
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Support of fairness and guarantees without per-flow state in routers

Pelsser, Cristel

Award date:
2001

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Sep. 2024

https://researchportal.unamur.be/en/studentTheses/c4c43e13-abcb-4ee1-a650-8dfcff9cf7a0

Facultés Universitaires Notre-Dame de la Paix
1 nstitut d' 1 nformatiq ue

Support of fairness
and guarantees without
per-flow state in routers

Cristel PELSSER

Promoteur : Professeur Olivier Bonaventure

Travail de fin d'études réalisé en vue de l'obtention
du titre de Maître en Informatique

Année Académique 2000-2001

Abstract
In this thesis, mechanisms that support minimum throughput guarantees and provide fair

allocation of the remaining bandwidth without maintaining per flow state in core routers will
be investigated.

Mechanisms have been proposed to support flows with a minimum guaranteed rate and
to distribute the remaining bandwidth fairly. These mechanisms usually require that each
intermediate network node maintains some state for each flow passing through it and performs
per-flow operations. This causes a scalability problem. Other mechanisms, that avoid the use
of per-flow information and avoid per-flow processing in the interior of a network domain are
now being proposed. Such mechanisms will be exposed and analysed.

Résumé
Différents mécanismes permettant le support de garanties de débit minimum ainsi qu'une

attribution équitable de la bande passante restante, sans nécessiter le maintien d'informations
concernant chaque flux par les routeurs situés au coeur du réseau, seront étudiés dans ce
mémoire.

Plusieurs mécanismes ont été proposés pour permettre le support de garanties de débit
minimum et l'attribution équitable de bande passante. Ces mécanismes requièrent que chaque
noeud intermédiaire du réseau maintienne un état pour chaque flux le traversant et effectue
des opérations pour chacun de ces flux. Ceci entraîne un problème lors de l'utilisation de tels
mécanismes sur des réseaux très étendus. D'autres mécanismes, qui permettent d'éviter le
maintien d'un état pour chaque flux ainsi que l'exécution d'opérations pour chaque flux, sont
proposés actuellement. Certains de ces mécanismes seront exposés et analysés.

Overzicht
In deze thesis worden verschillende mechanismen onderzocht die een minimum bandbreedte

kunnen garanderen en de resterende bandbreedte eerlijk verdelen zonder <lat een router een
toestand moet bijhouden voor elke flow.

Verschillende mechanismen werden reeds voorgesteld die een minimum bandbreedte garan­
deren met een eerlijke verdeling van het overblijvend gedeelte. Meestal vereisen deze technieken
dat elke tussenliggende router een toestand bijhoudt voor elke flow <lat door deze router
passeert. Dit resulteert in een schaalbaarheidsprobleem wanneer het aantal flows groeit. On­
dertussen zijn er ook meer recentere mechanismen die geen toestand en verwerking van elke
flow apart vereisen in de kern van het netwerk. Deze thesis zal zulke mechanismen uitgebreid
beschrijven en analyseren.

Acknowledgements
First, I would like to thank Professor Olivier Bonaventure for suggesting such a captivating

research topic as well as for the preparation and the knowledge he gives through his classes.

I would like to express my profound appreciation to my mentor Stefaan De Cnodder at
the Alcatel Network Strategy Group in Antwerp, where I prepared most of this thesis. His
advises and his questions stimulated my reflection all along this project.

I would also like to thank Guido Petit for welcoming me in his team, the Alcatel Network
Strategy Group, and for providing all the resources necessary to the research, the implemen­
tation and the simulations done in the framework of my thesis.

The comments concerning the content and the redaction of the tp.esis provided by Stefaan
De Cnodder, Steve Uhlig and Olivier Bonaventure were helpful and sometimes challenging. I
thank them for sharing part of their competence.

I would like to thank Cedric Rosman and Louis Swinnen for their company during the few
month spent together in Antwerp. Finally, I would like to express my sincere appreciation to
my parents for guiding me all along my studies.

Contents

1 Quality of Service
1.1 Diff erent kind of guarantees

1. 1. 1 Best effort
1.1.2 Minimum guarantees .
1.1.3 Maximum guarantees .

1.2 Integrated Services
1.2.1 Guaranteed service . .
1.2.2 Controlled-load service .

1.3 Differentiated Services
1.3.1 Assured Forwarding . .
1.3.2 Expedited Forwarding

1.4 Integrated versus Differentiated Services
1.5 Scope of the thesis

2 Stateless Mechanisms
2.1 Dynamic Packet State
2.2 Fair bandwidth allocation

2.2.1 Core Stateless Fair Queueing
2.2.2 Weighted Core Stateless Fair Queueing .
2.2.3 Conclusion

2.3 Minimum guaranteed bandwidth ..
2.3.1 Multi-Color Marking Scheme
2.3.2 Core Jitter Virtual Clock . .
2.3.3 Fair Allocation Derivative Estimation

2.4 Comparisons
2.4.1 CSFQ versus FADE .. .
2.4.2 Adaptations to CSFQ . .
2.4.3 Adaptations to MC-RED
2.4.4 Adaptations to CJVC
2.4.5 Adaptations to FADE

2.5 Admission Control
2.5.1 Objectives
2.5.2 Centralized admission control
2.5.3 Distributed admission control

2.6 Conclusion

1
2
2
5
6
6
6
7
7
7
8
8
8

11
11
13
14
21
22
22
23
27
30
34
34
36
37

37
38
38
38
39
40
45

3 CSFQ study
3.1 CSFQ clarifications

3.1.1 Forwarding rate estimation .
3.1.2 Simultaneous packet arrivais .
3.1.3 Fair share initialization

3.2 Uncongested network problem .
3.3 Parameters impact

3.3.1 Tail drops impact ..
3.3.2 Window size impact
3.3.3 Threshold impact .

3.4 Conclusion

4 CSFQ ameliorations
4.1 Fair bandwidth sharing.
4.2 Minimum guarantees support

4.2.1 General principle . . .
4.2.2 Probabilistic versus deterministic marking
4.2.3 Estimation of the aggregate guarantee

4.3 Conclusion .

5 Simulation scenarios
5.1 Single bottleneck scenario

5.1.1 First utilisation . .
5.1.2 Second utilisation .

5.2 Multiple bottleneck scenario .
5.2.1 First utilisation
5.2.2 Second utilisation . . .

5.3 Generic Fairness Configuration scenario
5.3.1 First utilisation ..
5.3.2 Second utilisation .

5.4 Conclusion .

6 Simulations
6.1 Fairness indicators
6.2 Behavior of the mechanism

6.2.1 Window size
6.2.2 Fair share initialization
6.2.3 Uncongested network problem .

6.3 Distribution of bandwidth
6.3.1 Single bottleneck scenario . . .
6.3.2 Multiple bottleneck scenario . .
6.3.3 Generic Fairness Configuration scenario

6.4 Conclusion

Conclusion and further work

ii

47
47
47
49
49
53

53

53
54
54

56

57
57
59

59

61
62

63

65
65

66

68
69

71

71

72
73
74
74

77
77
77
78
80
82
86
86
90
92
94

97

A Overview of OPNET 105
A.1 Network model . 105
A.2 Node model . . . 105
A.3 Process model . . 105

B lmplementation architecture 109
B.1 Process models 109

B.1.1 Arrivai rate estimator .. . 109
B.1.2 Buffer acceptance module . 110

B.2 Nades constitution 112
B.2.1 Edge node composition . 112
B.2.2 Core node composition . . 113

C lmplementation code 117
C.l Deliver process 117

C.1.1 state variables 118
C.1.2 temporary variables . 118
C.1.3 header black . 118
C.1.4 fonction black . . 118
C.1.5 init state 118

C.2 Routing process 119
C.2.1 state variables . . 119
C.2.2 temporary variables . 120
C.2.3 header black . 120
C.2.4 fonction black . . 120
C.2.5 init state 120

C.3 Labelling process 120
C.3.1 state variables . . 120
C.3.2 temporary variables . 121
C.3.3 header black 122
C.3.4 fonction black 122
C.3.5 initialization state . 125
C.3.6 ar estimation state . 128 -

C.4 Core process 131
C.4.1 state variables 131
C.4.2 temporary variables . 135
C.4.3 header black . 135
C.4.4 fonction black . . 136
C.4.5 init state 144
C.4.6 forward state . 148
C.4.7 svc start state . 155
C.4.8 svc _ complete state . . 155

lll

List of Figures

1.1 Fairness on a link
1.2 Max-min fair allocation

2.1 Functioning of Dynamic Packet State .
2.2 Storage possibilities of the DPS
2.3 Behavior of edge nodes in a CSFQ domain .
2.4 Behavior of core nodes in a CSFQ domain
2.5 CSFQ pseudo-code
2.6 Fair share estimation pseudo-code .
2. 7 Relabeling of packets
2.8 Function min(A~, F S(t))
2.9 Function Lf=I min(A~,FS(t)) .
2.10 Token bucket
2.11 Three colors marking scheme
2.12 DC is decreased
2.13 DC is increased
2.14 Router implementing Jitter Virtual Clock
2.15 Router implementing Core-Jitter Virtual Clock
2.16 Centralized bandwidth broker
2.17 Distributed bandwidth brokers
2.18 Distributed admission control (RSVP)
2.19 Simple marking
2.20 Unit-based reservations . .
2.21 Per-hop admission control

3.1 Underestimated fair share
3.2 Overestimated fair share .
3.3 Frequency of FS updates .

3
5

12
13
15
15
16
17
18
19
20
24
24
25
25
27
28
39
41
41
42
42
44

51
52
55

4.1 MCSFQ fair share estimation pseudo-code 58
4.2 support of minimum guarantees : pseudo-code . 60
4.3 Fair share estimation without/with estimation of the aggregate guarantee 63

5.1 Single bottleneck scenario 66
5.2 Core router module composition 67
5.3 Multiple bottleneck scenario . . . 69
5.4 Egress router module composition . 70
5.5 Generic Fairness Configuration scenario 73

V

6.1 Goodput of the TCP flows
6.2 Impact of the window size on the throughput
6.3 Comparison of fair share initializations .
6.4 Fair share initialized to 1 bps
6.5 MCSFQ versus CSFQ : forwarding rate
6.6 MCSFQ versus CSFQ : dropping rate .
6.7 MCSFQ versus CSFQ : forwarding rate
6.8 MCSFQ versus CSFQ : dropping rate .
6.9 Throughput with a latecomer source ..
6.10 Fair share estimation evolution at the edge .
6.11 Fair share estimation evolution at the core .
6.12 Throughput with 50% guaranteed throughput
6.13 Throughput with 90% guaranteed throughput
6.14 Throughput without guarantees .
6.15 Throughput with guarantees
6.16 Excess throughput
6.17 Goodput of the flows with tail drop .
6.18 Goodput of the flows with CSFQ and MCSFQ.
6.19 Excess goodput of the flows with CSFQ and MCSFQ
6.20 Excess goodput of the flows with tail drop

A.1 The three layers of OPNET models . .

B.l Arrival rate estimator : process model
B.2 Buffer acceptance module: process model
B.3 Edge node .
B.4 Core node . . .

C.l Deliver process
C.2 Routing process .

vi

78
80
81
82
83
84
85
85
87
87
88
89
89
90
91
91
93
93
94
94

. 106

. 110

. 111

. 112

. 114

. 117

. 119

Acronyms

AF Assured Forwarding

bps bits per seconds

CJVC Core-Jitter Virtual Clock

CSFQ Core Stateless Fair Queueing

DiffServ Differentiated Services

DPS Dynamic Packet State

DSCP Differentiated Services Code Point

EF Expedited Forwarding

FADE Fair Allocation Derivative Estimation

FIFO First In First Out

GFC Generic Fairness Configuration

guar. guarantee

IntServ Integrated Services

IP Internet Protocol

ISP Internet Service Provider

JVC Jitter Virtual Clock

Kb Kilo bits

vii

Kbps Kilo bits per seconds

Mbps Mega bits per seconds

MC-RED Multi-Color Marking Scheme

MCSFQ Modified Core Stateless Fair Queueing

ms milliseconds

MTU Maximum Transmission Unit

OPNET Optimum Network Performance

PH Per-hop admission control

PHB Per Hop Behavior

QoS Quality of Service

RED Random Early Detection

RSVP Resource reSerVation Protocol

RTT Round trip time

SLA Service Level Agreement

SM Simple Marking

SPFQ Stateless Prioritized Fair Queueing

TCP Transmission Control Protocol

ToS Type of Service

Tspec Traffic Specification

UBR Unit-based reservations

UDP User Datagram Protocol

viii

------------------------------- -------- - -- --

VPI Virtual Path Index

WCSFQ Weighted Core Stateless Fair Queueing

WFQ Weighted Fair Queueing

ix

Chapter 1

Quality of Service

Quality of Service (QoS) is a popular concept among the Internet community. But, this
concept has various definitions. "To some people it means introducing an element of pre­
dictability and consistency into the best-effort network delivery systems. To others, it means
obtaining higher transport efficiency from the network and attempting to increase the volume
of data delivery while maintaining characteristically consistent behavior. And yet, to others,
QoS is simply a means of differentiating classes of data service, offering network resources
to higher-precedence service classes at the expense of lower-priority classes. QoS also may
mean attempting to match the allocation of network resources to the characteristics of spe­
cific data flows. All these definitions fall within the generic area of QoS as we understand it
today." [FH98]

The popularity of the QoS concept lies in the possibility of providing more distinguished
services than simply getting the packets to their destination. QoS is seen as a way to provide
an additional source of revenue and a competitive position to Internet Service Providers.
The existence of mechanisms providing diff erentiated class of services would allow to develop
different types of contracts with the Internet users. In these contracts, the service provided
would be found as well as the corresponding billing system. Such contracts are called Service
Level Agreements. In the corporate, academic and research network areas, there are also
compelling reasons to the provision of QoS. Although the competitive and economic reasons
may not explicitly apply in these types of networks, providing different levels of services may
still be desirable. These levels of services could be important to differentiate the service
provided to critical applications to the ones from which benefit accessory applications. A
differentiation of service among the users may also be considered.

The attempt to match the allocation of network resources to the requirements of some
data flows may be in contradiction to the objective of offering an efficient delivery service
supporting many flows each with its proper characteristics. The incapacity to provide such
precise services adapted to the flows' needs, in a dynamic environment where the flows are
numerous and short-living, is called the scalability problem. It results from the need to
maintain astate for each flow, to which a particular service is required, in each router on the
flow's path. Such particular service is called a guarantee. And, the role of the flow's state
is to store the guarantee of the flow and the current situation concerning this flow. Such
information is used by the router to forward the packets according to the service guaranteed
to each flow.

1

By comparison, the provision of Differentiated Services (DiffServ) does not require to
maintain state for each flow in the routers. At the border, the entrance of the network, it
is determined to which class of service the packets belong. Based on this classification, the
packets are marked with a label carrying information on their service class. This label enables
routers to determine the forwarding method of packets. Buffer acceptance mechanisms and
schedulers are used to implement the different forwarding methods that are supported by the
routers. For such differentiated services, no state is required per-flow in the core of the network.
Therefore, the provision of such services is more scalable than the provision of guarantees that
are adapted to the precise needs of the flows.

The provision of guarantees appropriated to the characteristics of the flows is very inter­
esting for certain flows. The interest lies in the independence of such services to the load of
the network and to the properties of the other flows sharing the network. In an Integrated
Services (IntServ) architecture the flows are provided with absolute guarantees. To bypass
the scalability problem of the IntServ architecture, methods to provide absolute guarantees in
a DiffServ architecture are actually the abject of research.

The purpose of this thesis is to study scalable methods allowing the provision of absolute
guarantees as well as protection of the flows against the other flows. To achieve this goal, a
first look is given at some of the guarantees that may be thought of as interesting to provide to
the flows. The concept of fairness shows the protection that may be assured to the flows from
flows hungry for bandwidth. From these guarantees, Integrated and Differentiated Services
may be built . These services providing either absolute or relative guarantees.

1.1 Different kind of guarantees

A flow is a sequence of packets with one common characteristic(Bon00]. This characteristic
can be based on any field of the packets. The packets of a layer n flow have a common
characteristic in the layer n header. For example, application fl.ows are layer four flows in the
TCP /IP suite. The packets of an application fl.ow are used by a specific application. The
application is the identifier of the flow. Layer three and two flows may also be considered.

There can be guarantees on the amount of bandwidth a flow is allowed to use, on the
maximum delay incurred by the packets of a flow, on the maximum variation of the delay, on
the packet loss ratio of a flow, ...

1. 1. 1 Best effort

Traditionally, the Internet offers only a single Quality of Service (QoS), best effort. With
this service, no guarantees in terms of bandwidth, delay and packet loss can be ensured to a
flow.

The best effort service is not sufficient for streaming or critical applications. The flows
associated to these applications may not be able to use the amount of bandwidth required by
the applications, the delay of the packets may be too high or, the lost packets may hinder the
good functioning of the applications.

Without providing bandwidth, delay and packet loss guarantees, a best effort network
should provide a fair service to all its users. The goal of a best effort network should be to

2

ensure that there are no flows using all the resources while some other flows are starving. In
a best effort network, all packets should receive the same service. There are two manners to
define the fairness support, namely fairness on a link and fairness in the network.

Fairness on a link

One way to protect flows from one another is to share the bandwidth between them so
that ail flows are given the same portion of the bandwidth on each link. The fair share on a
link is given by

Link bandwidth
Fair shareon a link = N b f f l um er o ows

~' /_Jçij -v.l:11
ll ~ 1Mb ps Dest2

-flow 2 -flow 1-
5 Mbps 5Mbps Router 10Mbps~ jg

-flow2- -flow2~_j) Mbps
-flow3- D

Source 2 Llnk 1 Llnk 2 ,._

/

flow3

The fair share on link 1 is 2.5 Mbps. s Mbps now 3 Dest 3

The fair share on link 2 is 5 Mbps. Id /
Because flow 2 is limited to 2.5 Mbps l!I D
on link 1, only 7 .5 Mbps of link 2 is
used.

Source3

Figure 1.1: Fairness on a link

This solution has a major disadvantage : if the rate of some flows is below the fair share
of the link, some bandwidth isn't used. There is a waste of resources. The rate of a flow on
a link is below the fair share of the link when the sending rate of the flow is below the fair
share of the link or when the flow is bottlenecked before the link. The bandwidth that is not
used by such flows cannot be shared between the other flows with this definition of fairness.
An example where some resources are unused but the network is congested is shown in figure
1.1. In this situation, it is supposed that each source has a sending rate of 10 Mbps. Flow
1 and flow 2 are congested on the first link. The fair share on link 1 is 2.5 Mbps. Flow 3 is
bottlenecked on the second link. The fair share of the second link is 5 Mbps. The rate of flow
2 on link 2 is of 2.5 Mbps because of the fair share on the first link. Flow 3 will be limited to
5 Mbps even though flow 2 doesn't use all its fair share. Only 7.5 Mbps are used on link 2.

Fairness in the network

The max-min fairness concept resolves the problems of the definition of fairness on a
link. Max-min fairness is applicable to a network while the concept of fairness on a link may
introduce a waste of resources when applied to a network.

3

In a max-min allocation, bandwidth is distributed in a fair manner on a link when all
bottlenecked1 flows have the same share of the bandwidth. This allocation maximizes the
attribution of bandwidth to the sources receiving the smallest allocation [BG92].

The allocation of bandwidth to each flow can be determined as follows :

1. Set the bandwidth allocation of each flow to O Mbps.

2. Increase all these allocations by 1 Mbps2 .

3. While there aren't any flows bottlenecked in the network, increase the allocation of each
flow by 1 Mbps. ·

4. For the flows that are bottlenecked on a link, set the final allocation of bandwidth to
the actual allocation.

5. Do not consider these bottlenecked flows anymore.

6. If the number of flows considered is greater than zero go to number 2.

An example of fair allocation (FA) is shown by figure 1.2. To obtain the fair share of each
flow, the algorithm exposed in the previous paragraph is applied. In the figure, FAl stands
for ''fair allocation of flow 1 (Fl l)". At first, the fair allocations of all flows are set to O Mbps.
Then, they are increased until flow 2 and flow 3 become bottlenecked on link 1. These two
flows are taken out of the set of flows considered by the algorithm. The set now contains
only flow 1. Its fair allocation is increased until link 2 becomes bottlenecked. Then, the set
of flows considered is empty. The algorithm stops. The fair share of each flow is the value of
FA flownumber at the time the flow is taken out of the set.

A property of a max-min fair allocation is such that to increase the bandwidth allocated
to one source, it is necessary to decrease the bandwidth allocated to another source which
already receives a lower allocation [BG92]. For example, as shown by figure 1.2, to increase
the bandwidth attributed to source 1 by 1 Mbps, the only possibility is to decrease the amount
of bandwidth allocated to source 2 or source 3 or both of them but these sources already have
a lower allocation than source 1. On link 2, only the amount of bandwidth attributed to flow
1 can be increased. The other flows are already limited on the first link. On one link, only
the flows with the highest bandwidth allocation could benefit of an even higher allocation.
The flows that have a lower allocation are either limited by the sending rate of the source or
are limited on a previous link in the network. The bandwidth attributed to source 2 can only
be increased by decreasing the amount of bandwidth allocated to source 3. Decreasing the
bandwidth source 1 gets would have no impact on the bandwidth that can be allocated to
source 2 if the bandwidth allocated to source 3 has to be kept constant.

When we talk about fair allocation, we usually consider max-min fairness. Such a fair
allocation is hard to determine in practice because flows are established and tom down at any
time. Flows might also not be bottlenecked at all in the network leaving more bandwidth for
the other flows sharing the network resources.

1 A flow is said to be bottlenecked on a link when it cannot send at a higher rate or its packets will be
dropped at the node transmitting on that link ; some of its packets may already be dropped at that node.

2When 1 Mbps is the smallest bandwidth unit considered.

4

~ ~ ~",,, ~
SM~~"\ :~ 'ï':21 :·;~ 1 4~~~~~Ul

Source 3

--Fl2- --Fl2-
--Fl3- --Fl3-

5 Mb
'-. Dest 1

J' ps F12 5
Mbp\

I 3 lnit : Set of flows = {FI 1, FI 2, FI 3} 1g
/ Step 1 : FA 1 = 0 Mbps

FA2=0Mbps □
FA3 = 0 Mbps

Step 2: FA1 = 1 Mbps
FA2 = 1 Mbps

Step 3 :
Step 4:

Step 5:
Step 6:
Step 7:
Step 8:
Step 9:
Step 10:
Step 11 :

FA3 = 1 Mbps
FI 2 and FI 3 are bottlenecked
FA2final = 1 Mbps
FA3final = 1 Mbps
Set of flows = {FI 1}
FA1 = 2 Mbps
FA1 = 3 Mbps
FI 1 is bottlenecked
FA 1 final = 3 Mbps
Set of flows = O
Stop

Figure 1.2: Max-min fair allocation

Dest2

When a weight is associated to the flows, in a fair allocation, all flows bottlenecked on the
same link have the same value for the ratio of the outgoing bandwidth used by the flow over
the flow's weight [SSZ98a). Let's consider for example two flows. The first flow (flow 1) has a
weight of 2. The second flow (flow 2) has a weight of 1. If these two flows are bottlenecked
on the same link, the fair share of flow 1 is twice the fair share of flow 2.

1.1.2 Minimum guarantees

A flow that is the object of a minimum bandwidth guarantee is allowed to use this band­
width at any time during the reservation. And, if the network is not congested, such flow may
use more than its reservation.

This type of guarantees is useful for critical applications as well as for streaming applica­
tions that adapt their sending rate to the available bandwidth. These applications are sure
to have the resources they need for their functioning if the reservation fits to their critical
need. And, when the load of the network is low they may benefit from more bandwidth. This
additional bandwidth can be used to provide a better quality to the user of a video conference
application, for example.

5

1.1.3 Maximum guarantees

A maximum throughput guarantee is a guarantee where the flow is allowed to use a certain
amount of bandwidth at any time but it is never allowed to use more than its guarantee.

lt is useful to provide maximum throughput guarantees to non-adaptive streaming appli­
cations. These applications do not need more bandwidth than their maximum sending rate.
And, their sending rate is almost constant. The guarantee is then equal to the average sending
rate of the flow which is almost equal to the maximum sending rate.

Bandwidth as well as delay, delay jitter and packet loss can be the object of guarantees.
The mechanisms that are exposed in chapter 2 either try to provide a fair best effort service
to all flows or also support minimum bandwidth guarantees.

Different services aim to provide guarantees to flows . Among these services there are the
Integrated Services (IntServ) and the Differentiated Services (DiffServ).

1. 2 Integrated Services

IntServ provides Quality of Service (QoS) to layer four flows. These flows inform the
network about their QoS requirements. And, the network accepts or rejects the flows based
on their requirements and the current state of the network.

An IntServ router has to handle Resource reSerVation Protocol (RSVP) messages and
to perform admission control at the control level. RSVP is a protocol used to associate
reservations to unidirectional layer four flows. Admission control ensures that if a flow is
accepted in the network, there are enough resources to provide its guaranteed requirements.

At the forwarding level, the packets have to be classified into layer four flows. Then, the
packets are queued and scheduled according to their classification. The respect of guarantees
by the network depends on the shaping, policing, queueing and scheduling algorithms.

There are two types of Integrated Services. The guaranteed service and the controlled load
service. These services are introduced in the following subsections.

1.2.1 Guaranteed service

The guaranteed QoS(SPG97] applies to the portion of a flow that conforms to the token
bucket Traffic Specification, Tspec, carried in the RSVP messages associated to the flow. The
Rspec parameter also carried by RSVP messages defines the actual service rate delivered to the
flow by the network as well as some additional terms that bound the actual delay delivered to
the flow(McD00]. The guaranteed service should strive to treat packets that fail to conform to
the Tspec on a best-effort basis. The guaranteed QoS associated to a flow has to be provided
to the portion of the flow that conforms to its Tspec even if the flow in its entirety does not
conform to its Tspec. And, flows conforming to their Tspec should receive their guaranteed
QoS in spite of the presence of non conforming flows.

In the guaranteed service, the flows benefit from a minimum throughput guarantee and
the maximum delay of the guaranteed packets is bounded. There are no guarantees on the
minimum or average delay. And, guaranteed packets should not suffer losses.

6

1.2.2 Controlled-load service

Like the guaranteed service, the controlled-load service applies to the portion of a flow
that conforms to the token bucket Traffic Specification, Tspec. The idea of the controlled­
load service is to provide the same performance as the best-effort service under unloaded
conditions. A very high percentage of transmitted packets will be successfully delivered by the
network[Wro97). And, the transit delay experienced by a very high percentage of the delivered
packets will not greatly exceed the minimum transmit delay[Wro97). Controlled-load service
requires that each network element provides the QoS to conforming flows even if some flows
do not conform to their Tspec[McD00). The specification requires that the network attempts
to forward nonconforming packets on a best-effort basis[McD00). The network elements may
either degrade the performance of all packets in a nonconforming flow, or only those packets
that exceed the Tspec parameters[Wro97) .

In the controlled-load service, there are no deterministic guarantees on lasses but the
amount of lost packets should be almost as low as in the guaranteed service for conforming
flows. There are also no guarantees on maximum delay and delay jitter. However, the average
queueing delay should be low for conforming packets.

1.3 Differentiated Services

The idea is that DiffServ provides a few classes of traffic. Different QoS commitments, in
terms of average delay and average lasses, are associated to each class of traffic. The Internet
Service Provider (ISP) has to configure its routers to efficiently support the requirements of
the t raffic classes. The ISP also has to take care of the network provisioning by taking into
account the evolution of the load on the links and of the customers' traffic contracts.

To provide these Differentiated Services, a distinction is made between two types of network
elements : the interior nodes and the boundary nodes. Interior nodes are simple to operate at
high speeds and the more complex functionalities are provided only by the boundary nodes.
Among these functionalities, there is the marking of the packets according to the Service Level
Agreement (SLA) negotiated with the customer. The type of service is indicated explicitly
inside each IP packet in the Differentiated Services Code Point (DSCP). Interior routers rely
on the DSCP to provide the different types of services. The ISP associates a Per Hop Behavior
(PHB) to each DSCP, inside each router. The PHBs are the building blacks from which an
end-to-end service can be constructed[McD00). The complexity at the interior routers only
rely on the number of different services, not on the number of flows.

Among the Differentiated Services there are the best-effort PHB, the Assured Forwarding
PHB group and the Expedited Forwarding PHB.

1.3.1 Assured Forwarding

In the Assured Forwarding (AF) PHB group, the traffic is divided into at least four classes.
And, inside each class there are at least three drop preferences and at least two drop proba­
bilities. Inside a class, the packets with the highest drop preference will be dropped with a
higher probability than the packets with a lower drop preference. Inside each router, some
buffer and bandwidth resources are reserved for each class. An additional requirement is that

7

packets of the same AF class may not be reordered. The Assured Forwarding PHB group is
described in [HBWW99] .

1.3.2 Expedited Forwarding

A description of the Expedited Forwarding (EF) PHB is given in [JNP99]. The goal of EF
is to provide a service with a low packet loss ratio, a low end-to-end delay and a low delay
jitter. The ISP configures the amount of bandwidth available to the EF traffic at each node.
And, the EF traffic should receive this bandwidth independently of the intensity of any other
traffic at the node over any time interval equal to or longer than the time to send a Maximum
Transmission Unit (MTU) sized packet at the configured rate.

1.4 Integrated versus Differentiated Services

The major differences between the IntServ architecture and the DiffServ architecture are
given in table 1.1 inspired from [DR99] . The major problem of the Integrated Services is the
scalability. There is some overhead due to RSVP signalling messages, some state information
for each fl.ow is required inside each router and there is heavy per data packet processing
(classification, checking of the traflic contract and the reservation).

Additionally, in the DiffServ architecture, SLA only have to be negotiated between pairs
of ISPs that are connected. In the IntServ architecture, agreements have to be taken between
all the ISPs crossed by the guaranteed fl.ows.

1. 5 Scope of the thesis

In this thesis, it is studied how to provide individual fl.ow service differentiation in a
DiffServ architecture. The goal is to provide fine granularity service differentiation by avoiding
the scalability problems of the IntServ architecture. Also, stateless alternatives to RSVP are
given for the admission control. For these protocols, there is no need to maintain per-fl.ow
state in the interior routers, only aggregate information is stored. The aim is to obtain a
scalable solution where absolute guarantees can be provided to individual fl.ows. To achieve
this objective, a global view of the working of core stateless mechanisms is given. A particular
mechanism is studied, improved and simulated.

In chapter 2, the basic functioning of scalable methods for the provision of fairness and
guarantees is exposed and is illustrated by the presentation of different mechanisms. The fea­
tures of the services supported by these mechanisms are studied and extensions are proposed.
Then, some scalable admission control mechanisms, needed for the provision of absolute guar­
antees, are discussed.

Among the scalable mechanisms, also called core stateless mechanisms, presented in chap­
ter 2, one mechanism is studied more deeply in the third chapter. This mechanism is called
Core Stateless Fair Queueing (CSFQ). Sorne clarifications about the algorithm are provided
and the impacts of the configuration parameters are investigated.

8

Integrated Services Differentiated Services
Granularity of service differ- Individual flows Aggregate of flows
entiation
State in routers (e.g schedul- Per-flow Per-aggregate
ing, buffer management)
Traflic classification basis Several header fields The Differentiated Services

field (6 bits) of the IP header
in the core and several header
fields at the edge

Type of service diff erentiation Deterministic or statistical Absolute or relative assur-
guarantees ances

Admission control Required Required for absolute differen-
tiation only

Signaling protocol Required (RSVP) Not required for relative
schemes

Coordination for service dif- End-to-end Local (per-hop)
ferentiation
Scalability Limited by the number of Limited by the number

flows classes of service
Interdomain deployment Multilateral agreements Bilateral agreements

Table 1.1: Comparison between Integrated Services and Differentiated Services

Chapter 4 concerns possible improvements of CSFQ and the creation of a new mechanism
based these improvements. In this chapter a contribution to CSFQ is brought for the support
of minimum throughput guarantees in addition of the initial fair allocation of bandwidth.

The next chapters introduce the multiple scenarios used for the simulations and provide
an argumentation of the results obtained from these simulations. The simulation scenarios
presented in chapter 5 possess diff erent characteristics concerning the amount of bottlenecked
links, the fair share on these links, the Round Trip Times (RTTs) of the flows, ... and are
used with various types of traflic.

In chapter 6, the analysis of the simulation results underlines the behavior of CSFQ and its
modified version, called Modified Core Stateless Fair Queueing (MCSFQ). Then, the degree of
fairness in the bandwidth distribution obtained with CSFQ and MCSFQ in different situations,
resulting from the various scenarios, is the center of interest with the capacity to ensure the
bandwidth guarantee of the flows. Finally, further improvements to CSFQ are proposed in
the further work section of the conclusion.

9

of

Chapter 2

Stateless Mechanisms

Stateless mechanisms usually rely on Dynamic Packet State (DPS) to store informations
from the state of the flows. They may also rely on feedback mechanisms to communicate
informations from the core to the edge nodes. In this chapter, some of the stateless mechanisms
presented in the literature are exposed. Then, a comparison of these mechanisms is given in
terms of complexity location, guarantees and admission control requirements. Furthermore,
we propose adaptations to these mechanisms in order to enlarge their provision of guarantees.
In the second part, various stateless admission control mechanisms are exposed. And, finally,
an evaluation of these admission control mechanisms is given.

2.1 Dynamic Packet State

Today, to provide guaranteed services, the routers have to implement complicated classi­
fication, shaping, policing, buffer management and scheduling mechanisms based on per-flow
information. In the Internet nowadays there are many short living flows. They usually don't
require a great amount of bandwidth but there are a lot of them. If each router had to main­
tain some information about each flow passing through it there would be a limitation on the
number of these flows.

An other limitation could be the computation speed of the routers. Before, packets were
usually buffered waiting for link availability. Now, with the advances made in link technologies,
the process could reverse. Routers could become too slow to provide packets quickly enough
on their output links.

By avoiding to maintain per-flow state in routers and to provide per-flow treatment, we
could gain space in the routers' memory and speed in packet processing and forwarding. The
number of flows passing through a router wouldn't be limited anymore. However, to provide
guarantees to a flow, the routers have to know how to treat its packets. They therefore need
to know the guarantees associated to the flow as well as other information that state the
flow's actual situation. For routers to be aware of flows' situations some flow state could be
carried by each packet of the guaranteed flows. This state carried in packet headers is called
"Dynamic Packet State". The routers don't need to keep per-flow information anymore. They
will process packets according to the states included in the packets' headers.

As illustrated by figure 2.1, a distinction is being made between two kind of routers, the
ones that are at the border of the network, called edge routers, and the ones that aren't,

11

□
Source

lngress edge router
Performs classification
Marks each packet with
some PHB codepoint and
some PHB-specific state.
This label is the DPS.

■

Core router
Doesn't keep per-flow information
Processes each incoming packet based on the state
carried in the packet's header

The Dynamic Packet
State is the information
needed by core routers to
process the packet
according to the
guarantees assured to the
flow.

r
Egress edge router
removes the marking
introduced by ingress
edge router

Figure 2.1: Functioning of Dynamic Packet State

which are called core routers. When Dynarnic Packet State (DPS) is used, edge routers
perform classification of the flows and mark the packets with the per-flow state required by
routers to support guarantees. Edge and core routers then process the packets according to
the marking. The label determines a Per Hop Behavior (PHB1); the marking is also sometimes
called Differentiated Services Code Point (DSCP2). To respect transparency, when a packet
reaches the edge of the network, the state introduced in the packet at the entrance of the
network is removed. An introduction to DPS can be found in [Szs+ggJ as well as in [SZ98).

To support guarantees, all -routers have to keep some state for each flow. With Dynamic
Packet State, instead of keeping per-flow state in each router, the packets carry the state of
the flow. This state can be present in the IP header or an IP option could be defined as well
as a hop-by-hop extension header (see figure 2.2).

In the following, we distinguish two types of DPS mechanisms. The first type is composed
of the mechanisms that try to allocate bandwidth fairly between the flows sharing the network.
The mechanisms of the second type are additionally able to provide minimum throughput
guarantees to the flows.

