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Ethical Adversaries: Towards Mitigating
Unfairness with Adversarial Machine Learning

Pieter Delobelle1, Paul Temple2, Gilles Perrouin2,
Benôıt Frénay2, Patrick Heymans2, and Bettina Berendt1,3

1 Department of Computer Science, KU Leuven and Leuven.ai,
firstname.lastname@kuleuven.be

2 PReCISE, NaDi, Université de Namur,
firstname.lastname@unamur.be

3 Faculty of Electrical Engineering and Computer Science, TU Berlin

Abstract. Machine learning is being integrated into a growing number
of critical systems with far-reaching impacts on society. Unexpected be-
haviour and unfair decision processes are coming under increasing scrutiny
due to this widespread use and its theoretical considerations. Individu-
als, as well as organisations, notice, test, and criticize unfair results to
hold model designers and deployers accountable. We offer a framework
that assists these groups in mitigating unfair representations stemming
from the training datasets. Our framework relies on two inter-operating
adversaries to improve fairness. First, a model is trained with the goal
of preventing the guessing of protected attributes’ values while limiting
utility losses. This first step optimizes the model’s parameters for fairness.
Second, the framework leverages evasion attacks from adversarial machine
learning to generate new examples that will be misclassified. These new
examples are then used to retrain and improve the model in the first step.
These two steps are iteratively applied until a significant improvement in
fairness is obtained. We evaluated our framework on well-studied datasets
in the fairness literature — including COMPAS — where it can surpass
other approaches concerning demographic parity, equality of opportunity
and also the model’s utility. We also illustrate our findings on the subtle
difficulties when mitigating unfairness and highlight how our framework
can assist model designers.

Keywords: Adversarial machine learning, fairness, neural networks

1 Introduction

Machine learning eases the deployment of systems that tackles various tasks:
spam filtering, image recognition, etc. One of the most trendy applications is
decision support. These systems give recommendations on who should get a loan,
predict who could commit subsequent offences, etc. based on data describing
the individuals affected. Such systems have a desirable property: they provide
objective, supposedly consistent decisions based on a collection of data. At first
glance, this could counteract unfair decisions made by humans.
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However, these support systems still exhibit unfair behaviour. Such behaviours
can possibly impact certain individuals, belonging to social or even protected
groups. Well-studied examples include the COMPAS system that predicts the
recidivism of pre-trial inmates [2, 10] and keep taking decisions in favor of Cau-
casian people compared with African-Americans. We consider fairness where the
impact on individuals can be categorized as either allocational harm or represen-
tational harm [8]. With allocational harm, the favorable outcome (e.g. bail being
granted) differs between social groups. Representational harm is more subtle,
and include differences in performance between social groups, and stereotyping.
We focus on allocational harm in this work, as decision support systems with
different outcomes can affect social groups far beyond the outcome itself.

If an allocational harm exists when advising for a favorable outcome, the
decision could, in turn, affect the social group(s) who did not receive that outcome
and, ultimately, risking the creation of a feedback loop where unfair behaviour is
amplified [17, 26]. For example, consider a system that imposes more expensive
loans to African-American people, who then fail to repay them, that will lead
them to ask for another loan, etc.

Because of these consequences, researchers increasingly focus on incorporat-
ing fairness objectives in their systems. In discrimination-aware data mining
(DADM), modifications were developed and applied to data, learning algorithms,
or resulting patterns and models [21]. More recently, adversarial fairness is contin-
uing in this field with, for instance, research on learning representations [25, 36]
and task-specific fair models [1, 30, 32].

Adversaries are also used when assessing the security of machine learning
based systems. Biggio and Roli [7] synthesised a decade of research in adversarial
machine learning. This domain of research aims at finding or creating examples
that are problematic for a machine learning model, e.g. Biggio et al. [5], Papernot
et al. [27, 28]. These examples can be injected directly into the training phase in
order to perturb the training of the model, known as poisoning attacks, or they
can simply be used to bypass the model that is supposed to act as a filter, in
this case, they are called evasion attacks.

