn't check that the declaration in entrance has got allowed access 
modifiers. 
ex : the method would accepta class defined as ''protected" and "staffe" 

it doesn't check that the declarations in the body of a class are allowed 
declarations (not a class declaration) 

it doesn 't check that a field is not declared with the type "void" 

it doesn 't check that a field or a method is declared with an identifier. 
ex : you can declare : int = 1; 

it doesn't check that the statements defined in a simple method (nota 
constructor) are different of a constructor cal!. 
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if accepts that a designator is on/y followed by a semico/on but it 
shouldn 't be accepted 

it doesn't check that a designator has got two consecutive /ists of 
parameters. 
ex : you can have : toto.add(x,y)(z) 

A program in entrance of this method is "syntactically correct" in our terms if 
it respects the ru/es that are not checked by the parser. 
That parser could be improved by adding code that would test ail these 
constraints.At the moment, the main method of the class CheckType checks ail 
these unchecked ru/es. 

7.1.4. Package JavAblnt.concreteSyntax.Display 

Class IIRDisplay 

Public methods 

Fields 

static void ConstructDisplay (construct) 
this method displays a object of type construct (sentence or lexeme) by calling 
the corresponding method and initializing the Level 

Arguments : 
construct is the to display construct 

7.1.5. Package JavAblnt.concreteSyntax.Tools 

public class CheçkTyp_g_ 

An instance of CheckType represents a special object, containing a main method 
which cerates objects corresponding to the SAP grammar and checks the types of a 
program given in entrance. 

private static String CurrentClass the class which we dea/ with 

Public methods 
static void main(String args[]) throws Exception 

this method calls the paser Nlookl , which creates an IIR tree. 
Creating the SAP objects, it checks the syntax rules (not checked by the 
parser) and ail the type checking rules defined in the thesis "semantiques 
ope rationnelles et domaines abstraits pour l'analyse statique de Java" .from 
Isabelle Pollet (/rom p. 25) 

Arguments : 
String is the file with the entrance program 
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class CheckTypeException 

an instance of CheckTypeException represents a particular exception thrown by the 
CheckType program. 

Constructors 
CheckTypeException (String) 

This method creates an instance of CheckTypeException, reporting to the given 
error message 

Arguments: 
String is the Exception message to throw 

Public methods 

Fields 

static void ThrowException (int, String, String) throws CheckTypeException 
The methods creates a CheckTypeException, with the exception messages 
reporting to the dijferent errors : 

Arguments: 
int is the number corresponding to the error message 
String is the information needed to create an explicite message 

(method name, invalid access modifier .. .) 
String is the name of the class where the error occured 

7.1.6. Package Javablnt.SAP 

c/ass cel/OJL_istOJE..xpr 

an instance of cellOJListOJExpr represents a ce/l of a List of expressions used in a 
method or a constructor call 

Exprv 
cellOfListOfExpr next 

the expression of the current cell 
the following cell 

Constructors 
cel IOfL istOfExpr(Expr, cellOfL istOfExpr) 

creates an instance of cellO.fListOJExpr with the given values 

Arguments : 

Public methods 
Type getType() 

Expr is the expression of the to create cell 
cellO.fListOJExpr refers to the next cell of the List 

retums the type of the expression of"this" cell or null if the expression has 
not been initialized 

Abstract class Exp_r 
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Fields 

This class implements the expressions of the VJ'F grammar. lt's use.fui to have a type 
that gather ail the expression types ... 

final public static String NULL 
final public static String LITT 
final public static String TERME 
final public static String EXPRDES 
private String sortOfExpr 

the "null'' value 
the expression is a litteral (int, jloat or boolean) 
an predefined operator applied on expressions 
a designator 
the sort of the expression (one of the above

mentioned) 

Constructors 
Expr( String ) 

creates an instance of Expr, of the given sort 

Arguments: 
String is the sort of the to create Expr 

Public methods 
String sortOfExpr() 

retums the sort of the expression 

abstract void putType(Type) 
gives a value to the type of the expression 

Arguments : 
Type is the type of the expression 

abstract Type getType() 
returns the type of the expression 

String preff oString() 
al/ows the display of"this" 

String suflToString() 
al/ows the display of "this" 

public class Nul/ extends Ex]}L 

an instance ofNull represents the "nul/" expression in Java 

Fields 
private Type type the type of the expression 

Constructors 
public NuU() 

creates a new instance of Nul! 

public Null(Type t) { super(NULL); putType(t);} 
creates an instance of Nul!, whose type is known 

Arguments : 
Type is the type of the to create "nul/" expression 
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Public methods 
void putType(Type) 

gives a value to the current nul/ expression 

Arguments : 
Type is the type of"this" expression 

Type getType() 
returns the type of "this" expression 

void fulls() 
gives to "this" expression the type of the "nul/" value 

String toString() 
allows the display of the expression 

Abstract cla Instr 

This class implements the set of statements accepted by the VIF grammar. Every 
statement is unique/y represented. 

