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Abstract. Electrical grid maintenance is a complex and time consum-
ing task. In this study, we test a way to perform electrical grid tower
inspection by using camera images taken from an autonomous UAV.
The images are segmented with a type of convolutional neural network
called U-Net [9]. The results of the segmentation process is used to gen-
erate the movements of the UAV around the tower. The training of an
U-Net model requires a large amount of labelled images. In order to re-
duce the time and financial costs of the generation of a large data-set of
labelled images of physical towers, we develop a physics-based simula-
tion environment that models the UAV dynamics and graphically repro-
duces electric towers in multiples environmental conditions. We extract
labelled images for U-Net models training from the simulator. We per-
form multiple training, test conditions with different amount of natural
world and simulated images and we evaluate which training condition
generates the most effective U-Net model for the natural world image
segmentation task. The contribution of the study is to details the char-
acteristics of the training condition that allows to maximise the U-Net
performances with the minimum amount of physical world images in the
training set. With the best performing U-Net, we create post-processing
analysis on the result of the segmentation to extract the required pieces
of information to properly move the UAV.

Keywords: Computer Vision · Convolutional Neural Network · Au-
tonomous System

1 Introduction

UAVs are particularly suitable to automate the exploration and monitoring of
remote areas such as glaciers, and volcanos, but also the inspection of infrastruc-
tures which would otherwise requires complex and/or costly operations if carried
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out without UAVs [2, 6]. In this latter case, the inspection process is generally
performed with cameras or other sensors mounted directly on the UAV, which
flies around the target in order to optimise the data collection process relative
to its status [8]. The objective of our work is to develop new methodologies to
improve the efficiency as well as the autonomy of UAVs during high-precision in-
spection tasks. In particular, we describe a set of experiments aimed to automate
the inspection of electricity grid pylons by using autonomous and visually-guided
UAVs. The vehicle gets close to and flies all around a target pylon while collect-
ing images which are, in the first instance, used by the UAVs itself to navigate
and to make an exhaustive exploration of the target while avoiding collisions
with any object. The images are also collected and processed offline to create
a SVG images of the precise shape pylon, and to detect damaged areas or any
element requiring further attention.

Currently, electric pylon inspection is a critical and costly task due to the
time and effort required. If we exclude the use of UAVs, the inspection process
can be performed in one of the following ways:

– by helicopter: this is an extremely expensive method. It requires expensive
specific material such as a camera with high distance zoom and different ex-
perts to pilot, to take photos and to analyse the collected data. This method
does not provide a bottom-up point of view of the electric pylon since the
helicopter can not fly underneath the cables.

– unaided-eye visual inspection from ground: this method only provides a mild
inspection and only from a bottom-up perspective. Nevertheless, it is the
cheapest and also the fastest method.

– by escalating the tower: this is the more informative method, which gives
a clear insight of the state of the electric pylon. Unfortunately, it requires
cutting completely the electric line. The fact that it requires to cut a line
makes this method the rarest one. This method is also the most dangerous
since some electric pylon might be too rusted and metal bar could collapse
under the weight of the climber.

The automation of the inspection process of electric pylon by UAVs presents
several clear advantages over the above mentioned alternative methods. With
autonomous UAVs, the human factor is completely removed from the inspec-
tion process by significantly improving the safety and comfort of the personnel,
without having to cut the electric line. Plus, images or any other type of data
relative to the pylons can be taken from perspective generally inaccessible to
non-UAV-based inspection systems. Also, the automation enables a consistency
and precision that a human remote pilot can hardly achieve, thus improving the
quality of the audit and the accuracy of the diagnosis.

In this paper, we investigate the issue of how to train a convolution neural
network (CNN) to identify the structure of pylons from images taken by a camera
mounted on the UAV. The image segmentation process has to be informative
enough to allow the UAV to autonomously move around the pylons without
crashing into their structure or into the electric cables supported by the electric
pylon. Our CNN-based controller is an U-Net model [9], a CNN model that
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can perform real time segmentation without requesting much data for training.
The CNN guides the UAV in the task of detecting the electric pylon and in
exhaustively exploring all its parts.

