
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Congestion control mechanism for multimedia applications

Rosman, Cédric

Award date:
2001

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. May. 2024

https://researchportal.unamur.be/en/studentTheses/ec44ecbd-883d-43ed-a55f-149310f30293

Congestion Control Mechanism
for Multimedia Applications

Cédric Rosman

Promoteur : Olivier Bonaventure

Année académique 2000-2001

Travail réalisé dans l'intention d'obtenir le grade de maître en informatique

Abstract

While TCP and its congestion control mechanism deals with the major share
of the Internet traffic today, insuring stability and fairness for users , recently
proposed real-time multimedia services (such as IP-telephony, group com
munication (video or phone conference), distant learning, ...) based on the
UDP protocol arise. Offering neither reliability nor congestion control mech
anism, deploying uncontrolled UDP traffic in a large scale might result in
extreme unfairness towards competing TCP traffic. In this thesis, we will
compare the two main used transport protocols (TCP and UDP), pointing
out the advantages and drawbacks of each related with those new types of
services. We will present a new scheme called Rate Adaptive protocol (RAP)
for adapting the transmission rate of multimedia applications to the conges
tion level of the network. RAP was designed to mimic TCP in its behaviour,
working in a TCP-Friendly way to avoid starving competing TCP flows. Re
lying on packets acknowledgment and feedback information, RAP estimates
what should be the fair throughput and adapts the time between the send
ing of two consecutive packets in consequence. Afterwards, we will introduce
other congestion control mechanisms, different in their ways of working and
implementation, to be compared to RAP. Finally, simulations and measure
ments of the RAP algorithm will show its TCP-Friendliness related with its
consumption of the network resources while competing with multiple TCP
flows.

Alors que TCP et son mécanisme de contrôle de congestion est utilisé
pour une large majorité du trafic Internet de nos jours, assurant la stabilité
et l'équité entre les utilisateurs, de récents services multimédia (comme la
téléphonie sur IP , les groupes de communication (par vidéo ou oralement),
l'apprentissage à distance, .. .) basés sur le protocole UDP ont émergés.
N'offrant ni fiabilité ni mécanismes de contrôle de congestion, le déploiement
de trafic UDP non-contrôlé à une large échelle pourrait mener à une im
portante iniquité envers les flux TCP en compétition. Dans ce mémoire,
nous comparerons les deux principaux protocoles de transport utilisés (TCP
et UDP), indiquant leurs avantages et défauts respectifs quant à ce genre

1

2 ABSTRACT

de nouveaux services. Nous présenterons un nouveau protocole appelé Rate
Adaptive Protocol (RAP) qui adapte le taux de transmission des applications
multimédia au niveau de congestion du réseau. RAP a été réalisé dans le
but d'imiter TCP dans son comportement, fonctionnant de façon â éviter
la mort des flux TCP en compétition. Se basant sur les acquis de paquets
et différentes mesures, RAP estime ce que devrait être le taux de trans
mission équitable et adapte le temps écoulé antre deux paquets transmis en
conséquence. Ensuite, nous introduirons d'autres mécanismes de contrôle de
congestion, différents dans leur fonctionnement et leur implémentation, pour
être comparés à RAP. Enfin, des simulations et mesures de l'algorithme
de RAP montreront son caractère "amicale" quant à sa consommation en
ressources du réseau face à plusieurs flux TCP

Acknowledgments

I would like to thank first of all my promoter Mr the
Teacher O. Bonvanenture for the time and the pieces of
advice he gave me through the elaboration of this work.

I express my deep gratitude to Mr S. De Cnodder, my
external promoter at Alcatel Antwerp, for the precious
help he brought me, as well as to Mr G. H. Petit, the di
rector of the Research Department at Alcatel Antwerp,
for giving me the opportunity to make my training
course within his department.

I also would like to thank the 3 assistants P. Reinhold,
S. Uhlig and V. Letocar for their availability and their
kindness.

At last, I thank all the persons, and in particular Cristel
and Louis (during our stay in Antwerp) , who, directly
or indirectly, have helped me achieving this thesis.

3

Glossary

ACK
ADWIN
AIMD
BE
CWND
ECN
FG
FIFO
ICMP
IEEE
IETF
IP
ISP
LDA
MSS
MTU
PDF
QoS
RAP
RED
RTCP
RTP
RTT
SYN
TCP
TEAR
TFRC
UDP

Acknowledgment
advertised WINdow
Additive Increase / Multiplicative Decrease
Best Effort
Congestion WiNDow
Explicit Congestion Notification
Fine Grain
First In / First Out
Internet Control Message Protocol
Institute of Electrical and Electronics Engineers
Internet Engineering Task Force
Internet Protocol
Internet Service Provider
Loss Delay Adjustment
Maximum Segment Size
Maximum Transmit Unit
Probability Density Function
Quality of Service
Rat Adaptive Protocol
Random Early Drop
Real-Time Transport Control Protocol
Real-Time Transport Protocol
Round Trip Time
Synchronization
Transmission Control Protocol
TCP Emulation At Receiver
TCP Friendly Rate Control
User Datagram Protocol

5

Contents

Abstract

Acknowledgments

Glossary

1 Introduction
1.1 Why this thesis?

1.1.1 General situation
1.1.2 Problems
1.1.3 Definition of major concepts

1.2 Structure of the thesis

2 Transport protocols: TCP Vs UDP
2.1 Transmission Contrai Protocol (TCP)

2.1.1 TCP segment structure
2.1.2 Way of working

2.2 User Datagram Protocol (UDP)
2.2.1 UDP packet structure .
2.2.2 Characteristics

2.3 Requirements for real-time streaming applications
2.4 Why UDP and not TCP

2.4.1 Why not TCP for multimedia applications
2.4.2 Why UDP

2.5 Remaining problems with UDP
2.6 Conclusion

3 RAP: Rate Adaptive Protocol
3.1 How does RAP work?
3.2 Complete description of RAP

3.2.1 The source

7

1

4

5

15
16
16
17
17
19

21
21
22
24
32
32
33
35
36
36
36
37
39

41
41
42
42

8 CONTENTS

3.2.2 The destination
3.2.3 The implementation .
3.2.4 Improving mechanisms

3.3 Conclusion

4 Other mechanisms
4.1 TFRC: TCP-Friendly Rate Control

4.1.1 General way of working .. .
4.1.2 Major concept
4.1.3 Structure of exchanged packets

4.2 LDA +: Loss Delay Adjustment +
4.2.1 General way of working
4.2.2 Major concept
4.2.3 Structure of exchanged packet

4.3 TEAR: TCP-Friendly Emulation At Receiver
4.3.1 General way of working
4.3.2 Major concepts
4.3.3 Structure exchanged of packet

4.4 Conclusion

5 Simulations
5.1 Single bottleneck topology
5.2 Simulations results

5.3

5.4

5.2.1 TCP base case simulations .
5.2.2 RAP simulations
5.2.3
5.2.4
5.2 .5

Mixed flows simulations . .
Mixed flows simulations with equal packets size
Simulations with different RTT

Simulations comparisons
5.3.1 TCP-fifo Vs Mixed-fifo(1500)
5.3.2 TCP-fifo Vs TCP-fifo-rtt . . .
5.3.3 TCP-red Vs Mixed-red(1500)
5.3.4 RAP-fifo Vs RAP-fifo-rtt .
5.3.5 Mixed-fifo Vs Mixed-red
Conclusions

6 Conclusions
6.1 Evaluation .
6.2 Further work

49
52
60
64

65
65
65
66
67
68
69
70
70
71
72
72
73
74

77
77
79
79
82
85
88
91
95
95
95
95
96
96
96

99
. 100

. 100

CONTENTS 9

A Simulation tool 107
A.l OPNET introduction: way of working. 107

A.1.1 Sorne keywords: . 107
A.1.2 Graphical editors of OPNET: the layers sub-division. 109

B lmplemented modules 115
B.l Network layer . 115
B.2 Nocle layer 117

B.2.1 Sources . . . 117
B.2.2 Destinations . 118

B.3 Process layer 119
B.3.1 Sources . . . 120
B.3.2 Destinations . 149
B.3.3 Routers . . . 160

List of Tables

4.1 Characteristics of the presented mechanisms 74

5.1 Single bottleneck scenario parameters (SBN) 79
5.2 Impact of RED on TCP and RAP flows 85
5.3 RTT modification 91
5.4 Impact of RTT on TCP flows 95
5.5 Impact of RTT on RAP flows 96

11

List of Figures

2.1 Structure of TCP / IP datagram ..
2.2 Structure of TCP segment
2.3 Establishment of a TCP connection
2.4 Establishment of a TCP connection
2.5 Closing of a TCP connection
2.6 Additive increase / multiplicative decrease behaviour
2.7 Congestion and advertised windows
2.8 Structure of a UDP / IP datagram
2.9 Structure of UDP packet
2.10 UDP complete packet for checksum
2.11 Multimedia applications requirements .
2.12 Window-based transmission ..
2.13 RTP header structure
2.14 Rate-based transmission scheme

3.1 Finite state machine (source)
3.2 Fini te state machine (destination)
3.3 Feedback information
3.4 Feedback information advantage
3.5 LossDetection Function .
3.6 IpgTimeout fonction
3.7 LossHandler fonction ..
3.8 RttTimeout fonction ..
3.9 UpdateTimeValues fonction
3.10 Decreaselpg fonction .. .
3.11 Increaselpg fonction .. .
3.12 TimerLostPacket fonction
3.13 UpdateLastHole fonction .
3.14 AckLostPacket fonction
3.15 Fine grain smoothing effect

4.1 structure of TFRC data packet

13

22
22
25
26
26
27
28
32
32
34
35
36
38
39

44
50
51
52
53
54
55
55
56
57
57
58
59
61
63

68

14 LIST OF FIGURES

4.2 structure of TFRC ACK packet
4.3 Structure of LDA + data packet
4.4 structure of LDA + ACK packet

68
70
71

5.1 Single bottleneck topology . . . 78
5.2 5 TCP fl.ows with FIFO queue: base case (FIFO) 80
5.3 5 TCP fl.ows with RED queue: base case (RED) . 81
5.4 5 RAP fl.ows with FIFO queue: base case (FIFO) 83
5.5 5 RAP fl.ows with RED queue: base case (RED) 84
5.6 Inter-protocol fairness (FIFO queue) 86
5.7 Inter-protocol fairness (RED queue) 87
5.8 Inter-protocol fairness (FIFO queue and equal packets size) . 89
5.9 Inter-protocol fairness (RED queue and equal packets size) 90
5.10 Intra-protocol RTT bias: TCP with FIFO queue. 92
5.11 Intra-protocol RTT bias: RAP with FIFO queue 93
5.12 Inter-protocol RTT bias: FIFO queue (flows 3 and 5 with

bigger RTT) 94

A.1 Project editor window (OPNET) . 110
A.2 Node editor window (OPNET) . . . 111
A.3 Process model window (OPNET) . 112

B.1 Implemented source node layer (OPNET) . 116
B.2 Implemented source node layer (OPNET) . 117
B.3 Implemented source node layer (OPNET) . 118

Chapter 1

Introduction

While TCP and its congestion control mechanism deals with the major share
of the Internet traffic today, insuring stability and fairness for users, recently
proposed real-time multimedia services, such as IP-telephony, group commu
nication (video or phone conference), video on demand, distant learning, ...
are based on UDP protocol. While it does not offer reliability or congestion
control mechanism, UDP is well suited to that kind of applications: no ad
ditional delays, no acknowledgments (lighter traffic for multicast), ... But
deploying uncontrolled UDP traffic in a large scale might result in extreme
unfairness towards competing TCP traffic.

In the last few years, there has been considerable research toward extend
ing the Internet architecture to provide Quality of Service (QoS) guarantees
for the emerging real-time multimedia applications. On one hand researchers
proposed QoS reservations and per-flow state in the routers, which could be
considered as long term solutions but still have enormous drawbacks: the net
work heterogeneity (thus hard deployment) , the complexity of the involved
mechanisms and scalability problems. On the other hand to bet that an
over-provisioned best effort network will solve all the problems is really an
uncertain bet.

More control is clearly needed to avoid congestion collapse and also to
insure fairness between users, to guarantee friendliness between TCP and
non-TCP flows but this control also has to maintain the simplicity of a best
effort network, to be easily deployed and to be as simple as possible.

15

16 CHAPTER 1. INTRODUCTION

1.1 Why this thesis?

1.1.1 General situation

From the beginning and still now, the Internet is almost exclusively based on
the Best Effort (BE) transmission concept: all packets are treated the same
without any discrimination or explicit delivery guarantees. This really simple
concept consists of doing its "best effort" to deliver the injected packets from
wherever they corne to wherever they go. The achieved quality of treatment
for users does not only depend on the network resources but also on the
other users and the amount of information to transmit. This leads to a lack
of isolation and protection between flows.

The first level of protection against an increase of traffic arrival rate stands
in the buffer space of the routers traditionally following the First In - First
Out (FIFO) buffer management policy 1 consisting in forwarding packets
as they arrive or dropping arriving packets in case of buffer overflow. But
this can only be a temporary solution. If the situation persists, the buffer
runs out of space and routers begin to drop packets. However, an "infinite"
space is not the solution. Offering the advantage of not discarding packets
(because not undergoing buffer overflow), it has the absolute disadvantage of
increasing the end-to-end delay.

These concepts (best effort and FIFO policy) played an important role
in the Internet deployment and stability. Because of their flexibility and
robustness, it can operate under a wide range of network conditions without
requiring specific configuration or adaptations.

However, a completely uncontrolled network may suffer from congestion
or worse , congestion collapse (cf. section 1.1.3 for definition) . That kind
of problem occurred in the past (mid '80s) several times and led to the
implementation and deployment of a set of congestion control fonctions in
TCP (located in hosts mainly to avoid the problem of deployment in updating
all rou ters). The goals of these fonctions are:

- To protect the Internet from congestion collapse.

- To share the available resources (bandwidth) between all users in a
"fair" way.

1This management associates simplicity of concept and implementation but is precisely
too simple, doing no difference between flows. The first proposai of active queue manage
ment was Random Early Detection (RED) which is still studied and improved nowadays
([FJ93], [CP00] and [CE99]).

1.1 . WHY THIS THESIS? 17

That kind of congestion control mechanism relies on congestion detection
performed by hosts but also by routers. The simplest congestion indication
in a best effort network, using FIFO buffer management, is the packet loss
which is an implicit feedback information. Explicit feedback also exists and
consists for TCP in the ICMP Source Quench messages (cf. [Pos81a])and the
Explicit Congestion Notification (ECN) (cf. [RF99]). But the efficiency of
these fonctions heavily depends on a correct implementation at the users sicle
and the utilization of everybody. These mechanisms have also been parts of
the key contributors to the success of the Internet (cf. Chapter 2 for TCP
way of working).

1.1.2 Problems

Nowadays, with the increasing growth of non-responsive applications
(non TCP-based transmission), congestion control has to be extended
to non-TCP flows, i.e. TCP-Friendly flow (cf. section 1.1.3 for definition).
As a matter of fact, users who misbehave (not following TCP's rule) cap
ture more bandwidth than their fair share, seriously degrading the service
delivered to cooperating users, and in general threaten the stability and the
operation of the entire system. This is why congestion control mechanism
for non-TCP applications is really important.

One reason of not using TCP for those applications stands in the complete
inadequate way of working of TCP (delays, retransmissions, ...) related
with UDP which off ers severe advantages for them (cf. Chapter 2 for more
explanation). Unfortunately, UDP does not dispose of any congestion control
mechanism. Sorne lack of service are performed by the Real-Time Transport
Protocol (RTP) above UDP but it still remains too uncontrolled. Something
has to be added.

1.1.3 Definition of major concepts

• Congestion: is the state of sustained network overload where the
demand for network resources is close to or exceeds the available ca
pacity. Network resources, namely link bandwidth and buffer space in
the routers, are both fini te and in many cases still expensive (traffic
is increasing while memory price is decreasing). This congestion can
cause high packet loss rates, increased delays and can lead to congestion
collapse (or "Internet meltdown")

• Congestion collapse: is the state where any increase in the offered

18 CHAPTER 1. INTRODUCTION

load leads to a decrease of the useful work done by the network (over
loaded). It may be due to other different reasons:

- Undelivered packets waste bandwidth by transmitting packets that
will be dropped before they reach their final destinations.

- Fragmented packets wasted bandwidth by delivering fragments of
packets that will be discarded at the receivers since they cannot
reassemble them into a valid packet.

- Stale packets waste bandwidth by carrying packets that are no
longer wanted by the users (took too much time).

• TCP-Friendly flow: is not an easy notion to define.

- Internet Engineering Task Force (IETF) mandates that a non
TCP flow does not send more than a TCP flow would do under
similar network conditions

- If a TCP connection and an adaptive flow with similar trans
mission behaviours have similar round trip delays and losses they
should receive similar bandwidth shares.

- Non-TCP flows are considered TCP-Friendly if their long-term
throughput does not exceed the throughput of a conformant TCP
under the same conditions.

• Fairness: Under conditions of low load, everybody's demands are sat
isfied (no trade-offs, no considerations). When there are unsatisfied
demands and users have to compete for their fare share, the classical
notion of fairness seems to be what is called the max-min fairness.

• max-min Fairness: "The greatest benefit for the least advantaged",
an allocation of bandwidth which maximizes the allocation of band
width to the sources receiving the smallest allocation (to increase the
bandwidth allocated to one source, you have to decrease the allocation
of another source which already received a lower allocation). It consists
of sharing the resources in an incremental way. It first start with an
allocation of O Mbps. Then it equally increments the allocation to each
source until one link becomes satured. (Sources using this satured link
receive an equal share of the bandwidth) Then the allocation of all the
sources not using the satured link are equally incremented until next
satured link and so on ...

1.2. STRUCTURE OF THE THESIS 19

1.2 Structure of the thesis

The rest of the thesis will continue with the following structure.

Chapter 2 explains the two main transport protocols used on the Internet:
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
both based on the IP layer. It also explains the needs of real-time streaming
applications and the problems met with such applications requirements.

Chapter 3 describes in details the way of working of the Rate Adaptation
Protocol (RAP), the implementation choices and the improving mechanisms.

Chapter 4 introduces different mechanisms of congestion control with
different schemes of working.

Chapter 5 describes through multiple simulations various aspects of the
RAP protocol and its TCP-Friendly behaviour.

Chapter 6 concludes the thesis: it reminds the main goals of the evalu
ated protocol, the results obtained through the simulations and gives some
guidelines for further works.

Chapter 2

Transport protocols: TCP Vs
UDP

In this chapter, we describe the two main transport protocols used nowa
days on the Internet: Transmission -Contrat Protocot (TCP) and User Data
gram Protocot (UDP), giving their advantages and disadvantages. Based on
the characteristics and requirements of real-time streaming applications, one
of the protocols is preferred but some problems remain, problems that require
one of the mechanisms introduced in Chapter 4 and 3.

2.1 Transmission Contrai Protocol (TCP)

The Transmission Contrat Protocot (TCP), specified in [Pos81 b], [Bra89] and
[Ste94], provides a reliable connection-oriented byte stream service over an
unreliable packet-based IP service, characterized by a single packet format
protected by a checksum.

Connection-oriented means that two applications using TCP have to es
tablish a connection before beginning to exchange any data (exactly like
phone calls). It also off ers a full-duplex service to the application, which
allows sending data in both directions of the connection.

Data delivered by the application to the TCP layer are introduced in
a fragment, called segment. The estimation of the segment best size is an
option of TCP and is done at the establishment of the connection.

A byte stream service means that the sender just puts inside this segment
the data bytes given by the application without any markers to separate the
different writings. TCP does not interpret the payload of the segment (TCP
does not know which format is used); it is left to the application. TCP just

21

22 CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

incorporated this segment in an IP datagram (cf. Figure 2.1 for the general
structure of an IP datagram).

IP Datagrarn -1
r

I ◄ TCP Segment ► I

IP Hea der
1

TCP Header
1

TCP Data
1

2 0 oct ets 2 0 octets

Figu re 2.1: Structure of TCP / IP datagram

2.1.1 TCP segment structure

0 1516 31

16-bits Source Port Number 16-bits Destination Port Number

3 2-bits Sequence Number T
3 2-bits Acknowledgment Number 20 bytes

4-bits Reserved u A P R s F
Header R C s s y I 16-bits Window Size
Length (6 bits) G K H T N N

-+-~~~~-+----------------! l 16-bits TCP Checksum 16-bits Urgent Pointer

Options (if any)

Data

Figure 2.2: Structure of TCP segment

The fields:

• The source and destination port numbers identify the sending and re
ceiving applications at the ends of the connection. Combined with the
IP source and destination addresses and the protocol, it identifies a
connection.

2.1. TRANSMISSION CONTROL PROTOCOL (TCP) 23

• The sequence number identifies each TCP segment in a message stream.
It specifies the number of the first byte of each segment.

• The acknowledgment number contains the sequence number of the next
byte the receiver is expecting to receive, this means the last sequence
number received correctly + the segment size (also cf.ACK flag). In
the original version of TCP, there is no mean to acknowledge specific
segment.

• The header length contains the number of 32-bits words in the TCP
header. 4 bits imply a maximum size of 60 octets (default = 5 [0101]
= 20 octets).

• The reserved 6-bits are for future and not yet specified use (expected
for ECN option).

• The fiags: if sets to 1, this means that

URG: the urgent pointer field is valid (some data has to be processed
immediately).

ACK: the acknowledgment number field is valid.

PSH: the receiver should forward all its data (segment + buffer) to
the application immediately.

RST: reset of the connection.

SYN: synchronisation of the sequence numbers at the connection es
tablishment.

FIN: end of transmission for the sen der.

• The window size is the central key of the flow control (cf. [Mog93]) .
It indicates the number of bytes that the receiver is able to receive,
starting from the acknowledgment number field. 16 bits limits the
window to a maximum of 65 535 bytes.

• The checksum is computed like UDP: complement of the sum of 16-bits
length words.It takes into account the header and the payload. As for
UDP, the checksum is computed with a pseudo-IP-header composed
of the IP source and destination addresses, the protocol , the segment
length and the padding (see 2.10). The TCP checksum is mandatory
(unlike UDP).

• The urgent pointer is a value to add to the sequence number field to
determine the end of the urgent data to be processed immediately (only
taken into account when the URG flag is set to 1).

24 CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

• The option field specifies option(s) between end systems. The most
widely used option is the maximum segment size (MSS): it specifies the
maximum segment size the receiver agrees to receive and is determined
by both sicles at the establishment of the connection (SYN flag set).

Notes: the payload is optional. At the establishment and closing of a
connection, only segments with header (and options if any) are exchanged.
Empty segments are also used to acknowledge received segments when there
is no data to send in the opposite direction.

2.1.2 Way of working

1) Off ered services

As said before, TCP offers a reliability service. This means: loss de
tection and retransmission, segment integrity, detection and discard of
duplicated segments, re-ordering of segments.

• Lass detection and retransmission: when the source sends its seg
ment, it maintains a timer while waiting for the acknowledgement
from the destination. In case of loss, the source retransmits the
missing packet (s)

• lntegrity of TCP segments: performed by a checksum in a header
fields and checked at the end-points, a segment with an invalid
checksum (data have been corrupted during the transfer) is rejected
and not acknowledged to force the retransmission.

• Duplication of IP datagram: may occur in the network, so TCP
must not take them into account and just have to discard them.

• Re-ordering of TCP segments: IP datagrams could follow different
ways through the network, so they arrive not in sequence. TCP re
orders the segments at the destination to correctly detect loss(es).

Further more, TCP also offers a flow control: it is a mechanism to
prevent the source from over running the receiver's resources. By a
dynamic allocation of buffer to receive data, the receiver warns the sender
about the amount of data he is able to accept with (such that if he is
slower than the sender, he will not run out of buffers).

2) Connection establishment and closing

a) Connection establishment: The connection establishment is made
via a mechanism called Three Way Handshake and depicted on Fig
ure 2.3.

2.1. TRANSMISSION CONTROL PROTOCOL (TCP)

Source Destinat; on

+ options:
-MSS
-TCP version

Figure 2.3: Establishment of a TCP connection

25

(1) The source sends a segment with an empty payload and the
SYN flag sets to request for a connection. It may also try to
negociate, in the option field , some options like MSS and TCP
extensions (TCP-SACK for example). It also gives the initial
sequence number of its first segment.

(2) The receiver acknowledges the connection request and confirms
the connection by sending an (empty) segment with the ACK
and the SYN flag set. It will also communicate its options.

(3) The sen der confirms the connection establishment by sen ding a
third empty segment with the ACK flag set, indicating the next
segment he expects to received (just as for (2)).

Figure 2.4 exhibits the states machine of different connection estab
lishments.

Path a: a typical source path (active opening).

Path b: a typical destination path (passive opening).

Path c: simultaneous opening path (both opening)

b) Connection closing: There are two kinds of closing: a symmetric
one and an abrupt one. The symmetric closing is preferred because
it guarantees that all segments have been received correctly. This
connection closing is made via a mechanism called Two Half-Close.
To close a connection, you need to close the two directions (as shown
on Figure 2.5) because a TCP connection is a full-duplex connection.

3) Data transfer

The transfer mode is mainly based on three mechanisms: a congestion
control, a flow control and timeouts mechanisms.

26 CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

lb) Ini t la,c)
! : sent
? : received

?SYN / !SYN+ACK

? YN / !SYN + ACK
SYN received i.---------{lcl SYN sent

____ tb_,c~l ?SYN + ACK / !ACK ._,1_a1 __ ~

?ACK

Figure 2.4: Establishment of a TCP connection

Source Destination

ISCONNE

Incoming connection closed

Outgoing connection closed

Figure 2.5: Closing of a TCP connection

The congestion control mechanism of TCP is based on the Ad
ditive Increase / Multiplicative Decrease (AIMD) algorithm, which is
described in Figure 2.6 and can be expressed as follows:

• When no congestion is undergone, TCP additively increase its con
gestion window (CWND) to probe the network1 .

• When congestion is detected (packet loss2
), TCP multiplicatively

reduces its congestion window (by half).

1under some conditions: the window buffer size of the receiver , ...
2by triggered timer or duplicate acknowledgements

2.1 . TRANSMISSION CONTROL PROTOCOL (TCP) 27

-1- - 1- -J - + - - f-. -l-
i 1

Bits r, - 1- t Loss detection

1 1
- 1 - 1 r -1-

1

Time

Figure 2.6: Additive increase / multiplicative decrease behaviour

The amount of sent packets on the network is determined by the flow
control of TCP. It was at the beginning simply based on the sender's
window buffer occupancy. It allowed TCP to transmit multiple packets
without having to wait for an acknowledgement. This is at the origin
of the bursty characteristic of the TCP transmission. At each time, the
sen der kept a list of sequence numbers that he used to send packets (not
yet acknowledged by the receiver). In the same way, the receiver also
had a list (ADvertised WINdow (AD WIN)) of packet sequence numbers
that he already received or accepted to receive.

To estimate that a packet is lost, TCP relies on a set of variables and
timeout. TCP computes the round trip time (the time for a sent packet
to reach its destination and to be correctly acknowledged), uses it to have
an estima te smooth RTT and combines this one with an estimation of the
variation of the RTT to obtain the value of the retransmission timeout
associated with the next packets to be sent. At the end of this timeout,
if the associated packets are not yet acknowledged, TCP considers it as
a loss and retransmits the packets.

All the mechanisms together constitute the window-based rate flow con
trat that characterized TCP.

After this fast description of the first TCP ways of working, here are
four algorithms developed by Van Jacobson ([Jac00]) and adopted by
most operating systems to improve TCP in its adaptation scheme for
the network.

(a) TCP Slow Start algorithm
Old TCP implementation would start a connection with the sender
injecting multiple segments into the network, up to the window size
advertised by the receiver. While this is OK when the two hosts

28 CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

are on the same LAN, if there are routers and slower links between
the sender and the receiver, problems can arise:

- Sorne intermediate router must queue the packets,

- It's possible for that router to run out of space.

[Jac88] shows how this naive approach can reduce the throughput
of a TCP connection drastically.

The algorithm proposed in [Jac88] to avoid this congestion collapse
is called slow start. It operates by observing that the rate at which
new packets should be injected into the network is the rate at which
the acknowledgments are returned by the other end.

Slow start adds another window to the sender's TCP: the conges
tion window (CWND). When a new connection is established with
a hast, the congestion window is initialised at one segment (i.e.,
the maximum segment size announced by the other end, MSS op
tion at establishment, or the default, typically 536 or 512) and the
SSThresh (threshold of slow transmission) at 65 535 Bytes (see
Figure 2.7). Each time an ACK is received, the congestion window
is increased by one segment. The sender can transmit up to the
minimum of the congestion window and the advertised window.

