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Abstract

When working with high-dimensional data, visualization techniques are useful
tools to help us to discover patterns. However, the visualization results do
not always match the users’ expectations. An effective mechanism that allows
human users to interact with machine learning systems is thus necessary. This
thesis addresses the problem of combining users’ feedback and dimensionality
reduction (DR) techniques for visualization. From a machine learning viewpoint,
users’ feedback is considered as constraints. We focus on transforming users’
constraints into adequate terms that can be used to enrich DR methods or to
assess the visualization. Four contributions are made in this thesis.

First, we conduct a comprehensive survey on constraint integration in
DR methods. This survey provides a new viewpoint to reorganize existing
constrained DR methods by constraint types. Second, a long-standing problem
of t-SNE, one of the most widely used visualization methods, is tackled. We
propose to integrate a hierarchical tree into t-SNE embedding to enhance its
global structure by the semantic information extracted from the tree. Third,
fixed-position constraints are integrated into probabilistic models by our unified
framework. Users’ prior knowledge about the position of points is used to create
informative prior distributions for a probabilistic model. Concrete interactive
methods derived from this framework are used to allow users to manipulate the
visualizations and to create understandable axes. Fourth and finally, we propose
a novel way to use pairwise constraints for visualization assessment. Users can
encode their expected structure in pairwise constraints of similar/dissimilar
objects. Our proposed score measures how well these input constraints are
preserved in order to determine the quality of a visualization.

vii



CONTENTS

viii



Chapter 1

Introduction

The thesis is entitled “Integration of Constraints into Dimensionality Reduction
Methods for Visualization”. The constraints here are different kinds of users’
feedback when they interact with the visualization produced by machine learning
methods. The topic of this thesis is at the frontier of different domains: Human-
Computer Interaction (HCI), Information Visualization (InfoVis), and Machine
Learning (ML). Even though the topic in this thesis is approached from the
lens of machine learning participants, technical terms will be explained in a
simple language with as many visual examples as possible.

1.1 Context, Scope, and Motivation

More and more data are now produced, and we always want to exploit valuable
information in those data. Traditional data processing system takes data and
human-encoded rules to produce models that can help humans make decisions.
New machine learning systems learn rules or patterns from data automatically.
Different ML methods are proposed to process different kinds of structured
tabular data, unstructured data like text or images, and even domain-specific
data. Real-world data are often high-dimensional, for example, a small color
image of size 128× 128 has approximately 50000 pixels. A language model, in
order to represent a word or a short text, also demands a very large number of
dimensions that is equal to the size of the vocabulary of a language. A large
dataset of such a high number of dimensions is thus difficult to process efficiently.

1



CHAPTER 1. INTRODUCTION

Moreover, when analyzing a dataset, people often want to quickly find out
patterns in their data. They can apply exploratory data analysis methods,
including visualization techniques, to get insights from data. Thanks to these
methods, we can plot directly the whole dataset into a 2- or 3-dimensional
space for easily observing and discovering visual patterns. However, how can we
go from high dimensional (HD) data to a low dimensional (LD) visualization?
Dimensionality reduction (DR) methods, a group of specific unsupervised
machine learning techniques, aim to reduce dimensionality while preserving
import characteristics and patterns in the data. DR methods for visualization
are the main research topic of this thesis. A brief introduction to the DR
problem and common visualization methods are presented in Chapter 2.

Nowadays, carefully designed and tested ML models can be deployed to
process real-world data and make decisions without any intervention from
humans. However, there are not so many such models. ML workflow is usually
iterative. Researchers re-analyze their problems, re-design their ML algorithms,
and re-evaluate their models on different kinds of data. When end-users or
expert users apply these algorithms to their data in their domains, the algo-
rithms do not always work like a charm nor solve their problem automatically.
Much effort is taken to choose different algorithms for different problems, tune
hyperparameters, and interpret results. What if the results of ML models do
not match with the users’ knowledge or their expectations? In the context of
visualization methods, for example, the position of points in the visualization
may not make sense, the similar data points of similar objects may be placed
far apart and group patterns are not well revealed, etc. In these cases, it is
necessary to have a mechanism allowing human users to interact directly with
ML systems. In the scope of this thesis, we tackle the problem of integrating
users’ feedback into DR methods for visualization.

From a machine learning perspective, users’ feedback, human prior knowl-
edge, or domain expert knowledge can be considered as constraints for ML
algorithms. If we want to build usable interactive visualization methods, the
following questions in HCI and InfoVis domains cannot be ignored. Who are
our users? How to design an interactive scenario? How do users interact with
the visualization and how to collect their feedback? How to evaluate the quality
of a visualization? We target expert users who know about DR methods with
their pros and cons and want to try to incorporate domain knowledge into

2



CHAPTER 1. INTRODUCTION

their visualizations. We also target end-users who do not know the underlying
mechanism of DR methods but want to interact with the visualization to give
their feedback. We will answer the questions about the interactive tools that
allow users to interact with the visualization, the task-based scenario used in
our case studies, and the problem of visualization assessment in each chapter
where these questions involve.

1.2 Research Problems

Three following research questions guide our research.

1. RQ1: How to transform the users’ feedback into constraints that can be
used in DR methods? This is the biggest question, for which one should
consider what is a users’ constraint and how to represent different kinds
of users’ constraints in the form of a term used by visualization methods.

2. RQ2: After representing users’ constraints in a suitable form, how to
integrate these constraints into DR methods? This question is usually
considered together with the RQ1. A suitable representation of con-
straints can be applied for different DR methods. This question involves
the problem of constraint optimization.

3. RQ3: Can the users’ opinions expressed in the term of constraints be
used to assess the visualization? When constraints are integrated into
ML methods, we usually examine whereas these constraints are satisfied
or violated. Inversely, we can also look at the points in the visualization
and examine whereas these points satisfy or violate a set of pre-defined
input constraints. This approach suggests a potential usage of constraint
for visualization assessment.

The goal of this thesis is to combine human knowledge/users’ feedback with
widely used DR methods for visualization. We expect to enhance common
visualization methods with new properties brought by user constraints. That
can be done by integrating directly the user constraints into visualizations
methods. We also want to consider users’ opinions to evaluate the quality of a
visualization. That can be done by measuring how well the users’ constraints

3



CHAPTER 1. INTRODUCTION

are preserved in a visualization. With these ideas to respond to the research
questions, our contributions in this thesis are summarized below.

1.3 Contributions

The red thread of this thesis is our solutions to combine users’ constraints and
DR methods. Two ideas are proposed for this combination: (i) integrating
directly users’ constraints into DR methods, and (ii) using these constraints
as a method-agnostic measure for visualization assessment. With a focus on
different kinds of users’ constraints that can be used together with DR methods,
we have made the following contributions.

First, a study about what can be considered as constraints and different
constraint integration methods are conducted in our comprehensive survey
presented in Chapter 3. This survey summarizes how the RQ1 and RQ2 are
answered in the literature.

Second, a new kind of hierarchical constraints is integrated into t-SNE
or others SNE-based methods. Chapter 4 introduces our proposed HCt-SNE
method, in which users’ knowledge about the semantic relation between data
groups is described in the form of a tree. High-level abstraction in the relation-
ship of tree nodes is translated into instance-level triplet constraints (RQ1),
which are then formulated as a differentiable regularization term to be optimized
together with t-SNE (RQ2). This work tackles an important issue of t-SNE
that cannot preserve global structure in the visualization.

Third, we propose to integrate fixed-position constraints into probabilistic
DR methods through a unified framework. When users observe a visualization,
they can move points and place them to their desired position to form fixed-
position constraints. Our idea is to consider users’ prior knowledge about
the position of points as an informative prior distribution for a probabilistic
model (to target RQ1). We also propose a framework for integrating this kind
of constraint for different probabilistic DR models (and thus solve RQ2 by
an inference algorithm). Chapter 5 introduces this idea as well as two novel
methods named interactive PPCA and interactive PMDS derived from our
proposed framework. The author of these methods experimented with the
interactive case studies by himself.

4



CHAPTER 1. INTRODUCTION

Fourth and finally, pairwise constraints between similar and dissimilar
objects are used to evaluate the quality of the visualizations produced by
SNE-based methods (RQ3). Chapter 6 introduces our constraint-preserving
score, a novel way to use users’ constraints as an efficient and method-agnostic
quality measure. The need of users is encoded in pairwise constraints. These
constraints are then quantified to measure how well they are preserved in the
visualizations. This measure has several good properties while still having a
computational advantage. We also propose to use a model-based optimization
approach (called Bayesian optimization) combined with our score to search
through the space of all possible visualizations to find the best one.

Instead of focusing on one kind of constraint that works with one complex
method, we aim to combine many kinds of constraints with simple and widely
used DR methods. Advantages and limitations of our approach, as well as related
topics regarding constraint acquisition and user-evaluation, are also discussed
in Chapter 7. Chapter 8 concludes our work and opens new perspectives for
future work. As a result, the following papers are produced during this thesis
under the dedicated guidance of my supervisors:

1. Viet Minh Vu, Adrien Bibal, and Benoit Frénay. Integrating constraints
into dimensionality reduction methods: a survey. submitted to Neurocom-
puting, 2021d

2. Viet Minh Vu, Adrien Bibal, and Benoit Frénay. Constraint preserving
score for automatic hyperparameter tuning of dimensionality reduction
methods for visualization. IEEE Transactions on Artificial Intelligence,
2:269–282, 2021a

3. Viet Minh Vu, Adrien Bibal, and Benoit Frénay. HCt-SNE: Hierarchical
constraints with t-SNE. In Proc. IJCNN, 2021b

4. Viet Minh Vu, Adrien Bibal, and Benoit Frénay. iPMDS: Interactive
probabilistic multidimensional scaling. In Proc. IJCNN, 2021c

5. Viet Minh Vu and Benoit Frénay. User-steering interpretable visualization
with probabilistic principal components analysis. In Proc. ESANN, pages
349–354, 2019
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Chapter 2

Background

This chapter summarizes the necessary background knowledge on the dimen-
sionality reduction (DR) problem, provides clear definitions for the common
technical terms, as well as an overview (with new insights) of common DR
methods used in this thesis.

2.1 Background on Dimensionality Reduction

Machine learning methods are now solving problems that become harder and
harder. The data that these methods work on are also more and more complex.
Beyond the traditional UCI datasets with dozens of understandable features,
real-world datasets often have a much higher number of dimensions, which
makes it hard to process, analyze and visualize. When working with these
data, we usually make an assumption that many dimensions in the original
data are redundant, and the data in fact lie on a much lower-dimensional space.
Dimensionality reduction (DR) techniques aim to reduce the dimensionality of
the data while preserving several important characteristics.

Usage of Dimensionality Reduction Methods

We will go from DR methods in general to specific methods designed for
visualization. Reducing the dimension of the data can facilitate subsequent
classification, clustering, or visualization tasks. The reduced data in the low-

7



CHAPTER 2. BACKGROUND ON DIMENSIONALITY REDUCTION

dimensional (LD) space are called the embedding. Since the embedding can
retain important information in the original data while having much lower
dimensions, the computation on this embedding can be more efficient. Therefore,
DR methods, in general, can be used as a preprocessing method. When the
embedding lies on a 2− or 3−dimensional space, it can be plotted in a scatter
plot to help users easily observe patterns in the reduced data. The embeddings
in 2D or 3D are not usually used for subsequent classification or clustering tasks
but are used for visualization instead. In fact, more than 3 dimensions can
be plotted at the same time on a scatter plot, in which three dimensions are
used for the locations while additional dimensions can be represented by size,
shape, color, transparency, marker, . . . of the scatted point. However, it is not
easy to identify patterns in the scatter plot with too much encoded information.
For that reason, only the reduced data in 2D or 3D are represented in the
scatter plot, with additional information about class labels are used to color the
points to identify their group/class. Without confusion, in this thesis, when we
mention DR methods without specifying their purpose, we imply DR methods
for visualization. And also, the term embedding and visualization are used
interchangeably to indicate the reduced data in 2D or 3D that can be visualized
in a scatter plot.

Figure 2.1 shows an example when applying DR methods on synthetic 3D
data. The first two plots (A0, A1) show a cloud of 3D points at two different
angles. The underlying structure of these points is shown by the surface on the
plots (B1, B2). Two 2D flat planes that attempt to approximate this surface are
shown in the plots (C1, C2), but none of those seems to be adequate. However,
we can still ‘project’ this point cloud into a 2D plane. For example, the plots
(B3) and (C3) show the results of a nonlinear and a linear method, respectively.
This example shows that the 3D data can be somehow reduced to 2D data by
different DR methods that we will introduce later. In the following section,
we introduce two approaches of DR methods: a linear approach that projects
the HD data into a lower-dimensional subspace, and a nonlinear approach that
tries to find the underlying structures of the data.

8



CHAPTER 2. BACKGROUND ON DIMENSIONALITY REDUCTION

Figure 2.1: Example of 2D projections of 3D data. (A0, A1): a cloud of 3D data at
two different angles. (B1, B2): the surface of the underlying structure of the data.
(B3): the result of a nonlinear DR method that approximates the underlying surface
in (B2). (C1, C2): two 2D flat planes to approximate the underlying surface. (C3):
the result of a linear DR method.

Dimensionality Reduction Problem

One of most common approaches to tackle DR problems is to find a projection
matrix Pq×p that map the data XN×p from the original high-dimensional (HD)
space of p dimensions to an LD space of q � p dimensions. This approach leads

9



CHAPTER 2. BACKGROUND ON DIMENSIONALITY REDUCTION

to a family of linear methods where the most famous unsupervised method
is Principal Component Analysis (PCA - (Hotelling, 1933; Pearson, 1901)).
The mapping is done through a projection Y = XP T , where each column of
the embedding Y is a linear combination of every column of the original data.
Not every projection matrix is a solution, the combination coefficients in the
projection matrix P should indeed be learned from data (more details come
later). This is the most intuitive and simplest way to see DR methods. However,
we cannot always find a good linear projection to reduce our data. Let’s put
aside how to define a good criterion and focus on the problem of reducing the
dimensionality of data. Chapter 6 will be devoted to explaining the problem
of evaluating the quality of a visualization. Quality metrics for visualization
assessment are also introduced in the context where they are used.

Figure 2.2: Example of a 1D manifold in a 3D plane.

Let us consider another approach for DR from the perspective under the
manifold hypothesis, which states: “data tend to lie near a low dimensional
manifold” (Fefferman et al., 2016). We are not going to state the strict mathe-
matical definition of a manifold but explain it in a simple language. Let’s look
at a simple example in Figure 2.2 with three-dimensional data plotted on the
left. Even though these points are represented in a 3D space, we can find that
they lie on a spiral, shown on the right.

Based on this example, we will define several important terms. In fact,
this spiral is a line where the data points lie on. The points are marked by

10



CHAPTER 2. BACKGROUND ON DIMENSIONALITY REDUCTION

darkness: very dark points at one end of the line, very light points at the other
end and the darkness of point reduces when traveling from one end to the other
end. The position of points can be now approximately encoded by its darkness,
which is the information represented by a scalar in a one-dimensional space.
This line is, roughly speaking, called the manifold of the data points, which
can be understood as an intrinsic geometrical structure of the data. We roll
the line and put this line on a 3D space to form the spiral structure as shown
in this figure. The process of putting the line on a 3D space is formulated as
embedding the manifold into another space.

In order to understand what is a manifold for
real data, let us take a look at the following
pictures of a box captured at different angles
from the COIL20 dataset(Nene et al., 1996).

As they are the same object, the only
property to distinguish them is the rotation
angle. We can imagine that these pictures
lie on an LD manifold such as a line shown
above or a line in a 2D space on the right.

If this LD manifold is embedded (is put) in another space of 128×128 dimensions,
we can see that, these pictures are very specific samples in a huge space of all
possible 25616384 gray-scale images. Given the COIL20 dataset of 128 × 128

gray-scale images, we would like to find the underlying structure of the rotated
objects such as the manifold shown before. The manifold of the box in the
above figure on the right is found by t-SNE, one of the most successful nonlinear
DR methods.

Now we restate the manifold hypothesis: HD data are assumed to come
from an LD manifold that is embedded in a much higher-dimensional space.
The inverse problem of going from HD data to find the LD embedding manifold
is thus called manifold learning. The LD representation of HD data is also
called the embedding or the manifold. Due to the complexity in the HD data, a
direct linear mapping may not be a robust way to find the LD representation.
Since there may be no linear relationship between the HD and LD data, most

11



CHAPTER 2. BACKGROUND ON DIMENSIONALITY REDUCTION

DR methods are nonlinear. Common nonlinear DR methods are reviewed and
analyzed by Lee and Verleysen (2007), and empirically compared by van der
Maaten, Postma, and van den Herik (2009).

2.2 Background on Common DR Methods

Three of the most widely used DR methods for visualization are introduced in
this section, including PCA, MDS, t-SNE (and related methods in its family).
They are also the fundamental methods, based on them, we develop new
interactive DR methods that incorporate users’ feedback/knowledge. Even
though these methods are very common, we try to provide new insights and
see them from different perspectives.

2.2.1 PCA

Principal Component Analysis (PCA), the most well-known DR method, has a
long history of more than a century. It was originally introduced by Pearson
(1901) as a problem of finding a “best-fitting” straight line or plane for a system
of points in two- or higher-dimensional space. Until now, the core problem of
PCA - a type of eigenvalue problem, is still being studied. Most recently, PCA
is formulated as a competitive multi-agent game called EigenGame (Gemp
et al., 2021). PCA is a long-standing and standard technique in economics,
psychology, bioinformatics, and many other application domains thanks to its
simplicity and efficiency for all kinds of real-world data. In these domains, the
dataset usually has many variables and the users cannot understand them or
the relationship between them. This will be more useful if users can focus on a
few important (principal) features. PCA is a ubiquitous data pre-processing
step to produce LD representations for both supervised and unsupervised
machine learning problems. In technical terms, PCA simplifies data in the
original feature space by producing a small number of features that retain
trends (directions of dominant variances) and patterns (global structure) to
help interpret data (Lever et al., 2017). For that reason, PCA is widely used
for feature extraction, lossy data compression, and data visualization.

There are two equivalent definitions of the PCA problem. As defined as a
linear projection by Pearson (1901), PCA minimizes the average projection error,
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measured by squared distances between the data points and their projections:

min
W
||XN×p −ZN×qW

T
q×p||2 = min

W

1

N

N∑
i=1

||xi −Wzi||2, (2.1)

where ZN×q = XN×pWp×q is the projection of the data matrix X onto the
subspace formed by the columns of the projection matrix W . Later, Hotelling
(1933) defined PCA as an orthogonal projection onto a principal subspace that
maximizes the variance of the projected data. The information in a dataset can
be measured by how the instances spread in the data space (Deisenroth et al.,
2020). For that reason, the variance is a good criterion to measure how well
the reduced data can explain the original data.

PCA is a mature technique, however, it is still considered under new per-
spectives, for example in distributed environment (Balcan et al., 2014; Liang
et al., 2013) and parallel paradigm (Gemp et al., 2021) in order to be applied
for large scale datasets. We will also look at PCA under another perspective
using a probabilistic approach as introduced by Tipping and Bishop (1999) for
integrating with users’ constraints (see Chapter 5).

2.2.2 MDS

Multidimensional Scaling (MDS) can be referred to as a family of techniques,
traditionally used for finding psychological dimensions hidden in the data, for
testing structural hypotheses, or generally for data exploration and visualiza-
tion (Borg and Groenen, 2005b, Chap. 1). MDS can also be mentioned as a
general problem of finding an LD embedding of the data in which the proximities
between pairs of instances in this LD space respect the corresponding proximities
in the data space. Metric MDS refers to the MDS methods when the proximity
is measured by a metric distance such as the Euclidean distance (Torgerson,
1952). Non-metric MDS uses ranks instead of distances (Kruskal, 1964a,b).

We focus on metric MDS for visualization, in which the goal is to arrange
points in a 2D space in such a way to approximate the HD Euclidean pairwise
distances:

Stress =

√ ∑
1≤i<j≤N

(
d(xi,xj)− d(yi,yj)

)2
, (2.2)
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where d(xi,xj) and d(yi,yj) are Euclidean distance between the points in the
HD and LD space. Minimizing this stress function can be solved efficiently
using iterative algorithms like SMACOF (Borg and Groenen, 2005a).

This method is simple and efficient for small datasets with few features.
When the number of dimensions of the original data increases, MDS cannot
well preserve all the pairwise distances due to a “surprising behavior of distance
metrics in HD space” (Aggarwal et al., 2001). We will first introduce a common
issue of the distance metrics and then analyze the pitfall of the distance-
preserving approach in MDS.

The work of Aggarwal et al. (2001); Beyer et al. (1999) states that “the
ratio of the distances of the nearest and farthest neighbors in high dimensional
space is almost 1 for a wide variety of data distributions and distance functions”.
Euclidean distance and other metric distances are intuitive in LD space but
counter-intuitive in high dimensions stated by (Domingos, 2012) as “intuition
fails in high dimensions”. The cause of this issue is attributed to the curse
of dimensionality, a cornerstone problem in machine learning/data mining
introduced by Bellman (1966). A simple explanation of this problem can be
found in (Bishop, 2006, Sec. 1.4), saying that most of the mass of a multivariate
Gaussian does not concentrate near the mean but around its “shell” - distant from
the center. In a very low dimensional space, sampled points from a Gaussian
locates near the mean that gives us a familiar bell shape of its probability density
function. In contrast, sampled points from a highly multivariate Gaussian lie
near the surface of a hypersphere. This phenomenon makes the points in an
HD space are almost distant from each other and thus their pairwise distances
are nearly the same.

In order to illustrate this phenomenon, we sample points in three different
multivariate Gaussian distributions of 2, 100, and 200 dimensions and calculate
the pairwise Euclidean distances between the points in each Gaussian. The
histograms of these distances in three-dimensional spaces are plotted in Fig-
ure 2.3. In 2D, there are always close pairs with distance values close to zero.
In 100D and 200D, the distances concentrate on large values and there is no
close pairs1. Through theoretical work and empirical data shown above, one

1This distance concentration phenomenon for uniformly distributed data is also introduced
in Figure 2.9 in the Ph.D. dissertation of François (2007) and in the keynote lectures
of Verleysen (2020) at IJCCI2020. A similar finding is shown in the lecture notes of Dmitry
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Figure 2.3: Distributions of pairwise distances between 500 points sampled from each
multivariate Gaussian distribution of 2, 100, and 200 dimensions. In 2D, the value of
pairwise distances ranges from 0, indicating that there are many close pairs. In higher
dimensional space, the distance values concentrate on very high values, while there are
absolutely no close pairs.

should notice two issues. First, there is no small distance in an HD space as
shown in Figure 2.3 due to the curse of dimensionality2. Second, the pairwise
distances in an HD space concentrate on very high values due to the points
being almost equal-distant and far from each other.

From the above arguments, minimizing directly the distance distortion
between the HD and LD spaces as done by MDS may not be adequate for
preserving pairwise distances of HD data. The distances in an LD space can
be discriminated, meaning that there are always pairs of very small and very
large distances. In contrast, distances in an HD space do not discriminate
anymore (Verleysen, 2020). Moreover, the distribution of pairwise distances
in two spaces is different as visually inspected in Figure 2.3. Therefore, direct
distance matching by the stress in Equation 2.2 may not work for HD data.

This issue is addressed in a probabilistic approach, which reformulates the
distance-preserving problem. Instead of matching two sets of pairwise distances
using the distortion, one can learn a probabilistic transformation to map the
distributions of distances in the HD and LD space. The distribution of distances

Kobak, publicly available at https://github.com/dkobak/dkobak.github.io.
2An exponentially large number of points is needed to fill the HD space. With a finite

random sampling process, it is rare to sample two points that are close in Euclidean distance.
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in an LD space can be formulated mathematically while the distribution of
distances in a data space can be measured from observed data. Using a standard
change of variables of probability density functions can help to learn a transform
for matching two distributions. This solution is derived in Section 5.3.2. A better
solution is to give up preserving distances and try to preserve neighborhood
information instead. This idea leads to a family of neighbor-preserving methods
introduced right below.

2.2.3 SNE-based methods

Neighbor-preserving methods, starting with Stochastic Neighbor Embedding
(SNE) (Hinton and Roweis, 2003) and its successors t-SNE, LargeVis, UMAP,
aim to preserve neighborhood information (local structures) in the HD data.
These methods generally consist of two main steps. First, a neighborhood graph
is constructed from the HD data. This step requires an hyperparameter that
determines the set of k-nearest neighbors (kNN), called n_neighbors in UMAP
and perplexity in t-SNE and LargeVis. This kNN graph is weighted in different
ways to transform proximities in the data into probabilities of being neighbors.
Second, these probabilities are used to find the position of the data points in
an LD space while preserving the neighborhood information.

Constructing the kNN graph requires computing pairwise distances between
all N instances and has a complexity of O(N2). t-SNE (Maaten and Hinton,
2008) constructs the exact kNN graph and thus cannot scale with large datasets.
LargeVis (Tang et al., 2016) approximates a very accurate kNN graph by
using random projection trees to obtain neighborhood candidates for each
instance. In t-SNE and LargeVis, edges in the kNN graph are weighted by
an isotropic Gaussian kernel with an adapted bandwidth derived from the
perplexity parameter. UMAP (McInnes et al., 2018a) has a different theoretical
foundation and uses a more sophisticated topological data analysis to model
local connectivity by a fuzzy topological structure.

In the embedding space, all three methods create a neighborhood graph and
transform it to neighborhood probabilities using the Student’s t-distribution
(UMAP uses a similar but more general function). A graph layout problem must
then be solved to match the neighborhood probabilities in HD and LD. t-SNE
solves it by minimizing their Kullback-Leibler divergence. LargeVis models the
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probability of obtaining an edge between neighborhood nodes in the LD space
and maximizes the log-likelihood of this model. UMAP considers the graphs in
the HD and LD spaces as fuzzy sets and minimizes the cross-entropy between
them. All three methods use gradient descent for optimization.

The quality of the output embedding depends heavily on the hyperparame-
ters of these methods, which control the construction of the kNN graph in the
HD space. The perplexity/n_neighbors determines the approximate number
of neighbors for each instance: small values reveal more local structures, while
large values reveal more global structures in the data. UMAP also uses another
hyperparameter (min_dist) to determine the minimum distance between points
in the embedding in order to directly control how tight the groups are formed
in the visualization.

Table 2.1: Definition of basic notations in SNE-based methods.

In HD space In LD space

Affinity νj|i = exp

(
−||xi − xj ||

2

2σ2
i

)
ωij = exp

(
−||yi − yj ||2

)
Conditional
Probability

pj|i =
νj|i∑N
k νk|i

qj|i =
ωji∑N
k ωki

(Symmetric)
Probability pij =

pj|i + pi|j

2N
qij =

wij∑N
k

∑N
l wkl

t-SNE, LargeVis, and UMAP follow a similar approach of stochastic neighbor
embedding but use different notation. The core formulae of these methods are
rewritten using the same notations defined as follows. The affinity between two
points xi,xj in the HD space, which is used to measure similarity, is denoted
by νj|i. This is the core idea of SNE-based methods that quantify this similarity
by a Gaussian kernel with an adaptive bandwidth σi. This bandwidth is found
by a binary search to adapt with the perplexity hyperparameter. The affinity
is then transformed into a (conditional) probability pj|i by a normalization.
This term is interpreted as a probability of a point xj to be neighbor of the
given point xi. Similarly, the affinity and the probabilistic in the LD space are
defined in the same way, as summarized in Table 2.1.
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Table 2.2: Objective functions of SNE-based methods.

SNE-based
Methods

Objective function

Using pj|i, qj|i,
Asymmetric
SNE

L =
N∑
i

N∑
j

pj|i log
pj|i

qj|i
(2.3)

Using pij , qij , t-SNE uses ωij =
1

1 + ||yi − yj ||2
, known as

the Student’s t-distribution with one degree of freedom,
Symmetric
SNE, t-SNE

L =

N∑
i

N∑
j

pij log
pij
qij

(2.4)

Using pij and ωij as in t-SNE,
LargeVis

L =
∑

(i,j)∈E

pij logωij + γ
∑

(i,j)∈Ē

log (1− ωij) (2.5)

Using νij , ωij but with different definitions
UMAP

L =
∑
ij

[
νij log

(
νij
ωij

)
+ (1− νij) log

(
1− νij
1− ωij

)]
(2.6)

The objective functions of different SNE-based methods are compared in
Table 2.2. We try to highlight the symmetric/asymmetric terms used in these
objective functions and point out the difference between modern methods like
LargeVis and UMAP. LargeVis is based on graph theory and defines the set E
containing the edges in the neighbor graph with non-zero weight. The objective
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function of LargeVis in Equation 2.5 is explicitly defined as a combination of
an attractive force (the first term) and a repulsive force (the second term) with
a balancing factor γ. UMAP does not use the probabilities directly as in t-SNE
and LargeVis but uses the symmetric affinities instead. The affinities in both
HD and LD spaces are defined differently in Equation 2.6 (based on a fuzzy
topological structure), but the affinities of t-SNE and LargeVis can be derived
as a special case.

Let us take a closer look at SNE and t-SNE, the core methods in this
thesis. The proximities (or affinities) of the original data are transformed into
probabilities P = [pij ] via softmax function, which is also known as Boltzmann
distribution or Gibbs distribution in statistical physics (Landau and Lifshitz,
1980). A similar transformation (with a different kernel) is applied to the points
in the LD space that gives a probability Q = [qij ] of being neighbors in the
visualization. A Kullback-Leibler divergence loss function (KL loss) sets a high
cost for putting close neighbors far away in the LD space. Minimizing the KL loss
by gradient descent method has a useful effect: it makes close points in the same
neighborhood attract each other (by a so-called attractive force) and generally
makes all points repulse each other (by a repulsive force). This is an analogy to
the N-body problem in physics, for which our collegues Delchevalerie, Mayer,
Bibal, and Frénay (2021) propose to use an efficient solution called the Particle-
Mesh algorithm to speed up t-SNE by a large factor. Even though t-SNE is very
useful and widely used, it has a quadratic computation complexity. Many works
focus on improving this aspect. The attractive force involving the softmax
similarities P and can be accelerated thanks to approximate nearest neighbor
algorithms (that speeds up the graph construction). The repulsive force involves
Q and can also be accelerated by physics-inspired methods, for example, Barnes-
Hut acceleration (van der Maaten, 2014a) (O(N logN)), fast Fourier transform
(FFT)-accelerated interpolation-based method (Linderman et al., 2019) (O(N)),
or Particle-Mesh (Delchevalerie et al., 2021) (O(M logM) with M ≪ N is the
number of points in a grid for discretizing space).

Another type of problem of t-SNE is analyzed by (Wattenberg et al., 2016)
focusing on how to use this method effectively. The same problems are also
encountered with UMAP3. The SNE-based methods are very sensitive to the
neighborhood size (perplexity or n_neighbors), which is often hard to choose

3https://pair-code.github.io/understanding-umap/
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for both end-users and experts. In t-SNE, the Gaussian kernel width for
computing the similarities P is adapted to achieve the input perplexity. Lee
et al. (2014, 2015) suggest using multiple perplexities to calculate multiscale
softmax similarities that frees users from choosing this hyperparameter. This
multiscale approach has a complexity of O(N2 logN) but has been recently
reduced to O(N(logN)2) by a randomized subsampling process combined with
the VP-tree and Barnes-Hut algorithm (de Bodt et al., 2020). The similarities P
can also be refined by filtering out points in the neighborhood that are not in the
same class, which is proposed in the novel class-aware t-SNE method (de Bodt
et al., 2019). These similarities are even constructed by a Student’s t kernel to
remove the dependency on the perplexity, which is proposed in the twice Student
tt-SNE method (de Bodt et al., 2018). We also contribute a solution to this
problem of finding the best hyperparameters for neighbor-preserving methods,
which is introduced in Chapter 6. Moreover, t-SNE is claimed to preserve local
structures (neighbors) while often struggles to reveal global structure in the
visualization. Multiscale approach (Lee et al., 2014, 2015) solves this problem by
preserving at all scales, both local and global neighborhood information. We look
at the global structure preservation problem from another viewpoint involving
relative distances between clusters in the visualization raised by Wattenberg
et al. (2016), and propose to integrate global hierarchy into t-SNE by a new
method presented in Chapter 4.

In summary, this chapter gives a brief introduction to the DR problem
and common DR methods with some new insights. We focus on the aspect
of finding a manifold of data embedded in an HD space, instead of viewing
the DR problem as finding a projection to reduce dimensionality. Three of the
most widely used DR methods are summarized from different perspectives. The
traditional PCA problem can be seen as maximizing variances or minimizing
construction error, as a competitive eigen-game between agents, or a latent
variable model. Through the problem of MDS, we try to convince that there are
no small distances in an HD space where all pairs of points are equal-distant, and
we should go from distance-preserving to neighbor-preserving approach. Several
issues of the successful t-SNE method are also mentioned, which motivates us
to correct these problems using users’ constraints. In the next chapter, we will
start with an introduction to different kinds of users’ constraints and different
approaches to integrating them into DR methods.
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Chapter 3

A Survey of Integrating
Constraints into DR Methods
This chapter is a study of existing methods for integrating various types of
constraints into DR methods, summarized in a comprehensive survey.

Contents
3.1 Scope and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 22
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This chapter is based on our working paper: “Integrating Constraints into
Dimensionality Reduction Methods: a Survey” (Vu, Bibal, and Frénay, 2021d)
(submitted to Neurocomputing).
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3.1 Scope and Methodology

Through this thesis, we study how users’ feedback can be used together with DR
methods for visualization. DR methods aim to preserve important characteristics
and to find a faithful representation of data in an LD space. However, the
patterns revealed by DR methods may not always match users’ expectations,
especially when users have prior knowledge about their data. DR methods
objectively learn from data, while the users’ needs are often subjective. In
order to make DR methods more useful, many works have been devoted to
integrating users’ feedback into base DR methods. Sacha et al. (2017b) look
at this integration as a “human-in-the-loop” process and investigate how users
interact with DR techniques. We propose a new viewpoint: considering users’
feedback as constraints that DR methods should respect besides their main
objective of faithfully representing the data. This survey aims to reorganize
the existing literature for constraint integration for DR.

For reducing the dimensionality in general

Mainly for visualization

Constrained 
DR Methods

Instance-level 
Constraints

Dataset-level 
Constraints

Fixed position 
Constraints 
(Sec. 3.2.1) 

Pairwise Constraints
(Sec. 3.2.2)
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(Sec. 3.3.1)
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LPP, LE, LLE 

CKN, t-STE, 
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LDA, MMC, 
kernel methods

CCA, Multi-set 
CCA

Base MethodsConstraint Types

Figure 3.1: The structure of this survey, categorized by constraint types.
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The most important point in our survey method is the categorization of
constraints. Before conducting this survey, we first look for what kind of
information can be considered as constraints. Based on recent surveys in
unsupervised methods (Chao et al., 2019; Davidson and Basu, 2007; Grossi
et al., 2017), many kinds of side information can be considered as constraints.
Side information includes all kinds of additional information that can be used
to describe the data. DR methods are thus required not only to preserve
information in the original data but also to preserve the additional information
if available. The additional information can come from users’ feedback or
domain experts’ knowledge. It can also come from other sources outside the
given dataset, such as external features that describe the data points by different
characteristics or additional labels that group the points by a different criterion
than the original class labels.

The new information from labels or from users’ feedback is indeed a kind of
supervision information. We do not make a clear distinction between (semi-)
supervised and unsupervised DR methods but focus on the constraint repre-
sentation instead. For example, graph-based DR methods always construct a
neighbor graph to capture global structure in the data. When supervision infor-
mation such as a partial or full set of labels is available, it can be used to modify
the graph, for example, to increase weights of the edges connecting data points
in the same class. Prior knowledge of users or their feedback when they observe
the data can also be collected in the form of pairs between similar/dissimilar
objects. Even though this kind of feedback is integrated into an unsupervised
DR method, it has exactly the same effect to enhance the neighbor graph as
the above supervision information. Within the scope of this survey, in a narrow
sense, we suggest calling these methods (unsupervised methods with additional
constraints or (semi-) supervised methods) as constrained methods. Therefore,
one central topic of this survey is constraint representation.

Based on this definition of constraints, we collected papers of DR methods
that work with different kinds of constraints and propose the following catego-
rization, which is summarized in Figure 3.1. The first two research questions
posed previously (on the constraint representation - RQ1 and constraint opti-
mization - RQ2) help us to define this comprehensive categorization. Typically
in machine learning, when talking about constraints such as a must-link or
cannot-link constraints, we assume that they are the hard constraints. These
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constraints are used to modify internal data representation in the DR algo-
rithms such as the covariance matrix or the neighbor graph, which can not
be violated (a.k.a. hard constraints). However, when these constraints are
represented differently, for example, in the form of a regularization term that is
independent of the objective function of base DR methods, they are allowed
to be violated (a.k.a. soft constraints). For another example, let us consider
the users’ constraints on the fixed position of points. If these constraints are
encoded as a fixed block of the embedding matrix, they are considered as
hard constraints. However, they can also be considered as soft constraints
in an interactive method, which takes into account the uncertainty in the
users’ feedback. Therefore, considering a constraint as soft or hard depends
on the constraint representation. Moreover, recent constrained DR methods
like minimum-distortion embedding (MDE) (Agrawal et al., 2021) can preserve
both hard constraints (orthogonal and orthonormal constraints on the columns
of the embedding matrix) and soft constraints (a constraint on fixed position
indicated by users) at the same time. For that reason, we also do not distinct
hard and soft constraints in this survey.

The first category of this survey consists of constraints at the level of indi-
vidual data point, called the instance-level constraints (Section 3.2). Methods
in this category are mainly used for visualizations, and the constraints are typi-
cally collected from users’ feedback or prior knowledge about the relationship
between data instances. Similar to the perspective of “what you see is what
you can change” (Sacha et al., 2017a), the first subgroup consists of methods
that allow users to move points in the visualization to the desired position to
form fixed position constraints. Moreover, users can also express their ideas
about the similarity/dissimilar between individual objects to form pairwise con-
straints. Another kind of constraint constructed from tuples of three instances
to highlight a contrastive relationship among them is called triplet constraints.

The second category consists of constraints on the whole dataset that can
affect systematically every single data point, called the dataset-level constraints
(Section 3.3). For example, feature constraints allow users to change the weights
of each feature in their dataset to observe the features’ importance and their
effect on the embedding. Under our definition of constraints, class labels can be
considered as constraints since the labels can guide DR methods to discriminate
data points by different classes. (Semi-)supervised DR methods can be placed
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in this subgroup of label constraint methods. Data points can also be described
simultaneously by different sets of features or can possess different sets of
labels associated with them. Multi-aspect constraints help to produce a unique
embedding for this kind of data while preserving the information encoded in
different views or label sets. In each subgroup, the constrained DR methods are
grouped according to the optimization approach or the problem formulation of
the base DR methods.