U-Net is made of two parts: a contraction path to extract a maximum of
features and contexts out of an image; and a symmetric expanding path to
extract a pixel wise precision mask of the object in the image. A mask is an
image in which the intensity of pixels corresponding to a target object are set to
non-zero values and all the other pixels are set to zero. The main advantage of
U-Net is the capacity to work with few available images in a training data-set.
A series of comparative tests detailed in [9] shows that U-net has been able to
outperform other types of convolution neural networks in the 2015 IEEE-ISBI
cell tracking challenge. The model proved to be able to perform precise cell
detection in less than a second for 512*512 size images on 2015 GPU (NVIDIA
GTX Titan 6Gb) [9].

Compared to other object detection models, such as Fast R-CNN [5], that
creates a bounding box around the object to be detected, U-Net proposes a pixel
wise detection which precisely identify the object within an image. The disad-
vantage of U-Net is that it does not offer the possibility for multiple instances
segmentation. This means that it is not possible to extract different bodies of
the same types in an image or same objects that are next to each other. For this
kind of task it is suggested to use other convolution neural network models like
Fast R-CNN. However, given that electric pylons are usually represented as a
single instance object in images, U-Net is a suitable model for their identifica-
tion through detection in camera images. Thanks to the segmentation process
and few mask analysis, it is possible to retrieve important information not only
concerning the conditions of the electric pylon but also its is possible to easily
determine the position of the camera (and consequently of the drone on which
the camera is mounted) with respect to the electric pylon.

In this paper, we look at a way to use U-Net to perform a precise enough
mask of a electric pylon in an image. The complexity of this task is determined by
the shape of the electric pylon which, due to the void space between the electric
pylon’s structures, makes it hard to be properly detected. Moreover, the creation
of a large data-set of natural world images of electric pylon, generally required
for the training of convolution neural networks, is a costly and difficult task due
to the relatively large variability in electric pylon’s shape. With respect to this
challenges, U-net offers several advantages compared to other models since it
can successfully be trained to perform object segmentation tasks without having
to rely on large data-sets. Moreover, U-Net can perform the image segmentation
tasks quite fast without requiring particularly powerful computational resources.

The contribution of this study is to show that U-Net can be effectively trained
for this inspection task with hybrid set of images in which the large majority
of them are generated with a simulation environment that models the main
features of the target scenarios. To generate the simulated images, we make use of
AirSim [11], the simulation developed by Microsoft powered by Unreal Engine. In
particular, we show that the training performed with sets of simulated images is
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as effective in the segmentation task as the training performed with sets of images
from the natural world. In the following sections, we first describe the simulation
environment used to generate the simulated images, and the experimental design
used to test the hypothesis that hybrid sets of simulation-generated and physical
world images are as effective for the training as sets of only physical world images
(see section 2). In section 3 we illustrate and discuss the results of our analysis.
In section 4, we draw our conclusions.

2 Methods

In this section, we illustrate the methodological aspects of our study. First of
all, we introduce the simulator used to create the simulated scenarios. Then,
we describe the characteristics of the UAV employed. After that, we explain
the architecture of the U-Net model and the analysis performed on the camera
images to generate the UAV movement.

2.1 The simulator and the UAVs model

(a) (b)

Fig. 1. Images from the simulator rendering: (a) an urban scenario; (b) a rural scenario.

The simulation environment is created using the software AirSim [11], made
of Unreal Engine physics engine and high quality graphics for rendering, with
which we model the dynamics of the flying vehicle, the pylon of the electricity
grid and details of the surrounding area. For this study, we have modelled a
single type of pylon, located in multiple types of background, one urban, one
forest, two rural, and one mountain scenario (see Figure1). In each scenario,
there are 3 electric pylon placed at 400 m from each other. In one of the rural
scenario there is also a windmill with moving blades which represent dynamic
elements into the scene. In every type of scenario, the horizon is represented by
distant mountains which are drawn in a very ragged way to avoid the network to
exploit the horizontal skyline for its movements. Each scenario is also replicated
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Fig. 2. Schematic view of the electricity grid pylon with marks to represent the UAvs
movements during exploration.

in different weather and luminosity conditions (e.g., with sun, rain, snow, fog,
etc.). The variability in the simulated scenarios in which the electric pylons are
placed is needed to make sure that the convolution neural network can identify
the structure of the tower regardless of the characteristics of the background and
meteorological conditions.

