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ABSTRACT

Aims. Hundreds of giant planets have been discovered so far and the quest of exo-Earths in giant planet systems has become intriguing.
In this work, we aim to address the question of the possible long-term coexistence of a terrestrial companion on an orbit interior to a
giant planet, and explore the extent of the stability regions for both non-resonant and resonant configurations.
Methods. Our study focuses on the restricted three-body problem, where an inner terrestrial planet (massless body) moves under the
gravitational attraction of a star and an outer massive planet on a circular or elliptic orbit. Using the detrended fast Lyapunov indicator
as a chaotic indicator, we constructed maps of dynamical stability by varying both the eccentricity of the outer giant planet and the
semi-major axis of the inner terrestrial planet, and identify the boundaries of the stability domains. Guided by the computation of
families of periodic orbits, the phase space is unravelled by meticulously chosen stable periodic orbits, which buttress the stability
domains.
Results. We provide all possible stability domains for coplanar symmetric configurations and show that a terrestrial planet, either in
mean-motion resonance or not, can coexist with a giant planet, when the latter moves on either a circular or an (even highly) eccentric
orbit. New families of symmetric and asymmetric periodic orbits are presented for the 2/1 resonance. It is shown that an inner terrestrial
planet can survive long time spans with a giant eccentric outer planet on resonant symmetric orbits, even when both orbits are highly
eccentric. For 22 detected single-planet systems consisting of a giant planet with high eccentricity, we discuss the possible existence
of a terrestrial planet. This study is particularly suitable for the research of companions among the detected systems with giant planets,
and could assist with refining observational data.

Key words. celestial mechanics – planets and satellites: dynamical evolution and stability – minor planets, asteroids: general –
planetary systems – methods: analytical – methods: numerical

1. Introduction

Thus far an unrivalled number of exoplanets has been brought to
light by missions or ground based telescopes1. Given the surpris-
ingly different exoplanetary configurations with respect to the
solar system, among questions being raised regarding their for-
mation and dynamical evolution, the scientific community has
also been intrigued by the quest of “exo-Earths”. In particular,
for the giant planetary systems discovered with the radial veloc-
ity (RV) method, the detection of Earth-like planets in these
systems is currently elusive, due to observational limitations.
For this reason, a theoretical study of the potential locations
of Earth-like planets in these systems can prove to be a fruitful
venture.

A potentially habitable planet is a terrestrial planet within
the habitable zone (HZ), meaning that it is within the region
around a star where water in liquid form can be maintained
on its surface (Kasting et al. 1993). The long-term stability
of such a planetary orbit is a crucial factor for the biosphere
to evolve. Many extrasolar systems consist of more than one
planet, so that the orbit of an Earth-like planet evolves under

1 See e.g. exoplanet.eu (Schneider et al. 2011) and
exoplanets.org (Han et al. 2014).

the pertubations of its companion planets. These perturba-
tions can weaken the long-term stability of the terrestrial orbit.
Dynamical studies are thus essential to determine whether a
given planet can remain stable for long time spans in the HZ. The
sustainability of habitable terrestrial exoplanets, under the effect
of a companion giant planet (whether in mean-motion resonance
or not), is the central question of the present work.

The framework of our study is the three-body problem
(TBP). It has been shown in the past that planets in mean-motion
resonance (MMR) prompt the investigation of the dynamics. In
a suitable frame of reference, the computation of the families
of stable periodic orbits, which constitute the backbone of sta-
bility domains in phase space, can act as a diagnostic tool that
ascertains information regarding the dynamical neighbourhood
of exoplanets (see e.g. Ferraz-Mello et al. 2006; Hadjidemetriou
2006b; Henrard & Libert 2008; Antoniadou & Voyatzis 2016;
Antoniadou 2016). Moreover, families of periodic orbits can for-
mulate the paths that drive the migration process of the planets
trapped in MMR (see e.g. Ferraz-Mello et al. 2003; Lee 2004;
Voyatzis et al. 2014; Antoniadou & Voyatzis 2017).

The stability regions around the families of periodic orbits
can be revealed by constructing maps of dynamical stability (DS-
maps) with the use of a chaotic indicator. Different problems
were tackled with this method. For instance, Sándor et al. (2007)
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realised a catalogue of DS-maps of hypothetical terrestrial plan-
ets in the HZ of 15 known exoplanetary systems with one giant.
Funk et al. (2009) explored the stability of inclined terrestrial
planets evolving in the HZ for four different configurations:
terrestrial planets in (i) binary systems, (ii) with an inner gas
giant, (iii) with an outer gas giant, and (iv) on a Trojan orbit.
Funk et al. (2011) investigated the influence of the Kozai mech-
anism induced by an eccentric giant planet on the long-term
stability of inclined Earth-like planets in the HZ.

Here we have performed an exploration of the dynami-
cal phase space of the coplanar restricted three body problem
(RTBP) consisting of an inner terrestrial (massless) planet and an
outer giant massive one, either trapped in interior MMR or evolv-
ing in non-resonant configurations. We showcase the influence of
stable symmetric periodic orbits on the survival of such plane-
tary systems. Our work extends the study of Sándor et al. (2007)
to a broader range of initial configurations, and is enhanced by
an analytical study of the periodic orbits shaping the domains
of stability for the 2/1 MMR. Our aim is to provide hints as
to the long-term stability and possible existence of both circu-
lar (Earth-like) and quite eccentric inner terrestrial planets when
evolving in systems with an outer giant planet regardless of its
eccentricity.

The paper is organised as follows. In Sect. 2, we present
the model and discuss the basics with regards to the bifurca-
tion and continuation of the symmetric and asymmetric planar
periodic orbits and their link with MMRs. The chaotic indicator
used in the DS-maps is also described. In Sect. 3, we show a
series of DS-maps, when all possible symmetric configurations
are taken into account as the semi-major axes ratio varies along
with the eccentricity of the outer giant, for four different values
of the eccentricity of the inner terrestrial planet. In order to
showcase that the regular domains in phase space do encom-
pass the stable periodic orbits, we have focused on 2/1 MMR.
In Sect. 4, we provide the families of periodic orbits in the cir-
cular and elliptic restricted TBPs for 2/1 MMR. We justify the
islands of stability that appear in the dynamical neighbourhood
of 2/1 MMR in the DS-maps of Sect. 3, by computing addi-
tional DS-maps initiated by specific stable periodic orbits on
different planes, so that a global view of the phase space is pro-
vided. In Sect. 5, we apply our results to RV-detected single-giant
planet systems by showcasing the dynamical vicinity of possi-
bly existing terrestrial planet. Finally, our conclusions on such a
coexistence are given in Sect. 6.

2. Model set-up

We considered two planets, a massless planet (m1 = 0), named
terrestrial planet here, and a giant one of mass m2, both of
which revolve around a star of mass m0. The massless body
moves under the gravitational attraction of m0 and m2 (with-
out influencing their motion), as the latter describes circular
(CRTBP) or elliptic (ERTBP) orbits around their common cen-
tre of mass in a suitable frame of reference Oxy (Hadjidemetriou
& Christides 1975). The parameter of the RTBP is µ = m2

m0+m2
.