3.2 Instance-level Constraints

Instance-level constraints denote constraints on individual data points. We
consider three kinds of instance-level constraints. (i) Fixed-position constraints
apply to only one specific data point to specify its location in the LD space.
(ii) Pairwise constraints apply to a pair of two points to indicate the simi-
lar/dissimilar relationship between them. (iii) Triplet constraints apply to a
tuple of three points to indicate that the first point is closer to the second point
than to the third point. This third kind of constraint can be considered as a
more general case of pairwise constraints when a similar constraint (between
the first and the second points) and a dissimilar constraint (between the first
and the last one) are considered at the same time. These constraints can be
defined on the data points in the original space or in the reduced LD space.
This section presents how to encode these types of constraints into DR methods
and different approaches to solve such constrained problems.

3.2.1 Constraints on Fixed Positions of Points

Constraints in the form of fixed positions of points are typically encountered in
interactive visualization applications. In these applications, users, with their
prior knowledge about data, may want to fix the position of several points
or groups of points of interest in a scatter plot since they found a mismatch
between their prior knowledge and the visualization. Through this setup, users
can observe an initial visualization of their data, and then interact with the
visualization to give their feedback. The user feedback or prior knowledge on
the position of points is considered as fixed position constraints for DR methods.

The exact position of points fixed by users can be considered directly as
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constraints for DR methods (Kim et al., 2017; Leman and Endert, 2010; Yang
et al., 2006). When users already have an initial idea about the position of
several points in their dataset, they may want to move the points or groups
of points in the visualization to the desired positions. For example, a 2D map
of cities built by an MDS-based method can be different from the reference
geographical map because of the orientation-invariance of MDS visualizations.
Users can correct the embedding by moving the points of several chosen cities
to the geographic position of a reference map.

The relative position of interacted points can also be used to indicate the
relationship between these points. For example, users can move several points
close together/far apart to indicate that these points are similar/different and
that they should stay close to/far away from each other in the embedding. This
type of relationship can be used to learn the correlation of features that make
points close or distant (Endert et al., 2011; House et al., 2015).

In the next section, we review how the fixed position constraints are in-
tegrated into DR methods, as well as three different approaches for solving
the constrained DR problem. The advantages and disadvantages of these ap-
proaches are discussed and several common usages of this type of constraint,
particularly in visual analytic, are highlighted.

3.2.1.1 Direct Approach

The most straightforward approach to integrating the fixed position constraints
into DR methods is to set them explicitly in the matrix Y of embedded points.
Let Y0 denote the fixed position of points known in advance as prior information.
Let Y1 denote the position of the remaining points that we need to find. The
output matrix Y is represented by two separated blocks of fixed points and

unknown points Y =

[
Y0

Y1

]
.

The basic optimization in Locally Linear Embedding (LLE) (Roweis and
Saul, 2000), Isometric feature mapping (ISOMAP) (Tenenbaum et al., 2000),
and Local Tangent Space Alignment (LTSA) (Zhang and Zha, 2004) is

min
Y

YMY T

subject to Y TY = Iq×q,
(3.1)
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where M is a pairwise weight matrix (in LLE) or alignment matrix (in LTSA).
A general semi-supervised nonlinear DR framework (SS-NDR) (Yang et al.,
2006) is used to develop semi-supervised versions of these above methods (SS-
LLE, SS-ISOMAP, SS-LTSA). Under this framework, the above problem in
Equation 3.1 becomes

Y1 = arg min
Y1

[
Y0

Y1

][
M00 M01

MT
10 M11

]
[Y T

0 Y T
1 ], (3.2)

where the matrix M is represented by different blocks based on the fixed and
the unknown points, and is constructed in different ways for the three nonlinear
DR methods above. The unknown coordinates in Y1 appear in a system of
linear equations derived from Equation 3.2 and can be easily solved since Y0

and M are both fixed.

This representation of Y is not only used for eigen-based DR methods but
also used for iterative methods like t-SNE and MDS. XGVis(Buja et al., 2001,
2008), an interactive toolkit based on MDS, uses the absolute position of fixed
points or groups of points in Y0 as anchor points to find the configuration of
other points that minimizes the stress criteria of metric and non-metric MDS.
Following the same idea, the PIVE framework (Kim et al., 2017) introduces
an interactive pipeline that allows users to interact in the early iterations with
the intermediate visualization results of t-SNE or MDS after each optimization
iteration. The users can move points or groups of points in the visualization
at the intermediate state of the optimization process to construct the matrix
Y , which is now used as a new initial embedding to continue to run t-SNE or
MDS. This direct approach is simple, easy to optimize, and fast enough to be
integrated into visualization methods in an interactive context.

Nonlinear DR methods, in general, do not produce stable results due to their
random initialization. Constraints on fixed positions are claimed to improve
the stability for MDS (Buja et al., 2008), t-SNE (Kim et al., 2017) and other
nonlinear DR methods like LTSA and LLE (Yang et al., 2006). However, in
this direct approach, the constraint in Y0 is processed independently to the
unknown blocks Y1.

27



CHAPTER 3. CONSTRAINED DR METHODS: A SURVEY

3.2.1.2 Probabilistic Approach

The probabilistic approach proposes a novel way to integrate the fixed position
constraints into probabilistic DR methods like probabilistic PCA (PPCA) (Tip-
ping and Bishop, 1999), probabilistic MDS (PMDS) (Hefner, 1958; MacKay and
Zinnes, 1986; Zinnes and MacKay, 1983), and Generative Topographic Mapping
(GTM) (Bishop et al., 1998). In probabilistic DR methods, the input data
points are called the observed variables, and the unknown embedded points
are called the latent variables. Each type of observed and latent variable is
modeled by a probability distribution. The goal is to find the distribution of
the latent variables, i.e., to estimate the parameters of their distributions that
best represent the observed data. The constraints on the fixed position are
first transformed into probabilistic terms, which are then used by the model to
estimate the unknown parameters.

Bayesian Visual Analysis (BaVA) (House et al., 2015) is a framework
combining two research areas: visual analytic and Bayesian statistics, and can
be applied for PMDS, PPCA (Endert et al., 2011; House et al., 2015) and
GTM (Endert et al., 2011; Han et al., 2016). BaVA follows a probabilistic
modeling process with a focus on the iterative loop to update the model when
receiving users’ feedback. This process is also known as a sequential Bayesian
updating, and thus the Bayesian part comes in its name. Simply speaking, in
this sequential updating, we start with an initial prior belief and update our
belief after observing data to derive a posterior. In the next iteration, the
old posterior becomes a new prior belief, and we continue updating this belief
when observing new incoming data to obtain a new posterior. This is the key
idea of BaVA to allow experts to incorporate feedback and new information to
update the model. BaVA transforms the users’ cognitive feedback f (c) (e.g. fixed
position of points) into parametric feedback f (p) and models this transformation
by a distribution π(f (p) | f (c),θ), where θ is model’s unknown parameters. The
BaVA framework is flexible to tailor for different probabilistic DR methods. For
example, User-guided PPCA (Endert et al., 2011), a variant of PPCA under
BaVA framework, allows users to move points: either drag them far apart or
close together to form the fixed position constraints. In that way, BaVA models
the features that reflect the relationship of the fixed points and learns a better
covariance matrix for PPCA.
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Using the same probabilistic approach, interactive PPCA (iPPCA) (Vu and
Frénay, 2019) and interactive Probabilistic MDS (iPMDS) (Vu et al., 2021c)
propose the novel idea of encoding the constraints of the fixed positions directly
into a prior distribution. In general, the positions of the unknown (unobserved)
points are represented by the latent variables Z = [z1, . . . , zn] with a standard
normal prior distribution zi ∼ N (0,1). If the position of the point yi is known
with a certainty level modeled by a variance σfixed, the prior distribution for
the fixed point is represented by zi ∼ N (yi,1σ

2
fixed). The positions of the other

unknown points are found by MAP estimation.

The main advantage of the probabilistic approach is that (i) it can handle
noisy and missing input data, and (ii) it can output an embedding with an
estimation of uncertainty for each point. Moreover, the uncertainty in the users’
feedback about the position of fixed points can also be modeled in the prior
distribution of a probabilistic model (Vu and Frénay, 2019; Vu et al., 2021c).
Another advantage of this approach is the separation of the modeling and the
inference step. We typically focus efforts on the modeling step to represent
both the input data and the constraints in a faithful way. Once the model is
defined, different inference algorithms like MLE, MAP, Markov Chain Monte
Carlo, or Variational Inference can be applied. This separation is useful because
the inclusion of constraints generally is performed during the modeling step.

3.2.1.3 Non-probabilistic Approach

In contrast to the direct and probabilistic approaches, DR methods can also
be constrained in two separate steps. First, the constraints of fixed points are
used to learn a better representation for the input data, such as a weighted
distance function to measure the similarity of the input data. Second, the
original optimization problem is handled using the learned representation.

Visual to Parametric Interaction (V2PI) (Leman et al., 2013), a non-
probabilistic version of BaVA, is a typical example of this approach. In this
framework, a fixed point constraint is considered as cognitive feedback since it
is a particular representation of human knowledge about the dataset. This type
of constraint is transformed into a parametric form integrated into the covari-
ance matrix for PCA or in a custom distance function for MDS. User-guided
MDS (Endert et al., 2011; Leman et al., 2013) is an example of applying V2PI to
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the MDS problem. This method is based on Weighted MDS (Carroll and Chang,
1970), which uses a normalized p-dimensional weight vector w = [w1, . . . wp]

to represent the importance of each feature. The weighted Euclidean distance
between two p-dimensional data points is defined as

d2
w(xi,xj) =

p∑
k=1

wk

(
x

(k)
i − x

(k)
j

)2
, where

p∑
k=1

wk = 1. (3.3)

In order to faithfully reflect the pairwise distances between the fixed points, the
subset of fixed points Y0 = [ỹi] is used to learn an adaptive weight vector

w = arg min
w

∑
ỹi,ỹj∈Y0

∣∣d2
w(xi,xj)− d2(ỹi, ỹj)

∣∣.
The coordinates of the remaining unknown points can be found by solving the
traditional MDS problem (Torgerson, 1952) of minimizing the stress function∑

1≤i<j≤N (d(xi,xj)− d(yi,yj))
2, using the weighted distance dw(xi,xj).

This adaptive weighted distance function can also be applied for other kinds
of distance such as the geodesic distance in ISOMAP, a variant of metric MDS.
ISOMAP uses the shortest-path distance in a connected neighborhood graph to
faithfully represent distances in the manifold. However, this geodesic distance
is sensitive to the neighborhood size due to a short-circuiting problem, in which
the algorithm falsely assumes that two points are close in the geodesic distance
when they are not (Tenenbaum et al., 2000). ISOMAP under V2PI framework
uses the fixed point constraint to rescale the measure of the short-circuiting
edges to make sure these edges will not be chosen in the shortest paths (Leman
and Endert, 2010).

The V2PI and BaVA frameworks are designed to transform the user feedback
into a parametric form used by PCA, MDS, ISOMAP, or their alternative prob-
abilistic versions. However, these frameworks have to tailor the representation
of the fixed point constraints according to different base DR methods. The
constrained DR methods in this approach are simpler than the probabilistic
methods in Section 3.2.1.2 but are more complex than the direct methods in
Section 3.2.1.1 in the optimization process.
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3.2.1.4 Discussion on Fixed Point Constraints

In summary, the idea of the reviewed (both linear and non-linear) methods in
this section falls under the umbrella of five unified frameworks. The general
semi-supervised nonlinear DR framework (Yang et al., 2006) introduces a simple
and efficient way to encode the fixed point constraint directly in the embedding
matrix. The PIVE framework (Kim et al., 2017) introduces an interactive
pipeline that uses the modified intermediate state of the embedding to rerun
t-SNE or MDS. The probabilistic BaVa framework (House et al., 2015) and its
non-probabilistic version V2PI (Leman and Endert, 2010) allow DR methods to
extract useful information from the constrained points to learn global parameters
like covariance matrix or feature weights used in the base DR methods. The last
framework introduces the idea of encoding directly the position of fixed points
with some level of uncertainty into prior distribution for the latent positions in
PPCA and PMDS (Vu and Frénay, 2019; Vu et al., 2021c). While we focus on
the representation of the fixed point constraints, the reviewed methods in this
group cover both common linear (User-guided PCA, iPPCA) and non-linear
(SS-LLE, SS-ISOMAP, MDS-based,. . . ) methods.

The fixed point constraint is mainly used for interactive visualization meth-
ods where the users want to express their needs about the desired position for
their selected points. The DR methods enhanced by this type of constraint
are easy to use for the end-user. For example, by moving the points to the
target position, users can test their hypotheses about the structure or pattern
they would like to see in the visualization (House et al., 2015). By fixing the
position of several anchors points, users can also manipulate (rotate, translate
or flip) the visualization (Buja et al., 2008). Moreover, by taking into account
the relative relationship between fixed points, the users can select examples to
describe the meaning of their desired axes in the visualization (Vu and Frénay,
2019; Vu et al., 2021c).

However, how to choose the fixed points effectively is still a hard prob-
lem(De Silva and Tenenbaum, 2004). The SS-NDR framework (Yang et al.,
2006) introduces a sensitivity analysis, but it is not applicable for a wide range
of nonlinear DR methods. This is the main reason why these methods are
mainly used for interactive visual analytic, where the subjective feedbacks of
users are used, and the visualizations are generally assessed by human judgment.
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3.2.2 Pairwise Constraints

In unsupervised learning, where the labeled data are not available, pairwise
constraints between points in a small subset can be used to provide information
about the underlying structure of the data. Pairwise constraints have been
applied successfully in many clustering methods (Davidson and Basu, 2007).
This section reviews different approaches to integrate pairwise constraints into
DR methods. There exist two kinds of pairwise constraints. A must-link (or
positive) constraint between two points indicates that they are similar, while
a cannot-link (or negative) constraint between two points indicates that they
are not similar. Notice that the similarity can either be provided through a
predefined metric measurement or through human perception. LetM and C
be the sets of must-link and cannot-link constraints. If two data points xi
and xj are connected by a must-link or a cannot-link, we denote them by
ML(xi,xj) ∈ M or CL(xi,xj) ∈ C respectively. We also write (i, j) ∈ M
or (i, j) ∈ C for short. These must-link and cannot-link constraints are also
called equivalence constraints (Bar-Hillel et al., 2005; Cevikalp et al., 2008) since
they can be inferred or propagated by the transitivity and entailment rule1.
Cannot-link constraints are not transitive and are therefore not as informative as
must-link constraints (Bar-Hillel et al., 2005). However, in almost all reviewed
methods, both types of constraints are used and have proved their efficiency.

This section focuses on two approaches to integrate the must-link and cannot-
link constraints into DR methods. The graph-based approach directly uses the
additional pieces of information implied in the pairwise constraints to modify
the graph representation of the input data. In contrast, the discriminant-based
approach considers the must-link and cannot-link constraints to distinguish
similar and dissimilar points.

3.2.2.1 Graph-based Approach

In general, the graph-based DR methods represent the input data in the HD
space in the form of a (connected) graph. Each point is connected with their
K nearest neighbors or with their neighbors in an ε-ball in the HD space. The

1Transitivity rule applied for must-link constraints: ML(x,y),ML(y,z) → ML(x,z).
Entailment rule for generating all cannot-link constraints from two sets of must-link constraints:
ML(a, b),ML(x,y), CL(a,x)→ CL(a,y), CL(b,x), CL(b,y).
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hidden patterns in the data can be represented through the different structures
in the neighborhood graph. The goal of graph-based DR methods is thus to
reveal these hidden structures.

The commonly encountered optimization problem in graph-based meth-
ods such as Locality Preserving Projections (LPP) (He and Niyogi, 2004),
Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2003) or Locally Linear Em-
bedding (LLE) (Roweis and Saul, 2000) is closely related to the eigenvector
problem in Equation 3.2. The goal is to find a projection matrix Pq×p that
map the data from the p-dimensional space to the lower q-dimensional space
Yn×q = Xn×pP

T
p×q. Since there exist many solutions for the projection ma-

trix, we force the orthogonal constraint (P TP = 1p×p) for the columns of P ,
i.e., their columns should be orthogonal and have unit norm. The problem is
reduced to minimize the pairwise distances between projected points in the LD
space and can be achieved using the graph Laplacian matrix Ln×n = D −W .

min
P

trace(Y TLY ) = trace(PXTLXP T )

subject to Y TDY = 1.
(3.4)

In graph theory, this Laplacian matrix L is the most natural way to characterize
a graph represented by a weighted adjacency matrix W , where D is a diagonal
matrix of degree determined by the number of neighbors of each point (Davidson,
2009). Each point i in the diagonal matrix D represent the degree of the node
i in the neighborhood graph: Dii =

∑
jWij .

Based on this fundamental optimization problem, the main idea of the
constrained methods is to modify the Laplacian matrix L to encode the pairwise
constraints. This can be done by changing the values in the input weighted
adjacency matrix using the given pairwise constraints. Several constrained DR
methods (Davidson, 2009; Tang and Zhong, 2007) can be generalized using the
expansion of the general graph spectral problem in Equation 3.4. The most
important idea of these methods is that, for a pair (i, j), the corresponding
projected points (yi,yj) should be close if (i, j) ∈M and they should be distant
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if (i, j) ∈ C. Let us rewrite this problem in the form of quadratic terms as

P = arg min
P

trace(P TX(D −W )XTP )

= arg min
P

∑
i 6=j
||P Txi − P Txj ||2Wij .

(3.5)

This objective function in Equation 3.5 is also called graph preserving crite-
ria (Yan et al., 2007; Yan and Wang, 2009). The weighted adjacency matrix
Wn×n is the key point to encode the pairwise constraints. Various methods are
proposed to modify this matrix in two ways: (i) assigning discrete values to
Wij to denote the connection between nodes, or (ii) assigning continuous values
to Wij to weight the edges of the neighborhood graph.

In the first case, only the graph structure is modified by the constraints
since Wij can only take the values in {0, 1,−1} (Davidson, 2009; Tang and
Zhong, 2007). Wij = 0 when the two points are not in the neighborhood of
each other, Wij = +1 when (i, j) ∈ M, and Wij = −1 when (i, j) ∈ C. This
simple formulation for the connected graph can capture the structure encoded
in the pairwise constraints efficiently. However, there may be similar points that
are not in the same neighborhood. Constrained Locality Preserving Projection
(CLPP) (Cevikalp et al., 2008) proposes to enrich the set of constraints by
propagating must-links to strengthen the similarity information and propagating
cannot-links to remove the weak dissimilar links.

In the second case, Wij is used as a weight for every pair of points in the
dataset. In that case, the must-link and cannot-link pairs can be weighted by
different normalized constants adapted to the number of must-links |M| and
cannot-links |C| as

Wij =


1

2n2 + α
2|M| if (i, j) ∈M,

1
2n2 − β

2|C| if (i, j) ∈ C,
1

2n2 otherwise,

where α, β are the scalar parameters for balancing the contribution of each
constraint type (Zhang et al., 2007a). Robust CLPP (YU et al., 2010) benefits
from this weighted matrix and applies the path-based similarity (Fischer et al.,
2004) to find the intrinsic geometric structure of the graph.
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The general idea of the constrained methods in this group is based on tradi-
tional graph-based DR methods like Locality Preserving Projections (LPP) (He
and Niyogi, 2004), Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2003) or
Locally Linear Embedding (LLE) (Roweis and Saul, 2000). Several constrained
methods are also extended with kernels to learn a projection from a kernel
space to an LD space (Cevikalp et al., 2008; Meng et al., 2017; Yan et al.,
2012). These constrained methods consist of two steps. The graph is first
constructed using the neighborhood information and input constraints. The
graph spectral optimization is then solved to find the best mapping that reveals
the graph structure in the LD space. This mapping should preserve the locality
by minimizing the distances between the projected points in such a way that
close/distant points in the HD space stay close/distant in the LD space. Since
this objective is in line with the similar/dissimilar constraints, the pairwise
constraints can easily be integrated into graph-based methods through a unified
formulation in Equation 3.5. The optimization in this equation is a standard
eigenvalue problem and has a closed-form solution. However, the main issue is
how to determine the neighborhood size in the graph construction. Different
solutions exist to tackle this problem, such as a parameter-free method for
graph construction (Yan and Wang, 2009) or an LLE-based method that learns
this parameter automatically (Saxena et al., 2004).

3.2.2.2 Discriminant Criteria-based Approach

In contrast to the graph-based approach that uses pairwise constraints directly,
another approach is based on Linear Discriminant Analysis (LDA) and uses
pairwise constraints to enhance the discriminant criteria. Methods in this
group aim to maximize the between-group similarity and to minimize the within-
group similarity simultaneously (Long et al., 2020; Sanodiya et al., 2020). This
criterion enhances the similarity of points within the same group or points
connected by must-links (similar links) and degrades the similarity of points in
different groups or points connected by cannot-links (dissimilar links).

Several methods following this approach propose to enhance the discriminant
information by enriching the set of input constraints. In a semi-supervised
setting, the constraints can be generated from partial class labels if available.
However, data points in the same class may belong to different subgroups.
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The semi-supervised DR for multiple sub-classes method (Tong et al., 2012)
tackles this problem by introducing the concept of inter-subclass must-link
and intra-subclass must-link constraints to better represent the discriminant.
Semi-supervised discriminant ISOMAP (Huang et al., 2019) redefines must-link
constraints as links between points with the same label and introduces the new
likely-link constraints as links between points in the same neighborhood. The
other way to enhance the discriminant is to exploit the relative relation between
constrained points. The similarity order preservation method introduced in (Hu
et al., 2021) finds a projection in such a way that points with less similarity
have larger distances in the LD space, while points with greater similarity have
smaller distances in the LD space. This idea is similar to the triplet constraints
in Section 3.2.3.

LDA-based is one of the most common approaches for supervised DR
methods. However, using the pairwise constraints is not a direct way to present
the discriminant. Another approach that uses partial labels based on semi-
supervised LDA that provides better solutions is presented in Section 3.3.

3.2.2.3 Discussion on Pairwise Constraints

Most of the DR methods with pairwise constraints are graph-based methods.
Pairwise constraints can be easily generated from the available labels in the
dataset, or from groups of similar/dissimilar points collected from user knowl-
edge. The constrained methods in this group integrate pairwise constraints
into the neighborhood graph. This graph can both represent the data and
preserve the constraints at the same time. Useful patterns in the graph are
extracted thanks to the graph spectral optimization method. The methods in
this group are usually used as a pre-processing step to reduce the dimensionality
of data for the downstream tasks (Tang and Zhong, 2007; Zhang et al., 2007a).
Moreover, these methods are not iterative and hard to be used for visual analysis
tasks. Another usage of pairwise constraints is to assess the quality of the
embedding for several visualization methods (Vu et al., 2021a)). Since the
pairwise constraints reflect the structures in the data, we can measure how well
these constraints are preserved in the visualization. This constraint-preserving
score can also be used to tune the hyperparameter of visualization methods
(t-SNE, UMAP) automatically.
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3.2.3 Triplet Constraints

Triplet constraints are a particular type of constraint with three observations.
They are extremely useful when the exact measurement of the (dis)similarity is
not available. These constraints are in the form “xi is more similar to xj than
to xk”. For convenience purposes, a triplet is denoted as a tuple (i, j, k) and can
be modeled by a probability pijk of how likely xi is more similar to xj than to
xk. This representation is typically used in common triplet embedding methods
such as Crowd Kernel Learning (CKL) (Tamuz et al., 2011), Stochastic Triplet
Embedding (STE), t-distributed STE (van der Maaten and Weinberger, 2012),
and TriMap (Amid and Warmuth, 2019). Since these methods directly learn
the position of points in the LD space, they represent pijk using the distance
of the embedded points ||yi − yj || and ||yi − yk||. The embedding Y can be
optimized using gradient-based method (as in TripMap) or maximum likelihood
maxY

∑
(i,j,k)∈T log pijk, where T is the set of all triplet constraints.

Triplet constraints between three objects can also be generalized to two
pairs in order to represent the rank or the order d(xi,xj) < d(xk,xl), which
is naturally used in non-metric MDS (Agarwal et al., 2007). Moreover, triplet
constraints among individual objects can be generalized to be applied to more
abstract objects like group of points or semantic concepts of object. t-SNE
with Hierarchical Constraints (HCt-SNE) (Vu et al., 2021b) transforms the
hierarchical structure into triplet constraints between groups in the hierarchy
tree, which are encoded into a regularization term for t-SNE. SNE-and-Crowd-
Kernel Embedding (SNaCK) (Wilber et al., 2015) combines t-SNE with t-STE,
a triplet embedding method(van der Maaten and Weinberger, 2012). SNaCK
is used to reveal the semantic concepts that already exist in the data that
visualization methods like t-SNE do not capture. For example, in a food
dataset, the model can easily create a visualization in which the food dishes are
arranged according to their colors while it is much harder to group the dishes
by taste (delicious, spicy, flavor, etc.). To discover these semantic categories,
models need to be guided by human hints.

Discussion on Triplet Constraints

Triplet constraints are more informative than fixed-position and pairwise con-
straints but have a more complex formulation. Triplet constraints can be
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generated from pairwise constraints, from groups of similar and dissimilar
points, or being queried from users. Triplet constraints can be integrated
into well-known DR methods (Vu et al., 2021b; Wilber et al., 2015) or can
be used to learn the embedding directly from triplets, as in triplet embedding
methods (Amid and Warmuth, 2019; Tamuz et al., 2011; van der Maaten
and Weinberger, 2012). Moreover, in interactive machine learning, “triplets
are one of the most flexible options in practical use because they do not rely
on prior knowledge, are invariant to scale, and are stable between and within
subjects” (Wilber et al., 2015). For that reason, crowd-sourcing methods such
as CKL (Tamuz et al., 2011) and SNaCK (Wilber et al., 2015) are usually used
to find the most informative constraints to ask users for their feedback. With
triplet constraints, these methods can capture the relationships between objects
that may not appear in class labels.

The methods using triplet constraints are related to a group of metric
learning methods using triplet loss. This kind of loss is called contrastive
loss (Arora et al., 2019), which is used to learn a representation function fθ(·)
that make the anchor point xi closer to the positive point xj than to the
negative point xk. The similarity between points mapped by the function
fθ(·) is measure by d(fθ(xi), fθ(xj)), d(fθ(xi), fθ(xk)), where d(·) can be any
similarity measure such as a Gaussian heat kernel or a dot product. Triplet loss
and contrastive loss in general are recently used for visual representation (Chen
et al., 2020), face recognition (Schroff et al., 2015) or image retrieval (Ge, 2018).

3.3 Dataset-level Constraints

The previous section considers constraints at the level of individual data points,
which are only applied to small ensembles of selected instances in the dataset.
In this section, we discuss dataset-level constraint, a new kind of constraint
that generally affects the whole dataset instead of individual instances. For
example, if users want to give greater importance to selected features in their
dataset, they can manually increase the weights for them and observe how
the visualization changes accordingly. These constraints on feature weights
are detailed in Section 3.3.1. Labels can also be considered as constraints
for dimensionality reduction techniques. Indeed, because DR is unsupervised,
when labels are available, this additional source of information can enrich the
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visualization. We consider these additional labels as constraints that can be used
to enhance the separation between different classes in the dataset in Section 3.3.2.
Moreover, if we have another data source such as a supplementary dataset with
new features providing additional information to the original dataset, a new
embedding can be created to explain the features in both datasets. In this case,
the whole supplementary dataset is considered as a multi-view constraint, a
type of multi-aspect constraint that is discussed in Section 3.3.3.

3.3.1 Constraints on Features

One of the most fundamental tasks in machine learning is to compare the
similarity between data points. This can be done by computing the distance
between these points. In the Euclidean distance, all the features are considered
to have the same weight (or the same importance), which may not always be
adequate for all problems. Distance metric learning methods (Bellet et al., 2013;
Kulis et al., 2012; Yang and Jin, 2006) aim to learn an adaptive distance function
such as the Mahalanobis distance to account for the correlation between features.
Metric learning automatically learns a metric from data or task-specific distance
functions when supervision is available. Another much simpler solution is to
use a weighted Euclidean distance in which each feature is assigned a particular
weight to indicate its importance. Although the feature weights can also be
learned from data, users can still set weights according to their knowledge about
the dataset.

Several interactive methods such as iPCA (Jeong et al., 2009, 2015) and
iLDA (Choo et al., 2010) allow users to examine how changing feature weights
affect the visualization. In these methods, the changes in each feature/dimension
are reflected by the changes in the position of data points in the visualization.
From that, users can interpret the importance of each feature. Bounded
PCA (Giordani and Kiers, 2007) allows experts to set lower and upper bounds
on the values of the features of interest and produces an optimal projection
that makes the projected data satisfy the predefined bounds.

However, users do not always know in advance the importance of features,
and it is hard to evaluate automatically the learned feature weights. It can be
more intuitive if users can interact with the visualization to deduce the features’
importance. In linear DR methods like PCA, changes in the feature space
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directly translate to changes in the visualization. Inversely, changes in position
in the visualization can also be traced back to the feature space (Cavallo and
Çağatay Demiralp, 2017). In this case, the changes that users make in the
visualization act as constraints to adapt feature weights. This idea is also
applied to other kinds of visualization, such as the star-coordinates display for
analyzing the dependencies of features in PCA (Molchanov and Linsen, 2014).

3.3.2 Constraints from Labeled Data

When available, class labels can also be considered as additional constraints
for DR methods. They can be used to generate instance-level constraints such
as pairwise or triplet constraints in Section 3.2. However, in this section, we
focus on DR methods that directly use the available labels to reinforce the
discriminant information, e.g., the class structure in the visualization. For
instance, in the embeddings, all the points of the same class should be grouped
close together while points in different classes are separated. This section
reviews several supervised and semi-supervised DR methods and focuses on
how to represent the discriminative information available through the class
labels. From a methodological perspective, semi-supervised DR methods are
considered as special cases of supervised methods since their objective functions
are similar (Chao et al., 2019). This survey brings another viewpoint by
considering the supervised and semi-supervised methods as constrained methods.
Indeed, these DR methods should reveal the structure of unlabeled data while
satisfying the label constraints at the same time. We highlight important ideas
of extracting discriminant information in supervised DR methods and their
extensions in the semi-supervised setting.

To motivate the use of supervision in DR methods, Figure 3.2 shows an
example of the structure discovered by two common unsupervised (PCA) and
supervised (LDA) methods. PCA looks for a projection in such a way that the
projected data explains the variance in the original data as much as possible.
The information in a dataset can be measured by how the instances spread in
the data space (Deisenroth et al., 2020). However, the directions selected by
PCA shown in Figure 3.2(a) only reflect one global aspect of the spread without
considering potential information about data classes. This projection is thus not
useful due to a large overlap of the two groups. The reason for this lack of clear
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Figure 3.2: A pictorial illustration for the difference between PCA and LDA projections.

separation is that the two features of the data are highly correlated. Hence,
only one eigenvector of the covariance matrix is needed, which corresponds to
the direction of the largest spread to recover the data.

By opposition, Linear Discriminant Analysis (LDA) finds the projection
in Figure 3.2(b) that better distinguishes the two groups. LDA finds a linear
combination of features that preserves the class separability. Instead of only
one covariance matrix, LDA uses two unnormalized covariance matrices (called
the scatter matrices). It reveals the discriminant information encoded in the
class labels by modeling the separation between instances from different classes
and the coherence between instances of the same class. These two criteria are
called the between-class and within-class separations and are measured by the
between/within-class scatter matrices, which are defined as

Sb =

C∑
c=1

nc

(
µ(c) − µ

)(
µ(c) − µ

)T
Sw =

C∑
c=1

∑
j|yj=c

(
xj − µ(c)

)(
xj − µ(c)

)T
,

(3.6)

where C is the number of classes in the dataset, nc and µ(c) are the number
of instances and the mean vector of class c, and µ is the mean vector of the
whole dataset. Fisher’s Discriminant Analysis (FDA) (Fisher, 1936; Fukunaga,
2013) is a specific case with binary classes. In general, LDA finds a projection
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P that maximizes the between-class separation, and minimizes the within-class
separation:

P = arg max
P∈Rq×p

trace

(
PSbP

T

PSwP T

)
. (3.7)

This optimization can be solved in three ways: by an eigendecomposition
approach, by a graph-based approach, or by a combination of both approaches in
a least-squares formulation, named the manifold regularization approach (Belkin
et al., 2006). In addition to the scatter matrices, each approach can use
additional terms (such as a regularization or adjacency matrix) to model the
label constraints.

3.3.2.1 The Eigendecomposition Approach

The traditional method to solve the LDA problem in Equation 3.7 is to rewrite
it as a generalized eigenvalue problem

Sbv = λSwv, (3.8)

and to find all eigenvectors vk corresponding to nonzero eigenvalues λk to form
the projection matrix P = V1..k = [v1, . . . ,vk] with k ≤ C − 1. This form helps
us to see why labels can be considered as a kind of discriminant constraint. It
arises when solving the lagrangian of the constraint problem equivalent to the
one in Equation 3.7

v = arg min
v∈Rp

− 1

2
vTSbv

s.t. vtSwv = 1,

(3.9)

where the unit constraint vtSwv = 1 eliminates the invariance to rescaling of
the projection vectors v.

LDA is considered a global method that focuses on the global separation
between classes. However, local structures in the data can be revealed through
the relationship between data points captured in the neighborhood graph. An-
other simple way to obtain the local structures, even when the data distribution
of each class is non-Gaussian, is introduced in Local FDA (LFDA) (Sugiyama,
2006). The label constraints in LFDA are represented by the local scatter
matrices, which are the between- and within-class matrices weighted by the
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affinities between instances. The weights are enhanced or reduced depending
on whether the instances belong to the same or different classes2.

When both the global structure brought by PCA and the discriminant in-
formation from partially labeled data brought by LFDA are desired, these
criteria can be combined, for example, in the semi-supervised version of
LFDA (SELF) (Sugiyama et al., 2008). The covariance matrix used in PCA
is an unnormalized total scatter matrix, and is proved being equivalent to
the sum of between- and within-class scatter matrices (Fukunaga, 2013):
St =

∑n
i=1 (x− µ) (x − µ)T = Sb + Sw. SELF combines the scatter ma-

trices for both the labeled and unlabeled points as:

Sb = (1− β)Sb + βSt

Sw = (1− β)Sw + βIp,
(3.10)

where β ∈ [0, 1] is a trade-off parameter. SELF collapses to PCA when β = 1

and to LFDA when β = 0. LFDA can also be combined with Locality-Preserving
Projection (LPP) (He and Niyogi, 2004) in the same fashion (Sugiyama et al.,
2008), however, LFDA and LPP both focus on local structures.

In the eigendecomposition approach, the compact form of the objective
function in Equation 3.7 is also known as the trace-ratio optimization prob-
lem (Jia et al., 2009). This general problem arises when dealing with linear DR
methods in supervised (Wang et al., 2007), unsupervised (Wang et al., 2014),
and semi-supervised settings (Sanodiya et al., 2020; Zhang et al., 2013). Since
a closed-form for these problems exists, the eigendecomposition is an effective
approach for small and moderate size datasets.

3.3.2.2 The Graph-based Approach

The original LDA, like PCA, is designed to preserve the global structure of the
data manifold while ignoring local structures like the neighborhood information.
The graph-based approach can be used to tackle the preservation of local
structures in LDA. In the semi-supervised setting, when both labeled and

2The affinity Aij =
exp(−||xi−xj ||2)

σiσj
is calculated by a Gaussian kernel with an adaptive

Gaussian bandwidths σi, σj selected heuristically based on the distances to the surrounding
neighbors.
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unlabeled data are available, the graph can be constructed in two different ways,
with or without the labeled data. In the first case, the adjacency graph A is
constructed from the nearest neighbor of each point in the whole dataset of
both labeled and unlabeled instances (Cai et al., 2007a). In the second case,
only the labeled data are used to construct the graph in the same manner. We
can observe that the points in the neighborhood of a point xi can have the same
or a different label with respect to xi. Therefore, the neighborhood N(xi) can
be separated into two disjoint sets of neighbors, the ones with the same class
(within-class) Nw(xi) and those with a different class (between-class) Nb(xi).
Locality Sensitive Discriminant Analysis (LSDA) (Cai et al., 2007b) proposes
to construct a within-class graph Gw between the neighbors of the same class
based on Nw, and a between-class graph Gb between the neighbors of different
classes based on Nb. LSDA maximizes the margin between the local area
around each point and other points of different classes. In the semi-supervised
setting, the adjacency graph of unlabeled data can be used together with these
two discriminant graphs (called within-manifold and between-manifold scatter
in (Song et al., 2008a)) to achieve both global and local preservation.

After obtaining the adjacency matrix A, the structure of the graph can be
revealed via the Laplacian matrix L = D −A, where D is the diagonal matrix
of node degrees. The optimization problem in Equation 3.7 can be reformulated
with the total scatter matrix St = Sb+Sw. The generalized eigenvalue problem
in Equation 3.8 can be modified to integrate the Laplacian graph as

Sbv = λ(St + αXLXT )v. (3.11)

The Laplacian of the whole dataset (Cai et al., 2007a) or of the within/between-
class graphs (Cai et al., 2007b) is integrated into the objective function as a
regularization term to help the projection capture the manifold in the graph.
Additional information such as the data density can also be integrated into the
weighted adjacency matrix (Sun et al., 2017) to enrich the Laplacian matrix.

3.3.2.3 The Manifold Regularization Approach

Both approaches presented for the LDA problem focus on the representation of
the labeled and unlabeled data points using the between/within-scatter matrices
and the graph Laplacian matrix. LDA-based methods assume that the linear
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Figure 3.3: The DR method is expected to find an LD subspace that is as close to the
unknown intrinsic manifold as possible. From this viewpoint, the DR objective can
be reformulated under a regression framework. This figure is based on the original
illustration of Nie et al. (2010).

projection, i.e., the projected points in the hyperplane f(X) = XP T , can
faithfully represent the HD data. However, HD data are usually assumed to lie
on a lower-dimensional manifold that can be highly nonlinear, as illustrated in
Figure 3.3. Various nonlinear DR methods have been designed to reveal such
nonlinear manifolds (Lee and Verleysen, 2007). Even so, the linear methods are
still useful thanks to their simple and elegant formulation (as in Equation 3.8),
their closed-form solution, and their ability to project new unseen data. This
section presents a new class of linear DR methods that are aware of the
nonlinear manifold. These methods are developed based on the idea of manifold
regularization (Belkin et al., 2006).