Total buffer

Flow control sender
Assessment cong. Net.

Sender

►

Flow control rece1ver
Buffer occupancy

Figure 2.7: Congestion and advertised windows

The congestion window is flow control led by the sender, while
the advertised window is flow control led by the receiver. The
former is based on the sender's assessment of the perceived network
congestion;. The latter is related to the amount of available buffer
space at the receiver for this connection.

The sender starts by transmitting one segment and waiting for its
ACK. When that ACK is received, the congestion window is incre
mented from one to two, and two segments can be sent. When each

2.1. TRANSMISSION CONTROL PROTOCOL (TCP) 29

of those two segments is acknowledged, the congestion window is
increased to four segments. This provides an exponential growth,
although it is not exactly exponential because the receiver may de
lay its ACKs, typically sending one ACK for every two segment
that it receives.

At some point the capacity of the Internet can be reached, and an
intermediate router will start discarding packets. This informs the
sender that its congestion window has gotten too large.

(b) Congestion Avoidance algorithm

Congestion can occur when data arrives from a big pipe (a fast
LAN) and is sent out on a slower pipe (a slower WAN). Conges
tion can also occur when multiple input streams arrive at a router
whose output capacity is less than the sum of its inputs. Congestion
avoidance is a way to deal with lost packets.

The assumption of the algorithm is that packet loss caused by dam
age is very small (much less than 1

Congestion avoidance and slow start are independently implemented
algorithms with different objectives but are highly correlated. But
when congestion occurs TCP must slow clown its transmission rate
of packets into the network, and then invoke slow start to get things
going again. In practice they are implemented together.

Congestion avoidance and slow start require that two variables be
maintained for each connection: a congestion window, CWND, and
a slow start threshold size, SSthresh. The combined algorithm op
erates as follows:

1. Initialisation for a given connection sets CWND to one segment
and SSthresh to 65 535 bytes.

11. The TCP output routine never sends more than the minimum
of CWND and the receiver's advertised window.

m. When congestion occurs (indicated by a timeout or the recep
tion of duplicate ACKs), one-half of the current window size
(the minimum of CWND and the receiver's advertised window,
but at least two segments) is saved in SSthresh.

- If the congestion is indicated by a timeout, CWND is set
to one segment (i.e., slow start).

- If not, this means it is duplicate ACK, then fast retransmit
and fast recovery start.

30 CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

1v. When new data is acknowledged by the other end, increase
CWND, but the way it increases depends on whether TCP is
performing slow start or congestion avoidance.

- If it was duplicate ACK, congestion avoidance carries on
(after the 2 fast retransmit and recovery phases)

- If it was timeout indication, it goes as follows:

If CWND is less than or equal to SSthresh, TCP 1s m
slow start; slow start continues until TCP is halfway to
where it was when congestion occurred (since it recorded
half of the window size that caused the problem in step 2),
and then congestion avoidance takes over. If not (CWND
higher than the SSthresh) TCP performs the congestion
avoidance phase.

Slow start has CWND begin at one segment, and be incremented by
one segment every time an ACK is received. As mentioned earlier,
this opens the window exponentially: send one segment, then two,
then four, and so on. Congestion avoidance dictates that CWND be
incremented by MSS * c~S:v each time an ACK is received. This
is a linear growth of CWND, compared to slow start 's exponential
growth. The increase in CWND should be at most one segment
each round-trip time (regardless how many ACKs are received in
that RTT) , whereas slow start increments CWND by the number
of ACKs received in a round-trip time.

(c) Fast Retransmit
Modifications to the congestion avoidance algorithm were proposed
in 1990 ([Jac90]) . Before describing the change, realize that TCP
may generate an immediate acknowledgment (a duplicate ACK)
when an out-of-order segment is received. This duplicate ACK
should not be delayed. The purpose of this duplicate ACK is tolet
the other end know that a segment was received out of order, and
to tell it what sequence number is expected.

Since TCP does not know whether a duplicate ACK is caused by a
lost segment or a reordering, it waits for a small number of duplicate
ACKs to be received. It is assumed that if there is just a reordering
of the segments, there will be only one or two duplicate ACKs
before the reordered segment is processed, which will then generate
a new ACK. If three or more duplicate ACKs are received in a
row, it is a strong indication that a segment has been lost. TCP
then performs a retransmission of what appears to be the missing

2.1. TRANSMISSION CONTROL PROTOCOL (TCP) 31

segment, without waiting for a retransmission timer to expire.

(d) Fast Recovery
After fast retransmit sends what appears to be the missing seg
ment, congestion avoidance, and not slow start, is performed. This
is the fast recovery algorithm. It is an improvement that allows
high throughput under moderate congestion, especially for large
windows.

The reason for not performing slow start in this case is that the
receipt of the duplicate ACKs tells TCP more than just a packet
has been lost. Since the receiver can only generate the duplicate
ACK when another segment is received, that segment has left the
network and is in the receiver's buffer. That is, there is still data
flowing between the two ends, and TCP does not want to reduce
the flow abruptly by going into slow start.

The fast retransmit and fast recovery algorithms are usually imple
mented together as follows:

1. When the third duplicate ACK in a row is received, set SSthresh
to one-half of the current congestion window, CWND, but no
less than two segments. Retransmit the missing segment. Set
CWND to SSthresh plus 3 times the segment size. This inflates
the congestion window by the number of segments that have
left the network and which the other end has already received
(3).

ii . Each time another duplicate ACK arrives, increment CWND
by the segment size. This inflates the congestion window for
the additional segment that has left the network. Transmit a
packet, if allowed by the new value of CWND.

m. When the ACK that acknowledges new data arrives, set CWND
to SSthresh (the value set in step i). This ACK should be
the acknowledgment of the retransmission from step 1, one
round-trip time after the retransmission. Additionally, this
ACK should acknowledge all the intermediate segments sent
between the lost packet and the receipt of the first duplicate
ACK. This step is congestion avoidance, since TCP is clown to
one-half the rate it was at when the packet was lost .

The fast retransmit algorithm first appeared in the 4.3BSD Tahoe
release, and it was followed by slow start. The fast recovery algo
rithm appeared in the 4.3BSD Reno release.

32 CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

2.2 User Datagram Protocol (UDP)

UDP (cf. [Pos80] and [Ste94]) is a really simple transport protocol that
consists in sending as much data as needed for the using application without
any timer or stuff used in TCP. It is a datagram oriented protocol, based like
TCP on the IP layer. Every data delivered by the application generates a
UDP datagram. This datagram is incorporated in an IP datagram as shown
one Figure 2.8. If the IP datagram is too large for the network MTU, it will
be fragmented by IP, multiple times if needed, through the whole network
and reassembled only at the destination end system.

------- IP Datagram -------

IP Header I UDP 1
Header

2 0 octets 8 octets

UDP Datagram

UDP Data

Figure 2.8: Structure of a UDP / IP datagram

► I

UDP is not a reliable transport protocol: this means that it just sends
the UDP datagram to the IP layer and does not manage any control or
"following" concerning the sent data. This job is let to the application layer.

2.2.1 UDP packet structure

Figure 2.9 shows you the structure of a UDP datagram (header and data).

0 15 16 31

16-bit Source Port Number 16-bit Destination Port Number î
t---------------+----------------, 8 octets

,__ ___ 16_-_b_i t_u_D_P_L_e_n_g-th---~--1-6_-_b_i t_u_D_P_c_h_e_c_k_su_m __ __, _l
Data (if any)

Figure 2.9: Structure of UDP packet

2.2. USER DATAGRAM PROTOCOL (UDP) 33

The fields:

• The source and destination port numbers are used to identify the cor
responding processes.

• The UDP length cover the header length and the data length (redun
dant with the IP length field).

• The checksum includes its header and its data, but for UDP, the check
sum is optional (the IP checksum just controls the IP header, soit does
not cover UDP).

2.2.2 Characteristics

1) UDP checksum

Computation principle:

First the checksum field is set to O. Then the UDP packet (header +
data) is considered as a list of 16-bits length words. These words are
summed and the complement is taken. The checksum field is then filled
in with this complement.

Notes:

- The UDP datagram length may be an odd number of octets what
is not allowed for the computation. UDP thus adds a "fake" octet
(padding) at the end of the packet, an octet that will not be trans
mitted.

- Like TCP, UDP includes in its header a pseudo-header (12 octets)
composed of certain fields of the IP header (depicted in Figure
2.10). They are used to compute the checksum and also to allow
UDP to make a double control: to check if the data arrived at the
good destination and also that IP did not give to UDP a datagram
destined to a higher layer.

- As said before, the checksum is optional: if it is not used, the field
is set to O.

- If, during the check, the receiver detects a mistake with the check
sum, the UDP datagram is destroyed silently (with no error mes
sage)

34

0

CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

15 16 31

32-bits Source IP Address T
32-bits Destination IP Address 12 bytes

Zero 8-bi ts Protocol 16-blts UDP Length

16-bits Source Port Number 16-bits Dest1nat1on Port Number t
8 bytes

16-bits UDP Leng th 16-b!ts UDP Checksum 1
Data (if any)

Figure 2.10: UDP complete packet for checksum

UDP
Pseudo
Header

UDP
Header

2.3. REQUIREMENTS FOR REAL-TIME STREAMING APPLICATIONS35

2) Maximum size of UDP datagram

Based on the UDP Length field of 16 bits, the maximum size should be
65 535 octets minus 20 octets for the IP header and minus 8 octets for
the UDP header (left 65 507 octets of data). But in a practical way, this
is not the case. One reason is that the applications may be limited in its
accepted packet size. Nowadays, most systems offer a default maximum
size of 8 192 octets. Another reason lies in the implementation of the
TCP / IP kernel, which could limit IP packet lower than 65 535 octets to
avoid fragmentation in the network.

2.3 Requirements for real-time streaming ap
plications

Multimedia applications requirements are mainly based on three dimensions:
the end-to-end delay, the packet loss ratio and the bandwidth (as represented
on Figure 2.11).

Packet loss

End-to-end delay

Bandwidth

Figure 2.11: Multimedia applications requirements

Those three variables are highly correlated. The best (as for any applica
tions but chiefly for multimedia ones) would be an infinite bandwidth with
no packet loss and a zero end-to-end delay but in fact, this is never the case.

Usually multimedia applications try to minimize as much as possible the
end-to-end delay, mainly when there are real-time interactions with human
beings (" for audio comfort"). The required bandwidth can be really high,
depending on the amount of data to be sent (video applications need far more
bandwidth than audio ones) while they can easily survive to low packet loss
ratio encountering a somewhat lower quality.

36 CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

Let's take the example of the Voice Over IP application: two human
beings are discussing through a network. This requires a really low end
to-end delay (about 150 to 200 ms because of the human tolerance) and a
reasonable bandwidth but can deal with some losses.

2.4 Why UDP and not TCP

2.4.1 Why not TCP for multimedia applications

First of all, TCP's usage of retransmissions mechanisms may cause large
delays: when losses occur, not yet transmitted packets are delayed. Then
the usually big size of TCP packets also introduces delays, waiting for the
packet to be filled in (based on the Nagle algorithm [Nag84]). For a multi
media application, a late packet is a lost packet; you don't have the time to
retransmit it. Finally, TCP does not support multicast what could limit the
applications for the use they are designed for.

But the main reason is the type of transmission TCP is using which is, as
mentioned before (cf. 2.1.2 Section 3), a window-based transmission (Figure
2.12). The transmission rate between the file containing the data and the
TCP module can be considered as infinite related to the one between the
TCP module and the outgoing link. So the TCP module receives packets
at a high rate but may not send them over b immediately. The network or
the destination determines when the packets have to be sent, what causes
bufferisation and thus delay.

Sender module

File TCP

a b

Figure 2.12: Window-based transmission

2.4.2 Why UDP

On the contrary, UDP does not use mechanisms like TCP (timeout and
retransmission, ...). Soit can provide minimum delay. Variable UDP packet
size allows almost no delay before sending it (no need to wait it is full or

2.5. REMAINING PROBLEMS WITH UDP 37

a long timeout to expire). UDP also supports multicast, which is a major
requirement for that kind of applications .

The main advantage of UDP is its rate-based behaviour. This type of
transmission is not bursty, it is smoother than the window-based one, sending
data as they arrive from the application. The data is sent as soon it is
generated, without waiting for what ever, only based on the "application
rate".

2.5 Remaining problems with UDP

Unfortunately UDP is not the ideal solution. Its simplicity, which was a
powerful advantage, is turning into a serious drawback for multimedia ap
plications. As mentioned before, UDP provides an unreliable connectionless
service, based on the IP layer. This means that it cannot deal with packet
loss (no guarantee about the correct data packet arrival), packet reordering
(no guarantee about the packet sequence) and packet duplication. It also
cannot recover from delay variations and furthermore, UDP is unable to
distinguish medias and encoding.

To recover from almost all those limitations, the IETF decided to adopta
new protocol to work above the UDP layer in connection with the application
layer: Real-time Transport Protocol (RTP) (cf. [ea96]). RTP alone is never
used; its utility is only when "merged" with an application.

This protocol is composed of two sub-layers:

- RTP, which deals with the flow of data packets. RTP provides the ba
sic mechanisms needed by most multimedia applications (loss detection,
reordering, duplication) and also offers some others functionalities.

- RTCP, which controls the flow of data packets. The main goal con
cerns the quality of service and minimum of congestion control (far
too weak): receivers send RTCP packets as low frequency acknowledg
ments to indicate the quality of reception and the sender to indicate
the amount of information it has sent recently. RTCP is also used
to provide more information about the sending application and to es
timate, in case of multicast, the number of participants to limit the
RTCP bandwidth.

RTP header

Figure 2.13 depicts the structure of RTP packets.

38 CHAPTER 2. TRANSPORT PROTOCOLS: TCP VS UDP

0 15 16 31

V P X CC M PType 16-bits Sequence Number

Timestamp
T

1---------------------------j12 bytes

Synchronization Source (SSRC) Identifier

Possible Header Extension 1
Figure 2.13: RTP header structure

The fields:

• The sequence number is used to reorder packets and to detect loss. It
is also used to detect duplicated packets.

• The timestamp indicates when the packet has been generated, and
is used combined with the sequence number to deal with the delay
variations when silence suppression is in use.

• The PType field indicates the type (e.g. encoding) of audio/ video data
inside payload.

• The SSRC field identifies the source that created the packet.

But the main remaining problem stands in the absence of congestion
control mechanism. Without this, no co-existence between TCP and non
TCP flows can be realized. So this is the domain where the next chapter takes
place, introducing protocols trying to insure a fair sharing of the network
resources between different kinds of flow.

Figure 2.14 shows how usually those mechanisms work together with the
application, relying on the UDP layer combined with RTP. For multimedia
applications, packets are sent over b when they arrive from a (almost the
same rate).

1. The congestion control mechanism estimates b, sending rate of the out
put link based on the network load state,

2. b is then sent to the codec,

3. which adapts a such that a ,:::;: b so almost no packets are buffered ⇒
no delay in the sender

2.6. CONCLUSION 39

Sender module

Congestion
C odec f-111----►I C ontrol f---f!ID-------1•

a Protocol b

2

Figure 2.14: Rate-based transmission scheme

2.6 Conclusion

In this chapter, we have compared the way of working of the two mainly used
transport protocols on the Internet nowadays: TCP and UDP.

Based on their transmission scheme and on the requirements of multi
media applications, UDP, enhanced with RTP, seemed to be the one that
fit. TCP's bursty transmission, abrupt and frequent wide rate fluctuations
cause high delay and jiters, what is unacceptable for multimedia applications
(audio and video can easily survive with limited losses but suffer from long
delays).

But offering no congestion control mechanism, deploying uncontrolled
traffic in a large scale might result in an extreme unfairness towards controlled
flows like TCP. That's why mechanisms like we will see in the next two
chapters are required.

Chapter 3

RAP: Rate Adaptive Protocol

This chapter describes the Rate Adaptive Protocol (RAP). We will try to
see if this protocol is well behaved and TCP-Friendly when dealing with
real-time streaming applications over best effort networks.

Designed to mimic TCP's behaviour, it implements some mechanisms
remembering the ones used in TCP. It first has to detect packet losses in
different ways (based on timers or on duplicate ACK). Then, based on the
kind of loss detection, it has to adapt its sending rate and "to re-start" the
protocol in an appropriated way (cf. the four improving mechanisms for TCP
in Section 3)

The goals of RAP are to ensure no starvation (TCP or RAP) by mo
nopolizing the whole network resources and furthermore to guarantee a fair
sharing of the bandwidth between all the sources.

Besicles this, if the network uses features like Explicit Congestion Noti
fication (ECN), we will mention how RAP could used those features to be
more accurate in its adaptation scheme of the transmission rate.

In this chapter, section 1 describes the way RAP is working. Section 2
gives a complete description of both side of the RAP flow with their imple
mentation and improving mechanisms. Section 3 ends this chapter with the
conclusions about RAP.

For the RAP source and destination modules implemented in OPNET
simulator, see Appendix B. There you will find the complete structure of the
used network for the simulations.

3.1 How does RAP work?

As an end-to-end congestion control mechanism, both sides of the "connec
tion" have their own role. The most important part of the RAP mechanism

41

42 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

lies at the source to keep the destination as simple as possible. The source
sends packets with sequence numbers (identifier by flow) and keeps a table
with records of information by sent packet. Each packet must be acknowl
edged by the destination. The destination first checks if there is a hole in the
sequence number of the received packets using three static variables (note
that a hole does not mean a loss, it may be a "slow" packet that still may
corne). It then updates its information and sends it back in the acknowledg
ment packet used by the source as feedback to detect lasses. At the reception
of such a packet, the source computes some variables to check in the records
table the state of each sent packet. Based on this information, the RAP
sender estimates the loss ratio and then the correct transmission rate.

By packet:

Step 1: RAP source sends a packet with a sequence number (identifier for
that flow).

Step 2: RAP destination updates variables and sends feedback to the source.

Step 3: RAP source analyses feedback from destination and reacts appro
priately.

3.2 Complete description of RAP

This section explains how the RAP protocol works. It describes the problems
for the realisation of this protocol and the main mechanisms used to solve
them.

Various options for the description are possible, the chosen approach is
based on both sicles of the "connection" instead of a sequential development of
the protocol's working way, which would have been too abstract or confusing.

This section is structured as follows: first, a complete description of the
RAP source including base concepts, the finite state machine representing
the protocol, the behaviour when confronted or not to congestion and some
particular points; then the description of the RAP destination. The imple
mentation of each ends will follow and to conclude, some improving mecha
nisms.

3.2.1 The source

Concepts

1. Inter-Packets Gap (IPG)

3.2. COMPLETE DESCRIPTION OF RAP 43

For window-based protocols, like TCP, the transmission rate is a fonc
tion of the sending window size. RAP does not perform a window-based
rate control. It applies a rate-based rate control, which means that the
transmission rate of the application is a fonction of the network's load
but controlled by the amount of sent data and not by a window scheme
of outgoing data's.

To control this transmission rate (depending specifically on the appli
cation), RAP manipulates the elapsed time between two consecutive
sent packets. This is called the Inter-Packets Gap, IPG. By reducing
the IPG, RAP increases the allowed sending rate for the application.
lnversely, by increasing the time between two consecutive packets, RAP
decreases the allowed transmission rate for the application. The appli
cation has to adapt its rate according to the information supplied by
RAP about the network.

2. Additive Increase / Multiplicative Decrease (AIMD)

The source performs an algorithm with working scheme of type Addi
tive Increase / Multiplicative Decrease (AIMD) exactly like TCP does
(cf. Section 2.6).

• When there is no congestion indication , the source increases lin
early the transmission rate periodically.

• When congestion is detected (loss of packet), the source must
decrease immediately the transmission rate by half.

By 'Additive Increase ', it means that while no congestion is undergone,
the sending rate is increased by an amount X of bits per period. By
'Multiplicative Decrease ', it means that when congestion is detected,
the sending rate is divided by two.

Note: terms 'increase', 'decrease' and 'periodically' still have to be
explained. Be carefol because RAP performs its control on the Inter
Packet Gap (IPG), when the algorithm says 'Additive Increase' (of the
sending rate), this has to be translated in RAP by 'decrease' IPG.
We have to do the same interpretation for Multiplicative 'Decrease'
(-+ 'increase IPG').

Finite state machine:

Graph 3.1 depicts the finite state machine at the RAP source. ln the first
step, RAP initialises its general variables like the IPG, the SRTT, the first
sequence number and different timers (in the Init state). Then, RAP enters

44 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

in an idle state (Idle). There, multiple events can occur. First event, an
ACK can be received (➔ Ack state). Based on the information held in the
ACK, RAPupdates its history table, detects if loss occurred and in case of it,
adjusts its sending rate. It finally erases the now useless ACK. Second event,
the lpgTimeout is triggered off (➔ lpg state) . So it's time to send a new
packet but only after a negative loss check, otherwise RAP also has adjust its
sending rate. Third event, the RttTimeout is triggered off (➔ Rtt state).
One step of constant sending rate is over and it's time to start a new one with
an higher sending rate (no loss during the last step, otherwise the RttTimeout
would not have been triggered off). It then re-schedules the RttTimeout for
the next step. Fourth event, a system message is received (➔ End state).
Either it's the end simulation signal or an unknown event, both leading to
the end of the simulation, closing the file and commenting the cause of this
end .

~
~~ IAck treated)

!End of simulation)

llnit. campleted)

IIpg'Tuneout) G
IIpg treated 1

IRtt'Iiernou t)

IUnknown event)

Figure 3.1: Finite state machine (source)

Note: The variables and procedures will be explained later.

For RAP, there is no real establishment of a connection (unlike for TCP)
but let's call the flow between the sender and the receiver a connection.
During a connection, congestion may be encountered or not . Depending on
that , RAP has to react in an appropriate way. Let's examine the different
situations.

3.2. COMPLETE DESCRIPTION OF RAP 45

First case: no congestion is detected.

In this case, the AIMD algorithm says that RAP has to periodically increase
its sending rate .

The first question is: "How often do we have to increase the sending
rate?", in other words: "How often do we have to change the IPG?" (the
"periodically" term).

Ideally, if we had a perfect knowledge of the network capacity and its
traffic load, we would be able to adjust the rate in a fair way and adopt a
TCP-Friendly behaviour with the co-existing flows. Unfortunately, this is
not possible.

For the end-to-end congestion control of RAP which is based on ACKs
(without using features like ECN at the moment), all the information about
the network and the destination is obtained at best after one round trip time.
We will call the packets with this information "feedback". As mentioned in
[MF97], it is suggested that adaptive schemes adjust their rate not more than
one time per RTT. The reason is that RTT can be of random type. Using each
RTT to change the rate could result in an inappropriate adaptation scheme
(cf. [B0192]). Indeed, if RTTs are consecutively high and low, the sending
rate will have an unstable behaviour, which indicates that the adaptation
scheme reacts hit by hit and not in response of the traffic load and the
network in general (the required behaviour).

So, to have a stable frequency of the IPG re-computation, we have to
smooth the gaps between consecutive RTT to get out the transient changes.
Smooth RRT (SRTT) represents this stable frequency for re-computation
and is called a step i.e. the period while the IPG stays unchanged. That 's
why we can say that RAP sends packets at a constant bit rate: fixed during
a period. The SRTT is computed as follows to react smoothly to important
variations of the RTT:

7 1
SRTTi+l = 8SRTTi + 8SampleRTT

Unless congestion is detected, when a step is over, RAP computes the
new IPG. In this case (no congestion), it decreases the IPG to increase the
transmission rate.

An advantage of using SRTT as a step for changing the IPG is that the
packets sent during one step are likely to be acknowledged during the next
step (SRTT sec after) . It allows RAP to see how the network reacts to the
previous adjustment of the rate before to compute what would be the best
next rate.

The second question is: "In which way do we have to increase the sending
rate?" (the "increase" term)

46 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

As said above, to increase the sending rate, RAP has to decrease its IPG.
It is done based on this equation:

S- _ PkSize
i - IPGi

PkSize
a = Si+ 1 - Si = C

where:

- Si is the sen ding rate for the stepi,

- a is what we call the step height , the difference between two consecutive
sending rates ,

- C is a constant with the dimension of time,

- PkSize is the packet size.

The formula to compute the new IPG:

S S _ PkSize
i+l - i - -C-

Replace Si, Si+l

Isolate PkSize

Di vide by PkSize (=fa 0)
Multiply by C
Distribute C
Bring together IPGi+l
Isolate I PGi+1
I PGi+l as a funct. of I PGi

Now we have to assign the "good" value to C. The main goal of RAP is to
mimic TCP (being TCP-Friendly), so let's try to do the same as TCP. In steady
state, TCP increases its sending window by one packet every RTT seconds. Thus
for RAP, we want one more packet to be sent each step (if no congestion) i.e. every
SRTT seconds.

PkSize
si+l - si = SRTT

The sen ding rate will be increased by one packet every SRTT seconds (and thus
C must be set equal to the step size i.e. SRTT). This gives:

IPG _ IPG1 * SRTT
l+l - IPGr + SRTT

3.2. COMPLETE DESCRIPTION OF RAP 47

Second case: congestion is detected.

In this case, the AIMD algorithm says that RAP has to immediately decrease its
sending rate.

The first question is: "How to detect the congestion?"
RAP performs a loss-based rate control, which means that it relies on loss

of packets to detect congestion and reacts appropriately. To achieve this, RAP
source main tains a record for each sent packet . The set of records is called trans
mission history or transmission table. Each record contains the sequence number
of the packet (identifier by flow), a flag that indicates the status of the packets
(SENT, PURGED, INACTIVE) and the departure time. The sent flag means that
the packet has been sent and that the source is waiting for the acknowledgement,
the PURGED flag indicates that the corresponding packet has been acknowledged
or recognised as lost and the IN ACTIVE flag will be explained more precisely in
the improving mechanisms (cluster losses). In a few words, it is used to deter
mine whether this packet was lost (SENT -+ PURGED) or this packet was in the
transmission table while a loss occurred (SENT -+ IN ACTIVE), and thus is not
considered as a lost packet .

The detection of packets loss can occur as a result of two events.

• The first one is the reception of an ACK. This situation will be explained in
the section 'Improving mechanisms' (fast retransmit mechanism).

• The second one is when the IpgTimeout is triggered. The role of this inter
ruption is either to allow RAP to transmit a new packet (no loss) or, if a
loss has been detected, to react to this loss.

Before sending a new packet (every IPG), the source computes the new
timeout for the next step of transmission. This timeout is computed following
the Jacobson/ Karel's algorithm 1 . Based on this new timeout, the source
goes through the whole transmission table to detect losses using the departure
time of the packets. RAP compares the sum of departure time and timeout
to the current time. In a single passage, it can detect multiple losses and
reacts accurately according to it.

The second question is: "What does it have to do when congestion is detected?".
ln other words, "In which way do we have to decrease the sending rate?" (the
'decrease' term).

As said before, if congestion is detected, the source must immediately decrease
its transmission rate. This is done by adjusting the Inter-Packets Gap (IPG). To
multiplicatively decrease the rate in a TCP way, we just have to double the value
of IPG . This has as effect that when loss occurs , the time between sending of two
consecutive packets is doubled, so the amount of packets sent will be half of the
amount before the detection of the congestion (just the way as TCP) .

1Timeout = µ * SRTT + ô * VarSRTT where VarSRTT = variance of SRTT

48 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

where:

- Si is the sending rate of the ith period,

- 0 < (3 < 1. (Default value: (3 = 0.5 to mimic TCP)

Sorne problems.

Problem 1: Start-up phase.

For long-term sessions, the start-up phase has no real importance; its
influence is negligible which is not the case for short sessions. Any
way, they both have to probe the network to discover the available
bandwidth and resources and to reach an equilibrium with the already
existing sessions.

A slow probe (linear) of the bandwidth at the beginning of the session
will have as effect a late use of the available resources of the network
but a low loss of packets when the first congestion will be detected.
In the opposite, a fast probe (exponential) will have as effect a fast
acknowledgement of the available resources (and thus a fast utilisation
of those resources) but a massive loss of packets (the way TCP is doing
the probing).

The effect of the start-up phase is not studied in this document. It is
assumed to be negligible compared to the length of the connections,
which is typically in the order of minutes.

As default value, the start-up phase for every RAP flow consists of a
sending rate of 40 kbps.

Problem 2: Self-limiting Issues in RAP.