In this paper, we propose a new framework implementing a gray-box fairness
scenario coupling evasion attacks and fair machine learning using gradient reversal.
We evaluate our framework on three datasets: (i) COMPAS, (ii) German Credit,
and (iii) Adult. We show demographic parity and equal opportunity improved
when comparing to the state of the art while globally improving the model’s
utility. Our framework thus reconciles fairness and model performance.

This paper is organised as follows: Section 2 discusses related work on ad-
versarial machine learning techniques but also on measuring and mitigating
unfairness. Section 3 presents our new framework, followed by its evaluation
on the COMPAS, German Credit and Adult datasets in Section 4. Section 6
concludes and gives an outlook on future work.
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2 Background and Related Work

2.1 Poisoning and Evasion Attacks

Adversarial machine learning assesses the required effort to make a classifier
unusable by forcing it to perform so many errors that users will not trust its
predictions anymore [7]. The generation of adversarial attacks follows this black-
box process: (i) probe an existing target model to gain information about it, (ii)
copy an existing example, (iii) apply an adversarial technique that will modify
the example depending on the desired goal.

Various models can be attacked including support vector machines (SVMs),
linear models and even neural networks (NNs) [5, 27, 28]. Since all machine
learning models are based on a similar set of assumptions, including the fact that
they statistically approximate data distributions, adversarial machine learning
leverage on these assumptions to train a surrogate classifier to start the attack on
and results are transferred to the target model [12]. Only one restriction remains
on the surrogate classifier, attacks are gradient-based techniques requiring the
discriminant function to be differentiable. We distinguish between poisoning
attacks and evasion attacks. In the former, malicious examples are introduced in
the training set in order to significantly and permanently affect the model to be
trained [4, 6].

In concurrent work by Solans et al. [33], poisoning attacks have been used
to influence the fairness of machine learning models in a black-box manner.
The authors have also linked their poisoning attack to demographic parity, an
evaluation metric that will be introduced in Section 2.2.

Kulynych et al. [24] also used poisoning attacks, specifically for countering
effects of credit scoring systems. In addition, they provide an outline of how
users can affect optimization systems to mitigate negative externalities, called
Personal Optimization Technologies (POTs). This framework could also be used
to ground the adversarial attacks generated by the Feeder from our framework.

In this paper, we consider evasion attacks that are performed on an already
trained model. We craft adversarial examples that are supposed to belong to a
class while the model will assign them with a different one because of specific
characteristics, highlighting an unfair behavior regarding a certain population.
By carefully reintroducing these examples during retraining, we hypothesize that
the retrained model will be fairer. While we rely on a similar example generation
technique, we have a distinct exploitation goal.

2.2 Evaluating Fairness

There exist several measures of fairness in the literature, e.g. demographic par-
ity [14], equalized odds and equalized opportunity [22], statistical parity [18, 36],
disparate impact [10, 18], and threshold testing [29]. In the following, we focus
on the most popular and representative measures: (i) demographic parity and
(ii) equalized opportunity. We define all measures via the predicted values of the
classifier Ŷ and the protected attribute A. We identify the disadvantaged group
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with A = 1 and the privileged group with A = 0. The similarities of predictions
are described for Ŷ = 1.

Since the focus of most fairness measures is on the disadvantaged group
having fewer (desired) opportunities, Ŷ = 1 is generally the desired outcome.
One set of measures expresses the requirement that the predicted values of the
classifier Ŷ conditioned on the protected attribute be equal [9] or the difference
to be within an acceptable range.