The idea of the manifold regularization approach is to reformulate the LDA
problem as a least-squares problem and add regularization terms to control the
projection matrix. This formulation is also called the spectral regression LDA
problem (Shu et al., 2012). The unified framework for semi-supervised linear
DR method introduced in (Song et al., 2008b) can be generalized to various
frameworks (Chen et al., 2007; Nie et al., 2010; Shu et al., 2012; Sindhwani
et al., 2005), and can be summarized as

P = arg min
P

1

n

n∑
i=1

||f(xi)− yi||2 + αT ||f ||2T + αM ||f ||2M , (3.12)

where f is the mapping from the data space to a reduced space of at most C
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dimensions, where C is the number of classes. In LDA-based methods, f(xi) =

xiP
T can be interpreted as a label prediction, yi being a one-hot vector of the

true label of the input data point xi. The first term in Equation 3.12 is thus the
prediction error that should be minimized. The mapping f is a function of both
the projection matrix P and the input data X. Therefore, the regularization
terms are thus based on P and X. The first regularization term is usually the
Euclidean (`2) norm of the projection matrix ||P ||2T = PP T , which is also called
the Tikhonov regularization, and controlled by αT . The second regularization
term is the manifold regularization, based on the input dataX and controlled by
αM . This term is usually defined as ||f ||2M = trace(PXLXTP T ) (Sindhwani
et al., 2005; Song et al., 2008b) since the Laplacian matrix can approximate
the Laplace–Beltrami operator3 and control the manifold smoothness (Belkin
et al., 2006)). The main advantage of this combination under the least-squares
framework is that the regularized methods can preserve both global and local
structures (Chen et al., 2007) and better cope with the data sampled from a
nonlinear manifold (Nie et al., 2010).

3.3.2.4 Discussion on Label Constraints in LDA-based Methods

Two main directions for integrating constraints into DR methods have been
considered so far. First, the objective function of an unsupervised DR method
can be adapted to satisfy constraints. Methods in Section 3.2 rely on this
first direction. Second, Section 3.3.2 presents semi-supervised DR methods in
which partially labeled data are used as constraints that DR methods have to
satisfy while projecting the unlabeled data into an LD space. In this case, the
discriminant information in the constraints is optimized with a (semi-)supervised
objective to preserve additional structures in the unlabeled data or in the whole
dataset. The idea of maximizing the between-class separation and minimizing
the within-class separation in this section is also applied directly to distance
metric learning, including several methods based on LDA such as Discriminant
Neighborhood Embedding (DNE) (Zhang et al., 2007b).

Although LDA-based methods are simple and efficient, they have several dis-
advantages. The main disadvantage is that when the number of instances in each
class is small (smaller than the number of dimensions), the scatter/covariance

3The Laplace–Beltrami operator is the divergence of the gradient of the data manifold.
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matrix is ill-conditioned and cannot be estimated accurately. This issue can
be encountered in the semi-supervised setting when the number of labeled
instances is usually small. A regularization technique (RDA) (Friedman, 1989;
Guo et al., 2007) or two-stage PCA+LDA (Belhumeur et al., 1997; Ye and
Li, 2005) are proposed to tackle this singularity problem. Another potential
solution is to produce more labels from the available original labels based on
label propagation techniques (Shao et al., 2020).

It should be noted that LDA is a linear method that may not be a suitable
solution to capture the intrinsic structure when the underlying manifold of the
data is highly nonlinear. In order to overcome this issue, linear methods can be
extended with a kernel for both global (Cai et al., 2007a) and local (Song et al.,
2008a) LDA-based methods. When using a kernel, the input adjacency matrix
and the weighted matrix of labeled points are still computed in the original
space. Data are mapped to the kernel space, and the eigendecomposition is
solved in this space. Supervised nonlinear DR techniques such as supervised
ISOMAP (Geng et al., 2005) can also help in this situation.

LDA-based methods only work when at least a small number of labels are
available. However, when the labels are not available, the idea of LDA can still
be applied for other kinds of constraints. For example, instances connected by
must-link constraints can form a group of points sharing the same unknown
label, called the chunklets in Relevant Component Analysis (RCA) (Bar-Hillel
et al., 2005). RCA uses the points (of unknown class) belonging to the same
group to construct a within-chunklet covariance matrix and uses the whitening
transform of this matrix as the final projection matrix.

3.3.3 Multi-Aspect Constraints

When working with DR algorithms, the input is a dataset D = {X,Y }
consisting of the input data X and possibly the labels Y . Several DR methods
reduce the dimensions of X while respecting the constraints between instances,
constraints on the features, and constraints in the form of labels in Y that have
been reviewed. However, in a real-world setting, the input data can be collected
in different unusual forms. Different sets of features (called a multi-view dataset)
characterizing the same data instances can exist. These views can also be of
different nature. For instance, a heterogeneous dataset can contain texts and
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images, in which each picture has an associated textual description (called a
multi-modal dataset). Within a dataset, each instance can have one or more
labels associated with it (called a multi-label dataset). The important point in
this categorization is that each data point can have multiple aspects associated
with it. The ith data point can appear in the two sets of features denoted as
x

(1)
i ,x

(2)
i or can have two labels y(1)

i , y
(2)
i . The DR methods applied to these

kinds of datasets should find an embedding that represents all the aspects
available for a dataset. Therefore, different aspects of a dataset are considered
as constraints for the DR methods, which we call multi-aspect constraints.

3.3.3.1 Multi-view Constraints

A multi-view dataset is denoted D = {X(1)
,X

(2)
, . . . ,Y }, where X(1)

,X
(2)
, . . .

are different feature sets that explain different aspects of the data. For instance,
a researcher can collect data on the performance of college students and have
two separate sets of psychological variables (such as motivation level or locus
of control), as well as academic variables (such as the standard test scores on
mathematics, writing, and reading). The researcher might be interested in
finding a small number of (unknown) variables that can explain the association
between the two sets of variables. When users only want to visualize their data
using only one feature set, they can use the other external variables to explain
the visualization (Bibal et al., 2018, 2021; Marion et al., 2019). When all the
feature sets should be considered, the DR problem of projecting the data points
into a subspace is formulated as a constrained problem for which we have to
preserve the hidden correlation across multiple views.

In statistics, Canonical Correlation Analysis (CCA) (Hotelling, 1936) is
used to find the relationship between two sets of variables of the same instances.
From a probabilistic perspective, the two observed datasets X(1)

= {x(1)
i ∈

Rp1},X(2)
= {x(2)

i ∈ Rp2} are generated from unknown latent variables. There-
fore, X(1) and X(2) could probably share a common variation. CCA helps
to remove the noise or data-specific variation in each dataset (the variation
that is not present in the other dataset) and only keeps the shared variation
that captures the common latent variables. The two datasets are first pro-
jected to a LD space using two projection matrices U = [uk] ∈ Rq×p1 and
V = [vk] ∈ Rq×p2. CCA seeks for q pairs of projection vectors {uk,vk}qk=1
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(also called the canonical variate pairs) to mutually maximize the correlations
between X(1)

uTk and X(2)
vTk . As CCA aims to project the data in two different

views into a shared low dimension space, it is used mainly for reducing the
data dimensions for subsequent tasks. This LD space is consistent with the
latent variables in the CCA model and the reduced data by CCA do not lose
any information for performing subsequent tasks (Foster et al., 2008). The
first canonical variate pair {u1,v1} can be used to project the data from the
two views onto these two canonical variables. By doing this, a scatter plot in
which each axis captures the most representative information (variance) in each
dataset can be obtained.

In order to understand why different views are considered as constraints, we
reformulate the CCA problem as a constrained problem. Since the projection
vectors are scale-invariant, the correlation maximization

max
u,v

ρ
(
X

(1)
uT ,X

(2)
vT
)

=
uTX

(1)
X

(2)Tv√(
uTX

(1)
X

(1)Tv
)√(

uTX
(2)
X

(2)Tv
) (3.13)

can be rewritten as

max
u,v

uTX
(1)
X

(2)Tv

s.t.

{
uTX

(1)
X

(1)Tv = 1,

uTX
(2)
X

(2)Tv = 1.

(3.14)

The covariance matrices which appear in this formulation can help to integrate
the discriminant information into CCA.

Similar to other linear DR methods, CCA is efficient for small datasets
thanks to its linearity and its closed-form solution via eigendecomposition.
However, it has two main disadvantages. First, CCA is not suitable for datasets
with highly nonlinear manifolds. A kernel version of CCA is introduced to tackle
this issue (Akaho, 2006). CCA is also combined with the idea of nonlinear
graph-based DR methods such as locality preserving projections (LPP) to
better preserve the nonlinear intrinsic structures of the data (Sun and Chen,
2007). Second, CCA is designed to capture the correlation between only two
datasets. A famous extension to deal with more datasets is called Multi-set
CCA (MCCA) (Kettenring, 1971). The basic idea of MCCA and its variants
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is to maximize the correlation between multiple datasets defined through the
concept of inter-set correlation, which is the ratio of the between-set and the
within-set covariances. An idea of kernel matching is also applied to measure
the dependencies between multiple views (Zhang et al., 2017).

3.3.3.2 Multi-label Constraints

In supervised learning, each data point has only one label. In multi-label
datasets, a data point may have multiple labels. For example, a document can
belong to different topics, or an image of a beach can belong to scene classes
such as beach, sea, land, or sky. Since these kinds of data are encountered in
machine learning, various multi-label learning algorithms are developed for the
multi-label classification (Zhang and Zhou, 2014) or multi-output regression
problems (Borchani et al., 2015). However, under the unsupervised setting,
very few DR methods tackle this problem. A DR method applied to multi-label
datasets should reduce the dimensions of the data while respecting the complex
relationship of each data point when they are constrained by a set of multiple
labels.

The first approach for multi-label DR methods uses the idea of LDA to
reveal the discriminant information in the class labels. Since one data point is
assigned to several labels, it is hard to directly estimate the between/within-class
scatters. Multi-label LDA takes advantage of label correlation and introduces
the class-wise scatter matrices to avoid the label ambiguity (Wang et al., 2010).
Moreover, the unlabeled data point can be assigned a soft label, that is the
label information propagated from its neighbors (Guo et al., 2016). In contrast
to this approach that relies on the correlation between multiple labels, another
approach exploits the relationship between the features and each label. Since a
data point is assigned to different labels, there may exist different feature sets
in the feature space that correlate to each label. Therefore, a DR method can
project the data to a subspace on which the dependence between the projected
features and the target labels are maximized (Mikalsen et al., 2019; Zhang and
Zhou, 2008).
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3.3.3.3 Discussion on Multi-aspect Constraints

Multi-label and multi-view are very specific settings in machine learning and
are considered as a specific kind of constraint between different aspects of a
dataset. These settings require that different views or labels must be associated
with the same set of instances, i.e., the same data point should appear in
different feature sets or have multiple labels. The constrained DR methods
introduced in this section are mainly extended from LDA and CCA to deal with
multi-label and multi-view constraints. These methods cannot be applied when
different datasets or label sets are not associated with each other. However, a
different approach using transfer learning (Wang et al., 2008) allows applying
LDA-based techniques on different non-associated datasets in the same domain.
For example, one can have a dataset containing faces of unknown people and
another labeled face datasets such as the Yale or the AT&T datasets. LDA
or its variance is first applied on the labeled face dataset to learn important
features to discriminate visages. The learned mapping can be then applied to
the unknown faces for extracting features from this unlabeled dataset.

3.4 Discussion

This survey studies (i) how to integrate different kinds of constraints into DR
methods, and (ii) how to solve the constrained problem. The former is about
constraint representation, the latter is about constraint optimization. The
constraint optimization problem can be solved by fixed traditional approaches
including eigendecomposition methods, iterative/gradient-based methods, or
inference algorithms for probabilistic models. The constraint representation
is much more varied. Sometimes, the constraint representation is tied to the
optimization method such as the block-matrix representation (Section 3.2.1.1) or
the constraint encoding via covariance matrices (Section 3.3.2.1). Other times,
the constraint representation is completely independent of the constraint opti-
mization, for which a great example is a probabilistic approach (Section 3.2.1.2)
where different inference algorithms can be used to optimize the same model.

After reviewing many traditional constrained DR methods, this survey
provides several guidelines to choose them in different situations, with a focus
on their usefulness and application.
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• Case 1: The users start from scratch and do not know which DR method
and which type of constraints to use. They can follow Figure 3.1 to
navigate the specific section in this survey.

• Case 2: The users are currently using a specific DR method. However,
they encountered problems with their DR method, and they would like
to use constraints/side information in order to fix these issues. They can
follow the summary in Table 3.1.

• Case 3: The users have specific requirements, which are the criteria that
the DR methods must preserve. For example, they want to preserve both
global and local structures in their data. Assuming that the users can
collect the required constraints, they can follow Table 3.2 to choose the
suitable DR methods that match their preservation criteria.

Table 3.1: Several common issues with the traditional DR methods and the solutions
with constraints.

Base Issues/Needs Solution with Con-
straints

Constrained Methods Ref.

MDS Rotation invariance and
lack of axes interpreta-
tion

Knowing in advance the
position of several points

XGVis (Buja et al., 2001, 2008)
iPMDS (Vu et al., 2021c)
V2PI-MDS (Endert et al.,
2011; Leman et al., 2013)

3.2.1.1
3.2.1.2
3.2.1.3

Using external features BIR (Bibal et al., 2018; Mar-
ion et al., 2019), BIOT (Bibal
et al., 2021)

3.3.3.1

PCA Lack of interactive con-
trols to evaluate the im-
portance of features

Interactively setting fea-
ture weights;
Using two-way interac-
tion tools

iPCA (Jeong et al., 2009,
2015)
Forward-Backward Pro-
jection (Cavallo and
Çağatay Demiralp, 2017),
Star-coordinates Interac-
tion (Molchanov and Linsen,
2014)

3.3.1

Lack of interactive way
to set constraints of fea-
ture values

Using domain knowledge
of value bounds for spe-
cific features

Bounded PCA (Giordani and
Kiers, 2007)

3.3.1

Lack separation in the vi-
sualization

Knowing in advance the
position of several points

V2PI-PCA (Endert et al.,
2011)

3.2.1.2

Lack of local structures Combining with a local
discriminant method

SELF (Sugiyama et al., 2008) 3.3.2.1

PPCA Rotation invariance or
lack of separation in the
visualization

Knowing in advance the
position of several points

iPPCA (Vu and Frénay, 2019)
User-guided PPCA (House
et al., 2015)

3.2.1.2
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Continuation of Table 3.1

LDA/
FDA

Lack of interactive con-
trols

Interactively setting fea-
ture weights

iLDA (Choo et al., 2010) 3.3.1

Lack of intrinsic geomet-
ric / local structures

Using local scatter matri-
ces, possibly in a semi-
supervised setting

Local FDA (Sugiyama, 2006),
SELF (Sugiyama et al., 2008)
LFDA + iLPP (Sugiyama
et al., 2008)

3.3.2.1

Combining with graph-
based methods to reveal
intrinsic structures

SDA (Cai et al., 2007a),
LSDA (Cai et al., 2007b),
CGMSDR (Sun et al., 2017)

3.3.2.2

A data point can have
multiple labels

Extending to multi-label
setting

Multi-label LDA (Wang et al.,
2010), SSMLDR (Guo et al.,
2016)

3.3.3.2

LDA/
MMC

Not using unlabeled
data when available

Using the graph con-
structed from unlabeled
data

S3MPE (Song et al., 2008a) 3.3.2.2

Lack of mechanism to
add regularization

Reformulating the LDA
problem in a least
squares framework

(Spectral) LocLDA (Shu et al.,
2012), LapLDA (Sindhwani
et al., 2005), LSLDA (Chen
et al., 2007), FME (Nie et al.,
2010)

3.3.2.3

Depending on the avail-
able labels

Using pairwise con-
straints to form groups

RCA (Bar-Hillel et al., 2005) 3.3.3.2

Cannot work well with
the underlying nonlinear
manifold

Extending with kernels SDA (Cai et al., 2007a),
S3MPE (Song et al., 2008a)

3.3.3.2

CCA Can handle only two
views

Extending to multi-view
Using kernel matching

MCCA (Kettenring, 1971)
FMDR (Zhang et al., 2017)

3.3.3.1

Cannot handle nonlinear
data

Extending with kernel or
combining with a nonlin-
ear graph-base method

KCCA (Akaho, 2006)
Locality CCA (Sun and Chen,
2007)

3.3.3.1

Isomap
Lack of interactive con-
trols

Knowing in advance the
position of several points

SS-Isomap (Yang et al., 2006)
V2PI-Isomap (Leman and En-
dert, 2010)

3.2.1.1
3.2.1.3

Lack of discriminant in-
formation in the embed-
ding

Using class labels with
pairwise constraints

SSD-Isomap (Huang et al.,
2019)

3.2.2.2

LPP Similar points not in the
same neighborhood

Collecting pairwise con-
straints

GCDR-LP (Davidson, 2009),
CLPP (Cevikalp et al., 2008),
Robust CLPP (YU et al., 2010)

3.2.2.1

Lack of discriminant
structures

Combining with a local
discriminant method

LFDA + iLPP (Sugiyama
et al., 2008)

3.3.2.1

t-SNE
Lack of global structure Collecting triplet con-

straints
Using prior knowledge of
hierarchy

t-STE (van der Maaten
and Weinberger, 2012),
SNaCK (Wilber et al., 2015)
HCt-STE (Vu et al., 2021b)

3.2.3
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Continuation of Table 3.1

Cannot see evolution
during each iteration

Setting position of
points in early iteration

PIVE-t-SNE (Kim et al., 2017) 3.2.1.1

Table 3.2: Several common criteria of constrained DR methods.

Constrained DR Methods Ref. Preservation of

Local
Structure

Global
Structure

Discriminant
Info.

Distance

XGVis (Buja et al., 2001, 2008) 3.2.1.1 X X
SS-LTSA (Yang et al., 2006) 3.2.1.1 X
PIVE-t-SNE (Kim et al., 2017) 3.2.1.1 X
SS-LLE (Yang et al., 2006) 3.2.1.1 X
SS-Isomap (Yang et al., 2006) 3.2.1.1 X X

V2PI-PCA (Endert et al., 2011) 3.2.1.2 X
User-guided PPCA (House et al.,
2015)

3.2.1.2 X

iPPCA (Vu and Frénay, 2019) 3.2.1.2 X
iPMDS (Vu et al., 2021c) 3.2.1.2 X X

V2PI-Isomap (Leman and En-
dert, 2010)

3.2.1.3 X X

V2PI-MDS (Endert et al., 2011;
Leman et al., 2013)

3.2.1.3 X

CLPP (Cevikalp et al., 2008) 3.2.2.1 X
Robust CLPP (YU et al., 2010) 3.2.2.1 X
GCDR-LP (Davidson, 2009) 3.2.2.1 X
SSD-Isomap (Huang et al., 2019) 3.2.2.2 X X

t-STE (van der Maaten and
Weinberger, 2012)

3.2.3 X X

SNaCK (Wilber et al., 2015) 3.2.3 X X
HCt-STE (Vu et al., 2021b) 3.2.3 X X X

iPCA (Jeong et al., 2009, 2015) 3.3.1 X
Forward-Backward Projec-
tion (Cavallo and Çağatay
Demiralp, 2017)

3.3.1 X

Star-coordinates Interac-
tion (Molchanov and Linsen,
2014)

3.3.1 X

Bounded PCA (Giordani and
Kiers, 2007)

3.3.1 X

iLDA (Choo et al., 2010) 3.3.1 X X

SELF (Sugiyama et al., 2008) 3.3.2.1 X X X
LFDA + iLPP (Sugiyama et al.,
2008)

3.3.2.1 X X
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Continuation of Table 3.2
Local

Structure
Global

Structure
Discriminant

Info.
Distance

Local FDA (Sugiyama, 2006) 3.3.2.1 X X X

SDA (Cai et al., 2007a) 3.3.2.2 X X X
LSDA (Cai et al., 2007b) 3.3.2.2 X X X
CGMSDR (Sun et al., 2017) 3.3.2.2 X X X
S3MPE (Song et al., 2008a) 3.3.2.2 X X X

(Spectral) LocLDA (Shu et al.,
2012)

3.3.2.3 X X X

LapLDA (Sindhwani et al.,
2005)

3.3.2.3 X X X

LSLDA (Chen et al., 2007) 3.3.2.3 X X X
FME (Nie et al., 2010) 3.3.2.3 X X X

BIR (Bibal et al., 2018; Marion
et al., 2019), BIOT (Bibal et al.,
2021)

3.3.3.1 X X

MCCA (Kettenring, 1971) 3.3.3.1 X
FMDR (Zhang et al., 2017) 3.3.3.1 X
KCCA (Akaho, 2006) 3.3.3.1 X
Locality CCA (Sun and Chen,
2007)

3.3.3.1 X X

RCA (Bar-Hillel et al., 2005) 3.3.3.2 X X
Multi-label LDA (Wang et al.,
2010)

3.3.3.2 X X

SSMLDR (Guo et al., 2016) 3.3.3.2 X X

Table 3.3: Analysis of three principal approaches for solving constrained DR problems.

Eigen-based Graph-based Regularization-based

+ Elegant formulation,
closed-form solution.
+ Fast and efficient for
small and medium datasets

+ Taking advantage of the
global information in the
graph Laplacian
+ Can be reformulated as a
generalized eigenvalue prob-
lem to obtain a closed-form
solution

+ Flexible in represent-
ing the constraints
+ Can be solved by an
eigendecomposition or a
gradient-based method
+ Can be scaled for
large datasets

– Cannot be scaled for large
datasets due to the cubic
complexity of the eigende-
composition procedure

– The neighbor graph is sen-
sitive to the number of near-
est neighbors or the radius
of the neighborhood zone

– Complex formulation
involving the manifold
regularization

55



CHAPTER 3. CONSTRAINED DR METHODS: A SURVEY

Using Table 3.1, we change the perspective from the aspect of the integration
of constraints into DR methods to a problem-solution perspective. From this
new aspect, we look at important issues of traditional DR methods and the
solution brought by constrained methods. After finding potential constraint
DR methods for the given problem, users can also look at the general pros and
cons of the underlying approach of these methods. Table 3.3 summarizes the
advantages and disadvantages of three common approaches (eigen-based, graph-
based, and regularization-based). It should be noted that some computational
aspects of the constrained DR methods are not reviewed, including running
time, complexity, scalability, reproducibility, and code availability.

This survey includes our own proposed constrained DR methods. Through
this survey, we found three interesting findings, which motivate us towards our
proposed methods. First, a probabilistic approach for DR is not popular and
there are very few works that model the constraints in a probabilistic manner.
Constraints can be integrated into unsupervised and (semi-)supervised methods,
dominated by eigendecomposition and graph-based approaches. For that reason,
we propose new methods for integrating constraints into probabilistic DR
methods to fill this gap in the literature (see Chapter 5). Second, most reviewed
methods start from available constraints or from a human-in-the-loop process
to find out the way to integrate users’ feedback/constraints. We propose to
look at these methods from a problem-solution perspective, where we focus on
the problems of commonly used DR methods and find out solutions realized
by constraint integration. Under this perspective, we analyze a long-standing
problem of global structure preservation of SNE-based methods and propose a
solution using hierarchical constraints (see Chapter 4). Finally, all the reviewed
methods use constraints to enhance DR methods. We have not extended
the scope of this survey to find other usages of constraints, however, directly
injecting constraints into a base DR method is the most common approach. We
contribute to enriching the literature of constraint usage with a novel way to use
the users’ constraints to evaluate the quality of a visualization (see Chapter 6).
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Chapter 4

Integration of Hierarchical
Constraints into t-SNE

This chapter presents a new idea of integrating hierarchical structure in the
form of a tree into t-SNE visualizations with a method called HCt-SNE.

Contents
4.1 The Need for Visualizations with Hierarchical Structures . . . . 59

4.2 From Desired Hierarchical Structures to Hierarchical Constraints 66

4.3 HCt-SNE: Hierarchical Constraints with t-SNE . . . . . . . . . . 72

4.4 Experimental Results of HCt-SNE . . . . . . . . . . . . . . . . . . 81

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

This chapter is based on our publication titled “HCt-SNE: Hierarchical Con-
straints with t-SNE” (Vu, Bibal, and Frénay, 2021b).
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Traditional DR methods like PCA or LDA work well for small or moderate
datasets. These methods are designed for general DR tasks and used as a
pre-processing step. When analyzing large and more complex datasets like
images or textual documents, people not only want to have a good embedding
in an LD space but also want to visualize their data for some exploratory
analyses. For that reason, specific DR methods are designed only for visualizing
the data. t-distributed stochastic neighbor embedding (t-SNE) was introduced
by Maaten and Hinton (2008), and through time becomes one of the most
widely used visualization methods. Even though t-SNE is more computationally
demanding than other traditional DR methods, it can work with large datasets
of different data types. Groups of similar points are what we usually look for
when observing a visualization. By focusing on neighborhood relationships in
the original data, t-SNE produces group structures in the embedding as a way
to preserve the neighborhood information.

However, t-SNE does not always work well with complex data like the high-
dimensional raw input pixels of color images. t-SNE was also found to have
several issues when representing the global structure in the data (Wattenberg
et al., 2016). This chapter is devoted to explaining our contribution to enhance
t-SNE visualization with global hierarchical structure via the proposed HCt-
SNE method (Vu et al., 2021b). Our general idea is summarized in Figure 4.1.
Starting with the commonly used CIFAR10 dataset (Krizhevsky, 2009), t-SNE
produces a useless visualization (crowded and difficult to analyze) shown in the
top-right. This problem of t-SNE and the motivation for a better visualization
is analyzed in Section 4.1. We propose an original idea of injecting hierarchical
structure in the form of a tree into t-SNE embeddings. Section 4.2 explains
step-by-step through examples how to transform the hierarchical tree into
hierarchical constraints, which can be used in t-SNE. Section 4.3 details the
algorithms and the optimization process in our method HCt-SNE. Quantitative
and qualitative comparisons between HCt-SNE and other SNE-based methods
are introduced in Section 4.4. More in-depth analysis and discussion of the
algorithm will be given in Section 4.5.
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Figure 4.1: An overview of the idea of HCt-SNE. For a complex dataset of color images,
t-SNE does not always perform well since the global structure in the data may not be
preserved. We propose HCt-SNE, a new idea to integrate hierarchical constraints in
the form of a hierarchy tree. In that way, we can reveal the hierarchical structure in
the visualization like the one shown in the bottom-right.

4.1 The Need for Visualizations with Hierarchical
Structures

Exploratory Data Analytic techniques help us to reveal the story behind
data (Spiegelhalter, 2019). They make use of data visualization methods
to summarize the main characteristics of the data. Several basic graphical
techniques like histogram, box plot or scatter plot can help us to understand
the data features and the relationship between them (Spiegelhalter, 2019).
Scatter plots produced by t-SNE with two or three dimensions learned from
neighborhood information extracted from the HD input data are one of the
most effective ways to communicate the finding in data, specifically in bioin-
formatics (Kobak and Berens, 2019; Kobak and Linderman, 2021; Linderman
et al., 2019; Narayan et al., 2021). Most of the time, the interesting finding
revealed in t-SNE embeddings is the group structures where similar data points
are grouped close together to form clusters in the visualization. This kind of
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structure is usually very pleasing to the human eye. However, t-SNE still has
several drawbacks as pointed out by Wattenberg et al. (2016). In this chapter,
we focus on two issues related to the global structure preservation problem and
try to propose a new solution. Other prior works addressing these issues will
also be discussed.

4.1.1 Problems with t-SNE Visualizations

t-SNE does not always produce faithful visualizations, not only for complex
HD datasets like color images but also for simple LD datasets (Wattenberg
et al., 2016). The overall problem is that t-SNE does not always preserve global
structures in the data. In this section, we consider global structure from two
aspects, which can be seen as two main issues of t-SNE.

Issue with global semantic structure

Figure 4.2: Background effect on a t-SNE embedding of CIFAR10. Images with the
same background are placed close together regardless of the object in each image.

An example embedding of t-SNE for the CIFAR10 dataset in the top-right
corner of Figure 4.1 shows the overlap and blending of clouds of points. In this
case, it is impossible to identify groups even when the points are colored using
the ground-truth class labels. Let us look closely at the visualization and display
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the corresponding image for each data point. Figure 4.2 shows a grid of sample
images in the 2D embedding space of t-SNE. Images with a similar background
but not a similar object, are placed close together. The color density pattern
may not be what we are looking for, and many other DR methods reveal this
type of pattern for CIFAR10 when the raw pixels are used. The reason for
this phenomenon is that t-SNE and other methods use the Euclidean distance
(L2-pixel distance) to measure the similarity between images. Even though
the Euclidean distance is not intuitive in the HD space, it usually works in
practice for the normalized numerical features of tabular datasets. For image
datasets where small objects often appear on a large background, this kind
of distance puts a strong focus on the background. Therefore, it is hard for
DR methods to discover the semantic information in the input images. Let us
consider the three images , , and from the CIFAR10 dataset for an
illustration. The airplane in the blue sky is around three times closer to the
bird in the blue background than to the airplane on a gray background. This
effect leads to a poor neighborhood estimation (around 38% accuracy for KNN
classification in the LD space with K = 10). Since t-SNE tries to preserve this
poor neighborhood structure, its embedding cannot reveal the real semantic
groups in the dataset.

Issue with relative distances between groups

In contrast to the complex image dataset in the first example, in this case we
consider a simple artifical datasets of three two-dimensional Gaussian with
200 data points each (Wattenberg et al., 2016). Figure 4.3 shows the original
dataset on the left with three groups in which the orange and green groups are
5 times more distant than the orange and blue ones. t-SNE is run with different
values of perplexity ranging from a small value of 5 to a large value of 100.
None of the visualizations on the right of Figure 4.3 reveal the relative distances
between the three input Gaussians. The perplexity of t-SNE is said to be used
to control the trade-off when preserving local vs. global structure (Maaten
and Hinton, 2008). However, we do not see the true global pattern with any
perplexity. The perplexity in this example simply controls the compactness of
local groups. Wattenberg et al. (2016) claims that most of the time, “distances
between well-separated clusters in a t-SNE plot may mean nothing”.
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Figure 4.3: Example where t-SNE does not preserve the distance between separated
clusters in several visualizations, reproduced from (Wattenberg et al., 2016): semantic
information may not be taken into account.

The above issues motivate us towards a goal of enhancing global structure
in t-SNE embeddings. In order to tackle both the problems of highlighting
semantic structure and relative relationship between groups, we propose to
incorporate a global hierarchical structure into t-SNE.

4.1.2 Hierarchical Structure in a Visualization

Throughout this thesis, we aim at integrating prior knowledge into widely
used DR methods. We aim to integrate knowledge expressed as a hierarchical
structure into the 2D visualization of t-SNE. Here we assume that users have
prior knowledge about the hierarchical structure in their data. This kind of
structure can be very simple, for example, the user may just know a general fact
that there are 10 classes in the dataset. A more detailed hierarchical structure
can be obtained when the user has more specific knowledge or assumptions
such as abstract groups that contain the concrete groups.

An example of hierarchical structure that the user may have for the CIFAR10
dataset is shown in Figure 4.4a. By looking at the available label names of
10 classes in the dataset, human users can easily identify two abstract groups
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based on the semantic meaning of the class labels: a group of man-made objects
(containing images of vehicles) and another group of nature objects (containing
images of animals). In each group, we can also define other groups containing
subgroups, and so on and so forth. This kind of structure can help us to
have a global view of the semantic of the data. By specifying the child-parent
relationship in the hierarchy, the relative relationship between the concrete
groups in the dataset is more clearly revealed. A tree in Figure 4.4a is a simple
and efficient way to represent the hierarchical structure by its nature, which is
very intuitive and easy to understand for humans.

root

man-made

nature

airplane

ship

land-vehicles

automobile

truck

bird

frog

pets

hoofed-mammals

dog

cat

deer

horse

(a) Hierarchical constraints ex-
pressed as a tree by the user.

Deer
Horse

Hoofed-mammals

Dog Cat

Pets

Nature

Bird

Frog

Airplane
Ship

Man-made

Truck

Automobile

Land Vehicles

CIFAR10

(b) Hierarchical structure as enforced in the
visualization.

Figure 4.4: Example of hierarchical constraints to embed human knowledge in a
visualization of the CIFAR10 dataset.

Our goal is to embed this kind of tree structure into t-SNE visualizations.
Figure 4.4b shows a pictorial illustration of the desired visualization enhanced
by the hierarchical structure in Figure 4.4a. In this figure, the boundaries
around the groups are one way that users may use to interpret the hierarchical
structure. This figure shows an idea of the desired visualization where groups
are separated well enough to be easily distinguished. Likewise, child groups
under the same parent group should be closer to each other to enhance the
child-parent relationship. Now we see the importance of the relative distances
between groups that can help to reveal the hierarchical structure in a 2D
embedding. Unfortunately, t-SNE does not preserve this kind of distance
as shown previously. In the following sections, we will develop the idea of
enhancing the relative distances between semantic groups in order to get close
to the desired visualization in Figure 4.4b.
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4.1.3 Our Contribution: Bringing Hierarchical Structure into
t-SNE Embeddings

We have pointed out the problems of t-SNE and the need for a visualization
that can reveal both global hierarchical structure and semantic information
in the data. We propose to embed the user-defined hierarchical structure in
the form of a tree directly into t-SNE visualizations with a new method called
HCt-SNE- Hierarchical Constraints with t-SNE (Vu et al., 2021b). Using a tree
is a natural way for human to express their knowledge about the hierarchy,
as pointed out by cognitive scientists (Hirtle, 1995). Therefore, we choose to
use a tree structure to encode the knowledge of users and consider this tree
as hierarchical constraints to preserve. In brief, our solution provides a global
view to look at the dataset as a whole before diving into the detail of each
subgroup. It also enhances semantic information in the dataset by focusing on
the relative relationship between child groups and their parent groups as well
as their sibling groups.

Even though a tree structure is a rich representation for humans, it is just
an abstract data structure for computers. User knowledge is represented by
a notation of semantic nodes in the tree but not the concrete data points,
this kind of information is not usable for machine learning algorithms. The
important step here is to transform the user knowledge in the form of a tree to
a numerical representation that can be used by DR methods. Based on the user
knowledge encoded in a hierarchical tree, we introduce a new concept called
hierarchical constraints, which are the triplet constraints extracted from the
nodes in the tree. Section 4.2 provides more details and examples to explain
what triplet constraints are, how the hierarchical constraints look like, how they
are constructed, and why they are useful.

4.1.4 Related Work

As discussed above, t-SNE has two major issues: the lack of global structure
preservation and the lack of consideration of the semantic. Prior works have
tackled these issues and can be categorized into four groups.

The first group of methods addresses the problem of global structure in
t-SNE embeddings. Den-SNE (Narayan et al., 2021) is a density-preserving
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approach that takes into account the cluster size, i.e., the density represented by
the number of points in each group of similar data points. Uniform manifold ap-
proximation and projection (UMAP) (McInnes et al., 2018a) claims to preserve
global structures better than t-SNE. Its n_neighbors hyperparameter controls
the trade-off between global and local structures, while min_dist controls the
appearance of groups in the embedding. Global t-SNE (Zhou and Sharpee,
2018) combines the original KL loss with a global cost function, focuses on large
distances in both the HD and LD spaces, and shows an improvement on small
and simple datasets.

The second group of methods contains supervised DR methods that include
class labels in the DR process to address the lack of semantic in the visualization
for image datasets. This includes neighborhood component analysis (Goldberger
et al., 2005), UMAP in a supervised setting (McInnes et al., 2018a) and class-
aware t-SNE (de Bodt et al., 2019), which all use class labels to consider the
semantic information in the embedding.

The third group includes methods that combine visual analytic techniques to
discover hierarchical structures in the embedding, such as hierarchical stochastic
neighbor embedding (HSNE) (Pezzotti et al., 2016). This interactive method
for real-time analysis is used for massive datasets like cytometry data (van
Unen et al., 2017). HSNE incorporates the principle of Overview-First, Details-
On-Demand by constructing the hierarchical representation of the data based
on the user’s given landmarks at different scales.

The fourth group uses the triplet loss to obtain similar representations for
similar points and vice versa. The triplet loss is widely used in deep learning
for face recognition (Schroff et al., 2015), image retrieval with deep metric
learning (Ge, 2018) or self-supervised visual representation learning (Chen et al.,
2020). For visualization, the triplet loss can be used to directly update the em-
bedding, such as in t-distributed stochastic triplet embedding (t-STE) (van der
Maaten and Weinberger, 2012) and TriMap (Amid and Warmuth, 2019). t-STE
uses a heavy-tailed Student-t kernel (that focuses on local similarities) to mea-
sure triplet satisfaction. TriMap uses a custom contrastive loss based on triplet
constraints weighted by pairwise distances in the HD space.

Although the above methods enhance t-SNE, none of them solve the lack of
semantic and global structure at the same time. Moreover, they do not allow
users to express directly the semantics they expect in the visualization, except
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HSNE. Yet, it only offers an overview of the global structure, and feedback is
given on separate sub-parts of the embedding, whereas our method provides a
global solution.

Our method differs from TriMap and STE in two points. First, we focus on
a small number of informative triplets that encode the hierarchy in the input
constraints instead of sampling all possible triplets. Second, we combine the
property of preserving both global and local structures instead of focusing only
on local structure as in t-STE or only on global structure as in TriMap. In
the next section, we will go from the need for visualization with a hierarchical
structure to the construction of hierarchical constraints and introduce a new
visualization method that preserves this kind of constraint.

4.2 From Desired Hierarchical Structures to Hierar-
chical Constraints

As introduced before, the user’s desired hierarchical structure is expressed as a
tree, an abstract representation to capture the semantic relationship between
data groups (represented as tree nodes). We propose to extract the hierarchical
information in the tree using hierarchical constraints between data instances in
the tree nodes. In fact, a hierarchical constraint is a triplet constraint between
data instances, which is constructed at different levels of abstraction according
to the corresponding tree nodes. The root node is considered to have the highest
level of abstraction and contains the entire dataset. When going down the tree,
the level of abstraction decreases as groups are split until the leaf nodes. A
triplet constraint is represented as a tuple (y, y+, y−) of an anchor y, a positive
example y+ and a negative example y−. This is a compact way to indicate that
y should be closer to y+ than to y−.