1 A PHB indicates the way a packet with such PHB will be handled by a hop in the network. It enables the
network to provide some guarantees to the packet's flow.

2The DSCP indicates the class of services to which a packet belongs in a Differentiated Services network.

12

DPS

----IP Header·-----------Da1ta-------.

+Options-.

DPS

----------IPPacker----------

DPS is stored as an IP option

----IP Header·-----------Dana-------.

----------IPPacke,i----------

DPS is stored in some defined IP fields

----IP Header·-----------Data,------

._.Extension-Jf------- ----lP Packe,1---------­
Header

DPS is stored in an extension of the IP header

Figure 2.2: Storage possibilities of the DPS

2.2 Fair bandwidth allocation

Almost all Internet traffic is best-effort. When congestion occurs, routers drop packets.
Flows react differently to packet drops and congestion depending on the transport protocol
they are using. Flows using TCP diminish their sending window, which means that their
sending rate decreases. On the other hand, some flows are based on UDP where no congestion
mechanism has been implemented3 . When these two different kind of fl.ows are in competition
for bandwidth and no mechanism is used to protect TCP fl.ows, UDP fl.ows monopolize the
majority of the bandwidth.

TCP can be confi.gured to modify the default congestion mechanism. It follows that all
TCP flows could not react in the same manner to congestion. A protocol could be added to
UDP so that UDP flows become sensitive to congestion [Rosül). For these reasons it isn't
enough to make a distinction between TCP and UDP flows and punish UDP without any
further knowledge of the flow's behavior. There is a need for a more elaborated mechanism

3Some congestion mechanisms have been introduced for UDP but none is widely implemented in practice.

13

to protect flows from each other and make sure no flow takes away bandwidth from others.
Therefore the mechanisms introduced below are trying to provide max-min fairness (see 1.1.1)
between the flows sharing the network.

Within the mechanisms that aim to provide the flows with their fair share, there is Core
Stateless Fair Queueing (CSFQ). With CSFQ, two flows following the same path and having
the same sending rate should get the same throughput. Weighted Core Stateless Fair Queueing
(WCSFQ) is a variant of CSFQ. It allows the sharing of the network according to the weight of
the flows . These weights introduce relative bandwidth differentiation among the flows. When
a weight is associated to the flows, all bottlenecked flows should have the same value for the
ratio of the outgoing bandwidth used by the flow over the flows weight in a fair allocation.
CSFQ and WCSFQ are presented in [SSZ98b], in [SSZ98a] and in [Szs+ggJ.

2.2.1 Core Stateless Fair Queueing

The goal of Core Stateless Fair Queueing is to approximate the behavior of a network
implementing Fair Queueing at each node. In Fair Queueing, there is a packet classification
module to determine to which flow a packet belongs. Additionaly, there is a work-conserving
scheduling mechanism that computes the time at which the packet should be forwarded and
serves packets in order of those times. Each flow should get a portion of the bandwidth
according to :

linkrate rate= ---
nb11ows

where nb11ows is the number of flows that have at least one packet in the queue. In fair
queueing, the value of nb11ows is very dynamic. The classification being done by each router,
the number of active flows is known at all times by each router.

To provide fair bandwidth sharing, with CSFQ, edge routers estimate the arriva! rate
of each flow. They insert this estimation in the packets' label. Then, edge and core routers
compute the aggregate arriva! rate. Based on this approximation, the packet label and the fair
share estimation, they calculate a probability to drop the packet. If the dropping probability
is greater than zero, the packet is relabeled with the fair share. Then, it is forwarded to
the FIFO queue of the output link.Figure 2.3 shows the way edge routers act when a packet
arrives. The treatment provided to packets by core routers is illustrated by figure 2.4.

Figure 2.5 displays the pseudo-code of the CSFQ algorithm. The pseudo-code of the fair
share estimation is given by figure 2.6. In these figures, i represents the identifier of a flow
and p is a packet , AR is the estimation of the arriva! rate, FR is the estimation of the portion
of the traffic that is forwarded to the queue and F S is the estimation of the fair share. FR
is the rate of the packets that are not dropped by CSFQ. This rate may be higher than the
rate of the packets that are sent from the queue on the output link because some packets may
dropped by the fifo queue.

On packet p arriva!, the edge routers perform classification. They determine the flow to
which the packet belongs, jlO'Wi- The state of this flow is then used to compute the arriva!
rate of the flow. The arriva! rate of a flO'Wi is determined for any i by

(2.1)

14

Flow 1 ______ ,__..,

Flow 2 ------+-~

Flow n -------+-~

Estimates the arrivai
rate of the flow
based on some flow
state and mark
packets with that
estimation

,.

Fair rate
estimator

Estimates the fair rate on its output link
Drops excess packets
Relabels packets to the fair rate when
the dropping probabillty of the packet is
greater than zero
Forwards packets to the FIFO queue

Figure 2.3: Behavior of edge nodes in a CSFQ domain

Flow1

Flow2

Flown

1 fffl/,1

1 -
1 [§IJ

Estimates the fair rate on its output link
Drops excess packets
Relabels packets to the fair rate when
the dropping probability of the packet is
greater than zero
Forwards packets to the FIFO queue

.--,---,-

Fair rate IF 1 IF'' estimator
"-"'--'--,._

Figure 2.4: Behavior of core nodes in a CSFQ domain

15

1 R I

On receiving packet p
if (edge router)

i = classify(p);
p.label = estimate_rate(A~,p);

Pdrop = max(0,1-FS/p.label);
if (Pdrop > uni fr and (0 , 1))

FS = estimate_FS(p,1);
drop(p);

else
if (Pdrop > 0)

p.label = FS; f* relabel p*/
FS = estimate_FS(p,0);
enqueue(p);

Figure 2.5: CSFQ pseudo-code

where A~,old is the previous estimation of the arrival rate of flowi stored in the fl.ow state,
K is a constant, L is the length of the current packet p and T is the time elapsed between
the arrival of the previous packet of flowi and the current packet arrival. To obtain T, the
arrival time of the last packet of a fl.ow has also to be stored in the fl.ow's state. The new
arrival rate estimation off lowi (A~,new) is used to label the current packet p belonging to
flowi . Finally, the fl.ow state is updated. The specific work of the edge routers is then clone.
After this, the behavior of the edge routers is the same as the one of the core routers.

When a packet p arrives, the core routers compute the drop probability of the packet using
equation

FS
Pdrop = max(0, 1 - l b 1) p.a e

(2.2)

where FS has been estimated on the previous packet arrival and p. label is the label of the
current packet. Then, a number between 0 and 1 is taken randomly and following a uniform
distribution. If the drop probability Pdrop of the packet is greater than the number taken
randomly, then the packet is in excess of the fair share. A new estimation of the fair share
is clone and the packet is dropped. Otherwise, when Pdrop is lower than the random number,
the packet belongs to the fair allocation. If the drop probability is above zero, the packet is
relabeled with the fair share. Then, independently of the value of Pdrop, the fair share is also
estimated. And, after the estimation, the packet is stored in the queue if it is not full.

The estimation of the fair share is clone as illustrated by figure 2.6. First of all, the arrival
rate of the aggregate traflic at the router and the rate at which the packets are forwarded to
the queue are estimated using the exponential averaging, exposed by equation 2.1. Then, it
is tested if the arrival rate is bigger than the link rate. If it is the case, the link is supposed to
be congested. Otherwise, it is not congested. When the link becomes congested, the variable
congested indicating the congestion is set and, the beginning of the time window, start_time,
is set to the current time. If the link was already congested at the previous estimation and
the time elapsed since the beginning of the time window is larger than the window size Kc ,

16

estimate_FS(p,dropped)
estimate_rate(AR,p); I* estimate arrival rate *I
if (dropped == FALSE)

estimate_rate(FR,p);
if (AR~BW)

if (congested == FALSE)
congested = TRUE;
start_time = current_time;

else
if (current_time > start_time + Kc);

FS = FS * BW/FR;
start_time = current_time;

else I* AR< BW *I
if (congested == TRUE)

congested = FALSE;
start_time = current_time;
temp_FS = O; I* Used to compute new FS *I

else
if (current_time < start_time + Kc)

temp_FS = max(temp_FS,p . label);
else

return FS;

FS = temp_FS;
start_time = current_time;
temp_FS = O;

Figure 2.6: Fair share estimation pseudo-code

the fair share is updated according to

Then, start_time is set to the current time.

(2.3)

The link is considered uncongested when the arrival rate is below the link rate. In this
case, the fair share estimation is done differently than when there is congestion. If the link
was congested at the previous estimation but is now uncongested, the variable congested is
set to false and temp_FS is set to zero. The variable temp_FS is used to compute the maximum
of the labels carried by the packets arriving during an interval of Kc length and starting at
start_time. If there was already no congestion when the previous estimation of the fair share
was done, and a period of a window size has not elapsed since start_time, temp_FS is set to
the maximum of its current value and the label of the packet that has arrived. If the link was
already uncongested but Kc seconds have elapsed since start_ time, then the fair share is set
to the maximum of the labels of the packets that crossed the router since a window size time
and now, temp_FS. The time indicating the beginning of the time window is set to the current
time.

17

It is necessary to update the label in case packets of the flow are dropped because then
the arrival rate changes and tends to be equal to the fair share. If this wasn't done, the flow
could have packets dropped at the next hop even if the fair share of that node is respected
because of the dropping that has already been done (see figure 2.7).

Source 2
Drops approximately
half of the packets
from source 1 and
half of the packets
from source 2.
Relabels the packets
that will be sent with
the fair share of 5
Mbps.

10 Mbps
Core

Router

Doesn't drop packets because
each flow has reached its fair
share on the previous link and lt
is also the fair share on the IJ
outgoing links. D

SMbps

Destination 1

tj
Destination 2

If the packets weren't relabeled at
the previous hop, the labels of the
packets would be 10 Mbps with a
fair share of 5 Mbps for each
output link. The core router would
drop halfof the incoming packets
for each output link even if this is
not needed.

Figure 2.7: Relabeling of packets

The constant Kc is introduced to face the inaccuracies due to exponential averaging.
Without this constant, the relationship between the fair share and the forwarding rate has
not the time to settle down in the network. The fair share F S is estimated each time the link
is congested for at least Kc seconds. It is also computed when the link is uncongested during
the last Kc seconds. We can already see that if the link passes from uncongested to congested
and vise-versa too quickly (i.e. in a time smaller than Kc) the fair share won't be reestimated.

When the link isn't a bottleneck, the fair share is set to the arrival rate of the most
bandwidth taking flow. In this case, there is no need to drop packets from any flow. By
setting the fair share to the maximum flow rate, no packets will be dropped because the
dropping probability will be zero for each flow according to equation 2.2.

The accepted forwarding rate FR is a fonction of the estimated fair share F S. We have

n

FR(FS(t)) = L min(A~, FS(t)) (2.4)
i=l

where n is the number of active flows and A~ is the rate of flow i. Here, active flows are flows
that have a sending rate different from zero. Intuitively, we can see that when the rate of a
flow is above the fair allocation, packets are dropped by the bandwidth allocation mechanism
to have a rate equal to the fair allocation. But, when a flow sends at a lower rate than the
fair share, the forwarding rate for this flow should stay equal to the sending rate.

18

FR(.) is a continuous function of FS(t). To see that, we have to remember that the sum
of continuous fonctions is also a continuous fonction. So, we have to show that for any flow i,
min(A~, F S (t)) is a continuous fonction of F S (t). For any i, this fonction can be drawn as

min(ARi, estimated alpha(t))

------------------------~--------

estimated alpha(t)

Figure 2.8: Function min(A~, FS(t))

shown in figure 2.8. It can then be deduced that E?=l min(A~, FS(t)) is also a continuous
fonction (see figure 2.9).

When F S increases, there is less and less flows that reach their fair share. The slope
decreases. It follows that FR increases more slowly. FR is a concave fonction.

FR is piecewise linear. As we can see while FS increases but the same number of flows
still have their sending rate above the fair share estimation F S, the slope stays the same. The
slope is equal to the number of flows that send at a rate bigger than the fair share estimation
FS.

In summary, FR(.) is a continuous, non decreasing, concave and piecewise linear fonction
of FS(t). '

In the algorithm, the accepted forwarding rate is approximated by a straight line passing
through the origin and with slope ~r With what is said before, we can see that at any time
the new forwarding rate is always smaller or equal to the one obtained by equation F Rnew =
~ f F Snew. So, F Snew will be smaller than the fair share. In that way, overestimation is avoided
when there are no changes in traffic. We have to make sure that we don't underestimate the
fair share too much either. In fact, the underestimation only takes place when the slope of
FR changes. This change is unpredictable because the routers never know the number of
flows that are active at some time and their arriva! rate. So, we can never predict exactly the
forwarding rate and thus the fair share.

19

min(ARi, estimated alpha(t))

estimated alpha(t)

Figure 2.9: Function Ef=1 min(A~, FS(t))

Because this mechanism drops packets probabilistically and because of the various esti­
mations, the amount of data present in the buffer on the output link can fluctuate. The only
assurance provided by this mechanism is that each flow will get over a certain time a share of
the bandwidth equal to min(A~,FS). It can happen that the buffer overflows. Each time a
packet is dropped following a buffer overflow, F S will be decreased by a certain percentage.
A limit is fixed to the number of successive times F S can be decreased this way.

In an analogous way, if the link becomes uncongested, that means AR(t) < BW, the
assumption is being made that the link stays uncongested until some threshold is reached.
That allows to store data in the buffer when it is almost empty even if the link becomes
congested. In case of rapid load fluctuation, that enables to keep sending at a high rate when
the link becomes uncongested for a while without risking buffer overflow when choosing the
adequate threshold.

The label stored in each packet represents the arrival rate of the flow to which the packet
belongs. It is of type float . This arrival rate estimation is stored in the fragment offset field
of the IP header. The fragment offset field may be reused because packets are rarely subject
to fragmentation . Fragmentation can be avoided by using a MTU discovery mechanism. The
edge node has to detect whether a packet is a fragment or not. When the packet is a fragment,

20

the fragment offset field is compressed and less room is available for the label[Szs+99]. It is
assumed that packets can be fragmented only by egress nodes. Additionally, as exposed in
[SZ98], 4 bits of the Type of Service (ToS) field in the IP header, designed for local and
experimental use, can also be part of the label.

2.2.2 Weighted Core Stateless Fair Queueing

The functioning of this mechanism is basically the same as that from CSFQ except that
now a weight is associated to each flow. This weight indicates the relative importance of
the flow as regards other flows. The bandwidth a flow gets should be proportional to its
weight. Max-min fairness is achieved when all bottlenecked flows get a share of the outgoing
bandwidth ARï so that the ratios Aw1: are equals (where i indicates the flow).

Each packet of each flow carries a label. The label has value Aw1: for a packet of flow i,
where ARï is the arrival rate and Wi is the weight associated to the flow.

In case of fairness, bottlenecked flows get an amount of the bandwidth that is called the
fair share. Note that there are bottlenecked flows only in case of congestion. In that situation,
the fair share is the unique solution to the following equation :

n . A~
BW = '°'wimm(-,FS)

~ w ·
i=l i

In order to achieve fair share per flow, packets are dropped in case the flows transmit at
a higher rate than they should. Packets are dropped probabilistically, with a probability

Table 2.1 shows the similarities and the differences between this weighted mechanism and
the previous non-weighted version.

CSFQ Weighted-CSFQ
The label represents the flow arrival The label represents ~ where Wi is
rate ARï, for flow i the weight of flow i
Bottlenecked flows have the same value Bottlenecked flows have the same value
for ARï in a fair allocation for AJ: in a fair allocation

BW - ~f=1 min(ARï,FS) when BW = ~f=1 Wimin(~,FS) when -

AR(t) > BW AR(t) > BW
Pdrop = max(O, 1 - .X.i) Pdrop = max(O, 1 - FS Awk)

Table 2.1: Comparison between CSFQ and WCSFQ

The introduction of a weight for each flow enables to set more importance to some flows
by comparison to others. It is a relative importance. The bandwidth that a flow will receive
will partly depend on the other flows that are present in the network and on their weight .

21

A flow with a heavy weight that uses a small part of its bandwidth share still allows other
flows to take the bandwidth remaining to reach its fair share.

Note that a source should not be able to assign its own weight, unless the price users pay
increases with their flows' weights, or else they would choose a weight as heavy as they can
in order to get more bandwidth. The introduction of a weight for each flow in Core Stateless
Fair Queueing would then be useless. In fact, because edge routers already mark the packets,
they should be able to decide of a flow's weight depending on the contract passed with the
customer.

There is a limitation to this mechanism. Since a flow's weight is implicitly carried in its
packets' labels, the core routers don't know its value. It follows that a flow's weight has to be
the same all along an island of routers, that means until an other edge router is met and is
enabled to change the flow's relative importance.

2.2.3 Conclusion

Weighted Core Stateless Fair Queueing is an extension of Core Stateless Fair Queueing.
When each flow has a unitary weight, Weighted Core Stateless Fair Queueing behaves in
exactly the same way as Core Stateless Fair Queueing. We could say that CSFQ is a special
case of Weighted-CSFQ.

Weighted Core Stateless Fair Queueing provides a way to share bandwidth in a fair way
between different flows that use the network at the same time. The meaning of fairness was
exposed. It was also made notice of the fact that fairness implies that the bandwidth allocated
to a flow depends on other flows that pass through some of the same ressources in the network
at the same time.

This mechanism could be enhanced into Differentiated Services networks. A certain
amount of the outgoing bandwidth could be assigned to each class of traffic. For each class,
the assigned bandwidth could be shared between the flows of the class using the previously
exposed mechanisms. Actually, the arriva! rate estimation has been thought to put in the ToS
field where the Differentiated Services Code Point associated to a class is stored. When using
DiffServ, a new place for the label has to be found.

2.3 Minimum guaranteed bandwidth

A minimum bandwidth guarantee is a guarantee that a flow will get at least a certain
amount of the bandwidth independently of the other flows sending properties. A flow for
which a minimum guarantee is provided will additionally be allowed to send at a higher rate
than the guarantee when the network isn't congested. This enables to use as much resources
as possible.

The amount of the bandwidth that is the object of a minimum guarantee is reserved for
a flow, no other flow should be allowed to take that bandwidth from it . A back side is that if
the fl.ow that made the reservation doesn't use it all, the resource is wasted.

As said before, the minimum quantity of bandwidth attributed to a flow is independent of
the other flows' properties and the number of them. It only depends on the reservation that
is made for the flow. Minimum bandwidth is for that reason a stronger· guarantee than fair

22

,----------------------------------

bandwidth allocation where the amount of bandwidth attributed to a flow depends on the
network load in terms of the number of flows and eventually of their weight.

Minimum bandwidth guarantees are useful for certain applications' flows that need a cer­
tain amount of bandwidth to work correctly. As an example we can take real-time applications.
These applications need to send and receive informations at a certain rate so that the receiver
can treat the information on time. If the data arrives too late at the destination it is useless.
It may also imply certain delay jitter guarantees.

Sorne applications may be critical to the good functioning of an industry. ln that case, it
can be interesting to reserve a certain amount of bandwidth for each of these applications to
make sure that the rest of the traffic won't jeopardize the industry's activities.

An alternative solution would be to grant high priorities to these flows relative to critical
applications. Flows corresponding to non-critical applications would get lower priorities. Pri­
orities are to handle with care because there could be some security problems if applications
mark their outgoing packets themselves. Sorne policing is also important to avoid that high
priority applications take all or almost all of the bandwidth from low priority ones.

If some bandwidth isn't the object of any reservation it could be shared between the
existing flows . lt would be good to distribute this remaining bandwidth in a fair manner.
Different mechanisms are trying to enforce that.

2.3.1 Multi-Color Marking Scheme

The Multi-Color Marking Scheme (MC-RED) is composed of a marker and a buffer accep­
tance algorithm. MC-RED is presented in [PDCE00]. Edge routers use the marker to label
the packets and the buffer acceptance algorithm ensures that the packets are forwarded or
discarded according to the network load and according to the mark carried by the packets.
Core routers only implement the buffer acceptance algorithm.

The marker is used to label the packets of each flow with a drop precedence depending on
the rate of the flow. The idea is that flows sen ding at a low rate will get all of their packets
marked with a low drop precedence. On the other hand, flows sending at a high rate will
get some of their packets marked with a low dropping priority but the others with a higher
dropping priority. In case of congestion, packets with a high drop precedence will be discarded
before packets marked with a low drop precedence.

The drop precedence is assigned to a packet using byte based token buckets4 . A token
bucket is characterized by a filling rate R, a size B and the number of tokens currently in the
bucket C. At the beginning, the bucket contains B tokens. Each time a packet arrives, if the
size of the packet is smaller than C, the packet is transmitted with the marking associated
to the bucket and the number of tokens in the bucket (C) is diminished by the packet's size.
If the bucket isn't full (i.e. B > C), one token is added every ½ seconds. When there aren't
enough tokens in the bucket to transmit the packet, the packet can be delayed until enough
tokens are available, discarded or passed on to a following token bucket to verify if it does
verify its requirements. It depends on the policy choosen. The functioning of a token bucket
is illustrated by figure 2.10.

4There are also packet based token buckets where each packet smaller than a maximum size consumes one
token . In this case, there is an upper bound on the maximum size of the packets.

23

l

Every 1/R seconds, a token
is added to the bucket's
content (C) when the
bucket's content is below the
capacity of the bucket (B)

ê f------t

When a packet of size S anives,
ffC >= S then C = C - S
e/se the packet is delayed till C >= S
or
the packet is dropped
or
the packet is passed to another token
bucket

1
.0 .,
= '15

'Ê .,
a. ..
ï

R ls the filling rate of
the bucket
B 1s the size of the
token bucket
C is the number of
tokens present ln the
bucket

Figure 2.10: Token bucket

1 token every 1/PIR
seconds

1 token every 1/CIR
seconds

-PBS l
~

Not
enough
green
and

yellow
tokens

CIR : Commited lnfonnation Rate
PIR : Peak lnfonnation Rate
CBS : Commited Burst Size
PBS : Peak Burst Size

Not
enough
green
tokens

but
enough
yellow
tokens

Enough
green
tokens

Figure 2.11: Three colors màrking scheme

In the mechanism we are interested in, the last option is choosen. There is one token
bucket for each color. A color represents a drop precedence. Suppose we have a marker that
supports three colors (figure 2.11). When a packet arrives, if there are enough tokens in the
first bucket, the packet is marked green, if not, when there are enough tokens in the second
bucket, then the packet is marked yellow. In case the number of tokens in the second bucket
is less than the packet 's size, then the packet is red. When congestion occurs, red packets
are discarded first. If the network is still overloaded, yellow packets will start being dropped.
Then, at last, green packets will be dismissed. This marker can be generalized to more than

24

three colors. For a marker of n colors, n - l token buckets are needed.

Queuesize
(bytes)

max

min

Queuesize
(bytes)

max

min

Do not update average
queue size

•··················-·······'-'·······························-·····-•·

Figure 2.12: DC is decreased

Do not update average
queue size

Figure 2.13: DC is increased

lnstanteneous queue size

Average queue size

tlme
(seconds)

lnstanteneous queue size

Average queue size

lime
(seconds)

The buffer acceptance algorithm determines when packets have to be dropped and which

25

packets have to be dropped. As a generalization from what was exposed before, packets
with color n will be discarded before packets of color n - 1 where colors are represented by
numbers. According to the average buffer occupancy, the algorithm determines a threshold
(DG). Packets belonging to layers above DC5 will be dropped. Packets belonging to layers
below DG will be entirely forwarded. Packets from layer DG will be forwarded or dropped
based on a Random Early Detection (RED) mechanism. When DG decreases, the layer that
was partially discarded is dropped totally and the packets from the layer beneath are dropped
with a low probability. If the buffer occupancy starts to grow, the dropping probability will
increase for the packets from layer DG. Two threshold are defined : a minimum queue size
parameter and a maximum queue size parameter. When the average queue size goes beyond
the maximum queue size, DG is decreased. When the average queue size goes below the
minimum queue size, DC is increased. If the average buffer occupancy starts to grow, the
dropping probability will increase for the packets from layer DG. While passing from DG to
DG - 1, the average queue occupancy is set to the minimum queue size. If the instantaneous
queue occupancy decreases, the average queue occupancy is maintained (figure 2.12). It will
only start to change when the instantaneous queue occupancy gets equal to the maximum
queue size. When the buffer occupancy gets below the minimum queue size, DG is increased
so that one more layer is accepted (figure 2.13). The average queue size will be updated to
the maximum queue size. If the instantaneous queue size starts to grow, the average queue
size is kept constant until the instantaneous occupancy becomes equal to the maximum queue
size. This is done to avoid instability of the system. It avoid useless changes of DG due to
the time needed for the system to react to the changes in DG.

The multi-color marking scheme provides fair bandwidth allocation to each flow. This
is obtained by configuring the marker in the same way for each flow. That means that the
thickness of the layers should be the same for each flow. The thickness T of a layer is set to

T = maximum flow rate in the network
number of colors

The marker and the buffer management algorithm then ensure that bandwidth is distributed
in a fair manner. Flows that are bottlenecked at a node in the network get the same amount of
the outgoing bandwidth of the node because packets of layer DG are dropped probabilistically
using RED.

To support weights for fair allocation of bandwidth, the marker is configured using the
weight of the corresponding flow to determine the layers thickness. The thickness of the layers
for a flow of weight w is equal to the thickness of the layers when no weights are used tirnes
W.

We notice that even if the main objective of multi-color marking scheme is to allocate
the bandwidth fairly, this mechanism could be easily adapted to ensure minimum bandwidth
guarantees. The only thing that has to be clone is to put the thickness of the first layer in the
marker relative to a flow equal to the bandwidth guarantee of the flow. The other layers will
all have the same thickness for every flow. We have to make sure that green packet won't be
dropped. This is made possible by performing admission control at the edge of the network.
No ressources should be the object of a reservation if it is not available.

5 DC stands for Drop Color.

26

By using multi-color marking scheme, the amount of bandwidth that isn't used can be
shared in a fair way between flows sending at a higher rate than the reservation or flows that
aren't the object of any reservation. This mechanism allows to use the bandwidth that is the
object of a reservation for a flow by an other flow if the first one doesn't use all its reservation.

The number of parameters to configure is rather small. Six parameters are enough to
characterize all the functioning : the minimum and maximum queue size, the number of
token buckets, the size of the buckets, the filling rate of the buckets and the probability
probmax at which packets of the DC layer are dropped when the average queue occupancy
is equal to the maximum queue size. When the average queue size equals the minimum
queue size, the dropping probability for packets of layer DC is zero. The intermediate drop­
ping probabilities can be obtained considering the fact that the dropping probability evo­
lutes linearly between zero and probmax when the average queue occupancy is comprised in
[minimum queue size, maximum queue size].

2.3.2 Core Jitter Virtual Clock

Core Jitter Virtual Clock (CJVC) is introduced in [SZ98] and in [Szs+ggJ. This mechanism
uses a combination of a rate controller and a scheduler. The router attributes an eligible time
and a deadline to each packet. Packets stay in the rate controller till their eligible time and
then the rate controller passes the packets on to the scheduler. The scheduler transmits the
packets in increasing order of their deadline. The role of the shaper is to bound the delay jitter
of the packets of a flow and to uniformly distribute the allocation of buffer space inside the
network [ZF94], while the scheduler is responsible of the bandwidth allocation. The shaper
and scheduler used for this mechanism are the ones from Jitter Virtual Clock (figure 2.14).
The computation of the eligible time and the deadline is adapted in Core-Jitter Virtual Clock
to eliminate the need for per-flow information in the core routers.

Computes eligible lime and deadline

c::::::::J
Flow 1

Flow 2 c::::::::J---+-+t

Flown c::::::::J

Delay-jitter rate controller :
Keeps the packets unül their
eligible lime.
lts goal is ta shape the flows such
that the delay jitter is bounded.

Virtual clock scheduler:
Sends the packets in increasing
order of their deadlines.
The scheduler is responsible of the
bandwidth distribution.

Figure 2.14: Router implementing Jitter Virtual Clock

27

ln Jitter Virtual Clock, the eligible time and the deadline of the packets are computed
according to the following equations :

a~ -i,J

(k k dk-1) max ai,j + 9i,j-I, i,j '

k l~
e- - + ..!.. i,j, k 2 1

i,J ri'

i,j 2: 1, k > I

(2.5)

(2.6)

(2.7)

where ef,j is the eligible time of the kth packet of flow i at node j, af,j is the arrival time at
node j of this packet, df,j, stamped into the packet header at the previous node, is its deadline,

gf.j-l is the time ahead of schedule at node j - 1 for the kth packet of flow i, lf is the length
of the packet and ri is the rate of flow i. The time ahead of schedule gf,i = df,i - sf,j, where
sf,j is the sending time of the kth packet of flow i at node j, has to be a positive value.

It is easy to see that, instead of keeping astate with the rate of the flow and the deadline
of the previous packet at each node for the flow, the rate of the flow can be carried by each
packet belonging to the flow. lt isn't that obvious for the deadline of the previous packet at
the node. One way to avoid keeping the deadline of the last packet of each flow in the core
routers would be to compute at the edge of the network the eligible and deadline times of the
packet at each node. That way, only edge routers have to keep the deadlines at the core nodes
of the last packet of the flows. This is unthinkable in today's internet, where the number of
nodes crossed by a packet to reach its destination can be huge. The eligible times and the
deadlines of a packet would have to be carried in the packet's header. The size of the header
would than be too big in proportion of the data carried by the packet. The overhead would
be enormous.

Computes eligible lime and deadline

Ali flows cr:::=:::i--+-+I

Delay-jitter rate controller Virtual clock scheduler

Figure 2.15: Router implementing Core-Jitter Virtual Clock

The deadline of the last packet of a flow is used at a node to compute the eligible time of
the next packet of the same flow at that node. This eligible time is computed according to
2.6. In that equation, the eligible time is obtained by taking the maximum from the arrival
rate of the packet added to the time ahead of schedule of the packet at the previous node
which can also be carried in the packet header and the deadline of the previous packet at this

28

node. If the deadline of the previous packet is always smaller than the first argument of the
maximum than its value would be useless for the computation. In other words, the goal is to
find a value ôf as small as possible such that

k k ~k dk-1
ai,j + 9i,j-1 + ui ~ i,j , j > 1.

lt is shown in [SZ98] that such a value exists and is equal to

1k-l
k-1 k é -ek-1_...J....._

(0 ~k-1 + l- -l- _ ,,1 ,,1 r ·)
max ,ui r; h-1 ' k > 1, h > 1

where the number of hops h on the path of flow i can be computed at admission time.

From equations 2.6 and 2.7, it can be seen that Core Jitter Virtual Clock provides maxi­
mum guaranteed bandwidth to the flows. In addition, we can say that this guarantee for flow
i is equal to its reserved rate Ti- Intuitively, we can see that the arriving rate of flow i at the
scheduler, at ail nodes of the network, is below or equal to Ti, because the eligible time of a
packet is smaller or equal to the deadline of the previous packet and the deadline of a packet
corresponds to the finish time of transmission of this packet on a dedicated link of capacity
Ti for packets of flow i. From this observation, we can conclude that a router can only send
packets from a flow at a higher rate than its reservation during a limited period of time that
depends on the amount of buffers available to this flow.

The mechanism exposed in this section provides guarantees on end-to-end delay. lt pro­
vides the same guaranteed service as Jitter Virtual Clock and Weighted Fair Queueing in
terms of delay[SZ98].

In terms of bandwidth, the guarantees furnished by Core Jitter Virtual Clock are stricter
than the ones provided by Weighted Fair Queueing where the bandwidth a flow gets depends
on the other active flows' weights. It isn't the case for Core Jitter Virtual Clock where the
bandwidth used depends only on the flow's sending properties and the bandwidth reserved.

By comparison to Weighted Fair Queueing, in Jitter Virtual Clock the scheduling of a
packet is independent of the other flows. That's why it is easier to make Jitter Virtual Clock
stateless in the core of the network than Weighted Fair Queueing. To compute the deadline
of the packets on an output link in Weighted Fair Queueing, the router needs to know the
weight of all the flows passing through it and leaving on the output link. A flow is not aware
of the presence of other flows in the network and of their weight. Therefore, packets from a
flow cannot carry in their headers the weight of the active flows so that core routers would
be able to compute packets deadlines without keeping per-flow state. Estimations have to be
made to approximate networks implementing Weighted Fair Queueing without keeping state
for each flow in the core of the network. lt's not the case with Jitter Virtual Clock where the
deadline of a packet only depends on the flow state and doesn 't depend on the other flows.

Maximum delay guarantees are provided even if this mechanism forces all packets, by the
way of the eligible time, to incur the maximum delay. This is also a way of avoiding delay
jitter. When delay jitter is reduced, the traffic burstiness is limited and, as a result, buffer
space requirements and schedulers complexity are reduced. A flow's traffic can become bursty
due to load fluctuations in the network.

29

Note that to implement Jitter Virtual Clock without maintaining per-flow state in the core
of the network, slack variables 8f, where i indicates the flow and k indicates a packet from
the flow, have been introduced. These variables have a direct influence on delay. So that the
delay introduced is as low as possible, these variables should be as near as possible to the
solution xf of equation

k k k dk-1
ai,j + 9i,j-I + xi = i,j , i,j ~ 1, k > 1

where xf is a lower bound for 8f.
In this mechanism, it can be seen that the slack variable 8f is independent of the node

even if there is one equation 2.6 for each packet k of each flow i at each node j. In fact, the
slack variable has to be independent of the node because the slack variable is computed at
the border of the network and is carried in each packet's header. Therefore, for one packet of
a flow, 8 has to be identical for each node on the packet's path. If it were computed at each
node, nodes would have to perform per-flow operations, which is what is trying to be avoided
in stateless mechanisms. Computing 8 for each node at the border and carry the different
values in the pachets' header would introduce packets of enormous sizes.

2.3.3 Fair Allocation Derivative Estimation

Fair Allocation Derivative Estimation (FADE) is in fact an estimation algorithm used for
fair share estimation of links in the network. The basic idea of this mechanism is that interior
nodes estimate the fair share of their input links and transmit these estimations to boundary
nodes by a feedback mechanism. Based on the fair share estimations of the links in the domain,
edge nodes will compute the fair share of each flow.

In the presentation of FADE (LBL00), a distinction is made between flows that are called
high priority flows and the other flows. These high priority flows correspond to flows that are
always able to use a certain portion of the bandwidth. Additionally, they are limited at the
edge to this amount of bandwidth in order to also allow other flows to use network resources.
These flows may correspond to critical applications and they are not allocated bandwidth with
FADE. FADE does not take care of these flows. It only estimates the aggregate arriva! rate
of the high priority flows in order to know the amount of bandwidth that is left to allocate to
the lower priority flows.

The bandwidth available on link k at time t that has to be allocated fairly between flows
is expressed by

Bk(t) = p BWk - At
9
h(t)

where BWk is the total link bandwidth at link k, p is the target utilization of the link and
At

9
h(t) is the sum of the arriva! rates of high priority flows on link kat time t .

The portion of the bandwidth FSk(t) that each flow bottlenecked at link kat time t should
get can be obtained by computing

FSk() = Bk(t) -Âk(t) - µk(t)
t wk(t)

where Â k (t) is the sum of the arriva! rates of flows passing through link k and bottlenecked else­
where in the network at time t. µk(t) is the sum of the minimum arriva! rates of the flows bot­
tlenecked at link k at time t. The minimum arriva! rate of a flow corresponds toits minimum

30

bandwidth guarantee. But, this type of reservation can cause a waste of resources if the flow
sends at a lower rate than its minimum guarantee. Therefore, it would be better to say that
the minimum arrival rate of a flow corresponds to min(minimum guarantee, sending rate).
wk(t) is the sum of the weights of the flows bottlenecked at link k at time t. It is sometimes
also referenced as the number of flows bottlenecked at link k at time t.

It can be seen that computing the fair share at a link FSk(t) requires that interior nodes
keep some per-flow information related to the reservation of the flows and the weight of the
flows passing through them. Such calculation can therefore not be processed in core nodes. It
follows that FSk(t) has to be estimated.

In case of max-min fairness allocation, the fair share of a flow is the minimum of the fair
shares of the links crossed by the flow.