Definition 1. Demographic parity (DP). DP is the equality or similarity of
prediction outcomes as an absolute difference [14, 30]:

DP =
∣∣∣P (Ŷ = 1 | A = 0)− P (Ŷ = 1 | A = 1)

∣∣∣ ≤ ε. (1)

Definition 2. Demographic parity ratio (DPR). DPR is the equality or similar-
ity of prediction outcomes as a ratio:

DPR =
P (Ŷ = 1 | A = 1)

P (Ŷ = 1 | A = 0)
≥ τ. (2)

Requiring DP = 0 or DPR = 1 would require exact equality in the outcome
predictions for both groups. This is unrealistic for most data, such that real-world
usage of such measures is less restrictive. For instance, in a legal setting, the US
Equal Employment Opportunity Commission (EEOC) uses the DP ratio with
τ = 0.8 (“80% rule” [18]), stating that disparate impact caused by employment-
related decisions or structures can only be ascertained if DPR ≤ 0.8.

Demographic parity has received some criticisms, since the measure does
not necessarily report on what many would define as fairness [14]. This issue
stems from ignoring both the true outcome and individual merits. For instance,
consider a selection procedure where we consider two individuals belonging to the
protected group. Let say that one individual is qualified (i.e., with high chances
to get a positive true outcome Y = 1) and the other one is not. Not selecting the
qualified individual could be considered unfair, but the selection would satisfy
demographic parity even when selecting the not-qualified individual. So these
token individuals are not guaranteeing fairness since qualified individuals from
the protected group are still mistreated.

Addressing the criticisms of demographic parity, Hardt et al. [22] presented
two other metrics that extend the aforementioned ones. By including the true
outcome Y , the authors show that this variable can serve as a justification
for the predicted outcome. For example, in the case of COMPAS, this is the
recidivism rate as measured by violent crimes in a two-year window. Conditioning
by the true outcome is a justification that the authors consider to be a suitable
interpretation of the task-specific similarity measure from Dwork et al. [14], which
can otherwise be difficult to come up with. This is also very similar to disparate
mistreatment [3, 34] used as an evaluation metric by Adel et al. [1].
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Definition 3. Equal opportunity (EO). EO requires an independence Ŷ ⊥⊥ A | Y
of Ŷ and A conditioned on the true outcome Y . Expressed as a difference, this
yields: ∣∣∣P (Ŷ = 1 | A = 0, Y = 1)− P (Ŷ = 1 | A = 1, Y = 1)

∣∣∣ ≤ ν. (3)

“Equality of opportunity” is satisfied if ν = 0, and larger absolute values are
indicative of unfairness in the model or data.

2.3 Fair Neural Networks

Fair models have been studied for a variety of learning algorithms, such as Naive
Bayes classifiers [9] or SVMs [35]. Nowadays, the focus is also on neural networks
due to their prediction performance [1, 25, 31].

Several work have tried to mitigate unfairness in neural networks with white-
box adversaries [1, 15, 25, 31, 37]. In all these instances, a new model architecture
is proposed with two goals: (i) predicting the main attribute Y (which we will
refer to as the utility of the model ; with Y = 1 being the positive outcome); (ii)
not being able to predict the protected attribute A (with A = 1 considered as be-
longing to the protected group). The joint goals can be formally defined as a min
max optimization problem [15] over the loss function L, i.e., minθ maxφ L (θ, φ) ,
with an adversary φ and an encoder with parameters θ. We use this representa-
tion to predict both Y and A via a white-box adversary and a neural network.
Adel et al. [1], Ganin et al. [19], Raff and Sylvester [30] all proposed to optimize
a variant of the following loss function following

L(θ, φ) = Eθ,φ(X,Y )− λDθ,φ(X,A), (4)

with Dθ,φ the loss for predicting A from X, and Eθ,φ the loss for the target
prediction Y also from X and λ a hyper-parameter.

Gradient reversal was introduced by Ganin et al. [19] for domain adaptation,
and later adapted by Raff and Sylvester [30] and Adel et al. [1] who treated
the protected attribute A as a domain label. The gradient reversal strategy
assumes that multiplying by a negative sign will increase the loss Dθ,φ(X,A)

of the branch ha : X → Â and yields a representation X∗ that is maximally
invariant to changes in A [1, 30].