When reading a tree, we can follow a particular branch to capture the child-
parent relationship between the tree nodes (depth-first search tree traversal).
We can also observe all the child nodes at each tree level before going down to
the nodes of the lower level (breadth-first search tree traversal). We employ
these two ways of reading a tree to exploit two different sets of constraints that
encode the child-parent and the sibling relationships.

Supposing that a tree as in Figure 4.4a is available for the CIFAR10 dataset.
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Each leaf node corresponds to one class in the dataset. The intermediate
nodes are the abstract groups defined by users containing all the data points in
their child groups. For example, the land-vehicles group has two children: the
automobile and the truck groups, this group will thus contain all the images
in the car and truck classes in the dataset. Let us take a car object as a
running example to see what are the triplet constraints related to this object
(in the form of ( , positive example, negative example)).

4.2.1 Child-Parent Relationship in Hierarchical Constraints

As mentioned before, we can extract information from a tree by walking
through a particular branch. In this example, the car object belongs to
the automobile group. We will start from this group at the lowest level of the
tree and go up toward the root to collect the constraints that enhance the
child-parent relationship. Table 4.1 illustrates step-by-step how the hierarchical
constraint can be extracted from the tree.

We only need to focus on the tree branch containing the automobile group
shown in the preparation step in this table. Starting from the leaf node of
automobile group, we go up one level at a time. At step 1, is now in the
automobile group, which is a child of land-vehicles group. This should
be closer to every image in the automobile group than to any image in the
land-vehicles group. The reason is that the land-vehicles contains also other
images of trucks, and should be only placed close to car images but not truck
images. This information can be summarized by a triplet ( , automobile,
land-vehicles). Going up in the tree, at step 2, is now in the land-vehicles
group, which is a child of the man-made group. A constraint ( , land-
vehicles, man-made) expresses that should be closer to every image in the
land-vehicles group than to any image in the man-made group since in the
man-made group also contains images of airplanes and ships. Similarly, at
step 3, we can extract a constraint ( , man-made, root), where root is the
root node of the tree containing all images in the dataset. This last constraint
indicates that should be closer to every image in the man-made group than
to any image in the whole dataset because the dataset also has images of natural
objects such as animals.
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Table 4.1: Step-by-step example of extracting triplet constraints to reinforce child-
parent relationships. The child and parent groups are annotated on the tree by closed
curves. The corresponding triplets are shown on the right.

Step 0: Preparation for generating triplet constraints.

Step 1: is now in the automobile group, it should be closer to every image
in this group rather than to any image of its parent land-vehicles group.

Step 2 is now in the land-vehicles group, it should be closer to every image
in this group rather than to any image of its parent man-made group.

Step 3 is now in the man-made group, it should be closer to every image
in this group rather than to any image in the entire dataset.
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Table 4.2: Examples of triplet constraints to distinguish different child groups of the
same parent group. Pairs of sibling groups at each level are annotated by closed curves.
The corresponding triplets are shown on the right.

Step 1: is now in the automobile group, it should be closer to every image
in this group rather than to any other image of its parent group.

Step 2 is now in the automobile group, it should be closer to every image
in this group rather than to any other image of its parent group.

Step 3 is now in the automobile group, it should be closer to every image
in this group rather than to any other image of its parent group.

Step 4 is now in the automobile group, it should be closer to every image
in this group rather than to any other image of its parent group.
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4.2.2 Sibling Relationship in Hierarchical Constraints

Besides the information from the child-parent relationship, we can also extract
the relationship between groups at the same level of abstraction in the tree.
When a parent node has several child nodes, the information between sibling
nodes can help to distinguish the groups represented by these sibling nodes.
Using the same example of object, Table 4.2 summarizes the steps performed
to extract hierarchical triplet constraints to enhance sibling relationships.

Similar to the process of extracting triplet constraints in the above example,
at step 1, we start with in the automobile group at the lowest level in
the tree. Since the automobile and truck are the only two children of the
land-vehicles group, at this level we have only one sibling pair of these two
child groups. The constraint ( , automobile, truck) indicates that should
be closer to every image in the automobile group than to any image in the
truck group. Going up one level toward the root, at level 2, is now in the
land-vehicles group. At this level, this group has two sibling pairs. In step 2
in Table 4.2, a triplet ( , land-vehicles, airplane) is extracted to indicate
that should be closer to every image in the land-vehicles group than to any
image in the sibling airplane group. Similarly, in step 3, we extract a triplet
( , land-vehicles , airplane). In the last step, when reaching level 3, we obtain
a constraint ( , man-made, nature) indicating that should be closer to
every image of man-made objects than to any image of nature objects.

4.2.3 Usefulness of the Hierarchical Triplet Constraints

The above triplet constraints are extracted when processing in the auto-
mobile group. This process can be applied for every image in the automobile
group. That will give us a set of triplet constraints that makes the automobile
group be distinguished from other groups in the dataset. By traveling the tree
at each level of abstraction (going from the lowest level to higher levels), the
extracted triplet constraints naturally encode the hierarchical information. For
instance, in the first example in Section 4.2.1, we make automobile distinct
from other groups in land-vehicles , then make land-vehicles distinct from other
groups in man-made and finally make man-made distinct from other groups
in the entire dataset. The same effect has been shown when considering the
sibling relationship in the second example in Section 4.2.2.
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However, we can wonder why two different ways to extract the hierarchical
constraints (called two rules) are needed when they give a similar effect of
distinguishing groups? Are the sibling-enhanced constraints and the child-
parent-enhanced constraints redundant? In fact, the effects of these two rules
are the same only in the case where a node has exactly two children. In a
general case where a node has multiple child nodes, the effects of these rules are
different, depending on the number of data points in each group and the number
of child groups in each parent group. More analysis based on the gradient when
optimizing these rules is introduced in the next section.

For now, intuitively, the first rule for enhancing the child-parent relationship
only allows us to consider the child node and its parent on the same branch
of the tree. In contrast, the second rule considers all nodes at the same level
of abstraction regardless of whether these nodes lie on the same or different
tree branches. In the above example, we only show the sibling pairs in the
man-made branch. However, with a specific tree traversal algorithm (called
Level-Order traversal, detailed later), we can consider sibling nodes crossing
branches to enrich the set of triplet constraints. Moreover, with the combination
of the two rules, we do not need to enumerate all combinations of nodes in the
tree to generate triplet constraints. Traveling through the tree in level-order as
demonstrated in the above examples helps us to construct systematically a set
of informative hierarchical triplet constraints.

Figure 4.5: Explanation of why we need two rules for extracting the hierarchical
triplet constraints from a simple tree in (a). The start symbol denotes the centroid of
the whole dataset represented by the root node. If only the second rule is used for
enhancing the sibling relationship between the red group (x) and the blue groups (a),
(b), (c), we might end up with the result in (b). If the first rule is also used together
with the second rule, we can obtain the result in (c) where the hierarchical structure
is clearly revealed.
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For more intuition, the schema in Figure 4.5 explains why both rules
are needed. Supposing that we have a simple dataset with four groups in
Figure 4.5(a): three blue groups belonging to the abstract group G1 and the red
group belonging to the abstract group G2. Let us consider the target group (x),
which has three sibling groups (a), (b), (c) at the same level. Only applying the
second rule for enhancing the sibling relationship, we can end up with a result
in Figure 4.5(b) where the target group (x) is placed at the center to make
sure that it is distant from all three surrounding blue groups. If we combine
with the first rule (applied for the abstract groups G1 and G2), we can make
the target group (x) far away from all other child groups of the root node (the
orange start symbol F).

At this point, we have an initial idea of hierarchical triplet constraints
extracted from an abstract tree. The obtained constraints reflect both semantic
information and the hierarchical structure encoded in the data. It should also
be noted that in the notation of the triplet constraint, the name of the group
is used to represent all images in this group. A formal formulation for the
constraints will be introduced in our algorithm presented in the next section.

4.3 HCt-SNE: Hierarchical Constraints with t-SNE

The proposed HCt-SNE method (Vu et al., 2021b) is a combination of a machine
learning method with a tree traversal algorithm. HCt-SNE assumes that the
user constraints are expressed in the form of a tree, which can be constructed
based on class labels or user prior knowledge about the dataset. Previously, we
have shown how the hierarchical tree is transformed into hierarchical triplet
constraints through intuitive examples. This section formulates the optimization
problem in t-SNE using these triplet constraints. We will first introduce the
basic idea of quantifying triplet constraints with a triplet loss, a simple loss
function that measures how well the points in the triplet are separated.

4.3.1 Triplet Loss with Margin

A triplet constraint (yi,y
+
i ,y

−
i ) is said to be satisfied when the anchor point

yi and the positive point y+
i are close to each other, while this anchor point

and the negative point y−i are far apart. The notion of close or far is simply
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measured by the traditional squared Euclidean distance between yi and yj ,
denoted as d(yi,yj) = ||yi − yj ||2. Our goal is to produce the embedding Y in
such a way that the triplet constraints are satisfied as much as possible, i.e.,
d(yi,y

+
i ) < d(yi,y

−
i ) ∀i. In practice, in order to make the difference between

these two distances more significant, we want the distance d(yi,y
+
i ) to be much

smaller than the distance d(yi,y
−
i ), at least by a predefined margin. That

means, we expect that d(yi,y
+
i ) + margin is still ≤ than d(yi,y

−
i ). This idea

is illustrated in Figure 4.6.

Figure 4.6: Illustration of triplet constraint with margin.

The triplet shown in Figure 4.6(a) is a valid triplet but is not a good one
because the distance d(yi,y

−
i ) is not much larger than the distance d(yi,y

+
i ).

Since the positive point y+
i is not close enough to the anchor yi, if we consider

a margin in Figure 4.6(b), the distance d(yi,y
+
i ) + margin is now larger than

d(yi,y
−
i ). In other words, the triplet (a) is no longer a valid triplet under this

margin. And thus, the triplet loss is defined as

`(yi,y
+
i ,y

−
i ) = d(yi,y

+
i ) + margin − d(yi,y

−
i ).

If the positive point is closer to the anchor as in Figure 4.6(c) (or the negative
point is farther away), under the same margin, this new triplet is still a valid
one and thus has no penalty. Therefore, the following general form for a triplet
loss is used to quantify a triplet constraint under a predefined margin:

`(yi,y
+
i ,y

−
i ) =

[
d(yi,y

+
i )− d(yi,y

−
i ) + margin

]
+
, (4.1)

where [x]+ = max(0, x). Based on the triplet loss, we can manage the relative
distance between groups using the centroids of groups as positive and negative
points in a triplet. More details are given in the next section.
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Themargin hyperparameter can be tunable to control the separation between
positive and negative examples. We can imagine that, when minimizing this
loss for the whole set of triplet constraints, we can separate the positive and
negative groups. The pattern in the visualization is thus heavily dependent on
the quality of the input triplet constraints. In the previous section, we have
introduced a specific way to generate informative triplet constraints that can
capture semantic and hierarchical information. The integration of these triplet
constraints into t-SNE is detailed in the following section.

4.3.2 Enforcing Hierarchical Constraints as a
Regularization Term

The semantic information and hierarchical structure in the tree can be inter-
preted as the relationship between tree nodes (aka the groups or classes in the
dataset). We call the relationship between nodes as group-level hierarchical
constraints. The process of extracting triplet constraints from the tree is a
transformation of group-level constraints into another form so-called individual-
level hierarchical constraints. These triplet constraints are then represented
by a differentiable regularization term in order to be optimized alongside the
objective function of t-SNE.

Let us denote the embedding Y = {yi}Ni=1. To generalize the triplet
introduced in the last section, let us denote a triplet related to the embedded
point yi as (yi, G

+, G−), where G+, G− denote the group of positive/negative
examples for the anchor yi. This triplet indicates that yi should be closer to
every data point in G+ than to any data point in G−. In order to obtain a
compact representation for the concept of every data point in group Gk, we
use the centroid ck (center of gravity) as a representative point for this group.
Using this idea, a triplet now represents the relation between the anchor point
and the two centroids of its positive and negative groups.

Let us denote a group and one of its siblings as Gk and Gk′ . The centroids
of Gk and its parent group are denoted as ck and pk. We will redefine the rules
used to generate the triplet constraints introduced in the last section.
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Rule 1 for creating triplet that enhances child-parent relationship:

A point yi ∈ Gk should be closer to the centroid ck of its group than to
the centroid pk of its parent group.

This rule means that yi should be close to points in Gk rather than being
fused in the parent group. It thus prevents child groups from concentrating in
the center of the parent group as explained in Figure 4.5. In this rule, only
the points in the parent group (including all the points in Gk) are used, the
focus is thus put on the intra-distances within the parent group. Applying
the formulation of triplet loss in Equation 4.1 for all points in the group Gk
according to this rule, we have the penalty (the loss) for the first kind of
constraints as

Lintra =
1

|Gk|
∑
yi∈Gk

[
d(yi, ck)− d(yi,pk) +m · d(yi,pk)︸ ︷︷ ︸

margin

]
+
, (4.2)

where |Gk| is the number of instances in Gk and the distance function d() is a
squared Euclidean distance d(yi,yj) = ||yi − yj ||2. The margin = m · d(yi,pk)

is not a chosen value as in Equation 4.1, but it is controlled by a positive
hyperparameter m ∈ [0, 1], called a relative margin instead. Since the position
of points in the embedding is not normalized, the distance value is not normalized
either. There is thus no evidence to choose a good margin value that works well
for different datasets. We introduce a relative margin m ∈ [0, 1] to facilitate
the choice of margin. When m = 0, no margin is used. When m = 1, only the
positive point ck is used. Every point is now forced to move closer to the center
of its group.

When the point yi satisfies the related triplet constraint defined by Rule 1,
no penalty is applied. Otherwise, if the point yi is too close to pk, it violates
Rule 1 and contributes to the loss Lintra. In order to correct the violated point,
we update its gradient as

∂Lintra
∂yi

=
2

|Gk|

[
(yi − ck)− (1−m)(yi − pk)

]
. (4.3)

As consequence, the point yi will be moved far away from pk. Figure 4.7
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(a) (b) (c)

Figure 4.7: Illustration for the gradient of triplets in Rule 1 (Equation 4.2 - child-parent
relationships) at two levels: (a) a leaf node and its parent and (b) one level higher.
For the sake of simplicity and to avoid cluttering the figure, margin m is set to zero to

get a simplified gradient
∂L

intra

∂yi
= 2(pk − ck). At each level, the instance to constrain

yi is compared to the centroid ck of its own group and the centroid pk of its parent
group. The adaptation with a learning rate η is −η δ where δ = pk − ck. The sum of
the gradients for yi at the two levels is shown in (c).

illustrates the gradient without margin (m = 0) for the sake of simplicity.

Rule 2:

A point yi ∈ Gk should be closer to the centroid ck of its group than to
the centroid ck′ of its sibling group Gk′ .

This rule helps to distinguish between different child groups in a larger
parent group. This time, we focus on distances between child groups, which is
called the inter-distance between groups. Applying the triplet loss for every
point yi in a group Gk, we have the following loss function

Linter =
1

|Gk|
∑
yi∈Gk

[
d(yi, ck)− d(yi, ck′ ) +m · d(yi, ck′ )︸ ︷︷ ︸

margin

]
+
. (4.4)

The gradient for updating a point yi if it violates the constraint is

∂Linter
∂yi

=
2

|Gk|

[
(yi − ck)− (1−m)(yi − ck′ )

]
. (4.5)

Figure 4.8 illustrates the gradient of the point that violates Rule 2 in the case
without margin.
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(a) (b) (c)

Figure 4.8: Illustration for the gradient of triplets in Rule 2 (Equation 4.4 - sibling
relationships) with the same conventions as in Figure 4.7, except that yi is compared
to the centroid ck of its own group and the centroid ck′ of its sibling group. Again,

m = 0 simplifies the gradient to
∂L

inter

∂yi
= 2(ck′ − ck). Here, there is only one sibling

group, but in more complex cases, one has to sum the contributions of all siblings.

When observing closely at the direction of the gradients illustrated in Figures
4.7 and 4.8, we can notice that these two rules update the gradient for the
point related to the violated triplets in a similar direction. We have claimed
that these two rules are not redundant. If we look at the input hierarchy as a
tree with different branches, we see that Rule 1 makes the groups in the same
branch distinguishable, while Rule 2 can cause the same effect for cross-branches
groups (i.e., groups in different branches). It should be noted that a point yi
can be related to a violated triplet constraint according to Rule 1, or Rule 2, or
both of these two rules. If only one rule is used, we can miss useful relationship
information encoded by the other rule. When both two rules are used, for
example, in the simple case shown in Figures 4.7 and 4.8, these rules update
the gradient consistently. The updated gradient for points related to violated
triplet constraints depends on the nature of the related group (that the point
belongs to) and the hierarchical structure related to that group. In practice,
we show that using both these two rules can accelerate the convergence of the
algorithm (see Section 4.5).

After defining these two above rules,we integrate the penalties defined in
Equations 4.2 and 4.4 into the objective function of t-SNE. The additional
penalties play a role as a regularization that modifies the position of the points
related to the violated triplet constraints. This approach can take advantage of
t-SNE to discover the group structure of the data in an unsupervised manner
and enhance the global semantic structure in the embedding thanks to our
regularization term. The most important advantage of this regularization term
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is that it is differentiable. The gradient with respect to the point in the violated
constraints is easy and efficient to calculate (Equations 4.3 and 4.5).

4.3.3 Optimization through a Tree Traversal Algorithm

Algorithm 1: The proposed HCt-SNE algorithm.
Input : High-dimensional data X = {xi}Ni=1,

Original t-SNE embedding Y0 = {yi}Ni=1,
Hierarchical constraints in the form of a tree T ,
Weight for each rule ω1 = 0.5 and ω2 = 0.5,
Relative margin m, Learning rate η,
Coefficient of the regularization term α.

Output :HCt-SNE embedding Y

1 Initialize Y = Y0

2 for iter ← 1 to n_iter do
/* Call the tree traversal routine */

3 Lintra,Linter,
∂Lintra

∂Y
,
∂Linter

∂Y
= LevelOrderTreeTraversal (

4 Y , // the current embedding, which changes after each iteration
5 T , // the fixed input tree, which does not change in every iteration
6 ω1, ω2, m // parameters to weight and control the regularization
7 )

/* Update the new loss and gradients */
/* α balances the original t-SNE loss and the new regularization */

8 L = KLloss + α
(
Lintra + Linter

)
9

∂L
∂Y

=
∂KLloss

∂Y
+ α

(∂Lintra

∂Y
+
∂Linter

∂Y

)
/* Update the current embedding by gradient descent. */
/* Notice: in practice, momentum is used. */

10 y = y − η ∂L
∂Y

11 end

12 return y

Algorithm 1 summarizes the proposed HCt-SNE algorithm. The novel idea
lies in the construction of the penalty terms using the two proposed rules
in Equations 4.2 and 4.4: these penalty terms are calculated at each level
of abstraction in the tree. This step is named LevelOrderTreeTraversal

78



CHAPTER 4. INTEGRATION OF HIERARCHICAL CONSTRAINTS INTO T -SNE

Algorithm 2: Level-order tree traversal routine to calculate the regu-
larization and the corresponding gradients.
Input : Current embedding Y = {yi}Ni=1,

Hierarchical constraints in the form of a tree T ,
Weight for each rule ω1 = 0.5 and ω2 = 0.5,
Relative margin m = 0.5.

Output : Regularization terms Lintra,Linter,

Corresponding gradients
∂Lintra

∂Y
,
∂Linter

∂Y

1 Lintra = Linter = 0 // Two new loss terms

2
∂Lintra

∂Y
=
∂Linter

∂Y
=~0 // Gradient of each new loss

3 for level l← 1 to height(T ) do
/* Optimize Rule 1 */

4 foreach node Gk at level l do
5 ck = Gk.centroid
6 pk = Gk.parent.centroid
7 loss1 = OptimizeRule1(Gk, ck,pk,y,m) // Loss from Equation 4.2
8 Lintra = Lintra + ω1 loss1

9
∂Lintra

∂Y
=
∂Lintra

∂Y
+ ω1

∂loss1

∂Y
// Gradient from Equation 4.3

10 end

/* Optimize Rule 2 */
11 foreach sibling pair (Gk, Gk′ ) at the same level l do
12 ck = Gk.centroid
13 ck′ = Gk′ .centroid
14 loss2 = OptimizeRule2(Gk, ck, ck′ ,y,m) // Loss from Equation 4.4
15 Linter = Linter + ω2 loss2

16
∂Linter

∂Y
=
∂Linter

∂Y
+ ω2

∂loss2

∂Y
// Gradient from Equation 4.5

17 end
18 end

19 return Lintra,Linter,
∂Lintra

∂Y
,
∂Linter

∂Y

subroutine and is highlighted in Algorithm 1. When the new regularization
terms and their corresponding gradients are calculated in each iteration, they
are combined with the original KL divergence objective function of t-SNE. The
learning rate η can be chosen by a heuristic, such as the one suggested by
Kobak and Berens (2019), which sets η = N/12. HCt-SNE can take an old

79



CHAPTER 4. INTEGRATION OF HIERARCHICAL CONSTRAINTS INTO T -SNE

t-SNE visualization as an initialization for a quick convergence. In general, any
random initialization or PCA initialization can also work.

The most important hyperparameter in our algorithm is the contribution
of the hierarchical regularization α. However, tuning α for a good balance
between the unsupervised objective of t-SNE and the supervised objective in
the regularization is a difficult task. We have not defined a suitable metric
to measure the compromise between these two objectives, and only measure
the overall quality of the final visualization. A simple strategy to manually
find an acceptable α is a trial-and-error approach of choosing an α that makes
the new loss of HCt-SNE constantly decreased. We can also look at the value
of the regularization term to make sure that the chosen α can make both
the regularization and the new HCt-SNE loss decreased at the same time (as
described in Appendix 9.4). Notice that in this work, we have to manually
choose an acceptable α for each dataset. More work is needed to tune this
hyperparameter automatically to achieve a good balance between the two
unsupervised and supervised objectives.

It should also be noted that t-SNE is not designed to preserve distances
between points. Its objective function minimizes the KL divergence between the
probabilities (of being neighbors) and does not involve directly the distances.
In opposite, the triplet loss in the proposed regularization (and its gradient)
is based only on the distances between points in the LD space. Minimizing
this triplet loss can also be interpreted as preserving distances between specific
points (anchor points, positive and negative points) created by the input tree.

As shown before, the proposed rules enhance the semantic relationship
between groups. And thus, when they are applied at different levels of the tree,
they can enhance the hierarchical structure in the embedding. For that reason,
we propose to visit the nodes of the tree in level-order, from the lowest level
of leaf nodes to the highest level of the root node. At each level, the penalty
terms according to each rule are constructed using the instances in the groups
at that level and the corresponding parent groups (for Rule 1). Algorithm 2
details step-by-step how to accumulate the penalty terms at each level of the
tree. In this algorithm, the two functions OptimizeRule1 and OptimizeRule2
apply Equations 4.2 and 4.4 for every point yi in the group Gk. The order in
which these two rules are applied does not matter since the loss and gradient
of related points in the violated constraints will be accumulated at the end
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of each iteration. The triplet constraints generated by each rule are weighted
respectively by ω1 = ω2 = 0.5. These weights can be modified according to the
need to focus on each specific rule.

In practice, our algorithm can be easily integrated into accelerated variants of
t-SNE like Barnes-Hut t-SNE (van der Maaten, 2014a), FIT-t-SNE (Linderman
et al., 2019) or other SNE-based methods like UMAP (McInnes et al., 2018a).
The triplet loss has a fast gradient update since the centroids of each group
remain fixed. The relative margin prevents us from manually tuning the margin
value for each dataset. As shown in the following experiments, a relative margin
m = 0.5 works well for all experimented datasets. This hyperparameter can
also be tuned easily since its effect can be observed visually (more details come
in the next section).

4.4 Experimental Results of HCt-SNE

In our experiments, two questions are addressed.

1. How are the global structure and the hierarchical information represented
in HCt-SNE visualizations?

2. How do HCt-SNE embeddings compare with the ones of other methods?

HCt-SNE is compared with the original unsupervised t-SNE with Barnes-Hut
acceleration (van der Maaten, 2014b) and two other supervised DR methods:
UMAP in a supervised setting (McInnes et al., 2018a) and class-aware t-SNE
(cat-SNE (de Bodt et al., 2019)). We first compare the visualization results of
these methods qualitatively. A quantitative evaluation with several visualization
quality scores is also performed.

4.4.1 Experimental Setup

We perform experiments on three standard image datasets MNIST (LeCun
et al., 2010), Fashion-MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky,
2009). Input pixels are first normalized in [0, 1], and PCA is then applied to
keep 95% of variance. Like t-SNE, HCt-SNE can work with other kinds of data.
However, we use image datasets since users can create hierarchical constraints
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visually by looking at the images. It should be noted that the hierarchical tree
can be created using examples that are manually selected to form leaf nodes
of the tree. Users can create more abstract groups by grouping similar leaf
nodes according to their semantic meaning. cat-SNE and supervised UMAP
use the available labels in the dataset. We also use the class information of
each dataset in our experiments to construct the corresponding leaf nodes, each
leaf node is one class. The intermediate nodes are created manually according
to the desired hierarchical structure of users. For instance, in CIFAR10, truck
and automobile are grouped into land-vehicles; this higher-level group is then
grouped with ship and airplane to get man-made, etc.

In our experiments, HCt-SNE takes a t-SNE embedding as the initial state
and does not apply the exaggeration phase. This setting allows us to compare
directly a t-SNE visualization without constraints (initial state) and an HCt-
SNE visualization with hierarchical constraints. In t-SNE, the exaggeration
phase is important to form the global structure (Kobak and Berens, 2019). In
contrast, HCt-SNE does not need this phase since the triplet constraints have
already regularized the objective function to enhance the hierarchical structure.

Preliminary experiments are performed with (Barnes-Hut)t-SNE, UMAP,
and cat-SNE to find the good hyperparameters for the experimented dataset. A
perplexity of 50 is used for t-SNE, n_neighbors=10, and min_dist=0.1 are used
for supervised UMAP. cat-SNE is used with its suggested setting with θ = 0.9

to expand the neighborhood size in the HD space to capture at least 90% of
data points with the same label. HCt-SNE uses the same hyperparameter values
as t-SNE and has two additional hyperparameters. First, the relative margin m
determines the separation of the groups in the visualization and can be set to
0.5 to make sure that the groups are neither too close nor too far away. Second,
α determines the contribution of the hierarchical constraints to the new loss.
α depends on the specific hierarchical tree of each dataset and can be easily
tuned by observing the value of the regularization term (Lintra + Linter), and
then by trying several values to make sure this term decreases consistently. The
reported results are calculated from the following values of α: 7.5×10−4 for
MNIST and Fashion-MNIST, and 5×10−3 for CIFAR10. Our implementation
is based on openTSNE (Poličar et al., 2019) with Barnes-Hut acceleration.

In order to quantitatively assess the visualizations, three different scores are
used. The co-ranking-based score AUC[RNX ] (Lee and Verleysen, 2009, 2010)
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measures how well the neighborhood information in the HD space is preserved in
the LD space. The KNN-gain score AUC[GNN ] (de Bodt et al., 2019) measures
how much we gain in terms of KNN accuracy when using the embedding in
the LD space instead of the original data in the HD space. AUC[RNX ] and
AUC[GNN ] are in the range of [−1, 1], in which 1 is the best, -1 is the worst,
and 0 means that there is no gain (or loss) in the neighborhood preservation
of the KNN accuracy with the embedding in LD space. It should be noted
that, for these scores, a small positive value is acceptable while a negative
value is bad. These two metrics have a complexity of O

(
N2 logN

)
, where N

is the number of instances in the dataset. Because of this complexity, we use
a subset of 10k data points for each dataset to facilitate the computation of
these metrics. It also helps us to make a fair comparison with cat-SNE, since it
is not optimized for very large datasets. Finally, the simple KNN score (with
K = 10) suggested by (Belkina et al., 2019; Kobak and Berens, 2019) is used
to measure how useful the 2D embedding is for a classification task.

4.4.2 Analysis of Qualitative Results

Qualitative results for visual assessment for three datasets MNIST, Fashion-
MNIST and CIFAR10 are shown in Tables 4.3, 4.4 and 4.5, respectively. The
first four visualizations in each table show the results of the original t-SNE,
cat-SNE, our method HCt-SNE, and supervised UMAP. The name of each
class in the visualization is shown in the annotation. In the last row of each
table, we show the input hierarchical tree and a proposed interpretation of
the structures in HCt-SNE. The color of the leaf nodes in the tree and the
groups in the visualizations are matched to help to identify them easily. In
the last figure in each table, we manually annotated the abstract groups in
the visualization result of HCt-SNE. Our goal is to show how the structures
revealed by HCt-SNE match the input hierarchical tree.

For MNIST, t-SNE, cat-SNE, and UMAP give good visualizations with
clear separated groups. Since the supervised information is used for UMAP, we
see the groups are more contracted. However, the position of the groups in the
visualizations of these methods is arbitrary due to the random initialization. In
contrast, HCt-SNE gives a stable result in which we can easily interpret the
structure in its visualization as shown in the last figure of Table 4.3.
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Table 4.3: Qualitative comparison of the embeddings for the MNIST dataset.

Unsupervised t-SNE cat-SNE

HCt-SNE (our) UMAP

Input hierarchy for HCt-SNE Interpretation of structures in HCt-SNE
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Table 4.4: Qualitative comparison of the embeddings for the Fashion-MNIST dataset.

Unsupervised t-SNE cat-SNE

HCt-SNE (our) UMAP

Input hierarchy for HCt-SNE Interpretation of structures in HCt-SNE
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Table 4.5: Qualitative comparison of the embeddings for the CIFAR10 dataset.

Unsupervised t-SNE cat-SNE

HCt-SNE (our) UMAP

Input hierarchy for HCt-SNE Interpretation of structures in HCt-SNE
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For Fashion-MNIST, the visualizations of t-SNE and cat-SNE in Table 4.4
are not very useful since there are always large overlaps between groups. UMAP
gives a better result with well-separated groups. However, the same problem of
global structure and relative distance between groups still exists in the UMAP
result. For example, the Sandal - Sneaker groups are placed close to the Bag
group but not the Ankle boot group. Similarly, the Sandal group is close to the
Pullover - Shirt group. For this reason, it is not easy to reason about a large,
abstract group of footwear containing sandals, shoes, and boots. HCt-SNE can
solve this problem thanks to the guided input structure. The most important
result of HCt-SNE is that it preserves the given input structure constraints.

Lastly, for CIFAR10, all competing methods (t-SNE, cat-SNE, and UMAP)
fail to reveal distinct groups, as shown in the Table 4.5. With these methods,
it is hard to reveal both the group structures and the global structure for hard
datasets like CIFAR10. In contrast, HCt-SNE reveals separated groups and
gives a global view corresponding to the input hierarchical tree. Even when
the user creates several small semantic groups such as the pets group of dogs
and cats, the hoofed mammals group of deers and horses, and the land-vehicles
group of automobiles and trucks, HCt-SNE can always reveal this semantic
information by placing the related sub-groups close together.

Users can also control the separation of groups in the visualization of
HCt-SNE with the relative margin hyperparameter. With different values of
the relative margin m ∈ [0, 1], HCt-SNE reveals the same global hierarchical
structure but with different focuses on local group structures. With a large
margin, we expect the high-level (abstract) groups are expected to be well
separated as shown in Figure 4.9.

The qualitative results in this section serve as a comparison between HCt-
SNE and other methods to show that HCt-SNE can create more useful visu-
alizations, and to verify that the structure revealed by HCt-SNE matches the
given input hierarchical tree. We have these advantages of HCt-SNE with a
small additional computation (of linear complexity as discussed later). In order
to evaluate the proposed method subjectively, we also assess the HCt-SNE
visualization with quantitative metrics.
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Figure 4.9: Effect of margin parameter.

4.4.3 Analysis of Quantitative Results

Figure 4.10 shows quantitative results in terms of three introduced metrics:
AUC[RNX ], AUC[GNN ], and KNN score (see Section 4.4.1). Each method is
run 10 times with different random initialization. The average score and the 95%
confidence interval are shown. The hyperparameters and the input hierarchical
tree for these methods are kept unchanged during different runs. Due to the
very small variances in the results, we can conclude that the difference between
different methods is significant.

In MNIST and Fashion-MNIST, gray-scale images have the same background,
and thus there is no background effect. For both datasets, our method performs
similarly to supervised UMAP and outperforms t-SNE and cat-SNE. On the
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(a) MNIST

(b) Fashion-MNIST

(c) CIFAR10

Figure 4.10: Average scores of different metrics for three datasets. All methods are
run 10 times with different random initialization. The scores are calculated for each
resulting visualizations. The mean values are reported in the bar chart and 95%
confidence intervals are shown in the black bars. It should be noted that the scores are
stable, and confidence intervals are small, which shows that differences are significant.

contrary, CIFAR10 contains color images for which the background effect
becomes a real problem, as presented in Figure 4.2. In a neighborhood, the
images do not necessarily belong to the same class. Therefore, the neighborhood
preserving score AUC[RNX ] and the KNN-based score AUC[GNN ] behave
oppositely. More specifically, HCt-SNE has a low AUC[RNX ] score since it
does not preserve the neighborhood structure in the HD data. As we have
shown that the neighborhood information calculated from pixel-wise Euclidean
distances poorly reflects the semantic information in the class labels. HCt-SNE
is designed to take into account the semantic information and thus cannot gain
in terms of AUC[RNX ] score since it breaks the neighborhood information in
HD space. However, it outperforms t-SNE and cat-SNE by a large margin in
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terms of AUC[GNN ] and KNN scores since it has well exploited the class label
information encoded in the hierarchical constraints.

4.5 Discussion

This section discusses several technical details in the design and analysis of
HCt-SNE, its usage, its limitations, and perspectives to extend this method.

Figure 4.11: Illustration for two kinds of forward KL[P | Q] (left) and backward
KL[Q | P ] (right) KL divergence. This figure is taken from Figure 3.6 in the public
lecture slides1 of the Deep Learning book (Goodfellow et al., 2016).

We have shown how HCt-SNE works with the real data. We now discuss
why our approach with HCt-SNE works and what is the theory behind HCt-
SNE. For the hard (complex) datasets like CIFAR10, if we have better features
such as the features extracted from a convolutional neural network, the t-SNE
visualization can be improved. However, when the raw input pixels are used, a
simple regularization-based approach like HCt-SNE can be useful. In fact, in
t-SNE, groups that are semantically different can still be placed close together.
The reason is that t-SNE focuses too much on the attractive force to make
similar objects clumped together while less focus on repulsive force to push
dissimilar objects far apart (Wattenberg et al., 2016).

t-SNE uses a forward KL divergence KL[P | Q] from Q to P , which has a
mean-seeking behavior (Goodfellow et al., 2016, Sec. 3.13). Figure 4.11 shows an
illustration of the behavior of the forward KL[P | Q] and backward KL[Q | P ]

1https://www.deeplearningbook.org/slides/03_prob.pdf
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divergences. We focus on the KL[P | Q] in t-SNE, which encourages putting
mass of Q on whether P has some mass. That means, for every close pair
(i, j) for which P has mass (since pij is non-zeros), t-SNE will try to make
the corresponding pair as close as possible (by putting mass on qij). This
behavior of the forward KL divergence distributes the mass of Q widely without
focusing on any mode in the distribution of original data as illustrated in
Figure 4.11. t-SNE may thus fail in the cases where we have multiple modes
and large overlapping of different classes/groups in the distribution of the HD
data. Combining the two kinds of divergence (Venna et al., 2010) or using the
generalized Jensen–Shannon divergence (Lee et al., 2013, 2015) can overcome
this problem and better preserve small neighborhoods (corresponding to small
perplexity values). HCt-SNE introduces another way to tackle this problem
using regularization terms to modify the behavior of the KL loss. This new loss
(based on the triplet loss with relative margin) enhances the repulsive force that
makes the negative examples far away from the anchor point. Better divergence-
based objective function suggested by Lee et al. (2013) may have more effect in
discovering multiple modes in the HD data than a simple regularization-based
approach. Our proposed regularization term has a computation advantage since
it is cheap to compute (both the loss and its gradient) and can be interpreted
as a secondary distance-preserving objective for t-SNE.

In theory, the triplet loss can be considered as an energy function that
minimizes the compatible settings (i.e., the anchor and the positive point)
and maximizes the incompatible settings (i.e., the anchor and the negative
point) (LeCun et al., 2007). This is the same idea as metric learning methods,
which try to learn a distance function to make similar points close together and
dissimilar points far apart (Kulis et al., 2012). We can thus extend HCt-SNE
by replacing the triplet loss with another contrastive loss such as the following
one introduced in (Arora et al., 2019):

L = −EX

log
exp

(
fθ(x)T fθ(x

+)
)

exp (fθ(x)T fθ(x+)) +
∑N−1

j=1 exp
(
fθ(x)T fθ(x

−
j )
)
 , (4.6)

where fθ(x) is a representation function. The triplet constraints are represented
by a regularization term that preserves global and hierarchical structures, and
thus could also be integrated into other DR methods like UMAP.
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While we can obtain a visualization with global hierarchical structures, we
only have to pay a small additional computation cost for the regularization term,
which depends on the number of triplet constraints. The number of triplets in
the worst case is O(KHN)� O(N3), where K is the number of pairs of sibling
nodes and H is the height of the tree. In a dataset of C classes, the number of
triplet generated by using a naive combination is N × N

C ×
(C−1)N

C = O(N3). In
this worst-case where all the leaf nodes have the same depth of H, the number
of triplets between child nodes and parent nodes is O(HN), the number of
triplets between sibling nodes is O(KHN). In total, the number of triplets in
the worst case is O(HN) +O(KHN) = O(KHN).