FSi(t) = min FSk(t)
kE{k:link k is crossed by flow i}

When a boundary node knows the links crossed by a :flow as well as their fair share, it can
compute the :flow's fair share FSi(t). The weighted fair allocation for a flow i is

F Ai(t) = µi + Wi FSi(t)

in which µi is the minimum of the bandwidth guarantee provided to flow i and its sending
rate, following the comment made about µk(t) a few paragraph ago. And, Wi is the weight of
flow i.

The calculation of the input links' fair shares is clone by interior nodes based on a relation
found between the arrival rate on a link at time t and the fair share at time t on that link. In
the following, Nk(t) represents the set of a11 flows bottlenecked at link kat time t and fek(t)
is the set of flows bottlenecked elsewhere. It can be noticed that the fair share at link k is
greater or equal to flows' fair shares of flows bottlenecked elsewhere in the network.

The total arrival rate on link k at time t can be expressed as follows:

where

It is supposed that each flow sends
at its fair rate.
If a flow doesn't use all its
bandwidth, it is lost for other flows.

Because a flow i bottlenecked at
link k, FSi(t) = FSk(t)

µk(t) :EiENk(t) µi is the bandwidth that is already allocated to flows bottlenecked
at link k at time t and

wk(t) :EiENk(t) Wi is the total weight of the flows that are bottlenecked at link k

at time t.

31

We obtained the equation

Let's suppose for a moment that Âk(t), µk(t) and wk(t) are constant. This is the case when the
same flows stay bottlenecked at link k. It can be seen that, when FSk(t) changes in an interval
such that the other three variables stay constant, Ak(t) remains on the same line segment.
When FSk(t) increases to the point where flows start becoming bottlenecked elsewhere, wk(t)
decreases. Ak(t) then moves to the next linear segment, which has a smaller slope. Ak(t) is
expressed as a continuous, non-decreasing, concave and piecewise-linear fonction of FSk(t).

Interior nodes will compute the fair share of their links based on the previous observations.
They estimate wk(t) by taking into account that wk(t) is the slope of a linear piece of the
expression of Ak(t) in function of FSk(t).

k Ak(t) - Ak(t - 1)
w (t) = FSk(t) - FSk(t - 1)

As the goal is to achieve the target utilization of the bandwidth Bk(t) at all times, the interior
node has to find out the fair share relative to this target. Because the target utilization rate
changes along with the time depending on the sending rates of high priority flows, an interior
router can only know the previous target utilization bandwidth. It will compute the fair share
at time t + l by supposing that the target utilization at time t + 1 will be the same as the one
from time t. The fair share at time t + 1 will be obtained by

k Bk(t) - Ak(t)
w (t) = FSk(t + 1) - FSk(t)

FSk(t + 1) - FSk(t) = Bk(t) - Ak(t)
wk(t)

FSk(t + 1) = FSk(t) + Bk(~~tf k(t)

For FADE to work correctly, a few assumptions have been made :

• Enough resources have to be available to support the minimum bandwidth reservations.

• A feedback mechanism has to be used to communicate links' fair shares to boundary
nodes6 .

• Flows have to react quickly to changes in their fair share and adjust their rate.

FADE helps to allocate in a fair manner the bandwidth that isn't reserved by a flow in
the Diffserv framework. Part of the bandwidth is allocated to each class of service. Inside
each class of services, bandwidth reservations are made and the remaining has to be shared
fairly between the flows belonging to the class. FADE aims to provide fairness between flows

61n the following, we will see that this feedback mechanism is not mandatory. The estimation of the fair
share performed by the core routers can also be used in CSFQ where no feedback mechanism is used and
dropping takes place at ail nodes.

32

from the same aggregate class and that way to avoid that aggressive flows use most of the
residual bandwidth. This is clone by introducing some dynamic cooperation between interior
and boundary nodes.

High priority flows aren't getting more bandwidth than the limit that is allocated to them
even if some bandwidth remains unused because otherwise they would steal bandwidth from
flows having lower priorities even if they made bandwidth reservation. No protections would
be given to those flows. The amount of bandwidth remaining for those flows could never be
calculated and there would be no way to be able to know if some reservations can be made.

Because FADE is thought to work in Diffserv networks, it enables a network that support
a range of services to provide flow isolation and protection. Flows from the same class of
service will be protected from each other and will get a fair share of the bandwidth which
depends on the class they belong to.

Nothing in this mechanism, except forwarding the packet, is clone on a per-packet basis.
The fair share estimation takes place after a fixed amount of time independently of the packets
received. The same remark can be clone for the communication between interior and boundary
nodes. In the previous mechanisms, boundary nodes would label the packets and interior nodes
would use this label to forward the packet and provide the guarantees associated to the label.
Here, interior nodes make the computation and communicate the results to boundary nodes
which use the feedback informations to provide the guarantees to the flows . FADE works in the
control plane ; the previous mechanisms work in the data plane. With FADE the forwarding
path is kept simple but more control information has to be carried by the network. The packet
forwarding algorithm can stay unchanged from what is provided in today's IP networks.

The third assumption that is being made is a limitation to this mechanism. It is said that
flows have to react quickly to adjust their rate to their fair share rate. This adjustment is
made at the edge of the network. The egress edge router has to perform policing and shaping
for the flow to respect it's fair share. The problem is that even if a flow sends at it's fair share,
when it is multiplexed with other flows in the network, its rate can change and the flow can
become bursty. So it cannot be deduced by the fact that a flow is shaped to a rate that it
will stay that way throughout the network. It follows that the assumption may not be true in
the interior of the network. Additionally, a buffer acceptance algorithm may have to be used
by interior nodes to avoid buffer overflow in case the buffer capacity predicted is insufficient
because of traffic bursts.

Concerning the assumption that there is enough ressources to support the minimum band­
width guarantees of the flows, it can be enforced by performing admission control at creation
of the flows.

FADE is a mechanism that estimates the fair share of a flow based on a feedback mech­
anism. It estimates the fair share of the links and these are communicated to the boundary
nodes who compute the fair share of each flow passing through them.

When the fair share at a link increases, flows that were bottlenecked on the link can start
to be bottlenecked elsewhere in the network. The sum of the weights of the flows bottlenecked
at the link decreases. As a consequence, the aggregated arrival rate is on another line segment
with a smaller slope wk(t) than the previous line segment. It follows that the fair share of
a link is never overestimated when the aggregate arrival rate increases. When the aggregate
arrival rate decreases, the link fair share may be overestimated but it is never bigger then the

33

previous fair share so there is enough bandwidth for the same number of flows bottlenecked
with this fair share.

It seems that the link fair share estimation is more accurate then the estimation that takes
place in Core Stateless Fair Queueing. I would propose to replace the estimation in CSFQ by
the estimation made by FADE. This will only make the fair share estimation in CSFQ more
accurate. It won't enable CSFQ to support minimum guaranteed flows. The third assumption
made for FADE is still valid but this is guaranteed by the probabilistic dropping that takes
place in the core for CSFQ. Therefore, in the estimations, the forwarding rate of the output
link will be used instead of the arrival rate on the input link (FADE).

2.4 Comparisons

Table 2.2, shows the different properties of the mechanisms exposed previously. In this
table, the first two lines give an indication on whether the mechanisms are based on DPS or
on a feedback mechanism. The major utilization purposes of these mechanisms can also be
seen. And, finally, it is indicated if admission control is needed or not.

CSFQ MC- CJVC FADE
RED

Works in the data plane Yes Yes Yes No
Works in the control plane No No No Yes
Fair Allocation of the bandwidth Yes Yes No No
Supports minimum guaranteed flows No Yes No Yes
Supports maximum guaranteed flows No No Yes No
Supports minimum guaranteed flows No Yes No Yes
with fair allocation of the remaining
bandwidth
Supports weights for fair allocation Yes Yes No Yes
Supports high priority flows No No No Yes
If a flow doesn't use its fair share it can Yes Yes No No
be used by other flows
Admission control has to be performed No Yes Yes Yes

Table 2.2: Comparison of the exposed mechanisms

2.4.1 CSFQ versus FADE

From the previous presentation of CSFQ and FADE, a lot of similarities, concerning the
estimation of the fair share, can be underlined. Therefore, these two estimation algorithms are
compared in table 2.3. Then, we show that the estimation performed by FADE should be more
accurate than the one performed by CSFQ. A proposal of replacing the current CSFQ fair
share estimation by FADE is made to obtain a better fair bandwidth allocation mechanism.

Based on the fact that both fonctions F(.) and A(.) are concave and that the forwarding
rate on an output link is equal to the arrival rate on the input link at the next node along

34

CSFQ FADE
A router computes the fair share for its A router computes the fair share for its
output links. input links.
The aggregated forwarded rate F is a The aggregated arrivai rate A is a
continuous, concave, non-decreasing and continuous, concave, non-decreasing and
piecewise-linear fonction of the estimated piecewise-linear fonction of the fair share.
fair share.
F is approximated by a straight line A is approximated by a straight line pass-
passing through the origin and of slope ing through point (FSk(t),Ak(t)) and of
F(FS(t-1)) h . h al . d slope wk(t) FS(t-I) w ere t 1s t e actu t1me an
t-1 is the time of the previous estimation.
F(FS(t)) is computed by the routers and WIC(t) is obtained by approximating
based on the value that is found, an esti- A(.) by a straight line passing through
mation of FS(t) can be deduced from the (FSk(t-1), Ak(t-1)) and (FSk(t), Ak(t)).
approximation of F. wk(t) is the slope of this straight line.

Ak(t+ 1) is set to Bk(t) where Bk(t) is the
bandwidth utilization goal at time t .
The fair share FSk(t + 1) is obtained by
equation

FSk(t + 1) = FSk(t) + Bk(t) - Ak(t)
wk(t)

Table 2.3: Comparison of CSFQ fair share estimation with FADE

the link, I deduce that the estimation of the fair share provided by FADE is better than the
one provided by CSFQ. The slope of the straight line used for the approximations in FADE is
always smaller or equal to the slope of the straight line in the approximations carried out by
CSFQ. Additionally, it has been shown that these two slopes are always greater or equal to
the slope of the line segment of the real fonction {by contradiction to the estimated fonction) .
So the slope used in FADE is a better estimation than the slope used in CSFQ.

A proposal to improve the fair share estimation in Core Stateless Fair Queueing would
be to use Fair Allocation Derivative Estimation to approximate the fair share on the routers'
outgoing links in the network. It would still be based on the computation of the aggregated
forwarding rate on the link because the aggregated forwarding rate on a link is equal to
the aggregated arrival rate on that link at the next node in the network. The probabilistic
dropping of packets for flows sending at a higher rate than their fair share at a node would
still take place in the node. It is then ensured that the forwarding rate at a node tends to be
equal to the fair share of the outgoing link at that node.

This solution may not be perfect because, in FADE, the estimation of the fair share is
made using a straight line passing through the two previous estimations of the couple {fair
share, accept rate) . And, this straight line is used as an approximation of an increasing (and
piecewise linear) fonction. The slope of such a fonction is always positive. Therefore, the line
used for the approximation should also have a positive slope. But, it is not always true with

35

the line resulting from the previous estimations because the slope of such a line is obtained
by :

l AR(t) - AR(t - 1)
8 ope= FS(t) - FS(t - 1) (2.8)

To have a positive slope, the fair share and the accepted rate have to increase at the same
time or to decreases together. That means that when the fair share increases, more bandwidth
can be used by the fl.ows and the accepted rate increases. When the fair share decreases, less
packets are accepted and therefore the accepted rate decreases. But, this only holds when the
network load is constant which is not usually the case in practise where flows are created or
tom down all the time. Let's take as a first example the case when the fair share increases.
In consequence, less packet should be dropped because less packets of each flow are in excess
of the fair share, if the arrivai rate stays constant . It follows that the accepted rate should
increase. But, if the arrivai rate decreases, the increase of the fair share will not cause an
increase of the accepted rate. And, the slope of the line used for the estimation becomes
negative. Secondly, when the fair share decreases, more packets of the existing flows are
dropped. But, if new fl.ows are created, the accepted rate may increase because each flow is
allowed to send at the fair share. These two examples lead in situations where the slope of
the line used for the estimation is negative. The line is not an approximation of the relation
between the fair share and the accepted rate anymore. Because, the hypothesis of a stable
arrival rate cannot be made a solution to this problem has to be found. A possibility would
be to base the new fair share estimation on the previous slope but this does not seem to allow
frequent changes in the network load.

2.4.2 Adaptations to CSFQ

To support minimum guaranteed flows with fair allocation of the remaining bandwidth, a
possible approach would be to perform admission control at flow creation to see whether the
minimum bandwidth guarantee of the flow can be supported by the network. On packet arrivai,
edge routers will check if the packet belongs to the guarantee provided to the corresponding
flow or not. Guaranteed packets will be attributed a label of value zero indicating that it
doesn't use a portion of the bandwidth that has to be allocated fairly. Excess packets of a
fl.ow will be labeled with the estimation made by the edge router of the rate of the excess
traffic of the packets' flow. No changes are needed in core routers except that they need to
know or to estimate the amount of bandwidth that is reserved to figure out the amount of
bandwidth that can be shared. They will only drop packets from the excess traffic when its
rate, carried in the packets' labels, is higher than the fair share of the outgoing link. Because
the packets that are guaranteed are marked by a rate of zero, it never exceeds the fair share
of any link and therefore such packets should never be dropped. An exception is made when
the buffer is full and no more packets can be accepted. Note that this situation should be
avoided because guaranteed packets should not be dropped.

To support high priority flows, almost the same modifications as the ones from previous
paragraph can be proposed. Packets from high priority flows are marked with label zero by
border routers. The ingress edge routers have to make sure that the bandwidth used by high
priority fl.ows is upper bounded. Core routers share the bandwidth that is not attributed
to high priority flows between the lower priority ones. The bandwidth available on a link
to low priority flows is the total bandwidth minus the upper bound on the bandwidth that

36

can be used by high priority flows. An other solution would be that core nodes estimate the
bandwidths actually used by high priority flows on their outgoing links and deduce from these
values and the total link bandwidths the bandwidth available to low priority flows on each of
their outgoing links. The packets from high priority flows may be put into a separate queue
or into the same queue as the packets from lower priority flows, based on the label. If the high
priority packets are put into a different queue, a priority scheduler selects packets from the
high priority queue before serving packets from the other queue. This double queue solution
may reduce the delay of high priority packets compared to the solution with one queue.

Additionally, we notice that, like FADE, CSFQ may also be used to ensure protection
between flows inside the same aggregate class in the Differentiated Services architecture. To
do so, a certain amount of bandwidth is allocated to each class. And, the core routers compute
a fair share for each class. Packets are dropped according to the fair share relative to the class
they belong to. Core routers need to maintain state for each class of service. The edge routers
determine the class of service of each packet, compute the sending rate of the portion of the
flow that belongs to the class of service of the packets and label the packets with this value.

2.4.3 Adaptations to MC-RED

Minimum guarantees can be provided by setting the first layer thickness to the reserved
guarantee of the flow. And, if the remaining bandwidth has to be shared fairly between flows
with the same weights, the layers above O all have the same thickness. When weights are
associated to the flows, the thickness of the layers above O may be different for each flow
depending on the flows' weights. The support of such guarantees does not require changes
in the marking and buffer acceptance algorithm. Only the thickness of the layers have to be
configured differently. When minimum guarantees are provided, admission control has to be
performed to ensure that green packets are not dropped.

High priority flows will be supported by marking all of their packets green and policing
these flows at the edge to make sure that they don't take all the resources away from lower
priority flows. An other option is to use the same marker as for the other flows and to set the
first layer thickness to the predicted sending rate of the high priority flow. These packets will
be marked green and the excess packets will be marked with other colors as the ones from
lower priority flows. The network has to ensure the forwarding of green packets. The other
packets will be forwarded depending on the network load. Excess traffi.c of high priority flows
could alternatively be marked red in case a lot of bandwidth is already attributed to their
conforming packets (green packets).

2.4.4 Adaptations to CJVC

I don't see any possibilities for this mechanism to support minimum guaranteed flows with
fair allocation of the remaining bandwidth at this time. This mechanism is too strict to permit
easy adaptations.

To support high priority flows, they have to be the object of maximum bandwidth reser­
vations. They cannot send at a higher rate than their reservation because of the scheduler
used by this mechanism.

37

2.4.5 Adaptations to FADE

To support only fair allocation of the bandwidth, the minimum amount of bandwidth
guaranteed to a flow has to be set to zero.

The use of the bandwidth allocated fairly to a flow but unused by this flow by other flows
is not supported by FADE. A flow is always supposed to be bottlenecked at the link that has
the smallest fair share on the flow's path. Even if a flow's sending rate is less than its fair
share, it is supposed to use it 's total fair share. The bandwidth allocated to this flow all along
its path is equal to its fair share even if part of it could be used by other flows that are really
bottlenecked on the link where the flow is supposed to be bottlenecked but is not. This follows
from what is supposed to be to compute the fair share in interior nodes. In particular, it is a
consequence from the shaping and policing that takes place at the edge of the network. One
way to avoid this situation would be to eliminate the feedback mechanism used to carry links'
fair shares estimations, and to stop shaping or policing low priority flows at the boundaries of
the network. That way flows can send as much packets in the network as they can and when
these packets arrive on a congested link some of them are dropped so that the flow respects
its fair share on the link. Core routers drop packets when the rate of the excess traffic of a
flow exceeds the outgoing link's fair share. When a flow is bottlenecked somewhere in the
network, it doesn't get more bandwidth then its total fair share. In case it isn't bottlenecked,
it allows other flows to use some of its total fair share because flows aren't policed at the edge
supposing that all flows use their total fair share and not more than their total fair share.
This leads to use FADE to estimate links' fair shares in a CSFQ domain supporting minimum
guaranteed flows. The marking and the buffer acceptance algorithms are the ones from CSFQ
where the fair share estimation performed in CSFQ is replaced by the estimation performed
by the core routers in FADE. We have to notice that the fairness achieved does not quite
correspond to the max-min definition of fairness anymore because flows that are bottlenecked
somewhere in the network may use more than their max-min fair allocation on the links before
their bottleneck, if they are not responsive to congestion. This last remark holds for all the
other fair bandwidth allocation mechanisms where the dropping takes place in the core of the
network.

2.5 Admission Control

2.5.1 Objectives

Admission control has as objective to control the load of the network. Before a new flow
is established, it is checked if there are enough resources in the network to support this flow
according to the resources requested by the flow. Admission control enables to ensure that
the negotiated guarantees of accepted flows can be provided by a network domain.

Actions taken to attain its goal :

• Measurement of the network load or measurement of the reserved resources.

• Acceptance or rejection of new flows requests ' based on the measurements.

• Dropping of admitted flows in case of exceptional events.

38

To achieve its goal, admission control has to perform some measuring of the actual resource
reservations in the network and to accept or reject new flows based on this measurement and
the global amount of resources available to flows . Exceptional event may also lead to resource
exhaustion in part of the network. Such an exceptional event could be the failure of a link.
The traffic that was using that link may be redistributed on other links which can become
overloaded. Two options are available. Either the bandwidth guarantees aren't provided to
the flows that use the congested link or some of these flows are dropped so that guarantees
can still be provided to the remaining flows. In the latest, admission control has to provide
the possibility of dropping admitted flows.

2.5.2 Centralized admission control

Packet indicating
which guarantees can

be provided to the flow

Decides what guarantees can be
provided to a flow based on the
guarantees requested, the
topology of the network and the
guarantees already accepted

Figure 2.16: Centralized bandwidth broker

Request for flow
establishment
lt carries the
guarantees to
provide to the flow

For a domain, there is one and only one device that performs admission control (figure
2.16). Each time a new flow is established, a request is sent to this device, called a bandwidth
broker. The bandwidth broker then decides, based on the network topology and the reser­
vations already accepted, if the new flow can be supported by the network. The bandwidth
broker keeps the topology of the network, information about the ~arantees to provide to each
supported flow. A signaling protocol between edge routers and the bandwidth broker is also
needed to allow communication between these network elements. When the requesting edge
router obtains the decision of the bandwidth broker, it accepts the flow or reject it depending
on the obtained decision.

39

2.5.3 Distributed admission control

There are two types of distributed admission control. Either there is more than one
bandwidth broker in the domain and each one keep the topology of the domain and the level
of resources that are the object of reservations (figure 2.17) or an edge-to-edge signalling
protocol is used to check if there are enough free resources on the flow's path to support it
(figure 2.18). By opposition to the centralized admission control, here the decision to accept
a new flow may not be made only by one device. More than one device for each domain is
empowered to take such decision.

Distributed admission control can be performed in two different ways.

• Each device used in the admission control keeps some information for each guaranteed
flow supported7 .

• The devices implied in the admission control only memorize information on the aggregate
reservation provided.

I will put my interest on mechanisms where the devices only keep information about the total
amount of resources reserved.

Simple marking

The basic idea of Simple Marking (SM) (figure 2.19) is that core routers measure the
amount of traffic passing through them. Edge devices send probe packets as they receive a
request for a flow establishment. When core routers encounter near exhaustion of resources
they mark the probe packets passing through them. Marked probe packets notify the edge
devices of the lack of resources. Edge routers who receive a probe packet send the packet
back to its source. The ingress edge router rejects the flow who originated the establishment
request if the probe packet is marked, otherwise the establishment of the flow is accepted. To
make the scheme robust against packet loss, the initiating edge device may maintain a timer
associated with each probe packet. When the timer goes off, a new probe packet is generated
and sent .

Unit-based reservations

The general behavior of Unit-based reservations (UBR) is shown by figure 2.20. Ingress
edge routers send a probe packet at flow establishment. Core routers estimate the amount of
resources reserved and mark probe packets in case there are not enough ressources to support
the new flow. When egress edge routers get probe packets, they send them back to their
sender. Based on the probe packet that came back, an ingress edge router determines whether
the flow corresponding to the probe packet is supported or not. If the flow is not supported,
it is rejected. In case there are enough resources to provide the guarantees required by the
flow, the flow establishment is accepted.

In addition, ingress edge routers have to regularly mark normal packets to refresh the
reservation associated to the packet's flow. Core routers use the number of unmarked probe

7ReSource ReserVation Protocol is an end-to-end admission control protocol that requires ail routers on a
flow 's path to keep the level of guarantee associated to the flow.

40

There is a need for a protocol used
to keep consistency of the 1----~

information maintained by the
different bandwidth brokers

· Packet indicating
which guarantees can
be provided to the flow

Decides what guarantees can be
provided to a flow based on the
guarantees requested, the
topology of the network and the
guarantees already accepted

The topology of the network
and the information
conceming the accepted
guarantees are distributed
between the bandwidth

Request for flow
establishment
lt carries the
guarantees to
provide to the flow

Figure 2.17: Distributed bandwidth brokers

RESV message

Sends message PATH
carriing the guarantees to

provide to the flow

Figure 2.18: Distributed admission control (RSVP)

41

Source

The source sends a
request when a new
flow has to be
established

Core routers probe resources.
They send resource status by
marking the passing probe
packets.
They react to exceptional
events by marking the normal
packets also.

The ingress edge router sends a probe packet for each flow
establishment request received
When it receives a marked probe packet, it rejects the flow
relative to the probe packet.
When the probe packets cornes back unmarked, the flow
corresponding to the packet is accepted.
The ingress also decides which flows to suppress in case a
message signaling that an exceptional event occured in the
network is received.

Core
router

Egress edge routers send probe
packets back to their sender.
They send signalllng messages to
ingress edge routers when they
receive marked packets in case a
special event occured in the network,
to inform the ingress of the lack of
resources.

Figure 2.19: Simple marking

Source

The source sends a
request when a new
flow has to be
established

Estlmates the number of unit of
resources reserved.
Marks probe packets when no
resource unit is available
R eacts to exceptional events
by marking the normal packets
also.

Sends a probe packet for each flow establishment request
received
Rejects the flows relative to marked probe packet.
Accepts flows corresponding to unmarked probe packets.
Suppresses some flows in case a message signaling that an
exceptional event occured in the network is received.
Sends refresh packets every refresh interval for each flow
that is established.

Core
router

Sends probe packets back to their
sender.
Sends signalling messages to
ingress edge routers when it receives
marked packets in case a special
event occured in the network, to inform
the ingress of the lack of resources.

Figure 2.20: Unit-based reservations

42

packets and refresh packets received during a time interval called the refresh period to deter­
mine the amount of resources reserved for the next refresh period. The admission of new flows
is made based on that estimation.

When congestion occurs, core routers mark normal packets to inform the egress edge nodes
of the lack of available resources. An egress edge node who receives a marked packet sends a
signalling message to the ingress edge node of the packet's path to inform it of the congestion.
The ingress edge node then reacts to the special event by dropping some admitted flows.

The accuracy of the estimation of the number of allocated units can be increased by
generating refresh packets evenly spread in time over a refresh period. This minimizes errors
resulting from time alignment differences between routers and edge devices. If refresh packets
all are sent in the same portion of the refresh interval, they will all arrive around the same
time atone core router. Sometimes the packets are sent on a refresh interval and arrive on the
next interval at a core router. The reservation will not be made at that router for the next
refresh period (relative to the edge node) but for the interval after (which is not completely
disjoint from the previous interval at the edge node) . The reservation will be taken into
account too late. This can influence the admission of new flows. lt can also happen that some
of the packets arrive on a refresh interval and that others arrive on the next time interval for
reservations that have to hold at the same time.

Per-hop admission control

This admission control mechanism has some similitudes with the Unit-based reservations
mechanism. Each core router maintains an upper bound Rbound of the aggregate reservations
and decides of the marking of probe packets sent by ingress edge routers based on this upper
bound. Each time a probe packet is sent unmarked, Rbound is increased by the amount of
resource needed by the flow and carried by the probe packet. Figure 2.21 shows the operations
performed by each network device in the Per-hop admission control mechanism (PH).

No assumption is being made on the reliability of the probe packets initiated by ingress
edge routers and forwarded along the data path. If such a packet is lost, it is retransmitted
by the ingress edge router after a certain time. lt can be deduced that the reservation for a
flow can be made twice at some routers. That is a reason why Rbound is an upper bound of
the aggregate reservation. Sometimes, resources can be reserved at some routers before the
probe packets meets a router with not enough resources available for the guarantee carried by
the probe. The probe packet will be marked by the router and no more reservations will be
made for that flow on the rest of the data path but the reservation already made cannot be
undone.

When a flow is tom down, no termination message is sent by the ingress edge nodes. Core
routers are not informed of the terminations of flows and Rbound is not decreased. Rbound stays
an upper bound of the aggregate reservation.

If Rbound is never decreased resources will soon become unusable because for accepting a
new flow, routers test if Rbound + r, where r is the reservation needed for the new flow and car­
ried by the probe packet, is smaller or equal to the total amount of resources available. When
Rbound is equal to the level of resources available no more flows can be accepted. Therefore,
Rbound has to be regularly recalibrated to the amount of resource that is the abject of reserva-

43

1 Reguesl 1

Source

The source sends a
request when a new
flow has to be
established

Probë

Keeps an upper bound R bound on the
aggregate reservation.
When a probe packet with reservation r is
received,
if ~und + r <= Ravailable•

Rbound becomes ~und + r and the probe
packet is forwarded
else the probe packet is marked and then
forwarded.
Computes regularly an upper bound of
the aggregate reservation and use it to
recalibrate l\ound·

Sends a probe packet for each flow establishment request
received
Rejects the flows relative to marked probe packet.
Acceps flows corresponding to unmarked probe packets.

Core
router

Destination

Sends probe packets back to their
sender.

Figure 2.21: Per-hop admission control

tion. To recalibrate Rbound, an other upper bound of the aggregate reservation is computed.
Then, Rbound is set to the minimum of Rbound and the calibration upper bound.

Evaluation

This section is dedicated to the comparison of the admission control mechanisms exposed
previously. The characteristics of these mechanisms will be exposed as well.

The fondamental difference between Simple marking and Unit-based reservations is the
presence of actual reservations in Unit-based reservations. Simple Marking cannot support
hard guarantees because it accepts new fl.ows based on the amount of traffic present when
the probe packet is sent, independently of the quantity of resources needed by the new fl.ows
and the resources reserved by existing fl.ows. More fl.ows can be accepted than by using Unit­
based reservations. With Unit-based reservation, if a fl.ow is accepted, we can be sure that
there is enough resources to provide its guarantees. These guarantees won't be jeopardized
in case a special event occurs in the network. In the Simple marking scheme, there is no
strict reservations of the bandwidth. The same guarantees as for Unit-based reservations can
therefore not be provided. Simple marking doesn't support minimum bandwidth guarantees.

Unit-based reservations and Per-hop admission control both support hard guarantees.
They maintain some state on the aggregate reservation and accept a new fl.ow if there are
enough resources to provide the guarantees assured to the already existing fl.ows and to the
one that requested its establishment.

When special events happen in the network, core routers do not react in case they perform
Per-hop admission control. It is not the case with Simple marking and Unit-based reservations.
Per-hop admission control can easily be adapted to also react to special events. Core routers

44

can measure the amount of traffic passing through them and if they are congested, they mark
normal packets. Egress edge routers, when they receive a normal packet that is marked, send
a signalling message to the ingress edge router of the packet 's path who choses the fl.ows to
drop.

In Unit-based reservations, one probe packet is sent for the reservation of one unit of
resources (idem for refresh packets) .. An alternative using only one packet for each fl.ow for any
quantity of resources to reserve should be defined. By comparison, in the Per-hop admission
control, the amount of resources to be reserved for the fl.ow are specified in the probe packet
sent at fl.ow establishment.

In Unit-based reservations, if a probe packet is forwarded unmarked by a core router,
but is marked later downstream, that first core router will not be notified and will incorectly
maintain the reservation. However, as the flow is rejected, no refresh packets will arrive, and
the reservation will time out at the end of the refresh period and will be released. A core router
implementing Per-hop admission control also reserves the resources required by a fl.ow if they
are available and the probe packet is unmarked. lt can happen that not enough resources are
available somewhere on the rest of the fl.ow's path and that the probe packet will be marked.
Then, the fl.ow is rejected by the ingress node and some resources are already reserved for
the flow. The recalibration upper bound is used to lower the aggregate reservation amount at
routers by taking the traffic into account.

Table 2.4 summarizes what has been said in this section of evaluation of the different
admission control mechanisms that do not maintain per-flow information on the reservations
but instead are based on information about the aggregate reservation or the amount of traffic.

SM UBR PH
Type of guarantees soft hard hard
Reaction to special events yes yes possible
Amount of units of resources reserved by none one/any any
a probe packet

Table 2.4: Evaluation of admission control mechanisms

2.6 Conclusion

From the presentation of various core stateless mechanisms, we deduce that many services
may be provided without the need to maintain per-fl.ow state in the core routers. With
these mechanisms, the complexity is at the edge of the network, which is responsible of the
marking, shaping or policing, while the core routers only have to perform aggregate scheduling
and active queue management. Therefore, these stateless mechanisms are scalable. Sorne of
these mechanisms allow fair sharing of the bandwidth, others provide maximum guarantees
to the fl.ows . Minimum throughput guarantees with fair sharing of the remaining bandwidth
may also be provided by some core stateless mechanisms.

As a second step, we have made a comparison of the mechanisms in order to show their
context of utilization as a fonction of the services that are required. By doing this simile,

45

we have underlined the proximity of the FADE and CSFQ fair share estimation algorithm.
While at first sight FADE estimation of the fair share seemed to be more accurate than CSFQ
fair share estimation, when looking at FADE estimation more closely we have seen that the
hypothesis lying beneath this estimation may be too strong and impossible to meet in practice.

Admission control is required when guaranteed fl.ows need to be supported by networks. It
ensures that there are enough resources available to the accepted guaranteed fl.ows. With the
RSVP protocol, reservations are made for the guaranteed fl.ows inside each node in the network
by keeping some information concerning the guarantee. This solution provided by RSVP is
not scalable. Thus, per-fl.ow stateless mechanisms are needed for admission control as well.
In the last section, we have seen that there are diff'erent per-fl.ow stateless ways to perform
admission control depending on the admission control architecture, the type of guarantees to
support and the type of reactions required in case special events, like a breakdown of a link,
occur.

46

Chapter 3

CSFQ study

Even though CSFQ seems to be simple from the pseudo code illustrated in figure 2.6. We
tempt to show, in this chapter, that it is not obvious that CSFQ allows fair sharing of the
bandwidth. At first, it is tried to provide more precision on different possibilities to perform
some of the estimations as well as other clarifications concerning the algorithm of CSFQ. Then,
a problem in the fair share estimation is underlined. And, finally, the impact on bandwidth
allocation of parameters that have to be configured is analysed.

3.1 CSFQ clarifications

In this section, precisions are given concerning the estimation of the forwarding rate. Then,
a way to estimate rates when simultaneous pack.et arrivals occur is proposed. At last, it is
tried to determine a correct initial value for the fair share estimation.

3.1.1 Forwarding rate estimation

In CSFQ, two rate estimations are performed by core routers : the arrival rate and the
forwarding rate1 on each link are estimated. These estimations are made using the exponential
averaging.

In the exponential averaging, the rate estimation ratenew is based on the instantaneous
rate and the previous rate estimation. The formula of the exponential averaging is as follows:

(3.1)

where T is the time elapsed between the arrival of the current pack.et and the previous, K is a
constant and Lis the length of the current pack.et. T and K determine the relative importance
of the instantaneous rate, ~, and the previous estimated rate, rateold·

When T is big, the portion of the previous estimation taken into account in the averaging
is smaller than when T is small. The bigger T gets, the more importance the instantaneous
rate will have in the rate averaging. Taking K small means that the estimated average rate

1The forwarding rate is the aggregate rate of the packets sent to the queue that is set on the output link.
This is a FIFO queue which may also tail drop packets in case of overflow.

47

will follow the instantaneous rate closely. On the other hand, a large K means that the rate
estimation varies more smoothly in time. This means also that it reacts slowly to traffic bursts.

For the exponential averaging, the time interval T is not of fixed length. lt is the time
elapsed between the arrival of two successive packets, for an arrival rate estimation. For the
forwarding rate estimation, there are two possibilities:

1. The time interval length can be obtained by the difference of the forwarding time of two
packets forwarded successively.

2. The time interval is the interval between the arrivai of two successive incoming packets.

With the first option, the rate is only estimated when a new packet is forwarded to the queue.
When no packets are forwarded during a long period of time, the rate is not estimated ; it
stays constant. But, in that case, the estimated forwarding rate should decrease to indicate
that packets are no more forwarded and that the forwarding rate is decreasing. That is why
the second solution is introduced. Each time a new packet arrives, the accepted and the
forwarding rate are estimated. If the packet that triggers the estimations is forwarded then,
like in the first case, where the forwarding rate is estimated on packet forwarding, we use
formula 3.1. But, if the packet is dropped, the rate will also be estimated. Then, the time
interval T is the time between the arrivals of the two last packets. And, the length of the
packet is equal to zero because nothing is forwarded. Equation 3.1 becomes

ratenew
T Û T = (1 - e-7<) T + e-1<rate0 1d

T
ratenew e-1<rate0 1d

(3.2)

(3.3)

which is smaller than the previous rate estimation rateold if T is strictly greater than zero. It
follows that when packets arrive but are not forwarded the rate estimation is decreased by a
small portion.

The second option is useful in the estimation of the fair share performed by CSFQ. In fact,
when the output link of a router is congested2, the fair share is estimated by the formula

BW
FSnew = FSold FR (3.4)

where F S is the fair share, BW is the bandwidth of the link and FR is the forwarding rate.
As said above, when no packets are forwarded, i.e. they are dropped because the fl.ow sends
at a higher rate than the fair share of the outgoing link, the forwarding rate is decreased
according to equation 3.3. When FR decreases, the fair share FS is bigger than if FR would
have stayed constant like in the first option. lt follows that the drop probability calculated by
2.2 decreases. Less packets will be dropped than previously if the arrival rate stays the same.
By comparison, if the first solution is chosen, FR stays constant and, as a consequence, the
portion 1;.,i;, is the same as previouly. The fair share F S increases or decreases by the same
factor as for the previous forwarded packet. It seems that the second option fits best into
CSFQ.

2This is determined by testing if the estimated arrivai rate of the aggregation of flows is greater than the
rate of the link.