Using gradient reversal for fairness is based on the intuition that the inability
to predict A is a suitable fairness goal. This differs slightly from the fairness
evaluations presented in Section 2.2, but a similar loss function from Equation 4
based on demographic parity led to the architecture of FAD [1], which leverages
gradient reversal specifically for fairness.

However, there is no guarantee that gradient descent with flipped gradients
does guarantee the maximal invariance required for fairness. In the worst case,
maximizing the loss Dθ,φ(X,A) can even result in the opposite optimum for the
shared layers with regard to A, because flipping the gradients with regard to
A makes it perform gradient ascent for A. With the shared layers performing
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gradient ascent w.r.t. A followed by gradient descent in the adversarial branch,
this creates a discrepancy between the parameters defining both components for
predicting A. This means that the model is not only not maximally invariant on
the last shared layer, but that the shared layers are still explicitly learning to
predict the protected attribute A.

This is one of the major limitations of using GRL for fair models, as predictions
of main attribute Y are not made on ‘fair’ representations. Elazar and Goldberg
[16] made an empirical observation on leakage of protected attributes specifically
for text-based classifiers that can also be traced back to this. In Section 3 we
clarify how our ethical adversaries framework mitigates this issue, thus allowing
GRL to be used for training fair models.

3 Ethical Adversaries Framework

Our main contribution is a framework that joins evasion attacks (see Section 2.1)
and fair neural networks (see Section 2.3) to improve the overall fairness of the
system. Thus, it relies on two types of ethical adversaries: (i) a Feeder that
uses evasion attacks to create examples highlighting unfair representation of a
certain population and (ii) an adversarial Reader that is trying to predict the
protected attributes of interest (age, gender, race, etc.). In addition of exhibiting
fairness issues in the data and in the trained model, our framework leverages
gradient reversal to minimise the ability of the reader to guess protected attributes
ultimately yielding a fairer ML model without sacrificing utility.

Target label

Protected attribute

Feeder

Training data with 
adversarial examples
from evasion attacks

Backpropagation
with gradient reversal

layer scaled by λ

…

Model for the main attribute

Reader
GRL

Fig. 1: Ethical adversaries architecture: adversarial feeder on the left, and inte-
grated adversarial reader on the right.

Figure 1 presents the global architecture. Our network follows a typical archi-
tecture with a GRL (discussed in Section 2.3 and is represented by the Reader).
The Feeder, on the left part, performs evasion attacks as discussed in Section 2.1.
Both adversaries interact with each other in an iterative manner—which is the
main difference between our framework and GANs [20]. To achieve better fairness
and utility outcomes, the process, that consists of two steps, can be performed
multiple times.
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The first step starts with a trained neural network (target label in Figure 1)
predicting a main attribute Y . In this network, the adversarial Reader adds a
second branch that tries to predict a protected attribute A while the gradient
reversal layer strives to minimise the confidence of the Reader to predict A.
Additionally, as we discussed in Section 2.3, during the backward pass, a hyper-
parameter λ contributes to prioritize the utility versus the adversarial branch of
the network. The model is trained with the joint loss of the original prediction
target and the protected attribute.

In a second step, the Feeder, on the left part, performs evasion attacks as
discussed in Section 2.1. The Feeder creates a set of adversarial points from an
approximation of the target model, a.k.a a surrogate model, that is constructed
on the same dataset as the model under attack. Our surrogate model is an
SVM which it uses a radial basis (RBF) kernel function to cope with different
level of model complexity. We selected this kernel since preliminary results on
COMPAS showed that it is expressive enough and Biggio et al. [5] detailed
how evasion attacks can be directly applied to SVMs with RBF kernels. The
Feeder performs multiple evasion attacks on the surrogate function to generate
adversarial examples that are similar to the training examples, but are wrongly
classified.

For each iteration of this two-step process, adversarial examples are gener-
ated and included in the training set for adversarial retraining. Each adversarial
example is added to the training set with the same label as the original example
from which it was generated. The effect of the ratio of adversarial points in the
dataset—the adversarial fraction—is further analyzed empirically in Section 4.3.