However, our approach has some limitations. When addressing the problem
of global structure in the visualization, we should consider the shape of the
groups and the relative distances between them. HCt-SNE currently tackles the
second aspect while ignoring the first one. Revealing and preserving the shape
of groups with neighborhood embedding methods is still an open problem. Also,
in our experiments, we did not consider how to embed new data points. Another
potential issue with HCt-SNE is that the quality of the embedding depends on
the quality of the input hierarchical tree. When the tree is not well-structured,
or the leaf nodes do not contain enough data points, the proposed regularization
may not work. The reason is that the regularization term is in fact a triplet
loss, which only uses one positive and one negative example. Although this
loss is constructed at different abstract levels of the tree, we have not exploited
all the available negative pairs. As pointed out in recent works on contrastive
learning, negative pairs between samples have a large impact on the quality
of the representation (Arora et al., 2019; Schroff et al., 2015; Sohn, 2016).
Using a better contrastive loss such as an N-pair loss (Sohn, 2016) can help
to increase the number of triplets when the input tree does not have enough
data points. Lastly, HCt-SNE, like t-SNE, is more suitable for visualization but
not for general dimensionality reduction tasks. Even though the experimental
results show a promising KNN-based score with our method, we still cannot
conclude that HCt-SNE can be used for extracting features for subsequent tasks
of classification or clustering. We need to do more experiments and comparisons
with a baseline hierarchical classification method. However, this is not in the
scope of this thesis that focuses only on constraint integration.
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From a usage aspect, HCt-SNE is an accessible method for end-users who
want to easily explore datasets with the support of a hierarchical representation
of constraints for groups of instances. For example, this can be useful when
clusters are not clearly separated or even overlap in the visualization computed
by t-SNE. It may happen when the distance metric in the HD space is not
satisfactory or when the user does not have an appropriate neural network for
feature extraction. In this case, if the labels are available, a simple tree with
one root node and all the class labels as leaf nodes can also help to separate the
groups in the visualization without requiring complex hierarchical information.
Even if the users do not have any idea about the hierarchical structure of their
data, they can use a hierarchical clustering method like HDBSCAN (Campello
et al., 2013) to obtain a hierarchical tree to pass to HCt-SNE. The additional
semantic information in the hierarchical constraints can come from external
sources or the data themselves. Therefore, HCt-SNE can be used in a purely
unsupervised two-stage algorithm as follows. First, a hierarchical clustering
method is used to group the data into small clusters, while the hierarchical tree
is extracted from the dendrogram of the clustering result. Second, HCt-SNE is
used to visualize the discovered clusters. This combination gives us a new usage
of HCt-SNE that is more accessible for end-users as they do not need to provide
any hierarchical constraints. This information can be obtained automatically
in an unsupervised manner thanks to (hierarchical) clustering methods.

Our future work will focus on the constraints expressed by users for DR
methods. While t-SNE and UMAP are widely used, their results lack global
structure preservation, and users have no means to inject their knowledge into
the visualization. We plan to work on interactive ways to visually build the
hierarchical tree by, e.g., selecting sample images to create nodes. This tree
will be passed to HCt-SNE to create a meaningful and useful visualization.
Besides, we will also tackle the limitations of our method to expand its usage.
For example, the constraints learned from the training set could also help to
project new points correctly into their groups.
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Chapter 5

Integration of Fixed-position
Constraints into Probabilistic
DR Methods
This chapter presents a unified framework to inject users’ prior knowledge about
the position of points directly into the prior distribution of probabilistic DR
models such as PPCA or PMDS.

Contents
5.1 Probabilistic Approach in ML and in DR . . . . . . . . . . . . . . 98

5.2 Proposed Unified Probabilistic DR Framework with Constraints 101

5.3 Concrete Example 1: PMDS Model and interactive PMDS . . . 107

5.4 Concrete Example 2: PPCA Model and interactive PPCA . . . 120

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

This chapter is based on our two publications: “iPMDS: Interactive Probabilistic
Multidimensional Scaling” (Vu, Bibal, and Frénay, 2021c) and “iPPCA: User-
steering Interpretable Visualization with Probabilistic Principal Components
Analysis” (Vu and Frénay, 2019).
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In the previous chapter, we introduced a t-SNE-based method with hier-
archical constraints. That kind of constraint can be constructed from class
labels of the dataset with human annotation to form a tree structure. This
tree can be constructed beforehand since it requires only the human general
knowledge about the semantic groups in the dataset. In this chapter, we work
with another type of constraint, that is more interactive and user-centric.

When users observe the visualization result of a DR method, they can find
that the visualization is not what they expected. Figure 5.1 shows an example
of the visualization produced by MDS. In this example, the traditional MDS
method takes the pairwise distances between ten cities in the US (shown in the
heatmap on the top left) and returns a 2D visualization that represents the
positions of these cities in a 2D map. The US map shown in the background
of the plot on the bottom left is for reference. Besides the mismatch between
the positions produced by MDS and the true position in the reference map,
the biggest problem of MDS is the orientation of the visualization. This is a
simple case where the user’s knowledge can be used to correct the error of DR
methods. An end-user can know in advance (or can look at the reference map
and find out) that, Olympia is at the north of the West coast and Washington
D.C. is at the East coast of the US. He/she can give feedback to the algorithm
by fixing the position of two points corresponding to these two cities on the 2D
map. This feedback is considered as a kind of constraint on the fixed position
of points of interest indicated by users. Our proposed framework can integrate
this constraint into a probabilistic DR method (such as probabilistic MDS or
probabilistic PPCA), and produce a more reasonable visualization like the one
shown in the bottom right of Figure 5.1.

The user’s feedback on the position of points is used frequently in interactive
visual analytic (Sacha et al., 2017b). In the scope of this thesis, this kind of
feedback is considered as fixed-position constraints to be integrated into DR
methods. These constraints can be considered as prior knowledge of users on the
position of several particular points. This viewpoint gives rise to our choice of
the probabilistic approach that connects the users’ prior knowledge to the prior
distribution of a probabilistic model. Section 5.1 gives a brief introduction to
the probabilistic approach in machine learning and in dimensionality reduction.
Based on this foundation of probabilistic modeling, in Section 5.2, we introduce
our unified probabilistic framework for integrating fixed-position constraints

96



CHAPTER 5. INTERACTIVE PROBABILISTIC DR MODELS

Figure 5.1: Overview of the proposed interactive probabilistic DR model (iPDR).

into several well-known probabilistic DR methods. A concrete example of
this framework applied to a distance model for solving the MDS problem is
called iPMDS (Vu et al., 2021c), which is introduced in Section 5.3. Similarly,
applying this framework for PPCA, we introduce an interactive, user-steering
model called iPPCA (Vu and Frénay, 2019) in Section 5.4. Experimental
results with the proposed methods through various interactive case studies
are presented in Section 5.5 (and additional results in Section 9.1). Finally,
Section 5.6 summarizes and discusses the pros and cons of our approach, as
well as perspective for interactive probabilistic DR models.
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5.1 Probabilistic Approach in ML and in DR

Before diving into the integration of constraints into probabilistic DR methods,
we first introduce the probabilistic approach in machine learning and dimen-
sionality reduction. This brief introduction helps us to clarify why we choose
the probabilistic approach. When understanding the probabilistic modeling
process, it will be more natural to introduce our idea for constraint integration
in probabilistic DR models.

5.1.1 Brief Introduction to a Probabilistic Approach in ML

Machine learning methods (that can also be called techniques or algorithms)
often define sequence of steps to solve a specific problem. For example, in
order to find the principal components that maximize the variances of the
data, we do 2 steps: (1) constructing a covariance matrix from the centered
data, and then (2) finding the eigenvectors corresponding to the top largest
eigenvalues of this covariance matrix. This process is one way to formulate
PCA, where these eigenvectors are called the principal components. However,
the relationship between the projected data on the top eigenvectors and the
criteria of maximizing the data variance is not always obvious. In general, these
steps only tell us what to do in order to solve the problem, but do not tell us
why. Machine learning partitioners often have to learn a bunch of well-studied
methods for solving a wide range of problems. When tackling a new problem,
their focus is on mapping their problem to one of these existing methods, i.e.,
choosing the right algorithm.

A probabilistic approach in machine learning opens another perspective to
look at the traditional machine learning problems. Under this approach, the
unknown quantities such as the values in the projection matrix of a linear
DR method, or the unknown position of points in an LD space of a nonlinear
DR method are represented as random variables drawn from parameterized
probabilistic distributions (Murphy, 2021). Many well-known machine learning
methods can be considered as probabilistic models (Khan and Rue, 2021). We
can always find (or formulate) the corresponding probabilistic model for a wide
range of machine methods, from simple logistic regression model (Friedman
et al., 2001, Chap. 3) to complex deep neural network (Wilson and Izmailov,
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2020). Standard unsupervised DR methods like PCA and MDS both have the
corresponding probabilistic versions, which are the center topic of this chapter.

We will now put more focus on describing the problem rather than finding
or designing a method to solve the problem. In general, explicitly the domain
knowledge can be used to construct a probabilistic model that explains the
observed data (Bishop, 2013). A model is made up of a set of assumptions,
expressed in a precise mathematical form (Winn and Bishop, 2018). Probabilistic
theory gives us a formal language to describe the relationship between the
unknown variables we need to find and the observed variables we can observe
through the input data. The mapping from hidden variables to the observed
quantities is described through a generative process. By carefully choosing the
variables and their corresponding probabilistic distributions, as well as defining
an appropriate generative process, and quantifying how the real data match the
defined model, we can understand how the observed data are generated. Thanks
to the ability to fully control the model and the generative process, we can
integrate the users’ constraints into the model to discover how the constraints
affect the output of the model.

A model is often parameterized by the parameters that characterize the
probabilistic distributions of the variables. Once having a defined model, the
next step is to measure how well this model describes the observed data, which
is quantified by a likelihood function. The likelihood function is called the
likelihood of the parameters given the data (MacKay, 2003). The name of this
function suggests that it measures how likely the parameterized model reflects
the observed data. Naturally, we expect to find a set of model parameters that
maximizes this likelihood. This is the basic idea of the maximum likelihood
estimation (MLE). Until now, we see two important steps in probabilistic
modeling. First, we have to posit a probabilistic model using the language
of random variables drawn. We then try to infer the parameters of these
underlying probabilistic distributions. The inference step is often done by using
MLE, MAP (maximum a posteriori), or other advanced methods like variational
inference (VI) or Markov chain Monte Carlo (MCMC).
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5.1.2 Probabilistic DR Methods

Various basic DR methods like PCA and MDS have corresponding probabilistic
versions. For example, probabilistic PCA (PPCA) (Bishop, 1999; Tipping and
Bishop, 1999) is a typical example of latent variable models that formulates
a generative process for mapping a latent point in an LD space to a point in
an HD space. The inverse mapping of this model can be used to infer the
latent position given the observed data in the HD space. That is exactly the
problem of PCA, however, rather than focusing on the construction of the
projection matrix, we focus on how the data are generated through a noisy
linear mapping. More details of PPCA and our extended interactive version of
PPCA will be presented in Section 5.4.1. Another example, probabilistic MDS
(PMDS) (MacKay, 1983; MacKay and Zinnes, 1986; Zinnes and Griggs, 1974;
Zinnes and MacKay, 1983) solves the same distance-preserving problem of MDS
while producing an LD configuration of the HD data. However, this model does
not measure the distortion between the pairwise distances in the LD and HD
space but tries to model how the pairwise distances are generated. The PMDS
model reformulates the distance preservation problem as an inference problem.
It learns the latent position of points in such a way that the observed input
distances look likely to be generated from the model. Details about this model
and our proposed interactive extension will be presented in Section 5.3.2.

The PPCA and PMDS models are two examples of basic latent variable
models, which focus on the representation of the unknown position of points in
an LD space. More complex probabilistic models designed for dimensionality
reduction tasks are also introduced. In opposite of PPCA, a linear latent
variable model, generative topographical mapping (GTM - (Bishop et al., 1998))
is a nonlinear latent variable model used mainly for visualization tasks. The
nonlinear mapping (from the data space to the latent space) is obtained through
a set of basic functions that are similar to the kernels in the kernel meth-
ods (Hofmann et al., 2008). This model defines an explicit density of the data
by a constrained mixture of Gaussian (Hinton et al., 1991), in which each
Gaussian center is related to the position of latent points via the nonlinear
mapping function. Another well-known nonlinear probabilistic model is the
Gaussian process latent variable model (GP-LVM - (Lawrence, 2005)). This
model is strongly related to not only nonlinear probabilistic models (GTM,
PPCA, and factor analysis) but also classical kernel PCA and MDS methods.
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As in PCA, we need to define a linear mapping function (which is corrupted by
noise in PPCA) from the LD space (latent space) to HD space (data space).
In GP-LVM, this mapping function is not restricted to be linear and can be
learned automatically. Gaussian process arises as a natural solution since it is
a specific kind of probabilistic model that defines distributions over function
spaces (Rasmussen, 2003, Chap. 1, 2). Instead of defining/choosing the basic
functions (kernels) as in GTM, GP-LVM can learn both linear and nonlinear
kernels that produce a flexible mapping function.

In the scope of this thesis, we do not focus on the over-complex models like
GTM or GP-LVM, but we aim to model both the data and the constraints
given by users by a simple and intuitive model. For that reason, we develop a
general framework that allows integrating users’ constraints directly into any
probabilistic DR models. We demonstrate the application of this framework
by applying it to the original PPCA and PMDS model to derive two new
interactive methods, which are detailed in the next section.

5.2 Proposed Unified Probabilistic DR Framework
with Constraints

The main idea of our proposed framework for integrating fixed-position con-
straints into any probabilistic DR method is based on a concept of the infor-
mative prior. Basically, the prior knowledge of users that are represented in the
form of fixed-position constraints is encoded into the prior distributions of the
probabilistic model. Therefore, the constraints can be integrated through by the
choice of the prior distributions and the way we modify these priors to encode
the users’ feedback. Before going into details of the constraint integration, let
us break down the important components of a probabilistic model.

5.2.1 General Workflow for Probabilistic Modeling

A general workflow for probabilistic modeling is summarized in Figure 5.2.
Mathematical notations corresponding to the quantities that appear in each
step in this workflow are shown on the right.

The first step is to analyze the problem in order to describe formally the
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Figure 5.2: The general workflow for probabilistic modeling and integrating fixed-
position constraints. The corresponding mathematical notations for the quantities
aprear in each step are summarized on the right. Our contribution for the constraint
integration lies on the block (1), which is detailed in Section 5.2.2. The block (2)
involves in defining a generative process for each particular model, which is explained
through two derived methods in Section 5.3 and Section 5.4, respectively.

problem in a probabilistic language (using the notations of probabilities and
distributions). In the context of a dimensionality reduction problem, under
the viewpoint of a probabilistic approach, we consider the desired embedding
consisting of unknown points represented by latent variables in an LD latent
space. The input data are represented by observed variables in an HD space.

The second step is to identify all the unknown quantities, i.e., all the latent
variables. For example, a variable that represents the position of a point in
the LD latent space is called the latent position variable. Besides, we can have
other latent variables that control the distributions of other quantities in the
model. All these latent variables, including the latent position variables are
denoted as θ.

The third step is to define prior distributions for the latent variables. These
prior distributions describe our assumptions about the value of each variable.
For example, the latent position variable can be modeled by a multivariate
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standard normal distribution. Since the position of a point can be represented
by a vector of real values, using a normal distribution to represent real values
is a reasonable choice. Indeed, the statistical data show that the IQ scores, the
blood pressure, the height of (a subset of) the population, (which are all real
values) follow the normal distribution (Spiegelhalter, 2019). Our contribution is
to integrate the fixed-position constraints into these prior distributions, which
will be detailed in the next section.

The fourth step is to define a generative process to map the point from an
LD latent space to an HD space. Simply speaking, we want to represent a point
xi in an HD space as a function f(·) of the corresponding latent position variable
and other latent variables in the model. This function can be a linear mapping
corrupted by noises like in the PPCA model or a complex nonlinear mapping like
in the PMDS model. By manipulating the probability distributions of different
variables involved in the generative process, we can find out the conditional
probability of the observed variable given the latent variables p(xi | θ).

The fifth step comes naturally when we factorize the model of the whole
dataset into the likelihood function involving each individual data point as

log p(X | θ) =
N∑
i

log p(xi | θ). The likelihood function is indeed a function

of all unknown quantities that tell us how likely the observed data can be
generated given particular sampled values for the unknown quantities. For that
reason, if we maximize this likelihood, we can find an estimation for the set of
latent variables that explain the observed data the best.

However, MLE does not use the prior distributions. In the sixth step,
the unknow quantities are estimated using the maximum a posteriori (MAP)
algorithm. The set of latent variables is inferred as

θMAP = arg max
θ

log p(θ |X)

∝ arg max
θ
{log p(X | θ) + log p(θ)}.

(5.1)

The log-prior appears in the above equation indicating that we take into account
the prior knowledge when defining the model. This quantity also encodes the
users’ constraints and thus can be used to regularize the model to respect the
input constraints. The optimization problem in Equation 5.1 can be solved
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efficiently by a gradient-based algorithm like the standard gradient descent
algorithm or Adam algorithm (Kingma and Ba, 2015). It should be noticed
that the complexity1 of the gradient-based algorithm depends on the number
of parameters. For the specific latent variable models in this chapter, the
number of parameters in vector θ is proportional to the number of data points.
Therefore, the complexity of the gradient update is O(N). Let us assume the
complexity for calculating the log posterior log p(θ | X) and its gradient is
O(f(N)) > O(N). The update loop of a gradient descent procedure with T
iterations is summarized in the following pseduo-code. The complexity of the

1 for iter ← 1 to T do

2 Calculate the log posterior log p(θ |X). // Complexity O(f(N))

3 Calculate the gradient ∇θ log p(θ |X). // Complexity O(f(N))

4 Update the model parameters with a learning rate η:
θ = θ − η∇θ log p(θ |X). // Complexity O(N)

5 end

whole process is T (O(f(N)) +O(f(N)) +O(N)) = O(Tf(N)). We keep the
factor T since in practice, we often need hundreds of iterations to converge to the
optimal solution, which is a considerable number in the case of a medium-sized
dataset. In the following section, we will analyze the complexity O(f(N)) of
the log posterior of each concrete model.

In our framework, we propose to use this optimization-based approach to
solve the inference problem. In fact, the inference step in a probabilistic model
can be tied to the modeling step. For example, the prior distributions can
be chosen to be in the same family with the likelihood (which is called the
conjugate prior) in order to make the posterior distribution have a closed-form
solution. We opt to use a general (gradient-based) optimization procedure to
allow our framework to work with any probabilistic model without modifying
the inference algorithm. Thanks to this convenient property, we do not have
to focus on the optimization aspect for each model. Instead, we spend time

1When analyzing gradient-based optimization algorithms, we usually care about the
convergence analysis. For example, the convergence of Adam and similar adaptive methods
are proved to be bounded (Kingma and Ba, 2015) and thus gradient-based methods are
guaranteed to converge. We discuss the computational complexity in order to see if the
proposed methods are fast enough to run in an interactive context.
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and effort on the modeling step to adapt well-known DR models to work with
fixed-position constraints.

The last step is to criticize and evaluate the model. The result of our frame-
work is an estimation of latent position for the points in an LD space that reflect
the users’ input constraints. Section 5.5 shown how to assess quantitatively
and qualitatively the visualization results produced by our interactive methods.
Moreover, this workflow is an iterative process, where we can turn back to
the beginning of the modeling to redefine the prior distributions. Users when
interacting with the model can also provide different sets of feedbacks and
observe the corresponding results in an interactive loop.

The above framework can work with different kinds of probabilistic DR
models. In Figure 5.2, the blue block (2) is tied to each particular DR model.
Section 5.3 and Section 5.4 are devoted to explain the nonlinear PMDS and
the linear PPCA models, as well as their interactive versions derived from our
framework. The core idea for constraint integration through prior distribution
in the orange (1) in Figure 5.2 will be detailed below.

5.2.2 Constraint Integration using Informative Prior

In our approach using probabilistic latent variable models, we have to specify
the latent position variables that represent the position of points in the LD
space. Each observed data point in the HD space has one corresponding latent
variable. We can control each particular latent variable through its prior dis-
tribution. As discussed above, the latent position of a point can be modeled
by a multivariate normal distribution. For example, in a visualization task, we
model the unknown position of points in a two-dimensional space.

Each latent position variable is represented
by two Gaussians (corresponding to its two
dimensions) as shown in the figure on the right.
Each Gaussian has different means and has the
same large variance to model the uncertainty
about the position of the point.

105



CHAPTER 5. INTERACTIVE PROBABILISTIC DR MODELS

If users have prior knowledge about the
position for this point, they can move it to
the desired position in a 2D plane. The two
new coordinates for this point are recorded and
encoded as the new means for each Gaussian of
the two latent dimensions.

Since the exact location of points in the latent space is unknown, each
dimension of this point can take any real value, or in other words, µi can
be drawn from a multidimensional uniform distribution U(a, b),with a, b ∈
(−∞,+∞), for example. However, this does not give us any useful information
about the unknown location, and thus this uniform distribution is also called
an uninformative prior. In contrast, this location variable can be modeled by a
more informative prior, such as a multivariate standard normal distribution,
a reasonable choice for the point in a vector space. Learning the model, as
shown in Equation 5.1, involves evaluating the log prior. In the case of an
uninformative uniform prior (in a finite range), the log prior is a constant and
does add any information to regularize the log-likelihood. In the case of an
informative prior such as a standard normal, the log prior is a function of latent
variables, which plays a role as a regularization term in the objective function.

Notice that, when the position of a point is unknown, the variances of the
corresponding Gaussian are used to capture the uncertainty. When the point
is fixed by users, the uncertainty about its position is reduced. However, we
also set a small variance around each new coordinate to indicate the certainty
in the feedback of users. Figure 5.3 show an overall view of the modified prior
distributions for every point indicated by users. The common assumption about
the independence of the latent position variables allows us to encode the fixed
position of different points at the same time.

In our framework, after the step of defining prior distributions, there is
no difference between the model with or without users’ interaction. Since the
users’ feedback is integrated into the prior distributions in a general form, the
modified prior and the original (non-modified) are treated in the same way.
The inference step is thus unchanged for different models and different sets of
prior distributions. In order to demonstrate how this framework works with
different probabilistic DR models, we use two well-known DR models in this
framework to derive their interactive versions.
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Figure 5.3: Idea of modifying prior distributions for the points indicated by users.

5.3 Concrete Example 1: PMDS Model and interac-
tive PMDS

Multidimensional Scaling (MDS) refers to a family of techniques that transform
the information in the proximities between N data points in the HD space into a
configuration of N points in an LD Euclidean space (Borg and Groenen, 2005b,
Chap. 3). In the metric MDS problem, the proximities arise from a metric
space, i.e., they can be calculated using the Euclidean distances in the HD space.
The traditional metric MDS method solves this problem by minimizing the
stress defined as a residual sum of squares of the distortions between all pairs of
distances in the low- and high-dimensional spaces (Kruskal, 1964a; Torgerson,
1952). In our proposed framework, we consider a probabilistic approach for
solving this distance preserving problem. When the probabilistic MDS model
(PMDS) (Hefner, 1958; MacKay and Zinnes, 1986) is used in our framework, we
have a concrete method called interactive PMDS (iPMDS) (Vu et al., 2021c).

107



CHAPTER 5. INTERACTIVE PROBABILISTIC DR MODELS

5.3.1 Probabilistic Multidimensional Scaling

We can think of Probabilistic Multidimensional Scaling (PMDS) as a proba-
bilistic formulation for solving the metric MDS problem. The foundation of
this formulation started from a classical Hefner distance model (Hefner, 1958),
which is revised in many applications such as in geology (MacKay, 1983), in
economics (MacKay and Zinnes, 1986), or in psychology (MacKay, 1989; Zinnes
and Griggs, 1974; Zinnes and MacKay, 1983). In the PMDS model, the focus
is put on describing the problem. We will first describe the characteristics of
the pairwise distances, then formulate the distance-preserving problem using
the distribution of distances found in the first step. Even though this model
was widely used in statistical modeling, it was often introduced in purely math-
ematical terms. Our contribution in this section is to reveal the intuitive idea
of this model in a visual form and highlight the connection between a distance
model and the dimensionality reduction problem of MDS.

Hefner Distance Model

In statistics, when studying random variables, the standard analysis is to find
what are the distributions of these variables. Hence, in order to characterize
the Euclidean distances between any pair of data points in a vector space, we
may think about the distribution of these distance values.

Supposing that each point zi = [zi1, . . . , zir] lies on an r-dimensional space.
(These notations are used to keep consistency with the main references for
the text in this section (Hefner, 1958; MacKay and Zinnes, 1986; Zinnes and
MacKay, 1983).) If the two data points zi, zj are determined, that means we
can observe or measure every dimension of each data point, the Euclidean

distance between them is calculated as Dij =
√∑r

k=1 (zik − zjk)2. However,
if the points zi, zj are not fully observed or measured, that means we cannot
access the dimension zik, zjk, how can we estimate the distance Dij? Another
way to ask this question is how to characterize the Euclidean distance Dij

(or the squared distance D2
ij) between any two points zi, zj without knowing

exactly the coordinate of each data point?

A short answer: the standardized squared distance is a random variable
that follows a noncentral chi-squared distribution, characterized by a degree of
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freedom and a noncentrality parameter (Hefner, 1958). Knowing the distribution
of this variable helps us to construct a model for describing the distance-
preserving problem. The rest of this section details the construction of this
distribution.

Figure 5.4: Hefner’s representation of a data point in a vector space.

For each data point zi, Hefner (1958) proposed to model each unknown
coordinate zik by a simple one-dimensional Gaussian located at the position
µik with a variance σ2

i . In that way, a multidimensional point zi = [zik]rk=1 can
be represented by a multivariate Gaussian where each element is a Gaussian
N (µik, σ

2
i ). The distribution of each coordinate differs from each other at the

location (the mean parameter µik) but shares the same2variance σ2
i . Since the

exact coordinates of zi is unknown, we can assume that the expected coordinates
can be captured by the location variable µi = [µi1, . . . , µir]. Figure 5.4 shows
a visual schema for the representation of the unknown points in the Hefner
model. The variance σ2

i (also called the variability parameter) represents the
uncertainty about the exact location (in every direction) of the corresponding
point zi. Different points have different variances.

Let us consider the squared distances D2
ij . The goal of the Hefner model is

to characterize this squared distance by finding how the scalar values of this
distance are distributed. In order to do that, we have to answer two questions.
(1) How to calculate the (squared) Euclidean distance between two points zi, zj
that are represented by the multivariate Gaussians as shown in Figure 5.4? (2)

2Each dimension of a point can have different variances. However, it is not necessary since
later we will normalize the coordinates to make them to have unit variance.
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Supposing that we can calculate the pairwise distance based on the parameters
µi,µj , σ

2
i , σ

2
j , how to find an appropriate distribution for this distance?

Figure 5.5: Illustration for a distance model. Two points zi and zj are represented
by their locations µi,µj and their variances shown by the contours around their
locations. The distance between zi and zj is a random variable that can be estimated
by sampling the first point from the distribution of zi, sampling the second point
from the distribution of zj and calculating the Euclidean distance between the two
sampled points. The dotted lines represent the sample distances. The Hefner distance
model (Hefner, 1958) characterizes the distribution of the sample distances represented
by these dotted lines.

In this formulation, the distance Dij is a random variable since it can be
calculated from the sampled points from the two multivariate Gaussian distri-
butions of zi, zj . More specifically, we first sample a point z̃i from N (µi, σ

2
i ),

and then sample a second point z̃j from N (µj , σ
2
j ). A sampled distance is the

Euclidean distance d(z̃i, z̃j) between these two sampled points. This sampling
process is repeated many times. Figure 5.5 illustrates these sampled distances
for two points in a 2D space (r = 2).

The squared term (zik−zjk)2 arises in the calculation of the squared distance
D2
ij . Since each element zik, zjk in this term is a Gaussian random variable, the

difference zik − zjk is also a Gaussian random variable:

zik ∼ N (µik, σ
2
i ) (5.2a)
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zjk ∼ N (µjk, σ
2
j ) (5.2b)

=⇒ zik − zjk ∼ N (µik − µjk, σ2
i + σ2

j ). (5.2c)

We have now observed that the squared distance D2
ij is a sum of squared

terms (zik − zjk)2, where each term (when being standardized) follows a normal
distribution. The following classical results in statistics define the distribution
of the sum of squares of normal random variables.

Formula 1. Let {t1, . . . , tk, . . . tr} be r independently and normally distributed
random variables with mean µk and unit variance σ2

k = 1. A new random
variable t =

∑r
k=1 t

2
k is distributed by a noncentral chi-squared distribution

χ2(r, λ) with r degrees of freedom and a noncentrality λ =
∑r

k=1 µ
2
k.

tk ∼ N (µk, σ
2
k = 1)wwww� t = t21 + · · ·+ t2k + · · ·+ t2r

t ∼ χ2

(
r, λ =

r∑
k=1

µ2
k

)
.

Here is the analogy in our distance model to the variables in this formula:
the squared distance variable D2

ij plays a role of t, where each of r elements
(µik − µjk) plays a role of tk. The only obstacle preventing us from applying
this formula is that, each variable tk is required to have unit variance while the
corresponding normal variable (µik − µjk) has variance of σ2

i + σ2
j . In order to

transform any normal variable to have unit variance, we apply the following
standardization formula.

Formula 2. If x is a normal random variable with mean µ and variance σ2,
then the distribution of

x− µ
σ

will have a standard normal distribution (zero
mean and unit variance):

x ∼ N (µ, σ2) =⇒ z =
x− µ
σ
∼ N (0, 1). (Formula 2a)

Applying this formula for standardizing a normal random variable without
subtracting the mean, we obtain the following consequence: If x is a normal
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random variable with mean µ and variance σ2, the random variable z =
x

σ
is

normally distributed with mean µ and unit variance:

x ∼ N (µ, σ2) =⇒ z =
x

σ
∼ N

(µ
σ
, 1
)
. (Formula 2b)

We now can apply Formula 2b for the distribution of (µik − µjk) in Equa-
tion 5.2c with σ =

√
σ2
i + σ2

j :

zik − zjk ∼ N (µik − µjk, σ2
i + σ2

j )

zik − zjk√
σ2
i + σ2

j

∼ N

 µik − µjk√
σ2
i + σ2

j

, 1

 .
(5.3)

From this result in Equation 5.3, applying Formula 1 with the following
substitutions tk =

zik − zjk√
σ2
i + σ2

j

and µk =
µik − µjk√
σ2
i + σ2

j

, we obtain

r∑
k=1

(zik − zjk)2

σ2
i + σ2

i

∼ χ2

(
r, λ =

r∑
k=1

(µik − µjk)2

σ2
i + σ2

i

)
(5.4a)

=⇒
D2
ij

σ2
ij

∼ χ2

(
r,
d2
ij

σ2
ij

)
, (5.4b)

where d2
ij =

∑r
k=1(µik − µjk)2 and σ2

i + σ2
j is denoted as σ2

ij for short. Hence,

the standardized squared pairwise distances
D2
ij

σ2
ij

follow a noncentral chi-squared

distribution with r degrees of freedom and a noncentrality parameter λ =
d2
ij

σ2
ij

.

This distribution is parameterized by µ = [µik] with i = 1..N and k = 1..r, and
σ2 = [σ2

i ] with i = 1..N .

The result from Equation 5.4 gives us the probabily distribution of
D2
ij

σ2
ij
. An

additional transformation is needed to obtain the target probability distribution
of Dij . Let us denote G the cumulative distribution function (CDF) of a

noncentral chi-squared distribution of
D2
ij

σ2
ij
, and F the CDF of the target quantity
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Dij . Since the CDF of a noncentral chi-squared is strickly increasing on its
support [0,+∞), the change of variable formula3 gives us

F (Dij) = G

(
D2
ij

σ2
ij

)
. (5.5)

Taking the derivative of these CDFs gives us the probability density function
(PDF)

f(Dij) =
2Dij

σ2
ij

g

(
D2
ij

σ2
ij

)
, (5.6)

where g is the PDF of a noncentral chi-squared random variable.

For complete details, the PDF g(·) of a random variable x distributed
by a noncentral chi-squared distribution (with a degree of freedom k and a
noncentrality parameter λ) is defined as

g(x; k, λ) = χ2(r, λ) =
1

2
exp
−(x + λ)

2

(x
λ

) k
4
− 1

2
I k
2
−1

(√
λx
)
, (5.7)

where Iν(y) is a modified Bessel function of the first kind of degree ν

Iν(y) =
(y

2

)ν ∞∑
i=0

(y2/4)i

i! Γ(ν + i+ 1)
. (5.8)

In summary, Hefner model characterizes the pairwise Euclidean distance in
an r-dimensional space by the density function f(Dij) defined in Equation 5.6.
This representation is used to construct the likelihood function in the PMDS
model for the distance-preserving problem.

Probabilistic Distance Preserving Model

In the Hefner model, the data points are assumed to lie on an r-dimensional
space where the pairwise distancesDij are constructed. This model also assumes
that the data are not fully observed, but we can measure the pairwise distance
between data points. That means the pairwise distance matrix D = [Dij =

3A graphical explanation for the change of variable rule for increasing functions can be
found at https://online.stat.psu.edu/stat414/lesson/22/22.2.
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d(xi,xj)] is available while the data points xi,xj are unknown. The forward
direction of calculating DN×N from the HD data is trivial. The backward
direction of inferring the configuration of N data points from D is much harder.
Using the Hefner model, we can model the unknown data points in a very
low-dimensional space (r = 2 or 3) in such a way that the pairwise distances
reconstructed from this space approximate the true measured/observed input
distances in D. This is exactly the problem of metric MDS.

Using Hefner model for describing pairwise distances, the construction of a
probabilitis MDS model (MacKay and Zinnes, 1986; Zinnes and MacKay, 1983)
is as follows.

1. As the true pairwise distances can be collected beforehand, they are called
observed variables Dij ∈ R.

2. As the original data points are unknown, each point zi is modeled by a
multivariate (r-dimensional) Gaussian located at the location µi ∈ Rr

with a scalar variance σi ∈ R.

3. We expect to reconstruct the true distances DN×N = [Dij ] by describing
the distribution of these distances by the PDF defined in Equation 5.6.
That means we expect to approximate the true input distance Dij by
the distance dij =

√∑r
k=1(µik − µjk)2 in the LD space through the

relationship defined in the probability distribution in Equation 5.4.

4. Finally, the likelihood function p(Dij |dij) tells us how well the approx-
imated distance dij matches the observed distance Dij . The locations
and variances (µ,σ2) are parameters of the model and are estimated
by maximum likelihood. As a result, the locations µ ∈ RN×r are the
representation of N points in an LD space.

This model is used in the modeling step of our framework, which leads to an
interactive model called interactive PMDS (iPMDS).

5.3.2 Interactive PMDS Model

The unified framework in Section 5.2 provides a mechanism to integrate users’
constraints on fixed-position into the prior distributions. When the PMDS model
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Figure 5.6: Graphical model for the proposed latent variable interactive probabilistic
MDS model. The latent variables µi,µj are Gaussian random variables with mean µ0

and variance σ2
0 . The fixed position of points indicated by the user are also encoded in

the prior of µ using the specific positions pfix and σ2
fix. The variance parameters of

each point σi, σj are hyperparameters of the model. The observed variable Dij models
the distance between the points sampled from two Gaussian distributions defined
above. In a dataset of N instances, N(N − 1)/2 unique pairs are considered.

is used in this framework, we have to identify what are the prior distributions
needed to modify to encode the fixed-position constraints. More specifically,
we need to identify the latent variables in the PMDS model for which we can
modify their priors. As a result, we introduce an interactive PMDS (iPMDS)
model, which can be used as an interactive version of MDS that can handle
uncertainty in the user feedback. A precise form of the likelihood function with
the modified prior in iPMDS is also constructed and compared to the objective
function of the original metric MDS.

iPMDS: Model Construction

The PMDS model defined in Equation 5.4 is a standard way to explain how the
distance Dij relates to the latent variables µi,µj . However, in complex models,
a graphical representation is usually used to present the relationship between
variables. This representation is called probabilistic graphical model or Bayesian
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network (Jordan, 1998). The relationships represented in graphical models are
the dependencies between variables and the independent assumptions. Examples
for each kind of relationship will be given below. A graphical model for iPMDS
is shown in Figure 5.6. In a graphical model, random variables are represented
by cycles, and arrows indicate the dependent relationship.

From bottom to top of this figure, the first shaded node Dij is an observed
variable represent the pairwise distance. Assuming that the pairwise distance is
symmetric, i.e., d(xi,xj) = d(xj ,xi), there are thus N(N − 1)/2 distinct pairs
corresponding to Dij . The plate notation represented by a rectangular around
this variable indicates that this variable is repeated N(N − 1)/2 times. Tracing
to source of the arrows pointing to this observed variable, we see two plates of
N repeated sets of variables. This is an explicit way to describe that a pairwise
distance Dij comes from two individual unknown points zi, zj . Each unknown
point is represented by a latent variable shown in an unshaded node µi or

µj and the corresponding variance parameters σ2
i or σ2

j . It should be noted
that the unknown points zi, zj are not shown in the graphical model since
these points are encapsulated in the variable Dij according to the formulation
in Equation 5.4. (For details, this equation describes that the standardized
squared distance follows a noncentral chi-squared distribution, which in turn
is a sum of squared normal distributions of the components in the unknown
points zi, zj .)

The model’s parameters are represented by filled black dots in the
graphical model. They are not inferred (not learned) but are fixed in the model
definition. The variances σ2

i , σ
2
j represent the uncertainty about the location of

points. In this model, we opt to fix the variances (σi = σj = constant, ∀i, j ∈
1..N) instead of modeling them as latent variables for a sake of simplicity.
Moreover, fixing these parameters helps us not to be confused between the
model’s uncertainty about the location of each point and the users’ uncertainty
in their feedback.

The unknown points zi are modeled by the location latent variables µi
and the variance parameters σi in an LD space. The traditional Hefner model
only requires zi to be a multivariate Gaussian in order to apply Formula 1 for
constructing a noncentral chi-squared distribution for the pairwise distance. The
location latent variable µi in its turn is also modeled by another distribution,
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which is called a prior distribution. For example, in the graphical model in
Figure 5.6, the relationship

µ0

σ0

µi Dij encodes this hierarchy:

µi ∼ N (µ0 = 0r,σ0 = 1r),where µi = [µi1, . . . , µik, . . . , µir]
T

D2
ij

σ2
ij

∼ χ2

(
r,
d2
ij

σ2
ij

)
,where d2

ij =

r∑
k=1

(µik − µjk)2

Using this model allows us to integrate the fixed-position constraint directly
into the prior distribution. Let us suppose that users indicate the positions for
several points of interest. The ensemble of fixed positions is denoted by pfix.
The users’ uncertainty about the position of the fixed points is also captured
in a parameter called σfix. Each fixed point can also have a variance, which
captures the uncertainty in the users’ feedback. A small value of variance
indicates a low uncertainty in the users’ feedback, i.e., users are sure about
their fixed location. We assume that every fixed point has the same level of
uncertainty for simplifying the model. In summary, the iPMDS model describes
the prior distributions of the latent position variables as

pfix
σfix

µ0

σ0

µi µi ∼

{
N (pi, σ

2
fix1) if the ith point is fixed,

N (0,1) otherwise.