In window-based rate control protocols, the source stops when the
sending window is full of packets. It makes those protocols really sta
ble, which is a researched characteristic, and easy to be implemented.
It can be a little bit harder if, like TCP, the source allows the retrans
mission of lost packets but not too much. Unfortunately, for rate-based
rate control protocols, it is not that easy because the sending rate is
controlled by the computation of an appropriate Inter-Packets Gap.
You never know exactly how many packets are outstanding (unless
in the history table). There can be an arbitrary number of packets
in the network with rate-based schemes, which is not the case with
window-based schemes.

3.2. COMPLETE DESCRIPTION OF RAP 49

RAP's solution for the self-limiting problem is its timeout mechanism.
In RAP, there are two timers: the lpgTimeout and the RttTimeout .
With these two timers, RAP can deal with the limiting issue.

- The IpgTimeout represents the inter-packet gap. It is triggered
when 'IPG seconds' have passed related to the last sent packet
and thus indicates that the source may send another packet (un
less loss has been detected). It is done by the fonction void I pg
Timeou t (void) (see Section 3.6). So every IPG seconds, RAP
checks if loss occurred. If no loss occurred, RAP allows the
sending of a new packet, but if loss(es) is (are) detected , RAP
increases the IPG . This will have as effect to slow clown the ap
plication's sending rate reacting to congestion.

- The RttTimeout represents the step while the IPG remains un
changed. When this timer is triggered, it is time to decrease the
IPG thus to increase the transmission rate. It is clone by the fonc
tion void RttTimeout (void) (see Section 3.8). The decrease of
the IPG is clone unconditionally at each RttTimeout interruption
and the fonction RttTimeout re-schedules a RTT interruption for
IPG seconds after (starts the new step of constant IPG) .

Note: if a loss is detected, the interruption scheduled by the RttTimeout fonction
is cancelled because the IPG has been changed (cf. to AIMD) , so a new step has
started. Therefore, a new RTT interruption is scheduled.

Worst case: a link goes clown. During the step of the crash, RAP will react
at the loss of the outstanding packets. No ACKs are coming anymore but RAP
sends one packet every IPG seconds. So, as explain before, RAP, based on the IPG
timer, will check every IPG seconds if loss(es) occurred before trying to send any
new packet. RAP will detect the loss(es) (timeout exceeded) and thus will decrease
the transmission rate until the rate falls below the minimum rate tolerated by the
application.

Common case: fair coexistence and TCP-Friendliness. Two timers configure
the RAP protocol: one represents the time between two consecutive sent packets
and the other the steps for re-computation of the IPG. ln a normal way, the sending
packet rate is in balance with the receiving ACK rate. If the traffic increases , the
RTT will increase too. The SRTT will also increase and thus the step between
re-computation of the IPG will be longer. If loss has been detected, the IPG
will be doubled, decreasing thus the transmission rate and limiting the amount of
outstanding packets. The balance is thus restored

3.2.2 The destination

The destination is the simplest sicle of a RAP link. First the finite state machine
is described, then an explicit description of the goal for this side.

50 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

Finite state machine:

Grapf 3.2 depicts the finite state machine at the RAP destination. In the first
step, RAP initialises the three variables used to detect packet loss (in the Init
state). Then, RAP enters in an idle state (Idle), waiting for receiving a packet,
the end signal of the simulation or an unknown event (also leading to the end of the
simulation) . In case of receiving a packet, RAP enters in the packet state (Pack)
and performs its check algorithm to analyse the situation evolution with this new
packets (RAP picks up the sequence number of the incoming packet, updates the
three variables based on this number, generates and sends feedback to the sources
then forwards the packet to the upper layer). The end state (End) just closes files
and comments the cause of the end of the simulation.

IInit. campleted)

!End of simulation) IUnknown event)

Figure 3.2: Fini te state machine (destination)

Explicit description:

The destination has to deal with the sequence number of the arriving packet
(seqNum) and three global variables per RAP connection:

- lastRecv (lr): sequence number of the latest packet received before seqNum,

- lastMiss (lm): sequence number of the latest packet not yet acknowledged
before lastRecv (0 if no hale)

3.2. COMPLETE DESCRIPTION OF RAP 51

- precRecv (pr): sequence number of the latest packet received before lastMiss
(0 if seqNum = 1)

These variables are used to inform the source about the received packet and
possible holes. Only the arrival of the packets is important , not the order. Upon
reception of a packet , the destination picks up the sequence number and then
executes some comparisons to detect whether the packet creates a hole, fills in a
hole, is in a hole but does not fill it in or is received in sequence (again the sequence
is not important, an out-of-sequence packet only creates a temporary hole). All
these information are then encapsulated in the feedback packets and sent back as
an ACK for the received packet.

As you see , all the possibilities that could appear in a state are taken into
account . It does not need anything else because the rest is done at the source side.

Here are two examples of the feedback packet.

• The first one represents a common feedback packet (Graph 3.3) ,

1 At the destination: 1

Before rece1v1ng packet n° 5 After receiv:ng packe~ n° 5

Packet n° 5

= Packet not rece1ved

ACK packet sent,

- seqNurn =4 - seqNum =5
- !astRecv =4 - lastRecv = 5
- lastMiss =3 ~ lastMrns =3
- precRecv =2 - precRecv = 2

the hole]2 .. 3] the hole]2 .. 3]

Figure 3.3: Feedback information

52 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

• The second one specifies an advantage of this feedback information (Graph3.4) .

Loss of pack et n ° 3

~
seq / Ir / lm / pr '--r____._-,---<---'-r-'--'

1 / 1 / 0 / 0

2 / 2 / 0 / 0

/ 4 / 3 / 2

S1tuat1 on: the !ost of packet 3 1s known

Loss of ACK for packet n° 3

J 4
seq / lr / lm / pr '--,-____._.--'--.---'---r-'--'

J / 1 / 0 / 0 1

/ 2 / 0 / 0

/ 4 / 0 / 0

S1tuat1 on: the ACK for packe• 3 :s lost
bu t the recepu on of packet 3 1s known

Figure 3.4: Feedback information advantage

These variables are used as feedback by the source and sent back in the ACK
packet. It may seem that some information are redundant but they are all used
depending on the case they represent. For example, seqNum is not always larger
than lastRecv (receiving a late packet for instance). This kind ofredundance has an
advantage: the source can make the difference between the loss of an ACK and the
loss of a packet . This is important because RAP performs a loss-based rate control
so it has to know the difference: an ACK loss does not force the multiplicative
decrease of the transmission rate like a packet loss would do.

3.2.3 The implementation

This section shows the made implementation choices to transcript the behaviour
of this rate-based protocol into the C language and shows what was inevitable
to make this code compatible and integrable in a modular way with the OPNET
simulation tool. By "modular way", I mean that it could be reused afterwards by
other people without having to modify anything (except the central parameters of
the configuration that will be detailed in this text) .

The source implementation:

The LossDetection fonction (Function 3.5) is triggered each time RAP has to
check if a loss occurred (based on ACK information or on timer) . It triggers the
appropriate fonction and, in case of loss, indicates it to the calling fonction purges
the useless packets of the history table (flag PURGED).

3.2. COMPLETE DESCRIPTION OF RAP

int LossDetection(int type, Packet* pkptr)
{ int numlosses;

}

switch(type)
{ case 0: // RAP_TIMER_BASED

{numlosses = TimerLostPacket() ;}
break;

case 1: // RAP_ACK_BASED
numlosses = AckLostPacket(pkptr);
break;

default: print{Wrong code used! ! !};
}

Purge(!); // purge packets with PURGED flag
return(numlosses);

Figure 3.5: LossDetection Function

53

54 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

The IpgTimeout fonction (Function 3.6) is triggered every IPG seconds. It
checks if loss occurred. Then, either it allows a new packet to be sent (no loss) , or
it reacts to the loss calling the LossHandler fonction.

void Ipgîimeout(void)
{

double waitPeriod;
if (LossDetection (timer-based))
{

LossHandler;
}

else
{

GenPacket O ;
}

if (finegrainused) {waitPeriod = ... ;}

Il see improving mechanisms section
Il for the fine grain option
else
{

waitPeriod = ipg;
}

op_intrpt_schedule_self(op_sim_time()+waitPeriod,O);
}

Figure 3.6: IpgTimeout fonction

3.2. COMPLETE DESCRIPTION OF RAP 55

The LossHandler fonction (Function 3. 7) is either called from the IpgTime
out fonction for a timeout-based loss check or from the RecvAck fonction (at the
reception of an ACK) for a loss check based on the ACK information.

void LossHandler (void)
{

}

IncreaseipgO;
for(int i = O; i < eot; i++)
{

Flagi = INACTIVE;
}

op_ev_cancel(event);
event=op_intrpt_schedule_self(op_sim_time()+srtt,1);

where eot is the end of the transmission table
(the INACTIVE flag will be explained in the
improvement section).

Figure 3.7: LossHandler fonction

Because the LossHandler fonction changes the IPG, a new step has to start so
that RAP has to cancel the previous interruption and re-schedule a new one.

The RttTimeout fonction (Function 3.8) is scheduled every SRTT seconds to
change the value of IPG from the LossHandler fonction or from the RttTimeout
fonction itself. Note that the second argument of the schedule procedure is the
code passed to know which fonction has to be called after a self-interrupt: Code 0
is for IpgTimeout, code 1 is for RttTimeout.

void RttTimeout (void)
{

DecreaseipgO;
event=op_intrpt_schedule_self(op_sim_time()+srtt,1);

}

Figure 3.8: RttTimeout fonction

Note: this interruption is stored in a global variable (event) to be able to cancel
it if congestion is detected and IPG has been changed (see LossHandler fonction).

The UpdateTimeValues fonction (Function 3.9) is called at every received ACK.
It computes the SRTT variable which determines the step length and the timeout
variable used for the timeout-based loss check.

56 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

void UpdateîimeValues(double sample)
{

double diff;
if (initial)
{

}

frtt = xrtt = srtt = sample;
variance= 0;
initial= FALSE;

diff = sample - srtt;
srtt =delta* srtt + (1 - delta) * sample;
diff = (diff < 0) ? diff * -1: diff;
variance+= delta* (diff - variance);
timeout = mu*srtt + phi*variance;
if(finegrainused)
{

}

}

frtt=((1-KFRTT)*frtt)+(KFRTT*samplertt);
xrtt=((1-KXRTT)*xrtt)+(KXRTT*samplertt);
//cf. to fine grain improvement

Where:
xrtt and frtt are used in case of fine grain adaptation,

- delta is usually set to 0.875% to limit the influence
of the sample RTT on the srtt,

- timeout used to detect loss in LossDetection function,
- mu= 1.2 and phi= 4.0 in general to compute timeout.

Figure 3.9: UpdateTimeValues fonction

3.2. COMPLETE DESCRIPTION OF RAP 57

The Decreaselpg fonction (Function 3.10) is called every SRTT seconds if no
loss has been detected. It applies the formula described in Section 3.2.4.

void Decreaseipg (void)
{

ipg = (ipg * srtt) / (ipg + srtt);
}

where srtt is Smooth \rtt{} and computed in the function
void UpdateTimeValue(double samplertt)

Figure 3.10: Decreaselpg fonction

The Increaselpg fonction (Function 3.11) is called when loss has been detected.
It doubles the IPG to eut in half the sending rate, the same way as TCP does.

void Increaseipg (void)
{

ipg = ipg / beta;
}

Where beta is set at 0.5.

Figure 3 .11: Increasel pg fonction

The TimerLostPacket fonction (Function 3.12) is called every IPG seconds. It
is the fonction used to detect loss before trying to send a new packet. It compares
the sending time of every packets plus the newly computed timeout with the current
time to estimate the state of the packets. If lost packet flag is set at PURGED, it
indicates that the packet is no more needed in the transmission table (received or
lost) and may be pulled out.

58 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

int TimerLostPacket (void)
{

}

int numlosses = O;
for (i = O; i < eot; i++)
{

}

if((departureTimei+timeout)<=currentTime)
{

if (flagi == SENT)
{

numlosses++; //Packet seqNumi is lost
}

flagi = PURGED;
}

return(numlosses);

where:
- eot is end-of-table,
- numlosses indicates to the calling function

if loss(es) occurred (the number of lost packets),
used as a boolean.

Figure 3.12: TimerLostPacket fonction

3.2. COMPLETE DESCRIPTION OF RAP 59

The destination implementation

The UpdateLastHole fonction (Function 3.13) is the only fonction at the destina
tion side. It checks the sequence number of the incoming packet and uses it to
compute the variables destined to be sent back in the feedback ACK.

Void UpdateLastHole (int seqNum)
{ if(seqNum==lastRecv+1) //Packet in sequence

{ lastRecv=seqNum;

}

return();
}

if(seqNum>lastRecv+1) //Loss(es) occurred
{ prevRecv=lastRecv; //or re-ordered packets

lastRecv=seqNum;
lastMiss=seqNum-1;
return();

}

if((lastMiss<seqNum)&&(seqNum<=lastRecv)) //Dup. pkt
{ return();
}

if (seqNum==lastMiss)
{ if (precRecv+l==seqNum) //Hole of one pkt filled in

{ prevRecv=0 ;

}

lastMiss=0 ;
}

else / / Hole [n .. n+m] (m>1) to [n .. n+m- 1]
{ lastMiss--;
}

returnO;

if((prevRecv<seqNum)&&(seqNum<lastMiss)) //Pkt in hole
{ prevRecv=seqNum;

returnO;
}

Figure 3.13: UpdateLastHole fonction

60 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

3.2.4 Improving mechanisms

To further mimic TCP, some mechanisms may be added to RAP. Let's introduce
four of them.

First mechanism: TCP's fast retransmit mechanism: duplicate ac
know ledgement.

As a loss-based rate controller, RAP needs to detect as soon as possible a
packet loss. To achieve in that goal, we have already seen the timeout detection
at the source. We also have seen the advantage of the information in the ACK
packets from destination (ACK or packet loss). In addition, RAP may carry out an
algorithm like the fast recovery mechanism of TCP. At each received ACK, RAP
checks each record of the transmission table, searching for some packets too far
behind from the lastRecv packet (in fact at most three sequence number behind).
If it is the case and the status flag of those packets is SENT, RAP estimates that
their ACK would arrived too late and considers the packets as lost. Function 3.14
depicts the fonction to be applied at each entry.

3.2. COMPLETE DESCRIPTION OF RAP

int AckLostPacket (Packet* pkptr)
{ int numlosses = O;

}

where:

for("each entry seqi of the table")
{ if(seqi <= lr)

}

{ if((seqi > lm)&&(seqi <= pr))
{ flagi = PURGED

}

}

else
{ if((lr - seqi) >= 3)

}

{ if(flagi == SENT)
{ numlosses++;
}

flagi == PURGED;
}

return(numlosses);

- pkptr is a pointer to the ACK packet,
Lr = lastRecv,

- lm= lastMiss,
- pr = prevRecv, each based on feedback packet,
- seq_i is the seqNum of the entry checked in the table,
- numlosses indicates if lasses occurred.

Figure 3.14: AckLostPacket fonction

61

62 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

Second mechanism: Cluster losses

As described above, when there is no congestion indication, RAP periodically
increases its transmission rate. "Periodically" has been defined as one time per
SRTT (the most recent value of SRTT). So the IPG is updated only once per
step (SRTT). When congestion is detected, RAP must immediately decrease its
sending rate (it doubles the IPG). Congestion means loss of at least one packet of
the outstanding packets but end systems should only react at a congestion situation
and not at a single packet loss.

If a packet is lost during one step, RAP will react immediately but we will see
the effect only at the next step. Thus it takes two steps to know if the reaction was
appropriate. This shows that a good way to react to loss would be to only take
into account the first detected loss during one step and to consider the others in
the same step to be due to the same congestion event. RAP would only decrease
one time per step the IPG in case of loss.

We already talked about the INACTIVE flag (see section source, second case) .
There are two ways to detect losses: when an ACK arrives (information carried
inside) and when an IPG timeout happens. In these two cases, RAP will trigger off
the LossHandler fonction (Function 3.7). This fonction increases the IPG (because
of loss), re-schedules an RTT interruption but before it, puts to INACTIVE all the
outstanding packets. This will have as effect that if another ACK arrives during
the step indicating another packet loss, this loss will not be taken into account
because the flag for the 'missing' packet has been set to INACTIVE and thus the
IPG will not be increase. That was the goal for the cluster losses: to react only
one time per step at loss.

Third mechanism: Fine grain

The fine grain adaptation scheme tries to mimic forther the ACK-clocking based
congestion avoidance while the coarse grain scheme still performs an AIMD algo
rithm. The goal of this new feature is to make RAP more responsive to transient
congestion events (a short-term exponential moving average of the RTT captures
short-term trends congestion). FRTTi is the short-term exponential moving aver
age of RTT sample and XRTTi the long term one.

There are two ways to perform the fine grain mechanism: per step or per ACK
adaptation.

• The first way gives a higher importance to the more recent RTT sample be
cause it is supposed to be the most representative of the congestion situation
of the network. At the beginning of the i th step, first the new IPG is com
puted (eq.: ipg' = (ipg * rtt) / (ipg + rtt)), and then the fine grain feedback
is used like:

where feedbacki = ~~~

· Il " 'Jdbk ipg = ipg * ee ac i

3.2. COMPLETE DESCRIPTION OF RAP 63

• The second way performs a finer granularity mechanism for rate adjustment.
At each ACK, FRTT and XRTT are update. In UpdateTimeValues fonction,
they are computed as follow :

- FRTT = ((1 - Kfrtt) * FRTT) + (KFRTT * samplertt)

- XRTT = ((1 - Kxrtt) * XRTT) + (KXRTT * samplertt)

where Kxrtt = 0.01 and Kfrtt = 0.9 to be able to capture the short-term con
gestion state since the last ACK. (FRTT, short-term, gives a higher weight
to the samplertt, which represents the more recent computed RTT while
XRTT, long-term, gives a higher weight toits last value). In the IpgTime
out fonction, the IPG for the next step is computed like in the first way .

• IPG = r~r *IPG

Test de graphe: stepRAP4 fifo 800 rap de base FG

0.12
ipg NOFG

ipg FG -- -------

0.1

Cil - 0.08 Q)
~
t)

Cil
o..
ë 0.06
Q)
.0
E

0.04 ::,
z

0.02

0
10 20 30 40 50 60 70 80 90 100

Time (sec)

Figure 3.15: Fine grain smoothing effect

For the rest of the thesis, each simulation will be using the fine grain option.
In case not, it will be clearly indicated.

Fourth mechanism: Explicit Congestion Notification: ECN

This is an option available on some networks, marking overflow packets instead
of dropping them. It would be like cluster lasses . This mechanism avoids waiting

64 CHAPTER 3. RAP: RATE ADAPTIVE PROTOCOL

for the retransmission timeout and behave like the three duplicate ACK mechanism.
It is the third way to detect loss and the reaction based on ECN is in the same
way: just puts INACTIVE to all the outstanding packets to react only one time
per step.

3.3 Conclusion

In this chapter, we fully describe a congestion control mechanism called RAP (Rate
Adaptive protocol). Dedicated to real-time multimedia applications, it is designed
to overpass the UDP aggressiveness, responsible of TCP flows starvation due to
its lack of congestion control mechanism. Furthermore, RAP is supposed to be
TCP-Friendly, i.e. to ensure a fair sharing of the network resources (cf. Chapter 5
for confirmation).

RAP performs a sending rate policy based on the AIMD algorithm (increasing
linearly and decreasing multiplicatively its sending rate based on the met con
gestion). The working time of RAP is partitioned in steps during the ones the
sending rate stays unchanged. The steps are computed based on a moving average
of the RTT and the sending rate is performed by increasing or decreasing the time
between two consecutive packets. The packet loss is detected either by a timer
or a mechanism of hole detection; imitating the way TCP does it with its timer
and three duplicate ACK scheme. It also implements some improving mechanisms:
the clustered lasses mechanism (reacting one time per step to loss) just like TCP,
a sending rate variation smoother (fine grain) and may use network features like
ECN.

Chapter 4

Other mechanisms

In this chapter, four mechanisms of congestion control will be introduced with some
having very different ways of working. Notice that the first mechanism, TFRC ,
was the subject of an IEEE draft on the 17/ 11 / 2000 (end of the training course).
This shows how important the subject is, very relevant at the moment . The next
two are mainly informational and provided for comparison purposes only. Let 's
just mention here RAP , which is the center of my thesis, that will be fully describe
in Chapter 3.

All of the following mechanisms are congestion control mechanisms based on
adapting the sender transmission rate in accordance with the network congestion
state. Based on feedback and complementary information, the sender would in
crease its transmission rate during underload situations and reduce it otherwise.
Such way of working does not guarantee any QoS but the quality for the users is
improved thanks to the loss reduction and to the increasing used bandwidth when
available. Designed in a TCP similar fashion, they prevent the starvation of TCP
connections and allow a stable transmission behaviour.

4.1 TFRC: TCP-Friendly Rate Contrai
TFRC (cf. [SFWOO]) , from Sally Floyd, Mark Handley and Jitendra Padhye, is a
congestion control mechanism for unicast flows (which can be extended to support
multicast) over a best effort Internet network. Its way of working is similar to RAP
Indeed, TFRC is also based on the throughput estimation equation of TCP, related
to the round trip time, the loss-event rate, it mimics the congestion control
mechanism of TCP and adapts its sending rate to maintain a fair concurrence
between co-existing flows.

4.1.1 General way of working

Principle:

65

66 CHAPTER 4. OTHER MECHANISMS

Step 1: The receiver measures the loss event rate and sends it back to the sender
(in feedback packets) .

Step 2: The sender uses these feedback packets to measure the round trip time.

Step 3: Using the computed loss event rate, the round trip time and based on the
TCP throughput equation, the sender identifies the acceptable transmis
sion rate and matches its sending rate on it.

At the sencler sicle, during a "period", the source sends packets at a fixed
rate (initialised at one packet per second). When receiving a feedback packet ,
the source analyses the information carried inside, computes a new estimation of
the round trip time and computes the new appropriated rate based on this new
round trip time (increasing or decreasing the sending rate). If no feedback packet
is received during a period of two round trip times or before the NoFeedBack timer
(initialised at 2 seconds), the sending rate is eut in half.

At the receiver sicle, feedback packets are periodically sent to the sender,
at least once per round trip time. If the sender has a really low sending rate (less
than one packet per round trip time), a feedback packet should be sent for each
data packet received. A feedback packet is also sent every new loss event. When
receiving a data packet, the receiver introduces it in a data structure, computes
the loss event rate, and if a new loss event is detected, a feedback packet is sent.

4.1.2 Major concept

Throughput computation equation

The TCP throughput equation (cf. [JPK98]), on which the TFRC algorithm
is based, is characterized as a fonction of loss rate and round trip time for a
bulk transfer TCP flow (i.e. with an unlimited amount of data to send) taking
into account the fast retransmit mechanism and also the timeout effect on the
throughput.

X= S
R * ~ + (t_RTO * min(l, 3~) * P * (1 + 32P2

))

where

- Xis the sending rate in bytes / second,

- S is the packet size in bytes,

- Ris the round trip time in seconds,

- P is the packet loss ratio ([O .. 1.0], i.e. the fraction of transmitted packets
that are dropped in the network),

- t RTO is the TCP retransmission timeout value in seconds.

4.1. TFRC: TCP-FRIENDLY RATE CONTROL 67

The loss detection

Using the TCP throughput equation, TFRC uses a more sophisticated method to
gather the necessary parameters.

The computation of the loss rate is performed at the receiver based on the
detection of lost packets from the sequence numbers of arriving packets. Each
packet has its own sequence number, which is incremented by one for every packet
sent. It means that if a packet has to be retransmitted, its sequence number
will not be the same as the first time (unless the transport protocol requires the
retransmitted packet to have its first number).

Keeping track of the arrived and missing packets , a packet is considered as
missing if at least three packets with a higher sequence number have arrived (almost
in the same way as TCP). This scheme has the advantage to leave some flexibility
for reordering packets. More of that, the late packet can fill the hole in the data
structure and the receiver can re-compute the loss ratio.

To be robust to several consecutive packets lost, we have to point out a dif
ference between loss event and Lost packet: a loss event may include several lost
packets but each lost packet does not mean a loss event. Each lost packet detected
during one RTT is considered to belong to the same loss event (like TCP reacting
once per RTT). The measurement of the RTT is done by the sender and is piggy
backed onto a data packet . Based on it, the receiver knows if a lost packet starts
a new loss event or still belongs to the previous one.

To compute the loss event ratio P: first we have to compute the average loss
interval, using the n more recent loss event interval weighted such that the recent
ones influence more than the old ones:

if (i < n/2)
then w_i = 1.0;
else w_i = 1 - (i - (n/2 -1)) / (n/2 + 1;)

Number n is the key parameter to the accuracy and the speed ofreaction of TFRC .
Based on this, the average loss interval (I_mean) is computed (cf. [SFP00] Section
5.4) to finally obtain the loss event ratio P: P = 1 ~ean.

4.1.3 Structure of exchanged packets

Data packets

Figure 4.1 depicts the structure of TFRC packets sent by the sender.

- Seq.num. is the sequence number of the sent packet,

- Dep. time is the departure time of the packets in milliseconds ,

68 CHAPTER 4. OTHER l\JIECHANISMS

Seq. num. Dep. time ERTT Trans . rate data

Figure 4.1: structure of TFRC data packet

- ERTT is the current estimation of the round trip time in milliseconds, used
to know when feedback packets have to be sent (combined with the Trans.
rate field)

- Trans. rate is the current transmission rate,

- Datais the packet coming from the upper layer.

Feedback packets

Figure 4.2 depicts the structure of the acknowledgement packet received by the
sender.

Last recv. Delay Recv. rate Estim. Lass rate

Figure 4.2: structure of TFRC ACK packet

- Last recv. is the departure time of the last received packet ,

- Delay is elapsed time between the last received packet and the generation of
this feedback report,

- Recv. rate is the estimated rate for the receiver of the data since the last
feedback report was sent,

- Estim. loss rate is the receiver's current estimation of loss events.

4.2 LDA+: Loss Delay Adjustment +
LDA (cf. [SS99]) and its latter version LDA + (cf. [SW00b]) are end-to-end rate
adaptation algorithm achieving AIMD algorithm and relying on the Real-Time
Transport Protocol (RTP) for feedback information. Furthermore, some added
functionalities of RTP are used to determine the bottleneck bandwidth and then,
according to this bottleneck bandwidth, LDA + dynamically determines the adap
tation parameters (mainly based on losses, delays and capacity observed on the
used path) .

4.2. LDA +: LOSS DELAY ADJUSTMENT + 69

LDA + is a "QoS" control mechanism based on adapting the sender transmission
rate in accordance to the network congestion state. Based on the feedback from the
receiver (RTP), the sender would increase its transmission rate during underload
situations and reduce it otherwise. This way of working does not guarantee any QoS
but the quality for the users is improved thanks to the loss reduction. Designed in
a TCP similar fashion, LDA + prevents the starvation of TCP connections but still
allows a stable transmission behaviour. Made first for unicast flows, a new version,
MLDA (cf. [SW00a]) has been made to support the multicast transmission.

4.2.1 General way of working

Principle:

Step 1: The sender initiates the probe phase to discover the bottleneck band
width.

Step 2: The receiver computes the bottleneck bandwidth and sends feedback
about the received data and the charge of the network.

Step 3: The sender, based on the feedback information, computes the new appro
priate rate.

At the sender side, the sender initiates the probe phase to estimate the
bottleneck bandwidth. Based on the information of the feedback packets, notably
the estimate bottleneck bandwidth, the sender calculates the RTT with the arrival
time (t) of the packets: RTT = t-tDLsn-tLsR where t_LSR is the timestamp of
the last received sender report and t_ DLSR, the time elapsed between receiving the
last sender report and sending the receiver report. The round trip time propagation
delay (T) is the smallest RTT. Adding this RTT, the sender computes the new
appropriate transmission rate.

At the receiver side, enhanced RTP offers the ability to estimate the bot
tleneck bandwidth of a connection based on the packet pair approach described by
Bolot (cf. [B0192]). The essential idea behind this approach is: 11 If two packets can
be caused to travel together such that they are queued as a pair at the bottleneck,
with no packets intervening between them, then the inter-packet spacing will be
proportional to the time required for the bottleneck router to process the second
packet of the pair 11

• The bottleneck bandwidth (b) is calculated as:

b = probepacketsize
gapbetween2probepackets

To estimate the average bottleneck bandwidth, LDA + rely on the BPROBE
tool ([CC96]), clustering similar estimates into intervals , and choosing the average
of the interval with the highest number of estimates. The estimated value is then
sent back to the sender with the next receiver report.