In terms of performance, constructing a surrogate classifier is the limiting
factor. Using SVMs implies that the time complexity of the entire framework is
O(n3) with n the number of data points. The impact of adversarial attacks is
linear on the overall complexity. But note that adversarial retraining may drasti-
cally increase time to compute a separating function since included adversarial
examples make the separation more difficult to find, or on the contrary, may not
affect the function at all, if few adversarial examples are included.

Both reading and feeding steps are run successively until we achieve better
fairness and utility outcomes, which we demonstrate in Section 4.4. A key benefit
of this process is that we prevent the Reader from learning biased representa-
tions, since these features cannot be used as proxies for the protected attribute
anymore.

4 Evaluation

We evaluate our model on three popular datasets: COMPAS [2], German Credit,
and the Adult Census [23]. The COMPAS dataset was originally a sample of
outcomes from the COMPAS system that predicted the risk of recidivism. This
caused a debate about whether or not this score was disadvantaging African
Americans [2, 10, 11, 13]. The dataset, therefore, includes the race of individuals.
In line with other research [1, 2, 35], we will only use individuals from Caucasian
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or African-American descent. As other groups are clearly less represented (e.g.,
only 31 instances for people of Asian descent), this poses issues during training
and evaluation. It implies that there are minorities that are excluded from many
studies; more datasets would be needed to study whether patterns of unfairness
are similar and mitigation measures can be transferred, or whether these affect
different demographics differently. COMPAS is composed of 5,278 instances and
represented by 12 features. The target variable is whether a person has recidivated
within two years. The race is used as a protected attribute.

The Adult dataset gathers 32,000 instances represented by 9 features. We use
gender as a protected attribute and the binary target variable is income, whether
someone earns more than 50,000 USD. German Credit is the smallest dataset,
with only 1,000 instances and 20 features. There is a class imbalance, with 70%
of all samples good credits and only 30% bad credits. The protected attribute is
age, with a threshold at 25 years.

For reproducibility purposes, we have publicly released our code and provided
users with a template that they can incorporate in their projects. It is compatible
with all PyTorch models with only minor modifications, i.e., adding an adversarial
branch and replacing the training loop. We recall that we have used the secML
package4 (v0.11) for running evasion attacks.

4.1 Training setup

The model under attack. We start from a neural network of 3 hidden layers
with 32 hidden units for COMPAS and German Credit and 128 for Adult, due
to its larger encoded input. Each of the hidden units has a ReLU activation.
This activation function is computationally efficient and mitigates the issue of
vanishing gradients since the function never saturates, which makes it one of the
most popular activation functions. For the output units, a softmax activation
was used to get the classification and a linear activation for COMPAS. The
network, including the adversarial reader, is trained with the Adam optimizer
with β1 = 0.9, β2 = 0.9999 and an initial learning rate lr = 0.01, which is adjusted
by a factor of 0.1 when reaching a plateau.

The adversarial reader. The adversarial reader is part of the model under
attack and therefore follows the same training regime. The joint loss follows
Equation 4 by including the GRL. The individual losses for both hA and hy are
binary cross-entropy loss, except for COMPAS. In that case, the risk score is
predicted as a regression problem with the MSE loss and then thresholded at 4
(low vs medium and high risk).

The adversarial feeder. In our setting, we can use the same training set for
both the feeder and reader since they are part of the same, unique architecture.

We also approximate—relying on the earlier discussed transferability of at-
tacks [12]—the attacked model by an SVM with a radial basis function kernel.
We set the hyperparameters C and γ with a grid search with a reduced number of

4 https://secml.gitlab.io/
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values: respectively {0.0001; 0.001; 0.01; 0.1; 1.0} and {0.01; 0.1; 1; 10; 100; 1000}.
We performed 10-fold cross-validation.