(5.9)

iPMDS: Model Inference

After defining the model, the next step is to do inference to estimate the unknown
quantities represented by latent variables. Given the observed data that are the
observed pairwise distances D = [Dij ] indexed by (i, j), we want to estimate
the latent positions in µ = [µi], i = 1..N . This can be done by maximizing the
log posterior log p(µ | D) ∝ log{p(D | µ)p(µ)} = log p(D | µ) + log p(µ). It
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should be noted that the fixed-position constraints are encoded into the prior
distributions µi of the related points as in Equation 5.9.

Now let us show another usage of the graphical model in Figure 5.6. The
plate notation is used not only to represent the variables that are repeated many
times but also to introduce an indenpendently identically distributed assumption.
For the prior distribution of µi,µj , the two plates of N variables indicates
that each of N latent variables are independently distributed. In general, this
assumption helps us to factorize the log prior as

log p(µ) =
∑
i

log p(µi | µfix, σ2
fix)︸ ︷︷ ︸

fixed points

+
∑
i

log p(µi | µ0, σ
2
0)︸ ︷︷ ︸

other untouched points

. (5.10)

We can also rewrite this log prior in a compact form without indexing exactly
the fixed points as

log p(µ) =

N∑
i=1

log p(µi | µ0,µfix, σ
2
0, σ

2
fix). (5.11)

Similarly, the plate of N(N − 1)/2 observed variables Dij indicates that all the
pairwise distances are independently distributed, that allows us to factorize the
log likelihood function as

log p(D | µ) =
∑

1≤i<j≤N
log p(Dij | µi,µj , σ2

i , σ
2
j ). (5.12)

The final log posterior, which is our loss function, is expanded as

L(µ) =
∑

1≤i<j≤N
log p(Dij | µi,µj , σ2

i , σ
2
j )

+ 2(N − 1)

N∑
i=1

log p(µi | µ0,µfix, σ
2
0, σ

2
fix).

(5.13)

Each of N location variable µi appears in N−1 pairs connecting to other points
µj . For each observed variable Dij , there are thus two related location variables
µi,µj . That gives the factor of 2(N − 1) for the prior term in Equation 5.13.

In this loss function, the log likelihood is calculated from N(N−1) pairs Dij
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while the log prior is calculated from 2N points µi,µj . Since these two terms
are not well-calibrated, the optimization can be unstable and hard to converge.
However, the formulation in Equation 5.13 is elegant in such a point that, if
we divide both two terms by a constant N(N − 1), well-calibrated terms will

appear. The first term becomes
1

N(N − 1)

∑
1≤i<j≤N

log p(Dij | µi,µj , σ2
i , σ

2
j ),

which is the average log likelihood (since there are N(N − 1) distinct pairs Dij).

The second term becomes 2
1

N
����(N − 1)

����(N − 1)

N∑
i=1

log p(µi | µ0,µfix, σ
2
0, σ

2
fix), which

is two times the average log prior (of N data points). Therefore, using the
average instead of the sum in practice helps us obtain stable results.

For a complete reference, the log likelihood in Equation 5.13 is derived from
the PDF of a noncentral chi-square in Equation 5.7 in the case where r = 2 as

log p(Dij | µi,µj , σ2
i , σ

2
j )

= log
(Dij

σ2
ij

)
− 1

2

(Dij − dij)2

σ2
ij

+ log IE0

(Dij dij
σ2
ij

)
,

(5.14)

where IE0(.) is the exponentially-scaled modified Bessel function of zero-degree,
which ensures the numerical stability. When σ2

ij → 0, maximizing the log
likelihood in Equation 5.14 is similar to minimizing the stress (Dij − dij)2 of
MDS. As such, MDS is a special case of our method iPMDS when σ tends to
zero and the interaction is not used.

As observed in this equation, every term involves only one specific pair (i, j)

and is evaluated as real value functions. Indeed, Dij is the observed distance
coming from the input data (a pairwise distance matrix), dij is a scalar variable,
and σ2

ij is a scalar parameter. The function IE0(.) is thus a real function, which
is implemented in terms of convergent series4. Therefore, the log likelihood in
Equation 5.14 has an O(1) complexity. Similarly, the log prior of a 2D gaussian
with a diagonal covariance matrix (for the latent variables µi,µj) also has an
O(1) complexity. The complexity of the log posterior of the whole dataset of
N(N − 1)/2 pairs is thus O(N2).

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ive.
html
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5.4 Concrete Example 2: PPCA Model and interac-
tive PPCA

Similar to the iPMDS model, based on the probabilistic PCAmodel (PPCA) (Tip-
ping and Bishop, 1999), we introduce an interactive version called interactive
PPCA (iPPCA) (Vu and Frénay, 2019). In our proposed framework, we can
use several probabilistic DR models, and the fixed-position constraints will be
integrated into the prior distributions of the latent position variables. In this
section, we introduce the PPCA model, a basic probabilistic DR model with
the characteristics and the modeling process that are different from the PMDS
model introduced before. However, the constraint integration remains the same
under the definition of modified prior distribution in our framework.

5.4.1 Probabilistic Principal Components Analysis

For a quick introduction to the probabilistic PPCA model, we will first introduce
how this model is useful, and why we need such kind of model. Then, we present
a visual illustration of the generative process in PPCA in order to explain how
it works. Lastly, a formal formulation using a graphical model is introduced for
a complete model definition.

As introduced in Section 2.2.1, PCA is based on the eigendecomposition
procedure to find its principal components, which are the dominant eigenvectors.
On one hand, when the number of data points is larger than the number of
features, we can construct the covariance matrix and apply the eigendecomposi-
tion procedure to it. On the other hand, when the number of features in the
dataset is large, the covariance matrix is thus too large. An alternative solution
is to decompose the centered data matrix using SVD. However, when both
the number of features and data points are too large, the eigendecomposition
solution is not suitable. In this case, we need an iterative solution to solve for
only the top k largest eigenvalues (and eigenvectors) instead of solving for all
of them. The probabilistic formulation of PCA uses the maximum likelihood
principle with EM algorithm to solve this problem efficiently (Tipping and
Bishop, 1999). Moreover, the original PCA does not work with missing data
(missing feature values of each data point). PPCA treats all the unknown
quantities as latent variables and thus can naturally deal with this kind of
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missing data. PPCA is also useful when being combined in a probabilistic
mixture model (Bishop, 1999; Tipping and Bishop, 1999) for soft-clustering,
data compressing, and visualization.

The goal of conventional PCA is to find a projection matrix W ∈ Rp×q

to map the data X ∈ RN×p in an HD space to an embedding Z ∈ RN×q in a
subspace of lower dimensionality. The projection matrixW is optimized in such
a way that the embedding preserves the variances in the data (Hotelling, 1933),
or equivalently, minimizing the reconstruction error ||X −ZW T ||2 (Pearson,
1901). Figure 5.7 shows an example for this viewpoint in a two-dimensional
space. The conventional PCA projects the 2D points (shown in blue dots) onto
the principal component that is the z axis. The projected points lie on this line,
such as the red cross. This linear projection is simple and efficient, but it is not
easy to understand the intuition behind the dominant eigenvectors that form
the projection matrix. Let us consider another way of mapping between the
high- and low-dimensional data.

Figure 5.7: Example of simple 2D data and its principal component (a line) on the 1D
space. We can project each 2D blue point onto this line to obtain an 1D representation
such as the red cross on the z axis.

PPCA: A viewpoint through a generative process

We take the same above example of points in a 2D space and call the projected
points as latent positions denoted by the variable z and the original points as
observed points5 denoted by the variable x. A probabilistic viewpoint of PPCA

5For a simple notation adapted for the example in a 2D space, we do not distinguish
whether the random variables are univariate (for z ∈ R) or multivariate (for x ∈ R2). They
are both denoted by lowercase letters.
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can be seen through these steps.

• The latent position z is drawn from a one-dimensional probability distri-
bution, called the prior distribution p(z).

• Our goal is to construct a distribution of the observed points x supposing
that we know the latent positions z. This probability distribution is
denoted as p(x|z), used to measure how likely we obtain a particular x
given a particular z.

• After having this model, the Bayes rule gives us a posterior distribution
p(z|x), which is used to find the latent positions of z after observing the
input data points x.

The main idea of the PPCA model is the way it describes how the data is
generated. A scalar value z̃ is sampled from the prior distribution p(z) and the
corresponding point x̃ in a two-dimensional space is then generated through
a random process. Since we do not have enough information to map a point
from an LD space to an HD space, we need to add some randomness into the
generative process. By capturing the characteristics of this random process (by
a mathematical model) and applying the Bayes’ theorem, we can do the reverse
process that maps the HD data into an LD subspace.

A step-by-step illustration for a generative process of this new viewpoint
is shown in Figure 5.8. First, a scalar value of z is sample from a prior
distributed p(z) in the one-dimensional space, that gives us a sampled value
z̃ ∼ p(z). Second, z̃ is mapped to a two-dimensional space through a linear
transformation with a projection vector ~w and a translation away from µ:

z̃ → µ+ z̃ ~w, with µ =

[
µ0

µ1

]
, ~w =

[
w1

w2

]
.

At this step, a scalar value z̃ is transformed into a 2D point via linear mapping
of vector ~w. It should be noted that this vector will be learned. Now we can
assume that this vector is the principal component of the data in a 2D space.
That means ~w represents the direction along which the data are spread out the
most. However, no information about other spreading directions of the data is
available. For that reason, at the final step, an isotropic noise ε ∼ N (0, σ21) is
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Figure 5.8: Generative process of PPCA.

added to the transformation:

z̃ → µ+ z̃ ~w + ε, where ε ∼ N

([
0

0

]∣∣∣∣∣
[
σ2 0

0 σ2

])
.

The mapped point can thus be any point sampled from an isotropic Gaussian at
the location µ+ z̃ ~w with a variance σ21 as shown as a blue cross in the last step
in Figure 5.8. In summary, the presented process allows us to sample a point x̃
in a 2D space given a sample z̃ in a 1D space. That means we can formulate
the distribution p(x|z) to describe the above linear mapping. However, we have
not seen how this generative process can construct the distribution of the whole
dataset like the cloud of blue points presented in the example in Figure 5.7.

PPCA: From a generative process to a latent variable model

Let us see what can be obtained if the above process is repeated many times.
The following series of plots on the right of the page show gradually a form of
the density of the variable x ∈ R2 given the sample of z ∈ R.
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As a result of the presented process, a sample z̃ is
mapped to a point in 2D located at the position
µ+ z̃ ~w with an additive Gaussian noise ε. The result
in the last step in Figure 5.8 is shown on the right
with all annotations removed to avoid clusters.

This generative process is repeated: another value
of z̃ is sampled and transformed to another location
in 2D. The isotropic Gaussian at each location is
blured (from high density at the center to low den-
sity outside, with the doted blue circle indicating
one standard deviation σ) .
When the Gaussians at the mapped points (5 sam-
ples on the right) overlap, we can observe the density
of the whole samples of x̃. Notice that we start from
the density of x̃ given a particular z̃. When we cre-
ate this density for different samples z̃, we will see
the general form of the density of x̃.

Now the process is repeated 10 times, an ellipse
annotation is put on top of the density suggests
that this density is also a Gaussian. This density is
p(x), which gives us a same picture as the density
of a cloud of points in Figure 5.7.

As a final result of the generative process, a density distribution of the
observed data p(x) in the above figures is represented by a multivariate Gaussian
located at µ with a covariance matrix determined by the projection vector
and the additive noise ε. This is another advantage of PPCA that can be
used as a density estimation or an outlier detection method. Thanks to the
elegant property of the linear Gaussian model, the posterior distribution p(z|x)

is also a Gaussian (Bishop, 2006, Sec. 2.3, Sec. 12.2). Hence, the maximum
likelihood estimation (MLE) of PPCA has an analytical solution for the unknown
quantities like the projection matrix and the variances. An iterative inference
algorithm like Expectation-Maximization is also applied for solving the MLE
problem for computational efficiency. However, in our proposed framework,
we do not rely on the closed-form solution of each particular model but solve
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the general maximum a posterior (MAP) by a gradient-based method (See
Section 5.2). After constructing the PPCA model, we will make it interactive by
integrating the users’ feedback on the position of fixed points into this model.

5.4.2 Interactive PPCA Model

Our framework is designed to transform the users’ feedback into fixed-position
constraints and integrate them into a probabilistic DR model. iPPCA (Vu
and Frénay, 2019) is an interactive method produced by this framework when
the PPCA model is used. The most important element in this method is the
encoding of constraints as an informative prior for the prior distribution of
latent position variables in the PPCA model. The latent variable zi ∈ Rq with
i = 1..N is a representation in an LD space of the corresponding data point
represented by the observed variable xi ∈ Rp in an HD space. Estimating
sampled values for the embedding ZN×q = [zi] in a 2D or 3D space (q = 2 or 3)
gives us a visualization of the observed input dataXN×p = [xi]. Without loss of
generality, we assume that the observed data X are centered (i.e., subtracting
the mean vector out of every data point). Since the latent position zi is
unknown, it can be modeled by a multivariate standard normal distribution
with zero mean and unit variance. When users know in advance the positions
for their point of interests, this kind of knowledge/feedback is encoded into the
prior distribution of the corresponding latent variable in the iPPCA model as

zi ∼

{
N (pi, σ

2
fix1) if the point is indicated by users,

N (0,1) otherwise.
(5.15)

Similarly to the iPMDS model introduced before, the prior distribution
of the latent variable is controlled by four parameters: a location µ0 = 0q, a
variance σ2

0 = 1q, together with the fixed position indicated by users µfix = pi,
and the uncertainty of the feedback σ2

fix. Whether the latent position zi is
touch by user or not, the generative process for generating the corresponding
observed variable xi is kept the same: xi ←Wzi + ε6. The whole process is
presented by the graphical model in Figure 5.9. For a complete model, details

6Notice that the input data are centered, the mean variable µ is thus ignored in the generic

mapping xi ←��
0

µ+Wzi + ε.
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for the projection matrix W and the noise ε are given below.

Figure 5.9: Graphical model for the proposed interactive PPCA method. Each of
N data points xi is represented by an observed variable in the shaded node. This
observed variable is generated from the corresponding latent position variable zi
through the process xi ←Wzi + ε. Two other elements involving in this generative
process are represented by the latent variables σ2 (controlling the additive noise)
and the projection matrix W (controlling the linear projection). The variances in
each value in the projection matrix in their turns are controlled by another latent
variable α. The latent position variable zi follows a Gaussian distribution with default
parameters µ0, σ0 if the ith point is not touched by the user. Otherwise, the fixed
location parameter µfix and the feedback uncertainty parameter σfix is used to control
the prior distribution of the fixed point.

The isotropic noise is a multivariate Gaussian in the data space Rp:

ε ∼ N (0, σ21p). (5.16)

Notice that different samples in the generative process are added with the same
noise ε. As shown in the previous example in Figure 5.8, this noise is controlled
by a variance σ2. Instead of fixing this noise variance, it can be modeled as a
latent variable and can be learned. We choose a LogNormal distribution (with
zero mean and unit variance) as prior for this variable to make sure that the
value of σ2 is always non-negative:

σ2 ∼ LogNormal(0, 1). (5.17)

The unknown projection W is a p × q matrix where each scalar element
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can be modeled by a Gaussian distribution. A convenient way to represent this
matrix is to model each of p rows wk ∈ Rq, k = 1..p by a multivariate Gaussian
with different variances for each of q latent dimension:

wk ∼ N (0,α1q), (5.18)

where α = [α1, . . . , αl, . . . , αq]. This unknown quantity in fact can be considered
as another variable that models the variance in each of q latent dimensions of
the values in the projection matrix. In order to learn (to infer from data) these
variances automatically, we can define a prior distribution for each of these
variances:

αl ∼ InverseGamma(1, 1). (5.19)

Based on the Gaussian rule for a linear model, when both the prior p(zi)
and the noise ε are Gaussians, the distribution of an observed variable xi given
all latent variables is thus a Gaussian:

xi | zi, σ2,W ,α︸ ︷︷ ︸
unknown quantities

∼ N (Wzi, σ
21p). (5.20)

After defining the prior distributions for all latent variables and the likelihood
function, our framework can handle the inference step by doing MAP with a
gradient-based optimization method. As a result, we can obtain the estimation
of the latent positions Z with the quantified uncertainty σ2 around each point,
as well as the projection matrixW with quantified variances α. The derivation
of the log posterior used for MAP estimation with the modified prior is the same
as the iPMDS model in Section 5.3.2. This log posterior for an individual data
point xi is dominated by the log likelihood (log PDF of N (Wzi, σ

21p)) and
the log prior of W , which has an O(pq) = O(p) complexity for q � p thanks
to the diagonal covariance matrix. The log posterior of the whole dataset is
factorized by N independent data points and thus has an O(pN) complexity.

5.5 Experimental Results

The evaluation of interactive methods is subjective since the result depends
on the interaction and the users’ feedback. We demonstrate the usefulness
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and several applications of our proposed framework via case studies. A similar
approach of evaluation with case studies is used with other interactive DR
methods like XGVis (Buja et al., 2001, 2008), V2PI-MDS (Endert et al.,
2011; Leman et al., 2013), V2PI-PCA (Endert et al., 2011), and User-guided
PPCA (House et al., 2015). We will define beforehand the goal and the task
that the user has to perform for each case study. iPMDS and iPPCA are two
concrete methods derived from our proposed framework. These two methods
are evaluated with the same case studies. In each case study, the user can use
our proposed interactive methods to move several points in order to manipulate
the visualization. Since different users can move the points in different ways,
our case studies use task-based scenarios to guide the users to move the points
intentionally to achieve the goal.

In each different scenario, we assess if the interactive method can give the
desired visualization and assess the visual quality as well as the interpretability
of the visualization. Another quantitative measure such as the MDS stress is
also used for the experiments with iPMDS. Three case studies are performed
with various datasets of different types and different sizes. Besides the case
studies, additional experiments to evaluate the proposed methods iPPCA and
iPMDS are detailed in Section 9.1, including a quantification of uncertainty for
each point with iPPCA, an interaction with iPMDS in the case of incomplete
data (i.e., missing pairs in the pairwise distance matrix).

The fixed-position constraints are constructed from the fixed points indicated
by users. Our framework proposes to model the users’ uncertainty in their
feedbacks via the hyperparameter σ2

fix, which is called the variance of fixed
points. In all case studies, this hyperparameter is fixed to a small value of 10−3

for both iPMDS and iPPCA models to indicate that users are certain about
their feedbacks. This small variance also keeps the fixed points close to the
indicated position to help identify these points before and after the interaction
easily. Therefore, one simple way to verify the correctness of our interactive
model is to assess if the indicated points are placed close to the user’s desired
positions in the visualizations. The effect of this hyperparameter when users
are not certain about their feedbacks will also be discussed later in Section 5.6.

iPPCA and iPMDS take different kinds of input. In our experiments, the
same datasets (or subsets of the datasets) are used for both two methods with
the same preprocessing step. With iPMDS, the Euclidean pairwise distances
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are calculated and used as input data. Due to the similar results are obtained
with these two methods, only the visualizations of iPMDS are presented in
this section. Similar results of iPPCA are left at the end of this chapter for
additional references.

5.5.1 Case Study 1: Interaction for Creating Transformation
Effect

This experiment is performed on a subset of 250 points of the first five classes
of the Digits dataset (Kaynak, 1995). Each data point is an 8×8 gray-scale
image of a hand-written digit.

Figure 5.10: iPMDS with a rotation effect when interacting with several images of the
Digits dataset.

The goal is to manipulate the visualization of this dataset in a simple way
to make a rotation effect. First, users can observe the initial visualization (of
iPMDS without any interaction) shown on the left of Figure 5.10. They can
then move several images in this visualization to indicate their intention: several
images of digit 4 are moved to the left edge and several images of digit 0 are
moved to the bottom edge. According to the annotated arrows in this figure,
we can expect that the whole visualization will be ‘rotated’ anti-clockwise,
following the direction guided by the moving points. iPMDS takes these fixed
positions and finds a new configuration for all other points as shown on the
left of Figure 5.10. In fact, iPMDS does not do a linear transformation to
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rotate the whole visualization, but it learns the new positions for every point
(including the points indicated by users) through an inference algorithm. The
new embedding shows a rotation effect as expected.

(a) The 2D map found by
the original metric MDS with
stress = 0.003.

(b) The 2D map result of iPMDS with stress = 0.041.
The position of Olympia and Washington, D.C. are
indicated by the user.

Figure 5.11: Alignment of US cities on a map using MDS (a) and iPMDS (b). The US
map (with the correct positions of 10 cities in green dots) is shown in background as
ground truth.

Another linear transformation effect can also be obtained via appropriate
fixed anchor points. Let us retake the motivating example of the configuration
of 10 cities in the US in Figure 5.1 at the beginning of this chapter. The
distances between the 10 cities are calculated on the spherical Earth by the
Haversine (great circle) distance, which gives 45 pairs to be used as input data.
The original non-probabilistic metric MDS (with SMACOF algorithm) gives
the solution (the best stress among 10 different runs) shown in Figure 5.11a.
The map of the US with the correct position of the cities as green dots is
plotted in the background as ground truth. The result of MDS is not useful
and should be manually flipped and rotated to correspond to reality. This can
be accomplished with iPMDS by fixing the position of 2 points corresponding
to Olympia (on the West coast) and Washington, D.C. (on the East coast).
Small errors can still be observed in the visualization, but the visualization is
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now understandable. A similar case study performed on weighted MDS with
six fixed points can be found in (Leman et al., 2011).

Since the visualizations produced by MDS, PMDS or PPCA can be in any
arbitrary orientation (Kruskal, 1964a; Tipping and Bishop, 1999; Zinnes and
MacKay, 1983), it is not easy to interpret the meaning of the axes. With appro-
priate indications from users, iPMDS and iPPCA can correct the orientation
according to the guide of users. That means these methods can be used to align
the visualizations to the axes of the coordinate system, and hence to explain
the meaning of the axes. In the next case studies, we show how to use iPMDS
to create understandable axes for both image and tabular datasets.

5.5.2 Case Study 2: Understandable Axes with Image Dataset

In this case study, we use a subset of 250 gray-scale 28× 28 images from the
Fashion-MNIST dataset (Xiao et al., 2017). Figure 5.12a shows an embedding
of iPMDS, which reveals patterns of objects with different shapes (like shoes,
trousers, bags, and T-shirt/pulls) or different zones of low/high-density images.
However, it is not clear what is the meaning of the two coordinate axes. iPMDS
allows users to implicitly propose the meaning of axes using examples. Based
on the initial visualization of iPMDS without interaction in Figure 5.12(a),
users can use images to describe the axes: three images of thin, long-shaped
trousers are moved to the left; three images of full rectangular-shaped bags are
moved to the right; three low-density images of sandals and shoes are moved
to the bottom; and three high-density images of pulls are moved to the top.
The first two changes indicate that the hori-
zontal axis should represent the shape, while
the two last changes indicate that the vertical
axis should represent the pixel density of images.
The schema beside summarizes the conceptual
axes implied in the feedback. Figure 5.12(b)
shows the iPMDS result where the global struc-
ture is similar to the initial visualization while
reflecting the desired axes.
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Figure 5.12: iPMDS with the subset of 250 images of the Fashion-MNIST dataset.
(a): iPMDS result without interaction. The global structure can be explored in this
visualization, but the axes do not have any meaning. The user can thus describe the
desired axes by fixing several examples highlighted in purple squares. The arrows
show the change toward the new positions. (b): New iPMDS visualization with the
fixed points guided by the users shown in purple squares. The axes’ meaning can be
interpreted as follows. The x-axis represents shape with images of thin shape on the left
and images of full rectangular shape on the right. The y-axis represents pixel density
with dark, high-density images on the top and low-density images on the bottom.

5.5.3 Case Study 3: Interpretable Axes with Tabular Dataset

In the last case study, we use the Automobile tabular dataset consisting of
203 cars characterized by -26 features7. Among them, two characteristics
are chosen to distinguish the cars in Figure 5.13(a): the number of doors
(represented by colors) and the number of cylinders (represented by markers).
Four different groups are easily revealed, however, the coordinate axes are not
easy to understand. Using iPMDS, users can indicate different groups of cars
with the interaction denoted in Figure 5.13(a): a car with four doors and four
cylinders is placed in the first quadrant on the top right; a small car with two
doors and two cylinders is placed in the second quadrant on the top left; a small
sportive car with two doors and six cylinders is placed in the third quadrant on
the bottom left; and a big wagon with four doors and eight cylinders is placed
in the fourth quadrant on the bottom right.

7https://archive.ics.uci.edu/ml/datasets/automobile
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Figure 5.13: iPMDS with the Automobile dataset of 203 instances. (a): Initial
embedding of iPMDS without interaction. Four groups of cars characterized by two
features (number of doors and number of cylinders) can be distinguished. However, the
boundary between these groups is not well aligned with the coordinate axes, making
it hard to understand the axes. The positions of four cars from the four groups are
fixed in the four quadrants. The arrows show the change towards new positions. (b):
New visualization produced by iPMDS in which the boundary between groups aligns
with the coordinate system. Interpretation of axes: The x-axis represents car’s size
with small cars of two doors on the left and larger cars of four doors on the right. The
y-axis represents car’s power with normal cars with few cylinders on the top and more
powerful cars on the bottom.

The resulting visualization of iPMDS that takes
the user constraints into account is shown in
the schema beside. Axes can be interpreted as
shown in Figure 5.13(c): small cars of two doors
on the left and larger cars of four doors on the
right. Thus, the x-axis represents the size of
the car. Cars with two or four cylinders on the
top and cars with more than four cylinders on
the bottom, which makes the y-axis represent
the power of the car. Therefore, the user has
defined the axes implicitly by using only four
examples placed in the four quadrants of the
coordinate system.
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Interpreting the meaning of the axes in the visualizations produced by
non-linear DR methods is difficult. Creating visualizations with understandable
axes is more difficult. Variances of popular linear DR methods such as PPCA
and PMDS do not have explicit linear mapping due to the complex formulation
in the generative process and the nonlinear objective functions. Even with
linear methods like MDS, the visualization can be in arbitrary orientation.
Users desire a powerful non-linear DR method but also want to interpret the
visualization results. For that reason, an interactive method allowing users to
define understandable axes can be useful in practice. Through the presented
use cases, the proposed framework can help users manipulate the visualizations
to interpret them the way they want.

5.6 Discussion

In this chapter, we propose a unified probabilistic framework to integrate fixed-
position constraints into any probabilistic DR method. The chosen probabilistic
approach is not only powerful for modeling HD data but also useful for repre-
senting users’ constraints in the form of informative priors. We also contribute
to unveiling classical PPCA and PMDS models in a simple language with
visual explanations. Based on the proposed framework, we derive two concrete
methods named interactive PMDS and interactive PPCA and demonstrate their
applications through different case studies. This section discusses more details
about the usage of our models, as well as their limitations.

5.6.1 Usage of the Proposed Models

The most important usage of our model is to correct a long-standing problem of
the embedding produced by traditional PCA and MDS. Probabilistic PCA has
a drawback called ambiguous-rotation phenomenon for which the visualization
can be in any rotation around the origin. A rotation-correction using orthogonal
components of the projection matrix is proposed, however, the final embedding
is not unique (Tipping and Bishop, 1999). Similarly, the MDS visualization
can also have any arbitrary orientation. In order to explore and understand the
visual patterns in the MDS results, users can apply methods that find the best
rotation for interpretation if external features are available (Bibal et al., 2018;
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Marion et al., 2019). These methods differ from our approach in the point that
we propose interactive probabilistic models to find, with the help of users, a
visualization that is more understandable for them. Thanks to this approach,
users can easily manipulate the visualization and create interpretable axes even
with incomplete input data.

Figure 5.14: Effect of the uncertainty σfix of the users’ feedback. (a) The user moves
an image of a coat from a subset of the Fashion-MNIST dataset, which is marked
by the orange circle. The results of iPPCA model are shown in (b) for a small value
of uncertainty in the user’s feedback σ2

fix = 1e−3 and in (c) for a large uncertainty
σ2
fix = 0.2. Small uncertainty indicates that the user is certain about the indicated

position of the interacted point.

When using our models, we assume that users are always certain about
their feedback. However, users can also express their uncertainty about their
feedback, for example, when they are not sure about the position of fixed points.
In this case, our model captures the uncertainty of every fixed point by the
hyperparameter σ2

fix. The example with a small subset of the Fashion-MNIST
dataset in Figure 5.14 is produced by the iPPCA model with two different
values of σ2

fix. Supposing that the user moves an image of a coat marked by
the orange circle toward the south-east direction as in Figure 5.14(a). A small
uncertainty indicates that users are certain about their feedbacks and the users’
constraints will regularize the model. Figure 5.14(b) shows the result after
the interaction with σ2

fix = 1e−3. In contrast, with a larger uncertainty (e.g.,
σ2
fix = 0.2 in Figure 5.14(c)), the effect of the constraints decreases. When the

user is not sure about this feedback, the model learns mostly from data without
being heavily regularized by the constraints.

The uncertainty about the inferred position of the latent variables can be
obtained from our models8, however, we do not show these quantities in the
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visualization. To avoid confusion, only the uncertainty in the users’ feedback
is considered (while both kinds of uncertainty can be modeled at the same
time in our model). It should be also noted that the same uncertainty is used
for every fixed point in our model. When users interact with multiple points,
the uncertainty in the feedback of each point can be captured by different
hyperparameters. This could be useful for advanced users who understand the
effect of the fixed points and want to have more freedom to test their hypotheses
when moving the points.

The last point to notice in the usage of our models involves their hyperpa-
rameters. The proposed models are designed to be easy to use for end-users,
who want to interact with the visualization without knowing the underlying
mechanism. Even though the inference problem (of estimating the unknown
quantities) in probabilistic models is not a trivial one, this step is totally
transparent to users. We opt to transform the probabilistic inference into an
optimization one that can be solved efficiently with modern gradient-based opti-
mizers like Adam. The two concrete proposed models iPPCA and iPMDS have
different natures but can be inferred in exactly the same way by maximizing
the log posterior using gradient descent. Expert users can still choose different
optimization algorithms or tune their hyperparameters such as the learning
rate or the momentum. However, once the model is tuned (in the development
phase), end-users can use it for interaction scenarios. Since the users’ feedback
are modeled together with the data, the interactive part is always a component
in the model (see Figures 5.6 and 5.9). Therefore, the model tuned without
interaction can work with users’ interaction on any data point.

5.6.2 Limitations

We have found several limitations in our approach, which are the limitations of
the proposed interactive framework and also of the concrete methods. We try
to suggest solutions for these limitations that can be left for future work.

In theory, the proposed interactive framework can work with any latent

8A probabilistic approach allows to quantify the uncertainty about the estimated position
of latent variables. In the iPPCA, these quantities are available through the variable σ2 in
the graphical model in Figure 5.9 - Section 5.4.2. For the iPMDS model, these quantities can
be obtained if we model σ2

i , σ
2
j in the graphical model in Figure 5.6 - Section 5.3.2 as latent

variables instead of model parametes.
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variable DR model (a model that represents the unknown position of points
in the LD space as latent variables). In practice, it is only proved to work
with only simple latent variable models like PPCA and PMDS. We have not
successfully integrated other potential models such as generative topographic
mapping (GTM) (Bishop et al., 1998), gaussian process latent variable model
(GP-LVM) (Lawrence, 2005), maximum entropy unfolding (MEU) (Lawrence,
2012) into this framework. GTM and PPCA are in the same family of the
standard factor analysis model. GTM uses a nonlinear mapping and the EM
algorithm for inference, which can be straightforward to integrate into our
framework, but we have not done it yet. The two other models are more
complex, both in the modeling and the inference step. In our framework, we
have not implemented other efficient inference algorithms such as variational
inference (required by GP-LVM) or sparse penalized MLE for the inverse of
the covariance matrix (required by MEU). It is necessary to have at least one
universal inference algorithm such as a variance of Markov chain Monte Carlo
(MCMC) (Betancourt et al., 2017) or a variational inference (Blei et al., 2017)
method to deal with complex models.

We also have a limitation in the workflow in Figure 5.2 where several steps
are not carefully considered. First, building a probabilistic model is usually an
iterative process of modeling, criticizing, and revising. We plan to focus more on
the model criticism step to measure how well the model performs for a specific
data exploration task (Blei, 2014). Second, the visualization assessment in an
interactive context with different users is not well evaluated. Our experiment is
conducted in supposing that all the user’s feedbacks are sound and coherent,
i.e., the indicated positions of the interacted points make sense. In fact, this
assumption is not realistic, which reveals several shortcomings in our approach.
We should study and experiment with other aspects related to the interacted
points, such as how many points can we move freely to obtain a reliable result,
or what are the feasible zones in which the points can be moved, and how the
interactive user intent is modeled (Ruotsalo et al., 2014). Our models can be
used as an interactive tool to help users to discover and understand patterns in
their data. Different users may interact differently, and the visualization quality
is left for subjective assessment by users.

The concrete models derived from our framework have also their own
limitations. iPPCA is based on a linear mapping and its representation is very
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limited. Even though the objective function is nonlinear, the mapping is just
a linear projection corrupted by noise. We can change the linear mapping
by a complex nonlinear function (Bishop et al., 1998). However, we are far
away from powerful latent variable probabilistic models like VAE (Kingma and
Welling, 2014). iPMDS itself also has a technical limitation. It only produces
visualization in a 2-dimensional space. For visualizations in a 3-dimensional
space, it requires a noncentral chi-squared distribution with 3 degrees of freedom
and an approximation of the modified Bessel function of degree 0.5, which is
slower and requires an extended work on the computation of gradient.

In this chapter, we promote the probabilistic approach with its advantage
in handling missing data and uncertainty quantification. However, probabilistic
methods also have disadvantages in both the modeling and computation aspects.
First, probabilistic modeling is hard and is often done by trial-and-error since
there is no mathematical model that perfectly describes the data. Moreover,
the choice of distribution for each latent variable is not always evident. It
should be chosen for computational efficiency, for an elegant formulation with a
conjugate prior, for an easy approximation, etc. Second, each model requires
different inference algorithms. Traditional graphical models use message passing
algorithms, while general latent variable models can be inferred directly with
MLE or EM algorithms. In most cases, we have to derive a closed-form
solution for the estimation of unknown parameters/latent variables. However,
probabilistic models are not always tractable, especially when the number
of latent variables and the number of observed data points is large. In our
unified framework, we have found an adequate representation for encoding
fixed position constraints, implemented all the components of the framework by
differentiable functions, and proposed to use a gradient-based optimizer that
does not depend on the concrete model.
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Chapter 6

Constraint-Preserving Score for
Visualization Assessment

This chapter presents a new way of using pairwise constraints to evaluate the
quality of a visualization based on the semantic information encoded in the
user-defined similar/dissimilar constraints.
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This chapter is based on our publication titled “Constraint Preserving Score for
Automatic Hyperparameter Tuning of Dimensionality Reduction Methods for
Visualization” (Vu, Bibal, and Frénay, 2021a).
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Throughout this thesis, we try to combine the users’ constraints with well-
known visualization methods. The first kind of hierarchical constraint can be
integrated into t-SNE or an SNE-based method. The second kind of fixed-
position constraint is in a probabilistic framework for interactive visualization.
In this last chapter for the technical contribution, we propose a novel idea using
another kind of constraint, the pairwise constraint, to evaluate the quality of
a visualization. Besides the traditional constraint integration approach, we
introduce a new way of using constraints for assessing visualizations.

When observing a visualization, especially one of SNE-based methods like
t-SNE, LargeVis, and UMAP, users often tend to search for groups of objects
because they expect similar objects should be grouped together. These methods
are designed to preserve neighborhood information in the data by

−→
pull
←−
ing

similar objects close together while
←−−−−→
pushing dissimilar objects far away. If we

know in advance what are the pair of similar objects and dissimilar objects, we
can evaluate how well these methods perform. This simple idea suggests that
the relationship between similar/dissimilar objects can be used to measure the
quality of a visualization. The relationship between similar/dissimilar objects
is formulated in the form of similar link and dissimilar link constraints, which
are collectively called pairwise constraints.

Here are examples of the pairwise
constraints among instances of three
different groups of sample images in
a fashion product dataset. Similar
links (plain blue) indicate images in
the same groups. Dissimilar links
(dashed red) indicate images of dif-
ferent groups. In order to assess a
visualization, we propose to measure
how these pairwise constraints are preserved in the visualization by a quantita-
tive measure called constraint-preserving score.

Assessing the visualization quality is still an open question and each state-
of-the-art visualization quality metric only captures one specific aspect of
the visualization like neighborhood preservation. Section 6.1 will discuss in
detail this problem. Our proposed constraint-preserving score can capture
different aspects of the visualization according to the information encoded
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Figure 6.1: Illustration of how the proposed fscore assesses the visualizations. Two
different visualizations (a) and (b) of the same dataset are shown on top with the
same set of pairwise constraints including four similar links denoted by plain blue
lines and four dissimilar links denoted by dotted red lines. For each pair (i, j) in the
input constraints, the quantitative strength qij is calculated (by Equation 6.2) and is
visualized by the bar charts. fscore for the similar/dissimilar links and the final fscore
are calculated (using Equations 6.3, 6.4 and 6.5). More details are in Section 6.2. In
the visualization (a), the selected images connected by similar link constraints are
close and thus the qij values are large, while the images connected by dissimilar link
constraints are distant, which makes the qij values small. The values of qij for the
same set of input constraint for the visualization (b) are opposite since the similar
images are placed far apart while the dissimilar ones are closer. fscore can measure
this difference and give a high score for (a) and a much lower score for (b).

in the input constraints of users. In brief, this score measures how well the
information encoded in input constraints is preserved in a visualization. An
overview illustration of what are the quantities measured by our score is shown
in Figure 6.1. Section 6.2 will explain how these quantities are measured.
Experimental results and empirical characteristics of this score are presented in
Sections 6.3 and 6.4. The proposed score can have a potential impact since it
is very easy to use and works with any visualization method. Domain experts
can express their knowledge in a simple form of similar or dissimilar groups of
points. If needed, end-users can use labeled data (which are usually available
for coloring groups in the visualization), even in a small amount. Thanks to
this usage, this score can be used to automatically tune the hyperparameters of
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visualization methods, which is presented in Section 6.5. Finally, we discuss
several disadvantages and suggest solutions to overcome them in Section 6.6.