For what concerns the structure of the UAV, AirSim has already an built-
ub UAV model (quadcopter) and it is offering the possibilities to add our own
models. The built-in model has the possibility to be customised in terms of
sensorial capabilities. In this study we use the built-in quadcopter with a front
facing camera, that generate images with a resolution of 5280*3956 pixels; the
FOV is 72◦; the focal distance is 200.0 and the focal region is 200; no specific filter
is applied to the image. The convolution neural network segments in real time the
images generated by the camera in order to identify the pixel-wise position of the
electric pylon in the image. A hand-designed control system generates high level
instructions from the results of the segmentation process. Both the segmentation
process and the rules to generate the UAV movements are described below.

The PixHawk PX4 fight controller takes care of regulating the speed of the
rotors in order to execute the high level motor commands by taking into account
the physical features of the UAVs. Thanks to the PX4 flight controller, the
behaviour of the simulated UAV can be easily replicated in physical UAVs. The
UAV is also equipped with a ground facing radar to measure the distance from
ground or any object placed underneath its body. The information generated
by the radar is used to manoeuvre the UAVs safely (without collisions) while
moving round the pylon. The UAV is also equipped with a seven points front-
facing LiDAR to precisely measure the distance between the UAVs and any
object in the space in front of it. The LiDAR makes possible to keep the UAVs
always at more than 4 m away from any element of the electric pylon.
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(a) (b) (c)

Fig. 3. (a) An image taken by the UAV’s camera; (b) The image in (a) after segmenta-
tion by the U-net; (c) The image from (b) after post-processing with Canny-edge and
HOUGH.

For what concerns the movements, the UAV moves by using PIDs for pitch
and roll. A constant value is used for height adjustment.

The UAV moves around the electric pylon as illustrated in Figure 2. The UAV
stabilise and adjust to be centred at the same height as the upper part of the
pylon (see position 1 in Figure 2). While in position 1, the camera starts taking
snapshots which are processed by the convolution neural network to detect the
position of the pylon. The results of the image-segmentation process is used by
the control system to move the UAVs downward while remaining at a constant
safe distance from the pylon. When the down facing Radar get close enough to
the ground or an obstacle and the front facing LiDAR detect no object in front
of the UAV (see position 2 in Figure 2) the downward movement is stopped.
At this point the UAVs generate a parabolic movement to reach the other side
of the pylon moving underneath the electric cables (see position 3 in Figure 2).
Once of the other side, the UAVs starts an ascending movement always using
the results of the image-segmentation process to remain in the proximity of the
pylon. The ascending movement terminate when the UAV reaches the top of the
electric pylon (see position 4 in Figure 2). From position 4 the UAVs returns to
position 1 following the same trajectory. This exploration pattern makes possible
to have images of the two side of the electric pylon taken while the UAV is both
in an ascending and descending movement.

As the UAV is following this path, the UAV takes an image (resized to
320X320 pixels) once every 130 milliseconds (see Figure 3a). Each images is seg-
mented by the U-net to generate a pixel-wise segmented images in which pixels
belonging to the pylon are in white and the background is black (see Figure 3b).
On these images we apply the Canny Edge detection algorithm [3] to extract
the border of the pylon. Then, with a Probabilistic Hough Line Transform [7],
we extract the lines of the border of the electric pylon (see Figure 3c).

After this processing, we can extract the information necessary to move the
UAV in order to have the pylon at the centre of the image. To compute the UAV
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distance from the electric pylon with the image we compute the pixel width of
the tower x and we compare x with the expected pixel-width of the electric pylon
dist to have the tower at 4 m from the UAV. dist is computed in the following:

dist =

((
y

FOV × z
∗ 100

)
∗ 3, 2

)
(1)

where y is the width of the cage of the pylon in centimetres; and z = 4 represent
the security distance to respect between the UAV and the pylon. If x is bigger
than dist, the UAv is too close to the tower. If instead x is smaller than dist,
the UAV is more than 4 m away from the tower.