The planetary orbits correspond to Keplerian ellipses in the
inertial frame described by heliocentric osculating elements,
namely the semi-major axes ai, the eccentricities ei and the
longitudes of pericentre $i. For the position of the planets on
the osculating ellipse, we considered the mean anomalies Mi.
Subscripts 1 and 2 refer to the inner and the outer planet, respec-
tively. We normalised the total mass of the bodies to unity, i.e.
m0 + m1 + m2 = 1. Hence, since m1 = 0, the mass of the star is

m0 = 1 −m2 with m2 = 0.001. Additionally, for the gravitational
constant G, we used the normalisation G = 1.

Without loss of generality, the initial semi-major axis of the
outer planet is always set to a2(0) = 1.0. Thus, we study interior
MMRs, meaning that the mean-motion ratio is rational defined
as n2

n1
=

(
a1
a2

)−3/2
≈

p+q
p , where p, q ∈ Z∗ and q is the order of the

resonance.
For the computation of DS-maps, we focused on coplanar

symmetric periodic orbits, where the apsidal difference was fixed
to ∆$ = $2 − $1 = 0 or π. Four values of the eccentricity of
the inner terrestrial planet, e1, are considered here: 0.02, 0.1, 0.3
and 0.5. We report all possible symmetric configurations for the
semi-major axes ratios, a1/a2 with a2 = 1.0 varying between 0.1
and 0.8, and for all values of the eccentricity of the outer giant
planet, i.e. e2 ∈ [0, 1]. To explain dynamically the stable regions
observed in the DS-maps, families of symmetric periodic orbits
in the ERTBP were computed for the 2/1 MMR. We note that
families of asymmetric periodic orbits are also investigated for
reasons of completeness.

We performed the numerical integrations of the equations
of motion with the Bulirsch-Stoer integrator. Needless to say, a
broad exploration of regular orbits in the phase space of such sys-
tems requires extensive numerical integrations. Computation of
the linearly stable2 periodic solutions that guide our exploration
of the precise boundaries of each stable domain, is further dis-
cussed in Sect. 2.1. The long-term stability of trajectories within
broad regions in phase space is also concluded by the computa-
tion of the detrended fast Lyapunov indicator (DFLI) as set out
in Sect. 2.2.

2.1. Periodic orbits and mean-motion resonances

Let us consider the rotating frame of reference Oxy, whose ori-
gin coincides with the centre of mass of the star and the giant
planet (primaries) and its x-axis always contains them. The posi-
tions of the planet and the massless body are (x′, 0) and (x, y),
respectively. Then, when ẋ′ = 0, a periodic orbit is defined as
Q(0) = Q(T ), where Q(t) is a set of positions and velocities of
both the giant planet and the terrestrial one and T is the orbit’s
period, which satisfies t = kT , with k ≥ 1 being an integer.
Given the Lagrangian of the system and the respective equations
of motion, the system remains invariant under certain period-
icity conditions, which determine whether the periodic orbit is
symmetric or asymmetric (see e.g. Antoniadou et al. 2011).

In order to classify the orbits we took into account the
fundamental symmetry, Σ (Hénon 1997)

Σ : (t, x, y)→ (−t, x,−y). (1)

A periodic orbit coincides with a fixed or periodic point on a
Poincaré surface of section, say at y = 0 with ẏ > 0. A periodic
orbit is symmetric when it has two perpendicular crossings with
the Ox-axis, i.e. y(T ) = y(0) = 0 and ẋ(T ) = ẋ(0) = 0.

The symmetric periodic orbits with respect to the x-axis in
the ERTBP are represented by a point in the three dimensional
phase space

x′(T ) = x′(0), x(T ) = x(0), ẏ(T ) = ẏ(0), (2)

where x′ denotes the position of the giant planet, while x and ẏ
the position and velocity of the terrestrial planet in the rotating
frame.
2 Linear stability is derived through the computation of the eigenvalues
of the system. The periodic orbits are considered as stable if and only if
all of the eigenvalues are lying on the unit circle. See also Sect. 2.1.
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If the orbit starts on the plane (x, y), the asymmetric peri-
odic orbits (provided that ẋ′(T ) = ẋ′(0) = 0) are represented in
the ERTBP by a point in the five-dimensional space of initial
conditions

x′(T ) = x′(0), x(T ) = x(0), y(T ) = y(0),
ẋ(T ) = ẋ(0), ẏ(T ) = ẏ(0). (3)

If the orbit does not start perpendicularly from the Ox-axis, the
asymmetric periodic orbits (provided that y(T ) = y(0) = 0) are
represented in the ERTBP by the conditions

x′(T ) = x′(0), ẋ′(T ) = ẋ′(0) , 0, x(T ) = x(0),
ẋ(T ) = ẋ(0), ẏ(T ) = ẏ(0). (4)

In the CRTBP, x′ is constant, yielded by the normalisation
adopted for the system and in our computations is taken equal to
1− µ. Thus, a symmetric periodic orbit with respect to the x-axis
is defined as a point in the space of initial conditions

x(T ) = x(0), ẏ(T ) = ẏ(0). (5)

An asymmetric periodic orbit in the CRTBP, when the
reference is ẋ′(T ) = ẋ′(0) = 0 is defined as

x(T ) = x(0), y(T ) = y(0), ẋ(T ) = ẋ(0), ẏ(T ) = ẏ(0), (6)

or as

ẋ′(T ) = ẋ′(0) , 0, x(T ) = x(0), ẋ(T ) = ẋ(0), ẏ(T ) = ẏ(0),
(7)

when the reference is y(T ) = y(0) = 0.
Then, via the mono-parametric continuation (see e.g. Hénon

1997; Hadjidemetriou 2006b), smooth curves known as charac-
teristic curves, or families of periodic orbits are derived linking
those fixed points. The linear stability analysis (Broucke 1969;
Marchal 1990; Hadjidemetriou 2006a) can classify the periodic
orbits as stable or unstable and based on this attribute we are
able to foretell the evolution of celestial bodies hosted in their
neighbourhood.

In principle, the families of periodic orbits are generated by
bifurcation points and continued according to specific continua-
tion schemes. Antoniadou & Voyatzis (2013) studied the vertical
stability of the planar CRTBP in 2/1 and 1/2 MMRs and general
TBP (GTBP) in 2/1 MMR, where both bodies are massive and
the mass-ratio ρ = m2

m1
changes the dynamics, so there is no dis-

tinction between interior (ρ → ∞) and exterior (ρ → 0) MMRs.
They showed the bifurcation and continuation of spatial symmet-
ric periodic orbits in 2/1 MMR for the 3D-GTBP starting either
from the 2D-GTBP or the 3D-CRTBP. The generation of fam-
ilies among the planar problems (CRTBP, ERTBP and GTBP)
has been shown by, e.g., Hadjidemetriou (1975), Voyatzis et al.
(2009) and Antoniadou et al. (2011). However, there exist fam-
ilies that do not bifurcate from periodic orbits and are isolated.
For instance, Antoniadou & Voyatzis (2013) showed examples
of spatial isolated symmetric families in 2/1 MMR in 3D-GTBP
resulting by foldings of the families as the mass of the inner or
outer body increases from zero and Voyatzis & Hadjidemetriou
(2005), Voyatzis et al. (2009) and Antoniadou & Voyatzis (2016)
presented planar asymmetric isolated families in 2/1 MMR in
GTBP resulting by collision bifurcations as ρ = m2

m1
changes.