48

If the output link is congested, the fair share cannot increase because an increase would
trigger more packets to be forwarded and therefore the congestion would be even worst. On
the opposite, when the forwarding rate is lower than the link bandwidth, the fair share should
increase in order for the router to forward more packets and exploit a bigger portion of the
outgoing bandwidth. This is exactly what happens with both solutions proposed. With the
second option, when there is no congestion the fair share increases faster than the increase
obtained by the first option. The forwarding rate estimation FR is smaller when the second
option is used compared to when the first option is used. Additionally, because there is no
congestion FR is smaller than BW. It follows that the ratio 1J.,i;,, from equation 3.4 is greater
with the second option than with the first option. Therefore, the fair share is increased from a
bigger portion with the second option, when there is no congestion. In case of congestion, the
fair share decreases slower with the second than with the first option. The estimation FR is
smaller and the ratio 1J.,i;, is bigger than the one computed with the first option. If not enough
packets are dropped by CSFQ, FR is higher than the link rate BW. Then, the fair share
decreases more smoothly from one value to the next update. This is useful for TCP flows.
They do not react too abruptly to the congestion if their packets are dropped progressively.

According to the previous argumentation, the second option has been implemented and
is used in the simulations performed. The forwarding rate is estimated every time a packet
arrives at the node. It is not estimated on packet forwarding.

3.1.2 Simultaneous packet arrivals

It can happen that packets arrive at the same time. This causes some problems for the
estimations of the different rates. The estimations of the arrival rate and the forwarding rate
are clone using the exponential averaging. To perform this averaging, it is needed to <livide
by the time elapsed between two packet arrivals, T. When T is equal to zero, equation 3.1 is
invalid. To obtain an estimation of the rate when T = 0, we will take

ratenew = J,i~ ((1 - e-f) ~ + e-k rateold)

L
- K + rateold

3.1.3 Fair share initialization

Choosing the right initial value for the fair share in each buffer acceptance module is a
difficult task. We must first exclude zero in the set of potential values. The reason to reject
this value is that, if the network is congested during the first window size of the simulation
and stays overloaded, the fair share will keep zero as value. When the network is congested,
the fair share is updated according to equation 3.4. If the fair share is zero and the network is
congested, the new value for the fair share will also be zero. This will happen as long as the
network stays overloaded. Until the aggregate arriving rate at the buffer acceptance module
gets below the link rate, the fair share will be zero. That means that ail packets arriving at
the buffer acceptance module will be dropped. No packets will be transmitted on the output
link as long as the fair share remains zero. More important, independently of the initial value,
if at one moment the fair share decreases to zero and the network is congested (or starts to

49

be congested), the same problem happens. The fair share will not increase before the network
starts to be uncongested. All packets arriving before that will be discarded.

At initialization, the value of the fair share should not be above the real fair share. The
real fair share is the theoretical value the fair share should have, in conformance with the
number of fl.ows and their arriving rate (see definition in section 1.1.1). If the fair share is set
too high, too many packets will be forwarded to the queue. The queue will be full after some
time. The packets will then be dropped without distinction of the fl.ows by the queue. When
tail drops occur, the bandwidth is no more distributed in a fair way. A fl.ow with a low sending
rate can have packets dropped even if it does not have many packets in the queue. The queue
may be full of packets from a small number of fl.ows with a higher rate (that is limited by the
fair share). The packets from these fl.ows have more chances to find room in the buffer. More
packets of the fl.ows with an arriving rate above the fair share are forwarded to the queue and
try to be stored in the buffer. These flows will receive the biggest part of bandwidth on the
output link. The streams with a lower rate than the fair share will be disadvantaged. Packets
from these fl.ows may be discarded. Even worst, if these flows are TCP flows, when some
of their packets are dropped, they reduce their sending window. It follows that TCP flows
with a sending rate lower than the fair share may still decrease their sending rate. They will
therefore not be allocated a bandwidth equal to the fair share of the path they follow in the
network. Smaller packets also have more chances to fit in the queue. Usually, TCP flows have
larger packets than the UDP flows. This is one more disadvantage regarding the TCP fl.ows.
As a summary, we can say that TCP fl.ows will suffer from tail drops because

• TCP will react to drops and the sources will further decrease their sending window.

• TCP packets are larger than the UDP packets resulting in larger loss.

Figures 3.1 and 3.2 show the way the fair share estimation converges to the real fair share
in a congested network. The slope3 of these figures is derived from equation 2.4. These figures
are only valid when the sending rate of the fl.ows as well as the flows sharing the network do
not vary in time. This condition ensures that the incoming traffic at each node in the network
is stable once CSFQ has converged to the fair share on all links. The slopes that are drawn in
figures 3.1 and 3.2 represent the forwarding rate as a fonction of the fair share at a network
node given a link rate and a certain traffic. If the incoming traffic changes, new slopes have
to be drawn. For example, if the fair share was overestimated it can become underestimated,
if the number of flows suddenly decreases or if many flows do not send at their fair share
anymore. The other way around, when the fair share is underestimated, a change in traffic
can lead to an overestimation of the fair share. This happens, for example, when the amount
of traffi.c increases by a certain amount making a link pass from uncongested to congested.

Figure 3.1 illustrates the convergence of the fair share to the real fair share when the initial
value is an underestimation of the real fair share. The fair share estimation is set to its initial
value (F S0) . Then, after a window size4, the fair share is estimated. Its value F S1 is obtained
on the figure according to the method exposed in what follows. At each packet arrival during
the window size period, the forwarding rate is estimated. So, at the end of the first interval
of a window size length, we have a point (F So, F Ro) that belongs to the slope of FR as a

3 An explanation of the shape of this slope is given in section 2.2.1.
4The window size is the time during which the fair share used for the drop probability computation is

constant (section 2.4) .

50

Forwarding rate
(FR)

Link rate (BW)

FR1

::,
r+
;::;:

~
01
ë
CD -ï1
Cl)

C -
Figure 3.1: Underestimated fair share

Fair share
(FS)

function of FS. We draw a line (line1) passing through the origin and (FS0 ,FR.o). line1
crosses the horizontal line with ordinate equal to the link bandwidth (BW). The point at
the intersection from line1 and this horizontal line gives the new fair share estimation (FSl).
To obtain the next estimation, after a window size, a line (line2) is drawn through the origin
and (FS1,FR1), where (FS1,FR1) is on the slope. From the intersection of line2 and the
horizontal line at ordinate BW, a new fair share estimation F S2 is obtained. This mechanism
continues to obtain the list of the successive fair share estimations. The farther we go in the
list, the more the estimated value is near the real fair share. The fair share valuation increases
from one estimation to the next one. But, this increase decreases from one estimation to the
following. The fair share never gets above the real fair share if the arriving rates of the flows
do not change over the time.

In figure 3.2, the initial value of the fair share is above the real fair share. The same princi-

51

Forwarding rate
(FR)

Link rate
(BW)

:;c ï1 ï1 ï1 ï1
CD (/) (/) (/) ~(/)
~ ... "' "'
ï1
(/)

Figure 3.2: Overestimated fair share

line
4

::::, Fair share r+
;::;:

(FS) ~
<
D>
ë:
CD -ï1
(/)

0 -

ple as the one exposed in the previous paragraph is applied to find the successive estimations
of the fair share. From the initial fair share F So and the estimated forwarding rate, we draw
a line that crosses the origin. From this line and the link rate, we obtain a new value for the
fair share that is smaller than F So, and so on. It can be seen that the fair share decreases at
each step but the decrease is smaller each time. If the arriving rate of the flows stay constant,
the fair share will always be overestimated.

If the initial value of the fair share is below the real fair share (figure 3.1), the estimation
will converge to the right value but will always be below it. On the contrary, if the fair share is
set to a higher value than the real fair share (figure 3.2), the fair share will also converge to the
theoretical value. This time, the fair share will always be above the real value. It means that
the queue will build up and tail drops will occur if the network stays congested during a too
long period. Because tail drops should be avoided to ensure fair allocation of the bandwidth,

52

·-- -------------

overestimations of the fair share should be prevented. When these overestimations occur, they
should be small and brief.

We can conclude that choosing an appropriate initial value for the fair share is not a simple
problem if we want to obtain a quick convergence, avoid big underestimations and prevent
tail drops.

3.2 Uncongested network problem

It has to be noticed that in the algorithm of CSFQ (figure 2.6) as exposed in [SSZ98a),
when there is no congestion, the fair share is set to the maximum of the packets' labels passing
through the network node. To obtain this maximum, the fair share is regularly assigned to
a temporary variable (temp _ FS) whose value is reset to zero after the fair share is updated.
This assignation is performed every time the link stays uncongested during a time period
determined by the window size. But, during a window size period, sometimes not all flows
have packets arriving at anode. Consequently, the fair share might be smaller than the label
of certain packets. As a result, the drop probability of certain packets could be higher than
zero. Sorne packets may be dropped even if the link on which they have to be transmitted is
not congested. Another problem with the estimation of the fair share as the maximum of the
labels, in uncongested mode, is that the flows cannot increase their sending rate. For example,
if the maximum arriva! rate among the flows at a link increases, and the new arriva! rate of the
flow is not yet incorporated in the fair share estimation, some packets of the flow are dropped.
Again, we observe dropping of packets in an uncongested period. But, in uncongested periods,
TCP always tries to increase its sending rate. If packets of the TCP flows are dropped, their
sending rate will decrease because dropped packets are interpreted as congested network by
TCP. Therefore, this estimation of the fair share done by CSFQ for uncongested links can be
seen as TCP-unfriendly. Additionally, forcing the flows to decrease their sending rate leads to
underutilization of the resources.

We can also imagine the case where a network node does not get any packets to send on a
particular output link. Then, the estimation of the arriva! rate should be around O bps and the
link is considered as uncongested. Because no packets have to be transmitted, and temp _ FS
is periodically reset to 0, the fair share is estimated to O bps. And, when packets will arrive
for this link, they will all be dropped. If the link stays uncongested during a window size,
the fair share estimation will increase to the maximum of the labels that passed during the
last window size period but if the link becomes congested before this update, the fair share
estimation will keep zero as value according to equation 3.4.

3.3 Parameters impact

Different parameters need to be configured to determine the behavior of CSFQ. The objec­
tive of this section is to determine how these parameters impact on the bandwidth allocation.

3.3.1 Tail drops impact

ln [SSZ98a], Stoica proposes two minor amendments to CSFQ. One of them is to decrease
the fair share by a small fixed percentage every time a packet is tail dropped. During a window

53

size period, the drop probability of the arriving packets from whatever fiow is computed
based on this fair share. If another tail drop occurs, then, the fair share is decreased again,
independently of the window. The drop probability of a packet depends on the fair share of
the link and the label carried by the packet.

But, there is a question about the percentage by which the fair share has to be decreased in
case a tail drop occurs. Also the number of successive decreases allowed has to be determined.
When tail drops occur, if the fair share is largely overestimated, the decrease of the fair share
may not be enough to avoid future tail drops. An unfair allocation of bandwidth can result
from a bad configuration of the decrease percentage and the number of successive decreases
that can be performed. Because overestimations of the fair share may happen, when CSFQ
has converged, due to variations in traffic, if the load of a network changes very dynamically,
it is impossible to choose these two configuration parameters correctly.

3.3.2 Window size impact

The value chosen for the window size has some impact on the way the bandwidth is
distributed among the existing fiows. During at least a window size, the fair share stays
constant. That means that if the load of the traffic to be sent on the output link changes, it
will take some time for the fair share to be adapted in consequence. The smaller the window
size, the quicker the fair share will be adjusted. But the longer the window size, the more
stable the router will be because the forwarding rate estimation is more accurate towards the
fair share estimation.

When the output link is not congested, the fair share is computed to be the maximum of
the labels from the packets passing during a window size (in the original version of CSFQ).
If the widow size is small, the fair share may be smaller than it should be. Not ail fiows may
have packets arriving at the router. The fair share will not take into account the rate of the
flows for which no packet has been received during the last window size. This is a problem
because TCP sends bursts of packets. TCP sources send packets one after the other. Then,
they do not send anything for some time. After a moment, they start sending a burst of
packets again, and so on. It may often happen that no packets from a fiow are received during
a window size if the value chosen for the window is too small.

3.3.3 Threshold impact

The threshold is the size of the queue under which the output link is considered to stay
uncongested. When the queue occupancy is below the threshold, the fair share is estimated
in the same way as if the output link stayed uncongested even if the aggregate arriva! rate
becomes greater then the link rate. Once the queue size exceeds the threshold, if the aggregate
arriva! rate is above the link rate, the output link is considered congested. Then, the fair share
is estimated by equation 3.4. Otherwise, the next value of the fair share will be the maximum
of the labels of the packets that have to be sent on the output link since the beginning of the
window. It can be noticed that if the threshold is set to zero, then it is as if no threshold was
used. The output link is considered to be congested when the aggregate arriva! rate is above
the rate of the output link. It is not congested when the total arriva! rate is below the link
rate.

54

From the last assertion, it can be deduced that if the output link is near congestion, the
mechanism will be unstable. A link is near congestion when the arriva! rate on the link is
around the link rate. Sometimes, the arriva! rate will become greater than the link rate, then
the link will be considered as congested. The time will be restarted. The estimation method of
the fair share will change. And, the fair share will be updated only if the link stays congested
during a window size. If the link becomes uncongested bef ore the end of the window size,
the time is restarted. The fair share should be updated after a window size if the load of the
link doesn't exceed the link rate again. lt can be observed that the fair share may not be
revised for a long time in some situations. With a threshold (greater than zero), the time will
be restarted less often (figure 3.3). The output link is considered uncongested for a longer
period. The fair share is updated more often. It follows that the bandwidth is distributed
according to a more accurate value of the fair share.

Thelink is
uncongested

Thelinkis
uncongested

Wlthout threshold

FS1 congesled congesled congesled congesled
1

congesled

t
t

t
1 t t t

t t
t ..

uncongested uncongested uncongested uncongested

1 1 1 1
◄K,, =0.6 sec--FS stays constant for t6 sec---t---FS stays constant for at least2.4 sec- - ..

1
FS1 congesled

t

Each lime the link passes from
congested to uncongested and
vise versa, the time window is

restarted

With threshold

1
FS3congested FS•

t
t

t
uncongesled uncongested

1 1
◄K,, =0.6 sec-FS 1s constant for 1.3 sec- ◄FS lsconstantfor1 .1 sec►

Figure 3.3: Frequency of FS updates

..

If the output link is not congested and the amount of arriving traffic suddenly increases,
the congestion will not be taken into account until the queue occupancy goes beyond the
threshold. Between the time when the arriva! rate exceeds the link rate and the threshold
is outrun, the fair share may still increase. The fair share is yet computed as the maximum
of the packets' labels and the previous fair share. But, because of the new congestion, the
fair share should not increase. lt may stay the same but it should probably decrease. During
the interval between the change in traffic and the congestion is noticed, too many packets
are accepted. Sorne of these packets may be dropped by the queue. Then, bandwidth is not
distributed in a fair manner anymore. Even if the queue doesn't have time to fill up, unfairness
between the flows can occur. When the congestion is noticed, the fair share may decrease a
lot . Many packets are suddenly dropped from all bottlenecked flows. This abrupt dropping

55

is not beneficial to the TCP flows. When they will detect the congestion, they will decrease
their sending rate. But, the UDP flows will not perceive and react to the congestion. If the
sending rate of the TCP flows decreases too much, it will take some time before the sending
rate equals the fair share again. During that time the bandwidth allocation is unfair.

An important problem with the threshold is to find the right value for it. The value chosen
should be such that we can benefit from the advantage presented two paragraphs above. That
means that the threshold has to be set such that the fair share can be estimated regularly in
situations were the output link is near congestion. It has to be decided until when a link can
be considered as not congested. The threshold may not be too high because if the load of the
arriving traffic occurs a significant increase, the fair share estimation should change to take
the congestion into account. The implementation of a threshold is the second amendment
that Stoica suggests in [SSZ98a].

3.4 Conclusion

The pseudo code presented in figure 2.6 is a simplification of the algorithm of CSFQ. It has
been seen that there are different possibilities to implement the estimation of the forwarding
rate. And, the solution chosen corresponds to the second proposai. Sorne special cases like
the way division by zero is avoided when packets arrive at the same time are not treated
in the pseudo code but they have to be handled in an implementation. The value used for
the fair share initialization is also not given. We have underlined that such value has to be
determined carefully and we have eliminated zero right away. For more information on the
implementation we refer to appendix C.

As a second step we tried to evaluate CSFQ from a theoretical point of view. First, we have
demonstrated that problems in fair bandwidth allocation can occur in uncongested networks.
Then, the impact of tail drops on the allocation of bandwidth is mentionned. It is showed
that the fair share estimation depends on the window size and the constant used in the rate
estimations. The fair share is also influenced by the threshold that can be implemented to
obtain a more stable behavior but sometimes postpones estimations when an earlier estimation
would have been wiser.

56

Chapter 4

CSFQ ameliorations

Sorne weaknesses of the original algorithm have been discovered in the previous chapter.
We have seen that the degree of fairness depends on the setting of some parameters and we
also found out that the fair share estimation may not be adequate when there is no congestion.
To salve this problem, an amelioration to CSFQ is proposed. This solution is implemented in
a new mechanism called Modified Core Stateless Fair Queueing (MCSFQ).

The original CSFQ mechanism does not support flows with minimum throughput guaran­
tees. Our second objective in this chapter is to propose a way to enhance CSFQ by enabling the
provision of minimum throughput guarantees in addition to the fair sharing of the bandwidth
that is not the abject of guarantees.

4.1 Fair bandwidth sharing

To avoid the dropping of packets when there is no congestion (section 3.2), it is chosen to
initialize the temporary variable temp _ fs to the initial value of the fair share. The temporary
variable will only be reset when the link passes from congested to not congested and it will
be given the actual value of the fair share. When the link stays uncongested, the temporary
variable is equal to the maximum of the packets' labels and the value of the fair share at
initialization, if the link was never congested. If the link was once congested but is not
actually a bottleneck, the temporary variable is the maximum of the packets' labels and the
fair share of the link when it was last congested.

Figure 4.1, shows the pseudo code of fair share estimation in the Modified version of
Core Stateless Fair Queueing. To obtain MCSFQ, changes are only made in the fair share
estimation. More precisely, the fair share estimation is only altered in the non congested case.
By comparison to the fair share estimation algorithm of CSFQ, the variable temp_FS is not
set to zero when the link starts to be uncongested. Instead, it is set to the actual estimation
of the fair share. Additionally, after a window size period of uncongestion, temp_FS is not
reset; it keeps its current value.

The solution proposed is interesting because, when the link becomes uncongested, it can
be considered that the right fair share has been found. The new fair share should not be lower
than the fair share used when there was congestion because the arrivai rate decreased, so, less
packets have to be dropped. lt is logical that the fair share should be the maximum of the

57

estimate_FS(p,dropped)
estimate_rate(AR,p); I* estimate arrival rate *I
if (dropped == FALSE)

estimate_rate(FR,p);
if (AR2:BW)

if (congested == FALSE)
congested = TRUE;
start_time = current_time;

else
if (current_time > start_time + Kc);

FS = FS * BW/FR;
start_time = current_time;

else I* AR< BW *I
if (congested == TRUE)

congested = FALSE;
start_time = current_time;
temp_FS = FS; I* Used to compute new FS *I

else
if (current_time < start_time + Kc)

temp_FS = max(temp_FS,p.label);
else

FS = temp_FS;
start_time = current_time;

return FS;

Figure 4.1: MCSFQ fair share estimation pseudo-code

fair share at the last congestion update and the packet 's labels that passed. When the link
stays uncongested, the temporary variable is not reset because all packets can be forwarded.
When reseting it, like in the proposa! made in [SSZ98b], if the labels of the packets that
pass during a period of a window size length are strictly lower than the maximum of the
packets' labels passed during the previous period, the fair share decreases even if there is no
congestion. There is a chance that the flow with the high sending rate is still active and if
its packets arrive some of them might be dropped because their label is above the fair share.
But, packets should not be dropped when there is no congestion because either each flow has
already attain its fair share or the flows are not using all network resources. Here, there is no
need to limit the use of resources of certain flows. Sorne bandwidth is still available for new
flows or flows increasing their need for bandwidth.

It can be noticed that, when the link becomes congested for a window size period, the fair
share will be updated according to

BW
FSnew = FSold FR

If the fair share is too high when the link becomes congested, the forwarding rate measured
during the first window period will be higher than the link rate and therefore, the next
estimation of the fair share will be smaller.

58

In the next chapter, some results from simulations using CSFQ and Modified CSFQ
(MCSFQ) are exposed. By CSFQ, we refer to the mechanism presented in (SSZ98a]. The
estimation of the forwarding rate is performed on packet arrivals. The fair share is initialized
to zero when this value is not a problem otherwise 1 bps is chosen. And, the temporary
variable temp_FS is reset to zero every time the output link is not congested during a window
size. In MCSFQ, the estimation of the forwarding rate is also carried out on packet arrivals.
The fair share is initialized to 1 bps usually. But, most important, temp_FS is not reset to
zero after a window size of non congestion. When the link starts to be congested as well as
when the link is uncongested since a window size, temp_FS is set to the actual estimation of
fair share, not to zero like it is done in CSFQ.

4.2 Minimum guarantees support

In this section, a way to enable CSFQ to provide minimum throughput guarantees to
some flows is exposed. It is showed that a small change in the labelling performed by the
edge routers is enough to achieve the support of minimum throughput guarantees. Sorne
modifications may be done to the buffer acceptance module also. These alterations are not
mandatory to obtain satisfying results.

To be able to support minimum guaranteed flows, an admission control mechanism should
be implemented. The objective of admission control is to ensure that there are enough
ressources to provide the guarantees associated to the flows accepted in the network. In
the simulations that have been run to test if an adaptation of CSFQ has a good behavior in
supporting minimum guarantees with fair sharing of the remaining bandwidth, no admission
control mechanism is used. The amount of bandwidth reserved for each flow is static. lt is
made sure in advance, that the amount of the aggregated bandwidth reserved on a link does
not exceed the link rate.

4.2.1 General principle

To enable a mechanism like CSFQ to support minimum guarantees, some changes have
to be made. First of all, while labelling packets, edge routers have to be able to determine
which packets are part of the guarantee associated to the packet's flow and which packets will
be treated as best-effort (section 4.2.2). Bandwidth that is not the object of any reservation
has to be shared fairly between the flows sending packets in excess of their traffic contract.
Therefore, CSFQ will only apply to excess packets. Edge routers will for that purpose mark all
guaranteed packets with a label of zero. This indicates that the packet doesn't use any portion
of the bandwidth that has to be allocated fairly. But, in excess packets will be marked with
a label equal to the excess rate of the flow (NSY00]. Such principle is also used in [VMSB00]
for the provision of minimum throughput guarantees by Stateless Prioritized Fair Queueing
(SPFQ).

When a packet arrives at a router, it is checked if the label of the packet is higher than the
fair share of the output link on which it has to be transmitted. When the packet is guaranteed,
the fair share will never be smaller than the label because the label has a value of zero. But,
this might happen for packets sent in excess of the guarantee. Because the drop probability

59

of a packet is determined by the equation

FS
p = ma.x(O, l - label) ' (4.1)

it can be deduced that, if label> FS than P > O. And, when label~ FS, we have l~b~l ~ 1.
It follows that P = O.

In case the label has a value of zero, equation 4.1 is invalid. Because the fair share should
never be zero1 , or, even worst, negative, we are in the case where the label is smaller than
the fair share so, the packet should not be dropped. If guaranteed packets are marked with a
label of zero, they should not be dropped by CSFQ. When a packet with label zero is received
the drop probability is set equal to zero and the packet is not discarded, except if the queue
is full and tail drops occur.

On receiving packet p
if (edge router)

i = classify(p);
A~ = estimate_rate(A~,p);
I* Determine of the packet is in or out of the guarantees *I
P. = max (0 1 _ guarratei) . out , AR; ,
I* Mark the packet *I
if (Pout<= unifrand(0,1))

p.label = O;
else

p.label = estimate_rate(E~,p);
I* Edge and core routers *I
if (p.label = 0)

else

I* Packet in the guarantee *I
Pdrop = 0;

I* Packet out of the guarantee *I
Pdrop = max(0,1-FS/p.label);

if (Pdrop > uni fr and (0, 1))

else

FS = estimate_FS(p,1);
drop(p);

if (Pdrop > 0)

p.label = FS; /* relabel p*/
FS = estimate_FS(p,O);
enqueue(p);

Figure 4.2: support of minimum guarantees : pseudo-code

To provide flows with minimum throughput guarantees no changes are required in the fair
share estimation. The only changes required are shown in figure 4.2. In the pseudo code given,

1 The fair share should never be zero because this means than no excess packets will be transmitted. There
is no bandwidth available for such packets. In fact, it could happen if the sum of al! guarantees was equal to
the link rate but , normally, admission control will reject new flows when 90% of the bandwidth is reserved.

60

the marking is performed based on a probabilistic determination of packets in and out of the
guarantees. ln the following subsection, a deterministic method is also proposed. Moreover,
to obtain a quicker convergence of the fair share estimation, we suggest in subsection 4.2.3
to estimate the amount of aggregate guarantee. This modification requires modifications the
the fair share estimation function. We suggest to refer to the implementation in appendix C
for informations concerning the implementation of this estimation as well as the deterministic
marking.

4.2.2 Probabilistic versus deterministic marking

ln our implementation, two different ways to determine the packets that have to be marked
out of the traffic contract or inside the contract are available. ln the case treated, the contract
corresponds to the amount of minimum throughput that is guaranteed to a flow. Packets can
be marked in a probabilistic or in a deterministic way.

Probabilistic method

Depending on the arriva! rate of the flow and the guarantee associated to the flow, a
probability is determined

P b
_ Guarantee

ro aut - 1 - --.--­
Arnval rate

Packets from the flow will be marked as not belonging to the minimum guaranteed portion
of the flow with that probability. And, packets will be marked as belonging to the guarantee
with a probability of 1 - Probaut·

With this marking method, a source cannot know in advance which packets will not be
guaranteed and the ones that will be guaranteed. It may be important for certain kind of
traffic that the source be able to make such distinction. A source could then send important
information in guaranteed packets and accessory information in best-effort packets. The source
is then assured that the information that is crucial to its functioning will be received by the
destination, because of the guarantee. Multimedia applications could take advantage from
this depending on the encoding method used.

An advantage of this method is the possibility for successive packets not to be marked in
excess even if the flow sends at a higher rate than its guarantee. This is interesting because
excess packets will be dropped before guaranteed packets in the network. When packets of
a burst are not all marked in excess, some of the packets of the burst are assured to arrive
at the destination. The burst will not be totally dropped because guaranteed packets should
not be dropped in the network. This is good for the TCP flows. They detect the congestion
faster if some of their packets arrive at the destination. Sometimes, they may be able to do
fast retransmit and recover quickly from the lost of packets.

To compute the arriva! rate of a flow with the exponential averaging, a window size has
to be chosen. Because such window is also used by core routers, the same value can be used
by the marking performed at the edges. No configuration diffi.culty is added to CSFQ when
packets are marked probabilistically.

61

Deterministic method

A token bucket can be used to determine if a packet will be guaranteed or whether it is
out of the traflic contract (section 2.3.1). There is one token bucket for each flow. The filling
rate of the token bucket is the amount of bandwidth reserved for the flow. The size of the
token bucket determines the size of the bursts of traflic that are considered as belonging to
the minimum throughput guarantee.

When a token bucket is used by edge routers to determine the guaranteed packets, the
source can also determine the guaranteed packets by using a token bucket configured in the
same way as the one from the edge router. This works only when a flow is composed of
packets from one and only one source. When the guarantee concerns an aggregation of flows,
a source may not be able to determine if its packets are respecting the contract since it may
also depend on other sources.

In the simulations, where some flows are guaranteed, presented in chapter 6, the marking
is done using the probabilistic algorithm even though the deterministic method has also been
implemented. The reason for this is that a good size for the token buckets has to be chosen
such that burst of packets can belong to the guarantee if they are not too long. But, the rate
of the guaranteed packets should not exceed the guaranteed throughput over a time interval
of a certain length. It is difficult to find an adequate value for the size of the token bucket. A
solution for this problem could be a rate adaptive shaper as described in [BDC00] .

4.2.3 Estimation of the aggregate guarantee

It has been said previously that it is possible to support minimum throughput guarantees
by only making changes in the arriva! rate estimator module. In this section it will be shown
that by bringing small changes to the buffer acceptance module, the bandwidth that is not
the object of any reservations on a link can be better shared between the flows.

When we try to plot on a graph the forwarding rate as a fonction of the fair share for a link,
we obtain the graph in figure 4.3. The fonction doesn't cross the X axis in a positive abscissa.
The ordinate axis is crossed at a value equal to the amount of the aggregate bandwidth
reserved, if the flows send at least at their guaranteed throughputs. Otherwise, the Y axis is
crossed at the sum of the sending rates of the flows sending below their guarantee and the
guarantees of the other flows. When the fair share is zero, the forwarding rate on the link is
equal to the aggregate rate of the guaranteed packets that arrive. No packets in excess are
transmitted. The forwarding rate is greater or equal to zero. Then, in the positive abscissas,
the shape of the fonction is the same than when no guarantees are provided. The fonction is
only translated upwards along the ordinate axis.

When there is no estimation of the amount of reserved traflic transmitted on the link, the
estimation of the fair share converges less quickly to the right value than when the guaranteed
traflic rate is estimated. This comparison can be done from figure 4.3. In this figure, F S is
used for fair share and FR denotes the forwarding rate. A slope is drawn from the point with
coordinate (Current FS estimation, Current FR estimation) and the origin. Then, the new
fair share without estimation of the guaranteed rate is the point on the slope with ordinate
equal to the link rate (BW) . The value obtained for the fair share without the estimation of
the aggregate guarantee is smaller than the new value obtained with estimation of the amount

62

Forwarding rate
(FR)

Link rate
(BW)

Current FR
estimation

î
fJ
C)

i!! Q)
C) Q)

îi
Ôâ,
è: ::,
::, C)

0
E

ci:

l
~

0 en
~
C:
0 :;
E
~
Q)

en
IL

ë
~
L.
::,
u

Fair share
(FS)

E en
E IL

~ ëii Q) ~ Q)
..: Q) a::
Ill ..: ::, Ill
Cl ::,
è> Cl
Cl è> Ill Cl - Ill ::,
0 .s::

= -"i "i ~

~ en
IL en

IL

Figure 4.3: Fair share estimation without/with estimation of the aggregate guarantee

of reserved bandwidth. When the fair share is overestimated, an analogous conclusion can be
drawn : the estimation converges less quickly to the fair share when the quantity of guaranteed
traille is not estimated.

4.3 Conclusion

In this chapter, a solution has been proposed to the problem of CSFQ that occurs when
links are uncongested. This solution is implemented in MCSFQ. The pseudo code of the ame­
liorated fair share estimation is given with the same simplifications concerning the estimation
of the forwarding rate, the treatment of special cases, ... as in the original pseudo code (figure

63

2.6).

For both CSFQ and MCSFQ, it is possible to provide minimum throughput guarantees.
This enhancement is done to the labelling process also called the arrival rate estimator (ap­
pendix B) . For an optimisation, the fair share estimation fonction may also incur small
changes by estimating the amount of aggregate guarantees. In the simulations that are ex­
posed in chapter 6, both CSFQ and MCSFQ are tested with and without the presence of
guaranteed fl.ows.

64

Chapter 5

Simulation scenarios

This chapter introduces the scenarios that are used for the simulations of CSFQ. In each of
these scenarios, there is one flow per source. These flows may be an aggregate of TCP or UDP
flows. The data packets are sent from source to destination. The data packets ail go in the
same direction, from the left to the right of the networks. And, the acknowledgments follow
the reverse path. Two way traffi.c, i.e. traflic with a mix of acknowledgments and data packets,
are not considered. Because the acknowledgements are much smaller and less numerous than
the data packets, there is never congestion in the reverse path. In the simulations, CSFQ is
not used on the path of the acknowledgments. There is no need for CSFQ on this way of
transmission because the links crossed by the acknowledgements are not congested. Only the
throughput of the data flows is influenced by CSFQ. The acknowledgements are transmitted
in a best-effort network. The bandwidths that are indicated on the figures of this chapter are
the bandwidths for one way of transmission, the data path. For the other direction, the links
have an almost infinite bandwidth. In the following sections, the routers and the links will be
numbered from the left to the right.

Three scenarios are used for the simulations : the single bottleneck, the multiple bottle­
neck and the Generic Fairness Configuration (GFC) scenario. Each one of these scenarios is
used with different configurations of CSFQ. The results from these various configurations are
compared in chapter 6.

5.1 Single bottleneck scenario

In the single bottleneck scenario (figure 5.1), there are four sources, an ingress edge router,
a core router and four destinations. A flow is associated to each source. All packets generated
by one source belong to the same flow. There are four sources, so there are four flows in total.
The first flow goes from source 1 to destination 1, the second goes from source 2 to destination
2, and so on. All four flows cross the two routers of the network. They first pass through the
edge router where they are multiplexed on a single link. Then, the flows cross the core router.
Finally they are distributed on the links leading to their destinations.

In this scenario, the links from the users to the routers have a rate of 150 Mbps with a
fixed propagation delay of 2.5 ms. The TCP flows are shaped for a link of 100 Mbps. The
link joining the two routers is of 3. 75 Mbps with a fixed propagation delay of 10 ms in each
direction.

65

Source4

3.75 Mbps Core

There is no congestion at this router.
ln the simulations that are done, the module
performing CSFQ is before the routing
module. The packets from the four flows are
supposed to be sent on only one link with
the same service rate (3 750 000 bps) as the
link between the edge and the core router.

Figure 5.1: Single bottleneck scenario

Deslination4

The edge router performs the labelling of the packets. Then, it computes the drop prob­
ability of each packet based on the estimation of the fair share. The packets that are not
discarded according to this probability, are stored in the queue of the outgoing link. The
core router only computes the drop probability of the packets and then drops or accepts the
packets. It does not maintain per-flow informations. The packets arriving at this router are
already marked.

The edge router is the only bottleneck. The core router performs CSFQ also, but the
traffic in excess of each flow should already have been dropped by the first router. The core
router is only there to analyse the behavior of CSFQ on a link that is near congestion but not
congested. At the core router, it is supposed that all traffic is sent on one link with the same
service rate as the link connecting the two routers (figure 5.2). The service rate of the buffer
acceptance module1 is set to 3. 75 Mbps. The traffic is distributed to the different output links
after CSFQ has been performed.

Although the single bottleneck scenario is simple, it already gives a good indication of the
behavior of CSFQ. It shows the influence of certain configuration parameters. It indicates also
whether or not CSFQ is able to distribute the bandwidth in a fair way in simple networks.

5.1.1 First utilisation

The single bottleneck scenario will be used with different types of traffi.c. At first, all
sources will send UDP packets except the first source that will establish one TCP connection.
The three UDP sources will be sending at a rate of 500 Kbps. In this simulation, the network
will be lightly congested. The total rate of the UDP flows will be 1.5 Mbps. That means
that 2.25 Mbps are left to the TCP flow. The UDP flows are not bottlenecked because the

1The roles of the buffer acceptance module and the arrivai rate estimator are presented in appendix B

66

1 Receivers

,,,.-.,., ,_

1 Suifer
acœptanœ

! module

Routing
module

Data transmission direction

Deliver
modules : j Transmitters

Acknowtedgement transmission direction

(

1

1

,, -·-·-~.,' .- -·~ -.. ,

·· .. .,..__.

' I Trans~itters 1 : Deliver
1 modules

Routing
1 module

' Receivera i

Figure 5.2: Core router module composition

67

fair shares of the links are above the sending rate of the UDP sources. The delays occurring
to the TCP packets have been increased by 32 ms compared to the delays mentioned in the
previous paragraph. This increase in delays has been distributed over the access links of the
TCP source and destination.

5.1.2 Second utilisation

In the other simulations, there will only be two UDP sources. The other two sources will
establish TCP connections. Each TCP source establishes 5 connections. It follows that each
TCP flow will be an aggregation of 5 TCP microflows. The UDP sources have, in this scenario,
a sending rate of 2 Mbps. The total sending rate of the UDP flows will be equal to 4 Mbps.
This rate is above the link rates at the routers on the data path. In this scenario, the network
is congested. At least it is congested at the first router. After the first router the traffic is
adapted to the link of 3.75 Mbps. In theory, no drops should occur at the second router.