2.2 The U-net and our experimental design

In order to train the U-net to identify the tower in the images we have generated
1200 images, out of which 400 images from the natural world and 800 generated
from the simulator. This data set benefit from data augmentation (e.g., flipping,
rotation and removing one of the colour channel from the RGB spectrum, etc)
on the original images. The natural world images have been manually labelled
in order to identify pixels belonging to the tower and those belonging to the
background. This labelling process is a long and relatively expensive process
that is however necessary for the training. The images from the simulator are
automatically labelled.

Our experimental design features four training conditions and three test con-
ditions described in Table 1. The training conditions differ in the number of
natural world and simulated images used for training. Note that, in the training
condition A we do not use any natural world images. Condition D is the one
with the highest number of natural world images. We assume that the highest
the number of natural world images in the training set, the better the network
performances in the segmentation task. The objective of this study is to verify
whether and the extend to which natural world images can be replaced with
simulated images without significant loss of performances. For this reason, the
performances of the U-net trained in condition A, B, and C will be compared
with the performances of the U-net trained in condition D. Note that, we do

data-set name % simulated images % physical images

Training A 100 0
Training B 80 20
Training C 90 10
Training D 50 50

Test I 50 50
Test II 100 0
Test III 0 100

Table 1. Table summarising the experimental design with the four training conditions
and the three test conditions
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(a) (b)

Fig. 4. (a) A natural world image used for trainig/test. (b) A simulated image.

not have a training condition made by all natural world images simply because
the number of these images at our disposal at the time of this study was not
sufficient to train the network.

The training sets were also divided with a k-fold into a 80-20 percent training
and validation sets using a k-fold data loader during the training of the mod-
els. The structure of the U-net detailed in Figure 5. The U-net takes as input
RGB images of 320X320 pixels and generate a vector of 320X320 real-valued
numbers in [0, 1]. These values represent the probabilities that each pixels has
to belong to the tower. The U-net is modelled using the programming frame-
work tensorflow [1]. We have tested different parametrisation of the training
process, by varying the number of epochs, the function optimiser, the nature of
the loss function, the size of the data-set, the training stop-criteria (see Table 2
for details).

3 Results

From all the possibles values represented in Table 2, we tried every combination
of parameters. Each training condition illustrated in Table 1 has been replicated
for each possible combination of the parameters listed in Table 2. In this section,
we only discuss the results generated from the best set of parameters, which is

parameter tested values

epoch 25, 50, 75
Optimiser AdaMax, Adam, Nadam

Loss Function Mean Square Error, Absolute Square Error
Images in the training data set 400, 800, 1600

Early stopper None, 2,3,4
Table 2. The training parameters
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Fig. 5. The structure of the U-Net model used in the study

characterised by the following: 50 epochs with an early stopper of 2; a total of
800 images in the training set, Adam and the Mean Square Error as optimiser
and loss function in F1-score. Recall that the objective of our study is to train
the U-Net model to be able to extract the information required to move the UAV
around an electric pylon by using primarily computer vision. To do so, the U-
Net model has to be able to properly segment the images to precisely determine
where the pylon is and to perform the right movements for the audit. To find
out the best performing U-Net model, we experimentally vary the proportion of
physical world and simulated images in the training set.

The performances of the U-Net model are evaluated with the F1-score. This
score is computed in the following:

F1 =
2

recall−1 + precision−1
(2)

Precision =
TrueDetectedP ixels

AllDetectedP ixels
(3)

Recall =
TrueDetectedP ixels

AllRelevantP ixels
(4)

data-set name Test I Test II Test III

Training A 0.485666 0.74248765 0.25558049
Training B 0.807414 0.86110346 0.81913397
Training C 0.767606 0.80255722 0.79024012
Training D 0.848198 0.82709646 0.89200856

Table 3. Table showing the F1-score for each combination of training and test condi-
tion.
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Where TrueDetectedP ixels represent the detected pylon’s pixels by the U-net
model that are correct. AllDetectedP ixels represent the pylon’s pixels generated
by the U-Net model segmentation. AllRelevantP ixels all the real pylon’s pixels
in the image, detected or not by the U-Net model. F1-score is wildly used in com-
puter vision for accuracy calculation. This type of accuracy measurement takes
into account the false negative compared to standard accuracy measurement.
This offer a more precise score compared to the classic accuracy calculation.