6.1 Quality Metrics for Visualization Assessment

Choosing the right evaluation metric for different machine learning models is
not a trivial task. Even for a simple classification problem, the accuracy score
is not always a good choice, in particular for unbalanced datasets. For a more
difficult problem of object detection, not a single but 12 different metrics are
currently used in practice for evaluating the performance of object detectors
on the popular COCO dataset1. Specific problems require specific evaluation
metrics, and new metrics are still proposed to characterize the performance of
different algorithms. Evaluation metrics for supervised learning are well studied,
however, fewer metrics are developed for unsupervised learning, particularly for
DR methods. Evaluating a visualization method is difficult since we have to
assess at the same time the visual appearance of the visualization, as well as
the preservation of the structures in the original data.

From the viewpoint of end-users, they want to obtain the best visualization
for their data by using a state-of-the-art DR method. Powerful visualization
methods with excellent implementation are available, but their hyperparameters
must be carefully tuned. Choosing good hyperparameter values is crucial since
it predetermines the quality and usefulness of the visualization (McInnes et al.,
2018b; Wattenberg et al., 2016). Typically, the most suitable visualization is
chosen through trial-and-error, which is tedious and difficult for users. We break
down the problem of automatically choosing a good visualization for end-users
into two sub-problems. The first problem is to define a quality metric that can
assess the visualization according to the users’ criteria. The second problem is
how to efficiently search through all possible visualizations corresponding to
different combinations of hyperparameters of a DR method to find the best one.

1https://cocodataset.org/#detection-eval
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Table 6.1: Properties of the five cluster-label-agnostic quality metrics to assess visual-
izations.

metric range description
CC [0, 1] Pearson correlation coefficient between pairwise

distance vectors
NMS [0,+∞) stress based on comparison of pairwise distance

orders
CCA [0,+∞) stress with emphasis put on LD
NLM [0,+∞) stress with emphasis put on HD
AUC[RNX ] [−1, 1] how neighbors in HD are preserved in LD

6.1.1 How to Measure the Quality of a Visualization

In a general machine learning task, there are two types of metrics to measure the
performance of an algorithm that can sometimes be confused2. The first type
is the optimization metric, such as cross-entropy for a classification problem,
mean squared error for a regression problem, or a value of a stress function for
a DR problem. The second type is the quality metric, such as the accuracy
for a classification problem, the R2, known as goodness-of-fit for a regression
task, or the AUC[RNX ] score for a visualization. In this chapter, the two terms
(quality) metric and score are used interchangeably3.

Most quality metrics use class labels as ground truth information. There
are fewer quality metrics for unsupervised methods that do not use class labels.
The optimization metric such as the value of the objective function of DR
methods can also be considered to measure the quality of the embedding (Bibal
and Frénay, 2019). Several of them are summarizes in Table 6.1.

The correlation coefficient (CC) (Geng et al., 2005) computes the correlation
between the pairwise distances in HD and LD. The well-known Kruskal’s non-
metric stress (NMS) (Kruskal, 1964a), often used as the objective function of
non-metric multidimensional scaling, compares the pairwise distance orders in
HD and LD. The curvilinear component analysis stress (CCA) (Demartines
and Hérault, 1997) is a variant of Kruskal’s stress with an emphasis on the

2Even though the term performance is also confused since we do not indicate that it is the
performance of the optimization procedure or the performance of the output model (applied
for unseen data in a supervised setting).

3The term metric indicates a quantitative measure, not a distance function in mathematics.
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embedding distances. This metric evaluates the embedding quality by focusing
on the correctness of close instances in LD. The Sammon’s non-linear mapping
stress (NLM) (Sammon, 1969) is similar to CCA but focuses on the closeness
of instances in HD.

Finally, AUC[RNX ], a quality metric that differs from the above scores,
assesses the visualization by measuring how well neighborhoods in HD are
preserved in LD (Lee and Verleysen, 2009). An average normalized intersection
of the neighborhood sets in the two spaces is calculated for different neighbor-
hood sizes k in a logarithmic scale. The area under this curve then gives the
AUC[RNX ] score that assesses the average DR quality on all scales (Lee and
Verleysen, 2010).

6.1.2 How to Choose the Best Visualization

Choosing the best visualization is choosing the best combination of hyper-
parameters of a DR method. Powerful methods go together with a long list
of hard-to-understand hyperparameters. For example, XGBoost4 one of the
most practically used machine learning methods and its twins, LightGBM 5,
have hundreds of hyperparameters to tune. Luckily, widely used visualization
methods like t-SNE and UMAP only expose about a dozen of hyperparameters,
of which we divide into two orthogonal categories. The first category contains
hyperparameters involving the optimization procedure such as learning rate,
number of iterations, early-stopping criteria, etc. The second category contains
the ones involving the quality of the visualization, including the neighborhood
size (perplexity in t-SNE/LargeVis and n_neighbors in UMAP), the tightness
between points (min_dist, only for UMAP6), the exaggeration factor (only for
t-SNE7). These two sets of hyperparameters are rarely tuned together. The first
set should be tuned in the development phase to make sure the optimization runs
correctly, i.e., the loss function decreases constantly, the algorithm converges,
the gradients do not explode due to a high learning rate. This set is pretty
easy to tune by looking at the plot of the objective function and adjusting the
corresponding hyperparameters. We assume that the first set is tuned correctly

4https://xgboost.readthedocs.io/en/latest/
5https://lightgbm.readthedocs.io/en/latest/
6https://umap-learn.readthedocs.io/en/latest/parameters.html
7https://opentsne.readthedocs.io/en/latest/parameters.html
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and only focus on the perplexity for t-SNE/LargeVis and the combination of
n_neighbors and min_dist for UMAP. These hyperparameters determine the
structure in the visualization, e.g., local structures can be revealed with a
small neighborhood size while a large one reveals more global structures. For
users, they determine the appearance of the visualization (McInnes et al., 2018b;
Poličar et al., 2019) and are the main topic of interest.

Related Work on Hyperparameter Tuning for DR Methods
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Figure 6.2: Evolution of the KL loss for several datasets, which tends to decrease
systematically as the perplexity increases. Perplexities are chosen in logarithmic scale
from [2, N/3].

The suggested values for perplexity are between 5 and 50 (Maaten and
Hinton, 2008). However, for large datasets, a much larger perplexity (of N/100)
is also recommended (Kobak and Berens, 2019; Kobak and Linderman, 2021).
Therefore, there is no evidence that the suggested perplexities are good for all
datasets. The original t-SNE paper also proposes a simple method to select
a good perplexity by looking at the Kullback-Leibler (KL) loss produced by
several perplexities and choosing the lowest one. However, the KL loss tends
to decrease when the perplexity increases (Cao and Wang, 2017), which is
confirmed by our experiments, as shown in Figure 6.2. For this reason, using
the KL loss for evaluating the embedding quality is not suitable since a very
high perplexity would always be chosen.

Few papers in the literature attempt to derive the best hyperparameter
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values for DR methods automatically. Strickert (Strickert, 2012) suggests
using rank-based data to avoid perplexity calculation. Lee et al. (Lee et al.,
2014) use a multi-scale approach by averaging all neighborhood sizes. Despite
bypassing the perplexity selection problem, these two solutions do not solve the
selection problem itself. Cao and Wang (Cao and Wang, 2017) try to tackle
the problem by selecting the perplexity of t-SNE that minimizes a modified
Bayesian information criteria (Schwarz, 1978)

BIC = 2KL(P ||Q) +
perplexity

N
log(N), (6.1)

where KL(P ||Q) is the KL loss of t-SNE, and N is the number of instances. This
score is based on the criterion for model selection (the Bayesian information
criterion), which regularizes the KL loss of t-SNE by a not-so-large perplexity.
A basic criterion for model selection is that among different models with similar
performances, a simpler model is preferred. Applying this idea for t-SNE, the
perplexity represents the model’s complexity. Large perplexity requires more
computation for calculating the neighbor graph and thus is considered as a
factor to make the model more complex. BIC helps us not to choose the model
with too small KL loss (best performance but too complex) but to choose a
simpler model with not-so-large perplexity instead. However, this score is only
applicable for t-SNE, and this approach requires an exhaustive linear search
through all sampled values of perplexity.

Our Hyperparameter Tuning Strategy

In general, hyperparameters of DR methods can be tuned by trial-and-error or
through a naive grid search. Better approaches exist, such as random search
(Bergstra et al., 2011), which randomly samples combinations of hyperparam-
eters. However, the parameter space in which the search takes place grows
exponentially with respect to the number of hyperparameters.

We propose to use Bayesian optimization (BayOpt) (Močkus, 1975; Mockus
et al., 1978) for solving this task. Even though BayOpt has successfully solved
the problem of hyperparameters tuning for classification (Snoek et al., 2012) or
experimental design/randomized experiments (Letham et al., 2019), to the best
of our knowledge, until the time of publishing this work, BayOpt has not been
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widely used for visualization yet. BayOpt looks at the evaluated visualizations,
constructs a model to determine which combination of hyperparameters should
we try next. Instead of trying many combinations, it only tried the potential
one to discover the solution space or to find a better solution. The main idea
of BayOpt, its advantage, and the combination of our proposed score within
this method is presented in Section 6.5.1.

6.2 The Proposed Constraint-Preserving Score

Humans can often distinguish similar and dissimilar high-dimensional objects
(e.g., comparing images by visual features such as the shape, colors, or objects
therein). Our idea is to use the information given by pairwise links between
objects to evaluate the quality of a visualization. Modern methods (t-SNE,
LargeVis, and UMAP) preserve local structures in the dataset, i.e., instances
that are similar in HD should be close in the embedding space. These methods
are considered as successful when they reveal clear groups of similar instances.
If examples of such group patterns are known in advance, they can be used to
assess the quality of the visualization. We thus propose to measure how the
given pairwise constraints are preserved in the visualization by a quantitative
measure called constraint-preserving score. This section first explains how the
pairwise constraints can be used for visualization assessment and then presents
the derivation of the formula for quantifying the constraint preservation.

6.2.1 Pairwise Constraints for Visualization Assessment

The proposed constraint-preserving score is based on a set of predefined input
pairwise constraints, including similar link and dissimilar link constraints. A
similar link constraint connecting two similar objects indicates that they should
be close. If in a visualization, these two objects are actually placed close
together, the corresponding similar link constraint is said to be satisfied or to be
preserved. The same idea is applied to dissimilar link constraints. We will detail
later how the proposed score quantifies exactly the amount of preservation of
each individual constraint. Therefore, a visualization can be considered as good
when it preserves well the input constraints and can be considered as bad when
it does not preserve the input constraints. The proposed constraint-preserving
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score is a quantitative measure of how well the users’ constraints are preserved in
the visualization. This score is a function of not only the evaluated visualization
but also the input users’ constraints C. We use the notation fscore to denote
this score and to indicate that it is a function of input constraints: fscore (C).

The input constraints determine the structure users want to evaluate in the
visualization. fscore can measure the preservation of structures in the data since
the information about the structures is totally encoded in the input pairwise
constraints. Additionally, depending on the way the constraints are created,
we can measure the preservation of different structures. Other quality metrics
such as AUC[RNX ] and the BIC-based score produce only one deterministic
score value for a given visualization. fscore can give different results for a given
visualization, depending on its input pairwise constraints. The most common
structure users expect to see is the group structure in which similar objects
(with the same labels) are placed close together to form groups. Besides, users
can also collect different groups of similar objects according to their definition
of similarity or according to the semantic of their data in order to create new
custom pairwise constraints.

6.2.2 Derivation of the Constraint-Preserving Score

Given a set of user pairwise constraints, the proposed fscore measures how well
the pairwise constraints are preserved in a particular embedding through two
steps. First, the relationship between data points connected by each individual
pair is quantified. This quantification for each type of similar/dissimilar link
constraint is then transformed into a numerical measurement, and then finally
combined to form the final score.

Constraint Measurement

We first define the strength of the input pairwise constraints in a given embedding.
A similar link should have a high strength and a dissimilar link should have a
low strength. The strength of a constraint can be measured as the inverse of the
distance between two connected points. If a Student’s t distribution is placed
at the point yi in the embedding, the strength of the constraint connecting yi
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to another point yj is defined as

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l (1 + ||yk − yl||2)−1

, (6.2)

where the denominator is a normalization constant calculated from all pairs
{(k, l)} in the embedding. Since this quantification is normalized and is inter-
preted as a probability ∈ [0, 1], the input embedding Y can be scaled without
affecting the value of qij .

A similar formulation is used in t-SNE, LargeVis, and UMAP to model the
neighborhood relationship in the embedding space. qij can be interpreted as
the probability of yi and yj being neighbors in the embedding space. Therefore,
for each similar link (i, j) ∈ S, qij should be high. Inversely, qij is expected to
be low for each dissimilar link (i, j) ∈ D.

Constraint-Preserving Score

We propose to measure the preservation of all similar links (i, j) ∈ S in an
embedding as the log-likelihood

fscore(S) =
1

|S|
log

∏
(i,j)∈S

qij =
1

|S|
∑

(i,j)∈S

log qij . (6.3)

If all pairs of points connected by a similar link are close in the visualization,
the log-likelihood fscore(S) is high.

In contrast, the probability qij for each dissimilar link (i, j) ∈ D should
be low. For all dissimilar links, we therefore propose to use the negative
log-likelihood

fscore(D) = − 1

|D|
log

∏
(i,j)∈D

qij = − 1

|D|
∑

(i,j)∈D

log qij . (6.4)

Another way to measure how well a dissimilar link (i, j) is preserved is to
use 1− qij . Even though qij is interpreted as a probability of being close, 1− qij
is not an appropriate estimation for measuring the fact of being distant. Indeed,
the value of qij in practice is very small due to the normalization constant in
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the denominator in Equation 6.2. That makes 1− qij close to one and makes
the log-likelihood of all dissimilar links vanish8.

As the scores for the similar and dissimilar constraints are normalized by the
number of the corresponding constraints of each type, an equal contribution of
these two scores is considered. The final constraint-preserving score is therefore
the combination with equal contribution of both similar and dissimilar links

fscore(S,D) =
1

2
fscore(S) +

1

2
fscore(D). (6.5)

fscore(S,D) is written as fscore for short. An embedding that retains as much
as possible the pairwise constraint corresponds to a high fscore, which means
that it has a good quality with respect to the encoded knowledge. We analyze
here several properties of fscore that are considered as its advantages.

6.2.3 Advantages of fscore

First, fscore is simple and intuitive. Given a set of input pairwise constraints,
we can visualize the strength and the score for each individual pair (as shown
in the introductory Figure 6.1) according to Equations 6.3 and 6.4. In that
way, it can be easy for users to identify which pairs that satisfy or violate the
constraints. In contrast, AUC[RNX ] measures the neighborhood preservation,
which is not easy to visualize for end-users. Although for this score, we can
plot the curve of RNX(K) values for different values of the neighborhood size
K, however, analyzing this curve is not intuitive for end-users.

Second, fscore is computationally efficient and uses only the embedding in
the LD space without access to the HD data. It has a computational complexity
of O(N2) since the quantification of strength for each individual constraint
in Equation 6.2 requires a normalization over all N2 pairs in the embedding
Y . The summation over all the input pairwise constraints can be efficiently
vectorized via matrix slicing operations. In contrast, AUC[RNX ] must access
both the HD data and the visualization. This means that AUC[RNX ] is not
scalable for large datasets due to its complexity of O(p N2 log(N)), where p is
the number of dimensions of the HD data, which can be large. The BIC-based

8In a small/medium dataset of thousands of data points, the total number of pairs in the
normalization constraint in the denominator of Equation 6.2 is a factor 106, which make the
value of qij to be scaled down by a factor of 10−6. Therefore, 1− qij ≈ 1.
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score, despite its simplicity, can only be used for t-SNE. For an embedding
not generated by t-SNE, it requires to compute the KL loss of t-SNE with a
complexity of O(p N2).

Third, fscore is method-agnostic. The BIC-based score is designed and tested
only for t-SNE. AUC[RNX ] is also method-agnostic, however, the usage of
ground truth information differs from fscore. Most machine learning evaluation
metrics use class labels as ground truth information. Even though well-known
evaluation metrics for unsupervised clustering methods (such as the entropy-
based V-Measure score (Rosenberg and Hirschberg, 2007), or the normalized
and adjusted mutual information scores (Vinh et al., 2010)) still use class
labels. fscore does not use the class labels directly, but it can use the pairwise
constraints generated from class labels if available. In that way, fscore can
evaluate the visualization according to the semantic information encoded in
the input constraints. AUC[RNX ] introduces a pure unsupervised approach for
visualization assessment, but it still demands HD data for calculating the sets
of neighborhoods. It is designed to measure neighborhood preservation without
considering the semantic information in the neighborhood. An extension of this
score, called AUC[GNN ] (de Bodt et al., 2019) filters out the set of neighbors
to keep only the neighborhood of the same class and measures the gain in terms
of KNN score. In this chapter, we only compare fscore with AUC[RNX ] and
the BIC-based score. The comparison to AUC[GNN ] is left for future work9.

6.3 Experimental Results with fscore

The above properties of fscore can be analyzed from its formulation in Equations
6.3, 6.4 and 6.5. In order to see how fscore works in practice with different kinds
of data (text, image, or tabular data) and with the embeddings of different
visualization methods, we do experiments with three modern and widely used
visualization methods: t-SNE, LargeVis, and UMAP. t-SNE and LargeVis
are both controlled by the perplexity hyperparameter. However, LargeVis is
designed for large datasets, the impact of the perplexity is thus not significant
when applied to medium-sized datasets used in our experiments. In contrast,
t-SNE and UMAP are very sensitive to their hyperparameters. For that reason,

9At the moment we developed this work, we were not aware of AUC[GNN ], which is a
useful evaluation for unsupervised and (semi-)supervised DR methods in general.
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in this section, we do experiments to show how fscore and other scores can
capture the relationship between the hyperparameters and the visual quality of
visualizations produced by t-SNE and UMAP. More extensive experiments will
be performed in the next section to find out the characteristics of fscore.

6.3.1 Experimental Setup

This section briefly summarizes the experimented datasets, the process to create
pairwise constraints, and the protocol to evaluate and compare the proposed
fscore with other visualization quality metrics. In order to make sure that
fscore can be useful in practice, in all our experiments, we evaluate fscore on six
datasets of a wide variety, including image datasets of both simple grayscale
images and color images, a text dataset, as well as a tabular dataset of real-world
(processed) genetic data.

Experimental Datasets

DIGITS is a subset of 1797 handwritten digits of gray-scale 8x8 images (Kay-
nak, 1995). COIL20 contains 1494 gray-scale 32x32 images of 20 rotated
objects (Nene et al., 1996). FASHION_1K contains 1000 gray-scale 28x28
images sampled from the Fashion-MNIST clothing dataset (Xiao et al., 2017).
FASH_MOBI contains 1494 color images of the seven most numerous classes
sampled from another real-world fashion product images dataset from Kag-
gle (Kaggle Open Datasets, 2019). The features are extracted with a pre-trained
MobileNet (Howard et al., 2017), where the last fully connected layer is re-
placed by a global average pooling layer to obtain an output vector of 1280
dimensions (Lin et al., 2013). For these four image datasets, PCA is applied
to keep 90% variance of the data. This speeds up the computation of pairwise
distances and reduces the potential noise of outliers10.

5NEWS contains 2957 text documents of 5 selected topics (rec.autos,
rec.sport.baseball, sci.space, sci.crypt and comp.sys.mac.hardware) from the
20Newsgroups dataset. We use a traditional pipeline to process the text data.
Documents are first converted to TF-IDF vectors that are then fed into a latent

10After applying PCA to keep 90% of variance that needs to correctly explain the original
data, the number of dimensions for each dataset is 22 for DIGITS, 40 for COIL20, 72 for
FASHION_1K and 268 for FASH_MOBI.
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Dirichlet allocation model (Blei et al., 2003) to extract 15 hidden topics, which
are the 15 features used by the DR methods.

The last real-world dataset is the NEURON_1K open dataset (10X Genomics,
2018) that contains 1301 brain cells from an E18 mouse. These cells have been
processed and provided by 10X Genomics11. The processed data have 10 PCA
features and 6 labels found by a graph-based clustering method.

Constraint Generation

The proposed constraint-preserving score requires a set of constraints in the
form of similar and dissimilar links. As shown in Section 6.2, the pairwise
constraints can be generated from groups of selected instances. Users can group
the instances that they find similar to indicate that they should be connected by
similar links. Similarly, instances in different groups indicate that they should
be connected by dissimilar links. In order to objectively evaluate the proposed
score, we use a standard setting in semi-supervised learning where only a small
number of labels in the dataset are used. Pairwise constraints generated from
labeled instances are used throughout our experiments as follows.

• First, for a dataset of C classes, a very small number k of labeled instances
are randomly selected for each class.

• Then, a similar link is created for each possible pair of these k instances,

leading to a set of similar links, containing |S| = C
k(k − 1)

2
constraints12.

• Finally, for each pair of classes,
k2

2
dissimilar links are created by consid-

ering all distinct pairs of instances that belong to two classes, leading to

a set of dissimilar links, containing |D| = C(C − 1)

2

k2

2
constraints13.

1110X Genomics provides chromium single-cell gene expression solution and releases several
public genetic datasets under the Creative Commons Attribution license. (https://support.
10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/neuron_1k_v3)

12There are
k(k − 1)

2
distinct similar links in each class, and there are C classes.

13There are
C(C − 1)

2
groups of two distinct classes. From each group of two distinct class,

there are
k2

2
dissimilar links of distinct pairs connecting a point in one class to another point

in the other class.
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Computing Visualizations and Metrics

We compare fscore with the famous AUC[RNX ] score (Lee and Verleysen,
2010) and the BIC-based score (Cao and Wang, 2017). In order to observe
the evolution of fscore and other scores, we will calculate these scores for a
large number of visualizations produced by t-SNE, LargeVis, and UMAP. A
grid of hyperparameter values is created for each method. For t-SNE and
LargeVis, a one-dimensional grid of perplexity values is sampled from a natural
logarithmic scale from the range [2, N/3]. For UMAP, a two-dimensional
grid is created with n_neighbors ∈ [2, N/3] in natural logarithmic scale and
min_dist ∈ {0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0}. For each combina-
tion of hyperparameters in the above grids, an embedding is calculated, and
fscore, AUC[RNX ] and the BIC-based score (if applicable) are computed.

6.3.2 Comparison of fscore and Other Qualities Metrics

fscore is compared with AUC[RNX ] and the BIC-based score for evaluating t-
SNE embeddings. fscore is also compared with AUC[RNX ] for evaluating UMAP
embeddings (the BIC-based score is not applicable for UMAP embeddings).
fscore is used with k = 10 labeled instances for each class. More explanation of
this choice is detailed in the next section. In brief, our experiments in Section 6.4
show that, for medium-size datasets with about a dozen of classes, with 10 or
more labeled per class, we can obtain a stable and reliable fscore.

It should be noted that we do not try to compare fscore with other scores
to find which score is the best. Each score can measure a particular aspect of a
visualization. AUC[RNX ] is built upon a solid theory of rank-based criteria that
measures how well the neighborhood information is preserved. The BIC-based
score is built upon the objective function of t-SNE combined with a criterion
for model selection (the Bayesian information criterion), which regularizes the
KL loss of t-SNE by a not-so-large perplexity. fscore measures how well the
structures encoded in users’ constraints are preserved. For that reason, choosing
which metric(s) to use mainly depends on the need of users and the criteria we
expect to preserve in the visualization. More than one metric can be helpful
when these metrics measure different criteria. For example, fscore can be used
as a complementary metric together with AUC[RNX ] if users want to discover
other structures in addition to the natural class structure in their data.
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6.3.2.1 Comparison of fscore with AUC[RNX ] and the BIC-based
Score for t-SNE

Figure 6.3 shows that, for the six selected datasets, fscore agrees withAUC[RNX ],
the BIC-based score, or both of them. The agreement between these scores
can be visually revealed through the overlap of the ranges of the top 5% scores
(maximum values for fscore and AUC[RNX ], minimum values for the BIC score).

In order to compare thoroughly the best solutions found by these scores,
metamaps are used for visualizing the solution space of DR methods. Each
point in the metamap is a t-SNE embedding corresponding to a perplexity
value. Two points close to each other in the metamap correspond to perplexities
that provide similar visualizations. The metamap can be constructed with
any embedding method such as UMAP or t-SNE and is extremely useful in
visual analytic tools like VisCoDer (Cutura et al., 2018) for discovering and
comparing embeddings of different DR methods. In the case demonstrated in
Figure 6.4, we have more than 100 visualizations for the NEURON_1K dataset.
The metamaps are built using UMAP with large values of n_neighbors = 50
and min_dist = 0.5, which allow us to have a global view of all visualizations
corresponding to different perplexities14.

The four metamaps in this figure are colored by the values of perplexity,
fscore, AUC[RNX ], and the BIC-based score. The 5% of embeddings with the
highest scores are highlighted. It can be seen that the three different scores
can select visualization with different qualities. This is in line with Wattenberg
et al. (2016), who state that we need more than one visualization to understand
the hidden patterns in HD data. The visualizations in Figure 6.4 serve as
a qualitative evaluation of the best visualizations found by the three scores.
At the bottom of this figure, the same visualizations are shown without any
information for supervision (i.e., no label for coloring the points). The contour
in each plot shows the density estimation, which is calculated in the same
way for all visualizations. In the visualizations promoted by fscore and the
BIC-based score, several groups are correctly revealed. In contrast, in the
visualization promoted by AUC[RNX ], the whole embedding is considered as a
single cluster, which makes it hard to recognize the different small groups.

14The hyperparameters of UMAP for constructing the metamap is manually selected with
a single goal to obtain a global view of all created visualizations.
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Figure 6.3: Comparison of fscore, AUC[RNX ] and the BIC-based score for t-SNE
embeddings. (b), (c): the ranges of the top 5% of maximum values (minimum values
for the BIC score) overlap each other for the three scores. (d): fscore range mainly
overlaps with AUC[RNX ] score range. (a), (e) and (f): fscore ranges only overlap with
the BIC-based score ranges.
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(a) perplexity=72 (b) perplexity=13 (c) perplexity=65 (d) perplexity=330

Figure 6.4: Metamaps and sample visualizations for NEURON_1K. The top 5%
highest scores in the metamap according to each metric are highlighted on the top row.
On the middle row, the visualizations are chosen using (a) fscore, (b) AUC[RNX ],
and (c) the BIC-based score. The last one (d) is not considered good by any of the
scores. On the bottom row, the same visualizations are shown only with the contours
calculated by a density estimation model, without any information for supervision.
Visually, several groups are correctly revealed in (a) and (c) while the whole embedding
in (b) is considered as a single cluster.

6.3.2.2 Comparison of fscore with AUC[RNX ] for UMAP

Figure 6.5 shows the evolution of fscore and AUC[RNX ] when the two hyper-
parameters n_neighbors and min_dist of UMAP are considered. For DIGITS,
COIL20, and FASHION_1K, the evolution of fscore is clearer and smoother
than the one of AUC[RNX ]. For NEURON_1K, the two scores discover dif-
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Figure 6.5: Comparison of fscore (on the left) and AUC[RNX ] (on the right) for
UMAP embeddings. The best combination of hyperparameters found by each score
is located by the orange point in each dataset. In each plot, n_neighbors (on the
horizontal axis) and min_dist (on the vertical axis) are shown in logarithmic scale.
The light/dark region corresponds to the large/small values of the two scores.
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Figure 6.6: Metamaps and sample visualizations for COIL20. The top 5% highest
scores in the metamap according to each metric are highlighted on the top row. On the
bottom row, (a) is chosen by fscore and (b) is chosen by AUC[RNX ]. (c) is considered
good by AUC[RNX ] but not by fscore, and (d) is not considered good by any score.
The detailed views when zooming in on several small groups in (a) are shown. The
circle patterns are similar to the patterns in (b). However, the visualization in (a)
reveals the global structure, while the one in (b) does not. When zooming in on several
zones of the visualization in (b), objects in one group are closer to objects in other
groups rather than to the ones in the same group.
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ferent optimal regions. For FASH_MOBI and 5NEWS, AUC[RNX ] reveals
clearer regions of the best hyperparameters, but it mostly gives the same score
for different min_dist while n_neighbors is fixed. In contrast, fscore discovers
the influence of min_dist in conjunction with n_neighbors. The combina-
tion of these two hyperparameters is important for UMAP embeddings, since
while n_neighbors controls local structures (the size of local neighborhoods),
min_dist controls directly how tight the groups in the visualization are.

Figure 6.6 shows metamaps for UMAP embeddings and several selected
visualizations for COIL20. In this case, we have more than 1000 visualizations
of the COIL20 dataset corresponding to different combinations of n_neighbors
and min_dist. The metamaps are built using UMAP with a large neighbor
size (n_neighbors = 100, min_dist = 0.5) in order to obtain a global view
of all visualizations. fscore considers the first visualization (a) as the best
one. The next two visualizations are considered good by AUC[RNX ], but not
by fscore. In the second visualization (b), the groups clearly highlight the
local structures but are not tight enough to reveal the global structures. In
the third visualization (c), the groups are retracted and heavily overlap each
other. This visualization has a high AUC[RNX ] score since the neighborhood
information is well preserved while the visualization is actually not clear. This
same visualization is discouraged by fscore. The last visualization (d) belongs
to the low score region in the metamap (with respect to both scores) with a
too large n_neighbors and/or a too large min_dist.

As mentioned before, we do not conclude which score is better than the others
since each score assesses the visualization by different aspects. Indeed, among
all possible visualizations of a dataset, fscore and AUC[RNX ] can encourage
different visualizations. AUC[RNX ] encourages the visualizations where the
neighborhood is preserved. For instance, in the visualizations in Figure 6.6(b),
local structures, like circle patterns, can clearly be identified. In contrast,
fscore promotes visualizations where similar points are close to each other and
dissimilar points are far from each other, according to the pairwise constraints.
The visualization proposed by fscore can thus give a global view of the relative
relation between small clusters in visualizations like the ones in Figure 6.6(a).
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6.4 Empirical Characteristics of fscore

fscore is designed as a function of both evaluated visualizations and users’
constraints. The properties of this score like the computational complexity
can be analyzed theoretically from the mathematical formulation of the score.
This section introduces the empirical characteristics of fscore that are found by
analyzing the behavior of this score throughout experiments. Like other scores,
we examine how fscore evolves with respect to the target hyperparameters
of the target visualizations. Moreover, since fscore is also a function of users’
constraints, it will be evaluated when the whole set of input constraints changes.

6.4.1 fscore as a Well-Behaved Function

As mentioned before, we generated a large number of visualizations with t-SNE,
LargeVis, and UMAP with exhausted lists of theirs hyperparameters values.
For t-SNE and LargeVis, fscore is evaluated as a function of perplexity (fscore
= f(perplexity)). For UMAP, fscore is evaluated as a function of n_neighbors
with the other hyperparameter min_dist is fixed to its recommended value
(fscore = f(n_neighbors, min_dist = 0.1)). In order to correctly evaluate the
evolution of fscore with respect to the neighborhood size of all three evaluated
methods, the set of input constraints for each dataset should be fixed. For
each dataset, k = 10 labeled instances per class are used for generating input
pairwise constraints.
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Figure 6.7: Evolution of fscore with respect to the hyperparameter of three DR methods
for six datasets.
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As shown in Figure 6.7, for each visualization method and for each dataset,
fscore has the form of a convex-like function of perplexity or n_neighbors, i.e.,
a well-behaved function. We use the term well-behaved function to describe
fscore because it is indeed not a random function, and we can observe a general
rule, even vague, to describe the relationship between the hyperparameter
value and the computed fscore. It increases as the number of neighbors (per-
plexity/n_neighbors) increases, then reaches its maximum value, and finally
decreases when the number of neighbors becomes too large. This observa-
tion also holds true when evaluating fscore as a function of two parameters
(n_neighbors and min_dist) for UMAP embeddings, as observed from previous
experiments in Figure 6.5. As mentioned before, LargeVis is designed for large
datasets and is not sensitive to the hyperparameter of neighbor size. Indeed, for
a wide variety of experimented datasets of medium size, fscore does not change
much for visualizations with the neighbor size larger than 100. In contrast, the
impact of this hyperparameter for the visualizations of t-SNE and UMAP is
significant and can be observed from the graphs of fscore in Figure 6.7.

We can also notice that fscore is not a smooth function. These graphs in
fact only show a noisy estimation of possible values of fscore function for each
neighbor size. The first reason is that the visualization corresponding to a scalar
value of the neighborhood size is created by t-SNE, LargeVis, and UMAP with
a random initialization. The second reason is that fscore is evaluated with a
random set of pairwise constraints generated from a fixed number of labels per
class. A smoother graph can be obtained if fscore is repeatedly evaluated many
times on different visualizations (created with different random initializations)
and on different sets of input constraints (with the same number of constraints).

6.4.2 Stability of fscore

In order to automatically create pairwise constraints that reflect the natural
group structure in the dataset, we use a small number of labeled instances
in each class and generate pairs between them. To investigate the number of
constraints needed to obtain a reliable fscore, different values of the number of
labeled instances per class are tested (k = {3, 5, 10, 15}). The sets of labeled
instances are not accumulated, i.e., the set of 5 labels per class does not
contain the set of 3 labels per class. For each value of k, fscore is repeatedly
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Figure 6.8: Stability of fscore with the embeddings of (a) t-SNE, (b) LargeVis and
(c) UMAP for the COIL20 dataset. The mean (blue line) and variance (the filled
region around the line) are calculated for each perplexity/n_neighbors with a different
number k of labeled instances per class (3, 5, 10, and 15).

evaluated 20 times, each time with different constraints generated from a set of
randomly selected k instances per class. For the same value of k, different sets
of generated constraints have different pairs, but these sets reflect the same
structure of the data given by class labels. In other words, these sets have the
same characteristics and only differ in the number of pairs.

We expect that, for a particular visualization, given different sets of input
pairwise constraints with the same nature, fscore should give similar scores.
Figure 6.8 shows the mean and variance of fscore for the embeddings of t-SNE,
LargeVis and UMAP (with min_dist of 0.1) with the COIL20 dataset as an
example. It can be seen from the figure that fscore functions as expected for the
embeddings of all three methods. First, when the number k of labeled instances
increases, fscore’s variance (shown by the filled shaded region around the mean
in the plots) decreases. With k = 10 or larger, the variance is almost negligible,
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showing that fscore is stable and reliable. This result is shown for COIL20, but
also holds for the other datasets.

6.4.3 Flexibility of fscore

Through the previous experiment, fscore proved its stability when the number
of input pairwise constraints changes while the sets of constraints have the same
nature. In most cases, the constraints generated from class labels reflect natu-
rally the class relationship between the instances. What if users want to assess
other structures besides the class structure in the visualization? Traditional
quality metrics can only assess the visualizations based on a fixed criterion. For
instance, AUC[RNX ] can only evaluate the neighborhood structure but not
any other criterion. In contrast, fscore evaluates the visualizations based on
its input constraints. These constraints reflect the structures that users want
to see in the visualizations. This score is thus flexible, in the sense that the
input constraints can be used to control how the visualization is assessed. In
the following experiments with three real-world datasets, we demonstrate the
flexibility of fscore by using this score to find the best visualization according
to different criteria encoded in different sets of constraints.

For each dataset, two different sets of constraints are used. The first set is
generated from k = 10 labeled instances from each class (called natural classes
or natural groups) that reflects the natural class structure. The second set of
constraints is created manually from custom groups (or custom classes) from
the dataset. These custom groups are chosen based on the semantic of the
data or by using another set of available labels for the dataset. In each custom
group, k = 10 instances are randomly selected to generate pairwise constraints.

fscore will be used to find the best perplexity of t-SNE using two above sets
of input constraints. Since we have computed many t-SNE visualizations with
different values of perplexity in previous experiments, a simple linear search can
give us the best visualization with the highest fscore. The next section presents
another efficient way to find the best visualization assessed by fscore. For now,
we assume that the task of finding the best visualization can be done efficiently.

With each dataset, the following tasks are performed, and the results are
shown in four plots.
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1. fscore is first used to find the best perplexity with the constraints of
natural groups (fscore (natural groups)). The visualization corresponds to
this perplexity is colored by the natural classes and shown on the top-left.
The same visualization colored by the custom classes is shown on the
bottom-left.

2. fscore is then used to find the best perplexity using the constraints of
custom groups (fscore (custom groups)). The visualization corresponds
to this perplexity is colored by the natural classes and shown on the
top-right. The same visualization colored by the custom classes is shown
on the bottom-right.

We will analyze these four plots for each dataset to see how fscore can be used
in a flexible way to find the best visualization according to different sets of
input constraints.

FASH_MOBI, a dataset of real-word color images

The first example considers the FASH_MOBI dataset with seven sub-categories:
Bags, Bottomwear, Jewellery, Sandal, Shoes, Topwear and Watches.

Best perplexity 60

Group by sub-categories
Bags
Bottomwear

Jewellery
Sandal

Shoes
Topwear

Watches

Best perplexity 113

Best perplexity 60

Higher-level (hierarchical) categories
Accessories Apparel Footwear

Best perplexity 113

The best visualization (perplexity = 60)
shows seven detached sub-groups (the plot
on the top-left). If users want to see
more abstract and general groups, they
can form higher-level groups such as

• Accessories as a group of {Bag, Jew-
ellery, Watches},

• Footwear as a group of {Sandal,
Shoes},

• Apparel as a group of {Topwear,
Bottomwear}.

The previously chosen visualization
did not reveal these three higher-level groups (the plot on the bottom-left). For
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example, the Watches sub-group is placed far away from the Jewellery and
Bag sub-groups, which do not highlight the structure of the Accessories group.
Using the custom groups to compute fscore leads to a new best perplexity (113)
that better reveals this structure (the plot on the bottom-right).

5NEWS, a subset of a text dataset

The second example focuses on semantic labels for the textual 5NEWS dataset.
Three general topics can be created from the 5 original classes:

Best perplexity 114

Group by sub-categories
mac.hardware
rec.autos

rec.sport.baseball
sci.crypt

sci.space

Best perplexity 44

Best perplexity 114

Higher-level (semantic) categories
Computer Sportive records Science

Best perplexity 44

• sportive records group (rec) as
a topic of {rec.autos, rec.sport.baseball},

• scientific group (sci) as a topic of
{sci.space, sci.crypt},

• comp.sys.mac.hardware stays in its
own group (comp).

The problem of the visualization found
with the constraints generated from the
original class labels is that two sub-groups
of the same topic can be placed far apart
(the plot on the bottom-left). By using
the new constraints generated from the
three above semantic groups, fscore finds
a better visualization in which elements in these semantic groups are placed
close to each other (the plot on the bottom-right).