A family of periodic orbits is either circular or elliptic. The
circular family, along which the mean-motion ratio, n2

n1
, varies,

consists of almost circular symmetric periodic orbits. At ratios
at which we have an MMR, the circular family either continues
smoothly with periodic orbits of increasing eccentricities (when
q = 1), or exhibits bifurcation points that generate new elliptic
families (when q , 1). These elliptic families, along which the
ratio n2

n1
remains close to its rational value for the RTBP, may be

continued up to high eccentricities. Thus, they are resonant and
each resonant periodic orbit they consist of indicates the exact
position of the respective MMR in phase space at a particular
energy level.

The validity of an averaged Hamiltonian can be checked
by comparing the periodic orbits of the RTBP with the corre-
sponding fixed points (or stationary solutions) that depend on
the resonant angles

θ1 = pλ1 − (p + q)λ2 + q$1,
θ2 = pλ1 − (p + q)λ2 + q$2.

(8)

The stationary solutions where θ̇i = 0 (i = 1, 2) are named
as apsidal corotation resonances (ACRs e.g. Ferraz-Mello et al.
2006 and Michtchenko et al. 2006). Hence, an ACR corresponds
to a periodic orbit in the rotating frame. In the neighbourhood
of a stable periodic orbit, both the resonant angles and the apsi-
dal difference, ∆$ = (θ2 − θ1)/q, librate about 0 or π if the orbit
is symmetric or around other angles if the orbit is asymmetric.
By letting the resonant bodies be aligned (∆$ = 0) or anti-
aligned (∆$ = π) and by also considering the Mi , we obtain four
symmetric configurations given by (θ1, θ2) = (0, 0), (0, π), (π, 0),
and (π, π). Along the families of asymmetric periodic orbits
the angles ∆$ = $2 − $1 (measure of geometric asymmetry)
and ∆M = M2 − M1 (measure of dynamic asymmetry) vary
and we also have the mirror image at ∆$′ = 2π − ∆$ and
∆M′ = 2π − ∆M, as a result of Σ.

2.2. Maps of dynamical stability

It is widely known that in Hamiltonian systems, such as the pla-
nar ERTBP which has three degrees of freedom, the motion
can be regular or chaotic. In domains of phase space sur-
rounded by stable periodic orbits and thus, populated by invari-
ant tori, the motion is regular and quasi-periodic according to
KAM theory (Arnol’d 1963); see also e.g. Berry (1978) and
Contopoulos (2002). Therefore, the long-term stability of the
planetary systems residing therein is guaranteed, as Arnol’d dif-
fusion is expected to be excessively slow. The regions around
unstable periodic orbits exhibit weak or broad homoclinic chaos
and the motion is irregular. Hence, the planetary systems in such
a vicinity are destabilised and a collision or escape is probable.
Weakly chaotic orbits can be considered as stable from a phys-
ical point of view, since the initial configuration of the planets
does not change significantly over time.

Chaotic or regular evolution in the neighbourhood of peri-
odic orbits can, in general, be revealed by computing chaotic
indices (Sándor et al. 2007). Here we have used the DFLI
(Froeschlé et al. 1997; Voyatzis 2008), which is fast and reliable
in distinguishing chaos from order, and is defined as

DFLI(t) = log
(

1
t

max{|η1(t)|, |η2(t)|}
)
, (9)

where ηi are the initially orthogonal deviation vectors computed
after numerical integration of the variational equations. For a
regular orbit DFLI remains almost constant over time, while it
increases exponentially when irregular orbits are traced.
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Fig. 1. Collision lines for interior MMRs, when e1 = 0.3 and a2 = 1.0
that separate the plane (α1/α2, e2) in four different domains denoted by
capital letters. Their intersection with the axes is also shown.

We broadly computed DS-maps in order for the multi-
dimensional phase space structure to be unravelled. By choosing
suitable planes we created dense grids of initial conditions,
while keeping the rest of the parameters fixed. Then, based
on the output of the chaotic indicator we coloured each con-
dition. Throughout this study, dark coloured regions represent
the domains where the motion is regular, while pale coloured
ones correspond to regions where chaoticity is traced. The
white colour showcases the points where the numerical inte-
gration has failed at t < tmax, due to very close encounters,
which, in turn, resulted in very small integration step. We have
chosen tmax = 250 kyr, which has been proved by numerical tests
more than adequate to the efficient distinguishability of motion.
For irregular orbits, we stopped the numerical integration, when
DFLI(t) > 1030 and classified the orbit as chaotic.

To unravel the possible symmetric configurations for all
possible locations of the terrestrial planet, regardless of the
eccentricity of the companion giant planet, the DS-maps are
computed in the plane (a1/a2, e2). Although the MMRs can offer
a phase protection mechanism and even highly eccentric orbits
can survive collisions (Antoniadou & Voyatzis 2016), two copla-
nar Keplerian orbits may, in general, intersect if the criterion

a2
1(1 − e2

1) + a2
2(1 − e2

2) − 2a1a2(1 − e1e2 cos ∆$) ≤ 0 (10)

holds (Kholshevnikov & Vassiliev 1999). If we assume a con-
stant eccentricity value e1 and set ∆$ either equal to 0 or π, it is
trivial to yield the collision lines. In Fig. 1, we show that the col-
lision lines separate the plane (a1/a2, e2) in four different areas.
In A, the planetary orbits do not intersect for any value of the
apsidal difference, ∆$. In B, only anti-aligned orbits (or orbits
with ∆$ precessing about π and satisfying Eq. (10)) intersect. In
C and D, the orbits always intersect.

3. Unravelling the existence of terrestrial planets

Hereafter, we present DS-maps on the plane (a1/a2, e2), where
a2 = 1.0 by keeping e1 fixed and equal to 0.02, 0.1, 0.3, and 0.5.
As for the rest of the orbital elements and as already stated, when
it comes to symmetric periodic orbits, four different symmetric

configurations exist, provided by the resonant angles. Thus, each
time (for each fixed value of e1), we present four DS-maps, where
the respective values of Mi and $i are fixed. In this way we
obtain a global view of the phase space of coplanar symmetric
planetary configurations.