70 CHAPTER 4. OTHER MECHANISMS

4.2.2 Major concept

Dynamic determination of the Additive Increase Rate (AIR)

The increase and decrease factors for AIMD scheme are dynamically adjusted to
the network conditions:

• The amount of additive increase (AIR) is determined to ensure that:

1) flows with a low bandwidth can increase their rate faster than flows
with a higher bandwidth,

2) flows do not exceed the estimated bottleneck bandwidth ,

3) flows do not increase their bandwidth faster than a TCP connection.

AIR is set first to a small value (often 10 Kb/ s) and is then increased during
periods of no losses. So if no loss is detected, the sender computes the AIR'
for the next period as follow: AIR' = AIR + AIR * B t with B J = 1 - 5
where r is the current rate and b the estimated bottleneck bandwidth. The
B f factor is used to allow connections with low bandwidth share to use larger
AIR values and thereby converge faster to their fair bandwidth share. The
new rate r' is then set to: r' = r + AIR'

• In case of loss detection , the transmission rate r in decreased based on the
decrease factor (Ri), proportional to the indicated losses (1) as follow: r' =
r * (1 - (l * Ri)) but never under the value given by the TCP throughput
equation. RJ (usually set between 2 and 5) represents the degree of reaction
due to losses. A high value results in a fast reduction of the transmission
rate but a more oscillatory behaviour. A low value, on the other hand, leads
to a more stable rate but a longer convergence time.

4.2.3 Structure of exchanged packet

Data packets

Figure 4.3 depicts the structure of RTCP packets enhanced for LDA + sent by the
sender.

Src. seq. num. SEQ n

Figure 4.3: Structure of LDA + data packet

where

4.3. TEAR: TCP-FRIENDLY EMULATION AT RECEIVER 71

- Src. seq. num. is the source sequence number of the sent packet,

- SEQ is the sequence number of the packet that starts the stream of probe
packets,

- n is amount of probe packets that will be sent,

- ... is the typical RTCP packet information.

Feedback packets

Figure 4.4 depicts the structure of feedback packets for RTCP enhanced for LDA +
received by the sender.

Frac. Joss. Q,sR 1nLSR Estim. Bandwidth

Figure 4.4: structure of LDA + ACK packet

where

- Frac. loss is the fraction of lost data,

- tLsR is the timestamp of the la.st received sender report,

- tDLSR is the time elapsed in between receiving the la.st sender report and
sending the receiver report,

- Estim. bandwidth is the estimated bottleneck bandwidth by the receiver,

is the typical RTCP packet information.

4.3 TEAR: TCP-Friendly Emulation At Re-
. ce1ver

TEAR (cf. [IRY00]), from Injong Rhee, Volkan Ozdemir and Yung Yi, is a new
flow control approach for congestion control mechanism for unica.st flow . Indeed,
TEAR shifts most of flow control mechanisms to receivers. The receiver does not
send to the sender the congestion signais (packet arrivals, packet lasses, timeout , ...)
detected in the forward path but rather processes them immediately to determine
the appropriate transmission rate. Using the network congestion signais and using
a congestion window (just as TCP), the receiver can emulate the TCP sender 's
flow control fonctions. It estimates thus the TCP-Friendly rate (reactions of TCP)
for the congestion conditions observed in the forward path, smoothes the estimated

72 CHAPTER 4. OTHER MECHANISMS

values of steady-state TCP's throughput by filtering the noise and finally reflects
it to the sender.

The big advantage of this mechanism is that for asymmetric networks, such
as wireless networks, cable modems and satellite networks, transmitting feedback
for (almost) every packet received (as it is "done" in TCP) is not very attractive
because of the lack of bandwidth on the reverse links. Thus packet losses and
delays occurring in the reverse paths severely degrade the performance of round
trip based protocol (TCP), resulting in reduced bandwidth utilization, ...

4.3.1 General way of working

Principle:

Step 1: The receiver measures losses, delays and keeps track of the arrived packets.
It computes the "TCP fair throughput" then sends it back to the sender
(in periodic feedback packets).

Step 2: The sender uses this feedback to adjusts its transmission rate.

At the sender side, the sender just adjusts its sending rate to the rate for
warded by the receiver.

At the receiver side, the TEAR protocol behaves almost like TCP: slow
start , congestion avoidance, fast recovery, timeout phases correspond to TCP's
features (+ window emulation of TCP).

The difference lies in the management of the CWND at the receiver. CWND
is initialised to 1 packet and the SSthresh is set to a default value (larger than
2). When a packet is received in sequence, CWND is incremented by 1 if in slow
start phase, by lastciv ND if in congestion avoidance phase (just like TCP). At
the beginning of each round (see next point), last CWND is updated and used to
compute the next round's increment. When the protocol is in slow start phase and
the CWND is larger than the SSthresh, the protocol skips to congestion avoidance
phase.

4.3.2 Major concepts

Rate independence

The probability of having a packet loss within a window of x consecutively trans
mitted packets does not depend on their transmission rate. In today's Internet,
packets are dropped from routers indiscriminately of the transmission rate of the
flows when routers lack of buffer but because of the prevailing of tail-drop queuing
management , packet losses are highly correlated.

To decrease this correlation, TEAR treats the losses likely correlated as a loss
event, in the same way as TCP with its congestion window. Under such operating
conditions , rate independence can be generally assumed.

4.3. TEAR: TCP-FRIENDLY EMULATION AT RECEIVER 73

Round

As TCP with its congestion window (CWND) that indicates the number of packets
in transit, TEAR maintains also a variable but at the receiver this time and updates
it according to the same algorithm based on the arrivai of packets.

A transmission session is partitioned into non-overlapping time period, called
round. A round contains roughly an arrivai of packets from the congestion window.
In TCP, a "round" is recognized at the sender when an acknowledgment packet is
received for the reception of packets in the current congestion window whereas in
TEAR the receiver can recognize a round when receiving packets.

As you can see, the TEAR rounds depend on the transmission rate unlike TCP.
This difference may cause CWND to be updated at different times: every round
for TEAR instead of every RTT for TCP. To account for this discrepancy, TEAR
estimates the TCP throughput by assigning a fictitious RTT to each round. When
estimating the transmission rate during one round, TEAR <livides the current value
of CWND by the current estimate of TCP instead of the real-time duration of the
round. The TEAR receiver estimates the TCP throughput by taking a long-term
weighted average of these per-round rates and reports it to the sender. The sender
adjusts its rate to the reported rate.

Rate computation

TEAR follows the typical behaviour: Additive Increase / Multiplicative Decrease,
characteristic sawtooth pattern of the transmission rate. Although instantaneous
rates would be highly oscillating, long-term throughput would be fairly stable.
So the idea is to set the TEAR transmission rate to an average rate over some
long-term period T (called epoch).

At the end of each round, the receiver <livides the sum of all the CWND samples
recorded in the current epoch by the sum of the RTT recorded in that epoch. The
result is called rate sample of this epoch. At the end of each epoch, the rate is set to
the most recent rate sample, which gives a smoother rate adjustment. But because
of the noise, the algorithm includes more than just the current epoch. Introducing
some weighted average over rate samples, the previous computation are taken into
account to try to consider only reliable samples, large enough epochs, ...

Feedback: the sender sets its transmission rate to the most recently received
rate from the receiver. If the most recent computed transmission rate is lower than
the previous reported one, the receiver reports it immediately to the sender. Other
way, the receiver will send its rate at the end of a feedback round.

4.3.3 Structure exchanged of packet

The packets structure is not different of TCP ones; the only difference stands in
the feedback packet indicating the computed "fair" transmission rate.

74 CHAPTER 4. OTHER MECHANISMS

1
RAP

1
TFRC

1
LDA+

1
TEAR

Communication Unicast Unicast* Unicast* Multicast
Adaptation States TCF equation Bottleneck Window emul.
Complexity Low Medium High Low
feedback Each packet Own periodic Enhanced RTF Own periodic
Rate Sawtooth smooth Sawtooth smooth

Table 4.1: Characteristics of the presented mechanisms

4.4 Conclusion

In this chapter, we introduced three other TCP-Friendly congestion control mech
anism working with different ways . The choice of a congestion control mechanism
depends on the task to do, the network characteristics and the traffic requirements
of the sending application. On controlled or closed environments, like a company's
intranet , we can use the one we want even if we have to change the network in
frastructure. But for a global deployment on the Internet, the task is high time
consuming and very costly. The choice is not easy. Indeed, such solutions are likely
to be used only if they offer vastly improved performance over solutions that can be
used with today 's Internet infrastructure. The deal is to find a good mix between
difficulties and benefits .

All the introduced mechanisms are end-to-end protocols, being completely im
plemented in the end system without any additional features in the routers. To
mimic TCF furthermore, they have to suffer from high RTT variations. They all
perform a rate-based congestion control but compute differently their adaptation.
Table 4.1 shows the main characteristics of those protocols.

All performing he AIMD scheme, TFRC computes the increase of its sending
rate based on the TCF throughput equation and eut in half when losses are de
tected; LDA + does not eut in half its sending rate in case of congestion, it computes
an value (positive or negative) to add to the sending rate based on the bottleneck
bandwidth and the proportion of loss. TEAR uses a window to emulate the TCF
reactions and sends back to the source the computed rate based on it. RAF follows
the AIMD scheme: cutting in half its ending rate when congestion and increasing
its rate depending on its current state (like TCF).

For the kind of communication, TEAR, TFRC and LDA + can be extended to
multicast communication (*). RAF, acknowledging every received packets, could
not deal with the amount of generated packets in response from all the destinations.

For he feedback information, TFRC and TEAR are working by themselves;
they rely on periodic feedback reports generated by the receiver based on their
current RTT and transmission rate. LDA + relies on an enhanced RTF to ensure

1

4.4. CONCLUSION 75

periodic feedback information over the network. RAP, like TCP, is based on the
explicit acknowledgements of the received packets (with some options for TCP) .

In fact, RAP looked to be a good mix between complexity and improvement
of UDP, trying to conciliate the smoothness of adaptation scheme preferred for
multimedia applications and a competing but fair aggressiveness towards the other
kinds of flows for the network resources.

Chapter 5

Simulations

The goals of RAP is to ensure neither TCP nor RAP to be able to monopolize
the whole bandwidth and furthermore to guarantee a fair sharing of the network
resources between all the sources.

Over the single bottleneck configuration scenario, by modification of central
parameters , we will try to see if the RAP protocol is a well behaved and TCP
Friendly protocol dealing with real-time multimedia applications over best effort
networks.

In this chapter, we focus on the behaviour of RAP, compared with TCP (as
the base case), first by considering only RAP flows, then confronted with TCP
flows over a best effort network with routers performing FIFO or RED queuing
management. We will end this chapter by some comparisons between simulations.
One of the goals of these comparisons is to show the influence of different kinds
of queuing discipline (in fact FIFO and RED) on the TCP (base case) and RAP
transmission scheme, achieving fairness or not. Another goal is to determine the
variability of the protocols confronted to different modifications (packets size and
increased RTT).

5.1 Single bottleneck topology

The topology used for the single bottleneck scenario is depicted in Figure 5.1. It
consists in a single shared link between five greedy sources, sending an infinite
amount of data while trying to avoid collapse and starvation. The parameters used
for RAP and TCP simulations are summarized in the table 5.1. Specific values
will be indicated in case of changes. It should be noted that:

l. The buffer sizes in the routers are chosen based on the data packet size to
congestion both RAP and TCP sources approximately at the same level
when evaluated separately. Too large buffers could have led to manipulate
enormous data, useless for the simulations. The chosen values allowed each

77

78 CHAPTER 5. SIMULATIONS

flows to enqueued at least few packets (7 or 8) before entering in congestion
phase. The link bandwidth ensures the 10 msec of transmission time for a
packet on the bottleneck link.

2. The RED version implemented and used for the simulation is described as
RED_ 4 in [CE99], and takes into account the packet size. Uniformly drop
ping packets, long packets will be more likely dropped than small ones.

3. Related to the small number of sources, each flow entering in congestion and
reducing its sending rate frees a quite large part of the network resources,
immediately used by the other flows. This is one reason of some oscillating
behaviour we will see.

4. The represented data on the graphs correspond to the sent volume of KBytes
computed at the sources (curves) and the behaviour of the queuing discipline
(histogram), thus including for TCP flows the retransmitted lost packets and
the control packets (SYN, ACK, ...) which are smaller than data packets.
The values in the tables are more accurate and take into account the dif
ferent packets sizes of TCP for the throughput and the standard deviation
computations.

5. The sequential start of the flows means that the simulator starts each flow
with a random elapsed time between them to avoid phase effect at the be
ginning. The order is also randomly chosen.

a a

Source n°1 Desti nati on n' l

Source n°4 Desti nati on n°4

Source n°5 Destina tion n°5

Figure 5.1: Single bottleneck topology

5.2. SIMULATIONS RESULTS 79

1 Object 1 Parameters Values
Sources TCP data packet size 1500 Bytes

RA P data pack et size 100 Bytes
RAP ACK packet size 40 Bytes
Sidelink delay (a) 2.5 msec
Fine grain option Active

Backbone
Queuing discipline FIFO / RED (specified)
Bottleneck link delay (b) 10 msec

Only RAP Buffer size 30 Kbits
Link bandwidth 80 Kbps

TCP and mix Buffer size 500 Kbits
Link bandwidth 1 200 Kbps

RED queue Minimum threshold 30% of buffer size
Maximum threshold 60% of buffer size
Max. drop probability 10%

Simulation Simulation length 105 sec
Start-up phase sequential starts

Table 5.1: Single bottleneck scenario parameters (SBN)

5.2 Simulations results

These simulations first illustrate the behaviour of TCP (base case for the rest of
the simulations) with FIFO and RED queuing policy in the routers.

Afterwards, we will observe RAP confronted with itself, its intra-protocol fair
ness. The goal is to determine whether RAP is fair with itself or not. By fairness ,
we will observe the shared bandwidth along the RAP flows, the amount of trans
mitted packets and the influence of the different queuing disciplines.

We will then illustrate the RTT bias of TCP and the RAP behaviour confronted
to it.

5.2.1 TCP base case simulations

TCP with FIFO policy

The first simulation represents 5 co-existing TCP flows sharing the bottleneck
bandwidth, FIFO as queuing discipline in the routers and no RTT modification.

We expect that TCP shares fairly the bandwidth between all the 5 flows (almost
5 confounded lines for graph (2)), sending the same volume of KBytes (3150 Kbytes
are in average expected to be sent). The FIFO queuing discipline could interfere
but with minor effect .

80 CHAPTER 5. SIMULATIONS

We can observe on Figure 5.2 that the 5 sources transmit almost the same
amount of data at the same rate along the simulation (same slope for each curve).
We can notice that TCP undergoes in average 5% of loss, quite a high loss but
resulting of the small amount of sources. Small variations between the flows can
be seen, the throughput oscillates a little bit but stays in average the same as show
the small standard deviations really close to their average (12,14 KBytes/ sec) . We
can say that the long-term fairness is good despite a short-term oscillation.

This could be explained by multiple causes: the bursty characteristic of the
TCP transmission scheme combined with the FIFO policy, dropping in one time
more packets of the same flow. It may also be due to a too short simulation length
(not enough to converge) , to some inner random parameters of the simulation or
to some precision problems in computing values.

lntra-proloc:ol laimou. TCP wi h FIFO quoue (2)

5000 .--~-- - --~----,T,,..,CP,..-1 =.-=._--,

-- 4500 ~g~~ ~.---·· I 4000 TCP4 -
~

3500
TCPS -.

E 3000

! 2500 ..
:;; 2000

i 1soo

" 1000
U) 500

20 40 60 60 100 120

lime (sec)

...
'i lSOD

" ~~
e 1500

~ 200D

• Q ISOO
>
ë IOOI

i ..

Flows Throughput
(KBytes/ sec)

TCPl 30,97
TCP2 31,16
TCP3 26,53
TCP4 29,57
TCP5 32,03
Ideal 30

TCPl TCP2 TCPJ TCP4 TCP5

Sowces

St dev
(KBytes/ sec)

12,26
10,83
12,02
12,35
13,21

Figure 5.2: 5 TCP flows with FIFO queue: base case (FIFO)

5.2. SIMULATIONS RESULTS 81

TCP with RED policy

The second simulation is almost the same as the first one but this time with RED
as the queuing discipline in the routers.

We expect that the network resources sharing will be almost perfect between
all the 5 flows, due to the RED management (dropping randomly the same amount
of packets of each flow in an homogeneous way).

We can observe on Graph 5.3 that the 5 sources do not transmit the same
amount of packets for the simulation. The sending rate is almost equal for flows 3,
4 and 5 (slope of the curves are parallel) while a bit less for flows 1 and 2. Each
flows undergoes the same number of drops . Small variations between the flows can
be seen, the throughput oscillates a little bit but stays in average the same (st _ dev
close toits average of 11 ,67 KBytes/ sec) .

This could again be explained by the same causes as in the previous simulation:
the bursty characteristic of the TCP transmission scheme. Even if the drops are
more homogeneous, flows 1 and 2 suffer from it more than the other during the first
15 seconds , probably due to the start-up phase of TCP . Catching less bandwidth
at the beginning, we may expect that the fairness will be reached at long-term even
if the short-term is quite oscillating. It may also be due to some inner statistic
bias.

5000

4000

3000

2000

1000

lnl rn-protocol taimes.s: TCP with RED queuo (2)

TCP 1 -
TCP2 ····-·
TCP3 ·······
TCP4 -
TCPS --~·

~
~ · ,,

""'
-;; J.(00

" !' JOOD

g !.((IO

~ 2000
ë = Q 1500

• ë 1000

~ 500

0 """--~~~-~-~-~--'
0 20 40 60

Timo (soc)

Flows

TCPl
TCP2
TCP3
TCP4
TCP5
Ideal

80 100 120

Throughput
(KBytes/ sec)

27,94
27,20
32,70
31,50
30,39

30

TCPl TCP2 TCPJ TC P4 TCPI

Sources

St dev
(KBytes/ sec)

10,71
11 ,43
12,35
11,01
12,85

Figure 5.3: 5 TCP flows with RED queue: base case (RED)

82 CHAPTER 5. SIMULATIONS

TCP-fifo Vs TCP-red

Comparing the TCP-fifo and the TCP-red simulation, using RED as queuing dis
cipline generates more drops but it uniformly spreads them through the 5 flows
along the simulation, ensuring drop fairness and thus smoothing the throughput
fluctuation. The standard deviations, smaller in the second one, confirm it (flows
reacting more slowly) even between the flows.

5.2.2 RAP simulations

RAP with FIFO policy

This simulation represents 5 co-existing RAP flows sharing the bottleneck band
width, FIFO as queuing discipline in the routers and all sources have the same
RTT.

Designed to adapt its sending rate smoothly, we expect that RAP will share
fairly the bandwidth between all the 5 flows (almost 5 confounded lines for graph
(2)), sending the same volume (210 KBytes are in average expected to be sent
based on the router parameters) . The FIFO queuing discipline should not interfere
too much because of the smooth transmission scheme of RAP.

We can observe on Figure 5.4 that the 5 sources transmit quite the same amount
of packets at the same rate along the simulation (sur line slopes for each curve).
The FIFO policy maintained this state, forwarding packets in a "blind" way. The
sending rate is smooth with really light variations (low standard deviations and
all close to the average of 0,56 KBytes/ sec), the light variations coming from the
FIFO policy. The curves are almost straight, indicating the quasi linearity of the
transmission.

So, RAP flows adapt themselves to each other in a smooth way, without dom
inating flows, what could lead to flow starvation. We can say that the short-term
and long-term fairness are good. The small variations are due to the FIFO policy,
dropping consecutive packets of the same flow because of buffer overflow. But even
with it , the rate still stays smooth.

5.2. SIMULATIONS RESULTS

lntra-protocol laimess: RAP wilh FlFO queue (2)

400 ~~-~-~-~-~-~

350

300

20 40 60

Time (soc)

80

RAP1-
RAP2 ·-
RAP3 ·······
RAP4 -
RAPS - -

i JOO

~
>i 250
= ~ 200

~
E ISO

= 0 100
~

ë 50
~

Vl 1

Flows Throughput
(KBytes/sec)

RAPl 1,95
RAP2 2,07
RAP3 1,89
RAP4 1,99
RAP5 2,12
Ideal 2

RAPl RAP2 RAPJ RAP4 RAP5

Sources

St dev
(KBytes/ sec)

0,54
0,60
0,56
0,50
0,59

Figure 5.4: 5 RAP flows with FIFO queue: base case (FIFO)

83

84 CHAPTER 5. SIMULATIONS

RAP with RED policy

This simulation is almost the same than the last one but this time with RED as
queuing discipline in the routers.

We expect that the network resources sharing will be better than before be
tween each the 5 flows, due to the RED management (randomly dropping the
same amount of packets of each flow in an homogeneous way). This is supposed to
represent the ideal scenario for RAP.

We can observe on Figure 5.5 that the 5 sources transmit in average the same
amount of KBytes (210,6 KBytes) for the simulation. The sending rate is almost
equal and quasi-linear (slope of the curves are parallel and almost straight). The
loss ratios are the same (17.5 % in average).

This could again be explained by the smooth transmission scheme of RAP
combined with the RED policy. The drops are more homogeneous; the flows do
not suffer from consecutive losses and thus react with small variations, all together
in a smooth way (low st_devs and close to the average of 0.49 KBytes/ sec).

lnlrn-protoco1 laimos,: RAP wilh RED queue (2) soc-----------~
- 450

i 400
;- 350

-1 3CX)

: 250 ..
• 200
3
~ 150

ë 100
Ji

50

RAP1 -
AAP2 ···-····
RAP3 ···
RAP4 -
RAP5 ·-···

O""""-~-~~~~-~---'
0 20 40 60 BO 100 120

Timo (sec)

~

" Jill E
;: 1'8

g 200

~ e 1io

= 0 100
>
ë 50
~

'Il '

Flows Throughput
(KBytes/ sec)

RAPl 1,98
RAP2 1,95
RAP3 2,14
RAP4 1,93
RAP5 2,02
Ideal 2

RAPl RAP2 RAPJ RAP4 RA PS

Sources

St <lev
(KBytes/ sec)

0,53
0,43
0,51
0,48
0,49

Figure 5.5: 5 RAP flows with RED queue: base case (RED)

5.2. SIMULATIONS RESULTS 85

Protocol FIFO st dev RED st dev Ratio
(Kbytes/ sec) (Kbytes/sec) %

l
t----T---,C_P_-+l--1_2,_14 __ t __ ll_,6_7_---+-l-4----<
. RAP . 0,56 . 0,49 . 14

Table 5.2: Impact of RED on TCP and RAP flows

RAP-fifo Vs RAP-red

Comparing the RAP-fifo and ~he RAP-red simulation, it is obvious that using RED
as queuing discipline generates more drops but it uniformly spreads them through
the 5 flows along the simulation, ensuring drop fairness and thus smoothing the rate
fluctuation. The standard deviations, smaller in the second one, confirm it (flows
reacting more slowly). The amount of transmitted KBytes is fairer using RED; the
slopes of the curves of the second simulation are almost straight and confounded,
indicating that the sending rate adaptation is quasi-linear and the same for all the
flows (not true for the first simulation).

FIFO queue Vs RED queue

Mixing the four first simulations is interesting to determine if applying the RED
queue policy on TCP or RAP flows has a different impact. Based on the average
standard deviation of the four simulation (cf. Table 5.2), RED seems to react

b RAP h Tep Th . AverageFIFOst dev . d fi
etter on t an on . e rat10 AverageREDst dev m icates an in uence

of 10% higher for RAP than for TCP. The reason cornes from the transmission
scheme of RAP, smoother than TCP (lower standard deviations) . Indeed, RED
used with RAP, try to homogeneously spread the losses of already homogeneously
mixed flows. A contrary, TCP and its bursty characteristic does not help RED. So,
the optimal working of RAP should be obtained with RED as queuing discipline.

5.2.3 Mixed flows simulations

FIFO policy

This s1mulat10n shows how RAP and TCP adapt themselves to each other, how
they share the bandwidth, how they suffer from competition, from losses, ...

Designed to mimic TCP , RAP is supposed to adjust its sending rate to avoid
any TCP starvation by using all network resources. Here the concept of fairness
is an equilibrium between the number of transmitted packets and the obtained
throughput. Combining the packet size of each protocol and the FIFO policy, the
drop probability of TCP will be higher than the one for RAP (between 7 and 12
times bigger).

86 CHAPTER 5. SIMULATIONS

Examining the Figures in Figure 5.6 separately, we could conclude that RAP
does not achieve its goal. First, it seems that RAP has far less throughput (4,5
times less) than TCP. Then if we compute the number of sent packets, it looks
that RAP sends far more packets than TCP (3 times more).

In fact, this is exactly how RAP is supposed to react and it can be seen by
examining its standard deviation: it is far lower than the one of TCP, indicating
that it reacts in a smoother way (goal for multimedia). The major point is the RAP
packets size (100 Bytes for RAP and 1500 Bytes for TCP, so 15 times longer) . Due
to the FIFO policy, small packets are more easily enqueued in the router's buffer
than big ones (which are dropped) even if they are more numerous . That's why
the average loss probability wont be correlated with a factor 15 but with a smaller
one. TCP is thus undergoing more drops while RAP is able to sent more. If RAP
does well mimic TCP, it should be checked by the TCP throughput equation (cf.
[MSM097]):

Th h
PacketSize * C

roug put=-:::-::::--::-::----;::======
RTT * ✓ LossProb.

The average loss probability for TCP is 3,39 and 0.34 for RAP. The C constant
is equal for the same simulation and the RTT (may be somewhat smaller for RAP)
does not play a major role. If we introduce those values in the equation, TCP
obtains indeed in average 4,5 times more throughput than RAP.

lntor.-prolocol laimoss: FIFO queue (2) ""
6000 .------~- ~-----,T=cp,.--1 -=:_-:=_-,

20

Time (sec)

Flows

TCPl
RAP2
TCP3
TCP4
TCP5
Ideal

RAP2 -·----
TCP3 ·····
TCP4 -
TCPS ---·

'i J.!-00

" ~ xœ

~ 2500

Q 20011 e •
0 ""' • ë 1000

: ~ -

Throughput
(KBytes/ sec)

38,17
7,77
33,21
36,79
34,30

30

TCPl RA P2 TCPJ TC P4 TCP5

SoUJUS

St dev
(KBytes/ sec)

13,10
3,14
13,23
13,90
12,15
-

Figure 5.6: Inter-protocol fairness (FIFO queue)

5.2. SIMULATIONS RESULTS 87

RED policy

This simulation is almost the same than the last one but this time with RED as
queuing discipline in the routers.

We expect that the network resources sharing will be better then before between
all the 5 flows, due to the RED management (randomly dropping the same amount
of packets of each flow in an homogeneous way) to reach the fairness .

We can observe on Figure 5. 7 that the 5 sources transmit in average the same
amount of KBytes for the simulation (with the same comments for RAP in the last
simulation) . The sen ding rate is quasi-linear (slope of the curves almost straight).
We can thus deduct that at short-term or long-term, the fairness, based on the
TCP throughput equation, is achieved.

5000

20

ln18f-protocol laim es.s: RED queue (2)

40 60 BO

Timo (sec)

Flows

TCPl
RAP2
TCP3
TCP4
TCP5
Ideal

TCP1 -
RAP2 ··-·
TCP3 ···
TCP4 -
TCP5 - -

~

C 1

~ '!CP! RAP2 '!CP] TCP4 TCPS

Throughput
(KBytes / sec)

36,60
9,38
34,19
37,21
32,46

30

SolllCes

St dev
(KBytes/ sec)

13,06
3,78
11,37
12,77
12,65

Figure 5.7: Inter-protocol fairness (RED queue)

88 CHAPTER 5. SIMULATIONS

5.2.4 Mixed flows simulations with equal packets s1ze

FIFO policy

This simulation shows how RAP and TCP adapt themselves to each other, how
they share the bandwidth, how they suffer from competition, from losses but this
time, the RAP packets size is equal to TCP packets size (1500 Bytes), which is not
a too realistic packets size for multimedia applications (usually smaller to be able
to minimize delays and jiters) but useful to give an overview of RAP's behaviour
without the packets size bias.

RAP is still supposed to smoother adjust its sending rate to avoid any TCP
starvation by using the whole network resources but here the concept of fairness is
not an equilibrium between the number of transmitted packets and the obtained
throughput anymore. RAP should obtain the same network resources than TCP.