4.2 Mitigating unfair representations

(a) Naive model (b) Model trained with a
GRL (λ = 50)

(c) Model trained with our
framework

Fig. 2: T-SNE dimensionality reduction of the activations in the last hidden layer
on the held-out COMPAS test set. Distinct colors are used for the reported race
of individuals in the dataset: either African-American or Caucasian .

For each individual for the COMPAS test set, all three models derive a repre-
sentation in the last hidden layer, on which we applied a t-SNE dimensionality
reduction for a two-dimensional visualisation.

The model without fairness constraints (Figure 2a) has slight separation with
regard to the protected attribute, but it is clearly separable in the representation
from the model trained with a GRL (Figure 2b). This is also shown by retraining
a one-layer perceptron on these representation. The model that was originally
trained to predict only recidivism could be used to classify the protected attribute
race with AUC = 0.71. The adversarial branch ha that was trained simultane-
ously has an AUC = 0.44 As we mentioned earlier, this branch can be limited in
predicting the protected attribute A. Which is the case here, as an independent
perceptron has AUC = 0.92.

Here, we demonstrated that the hidden representation obtained by gradient
reversal, not only still contains information about the protected attribute, but
contains a stronger signal. Our architecture that joins ‘adversarial fairness’, also
called the Reader, and ‘adversarial learning’, or the Feeder, (see Figure 1) leverages
utility- and fairness-focused methods in a better way than the modification of
the model alone. By injecting noise with the adversarial Feeder, our framework
successfully mitigated this unfair representation, as shown in Figure 2c.
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4.3 Effect of adversarial fraction

Figure 3 displays the effect of the adversarial fraction in the training dataset
on COMPAS. When adversarial examples (equivalent to 25% of the training set
size) are added to the training set, the utility is maximal. With higher fractions,
the utility decreases and the development of the DP ratio fluctuates. This could
stem from the minimax formulation, where a small fraction (i.e., 25%) helps
optimize better for this saddle point, but higher fractions only add noise. We use
this fraction for all further experiments, in future work this could be automated
with a custom stopping criterion.

Within the 80% bounds

F1

ACC

ACC F1

U
til

ity

0

0,2

0,4

0,6

0,8

Adversarial fraction
0,2 0,40

Utility

(a) Utility
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EO

0

0,1

0,2
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0,4

0,5
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0,2 0,40

Fairness (EO)

(c) EO

Fig. 3: Fairness and utility measures after each attack iteration on COMPAS
(Batch size of 1024, λ = 100, epochs=100, 50 adversarial points per iteration)

4.4 Benchmark results

Table 1 presents our results on the three datasets. We compare them with (i)
a baseline without fairness goals, i.e., a neural network without any particular
control on fairness aspects, (ii) a re-implementation of the GRL [1, 19, 30] and (iii)
the reported results from other works that incorporate fairness and cover a wide
range of learning algorithms: Naive Bayes [9], random forests [31], SVMs [35] and
neural networks [30, 36]. The models’ utility was evaluated by binary classification
accuracy and macro-averaged F1 score; the latter highlights some issues when
dealing with class imbalances, as is the case for German Credit.

Fairness is evaluated with demographic parity, both as an absolute difference
(DP) and as a ratio (DPR), and equal opportunity (EO). Adel et al. [1] also
report results on both COMPAS and Adult but use a different setup for the
Adult dataset. For COMPAS, the reported results (as well as their unfair baseline)
are significantly higher than in our experiments, which we could replicate only
when classifying high-risk individuals. To make a meaningful comparison, we also
include our replication of FAD [1] as GRL.

The utility of our framework is the highest on the German Credit and COM-
PAS datasets, even surpassing the baseline model. On Adult, we achieve the
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Table 1: Results on the three datasets. An obelisk (†) show results reported by
original papers. Results of classifiers without fairness constraints are reported as
a baseline. Best results are in bold typeface. An asterisk (∗) indicates a division
by zero.