We herein begin a thorough study of the phase space around
3/2, 2/1, 5/2, 3/1, 4/1, and 5/1 MMRs, while the semi-major axes
ratio ranges between [0.1,0.8]. In this section, we provide infor-
mation about the resonant and non-resonant stable motion via
those DS-maps, where we overplot the collision lines according
to each value of e1. In Sect. 4, we explain the reason why those
islands of stability exist for 2/1 MMR guided by the stable peri-
odic orbits. In a forthcoming work (Antoniadou & Libert 2018),
such a link with periodic orbits shall be provided for each of the
above-mentioned MMRs.

The DS-maps associated with e1 = 0.02, 0.1, 0.3, and 0.5 are
given in Figs. 2–5, respectively. We note a similar trend in all
the DS-maps. Following the collision lines, the larger the semi-
major axes ratio of the two bodies, the smaller the eccentricity of
the giant planet compatible with the existence of an inner terres-
trial planet on stable orbit (see the shape of the broad region of
regular orbits). However, at specific MMRs, interesting regular
regions can additionally be observed at large values of the eccen-
tricity e2. In the following, we describe these specific attributes
showcased in the DS-maps.

To begin with, for low to moderate values of the eccentric-
ity of the giant planet, e2, we observed (regardless of ∆$ or
e1) distinct regions of stability (dark coloured) spanning from
one domain to another being crossed by the collision lines (grey
dashed curves). These islands, or rather tongues, emanating from
domains A or D at semi-major axes ratios corresponding to
MMRs, are built about stable symmetric periodic orbits. There-
fore, they are not broken by the collision lines, as the MMRs
offer a phase-protection mechanism and even when the orbits
do intersect, the close encounters are avoided (e.g. Morbidelli
2002). On the other hand, for highly eccentric giants, meaning
those above the collision lines in domain C, only distinct islands
of stability exist, which are built about stable periodic orbits and
thus, again, close encounters are not in effect. These will be jus-
tified through the linear stability of the periodic orbits in Sect. 4,
for the 2/1 MMR.

We note that, at all those stability domains, both the respec-
tive resonant angles and the apsidal difference librate about 0
or π. This feature justifies the capture in MMR and the evolu-
tion in such a stable symmetric configuration. Being close to a
periodic orbit (or ACR, for apsidal corotations) results in oscil-
lations of the orbital elements and angles of small amplitude. On
the contrary, moving further away gives rise to oscillations of
large amplitude.

Moreover, for the non-resonant regular orbits of domains
A and B, the apsidal resonance (Murray & Dermott 1999;
Morbidelli 2002), where only the apsidal difference oscillates
about 0, while the resonant angles rotate, is apparent. The orbits
are thus, protected from close encounters (Malhotra 2002)3.

As the terrestrial planet becomes more eccentric (e1 →

0.5), we observe that the broad region of regular orbits shrinks
towards lower values of e2. Simultaneously, more distinct islands
of stability and tongues appear.

3 We note that, in case of apsidal resonance, the amplitude of one
proper frequency becomes zero (or near zero), so both eccentricities
are dominated by the other proper frequency, i.e. they precess with
the same frequency. In true resonance (like the MMR), two proper
frequencies of a system become commensurable.

A60, page 4 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732058&pdf_id=0


K. I. Antoniadou and A.-S. Libert: Puzzling out the coexistence of terrestrial exoplanets and giants via resonant periodic orbits

Fig. 2. DS-maps on the plane (a1/a2, e2) when e1 = 0.2. The values of the orbital elements that remained fixed throughout the computation of
the DS-maps are noted above each panel. The dashed grey lines indicate the collision lines between the planets. The coloured bar corresponds to
the logarithmic values of DFLI; dark (pale) colours showcase regular (irregular) evolution of the orbits, while white colour depicts the very close
encounters and the failure of numerical integration at t < 250 kyr.

Fig. 3. DS-maps on the plane (a1/a2, e2) when e1 = 0.1. Colours and lines as in Fig. 2.

More precisely, in Fig. 2, the possible coexistence of an exo-
Earth with a giant planet is investigated when e1 = 0.02. Apart
from the distinct tongues emerging at MMRs and the islands of
stability in domain C, the long-term stability of the non-resonant
systems in domains A and B is obtained through the apsidal
resonance. The same holds for Fig. 3, where e1 = 0.1.

In Figs. 4 and 5, for e1 = 0.3 and 0.5, respectively (apart
from the tongues extending from the domain A to the domain C
and the islands in domain C) the secondary resonance (Moons
& Morbidelli 1993) is noteworthy for the islands appearing at
low eccentricities of the giant (e2 < 0.2). Within these regions
θ1 librates about 0 or π (depending on the configuration of the
periodic orbit (MMR) it is associated with), while θ2 and ∆$
rotate. More specifically, if we consider the average frequencies
f2R and f1L of θ2-rotation and θ1-libration, respectively, we can
observe the existence of resonances f2R/f1L = g2/g1, where gi ∈

Z∗, known as secondary resonances.

4. 2/1 resonant periodic orbits

The goal of this section is to identify the 2/1 resonant periodic
orbits that generate the tongues and islands of stability observed
in the DS-maps. However, for reasons of completeness, apart
from the families of symmetric periodic orbits in the CRTBP and
ERTBP responsible for the regular domains of the DS-maps, we
also present families of asymmetric periodic orbits, which exist
only in the ERTBP.

4.1. Symmetric periodic orbits

In Fig. 6, we present the families of periodic orbits in the
2/1 MMR of the CRTBP originating from x ≈ 0.62996. More
specifically, along the circular family, whose orbits are circu-
lar and symmetric, the semi-major axis of the massless body
(recall that a2 = 1.0) coincides with the radius of its orbit and
thus, the coordinate x in the rotating frame. At points where
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Fig. 4. DS-maps on the plane (a1/a2, e2) when e1 = 0.3. Colours and lines as in Fig. 2.

Fig. 5. DS-maps on the plane (a1/a2, e2) when e1 = 0.5. Colours and lines as in Fig. 2.

T = 2π(a−3/2
1 − 1)−1 we obtain bifurcation points that generate

symmetric periodic orbits (and then though mono-parametric
continuation families of periodic orbits) to the CRTBP. At
first order MMRs where q = 1, like the 2/1, as mentioned in
Sect. 2.1, the circular family exhibits a gap (see e.g. Fig. 6
where the families I and IIU do not bifurcate smoothly from
one point), as we switch on the mass of the giant planet from
zero and go from the unperturbed to the perturbed problem.
Due to the Poincaré-Birkhoff theorem, only a finite number
of families survives. This number is usually two, one being
stable (I) and one unstable (IIU). Since the massless body,
say the terrestrial planet, is now allowed to describe ellip-
tic orbits and either be located at pericentre or apocentre, we
present those families on the plane (x, e1). The family I con-
sists of aligned periodic orbits and the families IIU and IIS of
anti-aligned ones.