Examining the graphs in Figure 5.8, we can observe that RAP sent a bit more
KBytes than TCP while undergoing less drops. TCP fl.ows look quite oscillating.
Each standard deviation is small and close to their average (12,99 KBytes/ sec) , in
dicating that the flows reacted in the same way. The slopes of the curves stay qui te
parallel (almost equal sen ding rate) w hat indicates that the diff erences between the
flows just appear at the beginning of the simulation. With a longer simulation, we
could confirm that the fairness will be achieved at long-term.

The fewer drops, the more sent data of RAP and the oscillating character
of the TCP flows could be explained by the bursty transmission scheme of TCP
compared to the smooth scheme of RAP, combined with the FIFO policy, dropping
more often burst of TCP packets than isolated RAP ones.

5.2. SIMULATIONS RESULTS

5000

4000

3000

2000

1000

0
0

lnter-protocol laimess: FIFO queue and equal packels size (2)

20 40 60

Time (sec)

Flows

TCPl
RAP2
TCP3
TCP4
TCP5
ldeal

80

TCP1-
RAP2 -- ·--- ·
TCP3 ·--- ·
TCP4 -
TCP5 -

100 120

Throughput
(KBytes/ sec)

28,26
36,37
27,36
25,53
32,67

30

TC Pl RAPl TCPJ TCP4 TCP5

Sources

St <lev
(KBytes/ sec)

12,33
13,53
13,63
11,86
13,60

89

Figure 5.8: Inter-protocol fairness (FIFO queue and equal packets size)

90 CHAPTER 5. SIMULATIONS

RED policy

This simulation is the same than the last one but with RED as queuing discipline
in the routers. RAP is still using long packets (1500 Bytes). Now that the packets
size is the same, RED will not drop more likely TCP's packets than RAP's ones
(cf. 5.1).

We expect the flows to adjust their rate in the same way, to undergo the same
loss probability and to share the network resources almost perfectly.

We can observe on Figure 5.9 that the 5 sources transmit almost the same
amount of data for the simulation. The sending rate is quasi-linear (slope of the
curves almost straight) and each standard deviation is small and close to their
average (11,22 KBytes/sec), indicating that the flows reacted in the same way. We
can thus deduct that short-term and long-term fairness are achieved .

5000

4000

3000

2000

1000

lnter-prolocol laimess: RED queue ard equal packels sizo (2)
.,.,

20

TCPI -
AAP2 - - ...
TCP3 ···
TCP4 -
TCP5 --·

i l.'IOO

•
~ J(l)O

~ !.'00

~ ?OOG

• ë 1500
>
ë 1000

~ ~00

~ ro oo 100 ,~

Timo (soc)

Flows Throughput
(KBytes/ sec)

TCPl 26,40
RAP2 33,80
TCP3 28,19
TCP4 31,23
TCP5 30,27
Ideal 30

TC Pl RAP2 TCPJ TC P4 TCP5

Sources

St dev
(KBytes/ sec)

10,20
10,90
11,88
11,88
11,26
-

Figure 5.9: Inter-protocol fairness (RED queue and equal packets size)

5.2. SIMULATIONS RESULTS 91

1 Flows I Sidelink (a) 1 Bottleneck link (b) 1 Fixed RTT 1

1, 3, 5 2,5 msec 10 msec 30 msec
2 20 msec 10 msec 100 msec
4 60 msec 10 msec 260 msec

Table 5.3: RTT modification

5.2.5 Simulations with different RTT
From now on, we will observe the reactions (biases) of the different sources related
with variations of their Round Trip Time (RTT). We will examine those biases still
on the single bottleneck scenario depicted at the beginning of this chapter, with
first only TCP sources (base case), then only RAP sources. We will finally observe
the reaction of co-existing flows (one RAP and four TCP) in case of TCP's RTT
modifications.

To modify the RTT, we have significantly increased their sidelink access time
(cf. "a" links on Figure 5 .1) and to generate easily observable reactions, increases
led to almost multiple by 3 and 9 the default fixed RTT, going from 30 msec to
100 msec and 260 msec (cf. Table 5.3) .

TCP simulation

The first simulation represents 5 co-existing TCP flows sharing the bottleneck
bandwidth with FIFO as queuing discipline in the routers and with the fixed RTT
of flows 2 and 4 modified (100 msec for flow 2, 260 msec for flow 4).

We know that TCP suffers from RTT variation, adapting its sending rate slower
then usual, obtaining thus less resources in congestion case. We expect that flows
2 and 4 will receive less bandwidth than the others in proportion to their increased
RTT. The three remaining flows should fairly share the "available" bandwidth left
by the two tested flows.

The observed behaviour on Figures 5.10 looks to what we expected. The stan
dard deviations are smaller for flows 2 and 4 (average st_dev = 12,39 KBytes) ,
corresponding to the higher RTT, indicating that TCP reacts more slowly due to
modified RTT.

We can see that flow 1 exhibits a strange behaviour; it looks to suffer from the
modification of flows 2 and 4 but at the end of the simulation, we can notice that
it reached the two others unmodified flows. With a longer simulation, this should
be converging to what we expect.

92 CHAPTER 5. SIMULATIONS

lnlra-protocol ATT bias: TCP wi h FIFO quoua (2)

Î 5000

f
... 4000

t
: 3000 ..
:;; 1 2CXX)

) 1000

0 TCPl TCP2 TCPJ TCPI TCPS
0

Time (sec) Sources

Flows Throughput St dev
(KBytes/sec) (KBytes/sec)

TCPl 30,93 14,01
TCP2 27,81 11,06
TCP3 31,66 13,22
TCP4 24,67 9,98
TCP5 35,13 13,68
Jdeal 30 -

Figure 5.10: Intra-protocol RTT bias: TCP with FIFO queue

5.2. SIMULATIONS RESULTS 93

RAP simulation

This simulation represents 5 co-existing RAP flows sharing the bottleneck band
width with FIFO as queuing discipline in the routers and with increased RTT for
flows 2 and 4 (tripled for flow 2, times 9 for flow 4) . Note that the RAP packets
size is now again equal to 100 Bytes.

We would like to know, and expect that RAP, like TCP, suffers from RTT
variation, adapting its sending rate slower then usual thus obtaining less resources
in congestion case confronted with smaller RTT flows . We expect that flows 2 and
4 will receive less bandwidth than the others in proportion of their increased RTT.
The three left flows should fairly share the "available" bandwidth not used anymore
by the two tested flows.

The observed behaviour on Figures 5.11 looks to what we expected. RAP
also suffers from the RTT modifications of flows 2 and 4. The proportion of lost
throughput corresponds to the different RTT increases. The standard deviations
are smaller for flows 2 and 4, corresponding to the higher RTT, indicating that
RAP reacts more slowly due to bigger RTT (average st_dev = 0,56 KBytes).

We can still see small oscillations between flows with the same RTT (for the
same reason as in 5.2.2).

lntra-protocol RTT bias: AAP wilh FIFO quoue (2)

500 ~-~-~-~=RAP-::-,1~(.,..,-30-m,~oc~) ::::::::::•

450 ~~~ ~,gg ~=~ :.~-~:::.-::
400 ~~; f2;g ~::;l ==
350

300

250

200

150

100

50

~~~/ 
o""""=-~-~-~~~~~__, 

0 20 40 60 80 100 120 

Timo (soc) 

Flows 

RAPl 
RAP2 
RAP3 
RAP4 
RAP5 
Jdeal 

Throughput 
(KBytes/ sec) 

2,41 
1,69 
2,61 
0,87 
2,44 

2 

RAPI RAP2 RAPJ RAP4 RAPS 

Sow-ces 

St dev 
(KB ytes /sec) 

0,63 
0,48 
0,72 
0,34 
0,65 

Figure 5.11: Intra-protocol RTT bias: RAP with FIFO queue 



94 CHAPTER 5. SIMULATIONS 

Mixed flows simulation 

This simulation represents 4 TCP flows co-existing with 1 RAP flow, sharing the 
bottleneck bandwidth of the single bottleneck scenario with FIFO as queuing dis
cipline in the routers and with increased fixed RTT for flows 3 and 5 (100 msec for 
flow 3, 260 msec for flow 5), two TCP flows (different from the Table 5.3). 

Based on the former simulations, we expect that flows 3 and 5 lose some band
width, in the same way as in simulation 5.2.5 (proportionate to the RTT increases), 
bandwidth which should be fairly shared between the three remaining unchanged 
flows. Knowing that the RAP packets size is equal to 100 Bytes (15 times smaller 
than TCP), we will probably observe the same phenomena as in simulation 5.2.2 

The observed behaviour on Figures 5.12 is what we expected. TCP, suffering 
from bigger RTT, lose some bandwidth for flow 3 and more for flow 5, adjusting 
their sending rate some what more slowly. The standard deviations for those two 
flows confirm it, smaller than the other. 

lnter-protocol RTT bias: FIFO quouo (llows 3 and 5 wilh biggor ATT) (2) 

7000 ..---~~-~-~-~-~ 

6000 

5000 

20 40 60 

TCP1 { 30 msac) -

~~~ f gg ;::~ :~.~'.~.-.·-~ 
TCP4 (260 msoc) -
TCP5 { 30 msec) ----·

80
Timo (sec}

~

z 6IXll

B
>, 5llll

g la»

~
E JOCCI

i ?COO
~
ë lfm
~
r/) 1

Flows Throughput
(KBytes/ sec)

TCPl 42,21
RAP2 10,13
TCP3 33,67
TCP4 41,07
TCP5 22,90
Ideal 30

7CP1 RAP2 7CPJ 7CP4 TCP5

Sources

St dev
(KBytes/sec)

16,09
3,32
12,43
17,77
12,45

Figure 5.12: Inter-protocol RTT bias: FIFO queue (flows 3 and 5 with bigger
RTT)

5.3. SIMULATIONS COMPARISONS 95

TCP-fifo TCP-fifo-rtt TCP-fifo-rtt - TCP-fifo
Forwarded vol. Forwarded vol. Difference Variation

(KBytes) (KBytes) (KBytes) %
3354 3388,5 34,5 +1,03 %
3372 3037,5 -334,5 -9,92 %
2934 3483 549 +11,37 %
3201 2676 -525 -16,40 %
3432 3823,5 391,5 +11,41 %

Table 5.4: Impact of RTT on TCP flow s

5.3 Simulations comparisons

5.3.1 TCP-fifo Vs Mixed-fifo(1500)

Those two simulations show that, with equal packets size, RAP quite well mimics
TCP. If we compare the four TCP common flows from the first and the second
simulation, we can notice that both TCP sources transmit in average the same
amount of packets (in fact a little bit less for the second). RAP benefits from the
FIFO queuing discipline in the routers combined with the bursty characteristic of
TCP to undergo less drops and catching a bit more of bandwidth.

5.3.2 TCP-fifo Vs TCP-fifo-rtt

Those two simulations indicate the bias of TCP confronted to longer RTT with
FIFO queuing policy. The different behaviour are depicted in Table 5.4

The bandwidth reduction of flows 2 and 4 are correlated with a factor 2 (9% and
18%), representing the proportional increase of their respective RTT. One thing to
mention, the small increase of throughput of flow 1 (1,3%) results from its strange
behaviour during almost the whole simulation, reaching its expect place only at the
end. A longer simulation would confirm the intuition of the end of the simulation.

5.3.3 TCP-red Vs Mixed-red(1500)

Those two simulations show that, with equal packets size, but this time with RED
as queuing policy, RAP mimics TCP quite perfectly. If we compare the four TCP
common flows from the first and the second simulation, we can notice that both
TCP sources transmit in average the same amount of packets and almost the same
as RAP. Equally spread drops between TCP and RAP based on the greediness of
the sources, RAP behave quite like TCP

96 CHAPTER 5. SIMULATIONS

RAP-fifo RAP-fifo-rtt RAP-fifo-rtt - RAP-fifo
Forwarded vol. Forwarded vol. Difference Variation

(KBytes) (KBytes) (KBytes) %
205,1 253,2 48,1 +23,45 %
217,2 177,5 -39,7 -18,28 %
198,5 274,5 76 +38,29 %
209,4 91,1 -118,3 -56,49 %
222,8 256,6 33,8 +14,77 %

Table 5.5: Impact of RTT on RAP flows

5.3.4 RAP-fifo Vs RAP-fifo-rtt
Those two simulations indicate the bias of RAP confronted to longer RTT with
FIFO queuing policy. The different behaviour are depicted in Table 5.5

The bandwidth decrease of flows 2 and 4 are correlated with a factor bigger
than 2 (20% and 57%), representing more than the proportional increase of their
respective RTT. The repartition of the available bandwidth is well shared between
the three remaining flows. We observe that RAP suffer more of the RTT variation
than TCP. This is due to the way RAP uses RTT to both determine the duration
step for constant bit sending rate and the sending rate itself. With longer RTT,
RAP reacts twice, adapting its sending rate less often and less rapidly.

5.3.5 Mixed-fifo Vs Mixed-red
Comparing the Mixed-fifo and the Mixed-red simulation, it is obvious that using
RED as queuing discipline generates more drops but it uniformly spreads them
through the 5 flows along the simulation, ensuring drop fairness and thus smoothing
the rate fluctuation but mainly for TCP because here, RAP benefits from its small
packet size, undergoing far less drops and thus having a high sending rate.

5.4 Conclusions

These simulations tried to evaluate the TCP-Friendly behaviour of the RAP pro
tocol according to some main parameters (different round trip times, the fine grain
option, ...).

We first evaluated TCP with FIFO and RED queuing discipline to obtain the
base cases for further comparisons. We then tested the RAP protocol confronted
with itself, to see in which way it reacts to different queuing disciplines and packets
size while being compared with TCP. Afterwards we confronted TCP and RAP
again with the FIFO and the RED policies. We finally confronted both protocols

5.4. CONCLUSIONS 97

independently and then mixed with variations of some RTT flows. Knowing that
TCP suffers from that , it was interesting to know if RAP, designed to mimic TCP ,
also suffered from RTT variations.

We observed that RAP adapts its sending rate really smoothly (usual low
standard deviation, less than TCP's ones), which is the main goal we are working
towards for multimedia applications.

It also appears that RAP behaves pretty well in competition with TCP flows ,
adapting its transmission rate based on the network charge without generating any
collapse on the network. It avoids TCP starvation while offering a "quite fair"
bandwidth sharing.

A general observation indicates that using RED as queuing discipline in the
routers uniformly spreads the drops through all the flows along the simulation,
smoothing the adaptive character of the flows.

We can then notice that RAP, like TCP, undergoes the effects of bigger RTT
but far more than TCP. So, RAP seems to be more sensitive to RTT variations.

Thus, in a general way and based on those simulations, we can conclude that
RAP has the researched transmission scheme (smooth) for multimedia applications ,
that RAP is TCP-Friendly, sharing the network resources based on its load and
that RAP, like TCP, also suffers, in a worse way, from the RTT bias.

Chapter 6

Conclusions

In the first chapter, we introduced the today situation of the Internet (wide het
erogeneous best effort network using mainly FIFO as queuing policy). We then
introduced the problem of the emerging multimedia applications based on UDP ,
generating large amount of non-responsive traffic . Suffering from a lack of con
gestion control mechanism, those applications required the addition over UDP of
mechanisms to avoid any collapse or TCP starvation and to ensure a fair sharing
of the network resources.

In chapter 2, we described the two main transport protocols used nowadays:
TCP and UDP . Based on the requirements of multimedia applications and the
transmission scheme of TCP and UDP, UDP has been chosen and enhanced by
RTP, in a first step, to provide flow control and some more services. And now, in
a second step, a congestion control mechanism is envisaged.

In chapter 3, we fully described the Rate Adaptive Protocol (RAP) as a con
gestion control mechanism. Designed to mimic TCP, it performs a compatible
transmission scheme with TCP, ensuring TCP-Friendliness and fair sharing of the
network resources with responsive flows.

In chapter 4, we introduced 3 other congestion control mechanism, working in
different ways than RAP to show that multiple solutions can be followed. De
pending on the users requirements, they have specific features characterizing their
utilisation choice.

In chapter 5, we confirmed the TCP-Friendliness and fair sharing of RAP ,
when competing with TCP flows. We pointed out some specific behaviours of
RAP encountering typical problems (RTT variations, different sources , different
packets sizes).

99

100 CHAPTER 6. CONCLUSIONS

6.1 Evaluation

The main goal designing RAP was to avoid new congestion collapse of the Internet
due to enormous uncontrolled traffics. Being too aggressive, UDP, even if less
used on the net than TCP, may lead to extreme unfairness related with controlled
traffics, monopolizing the resources.

Applications that can sustain a certain amount of loss may find RAP interesting
for its ability to adapt to the network load while, at the same time, acting in a TCP
Friendly way. Nevertheless, RAP should not be used in the context of applications
requiring no loss or multicast communication.

For what kind of applications is RAP useful. Only applications able to adapt
their throughput and having to do it.

The scenarios of the simulations were supposed to be the best ones to ob
serve differences between FIFO and RED policy (because undergoing high lasses
cf. [CJOS0l]). In fact, the RED effect was almost insignificant. Furthermore,
those differences only appear above 90% of load, what is almost never reach in
reality.

We observed that the throughput of RAP behaves in same way as TCP but
more smoothly, reaching a "fair" state in the sharing of the network resources.

6. 2 Further wor k

One main characteristic pointed out through the simulations is the high sensitivity
of RAP when confronted with RTT variation. It should be of high interest to mod
ify the way the RTT cornes into play in the transmission rate adaptation scheme.
Another non-trivial challenge would be to modify RAP and its implementation to
support multicast communications.

It would also be interesting to confront TCP, RAP and UDP flows in one
simulation to observe the competition and estimate the resistance of TCP and
RAP faces the aggressiveness of UDP , (also adding the introduced congestion
control mechanisms of Chapter 4).

The simulations done are a bit too theorical. To estimate the RAP behaviour
related with real conditions, more realistic simulations would be of greater interest.
For example, simulations with longer duration time to observe the long-term re
sults (avoiding start-up effects and strange behaviour due to not well appropriated
initialisation of variable or too short convergence time). Adding more sources (es
pecially TCP sources) would trend to represent daily configuration of the Internet
(and minimizing the oscillating behaviour observe for TCP).

Finally, an good improvement would be to allow to parameter the adaptivity
scheme of RAP based on the applications output rate. This could lead to a mech
anism able to adapt itself to every kind of streaming flows , avoiding the drawbacks

6.2. FURTHER WORK 101

of both UDP and TCP: less aggressive than UDP and reacting smoother than
TCP.

Bibliography

[Bol92] J.-C. Bolot. End-to-end packet delay and loss behaviour in the internet.
Computer Communication Review 23, n°4, oct 1992.

[Bra89] R.T. Braden. Requirements for internet hosts-communication layers.
Internet Engineering Task Force, RFC 1122, oct 1989.

[CC96] R. L. Carter and M. E. Crovella. Measuring bottlenck link speed in
packet-swichted networks. Technical Report BUCS-96006 , Computer
Science Departement, Boston University, mar 1996.

[CE99] S. De Cnodder and O. Elloumi. RED behaviour in the presence of dif
ferent packet sizes. Technical Report TTD-816, Alcatel Bell, Network
Architecture, Traffic Technologies, 15 September 1999.

[CJOS0l] M. Christiansen, K. Jeffay, D. Ott, and F . Smith. Tuning red for web
traffic. Transaction on Networking , 9(3) , jun 2001.

[Cno99] S. De Cnodder. TTD 813: OPNET TCP Simulator, November
1999.

[CP00] S. De Cnodder and K. Pauwels. Rate based n-RED: The final frontier?

[ea96]

[FJ93]

[IRY00]

[Jac88]

Technical Report TTD-819, Alcatel Bell, Network Architecture, QoS,
Traffic and Routing Technologies , 9 February 2000.

H. Schulzrinne et al. Rtp: A transport protocol for real-time applica
tions. Internet Engineering Task Force, RFC 1889, January 1996.

S. Floyd and V. Jacobson. Random early detection gateways for con
gestion avoidance. In IEEE/ A CM Transactions on networking, aug
1993.

V. Ozdemir I. Rhee and Y. Yi. TEAR: TCP emulation at receiver
- flow control for multimedia streaming. Technical report , Dept . of
Computer Science, New-York University, Apr 2000.

V. Jacobson. Congestion avoidance and control. Computer Communi
cation Review, n°18(4):314-329, Aug 1988.

103

104

[Jac90]

[Jac00]

[JPK98]

[MF97]

[MIL]

[Mog93]

BIBLIOGRAPHY

V. Jacobson. Modified TCP congestion avoidance algorithm. end2end
interest mailing list , 30 April 1990.

V. Jacobson. TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms. Internet Engineering Task Force, RFC
2001, J anuary 2000.

D. Towsley J. Padye, V. Fioriu and J . Kurose. Modeling TCP through
put: A simple model and its empirical validation. In A CM SIG
COMM '98, oct 1998.

J. Mahadavi and S. Floyd. TCP-friendly unicast rate-based flow con
trol. end2end-interest mailing list , jan 1997.

Inc MIL 3. OPNET Modeler. Release 7.0.B, Online documentation.

J.C. Mogul. IP network performance. In D.C. Lynch and M.T. Rose,
editors, Internet System Handbook, pages 575- 675. Addison-Wesley,
Reading, Mass, 1993.

[MSMO97] M. Mathis, J. Semke, J. Mahdavi , and T. Ott. The macroscopic be
havior of the tep congestion avoidance algorithm. Computer Commu
nications Review, 27(3), jul 1997.

[Nag84] J. Nagle. Congestion control in IP / TCP internetworks. Internet En
gineering Task Force, RFC 896, 6 January 1984.

[Pos80] J.B . Postel. User datagram protocol. Internet Engineering Task Force,
RFC 768, nov 1980.

[Pos81a] J .B. Postel. ICMP: Internet control message protocol. Internet Engi
neering Task Force, RFC 792, sep 1981.

[Pos81b] J.B. Postel. Transmission control protocol. Internet Engineering Task
Force, RFC 793, sep 1981.

[RF99] K. Ramakrishnan and S. Floyd. ECN: Explicit congestion notification.
Internet Engineering Task Force, RFC 2481, jan 1999.

[SFP00] M. Handley S. Floyd and J. Padhye. TCP friendly rate control (tfrc):
Protocol specification. Internet Engineering Task Force, INTERNET
DRAFT, November 2000.

[SFW00] J. Padhye S. Floyd, M. Handley and J. Winder. Equation-based conges
tion control for unicast applications: the extended version. Technical
report, International Computer Science Institut , mar 2000.

(S899] D. Sisalem and H. Schulzrinne. The loss-delay adjustment algorithm:
A TCP-friendly adaptation scheme, 1999.

BIBLIOGRAPHY 105

[Ste94] W.R. Stevens. TCP / IP illustré: Les Protocoles, volume n°1. Addison
Wesley Publishing company, Inc. , 1994.

[SW00a] D. Sisalem and A. Wolisz. Mdla: A TCP-friendly congestion control
framework for heterogeneous multicast environments. 8th Int 'l Wksp.
QoS , June 2000.

[SW00b] D. Sisalem and A. Wolisz . TCP-friendly adaptation: A comparison
and measurement study. Int'l Wksp. Network and OS Support for
Digital Audio and Video, June 2000.

Appendix A

Simulation tool

In this chapter, we introduce the simulation tool we have enhanced to evaluate the
congestion control mechanism (RAP) and also modules implemented to simulate
this mechanism.

For the simulation tool, a brief introduction will be given (overview of how it
works and what is possible). Based on this, we will see the way RAP has been
implemented in the main layers. For the simulation topology, please refer to Section
5.

A.1 OPNET introduction: way of working

OPNET Modeler 7.0 b ([MIL]) is a vast software package with an extensive set
of features designed to support general network modelling and to provide specific
support for particular types of network simulation projects.

OPNET is a graphical tool for developing networks with different topologies
and based on the C programming language. Its module architecture makes it really
simple to use, new mechanisms can be "easily" implemented and added, tested and
their results analysed.

To be able to simulate TCP traffic with every available upgrades (TCP-Tahoe,
Reno, Sack, Fack, ...) or stuff like ECN, the module STCP has been added . For
more information about how STCP and OPNET are linked to each other, we refer
the reader to [Cno99].

A.1.1 Sorne keywords:

• Object orientation: systems specified in OPNET consist of objects, each
with configurable set of attributes. For example, the PDF editor let you
create, edit, and view Probability Density Functions (PDFs). PDFs can be
used to control certain events, such as the frequency of packet generation in

107

108 APPENDIX A. SIMULATION TOOL

a source module, called ideal generators (i.e. for UDP transport protocol) .
Objects belong to classes which provide them with their characteristics in
terms of behaviour and capability. Definition of new classes are supported
in order to address as wide a scope of systems as possible. Classes can also
be derived from other classes, or specialized in order to provide more specific
support for particular applications.

• Specialized in communication networks and information systems:
OPNET provides many constructs relating to communications and infor
mation processing, providing high leverage for modelling of networks and
distributed systems.

• Graphical specification: wherever possible, models are entered via graph
ical editors. These editors provide an intuitive mapping from the modelled
system to the OPNET model specification.

• Flexibility to develop detailed custom models: OPNET provides a
flexible, high-level programming language with extensive support for com
munications and distributed systems. This environment allows realistic mod
elling of all communications protocols, algorithms , and transmission tech
nologies.

• Automatic generation of simulations: model specifications are automat
ically compiled into executable, efficient, discrete-event simulations imple
mented in the C programming language. Advanced simulation construction
and configuration techniques minimize compilation requirements.

• Application-specific statistics: OPNET provides numerous built-in per
formance statistics that can be automatically collected during simulations.
In addition, modellers can augment this set with new application-specific
statistics that are computed by user-defined processes.

• Integrated post-simulation analysis tools: performance evaluation, and
trade-off analysis require large volumes of simulation results to be inter
preted. OPNET includes a sophisticated tool for graphical presentation and
processing of simulation output.

• Interactive analysis: all OPNET simulations automatically incorporate
support for analysis via a sophisticated interactive debugger.

• Animation: simulation runs can be configured to automatically generate
animations of the modelled system at various levels of detail and can in
clude animation of statistics as they change over time. Extensive support
for developing customized animations is also provided.

A.l. OPNET INTRODUCTION: WAY OF WORKING 109

• Application Program Interface (API): as an alternative to graphical
specification, OPNET models and data files may be specified via a program
matic interface. This is useful for automatic generation of models or to allow
OPNET to be tightly integrated with other tools.

A.1.2 Graphical editors of OPNET: the layers sub-division.

OPNET supports mode} specification with a number of tools or editors that capture
the characteristics of a modelled system's behaviour. Because it is based on a suite
of editors that address different aspects of a mode!, OPNET is able to offer specific
capabilities to address the diverse issues encountered in networks and distributed
systems.

The model-specification editors are organized in an essentially hierarchical fash
ion. Mode! specifications performed in the Project Editor rely on elements specified
in the Nocle Editor; in turn, when working in the Nocle Editor, the developer makes
use of models defined in the Process Editor. The remaining editors are used to de
fine various data models, typically tables of values, packet formats, that will be
later referenced by process - or node - level models.

Organization:

• The project editor: it is the main area to create a network model using
standard abjects from the library. There you can collect statistics about the
network, run the simulations and view the results . You also may access to
sub-layer constructors to create specific objects you need for your experi
mentations, abject like packet format, specific links, ... (Cf. Figure A.l)

110 APPENDIX A. SIMULATION TOOL

1. Open object palette 6. Configure simulation

2. Check link consistency 7. View results

3. Use rapid configuration 8. View web-based reports

4. Return to parent subnet 9. Show or hide graphies

5. Zoom and Restore

Figure A.l: Project editor window

A.l. OPNET INTRODUCTION: WAY OF WORKING 111

• The Network layer: a network model defines the overall scope of a system
to be simulated. It is a high-level description of the objects contained in
the system. The network model specifies the objects in the system, as well
as their physical locations, interconnections and configurations. The size
and scope of the networks modelled can range from simple to complex. A
network model may contain a single node, a single sub-network, or many
interconnected nodes and sub-networks, since the structure and complexity
of a network model typically follows those of the system to be modelled.
Every network object (except links) has an underlying node model, which
specifies the internal flow of information in the object. Nocle models are
made up of one or more modules connected via packet streams or statistic
wires. Nocle modules in turn contain process models, which are represented
by state transition diagram.