Fields 
the sorts of statements 

final public static String AFFECT 
final public static String IF 
final public static String WHILE 
final public static String SKIP 
final public static String PROC 
final public static String RETURN 
final public static String FONC 
final public static String CONSTR 

private String sortüflnstr 
private Instr !ab 

an assignment 
the statement "if' 
the statement "while " 
the statement "skip " 
a procedure call 
the statement "return " 
a method cal/ 
a constructor cal/ 

the sort of the statement 
The next lnstr 

Constructors 
Instr(String s) 
Instr(String s, Instr 1) 

Public methods 

Fields 

String sortütlnstr() 
Instr getN ext() 
void putNext(Instr 1) 

Class Affect 

private Des des 
private Expr expr 

This class imp/ements the statement "assignment" 

the designator of the current assignment 
the expression of the current assignment 
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Constructors 
Affect() creates an lnstr of type AFFECT 
public Affect(Instr 1) creates an Jnstr of type AFFECTwith "l " asfollowing 

statement 
public Affect(Des d, Expr e, Instr 1) 

creates an lnstr of type AFFECT with "l " as following 
statement, "e " as expression and "d " as designator 

Public methods 

Fields 

Des getDes() 
void putDes(Des d) 
Expr getExpr() 
void putExpr(Expr e) 
String toString() 

Class tab/eOjNvars 

returns the designator of the current assignment 
puts a designator into the current assignment 
returns the expression of the current assignment 
puts an expression into the current assignment 
creates a string to allow the dis play of the 
current assignment 

This class is used when translating a declaration of procedure from IRR to SAP. 
- Ail parameters must be added before the .first local variable is (added). 

private int nbrOfParams = 0 number ofparameters 
private int nbrütvars = 0 total number ofparameters and local variables 
private int nbrOfPVIs = 0 total number including "internais" 
private String[] arrayOfNames array with the name of the variables 
private Type[] arrayüffypes array with the type of the variables 
private listüffypes 1 "listOJTypes " corresponding to the parameters 
private Hashtable ensüfNvars set of variables 

Public methods 
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void makeDataStructures() 
This method creates the arrays with the types and the 
names of the variables, using the numbers of 
variables and the information in the Hashtable. 

int addParam (String p, Type tp) 
This method adds a parameter in the table. lt also 
modifies the counters of variables and returns the 
index of the variable in. lt returns - 1 if the variable 
has already been de.fined. 

int addLocalVar(String v, Type tv) 

int addlnternalVar(Type ti) 

int getVarlndex(String s) 

Type getVarType(String s) 

This method adds a local variable in the table. lt also 
modifies the counters of variables and returns the 
index of the variable in. lt returns - 1 if the variable 
has already been de.fined. 

This method adds an internai variable in the table. lt 
also modifies the counters of variables and returns 
the index of the added variable lt returns - 1 if the 
variable has already been de.fined. 

This method returns the index of a variable in the table. 
lt returns - 1 if the variable has not been de.fined yet. 

This method returns the type of a variable. If the 
variable has not been de.fined yet, it returns "nul/" 
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Fields 

static String internalName(int i) 

String [] getArrayOtNames() 

Type [] getArrayOITypes() 

listOITypes getL istOITypes() 

int getNbrOfParams() 

int getNbrOfLocalVars() 

int getNbrOflnternalVars() 

int getNbrOtNvars() 

This method transforms an integer into an internai 
variable name. 

This method returns the array containing the names 
of the variables of the current tableOJNvars. 

This method returns the array containing the types of 
the variables of the current tableOJNvars. 

This method returns a "/istOJTypes " containing the 
types of the variables given as parameters. 

This method returns the number of parameters 

This method returns the number of local variables 

This method returns the number of internai variables 

This method returns the total number of variables 

Class elementOffinsO.fNvars 

String n 
Typet 
inti 

this class implements a element of the set "ensOJNvar" 

name of the variable 
type of the variable 
index of the variable 

Constructors 
elementOfEnsOfNvars(String n 1, Type tl, int i 1) 
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