At points where T = kT0, k ∈ Z∗, with T0 = 2π
|

p+q
p −1|

, along

the families of the CRTBP we have a bifurcation point to the
ERTBP. We denote them in the following way: B(p+q)/p

F,# , in order
to distinguish the number of bifurcation points (#) along a certain

family (F) of a particular MMR ((p + q)/p). In Fig. 7, we justify
the existence of two bifurcation points, B2/1

I,1 (known by Voyatzis
et al. 2009 and called B0

T therein) and B2/1
IIS ,1

(not reported in
previous works). As the period, T , varies along the families I
and IIS we have bifurcation points when it becomes equal to
T0 = 2π.

In the ERTBP, the giant planet is allowed to evolve on an
elliptic orbit. Thus, from each bifurcation point two families
are generated and correspond to the location of the giant planet
at the pericentre and the apocentre. In Fig. 8, we present the
families that are generated from each bifurcation point in four
different configurations on the plane (e1, e2) by giving a neg-
ative value to ei, whenever θi, i = 1, 2 librate about π. The
families that emanate from B2/1

I,1 have already been described
by Voyatzis et al. (2009; called E0p and E0a therein). The sta-
ble one evolves in the configuration (0, 0) while the unstable
in (0, π). From the new bifurcation point B2/1

IIS ,1
, one family

starts as unstable and evolves in the configuration (π, π) and
the other as stable and belongs to the configuration (π, 0). The
latter family could not be continued as the eccentricity of the
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Fig. 6. Families of periodic orbits in 2/1 MMR of the CRTBP when
m2 = 0.001 projected on the plane (x, e1). The family I consists of peri-
odic orbits which are aligned (∆$ = 0), whereas along IIU and IIS
the periodic orbits are anti-aligned (∆$ = π). The collision between
the orbits is denoted by the cross symbol. Blue (red) stands for stable
(unstable) periodic orbits. The bifurcation points from the CRTBP to
the ERTBP are also shown.

Fig. 7. Justification of existence of two bifurcation points, B2/1
I,1 and

B2/1
IIS ,1

, in the families (I and IIS , respectively) of CRTBP in 2/1 MMR,
where T = T0 = 2π, that generate periodic orbits in the ERTBP.

inner planet reached very close to one and the integration
stopped. We note that this family has stable highly eccentric
orbits, even for both planets.

Given these new families in the ERTBP (m1 = 0), the ori-
gin of the symmetric families for the configuration (π, 0) in
the GTBP for the 2/1 MMR can be completed, if we continue
them with respect to the m1 (increase its value). Voyatzis et al.
(2009) considered both 2/1 and 1/2 MMRs in the ERTBP and
showed the origin of the symmetric families for the configura-
tion (0, 0) in the GTBP; starting from the 2/1 MMR in ERTBP
(as ρ → ∞), they computed the families for ρ > 1, which were
known by Michtchenko et al. (2008a) and starting from the 1/2
MMR in the ERTBP (as ρ → 0) they computed the families for

Fig. 8. Families of periodic orbits in 2/1 MMR of the ERTBP when
m2 = 0.001 presented as in Fig. 6 in four quadrants in correspondence
with the four different symmetric configurations on the plane (e1, e2).
Apart from the apsidal difference, ∆$, being noted, the angles in brack-
ets represent the pair of resonant angles (θ1, θ2). The dashed grey curve
depicts the collision line between the planets.

ρ < 1 known by Michtchenko et al. (2008b). The symmetric fam-
ilies for the configuration (π, 0) in the GTBP for the 2/1 MMR
were known by Voyatzis & Hadjidemetriou (2005); Beaugé et al.
(2006). Later, Antoniadou & Voyatzis (2013) studied these fam-
ilies in both configurations with regard to the bifurcation points
for spatial symmetric families in GTBP.

Now, we focus on the regions of stability that appeared in
Sect. 3 for 2/1 MMR and provide a visualisation of the phase
space around the stable periodic orbits, about which they are
built. By computing DS-maps on the planes (e1, e2) and ($2, e2),
we delineate the boundaries of regular domains.

In Fig. 9, we justify the island of stability that appeared in
Fig. 5a when e1 = 0.5. Therein, the resonant angles and the
apsidal difference librate about 0. Therefore, we delved into the
family of that configuration (stable (blue) family of Fig. 8, when
(θ1, θ2) = (0, 0)) and selected the periodic orbit (white cross)
with the minimum value of e1 (its orbital elements that remain
constant for the computation of each DS-map are given). On
the plane (e1, e2) in panel a, we observe that the stable (dark
coloured) region, denoted by L, is built about this stable (blue)
family of periodic orbits that provide the position of the MMR.
Denoted by LS are the neighbouring well defined stable regions,
where the 1/1 secondary resonance is apparent (θ1 libration
about 0). A regular domain, LA, where the orbits are secured
via an apsidal difference oscillation about 0, exists for low val-
ues of the eccentricities of both bodies. On the plane ($2, e2) in
panel b, we observe the main regular domains, L about the sta-
ble periodic orbit (the orbit is symmetric at ∆$ = 0 and thus the
island reappears.) Similarly to islands of panel a, beside those
(symmetric) domains, the ones exhibiting 1/1 secondary reso-
nance, LS , inside 2/1 MMR appear. For instance, the region LS
centred at$2 = π justifies the respective region at Fig. 5d, where
θ1 librates about 0.
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Fig. 9. DS-maps on the planes (a) (e1, e2) and (b) ($2, e2) yielded by a periodic orbit (white cross) that belongs to the stable family (blue curve)
of the configuration (θ1, θ2) = (0, 0). The dashed grey line depicts the region where the planetary collisions take place. The orbital elements of the
periodic orbit that remain fixed during the computation of each map are noted down. The islands of stability showcase the following attributes:
L: libration of all resonant angles and apsidal difference (MMR), LS : secondary resonance, LA: apsidal difference oscillation or circulation, and
R: rotation of both resonant angles and apsidal difference.

Fig. 10. DS-maps presented as in Fig. 9 guided by a periodic orbit of the configuration (θ1, θ2) = (π, 0).

In Fig. 10, we justify the islands of stability that appeared
in Fig. 5c at highly eccentric and low values of e2. Given
the stable (blue) family of the configuration (π, 0) we selected
the periodic orbit with the minimum value of e1. In panel a, the
very broad region of stability, L, is built about it. We further
observe an island of 1/1 secondary resonance, where θ1 librates
about π, linked with the respective one of Fig. 5c. Further-
more, there exists another domain, R, where all of the resonant
angles and apsidal difference rotate. In panel b, the domains L
centred at e2 ≈ 0.88 are linked with the configuration of the
periodic orbit with (θ1, θ2) = (π, 0), ∆$ = π. The domains, L
centred at $2 = π/2 (or 3π/2 symmetrically) are linked with the

configuration (θ1, θ2) = (0, 0), ∆$ = 0, as such librations take
place. Due to the 2/1 MMR such an initial configuration at t = 0
is equivalent to (0, 0) at t = T/4. Additionally, due to the multi-
dimensionality of the phase space, some sections of the evolution
in tori can appear on planes not targeting the configuration show-
cased. As in Fig. 9b, the 1/1 secondary resonances, LS , are
obvious.