• The node editor: develops node models . It is used to define the behaviour
of each network object. Their main components are modules, packet streams
and statistic wires (cf. Figure A.2). The internal functionalities of the mod
ules (process models) will be explained in the next point .

odules

treams

statistic

Figure A.2: Nocle editor window

112 APPENDIX A. SI.l\!IULATION TOOL

• The process model: it is used to control the underlying functionalities of
the node model created in the node editor. Finite state machines, composed
of states and transition, represent process models. Every actions performed
in astate are defined in Cor C++ language. C language has been used here
(cf. Figure A.3)

..
«vJ.,1-'1W' ..

..... j!

f ;ao) rror_tr
1 1
J y 1

" ¼'$,,.,,.

<(fi:_T~)
t'tç;

Figure A.3: Process model window

A.1. OPNET INTRODUCTION: WAY OF WORKING 113

Sorne explanations:

- Each state contains an enter executive and an exit executive, executed
when a process enters and leaves astate, written in C or C++ language.

- As you can see, there are dark (red in OPNET) and light (green in
OPNET) states. The dark ones are called unforced states, this means
that after executing the enter executive, the process model blacks and
returns control to the simulation kernel. The next time the process
model is invoked; execution begins again from the state in which it was
blocked. In the forced states, on the other hand (light ones), the process
model does not stop after the enter executive but carries on straight to
the exit executive and follows the transition to the next state.

- As you can also see, they are two kind of transition represented by
doted and solid lines. The solid lines are unconditional transition: this
means that after having executed the exit executive, the process model
directly proceeds to the next state. The doted lines are conditional
transition. This condition is defined in a macro and explains at which
condition after executing the exit executive the process model is allowed
to carry on to the next state, otherwise the process model is stopped
there and looks for a "true" condition. If every condition are negative
and no unconditional transition carries out of this state, the simulation
stops.

- This simulation tool also offers the possibility to create, edit, and view
link models with specific parameters. You are also able to develop
packet formats models. Packet formats dictate the structure and order
of information stored in a packet and used during the simulations.

114 APPENDIX A. SIMULATION TOOL

Appendix B

lmplemented modules

In this section, we will describe the source, the destination and the router module
based on the different layers explained in the last section. The project editor com
bined with the network layer are mainly used to describe the general configuration
from the physical point of vue with high-level objects (here the single bottleneck
topology) and are depicted in Chapter 3.

The node editor will show the collaboration and interactions between all the
components of every object of the above layers .

Finally the process model layer, which stands at a law-level, contains and puts
in play the implementation code. (For the complete code, please refer to the
appendix)

B.1 Network layer

Here is described the general network topology (single bottleneck) at the higher
level. If we look at Figure B.l, we can see 5 sources (A), 2 router (B) and 5
destinations (C). The sources can be assimilated to ISP.

115

116

8
8-

A

APPENDIX B. IMPLEMENTED MODULES

C

Figure B.l: Implemented source node layer (OPNET)

B.2. NODE LAYER

B.2 Node layer

B.2.1 Sources

117

Figure B.2 depicts the node layer structure of one source object (A) and the way
of working for this source. Sorne simplifications have been brought to make the
graph easier to read.

FIFO queue Sender

---~7~

RAP source Forwarder Rece1ver

Sink

Figure B.2: Implemented source node layer (OPNET)

Explanation:

Node 1 : The RAP source: contains the packets generator controlled by the
RAP congestion control mechanism (main point with the process model
depicted ab ove).

Node 2 : The sink: just used to drop ACK after use.

Node 3 : The forwarder : dispatches the received ACK (TCP and RAP) to the
correct source.

Node 4 : The TCP source: classical object in OPNET, it is the connection
between the STCP module and the TCP node in this module.

Node 5 : The FIFOqueue: simulate the co-existence between TCP and RAP
flows on the same host. It also simulates the access link time.

Nocle 6 : The sender: is the start point of a connection between two modules
(here between the source and a router).

Node 7 : The receiver: is the end point of a connection between two modules
(here between a router and the source).

118 APPENDIX B. IMPLEMENTED MODULES

B.2.2 Destinations

Figure B.3 depicts the node layer structure of one destination object (C) and the
way of working for this destination. Sorne simplifications have been brought to
make the graph easier to read. In fact, it is exactly the same than at the source
with the same goals.

FIFO queue Sender

----------i7~

RAP desti nati on Forwarder Reces ver

Smk

Figure B.3: Implemented source node layer (OPNET)

Explanation:

Node 1 : The RAP destination: contains the ACK generator controlled by the
RAP congestion control mechanism (main point with the process model
depicted ab ove) .

Node 2 : The sink: just used to drop the packets after use.

Node 3 : The forwarder: dispatches the received packets (TCP and RAP) to
the correct destination.

Node 4 : The TCP destination: classical object in OPNET, it is the connection
between the STCP module and the TCP node in this module.

Node 5 : The FIFOqueue: simulate the co-existence between TCP and RAP
flows on the same host. It also simulates the access link time.

Node 6 : The sender: is the start point of a connection between two modules
(here between the source and a router).

Node 7 : The receiver: is the end point of a connection between two modules
(here between a router and the source).

B.3. PROCESS LAYER 119

B.3 Process layer

The next page show the process model implemented to simulate RAP, describing
the RAP source node, the destination one and the router implementation. In those
states and through those transitions is represented the behaviour of each side of
the studied congestion control mechanism and the router policy. Here will stand
the fonctions explained in Chapter 3.

120 APPENDIX B. IMPLEMENTED MODULES

B.3.1 Sources

As we can see, only the "Idle" state is unforced i.e. the process stops after the
execution of the enter section. Next pages give the complete code of RAP in
OPNET running behind the 5 different processes.

~

Process Model: CED RAP

(RAP_STAT)

(ACK_ARRIVAL)

I
I

I
I

I
l
1
1
1
\
\
\
\
\

I
J

I
I

\
\
\
\
\

(CED_RAP_EOS) / CedRapEos()

state variables
1

2
3

/* Inter Packe t Gap
double \ipg;

(ipg*sr t t) / (ipg+srt t) */

4 /* Smooth Round Trip Time = srtt + delta*diff */
5 /* Used in rttTimeout */
6 double \srtt;
7

8 / * = 0 if fine grain not used (default) * /
9 int \finegrain;
10
11 /* Used to compute the waitperiode to r e schedule ipgtimer */
12 / * Used in ipgTimeout * /
13 double \frtt;
14
15 /* Used to compute the waitperiode to reschedule the ipgtimer */
16 / * Used in ipgTimeout * /
17 double \xrtt;
18
19 /* ATTR (0 . 5): To increase ipg so to decrease rate* /
20 double \beta;
21
22 /* ATTR (0.9): Weight of the samplertt t o compute frtt variable* /
23 double \ kfrtt;
24
25 /* ATTR (0 . 01): Weight of the s amplertt to compute xrtt variable* /
26 double \kxrtt;
27
28 /* For UpdateTimeValues, first initialisation of s ome variables* /
29 / * TRUE == 1 ini t * /
30 /* FALSE == 0 * /
31 int \initial;
32
33 /* Variable used to check if losses occur based on timer fire */
34 / * Used in TimerLostPac ket * /
35 double \ timeout;
36

37

38
39
40

41
42

43
44
45

/ * ATTR (1.2): Used to compute timeout variable
double \mu;

/* ATTR (4.0): Used to compute timeout variable
double \ phi;

mu*srtt + phi*variance */

mu*srtt + phi*variance */

/ * Used to compute timeout variable
double \variance;

mu*srtt + phi*variance * /

46 / * ATTR (0 . 5) : Used to compute variance and s rtrt variables* /
47 / *variance= variance+ delta*(diff - variance) * /
48 /* srtt = srtt + delta*srtt * /
49 double \de l ta;
50

112:17:55 Jan 26 200111/2

state variables
51 Liste* \ list ;
52
53 int \seqnum;
54

55
56

Objid \my_self;

57 /* name of the sending source*/
58 char \nameSRC (3 0) ;
59

60 int \ totpack;
61
62 int \totack;
63

64 Evhandle \ event;
65
66 FILE* \statfile;
67

68 char \nameISP(30);
69
70 double \starttime;
71

72 FILE* \graph;
73

74 int \udpsize;
75
76
77

FILE* \statfile2 ;

78 int \pacwhilesrtt;
79

80 int \lossoccur;
81

82

l 12:17:56 Jan 26 20011212

header block 112:18:06 Jan 26 200111/1
1 #include<stdio.h>
2
3 #define ACK_ARRIVAL (op_intrpt_type() -- OPC_INTRPT_STRM)
4 #define CED_RAP_EOS (op_intrpt_type() -- OPC INTRPT_ENDSIM
5 #define TIMEOUT_INTRPT ((op_intrpt_type() OPC_INTRPT_SELF) && (op_intrpt_code() != 3))
6

7 #define TRUE 1
8 #define FALSE 0
9

10

11 #define RAP_STAT ((op_intrpt_type() == OPC_INTRPT_SELF) && (op_intrpt_code() -- 3))
12

13 // Structure of an element (TransHistoryEntry) of the records table
14 typedef struct listelement •
15 {

16 int seqno;
17 int state;
18 double departureTirne;
19 struct listelement * next;
20 }TransHistoryEntry;
21

22 // Structure of the pointer (Liste) to the records table
23 typedef struct
2 4 {

25 TransHistoryEntry * first;
26 TransHistoryEntry * last;
27

2 8
29

int size;
}Liste;

function block
1 void UnknownEventRS(void}
2 {
3 int stat;
4

5 printf("UnknownEvent in %s\t%s\n", nameISP, nameSRC};
6

7

8

9

10

11

12

13

14

15
16
17

18

19
20
21

op_ima_obj_attr_get(my_self, "stat_file", &stat};
if (stat}
{

fprintf(graph , "H END_OF S I MULATION UE H\n"};
if(fclose(graph} ! = 0) {printf("Graph file not well closed!!!\n"};}

fprintf (statfile, • \nfHfHHHHHHHHHHHHH \ n"};
fprintf(statfile,"H • END_OF_S IMULATION UE H\n"};
fprintf (statfile, "HHHfHHHHHHfHHHHHH\n\n"};
if(fclose(statfile} != 0) {printf("Stat file not well c losed!!!\n"};}

op_sim_end("END OF SIM Il Il

'
UNKNOWNEVENT IN " , "RAP SRC" , " " } ;

22 void CedRapEos(void)
23 {
2 4 int stat;
25

112:18:27 Jan 26 2001j1/15

26
27

28

29
30

31
32
33
34

35

36
37

38

39
40

41
42

if(totpack != 0)printf("In %s, %s sent %d packets and received %d ACKs\n", nameISP, nameSRC, totpack, totack);

KillList (};

op_ima_obj_attr_ge t (my_ self, "stat_file", &stat};
if(stat}
{

fprintf(statfile, "END_OF_SIMULATION\n"};
if(fclose(statfile} != 0) {prin t f("Stat file not well closed!!! \ n"};}

fprintf(graph , "%d\n", totpack);
fprintf(graph, "END_OF_SIMULATION\n");
if(fclose(graph} != 0) {printf("Graph file not well closed!!!\n"};}

int Decreaseipg(void} // void
43 {

44 //1 printf("\t%f\t->\t", ipg};
45 fprintf (statfile2, "%f;", op_sim_time (}};
46 ipg = (ipg * srtt) / (ipg + srtt);
47 fprintf(statfile2, "%f;%f\n", ipg, srtt);
4 s / / 1 pr in t f (• % f \ n" , i pg} ;
49 }

50

function block 112:18:27 Jan 26 200112115
51 int Increaseipg (void) I lvoid
52 {

53 1/1 printf("%f\t->\t", ipg);
54 fprintf (statf ile2, "%f; ", op_sim_time ()) ;
55 ipg = (ipg / beta);
56 II ipg = (ipg * 3. 0) ;
57 fprintf(statfile2, "%f;%f\n", ipg, srtt);
58 Ill printf("%f\n", ipg);
59 }

60
61 void GenPacket(void)
62 {

63 Packet* pkptr;
64 int srcdst;
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81

82

83

84
85
86
87
88
89
90
91
92
93

94

95
96
97
98
99
100

pkptr = op_pk_create_fmt("CED_UDP");
op_pk_bulk_size_set(pkptr, udpsize); Il Should be 6 * 32 for the fields, but for the simulation ...

Il same source than destination, "connection" between same src and dst
op_ima_obj_attr_get (my_self, "RAP_UDP_ADDRESS", &srcdst);
op_pk_fd_set (pkptr, 0, OPC_ FIELD_TYPE_ INTEGER , srcdst, O) ;
op_pk_fd_set (pkptr, 1, OPC_ FIELD_TYPE_ INTEGER, srcdst, 0) ;

Il Incrementation and introduction of the seqNum
seqnum++;
op_pk_fd_set(pkptr, 4, OPC_FIELD_TYPE_INTEGER, seqnum, 0);

SendPacket(pkptr);

int SendPacket(Packet* pkptr)
{

ll void

Il Creation of the TransHistoryEntry
TransHistoryEntry * temp = (TransHistoryEntry*)CreateTHE();

temp->seqno = seqnum;
temp- >departureTime = op_sim_time();

printf("%f\t%d in list \n ", op_sim_time(), seqnum);

Il Introduction in the List
Append (temp) ;

Il Send the rap packet
totpack++;
op_pk_send (pkptr, l);

int RecvAck (Packet * pkptr) I lvoid
{

function block
101 int seq;
102 TransHistoryEntry *temp;
103
104 Il remove the entry number 'seqNum' (field 2) from transmission history table.
105 op_pk_fd_get(pkptr, 2, &seq);
106
107 temp = (TransHistoryEntry*)RemoveSeqno(seq);
108
109 if (temp ! = NULL)
110 {

111 Il Packet with such seqnum in the records table
112 if(temp->state != 1)
113 {

114 Il sample Rtt
115 double samplertt = op_sim_time () - (temp->departureTime);
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130

131 else
132 {

fprintf (statfile, "%f; ", samplertt);
totack++;

Il update Rtt
UpdateTimeValues(samplertt) ;

Il deallocate the memory for that entry
free (temp);

if(LossDetection(l, pkptr, 0))
{

LossHandler(l);

112:18:28 Jan 26 200113/15

133 printf("%f\tPacket with such seqnum (%d) not in the records table\n", op_sim_time(), seq);
134 }

135 Il Send to sink
136 op_pk_send(pkptr, 0);
137

138
int UpdateTimeValues(double sample)
{

double diff;

if(initial)
{

frtt = xrtt = srtt = sample;
variance= 0;
printf("UTV Au premier ACK

sample - srtt;

llvoid

time

139
140

141
142
143
144
145
146
147
148
149
150 Il

}

diff
srtt delta*srtt + (1 - delta)*diff;

%f\n", op_sim_time ());

Il test 3

function block
151
152

Il srtt +=delta* diff; Il Done this way based on the ns implementation code

153
154
155

srtt = (delta* srtt) + ((1 - delta) * sarnple);
fprintf (statfile, "%f; ", srtt);

156 diff = (diff <O) ? diff * -1 diff;
157 variance= variance+ (delta* (diff - variance));
158
159

160

161

if(lossoccur)
else

{timeout = (mu* srtt) + (phi* variance);}
{timeout = 1.0;}

162 Il tirneout = (mu* srtt) + (phi *variance);
163 Il if(initial) {tirneout = timeout + 0.05;} Il 0.05 orsrtt DOUTE???????
164 Il timeout = 1.0;
165
166
167
168
169
170

fprintf (statfile, "% f; ", tirneout);
fprintf (statfile, "%f\n", variance);

if(initial) {initial= FALSE;}

171 if(finegrain)
172 {
1 7 3 fr t t = ((1 - k fr t t) * fr t t) + (k fr t t * s arnp 1 e) ;
174 xrtt = ((1 - kxrtt) * xrtt) + (kxrtt * sample);
175 11 fprintf (statfile, "UTV : frtt = %d et xrtt = %d (finegrain) ", frtt, xrtt);
176
177
178
179

180
181
182
183
184
185
186

/***************************~**/
I*
I*
I*

Gestion of the timers IPG (cod = 0) and RTT (cod = 1)
*I
*I
*I

/**/

int Timeout(int code) llvoid

187 switch(code)
188 {
189
190
191
192
193
194
195
196
197
198
199
200

case 0: llfprintf(statfile, "TO
IpgTirneout();
break;

case 1: I lfprintf (statfile, "TO
RttTimeout();
break;

IpgTirneout\n");

RttTimeout\n");

default: printf("TO
break;

Error of code in the intrpt_self (param of timeout)\n");

j12:18:28 Jan 26 2001j4/15
Il test 2

Il test 1

function block 112:18:28 Jan 26 200115/15
201

20 2
203
20 4
205

int RttTimeout(void)
{

l l void Il one step done, must increase rate so decrease ipg

int loss = O;

206 loss = LossDetection (0, NULL, 1) ;
20 7 if((loss == 0) && (pacwhilesrtt != 0))
20 8 {

20 9

2 1 0

211

Decreaseipg();
pacwhilesrtt O;

2 12 else
2 13 {

2 14

2 15

2 1 6

217

2 1 8

219

22 0

fprintf(statfile2, "%f:;%f;%f\n", op_sim_time(), ipg, srtt);

I* Re-scheduling of the intrpt_self *I
event = op_intrpt_schedule_self (op_sim_time() + srtt, 1); Il RTT

int IpgTimeout(void) llvoid
22 1

22 2 double waitPeriod;
22 3 int loss;
22 4
225 loss = LossDetection(O, NULL, 0);
2 26 if (loss) 11 timer based losses detection
22 7 {

22 8 LossHandler(O);
22 9

2 30 else
23 1 {

2 32 GenPacket ();
2 33 pacwhilesrtt++;
234
2 35

2 36 if(finegrain) Il fine grain used
2 3 7 {

confert text

238 waitPeriod = (frtt I xrtt) * ipg; Il frtt et xrtt initialised in init to 1 till the first ACK
2 39

24 0 else
2 41 {

242 waitPeriod = ipg;
243 }

244 I l Schedule the next IpgTimeout for the generation of a new packet
245 op_intrpt_schedule_self(op_sim_time() + waitPeriod, 0);
2 46
24 7
248
249

int LossHandler(int code)
{

I l void

250 TransHistoryEntry* curr ;

function block
251

252 l*l if(code == 0)
253 {
254
255

fprintf (statfile, "LH CONGESTION TLP at %f\n", op_sim_time ());

256 else
2 57 {

258 if(code == 1)
259 {

260

261
262

263

264

265

266

2 67 1 * I

else

fprintf (statfile, "LH

fprintf (statfile, •"LH

268 Increaseipg();
269

CONGESTION ALP at %f\n", op_sim_time()) ;

CONGESTION??? at %f \n" , op_sim_time());

112:18:28 Jan 26 2001j6/15

270 Il Put all the status in the Liste at 2 (= INACTIVE) to react only one time to a loss
271 for(curr = list->first; curr != NULL; curr = curr- >next)
272 {

273 curr->state = 2;
274
275

276 Il cancel Rtt interruption done from RttTimeout no more needed
277 op_ev_cancel(event);
278 event = op_intrpt_schedule_sel f(op_sim_time() + srtt, 1); Il Tore - compute ipg
279

280

281 int LossDetection(int type, Packet* pkptr, int code)
282 {

283 int numlosses;
284 switch(type)
285 {

case 0: Il RAP_TIMER_ BASED
if(code == 0)
{

286
287

288
289

290

291
292
293
294
295
296
297
298
299
300

numlosses = TimerLostPacket(0);

else
{

if(code == 1)
{

numlosses

else

printf ("LO

TimerLostPacket(l);

Wrong code for TimerLostPacket\n");

function block
30 1
302
303
30 4

if{numlosses)
break;

l 12:18:29 Jan 26 2001 l 7/15

printf{"%f \ tLOSS TIMER {%d) \ t" , op_sim_time(), numlosses) ;

case 1: Il RAP_ACK_BASED
numlosses = AckLostPacket(pkptr);

305
306
307

308
30 9

if(numlosses) printf("%f\tLOSS ACK {%d) \ t", op_sim_time{), numlosses) ;

31 0

311
312

3 13

3 14

} ;

break;

default:II wrong code
print f ("Bad type for loss d e tection: not RAP_TIMER_BASED nor RAP_ ACK_ BASED\n");
break;

315 I l Purge of every packets with status = PURGED (1)
3 16 Purge{l);
317 if {numlosses) { lossoccur = TRUE;}
318 return{numlosses);
31 9
32 0
32 1
322
323
32 4
32 5
326
327
328
32 9
330
33 1
332
333
33 4
33 5
336
337
338
339
340
34 1
3 4 2
3 4 3
34 4

int TimerLostPacket{int code)
{

int numl osses, ses sion;
TransHistoryEntry * curr;

numlosses = O;
session= O;
for{curr = list- >first ; curr != NULL; curr = curr ->next)
{

if((curr->departureTime + timeout) - OP,_ sim_time() <= 0.00000lY I loss in rap session
{

session+ = l;
if((curr->state) 0)
{

numlo s ses += l;
)

if{code == 0) {c urr- >state = 1;)

Il if{code == 0)
Il else

return(numlosses);
return(session) ;

return{numlosses);

34 5 int AckLostPacket{Packet* pkptr)
34 6 (
347 int numlosses;
348 TransHistoryEntry *temp;
349
350 i nt l r, l m, p r ;

function block
351
352

353
354
355
356
357

358

359

360

3 61
362

363

36 4

365

366

3 67

368

369
370
371

372
373

374
375

376
377

op_pk_fd_get (pkptr,
op_pk_fd_get (pkptr,
op_pk_fd_get (pkptr,

numlosses = O;

3, &lr);
4, &lm);
5, &pr);

for(temp = list->first; temp != NULL; temp ,= temp->next)
{

int seq = temp->seqno;

if(seq <= lr)
{

if((seq > pr) && (seq <= lm))
{

if((lr - seq) ·>= 3)
{

if(temp->state == 0)
{

numlosses++;

temp->state = l;

return(numlosses);

l 12:18:29 Jan 26 2001 j a11 s

378 /* ** */
379

380

/*
/* FUNCTIONS RELATED TO THE LIST OF RECORDS (Transmission Table)

*/
*/

381 /* */
382 /* ** */

383
384 /* ***
385 Append a TransHistoryEntry to the end of the Liste must use ListElmnt before! ! !
386 *** */
387 int Append(TransHistoryEntry* item)//void
388 {

389 if (IsEmpty ())
3 90 {

391 list->first = item;
392 list->last = item;
393

else
{

(list->last)->next
list->last = item;

item;

394
395
396
397
398
399
400

list->size =list->size + l;

function block 112:18:29 Jan 26 2001j9/15
401
402 /* ***
403
404

405
406
407

408

409

410

411

412

Init a Liste

int CreateList(void)
{

llvoid

list = (Liste*)malloc(sizeof(Liste))
list->first = NULL;
list->last = NULL;
list->size = O;

413 /* ***
414 Create an element of type 'TransHistoryEntrY,
415 default valu es state = 0 (SENT)
416

417

418

419
420
421
422

423

424

425

426
427

nex t = NULL

TransHistoryEntry* CreateTHE(void)
{

TransHistoryEntry *the= (TransHi storyEntry*)malloc(sizeof(TransHistoryEntry))
Il seqno not init
the->state = O;
Il departureTime no t init
the->next = NULL;
return (the);

428 / * **
429

430

431

432

433

434

435
436
437

438

439

440

441
442

DisplayAllList all info of the elements of the list
return "end of list" when list is empty

**
int DisplayAllList(void) I lvoid

Tr ansHistoryEntry* curr;

fprintf (statfile, "Display
for(curr = list->first; curr
{

\n");
!= NULL;

fprintf (statfile, "%d\t%d\t%f\n",

curr = curr->next)

curr->seqno, curr->state, curr->departureTime)

443 /* **
DisplayList all seqNum of the elements of the list

r e turn "end of li s t" whe n li s t is empty

*I

*I

*I

444
445
446 ** *I
447 int DisplayList (void) / l void
44 8 {

449 Trans HistoryEntry* curr;
450

function block
fprintf (statfile, "Display ");
for(curr = list->first; curr != NULL; curr = curr->next)
{

fprintf (statfile, "%d\t", curr->seqno);

fprintf (statfile, "end of list\n");

112:18:30 Jan 26 2001110/15
451
452
453
454
455
456
457
458
459
460
461
462

/* ***
Test if the Liste is empty,

return TRUE if empty
*** */

463 int IsEmpty (void)
464 {
465 if(list->first -- NULL) return(TRUE);
466 else return(FALSE);
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

/* ***
Test if the TransHistoryEntry with seqno = keyseq is in the Liste

return TRUE if in
*** */

int IsPresentSeqno(int keyseq)
{

/*

TransHistoryEntry* temp;
for(temp = list->first;temp != NULL; temp = temp->next)
{

if(temp->seqno == keyseq)

return(FALSE);

return (TRUE);

Test if the TransHistoryEntry with state = keysta is in the Liste

return TRUE if in
*** */

487 int IsPresentState(int keysta)
488 {
489 TransHistoryEntry* temp;
490 for(temp = list->first;temp != NULL; temp = temp- >next)
491 {
492
493
494
495
496

if(temp->state == keysta)

return (FALSE) ;

return (TRUE);

497 /* ***
498
499
500

Find in the Liste the THE with seqno = keyseq, NULL if not in
return TransHistoryEntry* if found
return NULL otherway

function black 112:18:30 Jan 26 2001111/15
501 *** */
502 TransHistoryEntry* Find(int keyseq)
503 {
504
505
506
507
508
509
510
511
512
513
514
515
516
517

if ((IsEmpty ()) 11 (! IsPresentSeqno (keyseq)))
{

else
{

return(NULL)

TransHistoryEn t ry * temp;
for(temp = lis t- >first; t e mp != NULL; temp = temp - >next)
{

if((temp->seqno) keyseq) return(temp);

518 /* ***
Deallocate a Liste 519

520 *** */

521 int Kill Li s t (vo i d) I l vo id
522
523
524
525
526
527
528
529
530

TransHistoryEnt r y *temp = (TransHi s toryEntry*)Re move()
while(temp ! = NULL)
{

free (temp);
temp = (TransHistoryEntry*)Remove()

531 /* ***
532 Destroy al l TransHistoryEnt r y with state = keysta from the Li ste
533
534
535
536
537
538
539
540
541
542
543
544
54 5
546
547
54 8
549
550

int Pu rge(int ke ysta) llvoid

TransHistoryEntry *item, *prec, *curr;

if(!IsEmpty() && IsPresentState(keysta))
{

prec = NULL;
curr = li•st->first;
while(curr != NULL
{

if(curr->state
{

keysta)

if(curr == list->first)
{

item= curr;

Il the first one to destroy

list->first = curr->next;
item->next = NULL;

* I

function block
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584 }

else
{

curr = list->first;
printf("ld\n", item->seqno);
free(item)

else
{

if(curr
{

list->last)

item= curr;
prec->next = NULL;
list->last = prec;
curr = NULL;

// the last one to destroy

printf("ld\n", item->seqno);
free(il:em);

else
{

// one in the middle to destroy

item curr;
prec->next = curr->next;
item->next = NULL;
curr = prec->next;
printf("ld\n", item->seqno);
free (i terni ;

list->size = list->size - l;

prec = curr;
curr = curr->next;

585 / / printf ("END\n") ;
586 }
587

Î12:18:30 Jan 26 2001j1211s

588 /* ***
589
590
591

Remove the first TransHistoryEntry from the Liste,
return TransHistoryEntry* removed
return NULL if Liste is empty

592 ***•*************************************** */
593 TransHistoryEntry* Remove(void)
594 {
595 TransHistoryEntry* item;
596
597 if (IsEmpty ())
598 {
599 return(NULL)
600

function block
601
602
603
604
605
606
607

608
609

610

611
612

613
614
615

616

617

618

else

item= list->first;
if(list->size == 1)
{

else
{

}

list->first = NULL;
list- >last = NULL;

list->first = item->next;
item->next = NULL;

list->size = list->sizè - l;
return (item) ;

112:18:31 Jan 26 2001113/15

619 /* ***
620 Remove the TransHi s toryEntry with seqno = keyseq from the front of the Liste,
621 return TransHistoryEntry* r emoved
622 return NULL if Liste is empty or no s uch TransHistoryEntry
623 *** */
624 TransHistoryEntry* RemoveSeqno(int keyseq)
625 {