The results of our simulations are illustrated in Table 3, which shows the
F1-score for each combination of training and test condition. The U-Net model
generated with the training condition A turns out to be the worst performing
model in all the possible test conditions. This relatively negative performance
can be accounted for by the reduce variability in the scenarios represented in the
training set. Such reduced variability generates what is referred to as an “over-
fitting”, since the model can not generalised its performances beyond the images
presented in the training condition. The training condition B and C generated
better performing U-Net models than condition A, with condition B being the
best one in all possible test conditions. The lower F1-score of the U-Net from
training condition C can also be accounted for by some “over-fitting”, caused by
the reduced number of physical world images compared to condition B. When
comparing training conditions B and D, training condition D out perform B
on test condition I of 0.04 and test condition III of 0.07. This shows that more
natural world images enable the U-Net model to perform better on natural world
images and both types together. It is important that the model can perform
well while remaining the less expensive as possible in terms of cost and time to
create. So, even if the training condition D is performing better, the training
condition B is the most valuable for us. Training condition B offers the best cost
to performance ratio since it only require 160 natural world images compared to
400 for the training condition D. As far as it concerns the UAV’s movements, with
the U-Net model trained with the training condition B we are able to perform all
the movement required to perform an audit by following the trajectory illustrated
in Figure 2. The sequence of movements requires between 4 minutes and 24
seconds and 6 minutes 21 seconds depending on the scenarios and the starting
position. The UAV is able to keep its safe distance with the pylon without much
difficulties. The difference in time is due to different starting positions which
require the UAV to centre itself before starting and the search for obstacles that
can activate the position 2 of Figure 2 earlier.

4 Conclusions

We achieved our main goal during this study which was to train a U-Net model to
visually guide an autonomous UAV during an inspection task of an electric grid
pylon. The main challenge was to find an economic and fast dataset of labelled
images to train our U-Net model. To do so, the model was trained with different
type of data-sets made of a different amount of natural world and simulated
images mixed together.
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The U-Net model generated with the Training condition B is performing
relatively well in both natural world and simulated scenarios. The mixing of both
natural world and simulated images helps the U-Net model to reduce the effect
of the Reality Gap [10] for the world perception trough the camera. The training
condition B and D are doing good enough to perform similarly in natural world
and simulated world. We decide that the training condition B is better even with
a lesser score than training condition D. The cost and the time required to create
the training condition B being a factor to prefer such condition for training. It
maintains a good score everywhere while only requiring 0.2% of natural world
images.

In terms of F1-Score, a score superior to 0.8 is considered a good enough
score for a convolution neural network required to generalise the segmentation
capabilities beyond the training set. The pylons are a really complex shape with
a lot of details and smaller parts. That complex shape makes it difficult to
properly segment the pylon especially with the 320X320 pixels image. With
a score superior to 0.8 the post-processing have the required information to
generate all the requested data for the movement.

In our future works, we plan to test this system on a natural world electric
pylon and see how well the UAV is able to perform when facing other elements
not taken into account in our images (e.g., wind, sun glare, sensors noise, etc).
Those natural world experiments are expected to show the more complex inter-
actions that can change the behaviour of the UAV compared to the simulation.
Moreover, since the time of running our experiments, we have received a lot more
natural world images. With those additional images, we could test different neu-
ral networks that could not properly work with the few images we had during
this study. Concerning the audits of the pylon, we will be looking at a way to
perform instance object detection for flaws (e.g., rust, damage, missing compo-
nent, bird nest, etc). Automated advanced audit would help to create a clear
database of the state of the electric grid pylon for the owner. The final objective
is to create a data-driven self-regulating systems where a UAV detects the flaws
and multiple other UAVs would be able to react to such detection to perform the
required repairs. Another future work would be to look at more complex models
to extract depth in the image while still using one camera, (e.g, M4Depth [4]).
This way, we could remove the LiDAR by combining both the U-Net model and
the M4Depth model to extract proper distance for security and the position of
the pylon. A better understanding of the surrounding can also helps the UAV
to perform better obstacles avoidance in more complex scenarios.
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