4.2. Asymmetric periodic orbits

As shown by Beaugé (1994) and Voyatzis et al. (2005), asymmet-
ric periodic orbits in the CRTBP exist only in exterior MMRs of
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Fig. 11. All (from Figs. 2–5) long-term stable coplanar symmetric orbits. Emphasis is given to terrestrial planets of low eccentricity values and in
case of multiple points on the grid with value log(DFLI) ≤ 2.5 only the one with the lowest value e1 is coloured. Plotted in the background with
solid grey lines are the 93 planetary systems possessing one giant of mass [1–5] mJ at a2 ≥ 1.0 AU.

the form 1/p, p = 2, . . . At these resonances a change of stability
is observed along the families of symmetric periodic orbits. At
the orbits where this transition is observed we have bifurcation
points that generate asymmetric periodic orbits. Since we have
focused here on interior MMRs, the 2/1 MMR does not have
families of asymmetric periodic orbits in the CRTBP.

Antoniadou et al. (2011) showed two types of bifurca-
tion points that can generate families of asymmetric periodic
orbits in the ERTBP. In the first one, the asymmetric peri-
odic orbits are generated by bifurcation points of the families
of symmetric periodic orbits in the ERTBP where the stabil-
ity changes. In the second, which takes place only at exterior
MMRs, asymmetric periodic orbits in the ERTBP can be gen-
erated by asymmetric orbits of the CRTBP whose period is a
multiple of 2π. For instance, the period at 1/2 MMR should
be 4π.

In our study, there is no change of stability along the families
of the ERTBP shown in Fig. 8. Hence, we cannot generate fam-
ilies of asymmetric periodic orbits by bifurcation points of the
first type.

However, by searching the phase space, we found 20 ini-
tial conditions that correspond to asymmetric periodic orbits
at the ERTBP. They are all unstable, exist for highly eccentric
orbits of the giant (outer body), and are shown in Table A.1 in
Appendix.

We have continued these initial conditions and computed the
20 isolated (independent of the families of symmetric periodic
orbits) families of asymmetric periodic orbits, which are shown
in Figs. A.1–A.4. Along these families ∆$ and ∆M are not con-
stant but vary. Hence, in order to visualise the phase space,
we not only plot them on (e1, e2) plane, but also on (e1,∆M)
and (e1,∆$). The families of asymmetric periodic orbits
reported here are unlikely to provide regular domains for the
existence of terrestrial planets, in addition to those reported in
Sect. 3 for symmetric configurations.

5. Application to real systems

Any real planetary system, which can be simulated via the
ERTBP for interior MMRs, can be located at the DS-maps pre-
sented in Figs. 2–5 and its long-term orbital stability can be
deduced by the periodic orbits existing in their dynamical vicin-
ity, as in Figs. 9 and 10. Guided by the orbital elements of the

celestial bodies and the periodic orbits, the exact boundaries
of stable domains can be unravelled. We remind the reader
that only (possible) existence of terrestrial planets in symmetric
configurations is taken into account here.

In Fig. 11, we accumulate all long-term stable4 trajecto-
ries originating from the four different symmetric configurations
shown in each of the Figs. 2–5. We colour-code the selected
orbits from the different figures, and when one point on the plane
(a1/a2, e2) appears more than once within the selected ones,
we keep only the point (colour) that corresponds to the low-
est value of e1. The solid grey horizontal lines represent the
93 planetary systems possessing one detected giant planet of
mass within the range [1-5] mJ being located at a2 ≥ 1.0 AU, as
recorded in database exoplanet.eu (October 2017). The solid
black vertical lines point out the main MMRs.

5.1. For a telescope proposal

With telescopes having the instrumental precision needed at
hand, the observational astronomers might like to find an Earth-
like planet in a system already hosting a giant. The grey lines
in Fig. 11 correspond to the discoveries to-date and hence, new
lines can be added, as new ones are brought to light. Observers
might need to make a choice between those systems and priori-
tise them within a given time for a telescope proposal. Based
on the eccentricity of the giant planet, e2, and its errors, two
strategies are required:

I. If e2 ≥ 0.4, the regions of stability are small yet distinct.
Thus, by looking at the specific a1 of those domains, the
orbital elements of the terrestrial planet -if it exists and is
found- could be well constrained through dynamical anal-
yses. In particular, terrestrial planets can only be found in
eccentric orbits (e1 ≥ 0.3) and in MMRs (mainly 2/1, 3/1,
4/1, and 5/1).

II. If e2 < 0.4, the region of stability is very broad and encom-
passes both non-resonant and resonant motion. Therefore, on
the one hand, the possibility of finding a terrestrial planet
here might be higher. On the other hand, it becomes harder,
as a1 can span a large domain.

4 We have broadened the value about which oscillations of the chaotic
indicator take place and have set it to log(DFLI) ≤ 2.5, so that weakly
chaotic orbits are included as well. For regular orbits log(DFLI) should
librate about 1.
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Next, we elaborate on the minimum value of e1 and the domains
that can host a terrestrial planet for the single-giant planet
systems observed so far.

5.2. For the single-giant planet systems to-date

We divide the 93 detected systems discussed here into the above
categories, namely the systems whose giant planet has eccen-
tricity values e2 ≥ 0.4 (22 systems) and all the rest. For detected
giant planets with low to moderate eccentricity, namely e2 < 0.4,
the possible locations of a terrestrial planet in the planetary
system are numerous, as the grey lines cross the broad main
region of stability. If not locked in an MMR and thus, be located
within a tongue, secondary resonances and apsidal resonance
provide the long-term stability of a possible terrestrial planet.
Non-resonant orbits that belong to domain A, below the col-
lision line, will not intersect. Therefore, we observe that this
area is largely populated by regular orbits where e1 = 0.02 or
0.1. We note again that at those eccentricities we can have no
trapping in 5/1, 4/1, 3/1, and 2/1 MMRs, but only in 5/2 and
3/2 MMRs (see also the description in Sect. 3 and Figs. 2 and
3). Regarding the 22 systems for which e2 ≥ 0.4, we report in
Table B.1 (Appendix B), the possible MMRs and values of the
eccentricities allowing the long-term existence of a terrestrial
planet. There is a tendency of possible survival in 3/2, 2/1, 5/2,
3/1, and 4/1 MMRs rather than in higher order MMRs, because
either the regions of stability are narrower or the giant is located
at the borders.

To begin with, in HD 20782 (Jones et al. 2006) with e2 =
0.97 ± 0.01 a terrestrial planet could survive if locked in 2/1
MMR evolving in an elliptic orbit e1 ≥ 0.3. Trappings in 3/1,
4/1, 5/1, 6/1, 7/1, 9/1, and 12/1 MMRs are possible, but survival
is not probable, since the giant is located at the borders of those
islands of stability - far away the periodic orbit. Hence, the oscil-
lations of the orbital elements would be of very large amplitude.
The same holds for the system HD 108341 (Moutou et al. 2015)
with e2 = 0.85 ± 0.09. In HD 4113 (Tamuz et al. 2008) with
e2 = 0.903 ± 0.005 a terrestrial planet could survive if locked
in 2/1, 3/1, and 4/1 MMRs evolving in an elliptic orbit e1 ≥ 0.3.
2/1 MMR is again favoured, since the island is broader, but also
3/1 and 4/1 captures are likely to support the survival.