The flows generated by the four sources can also be the abject of some guarantees. Sorne
simulations will be made where the flows do not use any guarantees. Then, some simulations
will be made where the sum of the guarantees on the flows is equal to half the rate of the link
binding the two routers. Each flow profits from the same guarantee. The goal is to show, with
the results of these simulations, that CSFQ is able to guarantee an amount of bandwidth to
each flow and, additionally, to distribute the remaining bandwidth in a fair way between the
flows. Finally, the single bottleneck scenario will be used to simulate CSFQ in a network where
90% of the bandwidth is guaranteed. All flows will also get the same amount of guaranteed
bandwidth. Here we aim to see if CSFQ is able to provide each flow with its guarantee when
the total guaranteed bandwidth is high. There is almost no remaining bandwidth to distribute
fairly between the flows.

Simulations
Single 1 Single 2

without 50% 90%
guar. guar. guar.

Number of TCP flows 1 2 2 2
Number of UDP flows 3 2 2 2
Number ofTCP connec- 1 5 5 5
tians per flow
Sending rate of UD P 0.5 2 2 2
flows (Mbps)
Amount of guar. for 0 0 468.75 843.75
each flow (Kbps)

Table 5.1: Single bottleneck scenarios

The different configurations used for the simulations of the single bottleneck scenario are
summarized in table 5.1. There are two utilisations with different types traffics. In the second
utilisation, no guarantees are provided, at first. Then, 50% of the 3.75 Mbps is guaranteed to
the flows. And, at last, 90% of the 3. 75 Mbps of the link between the two routers is reserved.

68

5.2 Multiple bottleneck scenario

There are six sources and six destinations in this scenario. As for all scenarios considered,
there is one flow corresponding to each source. Therefore, there are six flows in this scenarios
(figure 5.3). Besicles, these flows go by pairs. There are always two flows following the same
path in the network. Flow 1 and 2 cross the edge router, then the core router and finally the
egress router. Flows 3 and 4 pass through the edge and the core routers. The remaining two
flows, 5 and 6, traverse the core and the egress routers.

Ag
Dest3 Dest4

Source 3 Source 4 Source 5 Source 6

Doesn't perfonn
CSFQ

Figure 5.3: Multiple bottleneck scenario

The edge router performs the labelling of the packets from sources 1, 2, 3 and 4. Then, it
computes the drop probability. It decides to accept or to drop the packets according to the
drop probability. The accepted packets are sent on the output link. The core router performs
the labelling of the packets from source 5 and from source 6, which enter the network. The
drop probability for each packet that is routed to the link toward the egress router is computed.
The packets are transmitted to the egress edge router if they are not dropped by CSFQ. The
packets that are routed to their destination do not occur drops. The direct output links
toward the destinations are no bottlenecks. The last router, the egress edge router, does not
perform CSFQ (figure 5.4). Each incoming packet is routed to the correct output link and
then transmitted to its destination. In this scenario, there are only two queues with CSFQ,
namely, the queue on the link from the edge router to the core router and, from the core router
towards the egress router.

On figure 5.3, it can be seen that the flows from source 1 and 2 cross all the network. They
pass through three routers and thus they encounter two bottlenecks. The other four flows only
cross two routers, which means that they only pass through one bottleneck. The round trip
times (RTT) of flow 1 and flow 2 are higher than the RTT of the other flows because they
cover a longer path. For the TCP flows, the RTT has an influence on the throughput. The
throughput of the TCP flows can be approximated by equation [MSM097]

Throughput = Data Per Cycle
Time Per Cycle
Maximum Segment Size Constant

Round-Trip Time JPacket loss ratio
The throughput is inversely proportional to the RTT. The maximum segment size and the
constant are the same for all flows. If the packet loss ratio also has the same value for all the

69

Reœivers ·

'
j Trans~ltters '

Data transmission direction

Acknowledgement transmission direction

Oeliver
modules

Roudng
module

Deliver
modules l Transmitters .

Reœivers i

Figure 5.4: Egress router module composition

70

flows, the throughput of flow 1 and flow 2 will be smaller than the throughput of the other
flows because flow 1 and 2 have a larger RTT. In order to have a fair allocation, all flows
should have the same throughput, in this scenario. Therefore, the packet loss ratio has to
be lower for flow 1 and flow 2 than for the flows from 3 to 6. A flow with a low RTT has a
higher sending rate compared to a flow with a bigger RTT. When a flow has a higher sending
rate than the other flows bottlenecked on the same link, more packets have to be dropped
to achieve the fair share. Therefore, the packet loss ratio of this flow is higher than the loss
ratio of the other flows on the link. The multiple bottleneck scenario is used here to see if
similar TCP sources with different RTT can share the network in a fair way when the routers
implement CSFQ.

In this scenario, the propagation delays are fixed . They are set to 2.5 ms for the access
links and 10 ms for the two links connecting the routers with each other. The propagation
delays are alike on all the access links. The rates of the links from users to routers and between
routers are also the same as in the previous scenario (section 5 .1). The size of the queues at the
edge router and at the core routers are 750 Kb. It follows that the maximum delay incurred
by a packet at these routers is 200 ms. From these delays as well as from the propagation
delays, it can be deduced that flows 1 and 2 will have a maximum RTT of 450 ms while the
maximum RTT of the other flows is 230 ms. Because the queues have a high occupancy once
CSFQ has converged, the average RTTs of the flows are not much lower than their maximum
RTT.

5.2.1 First utilisation

The multiple bottleneck topology can be used with different types of sources. At first ,
simulations will be done with TCP sources only. Each source establishes 5 TCP connections.
All the flows are therefore an aggregation of 5 TCP microflows. The network is congested.
As underlined previously, the objective of these simulations is to show that bandwidth can be
distributed in a fair way between TCP flows that have different RTTs.

5.2.2 Second utilisation

In this second scenario, half of the sources send UDP packets and the rest are TCP sources.
The sources with an odd number establish 5 TCP connections each. Even numbers are used
for the UDP sources, destinations and flows. On figure 5.3, it can be seen that flows always
go by pairs. That means that there are always two flows crossing exactly the same routers
along the network. In each pair, there is one TCP and one UDP flow.

The two flows going from one end to the other end of the network (flow 1 and flow 2) will
be guaranteed. Flow 1 have a guaranteed throughput of 0.75 Mbps. The amount of reserved
bandwidth for flow 2 is 1 Mbps. The objective here is to show that guaranteed flows are
approximately able to receive their fair share in addition to the guarantee they reserve. This
is possible in congested networks where all flows are not bottlenecked on the same link. It will
also be shown that the flows that are not the object of any reservation also receive their fair
share of the bandwidth.

Table 5.2 shows the different configurations of the multiple bottleneck scenario that are
used for the simulations. Two types of traffic are involved. When TCP and UDP flows share

71

Simulations
without with guar.
guar.

Number of TCP flows 6 3
Number of UDP flows 0 3
Number of TCP connections per flow 5 5
Sending rate of UDP flows (Mbps) 0 2
Amount of guar. for flow 1 (Mbps) 0 0.75
Amount of guar. for flow 2(Mbps) 0 1
Amount of guar. for the other flow 0 0
(Mbps)

Table 5.2: Multiple bottleneck scenarios

the network, simulations are clone with some flows having a minimum throughput that is
guaranteed.

without with guar.
guar.

Flow 1 0.94 1.25
Flow 2 0.94 1.5
Flow 3 0.94 0.5
Flow 4 0.94 0.5
Flow 5 0.94 0.5
Flow 6 0.94 0.5

Table 5.3: Throughput the diff'erent flows should get in Mbps

From the link rates, the paths of the flows and the guarantees associated to these flows,
the throughput of the flows should be equal to the values in table 5.3 if the mechanism
implemented is able to provide the guarantees and allocate the remaining bandwidth fairly
among the flows.

5.3 Generic Fairness Configuration scenario

There are 10 sources and 10 destinations in this scenario (figure 5.5). It follows that 10
flows are considered. These are TCP flows composed of 15 TCP connections each. The flows
initiated by the B and X sources are congested on the first link. The flows starting from the
C sources are bottlenecked on the second link. And, the flows from the A sources as well as
from the Y sources are bottlenecked on the third link. The B sources are bottlenecked bef ore
the central link while the A sources are bottlenecked after the central link and the C sources
are bottlenecked on the central link (i.e. the second link). Sources X and Y actas background
sources to create congestion at the edge router and at the second core router respectively.

72

Jg)g)g~
Dest B-short Des! B-long Dest C-short Des! C-long

JglJ
Des! X-short Dest X~

Jg~
Des! Y-short Des! Y-long

Source Y-short Source Y~ . The core routers are labelhng
the packets that arrive on links
other than the links connecting
two routers.

Source A-short Source A-long Source C-short Source C-long

Figure 5.5: Generic Fairness Configuration scenario

In the Generic Fairness Configuration (GFC) scenario, the first router is an edge router. It
behaves like the edge routers described in sections 5.1 and 5.2. The second and third routers
are classical core routers. They label the packets coming from the sources directly connected
to the router. Then, they route the packets to the output links. Finally, the packets are
dropped or accepted according to CSFQ, if the router is not connected directly to the packets'
destination. The last router is an egress edge router. It does not perform CSFQ. The arriving
packets are routed to an output link. Then, they are transmitted on the link towards their
destination.

The propagation delays on the different links are fixed. The delays of propagation on
the links between two routers are 10 ms. Flows A-short, B-short, C-short, X-short and Y­
short have a slightly smaller RTT than flows A-long, B-long, C-long, X-long and Y-long. The
propagation delay on the links between a source, or destination, of a flow with a small RTT,
and a router is 2.5 ms. For flows A-long, B-long, C-long, X-long and Y-long the total delay
occurred on the access links has been increased by 32 ms by comparison to the flows with a
smaller RTT. This increase is distributed over the two access links crossed by the flows.

5.3.1 First utilisation

In the first utilisation of the GFC scenario, there will be no guaranteed flows. The A flows
will use 30% of link 2. The B flows should use 10% of the second link and the C flows should
use the remaining 60%. The rate of link 2 will be set to 100 Mbps. From this rate, the rates
of the two other links can be deduced. There are four flows on link 1 and two of them pass
on link 2. These two flows should get 10% of link 2, i.e. 10 Mbps. Because the bandwidth on
link 1 is shared between four flows, the rate of this link is set to 20 Mbps. Following the same
reasoning, the rate of link 3 is set to 60 Mbps.

73

The goal of these simulations is to show that bandwidth can be distributed fairly between
flows bottlenecked on different links in the network. These flows do not have the same fair
share by opposition to the multiple bottleneck scenario.

5.3.2 Second utilisation

The amount of reserved bandwidth on the second link is 50% of the link rate, in these
simulations. Each flow profits from the same throughput guarantee of 3 Mbps. The rate of
link 2 is set to 36 Mbps. 50% of these 36 Mbps is reserved by the flows. There are still 18
Mbps left to share between the A, B and C flows. The excess of the B flows should get 10%
of these remaining 18 Mbps. That means that the B flows should be able to use 1.8 Mbps
of link 2 in excess of their guarantee. Because there are four flows sharing link 1, the total
excess rate on this link should be 1.8 Mbps x 2 = 3.6 Mbps. The rate of link 1 will be set to
4 x 3 Mbps + 3.6 Mbps = 15.6 Mbps. The excess of the B flows should therefore, in average
obtain, 1.8 Mbps on link 1. The B flows are not bottlenecked on the second link. lt follows
that no packet from these flows should be dropped on link 2. The B flows should be allowed
to use 10% of link 2 in average. An analog reasoning leads to set the rate of the third link
to 22.8 Mbps. The deduction is based on the fact that the A flows should have 30% of the
bandwidth of link 2 in addition of their guarantees.

This utilisation of the GFC scenario, is made to show that flows can benefit from their
guarantee and their fair share altogether in more complex networks where the fair share or
the RTT varies from one flow to another.

Simulations
without 50% guar.
guar.

N umber of TCP connections per flow 15 15
Amount of guar. for each flow (Mbps) 0 3
Rate link 1 (Mbps) 20 15.6
Rate link 2 (Mbps) 100 36
Rate link 3 (Mbps) 60 22.8

Table 5.4: GFC scenarios

Table 5.4 gives a summary of the configurations for the GFC scenario. This scenario is used
without providing any guarantees to the flows. Then, the flows all have the same guaranteed
throughput such that the sum of the guaranteed rates on each link is equal to half the link
rate.

It is important to see the throughput that the different flows should obtain if the mechanism
tested works correctly. These throughputs are presented in table 5.5.

5.4 Conclusion

In this chapter, three simulation scenarios have been presented. First , the single bottleneck
scenario has been exposed as well as different utilizations of this scenario. This scenario is

74

without with guar.
guar.

Flow B-short 5 3.9
Flow B-long 5 3.9
Flow X-short 5 3.9
Flow X-long 5 3.9
Flow A-short 15 5.7
Flow A-long 15 5.7
Flow Y-short 15 5.7
Flow Y-long 15 5.7
Flow C-short 30 8.4
Flow C-long 30 8.4

Table 5.5: Throughput the different flows should get in Mbps

simple but already gives an idea of the bandwidth sharing in a network where at most one
link is congested.

In the multiple bottleneck scenario, there are more than one congested link and with the
suggested link rates, all the bottlenecked links have the same fair share. This scenario is
primarily used to show the impact of the RTT on the bandwidth allocated to TCP flows. It
is also useful to check whether drops occur only at the first router on the flows ' path or not,
to have an indication concerning the correctness of the fair share estimation.

The congested links do not have the same fair share in the GFC scenario. The GFC scenario
is the most complex scenario that has been simulated with the implemented mechanism. Its
objective is to look at the accuracy of the fair share estimations through the amount bandwidth
allocated to the flows.

These three scenarios are used with different types of traffic. Sometimes only TCP flows
share the network. Other times TCP flows are mixed with UDP flows. In some of the proposed
utilizations of these scenarios, all flows possess a certain amount of guaranteed bandwidth. In
others, only certain flows are guaranteed. AU these utilizations have been proposed in this
chapter in order to study in chapter 6 the capability of CSFQ and MCSFQ to ensure flows
with their guaranteed throughput and a fair allocation of the remaining bandwidth.

75

Chapter 6

Simulations

The way the bandwidth is shared by the flows with the implemented mechanism is illus­
trated by simulations in this chapter. First, it is studied how different parameters impact on
the distribution of bandwidth and on the provision of guarantees. Then, it is showed that
guarantees and approximate fair bandwidth allocation can be provided in different network
topologies with various traffics.

In the fulfilled simulations, the value used for the constant in the exponential averaging
equation is equal to the value chosen for the window size. Additionally, when a threshold is
used, it is set to half the maximum queue size as suggested in [SSZ98a].

6.1 Fairness indicators

To evaluate the fairness of a mechanism, different indicators may be used. The goodput
or throughput of the flows may be compared to the ideal goodput or throughput of these flow,
respectively. The objective is to obtain the smallest difference between these two values. An
other possibility is to define the deviation of the throughput or goodput of a flow from the
ideal throughput or goodput of this flow. Then, the average from these deviations may be
taken to evaluate the global fairness of the mechanism. lt should also be checked whether
these deviations are in the same range for all flows.

The deviation of the throughput from the fair share is computed as follows :

D
. . _ lOO !Fair share - Throughputl

eviation - F . h airs are

The average deviation is simply the algebraic average of the deviations of the throughput from
the fair share for each flow :

nb flows D ..
. . "' eviationi

Average deviation = L...J b fl

6.2 Behavior of the mechanism

n ows
i=l

(6.1)

The impact of the window size, of the fair share initialization and of tail drops on the
bandwidth distribution is studied in this section. A problem about the fair share estimation

77

in CSFQ in uncongested networks is illustrated as well.

6.2.1 Window size

The scenario used, for the simulations described in this subsection, is the single bottleneck
scenario. The configuration adopted is named as the second utilisation (subsection 5.1.2) of
this scenario. No guarantees are provided to the flows. A summary of the traffic characteri­
zation for this configuration is given in the second column of table 5.1.

The fair share is initialized to 1 bps for all simulations exposed in this subsection. After
the first five seconds of the simulations, the statistics are reset such that the network has the
time to stabilize. The behavior of the network before stabilization is put aside. Only the
behavior after the first five seconds of simulations is analysed.

The constants used for the rate estimations at the edge and at the core as well as the
window size, are set to the same value. The impact of this value is analyzed in the following
paragraphs. At first, these constants are set to 0.1 seconds. Then, it is increased by 0.1
seconds after each simulation until the value of these constants reaches 0.9 seconds. Two sets
of simulations are performed : one with CSFQ as the bandwidth allocation mechanism and the
other with MCSFQ. ln these simulations, each flow should have a throughput of 3J5 = 0.938
Mbps in an ideal fair allocation. In such case, the goodput of the aggregation of the two TCP
flows should be near 3·J5 * 0.965 = 1.809 Mbps. The factor 0.965 is obtained by dividing the
amount of data in a TCP packet by the total size of the TCP packets. And, 1.809 Mbps is
the maximum total goodput of the TCP flows because retransmissions are not part of the
goodput. Soin the best case, when no TCP packets are retransmitted, the goodput of TCP
should be equal to 1.809 Mbps in a fair allocation.

Evolution of the global goodput of the TCP flows
as a functlon of the value of the estimation

constants

r::~1 • -=~=~ 1 =~~
0.1 0,2 o,3 0,4 o,5 o,6 0,1 o.8 o.9

Estimation constant (seconds)

1,8
;;­
_8-1,6
!.
'S 1,4
Q. ...
g 1,2
Cl

1,0

Evolution of the global goodput of the TCP flows
as a function of the value of the estimation

constants when a threshold 1s used

0, 1 0,2 0.3 0.4 0,5 0.6 o. 7 0.8 0,9

Estimation constant (seconds)

-+-CSFQ

---MCSFQ

Figure 6.1: Goodput of the TCP flows

Figure 6.1 shows the goodput of the aggregation of the two TCP flows as a fonction of the
value chosen for the constants. The graph on the left is obtained from simulations performed
without a threshold while to obtain the graph on the right a threshold of half the link rate, as
suggested in [SSZ98a], is used. It can be seen that with the original CSFQ, the global goodput
is far from half the link capacity when the constants are set to 0.1 seconds. But when this
value incréases, the goodput increases quickly. When the constants are set to a value near
1 second, the goodput starts to decrease again. By comparison, when the modified version

78

of CSFQ is used and the value of the constants is small, we observe the same behavior as
with CSFQ: the goodput is low. When the value increases, the goodput increases quickly.
But, with MCSFQ, the goodput is always above the goodput of TCP in the simulations using
CSFQ. When MCSFQ is used and the value of the constants increases, the goodput keeps
increasing to converge near the fair allocation the TCP flows should get.

The decrease of the goodput, with CSFQ, when the constants have a high value, can be
explained by the fact that when the window size increases, the fair share changes less often.
The fair share is kept constant during at least a period of a window size. lt can be deduced
that when the window size is big and the fair share is underestimated, packets of flows sending
over the computed fair share will be dropped during a long period of time even if some of
the packets could have been transmitted. As a response to packet drops, TCP decreases it's
sending window and therefore the goodput decreases also. If the window size is small, the
impact on the goodput of an underestimation of the fair share is less important .

The goodput of the flows, when the modified version of CSFQ is used, is above the values
obtained for CSFQ. This is due to the fact that the fair share computed by MCSFQ is above
or equal to the value obtained by CSFQ (section 4.1) . As a consequence, less packets are
dropped by the fair allocation mechanism and, when the fifo queue isn't full, the goodput is
greater. Because MCSFQ doesn't underestimate the fair share as much as CSFQ, when the
window size increases the same behavior as with CSFQ isn't observed. Here, the goodput
keeps growing slowly and remains constant for large values, close to 1 second. This means
that with MCSFQ, not only the fairness is increased but, also, the performance is less sensitive
to the value of the constants resulting in an easier dimensioning of the constants.

lt can be seen that there is not much difference between the results obtained when no
threshold is used and when a threshold is used. For CSFQ, when a threshold is used, the
goodput of TCP seems more stable for a value between 0.2 seconds and 0.8 seconds than
without the threshold.

The throughput of each flow in the different sets of simulations is shown in figure 6.2 as a
function of the value chosen for the constants. In these simulations, each flow should have a
throughput of 3J5 = 0.938 Mbps in an ideal fair allocation.

When the value of the constants is small and increases, the difference between the through­
put of the flows decreases. This observation can be related to what has been said about figure
6.1. When the goodput of the TCP flows increases, the throughput of these flows increases
and the throughput of the UDP flows decreases because more bandwidth is used by TCP
packets. For CSFQ, when the value of the constants increases too much, the difference of the
throughput of the flows increases again. The fairness of CSFQ decreases when the constants
have a high value. lt is not the case for the modified version of CSFQ. The difference of
throughput between the different flows is smaller with MCSFQ than this difference in the
simulations using CSFQ. Therefore, MCSFQ is fairer than CSFQ.

Again we can see in figure 6.2 that there is not much difference between the results ob­
tained without and with a threshold. The global tendency of the bandwidth distribution is
independent of the use of the threshold for bath bandwidth allocation mechanisms, CSFQ and
MCSFQ.

79

CSFQ MCSFQ

Throughput of the ftows wlth CSFQ Throughput of the flows wlth MCSFQ

1.100.000 1.100.000
1.050.000 1.050.000

;; 1.000.000 1.000.000 • Cl. 950.000 - - - Q. 950.000 1-e e.
';; 900.000 - - - -

';; 900.000
Cl. 850.000 Cl. 850.000 .c .c

"' 800.000
..

800.000 ::, ::,

e 750.000
e

750.000 .c ~ ... 700.000 700.000
650.000 650.000
600.000 600.000

0, 1 0,2 0,3 0.4 0,5 0,6 0,7 0,8 0,9 o. 1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Estimation constant (seconds) &lfm■tlon constant (•conds)

No threshold
l ■ TCP 1 OTCP 2 OlDP 1 OUDP2 I l ■ TCP1 OTCP20UDP1 OUDP21

Throughput of the ftows wlth CSFQ Throughput of the ftows wlth MCSFQ

1.100.000 1.100.000 .•
1.050.000 1.050.000

- 1.000.000 1.000.000 .. • Cl. 950.000 - - 950.000 e Q. e.
';; 900.000 1- - !:i 900.000
Cl. 850.000 "' Q. 850.000 i-; .c .c

"' 800.000 ~ "' 800.000 ::, ::,

e 750.000 e
750.000 .c ~ ... 700.000 700.000

650.000 650.000
600.000 600.000

o. 1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,1 0,2 0,3 0.4 0,5 0,6 0,7 0,8 0,9

Estimation constant (seconds) &lfmatlon constant (socondsj

Threshold
l ■ TCP 1 OTCP 2 □ lDP 1 OUDP 2 I l ■ TCP 1 OTCP2 OUDP 1 OlDP2 I

Figure 6.2: Impact of the window size on the throughput

6.2.2 Fair share initialization

In this subsection the behaviors of CSFQ and MCSFQ for an initialization of the fair
share estimation to zero are compared to their behaviors with an other initialization value.
The configuration of the single bottleneck scenario used for the simulations is presented in
subsection 5.1.2 and it is summarized in table 5.1. The window sizes are set to 0.6 seconds
which seems to be a good value for CSFQ and MCSFQ. Each flow benefits from a guaranteed
throughput of 469 Kbps. That means that 50% of the bandwidth of the link joining the two
routers is reserved. All flows should get the same throughput. They have the same guarantee
and the remaining bandwidth should be divided between the four flows. For CSFQ, the fair
share is initialized to 0 Kbps. But, the fair share is initialized to half the link rate (1.875
Mbps) in the simulations where MCSFQ distributes the bandwidth.

The results are deduced from the statistics collected at the edge router. At the edge router
the output link for the data transmission is congested. Therefore, the behaviors of MCSFQ
and CSFQ are identical at the edge router when used with the same configuration. As a
consequence, the conclusions drawn for CSFQ with the initialization of the fair share to zero
are also applicable to MCSFQ with the same fair share initialization. And, the same results
are obtained with CSFQ and MCSFQ for a fair share initialization to half the link rate.

80

Throughput of the flows in three different
simulations (without threshold)

2.000.000 ,----.,,...----.-,---
1.800.000 t--"-'-"'--'..,._-""::""-t"'M

., 1.600.000 +--------1
,! 1.400.000 +--------1
:i 1.200.000
~ 1.000.000
g' 800.000
~ 600.000 t----::C,,::±,

400.000
200.000

0

CSFQ MCSFQ Tai! Drop ldeal

Throughput of the flows ln three dlfferent
simulations (wlth threshold)

2.000.000 ,.,,,,.,-----~--=--..,---,
1.800.000 +-""'----,-~-'-----"""iill -=----l

ii 1.600.000 +------~-1
,! 1.400.000 +---.........,----1
:i 1.200.000 t------'-:;.t::::---,r-t
~ 1.000.000 -1,;;, _.........,,ê"'
g' 800.000 +'' -....,_;..-
~ 600.000

400.000
200.000

0
CSFQ MCSFQ Tai! Drop ldeal

Figure 6.3: Comparison of fair share initializations

Figure 6.3 shows the throughput of the four fl.ows with CSFQ, MCSFQ and tail drop. It
can be seen that the two graphs of figure 6.3 are the same. There is always congestion at
the edge node. Therefore, the threshold has no impact on the behavior of the bandwidth
distribution mechanisms considered.

It can be seen that with the initialization of the fair share estimation to zero, only the
guaranteed packets are transmitted to the next router. In these simulations, the edge router
becomes congested already during the first window size period of the simulations. And, when
there is congestion, the fair share estimation is updated according to equation 3.4. The new fair
share estimation is equal to the last fair share estimation times a factor. But, at initialization,
the fair share is set to zero. Then, the first update of the fair share estimation will also be zero
because of equation 3.4. If the link stays congested all the time, the fair share estimation will
stay equal to zero. It follows that all best-effort packets are dropped. Only the guaranteed
packets, marked with a label of zero, are stored in the queue and then transmitted on the
output link toward the next router.

When the initialisation of the fair share is set to half the link rate, each fl.ow benefi.ts from
its guarantee and the remaining bandwidth is distributed approximately fairly. The fl.ows
almost all have the same throughput. The throughput of the TCP fl.ows is slightly lower
because there are some tail drops occurring at the beginning of the simulation. At the start,
the fair share is overestimated and too many packets are forwarded to the queue. When the
queue is full it tail drops arriving packets leading to unfairness in the bandwidth distribution
(subsection 3 on page 49). Additionally, each time a packet of a TCP fl.ow is dropped the
sending rate rate of the fl.ow decreases. The throughput of this fl.ow is then lower until the
sending window reaches a certain size again. The impact of the decrease in the sending window
size is reduced with the use of an aggregation of 5 TCP micro-fl.ows in one TCP fl.ow .

Now, let's compare the bandwidth distribution of CSFQ and MCSFQ with initialisation
of the fair share to half the link rate to the bandwidth distribution obtained with tail drop as
the only buffer acceptance mechanism. With tail drop, nothing enables to provide throughput
guarantees. Even worst, the bandwidth is not distributed fairly. The UDP fl.ows take almost
all the link bandwidth away from the TCP fl.ows. This happens because TCP reacts to the
congestion while the UDP fl.ows keep sending at the same rate.

The fair share estimation could be set to 1 bps at initialization. This value avoids the

81

Throughput of the flows ln three different
simulations (without threshold)

2.000.000 -,--------------,
1.800.000 +---------.......--~......;

I 1.600.000 +------~--1
,e. 1.400.000 ,...,,.-,...,..,~p.,;.;:;.....y,.....i
;; 1.200.000 -+-------'-'""--,---..;,--.-'-~
_g- 1.000.000 -l---,.-~------1
g' 800.000
e 600.ooo
~ 400.000

200.000
0

CSFQ MCSFQ Tail Drop ldeal

Throughput of the flows ln three dlfferent
simulations (with threshold)

2.000.000 ,-..----===-------,
1.800.000 -+-----..,..,.,.-............... ----i I 1.600.000 +-,...,...._...._"""""' ____ --1

e. 1.400.000 B!l"'""--iii::it,_,-:m:-:-1
;; 1.200.000 ~F,.----~~--1
_g- 1.000.000 +---------,,..-1
g' 800.000

! :::
200.000 .

0
CSFQ MCSFQ Tail Drop ldeal

Figure 6.4: Fair share initialized to 1 bps

problem of the initialization to zero. It also prevents overestimations of the fair share to
occur right after initialization. To obtain the results in figure 6.4, the fair share estimation is
initialized to 1 bps for both CSFQ and MCSFQ. As said at the opening of this subsection, the
results obtained for CSFQ and MCSFQ are alike and the threshold does not have an impact
on a highly congested link.

The bandwidth is distributed according to the guaranteed throughputs and the fair share
{for CSFQ and MCSFQ) . All flows receive around the same amount of bandwidth. The
throughput of all four flows is near the sum of their guaranteed throughput and the fair share
of the bandwidth that is not the object of reservations. CSFQ and MCSFQ are able to achieve
fair sharing of the remaining bandwidth while it is not the case with tail drop.

The fact that CSFQ and MCSFQ are able to provide minimum throughput guarantees
to the fl.ows is shown by the results obtained with CSFQ and illustrated in figure 6.3. The
throughput of the flows is around their guaranteed throughput. The guaranteed packets are
not dropped because a fair share of zero is not above the label of these packets. It also shows
that the probabilistic marking does a good job to determine the amount of packets that should
be guaranteed and the ones that should be considered as best effort, according to a contract.

In the other simulations, the fair share is usually initialized to 1 bps. We saw in this
subsection that O bps was really a bad choice for the initialization. Also, half the link rate is
not really good and it gets worst the more this value overestimates the real fair share. When
the real fair share is above the initial value but different from zero, then the initial value is
adequate. When the initial value is bounded by the real fair share, the higher the initialization
value, the quicker the convergence will be. But, in real networks, the traffi.c can usually not
be predicted. The real fair share is not known in advance. By choosing a higher value than 1
bps, it is never sure that there will be no overestimation.

6.2.3 Uncongested network problem

In this subsection, the results, obtained from simulations where the network is uncongested
or only congested at times, are presented. The results are obtained from statistics taken at
the edge router. The network used is the single bottleneck scenario, where only one source
establishes TCP connections. The other three sources send UDP packets at a lower rate than

82

one fourth of the link bandwidth. They are not responsible of a possible congestion. The
properties of the scenario used for these simulations are exposed in subsection 5.1.1 and are
also summarized in table 5.1. The fair share estimation is initialized to 1 bps and the window
sizes are set to 0.6 seconds.

If ail four sources were sending above the fair share, the fair share of the link should be
equal to 3-J5 = 0.938Mbps. But in the simulations of this subsection, the UDP sources are
sending at 0.5Mbps. They leave 2.25Mbps to the TCP flow. In this situation, the fair share
estimation should be around 2.25Mbps to allow the TCP flow to make use of the bandwidth
that is unused by the UDP flows.

Forwardlng rate per flow uslng three dlfferent
bandwldth allocation mechanlsms wlthout

threshold

2 3 4

Flow number

Forwardlng rate per ffow uslng three dlfferent
bandwldth allocation mechanlsms wlth threshold

2.500.000 ~-- ----------,,.,,,,,., -;;-
l2.ooo.ooo

i 1.500.000

"' i 1.000.000

! 500.000
if

0

2 3 4

Flow number

■CSFQ

■MCSFQ

□Tall drop

Figure 6.5: MCSFQ versus CSFQ : forwarding rate

On figure 6.5, it can be seen that the throughput of the UDP flows is around 500 Kbps
independently of the bandwidth allocation mechanism. On the other hand, the throughput
of the TCP flow varies depending on the bandwidth distribution mechanism used. It is at its
peak with tail drop, it is slightly lower with MCSFQ and it is the smallest with CSFQ. This
means that the bandwidth resources are better used with tail drop than with MCSFQ. And,
even less resources are used with CSFQ.

The only congestion in these simulations is generated by the TCP flow. The congestion
happens when the sending window, and therefore the sen ding rate, of the TCP flow are too
high. With tail drop, packets are dropped only if the queue is full. Because TCP has the
highest sending rate, at least one of its packets will be dropped and the window size of the
flow will be decreased, reducing the congestion. When tail drop is used, UDP packets may
be dropped as well as TCP packets (figure 6.6). With MCSFQ and CSFQ, packets may be
dropped even if the queue is not full. The dropping is based on the fair share estimation.
This estimation should allow the TCP flow to use the remaining bandwidth. We can see that
the throughput of the TCP flow is higher with MCSFQ than with CSFQ. This is because the
estimated fair share is higher with MCSFQ than with CSFQ (subsection 3 on page 53). In
uncongested periods, the fair share estimation differs from one mechanism to the other leading
to a higher estimation in MCSFQ than CSFQ. And, the network is not congested most of the
time in these simulations. With MCSFQ and CSFQ, the fair share estimation is at least equal
to the rate of the UDP flows. lt follows that no UDP packets are dropped (figure 6.6). Only
TCP packets are dropped. Each time a TCP packet is dropped the sending window is reduced
and the load of the network decreases. The more TCP packets are dropped the lower the

83

rate of TCP will be and the less resources are used. The sending window of the TCP flow
with CSFQ is usually lower than with MCSFQ. And, this sending window is lower when the
bandwidth is allocated by MCSFQ than by tail drop.

It can be seen that the use of the threshold especially helps CSFQ and, to a smaller degree,
MCSFQ to use more bandwidth. As said in subsection 3 on page 54, the link is considered as
uncongested during a longer period when a threshold is used. This enables CSFQ to update
its fair share estimation more often. An estimation of the fair share is used during a smaller
period to drop the packets. This avoids small fair share estimations to be used to drop packets
during long periods when the congestion is really light, like here. There is only one fl.ow at
the source of the congestion and it is a TCP flow. Once a packet from this fl.ow is discarded,
the flow's rate is reduced and the congestion is resolved.

Dropplng rate per ftow uslng three different
bandwldth allocation mechanlsms wlthout

threshold

- 35.000 ~~--------~~ i 30.000
S 25.000
1! 20.000
!!' 15.000
8; 10.000
~ 5.000

0
2 3 4

Flow number

■CSFQ

■MCSFQ

□Tall drop

Dropping rate per flow uslng three different
bandwldth allocation mechanlsms wlth threshold

35.000 -,---..,....,...,,......,---------------,

Î 30.000 -1-------------
,s. 25.000 +----------------i ~-~, 1 20.000 ■CSFQ
!!' 15.000 ■MCSFQ
8; 10.000 □Tall drop

a 5.000

0
2 3 4

Flow number

Figure 6.6: MCSFQ versus CSFQ : dropping rate

Less packets are dropped for CSFQ and MCSFQ when they use a threshold (figure 6.6).
As a consequence, the TCP flow has a higher goodput with the threshold.

When the same simulations are performed with the window sizes set to 0.1 seconds instead
of 0.6 seconds, the TCP flow is only able to use the same portion of bandwidth as the one
used by each UDP fl.ow (figure 6.7), if CSFQ is used. As explained in subsection 3 on page
53, with CSFQ, when the link is not congested, the fair share is set to the maximum of the
labels from the packets that crossed the router during the last window. Here, the window size
is rather small. The smaller the window size is, the less chances there are that at least one
packet from all flows crosses the router during a window size period. The flows for which no
packets have been received by the router will not influence the fair share estimation. The rate
of these fl.ows may be higher than the fair share estimation. Because TCP is bursty, the rate
of the TCP flow may be high even if no packets are send during certain periods. Its packets
carry labels that are above the fair share estimation. Sorne of its packets might be dropped
even if there is no congestion on the link. On figure 6.8, it can be seen that even UDP packets
can be dropped that way.