Model ACC F1 DP DPR EO

Adult
Baseline without fairness constraints 0.839 ± 0.009 0.763 0.173 0.296 0.096
GRL 0.612 ± 0.012 0.518 0.059 1.931 0.061

NBF (NB) [9] 0.773† — 0.000† — —

NBF (EM) [9] 0.801† — 0.001† — —

Grad-Pred [30] 0.754† — 0.000† — —

FF [31] 0.753† — 0.000† — —

LFR [36] 0.702† — 0.001† — —
Ours 0.814 ± 0.009 0.689 0.031 0.784 0.179

German Credit
Baseline without fairness constraints 0.705 ± 0.063 0.624 0.018 0.929 0.198
GRL 0.710 ± 0.063 0.415 0.000 ∗ 0.000

Grad-Pred [30] 0.675† — 0.001† — —

FF [31] 0.700† — 0.000† — —

LFR [36] 0.591† — 0.004† — —
Ours 0.730 ± 0.062 0.640 0.006 0.971 0.175

COMPAS
Baseline without fairness constraints 0.715 0.709 0.466 2.192 0.449
GRL 0.567 0.549 0.057 0.926 0.114
COMPAS risk predictions [2] 0.655 ± 0.029 0.654 0.289 1.829 0.000

Preference-based fairness [35] 0.675† — 0.380† — —
Ours 0.794 0.793 0.026 0.840 0.008

highest utility of any model with fairness constraints. These results show that
our model has only a very limited impact on the utility of the classifier, and
it can even contribute to the training as shown in Figure 3. Note that on Ger-
man Credit, a majority classifier would achieve 70% accuracy already, hence the
inclusion of the F1 score.

Regarding fairness evaluation, our framework gives the best results for COM-
PAS when considering DP. It also increases fairness as measured by DPR, which
is the only one of the considered measures that indicates the “direction” of unfair-
ness. More fairness is sometimes given by an increase towards parity (DPR=1)
for the disadvantaged group: for the German Credit dataset, their chances of
getting a loan increase. In COMPAS, the baseline has a EO of 2.192, the “bias
against blacks” [2] decreases substantially with our model. For GRL, the near-
equality of DPR (0.926) appears fairer, but this is not the case for DP and EO,
where we observe an EO of 0.449 for GRL versus 0.008 for our model.

5 Code

We release an open source implementation— under the MIT licence—of our
framework at https://github.com/iPieter/ethical-adversaries.

https://github.com/iPieter/ethical-adversaries
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6 Summary, conclusions and future work

In this paper, we presented a novel architecture for integrating fairness con-
straints in machine learning models. Our architecture consists of two adversaries:
(i) an adversarial reader that evaluates fairness constraints during model train-
ing and attempts to enforce them, and (ii) an adversarial feeder that performs
iterative evasion attacks to discover previously uncovered regions in the input
space. We evaluated our architecture on three well-studied datasets and showed
that it can deliver high utility to models while satisfying fairness constraints. On
COMPAS, we illustrated that our architecture yields a model that surpasses an
unfair baseline regarding the utility (accuracy and F1 score) and fairness. We
provide evidence that gradient reversal alone is not sufficient (it might even be
detrimental) but that our combination of adversaries leads to intrinsically fairer
models.

There is room for future work. First, we may optimize the runtime execution
of the technique via faster learning of surrogate models. Second, we could use
the target model directly instead of a surrogate classifier to support adversarial
attacks and assess if transferability properties hold for fairness constraints. This
requires heavyweight modifications of the secML framework to allow multiple
output values in neural networks. Third, one could define constraints involv-
ing multiple features. Enforcing these domain-specific constraints during attack
generation raises questions on the representation of the feature space and opti-
mal convergence of the algorithms. Fourth, our framework is evaluated against
allocational harms. More subtle differences— like a difference in the model’s
performance—are also affecting social groups. With some minor modifications,
we suspect that these types of unfairness can be addressed with our framework.
Finally, we would like to generate the most dissimilar examples possible to ensure
good coverage of the unseen feature space with a minimal number of attacks.
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