626
627

628
629
630

631

632
633
634
635
636
637

638
639

640
641
642
643
644
64 5
646
647
648
64 9
650

TransHistoryEntry *prec, *curr, *item;

if(!IsEmpty() && IsPresentSeqno(keyseq))
{

else
{

for(prec = NULL, curr = list->first;
{

if(curr->seqno
break;

return (NULL);

keys e q)

curr != NULL; prec = curr , curr

if(curr == list->first)
{

// the first one to remove

else
{

item= Remove();

item= curr;
if(curr == list- >last) // the last one to remove
{

prec ->next
list->last

NULL;
prec;

curr->next)

function block l 12:18:31 Jan 26 2001 j 15/15

return(item)
701
702
703
704
705
706
70 7

/ * ****** * **************** * ********************************* ** ** * ******* * ****** * **********
SizeofList displays the compute sizeof the list (not list - >size)

*** **** ************************** /
708 int SizeofList (void) / / void
709
710 TransHistoryEnt r y* curr;
711 int taille= O;
712
713
714
715
716
717

718
719

for(curr = list->firs t ; curr != NULL; curr = curr- >next)
{

taille++;
}

fprintf(statfile, "list's size = %dand COMPUTE□ size = %d \ n " , list->size, taille)

function block

else
{

prec->next = curr->next;
curr->next = NULL;

list->size = list->size - l;

return(item);

112:18:31 Jan 26 2001114/15
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

/* ***w***********************************

Remove the TransHistoryEntry with state = keysta from the front of the Liste,
return TransHistoryEntry* removed
return NULL if Liste is empty or no such TransHistoryEntry

666 *** */
667 TransHistoryEntry* RemoveState(int keysta)
668 {
669
670
671
672

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
69 4
695
696
697
698
699
700

TransHistoryEntry *prec, *curr , *item;

if(!IsEmpty() && IsPresentState(keysta))
{

else
{

for(prec = NULL, curr = list->first; curr != NULL; prec
{

if(curr->state
break;

keysta)

return(NULL)

if(curr == list -> first)
{

// the first one to remove

else
{

item Remove ();

item= curr;
if(curr == list->last) // the last one to remove
{

else

prec ->next = NULL;
list -> last = prec;

prec->next = curr->next;
curr->next NULL;

list- >size = list->size - l;

curr, curr curr ->next)

init · Enter Execs 112:20:39 Jan 26 200111/3
1 Objid cousin, papa;
2 int statONOFF;
3 int durtime, i;
4
5 my_self = op_id_self();
6 op_ima_obj_attr_get (my_self, "name" , nameSRC);
7 papa = op_id_parent (my_self);
8 op_ima_obj_attr_get (papa, "name", nameISP);
9

10 totpack = 0;
11 totack = 0;
1 2

13 I* Getting the general attributs which configure the RAP protocol * I
14 op_ ima_obj_attr_get (my_self, ·"Fine Grain use", &finegrain); 1 1
15 op_ima_obj_attr_get (my_ self, "BETA", ~beta); 11 Increaseipg
16 op_ima_obj_attr_get (my_ self, "KFRTT", &kfrtt); 11 Weigth of samplertt in frtt
17 op_ima_obj_attr_get (my_ self, "KXRTT", &kxrtt); 11 Weigth of samplertt in xrtt
18 op_ima_obj_attr_get (my_self, "MU", &mu); Il Compute timeout for check losses based on timer
19 op_ima_obj_attr_get (my_self, "PHI", &phi); Il Compute timeout for check losses based on timer
20 op_ima_obj_attr_get (my_ self, "DELTA", &delta); 11 Compute variance and srtt
2 1 op_ima_obj_attr_get (my_ self, "Start time", &starttime); 11 Simulation start time
22 op_ ima_obj_attr_get (my_ self, "Duration time", &durtime); 11 Duration time of the simulation
23 op_ima_obj_attr_get (my_self, "UDP size", &udpsize); 11 Size of UDP packets
2 4
25 CreateList();
26
27

28
29
30

31
32
33

3 4
35

initial= TRUE;
lossoccur = FALSE;
seqnum = O;
xrtt = frtt = l;
timeout = 1.0;
ipg = 0.05;
srtt = 0.5;
pacwhilesrtt = O;

Il first time of initialisation for variables frtt, xrtt, srtt, variance
Il To start computing the timeout after probing the network (good estimated rtt)
Il sequence number of rap packet
Il initialised to one in case of using finegrain before receiving the first ACK

36 if (durtime ! = 0)
37 {

38 Il Code 1 interruption to be sure to have sth to cancel in case of timeout triggered
39 event = op_intrpt_schedule_self(srtt + op_sim_time() + starttime, l); I l RTT
40
41

4 2
4 3
44
45
4 6
47
48
4 9
50

Il Code O interruption for the first packet
op_intrpt_schedule_self(op_sim_time() + starttime, O);

Il File to collect statistics for graph.
statfile = (FILE*)O;
op_ima_obj_attr_get (my_self, "stat_file",
if (statONOFF)
(

char fi le[30} ;

&statONOFF);

init: Enter Execs l 12:20:40 Jan 26 2001 l 3/3
101
102 graph = fopen(graphfile,"w ");
103 if (graph == NULL) {printf ("Graph file not well opened ! ! ! \n ");}
104 else {fprintf (graph, "%s\n", file);}
105
106 stepfile[0] = '\0';
107 strcat(stepfile, "/home/users/rosmanc/simul/SIMULATION/step");
108 strcat(stepfile, file);
109 strcat(stepfile, ".csv");
110
111 statfile2 = fopen(stepfile, "w");
112 if(statfile2 == NULL) {printf("Step file not well opened!!!\n");}
113 else {f~rintf(statfile2, "%s\n", file);fprintf(statfile2, "Time;ipg;srtt\n", file);}
114

115

116

117

118

119

12 0
121

122

123

124

125

126
127

for(i = 0; i < durtime - 1;
(

op_intrpt_ schedule _self (
op_intrpt_schedule_self(
op_intrpt_schedule_self(
op_intrpt_ schedule _ self(

op_ intrpt_ schedule _self (
op_ intrpt_ schedule _self (
op_intrpt_ schedule _self(
/* till 104.75 */

i++)

i + 0.25, 3);
i + 0.5

'
3};

i + 0.75, 3);
i + 1.0

'
3);

i + 0 .25, 3);

i + 0.5 '
3);

i + 0. 75, 3);

128 printf("INITIALISATION OF RAP COMPLETED!!! (%d)\n", udpsize);
129

init : Enter Execs
51
5 2

53
54

55
5 6

5 7

58

5 9

60

6 1

62

63

6 4

65

66

6 7

68

69
70
71

72

7 3

74

7 5

7 6

77

78

79

80

8 1

82

83

84

85

86

87

88

89

90

91

92

93
94

9 5
9 6

9 7

98

99

10 0

char fullname[l00);
char graphfile[l00];
char stepfile[l00);

fullname[0) = '\0';
file[0) = '\0';

strcat(fullname, "/home/users/rosmanc/simul/SIMULATION / ");
op_ima_obj_attr_get (my_self, "file_name" , file);
strcat(fullname, file);
strcat(fullname, ".csv");
statfile = fopen(fullname, "w");
if(statfile -- NULL) {printf("Stat file not well opened! ! ! \ n");}
else
{

fprintf(statfile, "%s\n", file);

fprintf(statfile, ";;**************************************\n");
fprintf(statfile, ";;** SIMULATION PARAMETERS FOR %s **\n", file);
fprintf(statfile, ";;**************************************\n\n");

fprintf(statfile,
if (finegrain) {
else {
fprintf(statfile,
fprintf(statfile,
fprintf(statfile,
fprintf(statfile,
fprintf(statfile,
fprintf(statfile,

";Attributs:\n"); ,
fprintf (statfile, ";; Fine Grain; Yes \ n");}
fprintf(statfile, ";;Fine Grain;No \ n");}

";;BETA;%f\n", beta);
";;KFRTT;%f\n", kfrtt);
";;KXRTT;%f\n", kxrtt);
" ; ; MU;% f \n" , mu) ;
";;PHI;%f\n", phi);
";;DELTA;%f\n\n", delta);

fprintf (statfile, ";Variables: \n");
fprintf (statfile, ";; ipg; %f\n", ipg);
fprintf (statfile, ";; timeout; %f\n", timeout);
fprintf (statfile, ";; srtt; %f\n", srtt);
fprintf(statfile, ";;udp size;%d\n\n", udpsize);
fprintf(statfile, ";;duration t.;%d\n", durtime);
fprintf (statfile, "; ;start time;%f\n\n", starttime);

fprintf (statfile, ";; ******************** * * \ n") ;
fprintf(statfile, ";;** SIMULATION DEBUG **\n");
fprintf(statfile, ";;**********************\n\n");

fprintf (stat fi le, "Sample; Smoothrtt; Timeout \ n") ;

graphfile[0) = '\0';
strcat(graphfile, "/home/users/rosmanc/simul / SIMULATION / graph");
strcat(graphfile, file);
strcat(graphfile, ".csv");

j 12:20:40 Jan 26 2001 l 2/3

lntrpt : Enter Execs
1 11 Interruption tr·om op_ intipl _ sc:hedul e_sel ((code)
2 II where code == 0 for I PGi11ter1·upt

11 or c:ode == 1 for RTTintern,pt
4 Il Call 'Timeout' func:tion

6 Timeout(op_ intrpt _ c:ode()) ; .,

stat · Enter Execs
int sta t;

2

op_ ima_obj _ attr_ get(my _self, "stat __ file", &stat);
4 if(stat)
~ (

6

7

8

fprint f (y raph, "'td\11", totpa c k);

112:21 :03 Jan 26200111/1

112:21:15 Jan 26 200111/1

packet : Enter Execs
Packet* pkptr;

2 char fmt(]0);
3
4 /* Gettiny Lhe pac kel •;
5 pkptr = op_ pk_get (up_ int: r pt: __ st 1111 ());

6
1 / * Could be 11dp packet 01· rap ack packet '/
8 op_pk_fonnat (pkpt r, fmt);
9 if (strcmp(fmt, "CED_HAP __ POHMA'I'_ ACK") cc = 0)// so it's rap ack

10 (
11 // fprintf(statfile, "pa : ACK (lél11ce Rn·vAck) \ 11") ;
12 RecvAck(pkpt:r);

13

14

15

16

17
18

19
20

2 1

2 2

23
24
25

26

27

28

29

else
{

printf("pa : W1 ·011u tonndt in HAP\n");
/ • Uestroy the pack~t with wn>11g l:orn1ctt • /
/* Be carefull if stcp packet */

if(strcmp(fmt, "stcp_ippkt") == 0)
(

op_stcp_discard_packet (pkptr);

else

op_ pk_~estroy(pkpl1);

112:20:50 Jan 26 200111/1

B.3. PROCESS LAYER 149

B.3.2 Destinations

As we can see, only the "Idle" state is unforced i.e. the process stops after the
execution of the enter section. Next pages give the complete code of RAP in
OPNET running behind the 5 different processes .

Process Model: CED RAP DST

(PK_ARRIVA~~,.....,...,,,.

,,

J
I

I
J

/
/

(

I
/

(

I

./

,,.·

(default) / UnknownEventRD()

----------- --- ' ----- '
' \

1

---- I
--- J ~~-~- I . ----______ .,,,,,,.,,,

(RAP_DST_EOS) /rap_dst_eos()

/home/users/rosmanc/op_models/CED_RAP _DST.pr.cl 12:53:25 Jan 26 2001 l 1/8
1 /* Process model C form file: CED_RAP_CS~ .pr.~ ~;
2 /* Portions of this file copyright 1992- ~:JO by OPNET, Inc. */
3

4

5

6 /* This variable carries the header into the objec~ file*/
7 static const char CED_RAP_DST_pr_c [] = "MIL_3_?:ile_Hdr_ 70B 30A modeler 7 3A66AB84 3
8 #include <string.h>
9

10
11
12 /* OPNET system definitions * /
13 #include <opnet . h>
14
15 #if defined (_cplusplus)
16 extern "C" {
17 #endif
18 FSM_EXT_DECS
19 #if defined (_cplusplus)
20 } /* end of 'extern "C" ' */
21 #endif
22
23
24 / * Header Block * /
25
26
27
28

#define RAP_DST_EOS (op_intrpt_type ()
#define PK_ARRIVAL (op_intrpt_type () --

OPC_INTRPT_ENDSIM)
OPC_INTRPT_STRM)

29 /* End of Header Block * /
30
31

32 #if !defined (VOSD_NO_FIN)
33 #undef BIN
34

35
36

#undef BOUT
#define SIN
#define BOUT
#define BINIT
#else
#define BINIT

FIN_LOCAL_FIELD(last_line_passed) = _LINE_ - _block_origin;
BIN
FIN_LOCAL_FIELD(last_line_passed) = 0; _block_origin = _LINE_; 37

38

39

40
41

#endif /* #if !defined (VOSD_NO_FIN) */

42

43

44 /* State variable definitions */
45 typedef struct
46 {

47 /* Internal state tracking for FSM */
48 FSM_SYS_STATE
49 /* State Variables*/
50
51
52

53
54

55
56
57

58

59

60

61

62

63

64
65
66
67

int
int
int
Objid
int
int
int
} CED_RAP_DST_state;

#define pr_state_ptr
#define lastRecv
#define lastMiss
#define prevRecv
#define my_self
#define totpack
#define totack
#define acksize

lastRecv ;
lastMiss;
prevRecv;
my_self ;
totpack;
totack;
acksize;

((CED_RAP_DST_state*) SimI_Mod_State_Ptr)
pr_state_ptr->lastRecv
pr_state_ptr->lastMiss
pr_state_ptr->prevRecv
pr_state_ptr- >my_self
pr_state_ptr->totpack
pr_state_ptr->totack
pr_state_ptr->acksize

/home/users/rosmanc/op_models/CED_RAP _DST.pr.cl 12:53:25 Jan 26 2001I 2/B
68 I * This mac r o definition will define a local variable called *I
69
70
71

72

73
74

I* "op_sv_ptr " in each function containi ng a FIN staternent .* I
I* This variable points to the state variable data structure, *I
I * and can be used frorn a C debugger to display their values. *I
#undef FIN_PREAMBLE
#define FIN_PREAMBLE CED_RAP_DST_state *op_sv_ptr = pr_state_ptr ;

7 5
76 I * Function Block *I
77
78 enurn { _block_origin = _LINE_ } ;
79 void UnknownEventRD(void)
80 {
81 Objid papa;
82 char narneDST (15) ;
83 char narneISP [l5);
84
85
86
87

88

op_ima_obj_attr_get(rny_self, "name" , narneDST);
papa= op_id_parent(my_self);
op_ima_obj_attr_get (papa, "narne ", narneISP);

89
90
91

printf("UnknownEvent dans %s \ t %s \ n", narne I SP, narneDST);
op_sim_end("END OF SIM : UNKNOWNEVENT IN", "CED RAP DST" ,"") ;

92
93 void rap_dst_eos (void)
94 {
95 Objid papa;
96 char nameDST[l 5);
97 char narneISP[l5);
98
99 op_ima_obj_attr_get (rny_self , "name", nameDST);
100 papa= op_id_parent(rny_se l f) ;
101 op_ima_obj_attr_get (papa , "name" , nameIS P);
102
103 if (totpack ! = 0) printf ("In %s, %s received %d packets and sent %d ACKS \ n", narne I SF
10 4
10 5
106 ll ---- -- --- -
107 Il UpdateLastHole
108 Il Update the last hole in sequence nurnber space at the receiv er .
109 11 "seqNum" is the sequence number of the data p acket received .
110 ll ------ - ---------------------------- -- ------------------------------- --
1 1 1 v oid UpdateLastHole (int seqNum)
112 {
11 3 Il Loss occurs (1 o r more) if (seqNum > (lastRecv + 1))
114
115
11 6
117
118

119
120
121

1 22
1 23
124
125
126
12 7
1 28
12 9
130

13 1

{

prevRecv lastRecv;
lastRecv seqNum;
lastMi ss = seqNum - 1;
return ;

i f (seqNum -- (lastRecv + 1))
{

lastRecv = seqNum;
return;

if ((las t Miss < seqNum) && (seqNum <= l astRe cv))
{

r e turn;

132 if (seqNum == lastMi s s)
133 {

134 i f ((prevRecv + 1) == seqNurn)

Il Rec eiv ed i n s equenc e

Il Duplicate

Il Hol e of 1 pac ke t filled

/home/users/rosmanc/op_models/CED_RAP _DST.pr.cl 12:53:26 Jan 26 200113/8
135
136
137

138

prevRecv = 0 ;
lastMiss = 0;

139 Il Hole of [n .. n+m) packets (m>l) -> [n .. n+m-1)
140
141

142
143

144

145

146
147

148
149

150

151
152

:.astMiss--;

return;

if ((prevRecv < seqNum) && (seqNum < lastMiss))
{

prevRecv = seqNum;
return;

153 I* End of Function Block *I
154
155 #if defined (_cplusplus)
156 extern "C" {
157 #endif
158 void CED_RAP_DST (void);
159 Compcode CED_RAP_ DST_ init (void **);
160 void CED_RAP_DST_diag (void) ;
161 void CED_RAP_DST_terminate (void);

Il Packet received in a hole

162 void CED_RAP_DST_svar (void *, const char* char**);
163 #if defined (_cplusplus)
164 } I* end of 'extern "C"' *I
165 #endif
166
167

168
169
170 /* Process model interrupt hand ling p rocedure * /
171
172

173 void
174 CED_RAP_DST (void)
175 {
176 int _block_origin = 0;
177 FIN (CED_RAP_DST ());
178 if (1)

1 79 {

180
181
182
183 FSM_ENTER (CED_RAP_DST)
184

185
1"86
187

188

189

190
191

192

193
194
195

196
197
198

199
200

201

FSM BLOCK_SWITCH

l *------------------------- - -------------------------------* I
I** state (init) enter execu tives **I
FSM_STATE_ENTER_FORCED (0 , s t ate0_enter_exec, "init", "CED RAP_DST () [ini

{
my_self = op_id_self() ;

I* i n it of variab les for hole
lastRecv = 0;
lastMi ss = 0;
prevRecv = 0;

totpack = 0;
totack = 0;

Il see SV
Il see SV
Il see SV

informations* /
comment
commen t
comme n t

op_ima_obj_attr_get(my_self , "ACK Size", &acksize);

/home/users/rosmanc/op_models/CED_RAP _DST.pr.cl 12:53:26 Jan 26 200114/8
202
203
20 4
205
206
207
208
209
210
211

212
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

259
260
261

262
263
264
265
266
267
268

/ ** s ~ate (init) exit executives ** /
FSM_STATE_EXIT_FORCED (0 , state0_exit_exec, "init", "CED_RAP_DST () [init

{

/** state (init) transition processing **/
FSM_TRANSIT_FORCE (1 , statel_enter_exec , ;)

/*-- ---------------------------- ----------------------- ----* /

/** state (idle) enter executives **/
FSM_STATE_ENTER_UNFORCED (1, statel_enter_exec, "idle", "CED_RAP_DST () [i

{

/** blocking after enter executives of unforced state . ** /
FSM_EXIT (3,CED_RAP_DST)

/ ** state (idle) exit executives ** /
FSM_STATE_EXIT_UNFORCED (1, statel_exit_exec, "idle", "CED_RAP_DST () [idl

{

/** state (idle) transition processing **/
FSM_INIT_COND (PK_ARRIVAL)
FSM_TEST_COND (RAP_DST_EOS)
FSM_DFLT_COND
FSM_TEST_LOGIC ("idle ")

FSM_TRANSIT_SWITCH
{

FSM_CASE_TRANSIT (0, 2, state2_enter_exec, ;)
FSM_CASE_TRANSIT (1 , 1, statel_enter_exec, rap_dst_eos();)
FSM_CASE_TRANSIT (2, 1 , statel_enter_exec, UnknownEventRD() ;)
}

/* -~--------- --- ---------------------------- -- ----- ------- -* /

/** state (packet) enter executives **/
FSM_STATE_ENTER_FORCED (2, state2_enter_exec, "packet", "CED_RAP_DST () [p

{

Objid papa;
Packet* pkptrRecv, *pkptrAck;
char nameISP[200] ;
char nameSRC[200];
char frnt (30);
int dest, src, seqNurn;
int srct, destt , seqnurnt , lrt, lrnt, prt;

op_irna_obj_attr_get (my_self, "name", nameSRC) ;
papa= op_id_parent(rny_self);
op_irna_obj_attr_get (papa, "name", nameISP) ;

/* Pickup the packet * /
pkptrRecv = op_pk_get (op_intrp t_strm ());

/home/users/rosmanc/op_models/CED_RAP _DST.pr.cl 12:53:26 Jan 26 2001 15/8
269
270
271

272

273
274
275
276
277

278
279
280
281
282
28 3

284
285
286
287
288
289

op_pk_format(pkptrRecv, frnt);
if(strcrnp(frnt, "CED_UDP") == 0)
{

totpack++;

/ * RAP's seqnurn * /
op_pk_fd_get (pkptrRecv, 4, &seqNurn);

/* Update info about hole in packets sequence * /
UpdateLastHole(seqNurn);

/ * Generate and Send ACK */
/ * creation of the ack packet* /
pkptrAc k = op_pk_c reate_frnt ("CED_RAP_FORMAT_ACK");
op_pk_bulk_size_set (pkptrAck, acksize); // 320 (ATTR)

/* Getting the fields values of pkptrRecv * /
op_pk_fd_get (pkptrRecv, 0, &dest);
op_pk_fd_get (pkptrRecv, 1 , &src);

/* Init of the fields of the ack packet * /
op_pk_ fd_set (pkptrAck, 0' OPC - FIELD_TYPE _INTEGER,
op_pk_fd_set (pkp trAck, 1 , OPC - FIELD_TYPE _INTEGER,

src,
dest,

0);
0);

290
291
292
293
294
295
296
297

op_pk_ fd_set (pkptrAck, 2' OPC - FIELD_TYPE _INTEGER, seqNurn, 0);

298
299
300
30 1
302
303
304
305
306
307
308

op_pk_fd_set (pkptrAck, 3' OPC - FIELD_TYPE _INTEGER, lastRecv,
op_pk_ f d_set (pkptrAck, 4' OPC - FIELD_TYPE _INTEGER, lastMiss,
op_pk_fd_set (pkptrAck, 5 ' OPC - FIELD_TYPE _INTEGER, prevRecv,

/* Send packet to sink via output strearn 0 (manual config)* /
op_pk_send_quiet(pkptrRecv,0);

totack++;
/ * Send the ack * /
op_pk_send(pkptrAck, 1);

else printf ("Wromg type of packet received at RAP dest (%s) \ n", fmt);
}

/** state (packet) exit executives **/

0
0
0

309
310

311
312

FSM_STATE_EXIT_FORCED (2 , state2_exit_exec, "packet", "CED_RAP_DST () [pac
{

313
314

315
316
317

318

319
320
321
322
323
324
325

326
327

328

/** state (packet) transition processing ** /
FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)

/ *----------- ------------ - ------- - -- - -------------- - -------* /

FSM_EXIT (0,CED_RAP_DST)
}

329 #if defined (_cplusplus)
330 extern "C" {
331 #endif
332 extern VosT_Fun_Status Vos_Catmem_Register (const char* , int , VosT_Void_Null Pr
333 extern VosT_Address Vos_Catmem_Alloc (VosT_Address, size_t);
334 extern VosT_Fun_Status Vos_Catmern_Dealloc (VosT_Address);
335 #if defined (_cplusplus)

/home/users/rosmanc/op_models/CED_RAP _DST.pr.cl 12:53:27 Jan 26 2001 l 6/8
336
337 #endif
338
339
340 Compcode
341 CED_RAP_DST_init (void ** gen_state_pptr)
3 42 {
343 int _block_origin = O;
344 static VosT_Address obtype = OPC_NIL;
345
346 FIN (CED_RAP_DST_init (gen_state_pptr))
347
348 if (obtype == OPC_NIL)
34 9 {

350
351
352
353
354
355
356
357

/ * Initialize memory management* /
if (Vos_Catmem_Re;rister ("proc state vars (CED_RAP_DST) ",

sizeof (CED_RAP_ DST_state), Vos_Vnop , &obtype} == VOSC_FAILURE}
{

FRET (OPC_COMPCODE_FAILURE)
}

358 *gen_state_pptr = Vos_Catmem_Alloc (obtype, 1);
359 if (*gen_state_pptr == OPC_NIL)
3 60 {
361 FRET (OPC_COMPCODE_FAILURE}
362 }
363 else
364 {
365 / * Initialize FSM handling * /
366 ((CED_RAP_DST_state *} (*gen_state_pptr})->current_bl ock = 0 ;
367
368
369
370
371
372
373
374 void

FRET (OPC_COMPCODE_SUCCESS}
}

375 CED_RAP_DST_diag (void}
376 {
377 /* No Diagnostic Block */
378 }
379
380
381
382
383 void
384 CED_RAP_DST terminate (void}
385 {
386 int _block_origin = _LINE_ ;
387
388 FIN (CED_RAP_DST_terminate (void))
389
390 if (1)
391 {
392

393

394
395

396

/* No Termination Block */

397 Vos_Catmem_ Dea l loc (pr_state_ptr);
398
399 FOUT;
400 }
401
402

/home/users/rosmanc/op_models/CED_RAP _DST.pr.cl 12:53:27 J.an 26 2001 1718
403 /* Undefine shortcuts to state variables to avoid */
404 /* syntax errer in direct access to fields of*/
405 /* local variable prs_ptr in CED_RAP_DST_svar function . */
406 #undef las~Recv
407 #undef lastMiss
408 #undef prevRecv
409 #undef my_self
410 #undef totpack
411 #undef totack
412 #undef acksize
413

414
415
416 void
417 CED_RAP_DST_svar (void * gen_ptr, const char* var_name, char** var_p_ptr)
418 {
419
420

CED_RAP_DST_state *prs_ptr;

421 FIN (CED_RAP_DST_svar (gen_ptr, var_name, var_p_ptr))
422
423 if (var_name == OPC_NIL)
424 {
425 *var_p_ptr = (char *)OPC_NIL;
426 FOUT;
427 }
428 prs_ptr = (CED_RAP_DST_st a te *)gen_ptr;
429
430 if (strcmp ("lastRecv" , var_name) == 0)
431 (
432 *var_p_ptr = (char *) (&prs_ptr->lastRecv);
433 FOUT;
434 }
435 if (strcmp ("lastMiss" , var_name) == 0)
436 {
437·

438
439

*var_p_ptr = (char *) (&prs_ptr->lastMiss);
FOUT;
}

440 if (strcmp ("prevRecv" , var_name) == 0)
441 {
442 *var_p_ptr = (char*) (&prs_ptr->prevRecv);
443 FOUT;
444 }
445 if (strcmp ("my_self" , var_name) == 0)
446 {
447
448
449

var_p_ptr = (char) (&prs_ptr->my_self);
FOUT;
}

450 if (strcmp ("totpack" , var_name) == 0)
451 {

452
453
454

var_p_ptr = (char) (&prs_ptr- >totpack);
FOUT;
}

455 if (strcmp ("totack" , var_name) == 0)
456 {
457 *var_p_ptr = (char *) (&prs_ptr->totack) ;
458 FOUT;
459 }
460 if (strcmp ("acksize" , var_name) == 0)
461 {
462
463
464

*var_p_ptr = (char *) (&prs_ptr->acksize);
FOUT;
}

465 *var_p_ptr = (char *)OPC_NIL;
466
467 FOUT;
468 }
469

/home/users/rosmanc/op_models/CED_RAP _DST.pr.cl 12:53:28 Jan 26 2001 I B/8
470

160 APPENDIX B. IMPLEMENTED MODULES

B.3.3 Routers

The state machine just engages the queuing policy based on the initial choice.

Process Model: CED_queue_fifo_BB1_buff
(default) / UnknownEventFB(l

.....