TCP tries to increase its sending rate when it does not detect congestion. But, the fair
share is based on the maximum of the fl.ow rates from the last window. Packets carrying a
higher label than the rates present during the previous window will have a drop probability
higher than zero. Sorne of these packets may be dropped. If these are TCP packets, TCP will

84

Forwardlng rate per flow uslng three dlfferent
bandwldth allocation mechanlsms without

threshold

îii" 2.500.000 ~ ----------~~ a.
:!!. 2.000.000
.s
I! 1.500.000
Ill

11·::~
2 3 4

Flow numbar

■CSFQ

■MCSFQ

□Tail drop

Forwarding rate per flow uslng three dlfferent
bandwldth allocation mechanisms with threshold

2.500.000 ,--------------,

l 2.000.000
.s
I! 1.500.000

~ 'E 1.000.000

! 500.000
{l_

0

2 3 4

Flow numbar

■CSFQ

■MCSFQ

□Tail drop

Figure 6.7: MCSFQ versus CSFQ : forwarding rate

Dropplng rate perflow uslng three dlfferent
bandwidth allocation mechanlsms without

threshold

îii" 70.000 r,-=,-,,~~=--=--~-..,....,.,
_g- 60.000
S 50.000
1! 40.000
~ 30.000
8; 20.000
~ 10.000

0

2 3 4

Flow numbar

■CSFQ

■MCSFQ

□Tail drop

Dropping rate per flow uslng three dlfferent
bandwidth allocation mechanlsms wlth threshold

70.000 ,....,,,.,.,.,,,,....,,,..,..,.,,,,,..,......,--,---,.....,...,.,......--.,,...,,.,,,,,_~

I 60.ooo
:!!. 50.000

1 40.000

~ 30.000

8; 20.000

~ 10.000

0
2 3 4

Flow numbar

■CSFQ

■MCSFQ

□Tail drop

Figure 6.8: MCSFQ versus CSFQ : dropping rate

interpret the dropping as the presence of congestion and will reduce its sending window. The
fair share estimation will then again be equal to the rate of the UDP fl.ows. When the sending
window of the TCP fl.ow has increased enough again, a packet is dropped. The TCP fl.ow is
not able to send above the throughput of the UDP flows with CSFQ when the window size
is small. With a higher window size, the fair share estimation is higher and there are more
chances for the TCP fl.ow to be able to increase its sending rate.

With CSFQ, the use of the threshold is not salutary. The network is always considered as
not congested because the total arriving rate of the flows is around 2 Mbps while the output
link rates of the routers is 3. 75 Mbps. TCP is not able to create congestion. There is no
oscillation of the links from congested to not congested and vice versa, which is what the
threshold tries to solve.

The MCSFQ bandwidth allocation mechanism is not subject to such an important impact
of the window size on the throughput of the fl.ows in uncongested networks. The fair share
estimation, in uncongested periods, is the maximum of the packets' labels, received since the
end of the congestion and of the last fair share update before the link uncongestion. It follows
that the fair share estimation is higher with MCSFQ than with CSFQ, allowing to forward
packets at a higher rate. The fair share estimation can only stay constant or increase, with
MCSFQ, in period of non congestion. It does not decrease. When TCP increases its sending

85

rate, the first packets with a high label may be dropped but their label is taken into account
in the next fair share update. Then, the TCP flow will be able to send at a higher rate than
before. When TCP's sending window will have increased enough, new packets will be dropped
but the fair share estimation will increase again until it reaches 2.25 Mbps.

For the simulation performed with MCSFQ, the threshold has a positive impact {figure
6.7) on the throughput. The throughput of the TCP flow is the same as when tail drop
is the only bandwidth distribution mechanism used. Here, the TCP flow is able to create
congestion once the fair share has reached 2.25 Mbps. But, the congestion happens during
a short time. There is congestion between the time the sending rate of the TCP flow gets
above 2.25 Mbps and the time the congestion is noticed by the flow when it discovers that
at least one packet has been dropped. This time is very short. If the queue does not exceed
the threshold during that time, the fair share estimation method stays the same. Otherwise,
the fair share estimation may decrease if the link stays congested for 0.1 seconds, leading to
a lower throughput of the TCP flow. But, this happens rarely with a threshold of a certain
size. If there was no threshold, the link would be considered as congested quicker and the fair
share would be decreased sooner. This has as consequence that the throughput of the TCP
flow is smaller than its ideal fair share for a certain time before it grows again once the fair
share has increased.

On figure 6.8, it can be seen that packets from the UDP flows are dropped with tail
drop and CSFQ. We cannot say that this is a fair behavior because these flows do not create
the congestion. They are not bottlenecked. On the contrary, no UDP packet is dropped by
MCSFQ. The throughput of TCP with MCSFQ is slightly smaller than with tail drop when
no threshold is used. With a threshold, the throughput of TCP is the same with MCSFQ
and tail drop. In this utilization of the single bottleneck scenario, we can say that MCSFQ
is the fairer bandwidth allocation mechanism. Additionally, it allows maximum bandwidth
utilisation when used with a threshold. Finally, we notice that MCSFQ is again less sensitive
to the window size than CSFQ. If the window size is small the bandwidth is not shared fairly
with CSFQ as seen in figure 6.7. And, a high window size does also not provide fairness
(section 6.2.1).

6.3 Distribution of bandwidth

Different network scenarios with various types of traffic are used to illustrate the behavior of
the implemented bandwidth distribution mechanism. This mechanism is employed to provide
fair bandwidth sharing sometimes in addition of minimum throughput guarantees.

6.3.1 Single bottleneck scenario

The single bottleneck scenario is introduced in section 5.1. lt is the simplest scenario used
for the simulations of the implemented mechanism. Only one router is bottlenecked.

Without guarantees

In this subsection, the results from simula~ions where one source starts to send packets
at the middle of the simulations are exposed. The single bottleneck scenario is used with the

86

configuration summarized in the second data column of table 5.1. The total simulation length
is 100 seconds and one of the UDP sources starts to send at 50 seconds after the beginning
of the simulations. The other sources start sending right at the beginning of the simulations.
The statistics are reset after the first 5 seconds. The fair share estimation is initialized to 1
bps. The window size is set at all routers to 0.6 seconds. No guarantees are provided to the
fl.ows.

The goal of these simulations is to see if the fair share estimation reacts quickly to changes
in the traffic. At the middle of the simulations the load is increased by 2 Mbps at the border
of the network.

Throughput of the flows at the core router
(wlthout threshold)

2.000.000 ..,...,,...--...--~----.......... ,...--.,...--.-,
1.800.000 nc......-....;.;;.=-::-,,...;....;::;._.....;:;..-=-...,....;c......-4h--l

Î 1.600.000
,!!. 1.400.000 +----'------------1
"5 1.200.000 h....;:;;.-=:--~~= ~
_g- 1.000.000
g' 800.000

~ 600.000
400.000
200.000

0
CSFQ MCSFQ Tail Drop

Throughput of the flows at the core router
{wlth threshold)

2.000.000 T"",.......= ,,,......,,--,--,.,,..,,,..=--.....,...~= ,...--.,..,
1.800.000 +.,c~~~~-"'----,,-'-"''-r,-..;;'-l

Î 1.600.000 -..,,...-=------~..-i
,!!. 1.400.000 t"-J,~--------"i
"!; 1.200.000 t,,,.;-_-,;--j::;:;-----==-----""1
_g- 1.000.000 '"
g' 800.000
e 600.ooo
f:. 400.000

200.000

CSFQ MCSFQ Tail Drop

Figure 6.9: Throughput with a latecomer source

The throughput in figure 6.9 is computed as the number of bits sent during the simulation
divided by the simulation length. Because the second UDP source starts to send at the middle
of the simulation, the throughput of this fl.ow should be equal to half the throughput of the
other fl.ows, in a fair bandwidth allocation. lt can be seen on figure 6.9, that the bandwidth
is allocated in an approximate fair way for CSFQ and MCSFQ with and without threshold.

Evolution of the fair share at the edga (CSFQ)

2.000.000

î
,!!. 1.500.000
! ..
~ 1.000.000
ïi
IL

~ ~ ~ ~ re ~ ~ ~ ~ ~ ~ ~ ~ ~ m
Time (seconds)

Evolution of the fair shara at the adga (MCSFQ)

2.000.000

;;;
! 1.500.000
~
.:!
_: 1.000.000
:.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
lime (seconds)

Figure 6.10: Fair share estimation evolution at the edge

87

At the beginning of the simulations, the fair share takes a few seconds before it converges
to the real fair share. Then, when the second UDP source starts to send packets, the fair
share estimation in adapted to the new traffic in at most two seconds. This is true for the
simulations done with CSFQ as well as with MCSFQ (figure 6.10). We also see that the fair
share estimation at the edge is more stable with MCSFQ than with CSFQ.

Evolution of the fair share at the core (CSFQ)

~ ~ ~ ~ ~ S ~ 1 ~ ~ ~ ~ ~
Tlme (aeconds)

Evolution of the fair share at the core (MCSFQ)

î
é!. 1.500.000 -tt,,-.-..--........ ---__,..-.....i:il..------4
! ..
~ 1.000.000 -tt--------.,..._.--,.-, __
;;;
IL

~ ~ ~ ~ ~ S ~ 1 ~ ~ ~ ~ ~
Tlme (aeconds)

Figure 6.11: Fair share estimation evolution at the core

The core router is near congestion but it is not congested. For CSFQ, the fair share is
estimated as the maximum of the labels passing during a window size period. On figure 6.11,
we notice that the fair share estimation has zero as value at times. This means that during a
window size period, the maximum of the labels of the packets received is zero. Because there
are no guaranteed packets, it follows that no packets are received during such periods.

With MCSFQ, the fair share is set to the maximum label that passed through the router
since the end of the congestion and the fair share estimation at the beginning of the uncon­
gested period (1 bps in this case). At the beginning of the simulation, the fair share estimation
increases rapidly. Then, it becomes stable.

Because the fair share estimation fluctuates at the core node with CSFQ, packets are
being dropped even if there is no congestion while all packets arriving at the core node in
the MCSFQ simulation are transmitted on its output links. In total, 1.6 Mb are dropped by
CSFQ during the simulation of 100 seconds. For both mechanisms, the queue does not need
to tail drop packets.

With 50% guarantees

The results presented by figure 6.12 are extracted from simulations done with the single
bottleneck scenario. The configuration used stands in the third data column of table 5.1. The
fair share estimation is set to 1 bps at the beginning of the simulation. The window size is
set to 0.6 seconds. The statistics are reset after 15 seconds of simulations. All flows have
the same guaranteed throughput and have a high sending rate. They should all get the same
throughput in a fair bandwidth allocation. The total amount of reserved bandwidth is equal
to half the rate of the link binding the two routers.

88

Throughput of the flows in three different
simulations (without threshold)

2000.000 ~-----------....
1.800.000 +-----------------i

â 1.600.000 +---------1
_g- 1.400.000 +---------1
i 1.200.000 +---------1
~ 1.000.000 -l-----'-.:±=--==----1
g' 800.000
e 600.ooo
~ 400.000

200.000
0

CSFQ MCSFQ Tail Crop ldeal

■lCP1

Figure 6.12: Throughput with 50% guaranteed throughput

The results on figure 6.12 have been obtained in simulation clone without threshold. The
simulations using a threshold give the same results for each bandwidth distribution mechanism
respectively. It can be seen that ail flows have almost the same throughput with CSFQ and
MCSFQ. Each flow benefits from its guarantee and its fair share of the remaining bandwidth.
In a best-effort network (tail drop), no guarantees are provided and the UDP flows get the
majority of the available bandwidth.

With 90% guarantees

The simulations leading to the results from figure 6.13 are clone with the single bottleneck
scenario configured as exposed in the last column of table 5.1. The flows are each guaranteed
for a throughput of 843. 75 Kbps. As in the previous subsection, the fair share is set to 1 bps
and the window size is set to 0.6 seconds at the initialization. The results illustrated in the
figure do not include the statistics collected during the first 15 seconds of the simulation.

Throughput of the flows in three different
simulations (without threshold)

2000.000 ~-=----------..
1.800.000 +-.....,....,.,... _ __,. __ _,.........,,-----i

-;;- 1.600.000 _......_ ________ _

! 1.400.000 --..-------­= 1.200.000 +-------­
~ 1.000.000 -1--...,,..,,,,.---------,i
g' 800.000

~ 600.000
400.000
200.000

0
CSFQ MCSFQ Tail Crop ldeal

Figure 6.13: Throughput with 90% guaranteed throughput

Here, there is almost no bandwidth left to distribute between the flows once the guarantees
are achieved. The goal is to see if guarantees can still be provided even if the total amount of
guaranteed bandwidth is near the link rate. On figure 6.13, we can effectively see that each

89

flow benefits from its guarantee with CSFQ and MCSFQ. Again, the same results are obtained
for the simulations done with a threshold.

6.3.2 Multiple bottleneck scenario

The multiple bottleneck scenario exposed in section 5.2 is used for the simulations whose
results are presented in this subsection. More than one router is bottlenecked in the multiple
bottleneck scenario. But, the fair share is the same on all links on which flows are multiplexed.

Without guarantees

The configuration of the multiple bottleneck scenario for the following simulations is sum­
marized in the first data column of table 5.2. The fair share is initialized to 1 bps and the
window size is set to 0.6 seconds at ail routers. Ail sources are TCP sources. The first two
sources have a larger RTT and encounter more bottlenecks due to the topology of the multiple
bottleneck scenario.

Throughput of the flows (wlthout threshold)

1.800.000 17':~~~R"~=-=,::;m!:':'ffi'lj.,,,."i:1'7
1.600.000 .i,;...;:~:,;..__,__;;;.;;.......:.:..;_,__......,...:;::..,.._..._--1

.; 1.400.000 +-"--------­
e: 1.200.000 +-"--------­ -=r---1 □TCP 2
j 1.000.000

a 800.ooo

~ 600.000
~ 400.000

200.000

0
CSFQ MCSFQ Tail drop

-:=::==:=-i ■TCP3

ldeal

□TCP4

■TCP5

■TCP6

Throughput of the flows (wlth threshold)

1.600.000

.; 1.400.000

,a: 1.200.000

j 1.000.000
.<::

"' ::,
e
~

800.000

600.000

400.000

200.000

0

P " '

CSFQ MCSFQ Tail drop ldeal

Figure 6.14: Throughput without guarantees

-
□TCP 1

□TCP2

■TCP3

□TCP4

■TCP5

■TCP6 -

There are big differences between the throughput of the first two flows and the others
when tail drop is the only bandwidth distribution mechanism (figure 6.14). This follows from
the fact that flows 1 and 2 have a larger RTT and a larger loss ratio. Therefore, they have a
smaller sending rate.

In the simulations performed with CSFQ and MCSFQ, we can see that this difference
is strongly reduced. The fairness between the TCP flows is almost achieved. Additionally,
we notice that the throughput difference is slightly bigger with the use of a threshold than
without.

In addition to the bigger RTT, the lower throughput of the two first flows can also be
explained by the fact that these two flows may have packets dropped at two routers while the
other flows only have drops at one router. Once the packets of the first two flows have passed
the edge router, they should not incur drops at the second router because the output link of
the second router has the same real fair share as the output link of the first router. But, if the
fair share estimation at the second router is smaller than the estimation of the fair share at
the edge router, some packets from the first two flows are dropped. Therefore, the throughput

90

of flows 1 and 2 will be smaller than the throughput of flows 3 and 4. Because flows 1 and 2
have a higher RTT than flows 5 and 6, when the fair share estimation will increase, the two
first flows will increase their sending window slower than flows 5 and 6 leading to a higher
throughput of these two last flows.

With guarantees

The following simulations use the configuration described in the second data column of
table 5.2. Additionally, the window size has been set to 0.6 seconds at all routers and the fair
share estimation is set to 1 bps at the beginning of the simulations.

In these simulations, flows TCP 1 and UDP 1 are the object of guarantees. Flow TCP 1
has a minimum throughput guarantee of 0.75 Mbps and flow UDP 1 is guaranteed for 1 Mbps.
That leaves 2 Mbps on each link joining two routers, on the data path, to share between four
flows. Therefore, the real fair share of these link is 500 Kbps when ail flows send over this fair
share.

Throughput of the flows (without threshold)

2.000.000
1.800.000

-;; 1.600.000
.,8- 1.400.000
i 1.200.000
~ 1.000.000
!f 800.000 e f: 600.000

400.000
200.000

0
CSFQ MCSFQ Tail drop ldeal

Throughput of the flows (with threshold)

2.000.000
1.800.000

-;; 1.600.000
_g- 1.400.000

i 1.200.000
~ 1.000.000
CIi e 800.ooo
f: 600.000

400.000
200.000

0
CSFQ MCSFQ Tail drop

Figure 6.15: Throughput with guarantees

Throughput ln excess of the guarantees (without
threshold)

2.000.000

1.500.000
'[
,S. 1.000.000
'5
~ 500.000
CIi e o
f:

-500.000

-1.000.000

Throughput ln excess of the guarantees (with
threshold)

2.000.000

1.500.000
'[
,S. 1.000.000
'5 1 500.000
:,
e o
f:

-500.000

-1.000.000

Figure 6.16: Excess throughput

When tail drop is the only buffer acceptance mechanism, the TCP flows have a lower
throughput than the UDP flows . Bandwidth is stolen from them by the UDP flows (figure

91

6.15). Additionally, the more the identifier of the TCP flow increases the larger is the through­
put. This is also true for the UDP flows. Flow TCP 1 and UDP 1 may have packets dropped
at the first and the second router while flows TCP 2 and UDP 2 only have drops at the first
router. The rate of flows TCP 1 and UDP 1 is higher on the output link of the first router
than on the output link of the second router. This leaves more bandwidth for flows TCP 3
and UDP 3 than for flows TCP 2 and UDP 2.

With CSFQ as well as with MCSFQ, the guaranteed flows are given their minimum
throughput guarantees (figure 6.15). The throughput of the guaranteed flows is above their
guarantee. On figure 6.16, we notice that in excess of the guarantee, these flows almost get
the same throughput as the non guaranteed flows. We can say that the bandwidth that is not
the object of guarantees is distributed almost fairly. It can be noticed that the guaranteed
TCP flow has a lower portion of best-effort throughput compared to the guaranteed UDP flow.
Additionally, flow TCP 3 and flow UDP 3 have a higher best-effort throughput than the other
flows. These tendencies are also established with tail drop. But, with CSFQ and MCSFQ,
they are smoothed whereas for tail drop the excess bandwidth is not distributed fairly at all.
Also, it can be observed that the fairness is increased with the use of the threshold in this
case.

6.3.3 Generic Fairness Configuration scenario

The GFC scenario presented in section 5.3 is used to obtain the results introduced in this
subsection. Like in the multiple bottleneck scenario, there is more than one bottlenecked link.
Additionally, the fair share varies from one link to another.

Without guarantees

The results exposed in this subsection are obtained with the GFC scenario configured as
in the first data column of table 5.4. As usual, the window size has a value of 0.6 seconds
and the fair share is set to 1 bps at initialization. The throughput each flow should have in
an ideal fair allocation is given in the first column of table 5.5. In the following, the goodput
of the flows is considered, not the throughput. The goodput of a TCP flow is at most 96.5%
of its throughput. As a consequence the maximal ideal goodput of a flow is equal to 96.5% of
its ideal throughput.

In the simulations done with the GFC scenario, the same results are obtained for CSFQ
and MCSFQ. This cornes from the fact that all links are congested. In a congested mode, the
behavior of these two mechanisms is the same.

Figure 6.18 compares the goodput of the flows for the simulations done with CSFQ and
MCSFQ to the maximal ideal goodput of these flows. It can be seen that the real goodputs
are near the ideal goodputs. We can say that fairness is achieved in these simulations.

The deviation from the fair goodput for each flow never exceeds 5%. And, the average of
these deviations is less than 2%.

By comparison to the simulations done with CSFQ and MCSFQ, with only tail drop, the
distribution of the bandwidth is not fair . In the GFC scenario, there are always two flows
following the same path in the core of the network. We say that these two flows form a pair.

92

Goodput of the flows with tall drop

70.000.000 ..,........=,,..,,..,,.......-.,..,.....=--..,....,,...~ --..,,.,.,--,
.;- 60.000.000 +--,"---"--~-~----,;,,~--~--1
,8- 50.000.000 +---,,-~-------1 1--,------"'---1

i 40.000.000 1-,--.,...,,,.,~___,.
_g- 30.000.000

8 20.000.000
10.000.000

0

/
"" "'~ ;-"' $' ,,,.;:.. $'- c."' fP' _..;:.. ~

~" fi,~ ~ -~ # ~ :\~ ~ .P>" (;.# (;.,/ (;.,/ (;.cf" (;.o (;.cf"". (;.# (;.cf"". (;.d"

l □CSFQ\MCSFQ ■ ldeal 1

Figure 6.17: Goodput of the flows with tail drop

Goodput of the flows with CSFQ and MCSFQ
(without threshold)

35.000.000
j 30.000.000
:S. 25.000.000
:i 20.000.000 f 15.000.000
0 10.000.000
c, 5.000.000

0 .

~"' 1$?~ :cy:"' +~ p"' $'- c."' :\~~ p"' ~~
(;.Jl (;.J' (;.J' i~ (;.o ~' / ~# (;.o ~/

l □CSFQ\MCSFQ ■ ldeal 1

Figure 6.18: Goodput of the flows with CSFQ and MCSFQ

Among each pair of flows, the flow with the larger RTT has a lower goodput. And some pairs
of flows have less bandwidth than other pairs that are bottlenecked on the same link. For
example the A flows and the Y flows are bottlenecked on the link between the third and the
last router. But, the goodput of the A flows is smaller than the goodput of the Y flows. The
average of the deviations from the ideal goodputs, for the simulation performed with tail drop,
is around 62%.

With 50% guarantees

The configuration of the GFC scenario used to obtain the results of this subsection is
exposed in table 5.4, in the second column of data. Here, the flows have a certain amount of
guaranteed throughput. The fair share and the window size are initialized to 1 bps and 0.6
seconds, respectively. The excess goodput of the flows is considered in figures 6.19 and 6.20.

As for the simulations with the previous configuration of the GFC scenario, in this config­
uration, the flows get the same goodput with CSFQ and MCSFQ.

Figure 6.19 indicates that the flows get their minimum goodput guarantees because their
excess goodput is above zero. Additionally, the unreserved bandwidth is distributed approxi­
mately fairly among the different flows.

93

Excess goodput of the flows wlth CSFQ and
MCSFQ {wlthout threshold)

6.000.000 1 tri
H~~ ri tl tu• tfuJ ~ O·-,'' ,-~

l □CSFQ\MCSFQ ■ldeal 1

Figure 6.19: Excess goodput of the fl.ows with CSFQ and MCSFQ

The deviations from the fair share are higher for some fl.ows than with the previous con­
figuration of the GFC network but they are still in an acceptable range. The bandwidth is
still distributed in an approximately fair way. The biggest deviation is above 10% of the fair
share and the average deviation is around 5%.

Excess goodput of the flows wlth tall drop
{without threshold)

12.000.000 ,---,,----------------,
iii 10.000.000
i 8.000.000 -t---------,------i
,; 6.000.000 -~-.,..._---------,

-g 4.000.000 +-----------,
8 2.000.000

0 +H-.,........,,.LaLrL-~.-Jlll....,..flL,.J--,..L.a~.,...~

-2.000.000 ~-.-----~~-,--,P.T-~-r-'
" ~ ~.,. ~ ~ ~ ~ (S ~.,. ~ ~

l □CSFQ\MCSFQ ■ ldeal 1

Figure 6.20: Excess goodput of the fl.ows with tail drop

When CSFQ (or MCSFQ) is not used (figure 6.20), the fl.ows are not guaranteed to obtain
a minimum goodput. Fairness is also not achieved by comparison to the distribution of
bandwidth in the GFC network using CSFQ or MCSFQ.

6.4 Conclusion

Sorne conclusions concerning the implemented bandwidth allocation mechanism can be
drawn from the simulations that have been analyzed in this chapter. A basic deduction from
this analysis is that tail drop does not allocate bandwidth fairly in many cases. Therefore, other
mechanisms are needed when fairness is required. Consequently, the study of the simulation
results concerns mostly CSFQ and the proposed MCSFQ.

First of all, we can say that CSFQ is more sensitive to the window size than MCSFQ.

94

A small as well as a large value lead to a depreciation in the fairness with CSFQ. Secondly,
it has been underlined that the fair share is less underestimated by MCSFQ than by CSFQ
allowing better use of the resources. We have also noticed that the behavior of CSFQ and
MCSFQ is analogous in congested networks. And, in such networks, the use of the threshold
has no impact on the fair share estimation and therefore on the bandwidth allocation.

Concerning the initialisation of the fair share, it has been shown that O bps is a bad
choice for CSFQ as well as for MCSFQ. And, we proposed to use 1 bps instead to avoid
overestimations of the fair share at the initialisation. It is important to avoid overestimation
because they may lead to tail drops and consequently to unfairness.

In uncongested networks, it may happen that bandwidth utilization is not maximized
with CSFQ. This underutilisation can be partly solved by increasing the window size. But, a
more stable and efficient solution is provided by MCSFQ which provides a higher and more
appropriate estimation of the fair share than CSFQ.

From multiple simulation scenarios we have shown that CSFQ and MCSFQ are able to
distribute bandwidth in an approximately fair way in congested networks. The unfairness
among TCP flows that happens due to variations in RTTs is reduced and TCP is protected
from aggressive UDP flows. Also, the adaptation of the fair share estimation when new sources
start to transmit is done in an honest time interval. Finally, small as well as large throughput
guarantees can be provided to flows by these two mechanisms as long as there are enough
resources to support these guarantees in the network.

95

Conclusion and further work

Actually, Quality of Service (QoS) is a hot topic. Its objective is to enable ISPs to propose
a diversity of attractive services to their customers. This goal is praiseworthy unless it jeop­
ardizes the performance of the actual networks. Two architectures, called Integrated Services
and Differentiated Services, have been proposed for the support of QoS at the IETF. The pro­
vision of guarantees is conceptually different in these two architectures. Integrated Services
enable the provision of absolute guarantees while the second architecture mostly provides rel­
ative services. The complexity of an Integrated Services network depends on the number of
flows supported while the number · of services supported by a Differentiated Services network
determines its complexity. Therefore the Integrated Services architecture provides attractive
services but is not scalable. The objective of this thesis has been to show that absolute guar­
antees may be provided in a Differentiated Services architecture that is more scalable and
easier applicable to current networks.

Conclusion

In this thesis, we have started by introducing the concept of flow and the different guaran­
tees that may be provided by networks to the flows. We have also underlined the importance
of the provision of fairness among the flows to ensure the protection of these flows against
resource starvation. And, the max-min definition of fairness has been given. Then, the In­
tegrated Services and the Differentiated services architectures are presented by means of a
comparison of their features.

In the second chapter, the general idea behind the working of core stateless mechanisms
is presented. These stateless mechanisms, as we call them, are either based on a label carried
by the packets (DPS) or on a feedback mechanism that carries information from the core
back to the edge nodes. In both cases, the complexity is moved to the edge of the networks
leading to more scalable mechanisms. Then, some of these scalable mechanisms are exposed
and compared. From this study, we deduce that many types of guarantees as well as max­
min fairness may be supported by core stateless mechanisms. Additionally, some of these
mechanisms may be included in the Differentiated Services framework to ensure protection
and guarantees to flows within a class of service clearly allowing stronger guarantees than the
ones supplied by Differentiated Services networks. For certain guarantees, admission control
need to be performed before ensuring that the guarantee can be provided to a flow. In the
second part of this chapter, it is shown that scalable admission control, that implies to avoid
the storage of per-flow state in core nodes, may be achieved. Depending on the guarantees
supported, the most appropriate scalable admission control has to be determined.

Then, a particular core stateless mechanism, called CSFQ, is taken under the microscope.

97

CSFQ initially allows fair sharing of the bandwidth by estimating the rate of the flows at the
edge, by estimating the fair share of the links at the core routers and by dropping packets based
on a comparison of their labels and the current fair share estimation. In this third chapter,
we have given some clarifications concerning the diff'erent estimations perf ormed by CSFQ
and others related to the initialization of CSFQ. We have shown that these clarifications
are important to the bandwidth distribution resulting from CSFQ. Secondly, a case where
unfairness happens with CSFQ has been raised and an explanation of this behavior has been
provided. Finally, we have seen that fairness in the distribution of bandwidth depends on
the accuracy of the fair share estimation, inaccuracies leading either to underutilization of
bandwidth or to tail drops, these tail drops being the root of unfair bandwidth allocation.
The accuracy of the fair share estimation is impacted by two configurable constants called the
window size and the threshold.

The fourth chapter concerns the persona! contribution brought to CSFQ. The first amelio­
ration is proposed as a solution to the unfairness, that results from a bad fair share estimation,
raised in the previous chapter. CSFQ modified as suggested is called Modified Core Stateless
Fair Queueing (MCSFQ). The second amelioration suggested touch to the support of minimum
throughput guarantees. The changes required by this fonctionallity to CSFQ and MCSFQ are
clone to the labelling process and subordinately to the buffer acceptance module, to obtain
better performances.

The following chapter introduces the scenarios used for the simulations of CSFQ and its
modified version MCSFQ in order to distribute the bandwidth in a fair way between the
flows or to, additionally, provide minimum throughput guarantees. Then, in the last chapter,
results obtained from these simulations are analysed. From these simulations, it is shown that
MCSFQ has a better behavior than CSFQ in uncongested networks as well as in networks
that are near congestion. And, in such conditions, MCSFQ distributes bandwidth in a fair
way while the network is under utilized with CSFQ. In congested conditions, the bandwidth
distribution of CSFQ and MCSFQ is alike and the threshold has no impact . The bandwidth is
distributed approximately fairly and minimum guarantees are ensured to guaranteed flows in
congested networks possessing one or multiple bottlenecked links having the same or various
fair shares.

Further work

Because QoS is a current concern and scalability in the provision of QoS is crucial, many
core stateless mechanisms have been and surely will be proposed in the future. Therefore,
it would be interesting to lead a broader study of these mechanisms in order to associate to
each of these mechanisms the panel of the guarantees they propose. The ultimate objective of
this study would be to find or create a mechanism enabling the provision of a wide varieties
of guarantees to the flows . The mechanisms handled in this thesis concern mostly bandwidth
guarantees. Therefore, a special attention would be given to delay guarantees, delay jitter
guarantees and prioritized dropping for flows with intra-flow priorities.

As regards the functionality extension suggested for the support of minimum throughput
guarantees, results from simulations using the estimation of the aggregate guaranteed rate
should be analyzed in depth to confirm its impact of bandwidth utilization.

98

The amelioration of CSFQ, MCSFQ, may be further fine tuned. In uncongested periods
the fair share estimation should at least be bounded by the link rate and methods to allow a
quicker convergence of the fair share when congestion starts should be implemented. Among
such methods, we can propose the progressive decrease of the fair share in uncongested periods
or to decrease the fair share estimation only when the congestion is noticed. Such proposals
should be studied among others to provide a better fairness in the distribution of bandwidth
by diminishing the amount of tail drops.

With the same objective of avoiding tail drops, instead of decreasing the fair share estima­
tion by a percentage when a packet is tail dropped [SSZ98a), we could think of implementing
a correction factor as suggested in [DCPE00). The new probability to drop a packet equals to
the old packet drop probability times a factor that takes into account the average queue size
and a target level of the queue. Adaptations to this proposa! are needed to avoid interferences
of this factor in the estimation of the fair share. Therefore, the following proposa! may be bet­
ter suited. Instead of multiplying the drop probability by a correction factor, the estimation
of the fair share could be multiplied by a correction factor to obtain a next estimation of the
fair share, this correction factor having the same consistency as the one mentioned earlier in
this paragraph. The goal is find a method that predicts and avoid tail drops while the solution
proposed in [SSZ98a) reacts to tail drops.

An estimation of the upper bound of the forwarding rate may be used to estimate the
forwarding rate on packet drops. This method is proposed in [DCPE00) and it has been
implemented in our mechanism but simulations should be run to test its efficiency.

In CSFQ and MCSFQ, the estimations of the different rates are based on the exponential
averaging. A question about the adequacy of such estimations to the Internet traffic can be
formulated . More realistic simulations should be clone with various traffic including on-off
sources, bursty flows, short as well as long living flows, .. . The accuracy of the estimation
would be tested with the ability to provide fairness and minimum throughput guarantees.

Plenty of time may be spent in the subject treated in this thesis in the future. Many re­
search possibilities are still available on this broad subject. Existing core stateless mechanisms
may be further fine tuned or extended to the provision of a wider range of services. And, we
cannot exclude the elaboration of revolutionary new core stateless mechanisms.

99

Bibliography

[BDC00] Olivier Bonaventure and Stefaan De Cnodder. A rate adaptive shaper for differ­
entiated services. Internet Engineering Task Force, RFC 2963, October 2000.

(BG92] D. Bertsekas and R. Gallager. Data Networks. 1992.

[Bon00] Olivier Bonaventure. Téléinformatique et réseaux : matières approfondies, 1999-
2000. Teaching reference.

[CWZ00] Z. Cao, Z. Wang, and E. Zegura. Rainbow fair queueing: Fair bandwidth sharing
without per-flow state. In Proceedings INFOCOM '00, March 2000.

[DCPE00] Stefaan De Cnodder, Kenny Pauwels, and Omar Elloumi. A rate based RED
mechanism. In Proc. of the 10th International Workshop on Network and Oper­
ating System Support for Digital Audio and Video, NOSSDAV 2000, Chape! Hill,
NC, 26-28 June 2000.

[DR99] Constantinos Dovrolis and Parameswaran Ramanathan. A case for relative dif­
ferentiated services and the proportional differentiation model. IEEE N etwork,
13(5):26-34, September/October 1999.

[FH98]

[FSN00]

Paul Ferguson and Geoff Huston. Quality of Service Delivering QoS in the Inter­
net and in Corporate Networks. John Wiley & Sons, Inc., 1998.

W. Fang, N. Seddigh, and B. Nandy. A time sliding window three colour marker
(TSWTCM). Internet Engineering Task Force, RFC 2859, June 2000.

[HBWW99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured forwarding PHB

[HG99a]

[HG99b]

(JNP99)

[LBL00)

group. Internet Engineering Task Force, RFC 2597, June 1999.

J . Heinanen and R. Guerin. A single rate three color marker. Internet Engineering
Task Force, RFC 2697, September 1999.

J. Heinanen and R. Guerin. A two rate three color marker. Internet Engineering
Task Force, RFC 2698, September 1999.

V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding PHB. Internet
Engineering Task Force, RFC 2598, June 1999.

Na Li, Marissa Borrego, and San-qi Li. Achieving per-flow fair rate allocation
within diffserv. In Proceedings of the fijth IEEE Symposium on Computers and
Communications, ISCC 2000, Antibes, France, 3-6 July 2000.

101

[McD00] David McDysan. QoS & Traffic Management in IP & ATM Networks. McGraw­
Hill, 2000.

[MIL] MIL 3, Inc., Washington, D.C. OPNET Modeler. Online documentation, Release
7.0.B.

[MSMO97] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macro­
scopie behavior of the TCP congestion avoidance algorithm. In ACM SIG­
COMM, editor, Computer Communication Review, volume 27. July 1997.

[NSY00] M. Nabeshima, T. Shimizu, and I. Yamasaki. Fair queueing with in/out bit in
core stateless networks. In Proc. of the 8th International Workshop on Quality of
Service, IWQoS 2000, Pittsburgh, PA, 5-7 June 2000.

[PDCE00] Kenny Pauwels, Stefaan De Cnodder, and Omar Elloumi. A multi-color marking
scheme to achieve fair bandwidth allocation. In Proc. of the 1st International
Workshop on Quality of future Internet Services, QofIS 2000, Berlin, Germany,
25-26 September 2000.

[Ros0l] Cedric Rosman. TCP-friendly congestion control for multimedia applications.
Master's thesis, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium,
June 2001.

[SPG97] S. Shenker, C. Partridge, and R. Guerin. Specification of guaranteed quality of
service. Internet Engineering Task Force, RFC 2212, September 1997.

[SSZ98a] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing : Achiev­
ing approximately fair bandwidth allocatons in high speed networks. Technical
report, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213, August 1998.

[SSZ98b] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing: Achieving
approximately fair bandwidth allocations in high speed networks. Technical Re­
port CMU-CS-98-136, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, June 1998.

[SZ98] Ion Stoica and Hui Zhang. Providing guaranteed services without per flow
management. Technical Report CMU-CS-99-133, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, May 1998.