The systems HD 28254 (Naef et al. 2010) with e2 = 0.81 ±
0.02, HD 45350 (Marcy et al. 2005) with e2 = 0.778 ± 0.009
and HD 30562 (Fischer et al. 2009) with e2 = 0.76 ± 0.05 could
dynamically host a terrestrial planet with e1 ≥ 0.3 at 2/1 and
3/1 MMRs. For HD 28254 there could be a capture at 9/2
(e1 = 0.02) and 13/2 (e1 ≥ 0.02) MMRs and given the errors at
7/2 (e1 = 0.02), 4/1 (e1 = 0.5) and 25/2 (e1 = 0.3) MMRs. As for
HD 45350 a possible capture could be achieved at 8/3 (e1 = 0.3),
7/2 (e1 = 0.02), 15/2 (e1 = 0.3) and 19/2 (e1 = 0.3) MMRs.
Additionally, given the error of the eccentricity of HD 30562,
a terrestrial planet could be apparent at 5/2 MMR for e1 = 0.02
and other MMRs, like 19/2, 15/2, 13/2, and 7/2 with e1 = 0.1
and 23/1, 25/2, 19/2, 15/2, 11/2, 9/2, and 7/3 with e1 = 0.3, but
its long term survival would be dependent on precise orbital ele-
ments (close to the respective periodic orbits), as those stability
domains (tongues) are very narrow.

Likewise HD 30562, the systems HD 86226 (Arriagada et al.
2010) with e2 = 0.73 ± 0.21, HD 129445 (Arriagada et al. 2010)
with e2 = 0.7± 0.1 could host a terrestrial planet trapped in all of
the above-mentioned MMRs; most probable being the 2/1 (e1 =
0.5) and 5/2 (e1 ≥ 0.02) MMRs. Nonetheless, the error at e2 in
HD 86226 is very large and based on that range, another planet
could also be dynamically locked in its vicinity at 25/2 MMR

with e1 = 0.1, at 8/3, 7/3, 5/3, 3/2 MMRs with e1 ≥ 0.02 at 3/1,
7/2, 9/1, 11/2, 13/2, 15/2 MMRs with e1 = 0.3 and at 4/1, 5/1,
6/1, 7/1, 9/1, 12/1 MMRs with e1 = 0.5. The error at HD 129445
could allow captures in the above MMRs as well (apart from
3/1, 4/1, and 6/1) but also in 12/1 (for e1 = 0.1) and 25/2 (for
e1 = 0.3) MMRs.

The giant planets of HD 120084 (Sato et al. 2013) with e2 =
0.66 ± 0.1, HD 16175 (Díaz et al. 2016) with e2 = 0.637 ± 0.02
and HD 152079 (Arriagada et al. 2010) with e2 = 0.6 ± 0.24
could be in 2/1 MMR with a terrestrial planet only if e1 ≥ 0.3.
By considering the errors about the central values of the eccen-
tricities, a capture can occur at 3/1 MMR when e1 = 0.5, but
also at the islands and tongues at 19/1, 19/2, 15/2, 13/2, 11/2, 9/2,
and 7/2 MMRs, where e1 = 0.3, at 25/2 MMR where e1 = 0.1
and 8/3, 5/2, 7/3, 5/3, and 3/2 MMRs, where e1 ≥ 0.02. The
broader regular domains (and therefore possible existence and
survival) are centred at 5/2, 2/1, and 3/2 MMRs. The error of
HD 152079 could allow captures in 3/1 MMR for e1 = 0.3, 4/1
and 5/1 MMRs for e1 = 0.5. The above captures hold also for the
systems HD 171028 (Santos et al. 2007) with e2 = 0.59 ± 0.01,
HD 79498 (Robertson et al. 2012) with e2 = 0.59± 0.02 with the
only exception that these two systems could exhibit a capture in
3/1, 4/1, and 5/1 MMRs.

The planets of HD 220773 (Robertson et al. 2012) with e2 =
0.51 ± 0.1, HD 142415 (Mayor et al. 2004) with e2 = 0.5, HD
29021 (Rey et al. 2017) with e2 = 0.459 ± 0.008, HD 210277
(Wittenmyer et al. 2007) with e2 = 0.472 ± 0.011, HD 66428
(Butler et al. 2006) with e2 = 0.465 ± 0.03, HD 213240 (Santos
et al. 2001) with e2 = 0.45 ± 0.04, HD 23127 (O’Toole et al.
2007) with e2 = 0.44 ± 0.07, HD 162004 (Endl et al. 2016) with
e2 = 0.4± 0.05 and HD 171238 (Ségransan et al. 2010) with e2 =
0.4 ± 0.065 could also host in their dynamical neighbourhood
an exo-Earth with e1 = 0.02 or terrestrial planets with greater
eccentricity values. We refer the reader to Figs. 2–5 to determine
the precise range of each tongue mentioned herein.

6. Discussion and conclusions

In this work, we have studied the dynamical stability of a giant
outer planet and an inner terrestrial one and model their evolu-
tion with the ERTBP. We conclude the long-term stability and
thus, possible existence and survival of such a coexistence by
computing a chaotic indicator, the DFLI. We realised a broad
exploration of phase space, indicate the domains where Keple-
rian ellipses intersect and justify the stable regions via the stable
periodic orbits by using as an example the 2/1 MMR.

In particular, there are three well-known types of resonance
that can guarantee a regular evolution and are observed on the
DS-maps of Fig. 11:
1. the MMRs (or ACRs), where both the resonant angles

and the apsidal difference librate about specific values
determined by the periodic orbits, which buttress regular
domains. Those regions form tongues or distinct islands at
low to moderate or highly eccentric values of e2, respec-
tively.

2. the secondary resonances, where only θ1 librates, while θ2
and ∆$ rotate.

3. the apsidal resonance, where only ∆$ oscillates, while the
rest resonant angles rotate.

In all of the above, close encounters (even when the orbits do
intersect) are avoided as the phases are protected.

The families of periodic orbits constitute the backbone of
stability domains in phase space and they can act as a diagnostic
tool, which can help ascertain information with regards to the
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dynamical vicinity of an exoplanet. As shown here, they can help
predict a possible survival of a celestial body in the dynamical
neighbourhood of already known exoplanets. For the 2/1 MMR
in the CRTBP we found a new bifurcation point which in turn
allowed us to compute two new families of symmetric periodic
orbits in ERTBP. We also computed 20 new isolated families of
asymmetric periodic orbits in the ERTBP. Although the initial
conditions of the asymmetric periodic orbits are unstable, the
unstable manifolds can be applied for instance to trajectory
design (see e.g. Anderson et al. 2016). We herein focused on
2/1 MMR, but a respective study for the rest major MMRs will
follow.