------ , ,..- 1
I (
1 1
1 1
1 1
\ I
\ I () . . (

(INTRPT_STAT) i Wri teStat () \ I PK_ ARRIVAL / 1nser t _ 1n_ q ueue

----------------~,---\ / ------------,.\ ~ -- l

------------------- --- J ___ FIFO I

------ -------- .,,,,,.,,
(queuedisc == OJ------- ./,,,, , - -------

----- ./,, I '
- - - - ,- I ' ',

---- ,, I \ '
----- /r I ' ',

- I I \ '
I / \ ',

I I '-, °',
\ I '\ '
\ I ' ' '- I '\ I

....... _/ ', ..,,,,.,,,, ----
(EOS) 1 bb_eos ()

(SEND_ NOW) / send_pk_n ow()

(PK_ARR_RED) / RedPa c ket()

(defau l t) / UnknownEven tFB()
(INTRPT_STAT) / WriteStat()

state variables
int \ buff_size;

2
double \ servicerate;

-1

~ int \ use_buffer;

FILE* \ sta::file;

9 int \ tcp_drop [NUMBER_TCP_SRC*2];

l : in:: \ tcp_for[NUMBER_TCP_SRC*2];

int '-. uè.p_àrop (Nl.,'MBEP._UDP _SRC~ 2] ;

' . . .,
l ? doub~-: \ min_t:s.;

double \ ~ a x _ t~ ;

double \ drop_max;

doubie ' aveqs~:e ;

double ' .. queue.;;~ :e ;

double , weighi: :

FILE" \ fred;

double \ count;

\ ffifo ;

;: int \ :otpacke~3èrved;

"9 int '. totpa::::kec.arrived;
.;)

41 int \ !NS12[NUMEER_TCP_ SRC*2] ;

~; int \DROPS12[NUMBER_TCP_S~C*2};

~~ int \ INS00 [NUM3ë:R_TCP_ SRc•2 '. ;

-1 ~ in:: \ D?.O?8S0 [NT.JMBEP..:_lî'C?_SRC•2];
48
49 int \ INS12 s i~e;
S·}
51 int \ IN800 s ize;
52

int \ DROPS12size ;
54
ss int \DROP800 s ize;
56
57

l 14:41 :38 Jan 12200111 /1

header block 114:42:00 Jan 12 20011111
(op_intrpt_type () -- OPC_INTRPT_STRM

2

3

#define PK_ARRIVAL
#define SEND_NOW
#define EOS

((op_intrpt_ type () -- OPC INTRPT_SELF && (op_intrpt_code() == 0))
(op_intrpt_type() -- OPC_INTRPT_ENDSIM)

4

s // Total number of udp sources (need to be adapted with the ne twork configuration)Number o f I S P
6 # de fi ne NUMBER_UDP _SRC 5 --0 6
7 // Total number of tep sources (need to be adapted with the ne two rk configuration)Number o f I SP
8 #define NUMBER_TCP_ SRC 5 -,7 (,

',

l u

l J

1 3

14

#define RED_SEND_NOW
#define PK_ARR_RED

#define INTRPT_STAT

((op_intrpt_type () -- OPC_IN'rRPT_SELF) & & (up_ int rpt_c ode ()
(op_intrpt_type() - - OPC_ INTRPT_S TRM)

((op_~ntrpt~type() -- OPC_ INTRPT_SELF) && (op_ intrpt_c ode()

1))

3))

function black
void UnknownEventFB()

2 {

fprintf(statfile, "Error: UNKNOWNEVENT in BBl \ n");
4 op_sim_end("END OF SIMULATION", "IN BBl", "UNKNOWN EVENT",'"');
5

6

7 void bb_eos(void)
8 {

9 int i;
10

11 // p fprintf(statfile, "\nfffffffffffEfffEfEEEEEEEEEEEEEEEEEEEEE \ n \ n");
12 if(NUMBER_UDP_SRC > 0)
l l {

1s for(i = O; i < (NUMBER_UDP_SRC*2); i++)
15 {

16
17

18

19
20
2 1

22

23

24

25
26
27

28
29
J G
31

l 3

34

)5

36

37

38
39

40
41
42

43
44

4 S

4 6

4 7
48

4Y

50

Il
fprintf(statfile, "UDP%d OK;%d\n" , i*2, udp_for[i]);
fprintf(statfile, "%d\n", udp_for[i));
fprintf(statfile, "UDP%d DROP;%d\n", i*2, udp_ drop[i]);
fprintf{statfile, "%d\n", udp_drop[i));

fprintf (statfile, "\n");

if(NUMBER_TCP_SRC > 0)
{

for(i = O; i < (NUMBER_TCP_SRC*2); i++)
(

fprintf(statfile, "TCP%d OK;%d\n" , i*2, tcp_for[i]);
fprintf(statfile, "512 TCP%d OK;%d\n" , i*2, IN512[i]);
fprintf(statfile, "800 TCP%d OK;%d\h" , i*2, IN800[i]);
fprintf(statfile, "TCP%d DROP;%d\n", i*2, tcp_drop[i]);
fprintf(statfile, "512 TCP%d DROP;%d\n", i*2, DROP512[i]);
fprintf(statfile, "800 TCP%d DROP;%d\n", i*2, DROP800[i]);

fprintf(statfile, "\n");

fprintf(statfile, "TCP512;INsize;%d\n",IN512size);
fprintf(statfile, "TCP800;INsize;%d\n",IN800size);
fprintf(statfile, "TCP512;DROPsize;%d\n",DROP512size);
fprintf(statfile, "TCP800;DROPsize;%d\n",DROP800si ze);

fprintf(statfile, "\n");

fprintf (statfile, "END_OF_SIMULATION\n");

if(fclose(statfile) != 0)

if(queuedisc != 0)
{

{fprintf(statfile,

int inl, in2, dropl, drop2;

"Stat file badly closed' '! \ n");)

114:42:43 Jan 12 200111/11

function block
51
52

53

54

55
56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7 1

7::.
7j

74

75

76
77

7H

79
80

!H

8.2

l:l 3
84

85

86
87

RB
8~

90
91

92

93
94

95
96
<;7

98
99
lùü

else
{

inl = in2 = dropl = drop2 = O;

fprintf (fred, "%f;;; %f \n", queuesize, aveqsize) ;
fprintf(fred, "ARRIVED;%d\n", totpacketarrived);
fprintf(fred, "SERVED;%d\n", totpacketserved);

for(i = 0; i < (NUMBER_TCP_SRC*2); i++)
{

}

inl inl + IN512(i];
in2 = in2 + IN800(i];
dropl = dropl + DROP512[i];
drop2 = drop2 + DROP800(i];

fprintf(fred, "IN;pac• 512 = ;%d ;tots ize =
fprintf(fred, "IN;pac 800 = ;%d;totsize
fprintf(fred, "DROP ;pac 51 2 = ;%d;totsize
fprintf(fred, "DROP ;pac 800 = ;%d;totsize
fprintf(fred, "END_OF_SIMULATION\n");

; %d\n", inl, IN51 2size);
;%d\n", in2, IN800si ze);

;%d\n" , dropl, DROP512size);
= ; %d \n" , drop2, DROP800size);

if (fclose (fred) ! = 0) {printf ("Red stat file badly closed! ! ! \ n") ;)

int inl, in2, dropl, drop2;
inl = in2 = dropl = drop2 = O;

fprintf(ffifo, "%d\n", buff_size);
fprintf (ffifo, "ARRIVED; %d\n", totpacketarrived);
fprintf(ffifo, "SERVED;%d\n", totpacketserved):
for(i = O; i < (NUMBER_TC P_SRC*2) ; i++)
{

inl = inl + IN512[i];
in2 = in2 + IN800[i];
dropl = dropl + DROP512size;
drop2 = drop2 + DROP800size;

fprintf(ffifo,
fprintf (ffifo,
fprintf (ffifo,
fprintf(ffifo,
fprintf(ffifo,

"IN;pac 512 = ;%d;totsize =
"IN;pac 800 = ; %d; totsize =
"DROP;pac 512 = ;%d ; totsize
"DROP;pac 800 = ;%d;totsize
"END_OF_SIMULATION\n");

; %d\n •, inl, IN512size);
; %d \ n ", in2 , IN800size);

;%d\n" , dropl, DROP51 2size);
= ;%d\n", drop2, DROP800s ize);

if(fclose(ffifo) != 0) {printf("fifo stat file badly closed ! ! ! \ n");}

/* FIFO mode: arrival of packet */
void insert_in_queue(void)
(

Packet* pkptr;

j 14:42:43 Jan 12 200112111

function block 114:42:43 Jan 12 200113/11
101 int pklength;
102 char fmt [3 0] ;
103 int vpi;
104

105 pkptr = op_pk_get(op_ intrpt_strm());
lLlb op_pk_ format (pkptr, fmt);
107 pklength = op_pk_bulk_size_ get(pkptr);
108

109 Il if((strcmp(fmt, "CED_UDP") == 0) 11 (strcmp(fmt, "stcp_ippkt") -- 0)) totpacketarrived++;
110 totpacketarrived++;
111

112 op_pk_ fd_get(pkptr , 0, &vpi);
113

114 i f(buff_ size - pklength > ~ 0)
115 {

116

11 7
118

119

120

121

122
123

1 2 4

125

126

127
128

129

130

131

132

133

13 4

135
136

137

138

139

140

141

142

143
14 4

145

146

147

148
149

150

ll p

ll p

Il

if(strcmp(fmt, "CED_UDP") -- 0)
{

else

fprintf (statfile, "Bingo UDP%d \ n", vpi);
udp_ for[vpil2] += l;

if (strcmp (fmt, "stcp_ippkt") -- 0)
{ .

if(pklength <= 512)
{

else
{

IN51 2 [vpi l2]++;llnumstrpac512IN++ ;
IN512size += pklength;

if((pklength > 512) && (pklength < 800))
{

INB00[vpil2]++;llnumstrpac800IN++;
INB0Osize += pklength;

else

tcp_for[vpil2] += l;

).

fprintf(statfile, "Bingo TCP%d\n" , vpi);

else {printf("BBl : Wrong type of packet to forward (%s) \ n", fmt) ;}

buff size -= pklength;
printf(" %f \ t %d \ n", op_sim_time(), buff_size) ;
if (servicerate > 0)
{

function block l 14:42:44 Jan 12 200114/11
151 if (op_subq_empty(0))
152 (

153 double servicetime;
154 servicetime = 1.0 * pklength / servicerate;
1 5 5 op_intrpt_schedule_self(op_sim_time() + servicetime, 0);
156

157

158

159

1 60

161

162

16:i

lb 4 else
165 {

i66

lbï
168

169

170

17 1

1 72

1 73

17 4

175

17 6

1 77

178

1 ;,9

180

1 R 1

lH2

183

184

185

186

18 7

188

18 9

190

191
j 92

193

l '14

/ / p

// p

op_subq_pk_insert(0, pkptr, OPC_QPOS_TAIL);

else
{

op_pk_send(pkptr, O);

if(strcmp(fmt, "CED_UDP") ~= 0)
{

else
{

fprintf (statfile, ";; Merde UDP%d\n", vpi);
udp_drop [vpi/2] += l;
op_pk_destroy(pkptr);

i ·f(strcmp (fmt, "stcp_ippkt")
{

0)

if(pklength <= 512)
{

else
{

DROP512[vpi/2]++;//numstrpac51 2DROP++;
DROP512size += pklength;

if((pklength > 512) && (pklength < 800))
{

else
{

DROP800[vpi/2]++; // numstrpac 8 00DROP++;
DROP800size += pklength;

tcp_drop[vpi/2] += l;

fprintf (statfile, ";; Merde TCP%d \ n" , vpi / ;
op_st c p_discard_packet(pkptr);

l'Jt,

]97

198

199

200

e lse {printf("BBl: wrong type o t pa c ke t Lo d e srn>y ('!,s) \ 11", t111t·);J

'

function block
20 1 I* FIFO mode: servi ce of packet *I
202 void send_pk_now(void)
203 {

Packet* pkptr;
int pklength;
char fmt (30);

pkptr = op_subq_pk_ remove(0, OPC_QPOS_HEAD);
op_pk_forma t(pkptr, fmt);

pkl ength = op_pk_bulk_size_get(pkptr);
buff_size += pklength;

l 14:42:44 Jan 12 2001I s,11

20 4

205

206
207

208

20 9

210

211

2 12

213

214

2 15

216

217

2 1 8

219
220
22 1

222

223
22 4

22 5
226
227

228

I l if ((strcmp (fmt, "CED_UDP")• -- 0)
totpacketserved++;

Il (strcmp (fm t, "stcp_ippkt") 0)) totpacketserved++;

op_pk_send(pkptr, 0);
if (!op_subq_empty(0))
{

double servicetime;

pkptr = op_subq_pk_access(0, OPC_QPOS_HEAD);
pklength = op_pk_bulk_size_get(pkptr);
servicetime = 1.0 * pklength I servicerate ;
op_intrpt_schedule_self(op_ sim_time() + servicetime, 0)

22 9 I * ******************* *** ******** ************* ************************** * ******* *I
230 / * *** * /
23 1

232
233

23 4

235
236

237

238

239

240

24 1
242
2 4 3

244
245
24 6
247
24 8

249

2':>0

I *
I*
I*

RED QUEUING DI SCIPLINE
*I
*I
*I

/ * *** * /
/ * *** ** **** * *********** * /

void RedPacke t(void)
{

Pa c ket* pkptr;
int pklength, vpi;
char fmt[30);

pkptr = op_pk_get(op_intrpt_strm());
pklength = op_pk_bulk_size_get(pkptr);

Il

op_pk_format(pkptr,
op_pk_fd_ge t(pkptr,

fmt);
0, &vpi);

if((strcmp(fmt, "CED_ UDP")
tot pac ke tar r i vect++;

0) 11 (s trc mp(fmt, "s t c p_i ppk t ") 0)) t o tpac ke t arr ive d++;

function block
251

252

253

254

aveqsize = (1-weight)*aveqsize + weight*queuesize; ?_ ~
queuesize += (double)pklength; J

2~5 if(queuesize > buff_size)
256 {

257 / * MANDATORY DROP * /
258 if(strcmp{fmt, "CED_UDP") == 0)
259 {

260

2 61
'.:'.62

263
264

265

266
267

268

269
270

n 1
.'.72

273

274

275

276
277

278

279

L80

: 1 h J

Lill

284

285

286
287

288
289

290

291
292
J',j

l S/4

// p

// p

_,, s else
2~t,

297
298

~99
300

else
{

fprintf(statfile, ";;;;;;Merde UDP%d rnandatory (buffer size}\n", vpi);
op_pk_destroy(pkptr);
udp_drop[vpi /2] += l;

if(strcmp(fmt, "stcp_ippkt") -- 0)
{

if(pklength <= 512)
(

else
{

DROP512[vpi/2]++;//numstrpac512DROP++;
DROP51 2size += pklength;

if((pklength > 512) && (pklength < 800))
{

else
{

DROP800[vpi/2]++; // nurnstrpac800 DROP++;
DROPB00size += pklength;

tcp_drop[vpi / 2] += l;

fprintf(statfile, ";;;;;;Merde TCP%d rnandatory (buffer size } \n" , vpi};
op_stcp_discard_packet(pkptr);

else
{

printf ("Bad type of format in bbl (IN buffer size) \ n "):

queuesize -= (double)pklength;

if(aveqsize <= rnin_th)
{

/* IN QUEUE*/
if (strc rnp(fmt, "CED UDP") -- 0)

l 14:42:44 Jan 12 2001 l 6/11

function block
301
302
303
30 4

305

306

307

308

309

310

311

3 l 2

, i 3

314

315

316

317

318

3 19
320

321

322

323
324

325
326
327

328

329
330

331

332

333

334

335

336
337

338

339

340

341
342
343
344
345
34 6
347
34 8
349
350

// p

// p

else
{

fprintf (statfile, "Bingo UDP%d mandatory \ n", vpi);
udp_for[vpi/2] += l;

else
{

if (s trcmp (fmt, "s tcp_ippkt")
{

0)

else
{

if(pklength <= 512)
{

else
{

IN512[vpi/2]++;//nums t rpac512IN++;
I N512size += pklength;

if((pklength > 512) && (pklength < 800))
{

IN800[vpi/2]++; // numstrpac800IN++ ;
IN800size += pklength;

else
{

tcp_ for[vpi/2] += l;

fprintf (statfile, "Bingo TCP%d mandatory\n", vpi);

printf("Bad type of format in bbl (IN mandatory) \ n");

if (op_subq_empty(0))
{

double servicetime;
servicetime = 1.0 * (double)pklength / servicerate;
op_intrpt_schedule_self(op_sim_time() + servicetime, 1);

op_subq_pk_insert(0, pkptr, OPC_QPOS_TAIL);

if((min_th < aveqsize) && (aveqsize < max_th))
{

/* PROBAPILISTIC DROP* /
double pkprob, dropb, dropa;
pkprob = op_dist_uniform(l.0);
dropb (drop_max*((aveqsize - min_th) / (ma x_th - min_th)));
dropa= (dropb / (1 . 0 - (count * dropb)))*((double)pklength / 12000 .0);

j 14:42:45 Jan 12 2001j7/11

function block
351
352
35:;

354

355
lS6

3">7

358

359

360

36 1
362

363

364

365

366
-J67

368
ï69

î70

J71

372

3 7 3

374

375

37 6
377

3 78

379

380

181

38~

l8'
,84
j 8':,

387

388

JR9

390

391

Jn
3 9 3

39 4

395

J96

l~7

398

l9~

.Jl){l

// p

/ / p

if ((dropa < 0) 1 1 (dropa > 1 . 0))
{

dropa 1.0;

if(pkprob >= dropa)
{

/ * IN QUEUE* /
if(strcmp(fmt, "CED_UDP") == 0)
{

fprintf(statfile, ";Bingo UDP%d between \ n", vpi);
udp_for(vpi/2) += l;

else
{

if (s trcmp (fmt, "s tcp_ippkt") 0)
{

if(pklength <= 512)
{

else
{

IN512(vpi/2]++;//numstrpac512IN++;
IN512size += pklength ;

if((pklength > 512) && (pklength < 800))
{

else
{

INB00[vpi/2]++; / /numstrpacB00IN++;
IN800size += pklength;

tcp_for(vpi / 2] += 1·

fprintf (stat file, "; Bingo TCP%d b etween \ n" , vpi) ;

else
{

printf("Bad type of format 1n bbl (IN between) \ n");

c ount = count + ((double)pkleng th / 12 000. 0);

if (op_subq_ empty(0))
{

double servicetime;
servicetime = 1.0 * pklength / servi c e ra t e ;
op _ intrpt_ schedul e_sel f (op_s im_ t ime () 1- SP. r vicetime , 1) ;

op s ubq pk insert(0, pkptr, OPC QPOS TAIL);

l 14:42:45 Jan 12 2001I a,11

function black
401
402
40 3
404
405
406
407 I l p
4 08
409
41 0

4 11

4U
413
414
415

416
417

418
419
420
421

4 22
4 23
424
4 2 5
426
4 27

428
429
430
411

4 32 // p
413

4 34
4 35
436
437

4 :i8
4 :;9

440
441

442
443
444
445
44 6
447
448
449
4',0 // p

else
{

else
{

/* DROP BECAUSE UPPER THAN MIN_TH AND PROBABILISTIC DROP* /
if(strcmp(fmt, "CED_UDP") == 0)
{

else
{

fprintf(statfile, "; ;Merde UDP%d between\n" , vpi);
udp_drop[vpi /2] += l;
op_pk_destroy(pkptr);

if (strcmp(fmt, "stcp_ippkt") 0)
{

if(pklength <= 512)
{

else

DROP512[vpi /2]++; //numstrpac51 2DROP++;
DROP512size += pklength;

if((pklength > 512) && (pklength < 800))
{

else
{

DROPB00[vpi/2]++; // numstrpacB00DROP++ ;
DROPB00size += pklength;

tcp_drop[vpi /2] += l;

fprintf(statfile, "; ;Merde TCP%d between\n", vpi);
op_stcp_discard_packet(pkptr);

else
{

printf("Bad type of format in bbl (OUT between)\n");
op_pk_destroy(pkptr);

count = 0.0;
queuesize = queuesize - (double)pkleng th;

/* MANDATORY DROP* /
if (strcmp (fmt, "CED_UDP") == 0)
{

fprintf(statfi l e, "; ;; ;Merde UDP%d mandatory\n", vpi);

j14:42:45 Jan 12 2001j9/11

function black
udp_ drop[vpi/2] += l;
op_pk_destroy(pkptr);

4 'i 1

4 52

4 5 3
454

4 55

4 56

4 57

458

4 59

4 60

4 b J

~ "-

else

4H

4 66

467

468

4 6 9
4 70

4 7 1

47 2

47 3

474

4 75

476
4'1 7
,1-18

-l 19

4 80

4 8 1

4 82

4 83

{

/ /p

if(strcmp(frnt, "stcp_ippkt")
{

0)

if(pklength <= 512)
{

else
{

DROP512[vpi/2]++; //pumstrpac512DROP++;
DROP512size += pklength;

if((pklength > 512) && (pklength < 800))
{

DROPB0O[vpi/2) ++; // numstrpacB00DROP++;
DROPB00size += pklength;

else
(

tcp_drop[vpi / 2] += l;

fprintf(statfile, ";;; ; Merde TCP%d m,rndatory\n", vpi);
op_stcp_discard_packet(pkptr);

else
(

printf ("Bad type of f ormat in bbl (OUT manda tory) \n");
op_pk_destroy(pkptr);

4 84
4 85

queuesize = queuesize - (double)pklength;

4 86

4 87

488
4k'J

49 ü void Red SendPk(void)
49 1

492 Packet* pkptr;
49 3 int pklength;
4 94 char frnt[J0];
, j 9 5

49 0 pkptr = op_subq_pk_rernove(0, OPC_QPOS_HEAD);
4 97 pklength = op_pk_bulk_size_get(pkptr);
4 98 op_pk_forrnat (pkptr, frnt);
4 99

r 14:42:46 Jan 12 2001110/11

500 // if((strcmp(frnt, "CED UDP") 0) 11 (strcrnp(frn t , "stcp i ppkt") 0)) t o tpa c ke t s erved++; ------'---'--'---"---------'----------------~

function black
50 1

502

totpacketserved++;

503 queuesize -= (double)pklength;
504 op_pk_send(pkptr, 0);
505
506 if (! op_subq_empty (0))
507 {

50& double servicetime;
509

510

511

512

513

514

pkptr = op_subq_pk_access(0, OPC_QPOS_HEAD);
pklength = op_pk_bulk_size_get(pkptr);
servicetime = 1.0 * pklength / servicerate;
op_intrpt_schedule_se~f(op_sim_time() + servicetime, 1);

51 5 / / e 1 se p r in t f (" bu f fer emp t y ! \ n ") ;
516 }

517

518 void WriteStat(void)
519 {
520 inti;
521

522

523

52 4

525

if(queuedisc == 1)
{

fprintf(fred, "%f;;;%f\n", queuesize, aveqsize);

526 else
527

528

529

530

5Jl

fprintf(ffifo, "%d\n", buff_size);

l 14:42:46 Jan 12 2001111/11

init · Enter Execs 114:21:17 Jan 17 200111/3
1 Objid my _self, papa;
2 in t t ime , 1 , i ;
3 c h a r fi 1 e (3 0] ;

c har fu l l name (l 00];

6 my_self = op_id_self() ;
7 papa= op_id_parent(my_self)
8
9 op_ima_obj_attr_get(my_self, "Service Rate", &servicerate)
1 0 op_ima_obj _attr_get (my_self, "Use buffer", &use_buf fer)
11 if(use_buffer == 1) {printf("Use buffer = YES \ n");}
12 else {printf ("Use buffer = NO \ n");)
13 printf("Service Rate= %f \ n", servicerate);
14 if(use_buffer)
15 {

16 op_ima_obj_attr_get(my_self, "Buffer size" , &buff_size);
17
18 else
19

20
2 1

buff size = l0000QO00;

22 printf ("Buffer size = %d \ n", buff_size);
23

24

25

26

27

28

2 9

/ * ***
**
**
**

STATFILE
**
**
**

* ********************** * ******************* * ~********** * /

30 file[0]=' \ 0' ;
3 1 fullname [0] = ' \ 0' ;
32
33 strcat (fullname , " t h ome / u sers /rosmanc / simul / SIMULATION / ")
34 op_ima_obj_attr_get (papa , "name ", file) ;
35 strcat(ful lname , file);
36 strcat (fullname, ". csv ") ;
37 statfile = fopen(fullname, "w");
38 if(s tatfile == NULL) {printf("Stat file of %s not opened! ! \ n", fullnamel;i
39 else
40 {
4 1 fprintf (statfile, ";; ***************************\n");
42 fprintf (statfile, ";;** SIMULATION PARAMETERS **\n");
43 fprintf(statfile, ";;****** ** *************** * ***\n \ n")
44
45

4 6
47

4"

fprintf(statfile ,
fprintf(statfile,

";Serv . rate;%f\n", serv icerate);
";Buffer size ;%d\ n \n", buff_s ize);

49 / * QUEUING DISCIPLINE • ;
5 0
51 op_ima_obj_att r_get (my_self, "FIFO OR RED ", &queuedis c) ;
5 2
53 if (queuedisc == 1)
54 {

55 char redname[l00]
56
57 printf("Queuing discipline= RED\n");
52 op_ima_obj _attr_get (my_se lf, "min_ th" , &min th) ;
59 min_th = (min_th*(double)buff_size) / 100. 0 ;
60 op_ima_obj_attr_get (my_self, "max_th " , &max_th) ;
61 max_th = (max_th*(double)buff_size)/100. 0 ;
62 op_ima_obj_attr_get (my_sel f, "drop_max" &drop_max);
63 dro p_max = dro p_max / 100.0;
64 op_ima_obj _ attr_ get (my_self , "Weight" &we ight) ;
65 fprintf (statfile, ";queue discipline = RED \.n ") ;
.,., fprintf (s t a tfi le , " ; ;min_th;%f \ n", min_ th);
f:ï fpri ntf (statfil e , " ; ; max_th; %f \ n "', max_th);

init : Enter Execs
58

69
7G
71

7-l

75
76

77

78
79

80
81

fprintf(statf i le ,
fprintf (statfile,
aveqsize 0 . 0 ;
queuesi z e = 0.0 ;
count = C. G;

" ; ;drop_max; %f \ n" , dro p_max)
"; ; weight; %f \ n", weight) ;

t otpacketarr i v ed = 0;
t o tpacketserv ed = 0 ;

/* ** * ********************
** REDFILE **
*** ******* ** ** * ******** */

redname[O] = ' \0' ;

114:21 :17 Jan 17 200112/3

82
83
84

strcat (redname, " / h ome / u sers / r o smanc / simul / SIMULATI ON/RED") ;
strcat(redname, file);

85

86
87
88
89
90
91
92
93

strcat(redname, " . csv ");
fred = fopen(redname, "w");
if(fred == NULL) {printf("Stat file of REDbackbonel.csv not o pened ' ! \ n ");)
else
{

fprintf (fred, "RED RESULTS \ n");
fprintf (fred, "queuesize;; ; aveqsize \ n ");

94 el s e
95 {
96 c har fif o name[l 00] ;
97
98
99
100
101
102
103
104
105

106
107
108
109
110

111

112

113
114

115
116

fprintf (statfile, " ; queue discipline FIFO\ n");

* * FIFOFILE .. *
* ** * ** * * * *********** ** * • *• • * /

f i f oname [0] = ' \ 0 ' ;
strcat(fifoname , " / home / users / rosmanc / simul / SIMULATION/ FIFO") ;
strcat(fifoname, fil e);
strcat(fifoname, ". c s v ");
ffifo = fopen (fifoname, "w");
if (ffifo == NULL) {printf ("Stat file of FIFOabckbonel. csv not o pened' ' \ n"); J
else
{

fprintf(ffifo,
fprintf (ffifo,

"FIFO RESULTS\n");
"buff_size ;%d \ n", buff_ size);

117 if (s tatfile != NULL)
11 8 (

119 fprintf(statfile, " \ n");
120 fprintf(statfile, ";; ••• ***************** * • * • \ n");
121 fprintf(statfile, ";; * * SIMULATIONRESULTS * * \ n");
122 fprintf(statfile, "; ; * ******************** * ** \ n \ n") ;
123
124
1 25 op _ ima_obj_attr_get(my_ s elf , "Duration time", &time);
126
127 f o r(l = 0; 1 < time; l++)
1 2 8 {
129
130

13 1

132

133

134

op_intrpt_schedule_se lf(l
op_intrpt_schedule_se lf(l
op_intrpt_schedule_self(l
op_intrpt_s c h e dul e_sel f(l

' 3);
+ 0 . 2 5, 3);
+ 0 . 5 , 3);
+ 0.75, 3);

init : Enter Execs
Li "> for(i = 0; i < (NU11BER_UDP_SRC*2); i ++)
l V, {

udp_d rop[i] = 0 ;
udp_ for[i] = 0 ;

for (i = 0 ; i < (NUMBER_TCP _SRC* 2); i++)
: -l i (

1-12
1-U

i.J4

145
l~ E

U 7

l.JS

153

tcp_drop[i] = O;
tcp_for[i] = O;
INS 12 [il = 0 ;
IN800 [il = 0;
DROP512[i] = 0;
DROPB00[i] = 0;
IN512size = 0;
INB00s i ze = 0;
DROP512size 0;
DROPB00size = 0;

114:21:17 Jan 17 200113/3