[Szs+99J I. Stoica, H. Zhang, S. Shenker, R. Yavatkar, D. Stephens, A. Malis, Y. Bernet,
Z. Wang, F. Baker, J. Wroclawski, C. Song, and R. Wilder. Per hop behav­
iors based on dynamic packet states. Internet Engineering Task Force, Work in
Progress, draft-stoica-diffserv-dps-00.txt, February 1999.

[VMSB00] N. Venkitaraman, J . Mysore, R. Srikant, and R. Barnes. Stateless pnon­
tized fair queueing. Internet Engineering Task Force, Work in Progress, draft­
venkitaraman-spfq-00. txt, July 2000.

[Wro97] J. Wroclawski. Specification of the controlled-load network element service. In­
ternet Engineering Task Force, RFC 2211, September 1997.

102

[WTP00] L. Westberg, Z. R. Turanyi, and D. Partain. Load control of real-time traffic
a two-bit resource allocation scheme. Internet Engineering Task Force, Work in
Progress, draft-westberg-loadcntr-03.txt, March 2000.

[ZF94] H. Zhang and D. Ferrari. Rate-controlled service disciplines. In Journal of High
Speed Networks, 3(4):389- 412, 1994.

103

Appendix A

Overview of OPNET

The description of OPNET is largely inspired from [MIL]. Only concepts essential to the
understanding of the code from the implementation are exposed. OPNET is object-oriented.
The modelling of networks in OPNET is done using three levels of abstraction (figure A.l).
The role of these three layers is exposed in the following subsections.

A.1 Network model

The network model defines the topology of a communication network. The communicat­
ing entities are called nodes and the specific capabilities of each node are defined in their
corresponding node model. Inside a network model there may be many node instances, with
identical functionalities, that are based on the same node model. The node instances are
connected by links that may also be parameterized.

A.2 Node model

The node model provides for the emulation of communication devices that can be deployed
and interconnected at the network level. These devices are called nodes. They may correspond
to various types of computing and communicating equipment in the real world.

The node models consist of modules and connections. Sorne modules offer a capability that
is predefined and can be configured through a set of parameters. Transmitters and receivers
belong to these predefined modules. They allow a node to be attached to communication
links in the network models. Other modules can be programmed. The behavior of the pro­
grammable modules is prescribed by an assigned process model and its parameters. Among
the types of connections OPNET provides between the modules from a node model, only
packet strearns have been used in the implementation of CSFQ. Packet streams allow packets
to flow from one module to another.

A.3 Process model

Process models define the behavior of programmable modules used at the node layer.
Process models are expressed in a language called Proto-C. Proto-C is based on a combination

105

Network Layer

·,/ ;

: ·, ,--------.,

Node Layer

Router 1

' '

Process Layer

Node Layer

Router 2

-·-. ,,.
\

((default)/Ùnknown()

➔CE>----{El· _)
:" ·,
' 1

\ ·, /

\

1

i

(PK_ARRVL)/forward()

Figure A.1: The three layers of OPNET models

of state transition diagrams, a library of high level commands known as Kernel Procedures,
and the general facilities of the C. Processes respond to interrupts, which indicate that events
of interest have occurred such as the arrival of a message or the expiration of a timer. When a
process is interrupted, it takes actions in response and then blacks, awaiting a new interrupt.
A process makes the transition from one state to another when a certain condition is fulfilled.

106

This condition may be the emergence of an interruption when the process is in an unforced
state1 . The transition conditions can also be bound to the value of some variables. When the
process is in one state and needs the occurrence of an interruption to pass into another state,
it is blocked. Once the awaited interruption occurs, the process makes the transition to the
next state. The actions, described in C and by means of the Kernel procedures, corresponding
to the state are taken. Then, if the state is forced2 , a transition is directly made to another
state of the process without being interrupted. Then, the code of the new state is executed.
When astate is forced, it means that, when the module is in that state, it executes the code of
the state. Then, it makes the transition to the next state without letting itself be interrupted.
If an interruption occurs, it will be stored in a list of interruptions to handle and it will be
taken care of after the transition. Otherwise, the state is unforced. In this case, the process
may be blocked while another process runs or it is blocked until the expected interruption
occurs. When the process is activated again, the process jumps to another state and executes
the actions relative to the code of the new state.

A process model may define parameters, called attributes, that are used once it is instan­
tiated as a process to customize aspects of its behavior. For example, the size of a queue and
the service rate of the queue can be set through an attribute. It is possible to create as many
attributes as needed. Depending on the value given to the attributes at simulation time the
behavior of the process can change. In the implementation, attributes have been defined to
enable the choice of using CSFQ or just accept packets in the queue in a tail-drop way.

There are many components that contribute to the definition of a process model. Among
these components there are the temporary variables block, the state variables block, the header
block and the fonction block. The goals of these components are presented in the following
paragraphs.

The temporary variables of a process are defined in its temporary variables block while its
state variables are declared in its state variables block. Temporary and state variables do not
have the same range of application. The range of temporary variables is within the execution
of the code from a state. Between one invocation of the process model and the end of the
previous invocation execution, the values from the temporary variables may have changed.
Temporary variables are used in order to store information that does not require persistence.
They are not guaranteed to have any set of values when the process model is invoked. By
opposition, the range of the state variables is the process model. The values of the state
variables of a process "are frozen" when it blocks. They are found unchanged by the process
when it resumes execution at the next invocation. State variables are persistent. From the
perspective of each process, they retain their value over time. Changes made to state variables
of one process do not affect the values of variables held by another.

The header block is an area for C language code, similar to the top portion of a C file.
The constants and the data structures are defined in the header block. Among the constants
defined in the header block there are the transition conditions. For example, in figure A.1,
PK_ ARRVL is a transition condition that is defined in the header block of the routing process.
External definition files may also be included through the header block. The inclusion of header
files is useful when multiple process models share a consistent set of definitions.

1In OPNET, unforced states in astate and transition diagram are represented by red (dark) circles.
2Forced states are represented by green (light) circles, in OPNET.

107

When fonctions are used in the process execution, they may be defined -in a file included
through the header block or they may be defined in the fonction block.

Table A.1 summarizes the roles of the different modeling levels in OPNET.

Modeling level Modeling Focus
Network Network topology described in terms of subnetworks, nodes

and links.
Node Node internal architecture described in terms of fonctional

elements and data flow between them.
Process Behavior of processes (protocols, algorithms, applications),

specified using finite state machines and extended high-level
language.

Table A.l: OPNET modeling levels

108

Appendix B

lmplementation architecture

CSFQ and MCSFQ have been implemented in OPNET to provide flows with minimum
throughput guarantees and fair sharing of the remaining bandwidth. Additionally, MCSFQ
provides some corrections to the CSFQ algorithm. In this chapter, the basic architecture of
the implementation is introduced. First, the different processes that are the building blacks
of these two mechanisms are presented. Then, the constitution of an edge and a core node
supporting these two mechanisms is introduced.

B .1 Process models

CSFQ and MCSFQ have been implemented by creating two modules with different objec­
tives. The first module can be called the "arrival rate estimator". The other module implements
the buffer acceptance algorithm.

B.1.1 Arrivai rate estimator

The goal of the arrival rate estimator is to approximate, every time a packet arrives,
the arrival rate of the flow to which the packet belongs and to mark the packet with this
estimation.

The process model of the arrival rate estimator module is implemented in OPNET by
the state and transition diagram shown in figure B.l. The labels on the arrows indicate the
conditions under which the transactions occurs. For example, PK_ ARRVL is true when the
interruption handled is caused by a packet arrival. The value of EOS is true when the inter­
ruption relative to the end of simulation has arisen. When the end of simulation interruption
is handled, the function labelling_ eos() is called. The default condition is used when an other
interruption than a packet arrival or the end of the simulation has to be treated.

The state and transition diagram indicates that at the beginning the arrival rate estimator
is in the initialization state where the variables used by the estimator are set to their initial
value.

Then, the module goes into the idle state and waits for packet arrivals. If the module
receives an end of simulation interruption, it will handle it when it is in the idle state because
the other states are forced. When a packet arrives, an interruption occurs. The interruption

109

I

'

,,,
I

(PK_A~RVL)

'

1

(EOS)/lal>l;lling_eos()

I

Figure B.l: Arrival rate estimator : process model

will be handled by the idle state for the same reason. A transition is then made from the idle
to the ar estimation state.

The arrival rate estimator moves into the ar _ estimation state when it receives a packet. In
this state, the flow to which the incoming packet belongs is identified. It has been considered
here that all packets generated by the same source belong to the same flow. It follows that
packets are classified according to the address of the source carried in the header. The arrival
rate estimator maintains some state for each flow passing through it. This state is composed
of the last arrival rate estimation from the flow and the time of the reception of the last
packet belonging to the flow. Based on the state of the flow carried by the received packet,
the packet's length and arriva! time, the arrival rate of the flow is estimated . Once the arrival
rate is obtained, the packet is marked with this value. Then, it is sent to the buffer acceptance
module.

B.1.2 Buffer acceptance module

It is supposed that when a packet arrives at the buffer acceptance module, it is marked with
the rate of the packet's flow. On the output link of the module, the bandwidth is distributed
approximately fairly between the different flows sharing the link.

Figure B.2 shows the state and transition diagram of the buffer acceptance module. It can
be seen that at the beginning, the module is in the init state where the variables used by the
module are initialized.

When the execution of the init state is finished, the module goes into the idle state. It
then waits for packet arrivals or for packet service completions.

When the module is in the idle state and a packet arrives, a transition is made to the
forward state. In this state, either the packet is discarded or it is decided to store it in the
buffer based on the previous estimation of the fair share and the label carried by the packet.

When packets of the flow, to which the current packet belongs, are dropped and the current
packet is not discarded, the packet is relabelled with the fair share. The relabelling of the

110

/ ' 1 ·
1
(EOS)/record_stat()

(STAT_RESET)/reset_stat() i ,· 1
(default)

➔ ""_;-----'_,_-_._---1· .. '1 ~: ~ -~------~PK_ARRVL~----_ -_--~~=)
' (SVC_COMPLETION)

1

-, 1

\

1

(default)
I

I

(lserver_busy && insert_ok)
/

Figure B.2: Buffer acceptance module: process model

packet has ta be performed to meet the precondition of the buffer acceptance module at the
next node. lt is required that the label of the packets arriving at the next network node should
represent the estimation of the rate of their flow, at the next node. When packets from the
flow are dropped, the rate of the flow decreases. lt can be approximated by the fair share of
the output link because the drop probability is computed such that all packets in excess of
the fair share should be dropped. Therefore, the packets can be relabelled with the fair share
of the link when the actual label is above the fair share.

After the decision to drop or to put the packet in the queue, the fair share is reestimated.
This value of the fair share will be used at the next packet arrival.

If the packet is not in excess of the fair share, that means that it has not been decided to
drop it, the packet has to be stored in the queue. But, the packet can still be discarded if the
buffer happens ta be full when the insertion in the queue is tried.

If the packet has been inserted in the queue and it is the first packet in that queue, the
module goes into the svc _ start state. The time at which the packet will be transmitted is
then computed and an interruption is scheduled for that time.

When a scheduled interruption occurs, the module is in the idle state because all the
other states in the diagram are forced. A interruption scheduled by the buffer acceptance
module indicates that the first packet in the queue has to be transmitted. The module makes
a transition to the svc _ complete state. The packet at the head of the queue is sent .

When the module is in the svc _ complete state and the packet associated to the interrup­
tion, that led to this state, has been sent, a transition is made to the svc _ start state, if the
queue is not empty. In the svc_start state, the next service completion is scheduled. But, if
the queue is empty, the module goes directly into the idle state.

111

B.2 N odes constitution

The utilization of the arriva! rate estimator and the buffer acceptance module is illustrated
by the module composition of edge and core nodes used for the simulations. Both modules
are found in an edge router while only the buffer acceptance module is found in core nodes.

B.2.1 Edge node composition

In this section, an example of the module composition from a CSFQ (or MCSFQ) edge
router is given. Many variations are possible. It has been chosen here to present the structure
from the edge routers used in the simulations introduced in chapter 5.

Buffer
acœptance i

module ,

Data transmission direction

• DeliVer] ,-· --= ___ .
modules ! ! Transmitters ;

Acknowledgement transmission direction

: Transmitters . \ Deriver
modules

Routing
module

Figure B.3: Edge node

112

• Reœivers

Figure B.3 shows the module composition of an edge router with 5 input and 5 output
full-duplex links. In the first half of the figure, the data transmission direction is represented.
Packets arriving from any of the 5 input links in the data path, go through the arrival rate
estimator where they are marked with the estimated arrival rate of their fl.ow. Then, they are
sent to the routing module. The output link on which each packet has to be transmitted is
determined. Once the output link toward the destination is obtained, the packets are sent on
the packet streams that enable them to reach the output link. These packet streams either
lead to the deliver modules of the output links or to the buffer acceptance module. The buffer
acceptance module decides according to the label of the packets and the estimation of the
fair share of the output link which packets are stored in the queue. When the packets arrive
at the head of the queue they are sent to the deliver module of the output link. The deliver
modules keep the packets for a certain time, set as a parameter to each deliver module. These
times are the fixed propagation delays of the different links. Then, the packets are sent to the
next nodes connected at network layer to the transmitters that stand at the end of the output
streams of the deliver modules.

Here, only one buffer acceptance module is used in the data path of the edge routers. In
the simulations that are performed, there is only one link where different flows are multiplexed.
The other output links are supposed to be used to send data directly to final destinations.
There is only one flow passing on each of these links. Because the objective of the simulations
is to provide fairness bety.reen different flows, the links connected to the destinations are not
bottlenecked. CSFQ (or MCSFQ) does not have to be performed on these links. But, on
the links where different fl.ows are multiplexed to be transmitted to another router CSFQ (or
MCSFQ) is needed to attribute the bandwidth fairly among the flows that share the link.

In the other half of figure B.3, the dealing of the acknowledgment packets by the edge
nodes is represented. Data packets are supposed to flow only in one direction. They go
from the left to the right in figure B.3 as well as in the network scenarios exposed in chapter
5. The acknowledgements of the TCP fl.ows go in the opposite direction (from the right to
the left). When acknowledgment packets arrive at an edge router, they are received by the
receiver modules. Then, they are transmitted to the routing module which determines the
packet streams on which to send each packet. The packets arrive at the deliver modules and
are delayed. Finally they are sent to the next network nodes on their path. These nodes are
connected to a transmitter, reachable by the output link of a deliver module, at network layer.

In the transmission direction of the acknowledgments, the networks used for the simulations
are not supposed to be congested. The amount of acknowledgments is small compared to the
amount of data packets that are transmitted. CSFQ (or MCSFQ) is not performed on the
acknowledgment packets.

B.2.2 Core node composition

The module composition of the core nodes (figure B.4) of the networks used in the simu­
lations is similar to the composition of the edge nodes. At the core nodes, the data packets
arriving on certain links are already marked. The labelling has not to be clone to the packets
that came over these links. Only the packets arriving on links connected to their source have
to be marked. In the scenarios of the simulations presented in chapter 5, the packets that are
marked all corne via the same link. Therefore, there is only one receiver that is not connected

113

! Reœivers

!Transmitters l 1 i . . !

! Arrivai rate 1
1 estimator : ~---
' ; ' 1

l
Butrer ! ,,,,, ,

acœptenœ f, ,,.,,,,.

module !
--·· j

Data transmisslon direction

Oeliver
modules j Transmltters 1

• ' 1 •

l

Acknowledgement transmisslon direction

Oelivet
modules

Routing
module

Figure B.4: Core node

114

1 Reœivers j

to the labelling module. Packets received by this receiver are directly sent to the routing mod­
ule. Then, the packets from the flows that are multiplexed at this router are sent to the buffer
acceptance module. Finally, they are transmitted to the deliver and transmitter modules if
they are not discarded. The packets from the flows arriving at destination at the next nodes
do not go through the buffer acceptance module because the links toward the destinations are
not overloaded. These packets are sent to the deliver modules and finally they are transmitted
on the links connected to their destination.

For the acknowledgement packets, the mechanism is the same as at the edge routers. There
is no congestion on this way of transmission. The packets arrive at the receivers and they are
routed to the correct output streams. They incur a fixed delay at the deliver modules. And,
finally, they are sent on the output links connected to the transmitters.

115

Appendix C

Implementation code

The code from the implementation of the processes that compose the edge and core nodes
used in the simulations is given in this chapter. Four process models have been developed
: the deliver process, the routing process, the labelling process and the core process. The
last two processes correspond to the arrivai rate estimator and the buffer acceptance module
(annexe B), respectively. The code from the deliver and the routing processes is presented
first. The deliver and the routing processes are not proper to CSFQ and MCSFQ. After
giving the processes that compose the framework of any router composition, the code from
the modules implementing CSFQ and MCSFQ is submitted.

The coding of the process models is listed for each process model with the declaration of
the temporary variables, the declaration of the state variables, the header block, the fonction
block and the code executed in each state of the finite state diagram.

C .1 Deliver process

(default)/router _ default()

1

/ ,
, ·.

' \

'

' '- . /

\

' I
i

(PK_ARRVL)/router_forward()

Figure C.l: Deliver process

All packets arriving on the input stream of the deliver process are transmitted to the next
network node bound to the deliver module with constant delay given as a parameter to the

117

process at simulation time. The delay introduced by a deliver process corresponds to the
fixed propagation delay on a link. The deliver process is used to avoid the need to configure
the link rates1 and delays. When the deliver process is used, there is no problem about the
reliability of the links binding the different nodes. The state and transition diagram of the
deliver process is given in figure C.l.

C.1.1 state variables

Objid \routerdest;
double \routerdelay;

C.1.2 temporary variables

No temporary variables

C.1.3 header block

#define PK_ARRVL (op_intrpt_type()==OPC_INTRPT_STRM)
#define EOS (op_intrpt_type()==OPC_INTRPT_ENDSIM)

C.1.4 function block

void router_forward(void){
Packet* pk;

pk=op_pk_get (op_intrpt_strm());
op_pk_deliver_delayed (pk, routerdest, 0, routerdelay);

}

void router_eos(void){
printf("The interruption eos occured\n");

}

void router_default(void){
printf("The interruption that occured isn't a strm_intrpt\n");

}

C.1.5 init state

In the init state, the delay of the packets, for this node, is set using the value of an
attribute. And, the destination process of the packets is determined by searching the first
process or queue of the node connected though a transmitter to the deliver process instance.

Objid my_self;
Objid txid,lkid,rxid;

1 In our models, the link rates are determined by the service rates of the queues implemented in the core
process.

118

my_self=op_id_self();

op_ima_obj_attr_get(my_self,"routerdelay",&routerdelay);

I* Objid of the transmitter connected to the deliver process *I
txid = op_topo_assoc(my_self,OPC_TOPO_ASSOC_OUT,OPC_OBJTYPE_PTTX,0);
if (op_topo_assoc_count(txid,OPC_TOPO_ASSOC_OUT,OPC_OBJTYPE_LKSIMP)==1){

I* Objid of the link connected to the transmitter *I

}

lkid = op_topo_assoc(txid,OPC_TOPO_ASSOC_OUT,OPC_OBJTYPE_LKSIMP,O);
I* Objid of the receiver connected to the link */
rxid = op_topo_assoc(lkid,OPC_TOPO_ASSOC_OUT,OPC_OBJTYPE_PTRX,0);
if (op_topo_assoc_count(rxid,OPC_TOPO_ASSOC_OUT,OPC_OBJTYPE_QUEUE) == 1){

I* Objid of the queue connected to the receiver *I
routerdest = op_topo_assoc(rxid,OPC_TOPO_ASSOC_OUT,OPC_OBJTYPE_QUEUE,O);

}

else{
I* Objid of the process connected to the receiver *I
routerdest = op_topo_assoc(rxid,OPC_TOPO_ASSOC_OUT,OPC_OBJTYPE_PROC,O);

}

C.2 Routing process

The objective of the routing process is to send the incoming packets on the correct output
stream. The routing is done based on a table that enables the association of each virtual path
index (VPI) which is embedded in the packet header with the number of an output stream.
The state and transition diagram of the routing process is given in figure C.2.

I

I

(default)/unknown()

'
. .

-+()--------~ idle "'-, . _ ___ ., . ✓./
- ✓ • · ,

I

1

I
\

' I
I

' / ' .
(PK_ARRVL)/forward()

Figure C.2: Routing process

C.2.1 state variables

I* used to route the packets to their destination *I
RoutingTable \routingtable;

119

C.2.2 temporary variables

No temporary variables

C.2.3 header block

#include </home/users/cnodderst/diffserv/routing/routing.h>
#define PK_ARRVL (op_intrpt_type() == OPC_INTRPT_STRM)

C.2.4 function block

void forward(void){

}

Packet *pk;
int stream_index;
int vpi;

stream_index = op_intrpt_strm();
pk = op_pk_get(stream_index);
I* take the value of the VPI field of the packet *I
op_pk_nfd_get(pk, "VPI", &vpi);
f* determine the packet stream corresponding to the vpi
and send it on this packet stream *I
op_pk_send(pk,routingtable[vpi]);

void unknown(void){
printf("Unknown event has occured\n");

}

C.2.5 init state

I* initialisation of the routing table *I
init_routetable(routingtable);

C.3 Labelling process

This process is used by edge nodes to ·label the packets that arrive with the estimation of
the arrival rate of the packet's flow. It keeps some informations for each flow in the f s array.
On packet arrival, the process estimates the packet's flow arrival rate and updates the flow's
informations. It then marks the packet and forwards it.

C.3.1 state variables

I* Array where each element is the state of a flow *I
flowstate \fs[MAX_FLOWS];

f* Constant used in the estimation of the arrival rate of the user *f

120

!• flow.
double \K;

/• file descriptor used to store the statistics •/
FILE* \fptr;

/• indicates if the support of minimum guarantees is wanted •/
int \min_support;

/• indicates if the marking of the traffic is made using the token •/
/• bucket •/
int \bucket_mark;

/• Indicates the size of the token bucket •/
double \bk_size;

/• Array used to produce the averages of the statistics •/
flowstatistics \fs_stat[MAX_FLOWS];

/• indicates the length of the intervals on which the stat averages •/
! * are performed * /
double \time_average;

/• indicates the start of the current stat averaging interval •/
double \start_averg_time;

/• indicates if the statistics are of type average or not •/
int \average;

C.3.2 temporary variables

Packet •pk;
double pk_arrvl_time;

int flow_nb; /• identifier of the flow used to accessits state •/
double arrvl_rate;

inti;/• counter •/
int strm_index;

char fmt[20];/• to store the format name •/

double p_out;/• probability by which the packet is marked
to be out of the guarantee •/

121

C.3.3 header block

#include <math.h>
#include </home/users/cnodderst/diffserv/routing/routing.h>
#include </home/users/pelsserc/op_models/flowclassify.h>

I* definition of the conditions *I
#define PK_ARRVL (op_intrpt_type() == OPC_INTRPT_STRM)
#define EOS (op_intrpt_type()==OPC_INTRPT_ENDSIM)

I* maximum number of flows *I
#define MAX_FLOWS (MAX_ROUTING_VP/2)

I* define the structure of the state of a flow *I
typedef struct{

double guar_rate; I* reservation of the flow *I
double estim_rate; I* current flow's estimated rate *I
double prev_time; I* arrival time of the previous

packet of the flow *I
double estim_exc_rate; I* current flow's estimated

excess rate *I
double exc_prev_time; I* arrival time of the previous

excess packet of the flow *I
double bk_content; I* number of tokens in the bucket *I

}flowstate;

typedef struct{
double avrg_arrvl;
double avrg_exc;

double sum_arrvl;
double sum_exc;

int nb_val_arrvl;
int nb_val_exc;

}flowstatistics;

C.3.4 function block

I* estimation of a rate using the exponential averaging */
double estim_flow_rate (int flowid, Packet *pkptr,

double pk_arrvl_time){

int pk_size; I* size of the packet *I

double rate; I* estimation of the rate *I
double prev_arrvl_time; I* arrival time of the

122

}

previous packet *I

double pk_interval; f* time between the last and the
current packet *I

I* affectation of the packet's size to pk_size*/
pk_size = op_pk_bulk_size_get(pkptr);

rate= fs[flowid] .estim_rate;
prev_arrvl_time = fs[flowid] .prev_time;
fs[flowid] .prev_time = pk_arrvl_time;

pk_interval = pk_arrvl_time - prev_arrvl_time;

if (pk_interval != 0.0){

}

fs[flowid].estim_rate = (1.- exp(- pk_interval / K))
* ((double)pk_size/pk_interval)

+ exp(- pk_interval / K) * rate;

else{
fs[flowid] .estim_rate = ((double)pk_size/K) + rate;

}

return(fs[flowid] .estim_rate);

I* estimation of the excess rate of a flow using
the exponential averaging *I
double estim_exc_flow_rate (int flowid, Packet *pkptr,

double pk_arrvl_time){

int pk_size; I* size of the packet *I

double rate; I* estimation of the rate *I
double prev_arrvl_time; I* arrival time of the

previous packet *I

double pk_interval; f* time between the last and the
current packet *I

I* affectation of the packet's size to pk_size*/
pk_size = op_pk_bulk_size_get(pkptr);

rate= fs[flowid] .estim_exc_rate;
prev_arrvl_time = fs[flowid] .exc_prev_time;
fs[flowid] .exc_prev_time = pk_arrvl_time;

123

}

pk_interval = pk_arrvl_time - prev_arrvl_time;

if (pk_interval != 0.0){

}

fs[flowid].estim_exc_rate = (1.- exp(- pk_interval / K))
* ((double)pk_size/pk_interval)

+ exp(- pk_interval / K) * rate;

else{
fs[flowid] .estim_exc_rate = ((double)pk_size/K) + rate;

}

return(fs[flowid] .estim_exc_rate);

I* the last statistics are written to the stat file at the end
of the simulation•/
void labelling_eos(void){

int i;
double crt_time = op_sim_time();
if (average){

}

for (i = 0; i < MAX_FLOWS; i++){

}

if (fs_stat[i].nb_val_arrvl != 0){

}

fs_stat[i] .avrg_arrvl = fs_stat[i].sum_arrvl /
fs_stat[i] .nb_val_arrvl;

fprintf(fptr,"arrvl_rate;%d;Y.f;%f\n",i,
start_averg_time,
fs_stat[i] .avrg_arrvl);

if (fs_stat[i].nb_val_exc != 0){

}

fs_stat[i] .avrg_exc = fs_stat[i] .sum_exc /
fs_stat[i] .nb_val_exc;

fprintf(fptr,"excess_rate;%d;%f;¼f\n",i,
start_averg_time,
fs_stat[i] .avrg_exc);

else{
for (i = 0; i < MAX_FLOWS; i++){

if (crt_time > start~averg_time + time_average){
if ((fs[i].prev_time > 0.0)
11 (fs[i] .estim_rate > 0.0)
11 (fs[i] .exc_prev_time > 0.0)
11 (fs[i].estim_exc_rate > 0.0)){

fprintf(fptr,"arrvl_rate;¼d;¼f;¼f\n",i,
crt_time,
fs[i] .estim_rate);

124

}

}

}

}

fprintf(fptr,"excess_rate;%d;%f;%f\n",i,
crt_time,
fs[i] .estim_exc_rate);

}

fprintf(fptr,"end of sim\n");
fclose(fptr);

I* increment the number of tokens in a bucket on packet arrival *I
void incr_bk(int flow_id, double pk_arrvl_time){

}

double t,token;

t = pk_arrvl_time - fs[flow_id].prev_time;
token = t * fs[flow_id] .guar_rate;
if (bk_size >= fs[flow_id] .bk_content + token){

fs[flow_id].bk_content = fs[flow_id] .bk_content + token;
}

else{
fs[flow_id] .bk_content = bk_size;

}

C.3.5 initialization state

I* initialisation of the rate estimator and packet
labelling process */

char stat_file[20];
I* next six variables are used to get the guarantees of the flows *I
Objid my_self,table,line;
int nb_lines;
int vpi;
double g_rate;
char mark_type[20];
char stat_type[20];

if (op_ima_obj_attr_get(op_id_self(),
"estim_const",&K) == OPC_COMPCODE_FAILURE)
printf("error getting attribute's value\n");

if (op_ima_obj_attr_get(op_id_self(),
"stat file",stat_file) == OPC_COMPCODE_FAILURE)
printf("error getting attribute's value\n");

if (op_ima_obj_attr_get(op_id_self(),

125

"min_guar_support",&min_support) == 0PC_C0MPC0DE_FAILURE)
printf("error getting attribute's value\n");

if (op_ima_obj_attr_get(op_id_self(),
"exc_mark",mark_type) == 0PC_C0MPC0DE_FAILURE)
printf("error getting attribute's value\n");

if (strncmp(mark_type,"probabilistic",13) == 0){
I* probabilistic decision of in contract and in excess packets *I
bucket_mark = 0;

}

else{

}

if (strncmp(mark_type,"deterministic",13) == 0)
I* determination of in contract and out of contract packets
by means of token buckets *I
bucket_mark = 1;

if (op_ima_obj_attr_get(op_id_self(),
"bucket_size",&bk_size) == 0PC_C0MPC0DE_FAILURE)
printf("error getting attribute's value\n");

if (op_ima_obj_attr_get(op_id_self(),
"stat type",stat_type) == 0PC_C0MPC0DE_FAILURE)
printf("error getting attribute's value\n");

if (strncmp(stat_type,"sample",6) == 0){
average= 0;

}

else{
if (strncmp(stat_type, "average", 7) -- 0)

average= 1;
}

I* Initialisation of the arrays used to store the state and the
statistics of the flows *I
for (i = 0; i < MAX_FLOWS; i++){

fs[i].guar_rate = 0.0;
fs[i].estim_rate = 0.0;
fs[i].prev_time = 0.0;
fs[i] .estim_exc_rate = 0.0;
fs[i] .exc_prev_time = 0.0;
if (bucket_mark){

fs[i] .bk_content = 0.0;
}

if (average){
fs_stat[i] .avrg_arrvl = 0.0;
fs_stat[i] .avrg_exc = 0.0;

126

fs_stat[i].sum_arrvl = 0.0;
fs_stat[i] .sum_exc = 0.0;

fs_stat[i].nb_val_arrvl = O;
fs_stat[i].nb_val_exc = 0;

}

}

if (op_ima_obj_attr_get(op_id_self(),
"stat time average",&time_average) == 0PC_C0MPC0DE_FAILURE)
printf("error getting attribute's value\n");

start_averg_time = 0.0;

I* stat file opened in append mode *I
fptr = fopen(stat_file,"a");

I* when minimum guarantees are supported, initialisation of these
guarantees *I
if (min_support){

}

my_self = op_id_self();
I* 0bjid of the attribute table where the guarantees are given *I
table= op_id_from_name(my_self,0PC_0BJTYPE_C0MP,

"bw_guarantees");
nb_lines = op_topo_child_count(table,0PC_0BJTYPE_GENERIC);
for (i=0;i<nb_lines;i++){

}

line = op_topo_child(table,0PC_0BJTYPE_GENERIC,i);
op_ima_obj_attr_get(line, 11 VPI 11 ,&vpi);
op_ima_obj_attr_get(line, 11rate 11 ,&g_rate);
I* flow_vpi2id is a function that takes a vpi and translate
it into the corresponding flow identifier *I
fs[flow_vpi2id(vpi)].guar_rate = g_rate;
if (bucket_mark){

fs[flow_vpi2id(vpi)] .bk_content = bk_size;
}

fprintf(fptr,"guarantees;%d;%f\n",flow_vpi2id(vpi),
g_rate);

l*Writing of the process attributes to the stat file*/
fprintf(fptr,"stat type;%d\n",average);
fprintf(fptr,"stat time average;%f\n",time_average);
fprintf(fptr, 11 estim_const;%f\n 11 ,K);
fprintf(fptr,"min_support;%d\n",min_support);
fprintf(fptr, 11mark_type;%d\n 11 ,bucket_mark);
if (bucket_mark){

fprintf(fptr,"bucket_size;%f\n",bk_size);

127

}

C.3.6 ar estimation state

/• Determine the flow to which the packet belongs,
estimate the rate of the flow,
mark the packet with that estimation.•/

/• determination of the packet arrival time•/
pk_arrvl_time = op_sim_time();

strm_index = op_intrpt_strm();
pk = op_pk_get(strm_index); /• takes the incoming

packet on the stream •/

/• packet classification•/

/• flow_id is a function that determines the identifier
of a flow by taking in one of its packets •!
flow_nb = flow_id (pk);
if (flow_nb>=MAX_FL0WS){

printf("flow identifier too high\n");
printf("this problem might be caused by a wrong assignation of vpi\n");

}

if (pk_arrvl_time > start_averg_time + time_average){
/• computation and writing of the statistics to the stat file•/
for (i = 0; i < MAX_FLOWS; i++){

if (average){
if (fs_stat[i].nb_val_arrvl != 0){

}

fs_stat[i] .avrg_arrvl = fs_stat[i] .sum_arrvl /
fs_stat[i].nb_val_arrvl;

fprintf(fptr,"arrvl_rate;¼d;¼f;¼f\n",i,
start_averg_time,
fs_stat[i].avrg_arrvl);

if (fs_stat[i] .nb_val_exc != 0){

}

fs_stat[i] .avrg_exc = fs_stat[i] .sum_exc /
fs_stat[i] .nb_val_exc;

fprintf(fptr,"excess_rate;¼d;¼f;¼f\n",i,
start_averg_time,
fs_stat[i] .avrg_exc);

fs_stat[i] .sum_arrvl = 0.0;
fs_stat[i] .sum_exc = 0.0;

fs_stat[i] .nb_val_arrvl = 0;

128

}

}

fs_stat[i] .nb_val_exc = 0;
}

else{

}

if ((fs[i] .prev_time > 0.0)
11 (fs[i] .estim_rate > 0.0)
11 (fs[i] .exc_prev_time > 0.0)
11 (fs[i] .estim_exc_rate > 0.0)){
fprintf(fptr,"arrvl_rate;¼d;¼f;¼f\n",i,

pk_arrvl_time,
fs[i] .estim_rate);

fprintf(fptr,"excess_rate;¼d;¼f;¼f\n",i,
pk_arrvl_time,
fs[i] .estim_exc_rate);

}

start_averg_time += time_average;

f* incrementation of the content of the bucket associated to the flow
if bucket defined *f
if (bucket_mark){

incr_bk(flow_nb,pk_arrvl_time);
}

f* estimation of the arrival rate of the flow *f
arrvl_rate = estim_flow_rate (flow_nb, pk, pk_arrvl_time);
if (average){

}

fs_stat[flow_nb].sum_arrvl += arrvl_rate;
fs_stat[flow_nb].nb_val_arrvl += 1;

f* determination of the marking that has to be done to the packet *f
if (!bucket_mark){/* probabilistic marking *f

if (1.0-fs[flow_nb] .guar_rate/arrvl_rate > 0.0){
p_out = 1 .0-fs[flow_nb].guar_rate/arrvl_rate;

}

else{
p_out = 0.0;

}

if (p_out <= op_dist_uniform(1.0)){
f* the packet is in the traffic contract *f
arrvl_rate = -10.0;
/* in theory, arrvl_rate should be set to zero but this
could lead to some errors due to approximations *f

}

else{
f* the packet is in excess *I

129

}

}

f* the packet has to be marked with the excess rate *I
arrvl_rate = estim_exc_flow_rate (flow_nb, pk, pk_arrvl_time);
if (average){

}

fs_stat[flow_nb] .sum_exc += arrvl_rate;
fs_stat[flow_nb].nb_val_exc += 1;

else{/* deterministic marking *I

}

if (op_pk_bulk_size_get(pk) <= fs[flow_nb] .bk_content){
f* the packet is in the traffic contract *I
fs[flow_nb] .bk_content = fs[flow_nb] .bk_content -

op_pk_bulk_size_get(pk);
arrvl_rate = -10.0;

}

else{

}

I* the packet is in excess */
I* the packet has to be marked with the excess rate *I
arrvl_rate = estim_exc_flow_rate (flow_nb, pk, pk_arrvl_time);
if (average){

}

fs_stat[flow_nb].sum_exc += arrvl_rate;
fs_stat[flow_nb] .nb_val_exc += 1;

I* marking of the packet *I

I* look at the format of the packet to knov where to store
the label *f
op_pk_format(pk, fmt);
if (strncmp(fmt,"cp_udp_ip",9) == 0){

if (op_pk_nfd_set(pk, "T0S", arrvl_rate)==
OPC_COMPCODE_FAILURE)
printf ("error while labelling packet udp\n");

}

else{
if (op_pk_nfd_set(pk, "Infod", arrvl_rate)==

OPC_COMPCODE_FAILURE)
printf ("error while labelling packet tcp\n");

}

op_pk_send(pk, 0);

130

C.4 Core process

The core process is the process used by routers to determine the fair share on one of its
outputs links and the dropping probability of each packet. Based on this probability, the
packets is dropped or stored in the FIFO queue. The implementation of the queue in this
process is inspired from the acb_fifo queue provided by Opnet . The queue service rate is set
to the link rate.