We pursued a study of all coplanar symmetric configurations
for semi-major axes ratios within the range [0.1, 0.8], so that we
study interior MMRs apart from the non-resonant cases. We con-
sidered Earth-like planets and moderately eccentric ones with
e1 = 0.02 and 0.1, 0.3, and 0.5, respectively.

After having gathered the (93) giant planets detected so far
with mass [1, 5]mJ with no terrestrial companions to-date and
located at a2 ≥ 1.0 AU, we can draw the following conclusions:
1. When the outer giant planet is highly eccentric, a terrestrial

planet can only survive if locked in MMR with it (distinct
islands). Its orbit has to be quite eccentric. For instance, in
2/1 MMR it has to be >0.2.

2. In the rest of the resonant cases when the giant has lower
eccentricity values, the inner terrestrial planet can survive
when being either in MMR (within the tongues for circu-
lar up to moderately eccentric orbits of the giant), or in
secondary resonance (for e2 < 0.2).

3. The broad stable region below the collision line (domain A)
also consists of non-resonant regular orbits, where the sta-
bility is guaranteed. We note that there exist weakly chaotic
orbits for low semi-major axes ratios, not depicted at Fig. 11
(see the blue-green region in Figs. 2–5), where a terrestrial
planet may survive long-time spans.

For each planetary system of the above, where additionally
e2 > 0.4, i.e. for 22 of them, we provide some possible reso-
nant solutions. Our results can be applied to any system that can
be modelled by the ERTBP, namely star-asteroid-giant planet,
planet-satellite-spacecraft, binary stars-circumprimary (S-type)
planet or like herein star-terrestrial planet-giant planet. In partic-
ular, based on the MMRs, observations can be driven to specific
semi-major axes ratios, so that a possible existence of a terres-
trial planet could be revealed (Sect. 5.1). Our study is also helpful
for detected systems consisting of an inner terrestrial planet and
an outer giant planet (Sect. 5.2), to restrict or complement the
observational data.
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Appendix A: Families of asymmetric periodic
orbits in 2/1 MMR in the ERTBP

Fig. A.1. Isolated families of asymmetric periodic orbits in ERTBP
for the 2/1 MMR presented on the following planes (e1, e2), (e1,∆M)
(dynamic asymmetry) and (e1,∆$) (geometric asymmetry). The initial
conditions are given in Table A.1 and are all unstable. These families
are independent from the families of symmetric periodic orbits in the
ERTBP.

Fig. A.2. Families 6–10, as in Fig. A.1.
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Fig. A.3. Families 11–15, as in Fig. A.1. Fig. A.4. Families 16–20, as in Fig. A.1.
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Table A.1. Initial conditions of the families 1–20 of asymmetric periodic orbits in 2/1 MMR.

Family x′ x y ẋ ẏ θ̇ e1 e2 ∆M (◦) ∆$ (◦)

1 0.72331794750700 0.49013195157962 −1.82695158386230 −2.65478370333012 −0.56701605244671 1.69319527200545 0.0860163 0.5580729 218.65 91.50

2 0.63321025768200 1.59453165011230 −5.67590694541681 −14.45329652263383 −4.13526567777250 2.57025981145974 0.6789292 0.9161948 151.02 108.89

3 0.63047186508700 −1.88248865529942 −2.29632923979982 −5.16928490819296 4.46273668460205 2.39803573831806 0.4425901 0.7593570 232.63 39.13

4 0.63087376727600 −0.87705151805361 1.12691498748010 2.01174310935965 1.21087189099085 2.08389129602805 0.0914706 0.4816108 254.06 275.54

5 0.63420301291300 0.29197254892169 1.00974268447896 1.13065744890431 −0.79803090077487 2.12456885857444 0.1525533 0.4513824 309.80 176.68

6 0.64118423931800 −4.29365702951665 −7.33451899022320 −18.90829479679702 11.11113087802684 2.59393188047815 0.7754161 0.8898140 197.72 57.38

7 0.71748622583200 −2.70800622071297 1.20843227804079 −2.24367758267459 −5.45250914881905 −1.90233251403904 0.3379752 0.8213934 230.83 326.88

8 0.63482968402900 −1.49288772007308 0.06759364911299 −0.00782516489640 2.40969738972048 2.02132884454501 0.0463576 0.4498677 148.07 11.19

9 0.65735722962700 1.33246033480411 3.48610081445896 7.86138858484334 −2.87474461680602 2.30083405955404 0.5052528 0.8297413 140.02 255.90

10 0.63399837094100 3.98254236120459 0.05416001257745 −0.17928506911680 −9.87884493186210 2.51705575134906 0.6161609 0.9297257 280.26 169.18

11 0.63283580598800 −1.26763539799044 2.49305681758722 5.49108002978163 2.85458239643100 2.29401432064642 0.3350573 0.8560322 164.23 299.33

12 0.67042901657400 3.89621469591328 0.28658199996032 0.33580079990540 −8.79611297676496 2.30107791124568 0.5971863 0.8863193 280.05 168.93

13 0.63101207035900 0.43965427972022 −1.86340151687343 −3.57720228268502 −0.90767835138654 2.18411803952933 0.1997748 0.5404727 162.61 109.47

14 0.63457627583700 0.10193714593901 −2.17451765594779 −4.40347076044376 −0.24683242373353 2.22618108772643 0.2676723 0.5874529 168.38 96.42

15 0.63556300684100 0.15692422204782 −1.81467973423677 −3.34196530655382 −0.31953595751770 2.12490532903941 0.1603514 0.5207836 171.53 98.07

16 0.72887955161100 −1.24078151598096 −2.06919285860216 −3.27703304247117 2.04486448137144 1.72920803153639 0.1590343 0.7698991 198.62 55.24

17 0.69323912398600 −1.14722098636553 −1.90205344064335 −3.20352292114426 1.99917787967515 1.85996720106556 0.1537037 0.7203409 195.34 55.30

18 0.63929871699400 −2.00041668747959 1.31858790683704 3.42097602853642 4.26683084450913 2.37565322811402 0.4760875 0.9055175 304.98 307.25

19 0.64773137699600 −1.10753033827687 −1.51623982336362 −2.64158658109620 2.03671753399746 1.98344156055357 0.0701832 0.7175660 201.31 48.79

20 0.72914027110900 1.94120755448657 1.12322966108835 1.80321403347542 −2.93121977382635 1.64752624143655 0.0532524 0.8560548 156.53 213.60

Notes. Initial conditions of the families 1–20 of asymmetric periodic orbits in 2/1 MMR in coordinates of the rotating frame (θ̇ being the angular
velocity of the Ox-axis with respect to the inertial frame) of ERTBP shown in Figs. A.1–A.4. We also provide the eccentricities and the angles
∆M = M2 − M1 and ∆$ = $2 −$1. The orbits start with ẋ′ = 0 and are unstable.
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