C.4.1 state variables

/• rate of the output link •/
double \link_rate;

I* estimation of the aggregate arrival rate•/
double \tot_arrvl_rate;

/• fair share of the flows (it is FS in the algorithm) •/
double \fair_share;

!• It is the rate with which the algorithm accepts packets . •/
/• accept_rate = som_i (min(r_i,FS)) at some time t •!
double \accept_rate;

/• arrival time of the last packet •/
double \last_arrvl;

/• indicates if there is congestion or not on the output link •/
int \congested;

/• time when the link passes from congested to uncongested •/
I* or time when a new interval is started if the link stays •/
/• congested or uncongested longer than K_c seconds •!
double \start_time;

/• used to compute the new fair share •/
double \temp_fair_share;

/• indicates that the queue is serving a packet •/
int \server_busy;

/• indicates whether the packet has been inserted in the queue • /
int \insert_ok;

/• Used for the statistics to count the number of packets that are•/
/• dropped because flows send at more than their fair share •/
int \excs_drp_cnt;

131

I* Amount of bits received since the beginning of the simulation *I
int \bits_rcvd;

I* Amount of bits forwarded to the queue since the beginning of the *I
I* simulation *I
int \bits_fwrd_qu;

I* Amount of bits dropped because flow sends over fair share, since *I
I* the beginning of the simulation *I
int \excs_bits_drp;

I* descriptor from the file where the statistics are written *I
FILE* \fptr;

I* window size used for
I* has to be updated
double \K_c;

computing the time when the fair share *I
. *I

I* used to compute the estimation of the accepted rate and the *I
/* total arrival rate *I
double \K_alpha;

I* Indicates the lenght of the FIFO queue *I
int \max_queue_size;

I* Indicates the actual queue size *I
int \queue_size;

I* number of packets dropped because the queue overflowed *I
int \qu_drop_count;

I* Stores the number of bits dropped because of queue overflow. *I
int \qu_bdrp_count;

I* used to store the number of packets in excess dropped for each *I
I* flow *I
int \exc_fl_drop[MAX_FLOWS];

I* used to store the number of packets forwarded to the queue *I
I* for each flow *I
int \fl_fwrd[MAX_FLOWS];

I* used to store the number of bits dropped for each flow *I
int \exc_fl_bdrp[MAX_FLOWS];

I* used to store the number of bits forwarded for each flow *I
int \fl_bfwrd[MAX_FLOWS];

132

I* indicates the amount of bandwidth that is the object of *I
I* reservations
double \agg_guar;

I* determines the size of the queue under which the link is *I
I* considered to be uncongested *I
int \threshold;

I* used to store the method of the fair share estimation *I
I* possible values are : */
I* csfq *I
I* cp_csfq (corresponds to MCSFQ) *I
/ * tail drop *I
char \fair_share_estim[10];

I* indicates if best-effort is used instead of a mechanism that */
I* tries to allocates bandwidth fairly *I
int \tail_drop;

I* indicates the number of packets dropped by the queue for each *I
I* flow *I
int \fl_qdrop[MAX_FLOWS];

I* indicates the number of bits dropped by the queue for each flow *I
int \fl_bqdrop[MAX_FLOWS];

/* It is the time on which an average of the statistics will be *I
I* performed. *I
double \time_average;

I* Sum of the fair share values since the start of new interval of *I
I* length time_average *I
double \sum_fs;

I* Sum of the accepted
/* length time_average
double \sum_ar;

rate values since the start of new interval of*/
*I

I* Sum of the total arrival rate values since the start of new *I
I* interval of length time_average *I
double \sum_tar;

I* number of fair share values used in the average computation*/
int \nb_val_fs;

I* number of accepted rate values used in the average computation *I

133

int \nb_val_ar;

I* number of total arrival rate values used in the average *I
I* computation
int \nb_val_tar;

/* average of the fair share on the last time_average seconds *I
double \average_fs;

I* average of the arrival rate on the last time_average seconds *I
double \average_ar;

/* average of the total arrival rate on the last time_average seconds *I
double \average_tar;

I* time at wich this average interval has started *I
double \start_averg_time;

I* indicates if the amount of guaranteed bandwidth has to be *I
I* estimated *I
int \agg_estim;

I* indicates the arrival of the previous guaranteed packet *I
double \last_guar_arrvl;

I* Sum of the aggregate guaranteed rate values
I* of new interval of length time_average
double \sum_ag;

since the start *I
*I

I* number of aggregate
I* computation

rate values used in the average *I
*I

int \nb_val_ag;

/* average of the aggregate guaranteed rate on the *I
I* last time_average seconds *I
double \average_ag;

/* indicates if the statistic type is average or not. *I
int \average;

I* indicates if an upper bound is used to estimate the forwarding *I
I* rate when packets are dropped (not by the queue) *I
int \fwrd_upper_bound;

/* it is the upper bound of the accepted rate in case *I
I* fwrd_upper_bound is true *I
double \accept_upper;

134

I* It is the maximum size of the packets passing through the router *I
I* This is used when fwrd_upper_bound is true *I
int \max_pk_size;

/* it is the forwarding rate. When stoica's estimation is used, it */
I* is the same as the accept_rate. But when the fwrd_upper_bound is *I
I* on, it is the minimum of the accept_rate and accept_upper *I
double \fwrd_rate;

I* indicates the time at the beginning of the simulation after when *I
I* the statistics are reset *I
double \warm_up_time;

C.4.2 temporary variables

double pk_arrvl_time;
double drop_prob;
double label;
Packet *pk;
char fmt [20];
int strm_index;

int pk_len;
double pk_svc_time; I* time at which the packet at the head of the

queue is transmitted to the next process model *I

int flow_nb; I* used for the statistics only *I

C.4.3 header block

I* To be able to use the exponential function*/
#include <math.h>

#include </home/users/cnodderst/diffserv/routing/routing.h>
#include </home/users/pelsserc/op_models/flowclassify.h>

#define MAX_FLOWS (MAX_ROUTING_VP/2)

I* Define the conditions*/
#define PK_ARRVL (op_intrpt_type() == OPC_INTRPT_STRM)
#define EOS (op_intrpt_type()==OPC_INTRPT_ENDSIM)
#define SVC_COMPLETION ((op_intrpt_type() == OPC_INTRPT_SELF)

&& (op_intrpt_code() == 0))
#define QUEUE_EMPTY (op_q_empty())
#define STAT_RESET ((op_intrpt_type() -- OPC_INTRPT_SELF)

&& (op_intrpt_code() == 101277))

135

C.4.4 function block

I* gives the maximum of two doubles *I
double maximum(double x, double y){

if (x > y)
return x;

else
return y;

}

I* estimates the rate of a flow but does not set prev_time to
arr_time at the end *I
void estim_rate(double *rate, Packet *pk,

double *prev_time, double arr_time){
int size;

}

double T;
double expon;
size = op_pk_bulk_size_get(pk);
T = arr_time - (*prev_time);
expon = exp(-(T/(K_alpha)));
if (T > 0.0){

}

(*rate)= (1.0-expon)*((double)size)/T
+ expon*(*rate);

else{
(*rate)= ((double)size)/K_alpha + (*rate);

}

I* estimation of the fair share *I
void estim_fair_rate(Packet *pk, double arrvl_time,

int dropped){
double label;
char fmt[20];

if (!agg_estim){
/* no estimation of the amount of guaranteed bandwidth *I
I* when such estimation is performed, the statistics
are computed before calling this function *I
if (arrvl_time > start_averg_time + time_average){

I* computation and writing of the statistics *I
if (average){

if (nb_val_fs){
average_fs = sum_fs / nb_val_fs;
fprintf(fptr,"fair_share;%f;%f\n",

start_averg_time,
average_fs);

136

}

}

}

}

if (nb_val_ar){

}

average_ar = sum_ar / nb_val_ar;
fprintf(fptr,"accept_rate;'l.f;'l.f\n",

start_averg_time,
average_ar);

if (nb_val_tar){

}

average_tar = sum_tar / nb_val_tar;
fprintf(fptr,"tot_arrvl_rate;'l.f;'l.f\n",

start_averg_time,
average_ tar) ;

sum_fs = 0.0;
sum_ar = 0.0;
sum_tar = 0.0;

nb_val_fs = 0;
nb_val_ar = 0;
nb_val_tar = 0;

else{

}

fprintf(fptr,"fair_share;'l.f;'l.f\n",arrvl_time,fair_share);
fprintf(fptr,"accept_rate;'l.f;'l.f\n",arrvl_time,fwrd_rate);
fprintf(fptr,"tot_arrvl_rate;'l.f;'l.f\n",arrvl_time,tot_arrvl_rate);

start_averg_time += time_average;

I* estimation of the total arrival rate *I
estim_rate(&tot_arrvl_rate,pk,&last_arrvl,arrvl_time);
if (average){

}

sum_tar += tot_arrvl_rate;
nb_val_tar += 1;

I* estimation of the accepted rate *I
if (!dropped){

estim_rate(&accept_rate,pk,&last_arrvl,arrvl_time);
if (average){

}

sum_ar += accept_rate;
nb_val_ar += 1;

fwrd_rate = accept_rate;

last_arrvl = arrvl_time;

137

}

else{
f* estimation of the accepted rate when the packet is dropped *I
if (!fwrd_upper_bound){

if (arrvl_time - last_arrvl > 0.0){
accept_rate = exp(- ((arrvl_time-last_arrvl)/(K_alpha)))

* accept_rate;
f* because (1.0-exp(-((arrvl_time-last_arrvl)/(K_alpha))))

* ((double)0)/T = Ü*/
if (average){

sum_ar += accept_rate;
nb_val_ar += 1;

}

}

else{
f* the accept_rate stays the same because accept_rate
= exp(0) * accept_rate *f
if (average){

sum_ar += accept _rate;
nb_val_ar += 1;

}

}

fwrd_rate = accept_rate;

last_arrvl = arrvl_time;
}

else{
f* fwrd_upper_bound == 1 *f
if (arrvl_time - last_arrvl > 0.0){

}

accept_upper = (1.0-exp(-((arrvl_time-last_arrvl)/(K_alpha))))*
((double)max_pk_size)/(arrvl_time - last_arrvl) +
exp(-((arrvl_time-last_arrvl)/(K_alpha))) * accept_rate;

else{
accept_upper = ((double)max_pk_size)/(K_alpha) + accept_rate;

}

if (accept_upper < accept_rate){
fwrd_rate = accept_upper;

}

else{
fwrd_rate = accept_rate;

}

if (average){

}

sum_ar += fwrd_rate;
nb_val_ar += 1;

I* note that we do not update last_arrvl in this case *I

138

}

}

f* estimation of the fair share *f
if (tot_arrvl_rate >= link_rate){

f* there is congestion *f
if ((!congested) && (queue_size >= threshold)){

congested = 1;
start_time = arrvl_time;

}

else{
f* until the queue_size does not overlap the threshold, the fair
share estimation is done like if there vas no congestion *f
if((!congested) && (queue_size < threshold)){

}

if (arrvl_time < start_time + K_c){
op_pk_format(pk,fmt);

}

if (strncmp(fmt,"stcp_ip",7)==0){
op_pk_nfd_get(pk,"Infod",&label);

}

else{
op_pk_nfd_get(pk,"T0S",&label);

}

temp_fair_share = maximum(temp_fair_share,
label);

else{

}

f* the fair share estimation is updated *f
fair_share = temp_fair_share;
if (average){

}

sum_fs += fair_share;
nb_val_fs += 1;

start_time = arrvl_time;

if (strncmp(fair_share_estim,"csfq",4) -- 0){
temp_fair_share = 0.0;

f* temp_fair_share is not reset for MCSFQ *I
}

else{
f* congested == 1 *f
if (arrvl_time > start_time + K_c){

start_time = arrvl_time;
if (!agg_estim){

if (fwrd_rate != 0.0){

139

}
}

}

}

}

fair_share = fair_share*(link_rate)/fwrd_rate;
}

else{
I* fair_share is set to the available link rate *I
I* because previous formula would give infinity *I

fair_share = link_rate;
}

else{
if (fwrd_rate - agg_guar > 0.0){

}

fair_share = fair_share*(link_rate - agg_guar) /
(fwrd_rate - agg_guar);

else{
I* fair_share is set to the available link rate *I
I* because previous formula would give infinity *I

fair_share = link_rate - agg_guar;
}

}

if (! agg_estim){
if (fair_share > link_rate){

fair_share = link_rate;
}

}

else{

}

if (fair_share > link_rate - agg_guar){
fair_share = link_rate agg_guar;

}

if (average){

}

sum_fs += fair_share;
nb_val_fs += 1;

else{ I* tot_arrvl_rate < link_rate *I
I* there is no congestion *I
if (congested){

congested = 0;
start_time = arrvl_time;
if (strncmp(fair_share_estim,"cp_csfq",7) -- 0){

I* MCSFQ *I
temp_fair_share = fair_share; I* used to compute the

140

}

}

}

new fair share *f
}

else{

}

if (strncmp(fair_share_estim,"csfq",4) -- 0){
f* CSFQ *f
temp_fair_share = 0.0;

}

else{

}

if (arrvl_time < start_time + K_c){
op_pk_format(pk,fmt);

}

if (strncmp(fmt,"stcp_ip",7)==0){
op_pk_nfd_get(pk,"Infod",&:label);

}

else{
op_pk_nfd_get(pk,"TOS",&:label);

}

temp_fair_share = maximum(temp_fair_share,
label);

else{

}

fair_share = temp_fair_share;
if (average){

}

sum_fs += fair_share;
nb_val_fs += 1;

start_time = arrvl_time;

if (strncmp(fair_share_estim,"csfq",4) -- 0){
f* temp_fair_share is reset for MCSFQ *f
temp_fair_share = 0.0;

}

f* performs the writing of the results at the end of the
simulation *f
void recordstat(void){

inti; I* counter *f
double crt_time = op_sim_time();

if (average){
if (nb_val_fs){

141

average_fs = sum_fs / nb_val_fs;
fprintf(fptr,"fair_share;ï.f;ï.f\n",start_averg_time,average_fs);

}

if (nb_val_ar){
average_ar = sum_ar / nb_val_ar;
fprintf(fptr,"accept_rate;ï.f;ï.f\n",start_averg_time,average_ar);

}

if (nb_val_tar){

}

average_tar = sum_tar / nb_val_tar;
fprintf(fptr,"tot_arrvl_rate;ï.f;ï.f\n",start_averg_time,average_tar);

if (nb_val_ag && agg_estim){
average_ag = sum_ag / nb_val_ag;
fprintf(fptr,"agg_guar;ï.f;ï.f\n",start_averg_time,agg_guar);

}

}

else{
if (crt_time > start_averg_time + time_average){

fprintf(fptr,"fair_share;ï.f;ï.f\n",crt_time,fair_share);
fprintf(fptr,"accept_rate;ï.f;ï.f\n",crt_time,fwrd_rate);
fprintf(fptr,"tot_arrvl_rate;ï.f;%f\n",crt_time,tot_arrvl_rate);
fprintf(fptr,"agg_guar;%f;%f\n",crt_time,agg_guar);

}

}

I* local statistics for the aggregation of flows *I
fprintf(fptr,"nb of excess packets dropped;%d\n",

excs_drp_cnt);
fprintf(fptr,"nb of bits received;Ï.d\n",bits_rcvd);
fprintf(fptr,"nb of bits forwarded to the queue;ï.d\n",

bits_fwrd_qu);
fprintf(fptr,"nb of bits in excess dropped;ï.d\n",

excs_bits_drp);
fprintf(fptr,"nb of packets dropped by queue;ï.d\n",

qu_drop_count);
fprintf(fptr,"nb of bits dropped by queue;ï.d\n",

qu_bdrp_count);
I* per-flow statistics *I
for (i=O;i<MAX_FLOWS;i++){

if ((exc_fl_drop[i]!=O) II (fl_fwrd[i]!=O) Il (fl_qdrop[i]!=O)){
fprintf(fptr,

"nb of excess packets dropped per flow;ï.d;%d\n",
i,
exc_fl_drop[i]);

fprintf(fptr,
"nb of packets forwarded per flow;%d;%d\n",
i,

142

}

}

}

fl_fwrd [i]) ;
fprintf(fptr,

"nb of packets dropped by queue per flov;%d;%d\n",
i,
fl_qdrop[i]);

if ((exc_fl_bdrp[i]!=O) Il (fl_bfwrd[i]!=O) Il (fl_bqdrop[i]!=O)){

- }

fprintf(fptr,
"nb of excess bits dropped per flov;%d;%d\n",
i,
exc_fl_bdrp[i]);

fprintf(fptr,
"nb of bits forvarded per flov;%d;%d\n",
i,
fl_bfvrd[i]);

fprintf(fptr,
"nb of bits dropped by queue per flov;'l,d;'l,d\n",
i,
fl_bqdrop[i]);

fprintf(fptr,"end of sim\n");
if (fclose(fptr) == EOF)

printf("error occured vhen closing stat file\n");

I* called vhen the varm-up time is over to reset the statistics *I
void reset_stat(){

}

int i;

excs_drp_cnt = O;
bits_rcvd = O;
bits_fvrd_qu = O;
excs_bits_drp = O;
qu_drop_count = O;
qu_bdrp_count = O;
for (i=O;i<MAX_FLOWS;i++){

exc_fl_drop[i] = O;
fl_fwrd [i] = 0;
fl_qdrop[i] = O;
exc_fl_bdrp[i] = O;
fl_bfwrd[i] = O;
fl_bqdrop[i] = O;

}

printf("Stats have been reset\n");

143

C.4.5 init state

I* initialisation state *I
inti;/* counter *f

char stat_file[20]; f* name of the file where the stats are written *f
char proc_model[25]; I* name of this process model *I
char stat_type[20]; I* type of the stats: average or sample *I
char fwrd_estim[20]; I* method used to compute the forwarding rate *I

if (op_ima_obj_attr_get(op_id_self(),
"fair share estimation",
fair_share_estim) == OPC_COMPCODE_FAILURE)

printf("error getting attribute's value\n");
if (strncmp(fair_share_estim,"tail drop",9) == O){

tail_drop = 1;
}

else{
tail_drop = O;

}

if (op_ima_obj_attr_get(op_id_self(),
"aggr guarantee estim",
&agg_estim) == OPC_COMPCODE_FAILURE)

printf("error getting attribute's value\n");

if (op_ima_obj_attr_get(op_id_self(),
"forwarding rate estim",
fwrd_estim) == OPC_COMPCODE_FAILURE)

printf("error getting attribute's value\n");
if (strncmp(fwrd_estim,"upper bound",11) == O){

fwrd_upper_bound = 1;
}

else{

}

if (strncmp(fwrd_estim,"stoica",6) -- O){
fwrd_upper_bound = O;

}

if (op_ima_obj_attr_get(op_id_self(),
"max pk size",
&max_pk_size) == OPC_COMPCODE_FAILURE)

printf("error getting attribute's value\n");

if (op_ima_obj_attr_get(op_id_self(),
"warm up time",
&warm_up_time) == OPC_COMPCODE_FAILURE)

144

printf("error getting attribute's value\n");

I* schedules an interruption at the warm-up time to enable
the calling of the reset_stat function *I
op_intrpt_schedule_self(warm_up_time,101277);

tot_arrvl_rate = 0.0;
accept_rate = 0.0;
last_arrvl = 0.0;
congested = 0;
start_time = 0.0;
if (op_ima_obj_attr_get(op_id_self(),

"service rate",
&link_rate) == 0PC_C0MPCDDE_FAILURE)

printf("error getting attribute's value\n");
if (op_ima_obj_attr_get(op_id_self(),

"queue size",
&max_queue_size) == 0PC_C0MPCDDE_FAILURE)

printf("error getting attribute's value\n");
if (!tail_drop){

}

if (op_ima_obj_attr_get(op_id_self(),
"window_size",
&K_c) == 0PC_C0MPC0DE_FAILURE)

printf("error getting attribute's value\n");
if (op_ima_obj_attr_get(op_id_self(),

"estim_const",
&K_alpha) == 0PC_C0MPCDDE_FAILURE)

printf("error getting attribute's value\n");
if (op_ima_obj_attr_get(op_id_self(),

"queue threshold",
&threshold) == 0PC_C0MPC0DE_FAILURE)

printf("error getting attribute's value\n");

if (op_ima_obj_attr_get(op_id_self(),
"process model",
proc_model) == 0PC_C0MPC0DE_FAILURE)

printf("error getting attribute's value\n");

if (strncmp(fair_share_estim,"csfq",4) == 0){
fair_share = 1.0;

}

else{
if (strncmp(fair_share_estim,"cp_csfq",7) -- 0){

/*fair_share = link_rate/2.0;*/
fair_share = 1.0;

}

}

145

temp_fair_share = fair_share;
agg_guar = 0.0;
last_guar_arrvl = 0.0;

/• initialization of the variables used
to make averages on the statistics•/
if (op_ima_obj_attr_get(op_id_self(),

"stat type",
stat_type) == 0PC_C0MPC0DE_FAILURE)

printf("error getting attribute's value\n");
if (strncmp(stat_type,"sample",6) == 0){

}

else{

average= 0;

if (strncmp(stat_type, "average", 7) -- 0){
average = 1;

}

}

if (average){
sum_fs = 0.0;
sum_ar = 0.0;
sum_tar = 0.0;
sum_ag = 0.0;

}

nb_val_fs = 0;
nb_val_ar = 0;
nb_val_tar = 0;
nb_val_ag = 0;

average_fs = 0.0;
average_ar = 0.0;
average_tar = 0.0;
average_ag = 0.0;

start_averg_time = 0.0;

if (op_ima_obj_attr_get(op_id_self(),
"stat time average",
&time_average) == 0PC_C0MPC0DE_FAILURE)

printf("error getting attribute's value\n");
/• initially the server is idle•/
server_busy = 0;

/• initially the queue is empty•/

146

queue_size = O;

f* local statistics *f
excs_drp_cnt = O;
bits_rcvd = O;
bits_fvrd_qu = O;
excs_bits_drp = O;
qu_drop_count = 0;
qu_bdrp_count = O;
for (i=O;i<MAX_FLOWS;i++){

exc_fl_drop[i] = O;
fl_fvrd[i] = O;
fl_qdrop[i] = O;
exc_fl_bdrp[i] = O;
fl_bfwrd[i] = O;
fl_bqdrop[i] = O;

}

f* file descriptor to collect the statistics *f
if (op_ima_obj_attr_get(op_id_self(),

"stat file",
stat_file) == OPC_COMPCODE_FAILURE)

printf("error getting attribute's value\n");

f* stat file opened in append mode *f
fptr = fopen(stat_file, "a");
f*Writing of the process attributes to the stat file*/
fprintf(fptr,"process_model;¼s\n",proc_model);
fprintf(fptr,"fair_share_estim;¼s\n",fair_share_estim);
fprintf(fptr, 11 aggr_guarantee_estin1;%d\n 11 ,agg_estim);
fprintf(fptr,"service rate;¼f\n",link_rate);
fprintf(fptr,"max queue size;¼d\n",max_queue_size);
fprintf(fptr,"stat time average;¼f\n",time_average);
fprintf(fptr,"stat type;¼d\n",average);
fprintf(fptr,"fvrd rate estim;¼s\n",fvrd_estim);
fprintf(fptr,"max pk size;¼d\n",max_pk_size);
fprintf(fptr,"varm up time;¼f\n",varm_up_time);
if (!tail_drop){

}

fprintf(fptr,"queue_threshold;¼d\n",threshold);
fprintf(fptr,"window_size;¼f\n",K_c);
fprintf(fptr,"estim_const;¼f\n",K_alpha);

f*Writing of the initial values to stat file*/
fprintf(fptr,"init fair_share;¼f\n",fair_share);
fprintf(fptr,"init tot_arrvl_rate;¼f\n",tot_arrvl_rate);
fprintf(fptr,"init accept_rate;%f\n",accept_rate);

147

fprintf(fptr,"init last_arrvl;¼f\n",last_arrvl);
fprintf(fptr,"init congested;¼f\n",congested);
fprintf(fptr,"init start_time;¼f\n",start_time);
fprintf(fptr,"init temp_fair_share;¼f\n",temp_fair_share);
fprintf(fptr,"init agg_guar;¼f\n",agg_guar);
fprintf(fptr,"init last_guar_arrvl;¼f\n",last_guar_arrvl);

C.4.6 forward state

f* Estimate the aggregate arrival rate,
compute drop probability,
decide to drop the packet or to forward it,
store the packet in the queue,
transmit the packets to the next process model *I

pk_arrvl_time = op_sim_time();
strm_index = op_intrpt_strm();
pk = op_pk_get(strm_index);

f*used for the statistics only*/
flow_nb = flow_id(pk);
if (flow_nb >= MAX_FLOWS){

printf("flow identifier too big\n");
}

bits_rcvd = bits_rcvd + op_pk_bulk_size_get(pk);

if (!tail_drop){
op_pk_format(pk, fmt);
if (strncmp(fmt,"stcp_ip",7)==0){

op_pk_nfd_get(pk,"Infod",&label);
}

else{
op_pk_nfd_get(pk,"TOS",&label);

}

if (label> 0.0){
f* packet in excess *f
drop_prob = (maximum(0,1-(fair_share/label)));

}

else{

}

f* guaranteed packet *f
drop_prob = -10.0;

i f (drop_prob > op_dist_uniform(1.0)){
f* packet is discarded *I
f* statistics gathering*/
exc_fl_drop[flow_nb] = exc_fl_drop[flow_nb] + 1;

148

exc_fl_bdrp[flow_nb] = exc_fl_bdrp[flow_nb]
+ op_pk_bulk_size_get(pk);

excs_drp_cnt = excs_drp_cnt + 1;

excs_bits_drp = excs_bits_drp + op_pk_bulk_size_get(pk);

if (agg_estim){
/*dealing of the statistics*/
if (pk_arrvl_time > start_averg_time + time_average){

if (average){
if (nb_val_fs){

}

average_fs = sum_fs / nb_val_fs;
fprintf(fptr,

"fair_share;¼f;¼f\n",
start_averg_time,
average_fs);

if (nb_val_ar){

}

average_ar = sum_ar / nb_val_ar;
fprintf(fptr,

"accept_rate;¼f;¼f\n",
start_averg_time,
average_ar) ;

if (nb_val_tar){

}

average_tar = sum_tar / nb_val_tar;
fprintf(fptr,

"tot_arrvl_rate;¼f;¼f\n",
start_averg_time,
average_tar);

if (nb_val_ag){
average_ag = sum_ag / nb_val_ag;

fprintf(fptr,
"agg_guar;¼f;¼f\n",
start_averg_time,
average_ag);

}

sum_fs = 0 .0;
sum_ar = 0.0;
sum_tar = 0.0;
sum_ag = 0 .0;

nb_val_fs = 0;
nb_val_ar = 0;
nb_val_tar = 0 ;

149

}

nb_val_ag = O;
}

else{

}

fprintf(fptr,
"fair_share;¼f;¼f\n",
pk_arrvl_time,
fair_share);

fprintf(fptr,
"accept_rate;¼f;¼f\n",
pk_arrvl_time,
fwrd_rate);

fprintf(fptr,
"tot_arrvl_rate;¼f;¼f\n",
pk_arrvl_time,
tot_arrvl_rate);

fprintf(fptr,
"agg_guar;¼f;¼f\n",
pk_arrvl_time,
agg_guar);

start_averg_time += time_average;

agg_guar =
exp(-((pk_arrvl_time-last_guar_arrvl)/(K_alpha)))
* agg_guar;

I* because the packet is not guaranteed and therefore
(1.0-exp(-((pk_arrvl_time-last_guar_arrvl)/(K_alpha))))
* ((double)O)/T
= Ü*/

last_guar_arrvl = pk_arrvl_time;
if (average){

sum_ag += agg_guar;
nb_ val_ag += 1;

}
}

estim_fair_rate(pk,pk_arrvl_time,1);

if (strncmp(fmt, "stcp_ip", 7)==0){
op_stcp_discard_packet(pk);

}

else {
op_pk_destroy(pk);

}

insert_ok = O;
}

else{
I* packet is forwarded *I

150

fl_fwrd[flow_nb] = fl_fwrd[flow_nb] + 1;
fl_bfwrd[flow_nb] = fl_bfwrd[flow_nb] + op_pk_bulk_size_get(pk);

bits_fwrd_qu = bits_fwrd_qu + op_pk_bulk_size_get(pk);

I* relabel the packet if needed *I
if (drop_prob > 0.0){

}

if (strncmp(fmt,"stcp_ip",7)==0){
op_pk_nfd_set(pk,"Infod",&:fair_share);

}

else{
op_pk_nfd_set(pk,"T0S",&:fair_share);

}

I* estimate the fair share *I
if (agg_estim){

/*dealing of the statistics*/
if (pk_arrvl_time > start_averg_time + time_average){

if (average){
if (nb_val_fs){

}

average_fs = sum_fs / nb_val_fs;
fprintf(fptr,

"fair_share;¼f;¼f\n",
start_averg_time,
average_fs);

if (nb_val_ar){

}

average_ar = sum_ar / nb_val_ar;
fprintf(fptr,

"accept_rate;¼f;¼f\n",
start_averg_time,
average_ar);

if (nb_val_tar){

}

average_tar = sum_tar / nb_val_tar;
fprintf(fptr,

"tot_arrvl_rate;¼f;¼f\n",
start_averg_time,
average_tar);

if (nb_val_ag){
average_ag = sum_ag / nb_val_ag;
fprintf(fptr,

"agg_guar;¼f;¼f\n",
start_averg_time,

151

}

average_ag);
}

sum_fs = 0.0;
sum_ar = 0.0;
sum_tar = 0.0;
sum_ag = 0.0;

nb_val_fs = 0;
nb_val_ar = 0;
nb_val_tar = 0;
nb_val_ag = 0;

}

else{

}

fprintf(fptr,
"fair_share;¼f;¼f\n",
pk_arrvl_time,
fair_share);

fprintf(fptr,
"accept_rate;¼f;¼f\n",
pk_arrvl_time,
fwrd_rate);

fprintf(fptr,
"tot_arrvl_rate;¼f;¼f\n",
pk_arrvl_time,
tot_arrvl_rate);

fprintf(fptr,
"agg_guar;¼f;¼f\n",
pk_arrvl_time,
agg_guar);

start_averg_time += time_average;

if (label> 0.0){
/• packet in excess •/
agg_guar =

exp(-((pk_arrvl_time-last_guar_arrvl)/(K_alpha)))
* agg_guar;

/• because
(1.0-exp(-((pk_arrvl_time-last_guar_arrvl)/(K_alpha))))
* ((double)0) /T
= O•I

if (average){

}

sum_ag += agg_guar;
nb_val_ag += 1;

152

}

estim_fair_rate(pk,pk_arrvl_time,0);
}

else{
f*estimate the aggregate guarantee*/
if (pk_arrvl_time-last_guar_arrvl > 0.0){

}

agg_guar =

exp(-((pk_arrvl_time-last_guar_arrvl)/(K_alpha)))
* agg_guar

+ (1.0-exp(-((pk_arrvl_time-last_guar_arrvl)
/ (K_alpha))))

* ((double)op_pk_bulk_size_get(pk))
/ (pk_arrvl_time-last_guar_arrvl);

if (average){

}

sum_ag += agg_guar;
nb_val_ag += 1;

else{

}

agg_guar = ((double)op_pk_bulk_size_get(pk))/K_alpha
+ agg_guar;

if (average){

}

sum_ag += agg_guar;
nb_val_ag += 1;

estim_fair_rate(pk,pk_arrvl_time,0);
}

last_guar_arrvl = pk_arrvl_time;

else{
estim_fair_rate(pk,pk_arrvl_time,0);

}

I* attempt to enqueue the packet at tail *I
I* of subqueue 0*/
if (queue_size + op_pk_bulk_size_get(pk) <= max_queue_size){

I* packet is inserted into the queue *I
op_subq_pk_insert (0, pk, 0PC_QP0S_TAIL);
I* insertion was successful *I
insert_ok = 1;
I* the queue is increased by the packet length *I
queue_size = queue_size + op_pk_bulk_size_get(pk);

}

else{
I* the queue is full
the packet is discarded
statistic is updated*/

153

}

}

qu_drop_count = qu_drop_count + 1;
qu_bdrp_count = qu_bdrp_count + op_pk_bulk_size_get(pk);

fl_qdrop[flow_nb] = fl_qdrop[flow_nb]+1;
fl_bqdrop[flow_nb] = fl_bqdrop[flow_nb]+op_pk_bulk_size_get(pk);

if (strncmp(fmt,"stcp_ip",7)==0){
op_stcp_discard_packet(pk);

}

else{
op_pk_destroy (pk);

}

I* set flag indicating insertion fail *I
I* this flag is used to determine *I
I* transition out of this state *I
insert_ok = 0;
I* packet is dropped by queue *I

}

else{
I* tail drop is the only buffer acceptance mechanism *I
fl_fwrd[flow_nb] = fl_fwrd[flow_nb]+1;
fl_bfwrd[flow_nb] = fl_bfwrd[flow_nb]+op_pk_bulk_size_get(pk);

bits_fwrd_qu = bits_fwrd_qu + op_pk_bulk_size_get(pk);

I* attempt to enqueue the packet at tail *I
I* of subqueue 0*/
if (queue_size + op_pk_bulk_size_get(pk) <= max_queue_size){

I* packet is inserted into the queue *I
op_subq_pk_insert (0, pk, 0PC_QP0S_TAIL);
I* insertion was successful *I
insert_ok = 1;
I* the queue is increased by the packet length *I
queue_size = queue_size + op_pk_bulk_size_get(pk);

}

else{
I* the queue is full
the packet is discarded
statistic is updated*/
qu_drop_count = qu_drop_count + 1;
qu_bdrp_count = qu_bdrp_count + op_pk_bulk_size_get(pk);
fl_qdrop[flow_nb] = fl_qdrop[flow_nb]+1;
fl_bqdrop[flow_nb] = fl_bqdrop[flow_nb]+op_pk_bulk_size_get(pk);

if (strncmp(fmt,"stcp_ip",7)==0){

154

}

}

op_stcp_discard_packet(pk);
}

else{
op_pk_destroy (pk);

}

I* set flag indicating insertion
I* this flag is used to determine
I* transition out of this state
insert_ok = O;
I* packet dropped by queue *I

C.4. 7 svc start state

fail *I
*I
*I

I* get a handle on packet at head of subqueue O *I
I* (this does not remove the packet) *I
pk = op_subq_pk_access (0, OPC_QPOS_HEAD);

I* determine the packets length (in bits) *I
pk_len = op_pk_bulk_size_get (pk);

I* determine the time required to complete *I
I* service of the packet *I
pk_svc_time = (double)(pk_len) / link_rate;

I* schedule an interrupt for this process *I
/* at the time where service ends. *I
op_intrpt_schedule_self (op_sim_time () + pk_svc_time, O);

I* the server is now busy.
server_busy = 1;

C.4.8 svc complete state

I* extract packet at head of queue; this *I
I* is the packet just finishing service *I
pk = op_subq_pk_remove (0, OPC_QPOS_HEAD);

queue_size = queue_size - op_pk_bulk_size_get(pk);
I* forward the packet on stream 0, causing *I
I* an immediate interrupt at destination. *I
op_pk_send_forced(pk, 0);

I* server is idle again.
server_busy = 0;

155