NEURON_1K, a dataset of processed gene expressions

The last example uses NEURON_1K. The original 1301 cells are grouped
into 6 classes found by a graph-based clustering algorithm. These classes are
characterized by the transcriptome profiles of individual cells (presented in the
RNA sequences).
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Best perplexity 72

Points colored by graph-based cluster indices
Cluste 1
Cluste 2

Cluste 3
Cluste 4

Cluste 5
Cluste 6

Best perplexity 144

Best perplexity 72

Points colored by UMI count
less than 6.5K 6.5K to 12.5K more than 12.5K

Best perplexity 144

However, another important aspect to
characterize individual cells is the count
of the absolute number of molecules: the
unique molecular identifier (UMI) (Kiv-
ioja et al., 2011). Therefore, the cells can
be grouped into three new groups:

• the ones with less than 6.5K
molecules,

• the ones having from 6.5K to 12.5K
molecules,

• the ones with more than 12.5K
molecules.

The plot on the bottom-left (found using the constraints of cluster indices) does
not reveal the structure of UMI count. In contrast, the one on the bottom-right
shows a trend of decrease of UMI count along the horizontal axis.

In summary, we have shown that fscore is designed to be used as a simple and
intuitive quality score with several properties such as computational efficiency
and method agnostic. Through experiments, we have also found that fscore is a
well-behaved function, stable and flexible. This score can thus be used as an
efficient measure for the task of tuning hyperparameters of DR methods, which
is normally very costly due to the cost of computing the embedding and the
cost of calculating the quality score.

6.5 Application of fscore for a Hyperparameter Tun-
ing Problem

fscore, as other state-of-the-art quality metrics, can be used to measure the
quality of a visualization and thus can be used to choose the best visualization
corresponding to the best hyperparameter(s) of a method. The scope of this
chapter is narrowed down to the hyperparameters that directly affect the
appearance of the visualizations. This section presents how to apply fscore for
automatically tuning these hyperparameters of t-SNE and UMAP.
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Since the computation of an embedding with t-SNE and UMAP is expensive,
generating all embeddings to choose the best one is absolutely not an efficient
solution. We expect to have (i) a cheap and reliable metric, as well as (ii)
an efficient optimization procedure to search through the solution space of
all embeddings to find the best one with a minimum number of evaluations.
An evaluation in this context is an actual calculation to obtain an embedding
with a particular (set) of hyperparameter(s) and a calculation of its score.
fscore is efficient and method agnostic. What is missing here is a more efficient
optimization procedure than the naive linear or random search. We propose to
combine fscore with Bayesian Optimization, the most used method for optimizing
expensive-to-evaluate functions (Brochu et al., 2010).

6.5.1 Bayesian Optimization for Hyperparameter Tuning

Bayesian optimization (BayOpt) is a strategy for finding the extremum (min-
imum or maximum) of an objective function f with as few evaluations as
possible (Močkus, 1975). The objective function can be any complex non-
convex black-box function that does not have a closed-form expression, or that
does not have an accessible derivative. Directly finding the extremum of this
kind of function is therefore impossible. However, the function values, possibly
noisy, can be observed for some sampled input values.

Our goal is to find the best perplexity for t-SNE and the best combination
of n_neighbors and min_dist for UMAP while actually running t-SNE/UMAP
as few as possible. This task could be trivial if we know the distribution of
fscore for different (combination of) hyperparameter values, however, this kind
of information is not available. It should be noted that we do not have any
visualization generated beforehand like in the setting of the previous experiments.
That means we start from scratch, with a given dataset and a given set of input
constraints, our goal is to tune the hyperparameters for t-SNE or UMAP using
fscore and BayOpt. We have to decide which combination of hyperparameters
should be tried in order to find the best one. No relationship between fscore
and the hyperparameters is available, but we have to model this relationship
using a very limited resource (the number of evaluations we take). BayOpt can
construct a statistical model describing this relationship between the tuned
hyperparameters and the target function, in our case, the fscore function.
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The goal of BayOpt here is not to approximate this unknown fscore function
for all hyperparameter values, but instead to estimate its maximum from a
set of observed input samples of hyperparameters and fscore values for the
corresponding visualizations. Based on past observations, BayOpt will predict
the most promising hyperparameters to evaluate. It is a hard problem since, at
each step, we have to decide to create new visualization with hyperparameters
close to the one with a high score (exploiting the potential solution space) or with
different hyperparameters to discover/explore new zones in the solution space. In
order to compromise this trade-off between exploration and exploitation, several
strategies exist to guide the optimization process to discover the parameter
space: maximum probability of improvement, expected improvement, and lower
or upper confidence bound (Brochu et al., 2010).

6.5.2 Using fscore in Bayesian Optimization

Based on the nature of fscore discovered in the last section, the exploration
strategy is chosen to explore the largest parameter space possible. The expected
improvement (EI) acquisition function is thus a good choice for the surrogate
function of BayOpt, as it maximizes the expected improvement over the current
best parameters and has proven its efficiency in practice (Snoek et al., 2012). The
parameter ξ of BayOpt controls the trade-off between global search (exploration)
and local optimization (exploitation). Here, ξ is set to a large value (0.25) to
stimulate exploration, which works well for all experimented datasets without
any effort to tune this parameter. The reason for this combination is that
fscore diverses enough through the space of hyperparameters (see Sections 6.3.2
and 6.4), an exploration strategy can help to make sure that every feasible
zone in the solution space will be discovered. In contrast, if other scores like
AUC[RNX ] are used, we should try an exploitation strategy to focus only on a
particular feasible zone of high score15. In addition, there is a small variance in
fscore, BayOpt also takes it into account by adding small values to the diagonal
of the kernel function of the underlying Gaussian process model.

15An exploitation strategy should be used for AUC[RNX ] since this score function does
not diverse well enough, and gives very similar scores for a wide range of hyperparameter
values (see Figure 6.5). That makes large flat-like regions in the solution space, and we need
to drill down onto these regions to find the best location.
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6.5.2.1 Tuning One Hyperparameter for t-SNE

True target Observations Prediction 95% confidence
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Figure 6.9: Tuning t-SNE’s perplexity for six datasets using BayOpt. fscore is evaluated
only for the embeddings of 15 selected perplexities shown by the dark blue points. The
dotted blue line presents the predicted fscore for all other perplexities. The filled blue
region represents the uncertainty of the prediction. The green vertical line indicates
the best predicted perplexity. The orange lines are the true values of fscore, only used
as references to see how well the BayOpt prediction approximates the true targets.

Figure 6.9 demonstrates how BayOpt works for tuning t-SNE perplexity
for all six selected datasets. The true target is the score values for each
perplexity and is used only as a reference to compare with the estimate score
values predicted by BayOpt. Remarkably, fscore needs to be evaluated for
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only 15 selected perplexities. These perplexity values are selected by BayOpt
iteratively, starting with five random perplexities. The pairs of perplexity and
the corresponding fscore are used to update the BayOpt model at each iteration.
The next predicted perplexity to evaluate is the most promising perplexity
value that does not decrease fscore. It should be noted that BayOpt does not
explicitly approximate the score function, but it tries to find the maximum
value instead. BayOpt does not only find the best hyperparameter values but
also indicates the region in which it is not certain about its prediction, which is
usually the region of too high or too low perplexity values.

6.5.2.2 Tuning Two Hyperparameters for UMAP

Tuning hyperparameters for UMAP is a more difficult task since its two-
dimensional hyperparameter grid is larger than the one-dimensional grid of
t-SNE. Instead of evaluating thousands of combinations of values for two hyper-
parameters, BayOpt converges after only 50 iterations for all six experimental
datasets. Figure 6.10 shows how BayOpt finds the region with the best com-
binations for the six datasets. The uncertainty of BayOpt prediction is not
shown in this plot. In comparison with the full grid used for fscore in Figure 6.5,
BayOpt approximates the region of the highest score more efficiently with a
very limited number of evaluations.

In practice, BayOpt is used to tune multiple hyperparameters. Contour
plots of every pair of hyperparameters are used to investigate the region with
the best combinations. One advantage of the BayOpt approach is that it does
not only maximize the target score function but also gives predicted scores for
all hyperparameter combinations. Indeed, in each plot in Figure 6.10, only 50
points are exactly evaluated. The contour is calculated upon the predicted
value of the underlying Gaussian process model for all other points. Without
spending too much resource to obtain a full grid, the estimated score given by
BayOpt is reliable enough to point out the best hyperparameters.
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Figure 6.10: Tuning two hyperparameters of UMAP using BayOpt. In each plot, 50
points (combinations of n_neighbors and min_dist) are evaluated and shown by the
blue dots. The contour plots are constructed from the predicted fscore for all other
points in the grid. The light/dark region corresponds to the large/small values of
fscore. The orange points indicate the best predicted hyperparameters.
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6.6 Discussion

This chapter introduces another aspect of combining users’ constraints with
DR methods. Instead of adapting DR methods by the constraints, pairwise con-
straints between similar and dissimilar objects are used to assess visualizations
of SNE-based methods. A new constraint-based score is introduced to measure
the quality of visualizations by evaluating how well the semantic information
encoded in input pairwise constraints is preserved in the visualization. fscore
does not require calculating neighborhood information in the HD space or an
expensive objective function of a non-linear DR method. Furthermore, it is
complementary to other quality metrics, while being flexible (as the score can
change with respect to the user’s input constraints) and cheaper to compute.
Based on this score, we propose to use Bayesian optimization to efficiently find
the best hyperparameters instead of traditional search-based methods. The
proposed workflow facilitates the use of DR methods by making the choice
of difficult-to-understand hyperparameters easier and helps users to discover
different visualizations with various perspectives on the structure of data. fscore
can have a potential impact since it is very easy to use and works with any
visualization method. Domain experts can express their knowledge in a simple
form of similar or dissimilar groups of points. If needed, end-users can use
labeled data (which are usually available for coloring groups in the visualization),
even in a small amount.

Constraint-based clustering selection (COBS) (Van Craenendonck and Bloc-
keel, 2017) is a closely related work to our approach. This work proposes a
simple way to select a clustering method and its hyperparameters for small
artificial tabular datasets. 931 clustering solutions are generated for each
dataset, including 180 clusterings using K-means, 351 using spectral clustering,
and 400 using DBSCAN. Two sets of similar and dissimilar link constraints
are generated from labels. COBS counts the number of constraints that are
preserved (points connected by similar pairs stay in the same cluster, points
connected by dissimilar pairs are in different clusters) and rank these counts to
find the best clustering. Our approach does not require greedily enumerating
all possible solutions and quantifies the strength of each pair instead of simply
counting the satisfying pairs.
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Limitations

fscore is introduced with several good properties and empirical characteristics
that help users to facilitate the choice of hyperparameters for DR methods.
However, it also has several limitations, in both the usage of this score and also
the evaluation that we perform in this chapter.

Limitation of fscore

fscore is a function of input pairwise constraints, which makes this score flexible.
However, this is also inconvenient since fscore depends on the constraints, and
the quality of the measure also depends on the quality of the input constraints.
When the pairwise constraints are not available, fscore is useless. Several
solutions exist to address this issue. Users can observe their data or a subset of
the data and manually construct the pairs. Users can also identify several small
sets of similar objects in their opinion to generate similar/dissimilar pairs. It
can be easy for image datasets, but it is more difficult for other kinds of datasets
that are not easy to interpret visually. Our interactive tools for collecting users’
constraints will be discussed in Chapter 7. It should be noted that we do not
need the ground truth class labels, but only need groups of similar objects to
form the pairwise constraints.

Limitation in the Evaluations

Visualization experts can ask why don’t we use the metrics in the information
visualization domain to assess the embeddings. For example, several scagnostics
measures (Dang and Wilkinson, 2014; Wilkinson et al., 2005) can be used
for assessing scatter plots. However, based on the study “The art of using
t-SNE for single-cell transcriptomics” (Kobak and Berens, 2019) and the similar
work for UMAP (Becht et al., 2019), we learn that the chosen quality metrics
(AUC[RNX ] or our proposed score) are more suitable for assessing embeddings
of medium/large datasets. A brilliant work of our college Morariu et al. (Under
review) tackles this aspect by proposing a new approach for assessing visualiza-
tion with a combination of human judgments, interpretability measures, and
accuracy measures. Another missing in our evaluation and in this thesis is a
lack of user-base experiments. This point will be discussed in the next chapter.
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Discussion

This section is devoted to discussing our approach of constraint integration
for DR methods. Other issues related to constraint acquisition, visualization
assessment, and interactive tools for user interaction are also discussed.

7.1 Discussion on Our Approach

We tackle the constraint integration in DR to address the mismatch between
the users’ needs and the visualization results. Several reviewed methods also
promote injecting users’ subjective constraints to enrich base DR methods.
However, one should be aware of an opposite direction that removes the subjec-
tivity from the embedding of DR methods. Conditional t-SNE (Kang et al.,
2020) is designed to remove "known/prior" information out of the t-SNE em-
bedding. The revealed structure in the visualization can sometimes be obvious
and not interesting since it does not bring much new information about the
data. For instance, a visualization of the MNIST dataset containing 10 classes
of hand-written digits can show 10 separate clusters. This embedding correctly
represents the input data but does not bring new views or insights. In this
case, the embeddings that capture complementary unknown structures (not the
obvious class structure) to provide new insights about the HD data may be
desired. From this perspective, we can consider a new direction of using users’
constraints to guide DR methods to find new and surprising insights from data.

Another interesting perspective that we found through this thesis is a uni-
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fying perspective. In our survey in Chapter 3, we reviewed a wide variety of
discrete methods and tried to generalize them in several general formulations.
We suggest integrating constraints into a generalized method that unifies a
family of DR methods. This unifying perspective has been proposed for different
DR methods. Linear methods like PCA, MDS, LDA, CCA, and LPP are gener-
alized under a constrained matrix optimization framework (Cunningham and
Ghahramani, 2015). Nonlinear and spectral methods like Laplacian Eigenmaps,
LLE, and Kernel PCA are generalized in the maximum entropy unfolding
(MEU) framework (Lawrence, 2012). Distance-preserving (MDS-based) and
neighborhood-preserving (SNE-based) DR methods are also generalized under
the minimum-distortion embedding (MDE) formulation (Agrawal et al., 2021).
Local neighbor embeddings methods like Laplacian Eigenmaps, t-SNE, UMAP
are also generalized by a recent attraction-repulsion spectrum formulation (Böhm
et al., 2020). By studying these unifying methods, we can better understand
the relationship between common DR methods, their missing characteristics,
and thus can find out how constraints can fit into these methods.

7.2 Discussion on Our Limitations

The limitations of our proposed methods have been discussed in the correspond-
ing chapters. Here we discuss three limitations of our approach, including the
assumption when designing constrained methods, our evaluation, and applica-
tions of our proposed methods.

Our first limitation relates to the assumption about input constraints. It is
generally assumed that a sufficient set of high-quality and consistent constraints
is provided. The input constraints are assumed to be available in a usable form
or can be easily collected from users. However, this assumption does not always
hold true for real interactive scenarios. We discuss more this issue in Section 7.3
and also make the effort to build interactive tools for constraint acquisition for
our interactive methods.

Our second limitation is a lack of user evaluation. Through this thesis,
interactive DR methods and a user-based score are proposed, but none of them
is fully evaluated with real users. The author of the proposed methods does the
interactive experiments/scenarios by himself. However, the interaction aspect
is also considered, for which interactive prototypes are built for each of our
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methods (see Section 7.5). Bibal, Dumas, and Frénay (2019) suggest user-based
experiment guidelines for measuring interpretability in ML. Following these
guidelines, we have to define beforehand who are the users of our method, what
is the goal of the evaluation, and what are the metrics for evaluation. We could
study these guidelines to adapt them for evaluating constrained DR methods
in future work. We are aware of this limitation and also try to address the user
aspect in our work. We identify targeted users for each of our methods, use
task-based scenarios to guide users to use these methods to achieve a goal, and
combine both qualitative and quantitative evaluations to assess the embeddings.
More discussion about the visualization assessment with users’ constraints can
be found in Section 7.4.

The third limitation in this thesis is a lack of useful applications with real-
world data. We claimed that users’ feedback is extremely useful for discovering
patterns in exploratory data analysis. However, we do not have many examples
where real users can apply our methods for their data to get new insights.
Several real-world datasets (the Fashion product image dataset and a pre-
processed single-cell gene expression dataset) are used in our work, but more
experiments with datasets from different domains could be more useful.

7.3 Discussion on Constraint Acquisition

In constrained DR methods, the focus is put on the parametric representation
of the constraints and the algorithm. We want to discuss and draw attention
to the constraint acquisition step.

The first source of constraints comes from feedbacks or domain knowledge
of the users. Sacha et al. (2017b) review different interactive scenarios for
collecting users’ feedback in visual analytic. Constraints can also be generated
from supervision information such as class labels. Constraints can arise in the
problem setting as well. For example, if the features of a dataset can be grouped
by their nature (such as demographic and economic features for a dataset of
country indicators), they can be used as constraints in multi-view methods.

When constraints have to be manually collected from users, it can be difficult
to gather a large set of them. However, they can be enriched by constraint
propagation and pruning techniques (Cevikalp et al., 2008; Davidson, 2012; Guo
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et al., 2016; Li et al., 2008). Similarly, if the constraints are partial class labels
in a semi-supervised setting, traditional label propagation methods can be
applied, such as a KNN-based approach (Zhang and Zhou, 2007), graph-based
class discovery (Nie et al., 2009) or random walk algorithms to assign virtual
labels for unlabeled data (Nie et al., 2011). Several techniques have recently
been proposed to label large datasets with very little initial labeled data called
weak supervision (Ratner et al., 2017, 2019).

Another efficient solution to enrich the constraint set is to use an active
learning approach. Active learning algorithms can help to identify the data
points that are going to be annotated according to different prioritization
strategies (Settles, 2009). Active constraint selection has been successfully used
to select representative pairwise constraints to improve the performance of semi-
supervised clustering methods (Mallapragada et al., 2008; Xiong et al., 2013).
This approach is also applied to DR for selecting informative triplets (Tamuz
et al., 2011) or creating pairwise constraints with high diversity (Wang et al.,
2017). However, there are very few methods in this topic, which can be a
potential direction for future works.

7.4 Discussion on Visualization Assessment

Qualitative measures like scagnostics measures (Wilkinson et al., 2005) have
been discussed before (in Section 6.6). We discuss briefly in this section
quantitative measures involving users’ preferences, particularly constrained DR
methods.

When constrained DR methods are used for extracting features for a subse-
quent classification or clustering task, the quality of the embeddings is usually
assessed by the performance of the corresponding targeted tasks. Evaluating
the quality of constrained DR methods for visualization is a more difficult
task. For these methods, we usually focus on measuring the quality of the
visualization. The rank-based score (measuring how well the neighborhoods
in the HD space are preserved in the LD space) is the state-of-the-art quality
metric for SNE-based methods (Lee and Verleysen, 2009, 2010). Some other
quality metrics like the distance consistency measure (DSC) (Sips et al., 2009)
have proven to correspond to what users like in visualizations (Sedlmair and
Aupetit, 2015). If multiple aspects of the visualization should be taken into
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account, one can combine several of these quality metrics (Bibal and Frénay,
2016, 2019; Morariu et al., Under review).

However, with both types of constrained DR methods (for feature extraction
and visualization), it is also important to consider assessing the preservation
of constraints. Few constrained DR methods follow this aspect. One simple
approach to assess constraint preservation is to count the number of unsatisfied
constraints to select the best clustering result (Van Craenendonck and Blockeel,
2017). Our proposed fscore can also quantitatively measure the preservation
of pairwise constraints in the visualization (Vu et al., 2021a). Another way to
evaluate constraint preservation is through user experiments. The idea is to
gather experts of the domain and ask them how well they grasp information in
a visualization of a constrained method, in comparison to the one of an uncon-
strained method. This kind of evaluation can provide a good approximation of
the quality of a constrained visualization but is difficult to set up. Other strate-
gies can be used to indirectly assess the quality of the constrained visualization.
For instance, an analysis of the low-dimensional space distortions (Aupetit,
2007; Nonato and Aupetit, 2018) can be performed to check if the constrained
visualization is more faithful than an unconstrained one.

7.5 Discussion on Interactive Tools

For each method presented in this thesis, a simple prototype is created to collect
users’ constraints. Figure 7.1 shows a web-base prototype for the iPPCA and
iPMDS methods in Chapter 5. The version of this tool on the left targets
end-users, who only want to observe the visualization result for their datasets
and interact with them. Users can simply select one or multiple objects in
the visualization, move them to the desired positions. The system takes this
feedback and replaces the old visualization with a new one. A more complicated
version of this tool on the right targets expert users. More options to control
hyperparameters and examine the optimization process of iPMDS and iPPCA
are available, as well as a view with position tracing to help visualize the change
of the embedding after users’ interaction.

HCt-SNE method in Chapter 4 requires input constraints of a desired
hierarchical structure. We have not built an interactive graphical interface for
this method. However, expert users can still interact with our method via an
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Figure 7.1: A web-based prototype of an interactive tool that allows users to select and
move points in the visualization using the proposed iPPCA and iPMDS methods in
Chapter 5. On the left is a simple version of this tool that targets end-users who only
want to interact with the visualization. On the right is a more complicated version
that targets expert users who want to observe the learning process, as well as fully
control hyperparameters of the proposed methods.

Figure 7.2: A fully automated workflow for generating hierarchical constraints for
HCt-SNE in Chapter 4. End-users or expert users can enter their expected structure a
text file with friendly JSON format.

automatic pipeline shown in Figure 7.2. Users input their hierarchy in a specific
text file in JSON format. When they save this file, the system constructs the
corresponding tree and call HCt-SNE automatically. The result visualization is
produced in a separate file.

The final tool for fscore method in Chapter 6 is shown in Figure 7.3. This tool
targets end-users, who want to measure the quality of a visualization using fscore.
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Figure 7.3: A web-based prototype of an interactive tool that allows users to create
pairwise constraints used for fscore in Chapter 6. This tool can also visualize the
calculated score for each pair. The version on the left works with image datasets while
the version on the right is for tabular datasets.

Users can first select points or groups of points in the visualization and indicate
that they are similar or dissimilar. A list of corresponding similar/dissimilar
constraints is generated and shown on the left panel. The version of this tool
on the left only works with image datasets. A modified version for tabular
data (on the right) allows users to compare visually the features of any two
randomly picked data points via a radar chart. After having a set of pairwise
constraints, each individual pair can be highlighted on the visualization with
its corresponding score (optional).

These tools presented in this section are only used in the development of the
proposed methods. They are not designed and tested with real users, which is
our limitation. However, these tools can make the constraint collection process
easier and help analyze the output results visually.

In summary, we have presented novel constrained DR methods for visu-
alization and a set of interactive tools for demonstrating different usages of
our methods. From a viewpoint of end-users, when they face a visualization
without knowing the underlying DR methods, how can they know which type
of constraints and what constrained methods they can use? Let us assume that
the users can access all types of constraints. Choosing the right constrained
method for a specific dataset is totally based on the goal of users. For example,
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if the orientation of the visualization is not correct or the meaning of the axes is
not clear, they can use our proposed methods in Chapter 5 with fixed-position
constraints to realign the visualization or to create understandable axes. If they
have any idea about the semantic information inherited from the dataset, they
can explicitly describe this kind of information using hierarchical constraints
with HCt-SNE method in Chapter 4. When a set of similar/dissimilar pairs are
available, users can use them to evaluate the quality of the visualization with
fscore in Chapter 6.
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Conclusion and Future Work

This section summarizes the main results of the thesis guided by the research
questions defined in the introduction and suggests a future research direction
according to our perspective. This thesis aims to combine users’ feedback and
DR methods for visualization. From a machine learning viewpoint, we consider
users’ feedback as constraints. Every single result in this thesis is kept coherent
thanks to our most important research question on the representation of the
constraints. We focus on transforming users’ constraints into adequate terms
that can be used to enrich base DR methods or to assess the visualization.

Main Results of the Thesis

First, a comprehensive survey on the constraint integration for DR is conducted.
With a focus on different kinds of constraints used in DR methods, we propose a
categorization that covers both interactive visualization methods and traditional
constrained DR methods. Less experienced readers can follow this categorization
to find suitable constrained DR methods that work with their particular type
of constraints. Two other perspectives are also suggested for more experienced
readers. From a perspective of characteristics of constrained methods, readers
can choose appropriate methods that preserve desired criteria in their data.
From a problem-solution perspective, this survey helps to identify frequently
encountered issues of common DR methods and potential solutions thanks to
the additional constraints.
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Second, a long-standing problem of t-SNE is tackled. t-SNE preserves
neighborhoods but is not designed to preserve the global structure. Local
structures in the form of separated groups can be revealed in t-SNE embeddings
while the relative distances between these groups may mean nothing. Our idea
is to use the semantic relationship between these groups to enhance the global
structure. This kind of information can be represented by a hierarchical tree
and can be injected directly into the visualization via our proposed method
HCt-SNE. The representation of hierarchical constraints as a differentiable
regularization term can also be applied to other SNE-based methods.

Third, we fill a gap in the literature of constrained DR with a novel unified
probabilistic DR framework. Our idea is based on an analogy between users’
prior knowledge and a prior distribution of a probabilistic model. When users
interact with a visualization, they can move points to desired positions. This
kind of feedback is considered as fixed-position constraints and used to construct
informative prior distributions in our probabilistic framework. As a result,
two derived methods called iPPCA and iPMDS can be used in an interactive
context to allow users to manipulate the visualization. With users’ feedback,
these methods can create understandable axes for a visualization.

Fourth and finally, we present a novel way to use constraints for visualization
assessment via the proposed constraint-preserving score. Visualizations are
made for humans and are usually evaluated qualitatively and subjectively.
State-of-the-art quality metrics can be costly to compute or not efficient enough
to capture different aspects of a visualization. We let users encode their needs
about the visualization in the form of pairwise constraints between selected
similar/dissimilar points. By measuring how well the users’ pairwise constraints
are preserved in the visualization, we can evaluate the quality of a visualization
according to the opinion of users. This score is computationally efficient and is
empirically proved to be a well-behaved function, flexible, and reliable.
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Short-term Future Work

As discussed in the previous chapter, the biggest shortcoming of this thesis is
the lack of a user-based experiment. Improving in this direction can help us to
improve the usage of our methods for interactive applications. For short-term
future work, we can integrate pairwise constraints into widely used visualization
methods like PCA and t-SNE. PCA and t-SNE are not designed to preserve
distances explicitly, using pairwise constraints can enrich these methods by
forcing them to preserve distances between similar/dissimilar points. For
example, PCA preserves global information such as the variance in the data,
however, separated groups are rarely seen in its embedding. Using pairwise
constraints, we may enforce similar and dissimilar pairs to enhance group
patterns in the visualization. Towards this idea, we have a preliminary result
of integrating pairwise constraints into the Gram matrix used for PCA and the
affinity matrix in t-SNE (Appendix 9.5).

Long-term FutureWork towards a General Constrained
DR Framework

We also need to look further to find a potential perspective for future research.
In the same topic of combining constraints and DR methods, we suggest a
general constrained DR framework in which we can combine several kinds of
constraints with different base DR methods in the same unified framework.

The suggested constraint DR framework is inspired from (i) the minimum-
distortion embedding (MDE) formulation (Agrawal et al., 2021) and (ii) the
contrastive learning paradigm (Chen et al., 2020; Hjelm et al., 2019; Oord et al.,
2018). The MDE formulation helps to unify common DR methods in a simple
and general formulation. The contrastive paradigm helps to create an efficient
constraint representation.

On the one hand, the MDE framework includes a wide variety of DR methods,
from classical PCA or MDS to modern neighbor embedding methods like t-SNE
and UMAP. The criteria for measuring the faithfulness of the embedding in
MDE is measured by a distortion function, which can be interpreted as a
distance-preserving criterion in MDS or neighborhood-preserving criterion in
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SNE-based methods. In that way, MDE can find an embedding that minimizes
the overall distortion while respecting the optional constraints in the embedding.

On the other hand, contrastive learning (also called self-supervised learning)
methods learn representations by contrasting positive and negative data points.
The triplet loss used in our HCt-SNE method is a kind of contrastive loss. For
any data point, contrastive methods aim to learn a representation function in
such a way that similar points stay close to each other, while dissimilar ones
are put far apart.

We found a strong relationship between these two paradigms and suggest
this combination. The idea of fusing the MDE formulation with the contrastive
learning paradigm is that we can learn a representation in such a way that
the global distortion of the whole dataset is minimized, while the local simi-
lar/dissimilar points attract/repulse each other. The research problems are still
based on our introduced research questions of constraint representation and
constraint optimization. The former focuses on defining by a contrastive loss
and the latter focuses on combining a contrastive loss with a distortion function
and solving the new objective function with, probably, a gradient-based method.
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Appendices

9.1 iPDR Additional Results with iPPCA

We have introduced in Chapter 5 two concrete methods iPMDS and iPPCA
derived from the proposed framework in Section 5.2. The experimental results
through case studies with iPMDS are presented in Section 5.5. In this section,
we present similar results of iPPCA with the same case studies. Additional
results with the iPMDS model in an incomplete data setting are also presented.

9.1.1 Three case studies with iPPCA

Figure 9.1: Interaction with the QuickDraw dataset shows the rotation effect.

In the first case study, 90 images of 6 classes (airplane, apple, fish, sun, tree,

187



CHAPTER 9. APPENDICES

umbrella) of the QuickDraw1 dataset are randomly picked. Fig. 9.1 (a) shows
three distinct groups with markers for the interacted points: two horizontal
shape images ( , ) are pulled to the right, two vertical shape images ( , )
are pulled to the top and two round shape images ( , ) are pulled to the left.

The second case study is for creating understandable axes for an image
dataset with iPPCA. Fig. 9.2 (a) shows the embedding of 100 images of clothes
randomly selected from the Fashion dataset. A long dress is moved down to
the left. A black coat is moved to the bottom. A rectangular bag at the
bottom-right corner is pulled up. The sandals and the sneakers are pulled
up to the left towards the top. As a result of these user-steering constraints,
in Fig. 9.2 (b), the horizontal axis presents shape (with vertical-rectangular
shapes on the left and full-rectangular shapes on the right), while the vertical
axis presents color density of the clothes (with the lighter color on the top and
the darker color on the bottom).

Figure 9.2: Interaction with Fashion-MNIST dataset to create axes of shape and density.

Figure 9.3: Interaction with Automobile dataset to create axes of car power and size.

1https://quickdraw.withgoogle.com/data
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The last case study is for creating understandable axes for the Automobile
tabular dataset with iPPCA. The user can move a 2-doors-4-cylinders car
(◦) to the top-left corner, two 2-doors-6-cylinders cars (4) to the bottom-left
corner, a 4-doors-6-cylinders car (N) to the bottom-right corner and two 4-
doors-4-cylinders cars (•) to top-right corner. In the new embedding shown
in Fig. 9.3 (b), we can explain the two axes induced by the user constraints.
The vertical axis represents the car’s power with the more-than-4-cylinders cars
above and the less-than-5-cylinders cars below. The horizontal axis represents
the size of the car with the small 2-doors cars on the left and the larger 4-doors
cars on the right.

9.1.2 Interaction with iPMDS with incomplete input data

The probabilistic approach considers missing data as unknown quantities and
models them together with other latent variables in the model. For that reason,
probabilistic DR methods can handle different kinds of missing or noisy data. In
the case of iPMDS, the missing data setting is also called incomplete data (Zinnes
and MacKay, 1983). In traditional machine learning methods, missing data are
encountered when the values of features in the input data points are missing. In
contrast, we consider the (symmetric) matrix of pairwise distances as input for
iPMDS. Missing data are encountered when pairs of distances in this matrix are
missing. A visual explanation of missing pairs or incomplete data for iPMDS
is shown in Figure 9.4. iPMDS takes an N ×N matrix of pairwise distances
as input. If the distances are symmetric (i.e., d(xi,xj) = d(xj ,xi)), we only
need to measure N(N − 1)/2 distinct pairs. However, when there are less than
N(N − 1)/2 pairs are available, we say that the input data is incomplete.

In order to demonstrate how iPMDS works with incomplete data, we first
evaluate iPMDS without interaction in different settings where p% of the input
pairwise distances are missing. We then show that iPMDS can work in the
interactive mode to process users’ constraints in an incomplete data setting.

iPMDS without interaction with incomplete data

The first experiment is performed on a subset of 250 points of the first five
classes of the Digits dataset. From the complete data consisting of 31.125
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Figure 9.4: Complete and incomplete data in the iPMDS model. The incomplete data
arises when there are missing pairs in the input pairwise distance matrix.

unique pairs, p% of them are randomly removed to simulate incomplete data.

Figure 9.5: iPMDS visualizations with different setting of incomplete data for a subset
of Digits dataset of 250 instances (31.125 unique pairs). (a): Visualization of the
original non-probabilistic metric MDS. (b): Visualization of iPMDS with complete
data. (c) - (f): Visualizations of iPMDS in incomplete data setting with 20%, 50%,
70% and 90% missing pairs, respectively. iPMDS is run without interaction.
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Figure 9.5 shows a series of visualizations of the original non-probabilistic
MDS (a), the results of iPMDS without interaction without any missing pair
(b), and with missing pairs (c) - (f). With the incomplete data up to 70%
of missing pairs, the visualization of iPMDS is still readable. The error in
the visualizations increases when the percentage of missing pairs increases as
expected. For a complete evolution of the quantitative error of the distance
preservation (measured by the MDS stress), we run iPMDS (without interaction)
with an increasing percentage of missing pairs p from 0% to 95%. For each
value of p, iPMDS is run 20 times with different random initialization. The
mean and standard deviation of the stress values are reported in Figure 9.6.

Figure 9.6: Evolution of the iPMDS stress for a subset of the Digits dataset with
20 increasing values of the percentage of missing pairs p ∈ [0, 95]. For each value of
p, iPMDS is run 20 times, the mean value of stress score is shown in blue and the
standard deviations are shown with orange bars.

The experiment with incomplete data is performed with a subset of the
Digits dataset. When less than 50% of the pairwise distances are missing,
iPMDS can still produce good visualizations with low stress (low error). This
advantage in an incomplete data setting holds true for other datasets.

iPMDS in interactive mode with incomplete data

Moreover, we can still perform an interactive experiment with incomplete data
with iPMDS. The same scenario as the first use case in Section 5.5 is applied in
this second experiment for the same subset of 250 images of the Digits datasets
with 30% of missing pairs. The same kind of interaction is performed to move
several images of digit 4 and digit 0 to the opposite directions. As expected,
the whole visualization is flipped as shown in Figure 9.7.
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Figure 9.7: iPMDS with 30% missing pairs (only 21,787 pairs are available).

9.2 Quality Metrics

This section summarizes the formula of the quality metrics introduced in the
thesis. Let dxij and d

y
ij be, respectively, the distance between instances i and j

in HD and LD. Let dx and dy be the distances matrices for all pairs of points
in HD and LD.

1. The Correlation Coefficient is defined as:

CC = pearson_correlation(dx, dy) =
Cov(dx, dy)

σ(dx)σ(dy)

2. For measuring the distance order in NMS, an isotonic transformation diso

is performed on dx. The Kruskal’s stress is then computed using this
transformation:

NMS =

√∑
ij(d

iso
ij − d

y
ij)

2∑
ij d

y
ij

3. The Curvilinear Component Analysis Stress function is defined as:

CCA =
∑
ij

(dxij − d
y
ij)

2Fλ(dyij),

in which Fλ(dyij) is a decreasing-weighting function of dyij . Examples of
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weighting functions include the step function or 1− sigmoid(dyij). The
stress function of Sammon’s Nonlinear mapping is:

NLM =
1∑
ij d

x
ij

∑
ij

(dxij − d
y
ij)

2

dxij

4. Rank-based quality metrics AUC[RNX ] (Lee and Verleysen, 2009, 2010)
and AUC[GNN ] (de Bodt et al., 2019).

The notations used in the formulas of these two metrics are defined as
follows. νki and ρki denote the set of k nearest neighbors of the data
point i in the HD and LD spaces. ν̂ki and ρ̂ki denote the sets of k nearest
neighbors that have the same label as the data point i in the HD and
LD spaces. ci denotes the class label of the data point i. N denotes the
number of instances in the dataset. The steps for calculating the two
metrics are detailed in Table 9.1.

Neighborhood preserving KNN gain

ρ̂ki = |{j ∈ ρki : cj = ci}|,
ν̂ki = |{j ∈ νki : cj = ci}|

QNX(k) =
1

Nk

n∑
i=1

|νki ∩ ρki | GNN (k) =
1

Nk

n∑
i=1

(ρ̂ki − ν̂ki )

RNX(k) =
(N − 1)QNX(k)− k

N − 1− k

AUC[RNX ] =(
N−2∑
k=1

RNX(k)

k

)
/

(
N−2∑
k=1

1

k

) AUC[GNN ] =(
N−2∑
k=1

GNN (k)

k

)
/

(
N−2∑
k=1

1

k

)

Table 9.1: Comparing the steps for calculating two metrics AUC[RNX ] (on the left)
and AUC[GNN ] (on the right).

193



CHAPTER 9. APPENDICES

9.3 Analysis of AUC Curves for Embeddings of SNE-
based Methods

(a) MNIST

(b) Fashion-MNIST

(c) CIFAR10

Figure 9.8: The curves of AUC[RNX ] (on the left) and AUC[GNN ] (on the right)
for subsets of 10K images of the three datasets used in Chapter 4: (a) MNIST, (b)
Fashion-MNIST, and (c) CIFAR10. Four SNE-based methods are experimented:
original unsupervised t-SNE, supervised class-aware t-SNE, supervised UMAP, and
our proposed HCt-SNE.

AUC[RNX ] (Lee and Verleysen, 2009, 2010) and its variance AUC[GNN ]

(de Bodt et al., 2019) are important metrics for evaluating the quality of
SNE-based methods. The detailed formulae of these scores are introduced
in Appendix 9.2. In this section, we analyze the full curve of AUC[RNX ]

and AUC[GNN ] scores for four experimented methods in Chapter 4 (original
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unsupervised t-SNE, class-aware t-SNE, supervised UMAP, and our proposed
HCt-SNE). Subsets of 10K images of MNIST, Fashion-MNIST, and CIFAR10
are used. The curves and the summarized scores are shown in Figure 9.8. From
these curves, we can find out, with different SNE-based methods, how well the
neighborhood is preserved when the neighborhood size varies.

In these plots, the neighborhood size is shown in a logarithm base 10 scale.
First, there is a change of the curve when the neighborhood size goes around
103. Since each used dataset has 10K images of 10 balanced classes, each class in
each dataset has roughly 103 data points. For the MNIST and Fashion-MNIST
datasets, the classes are well separated, and thus, around the neighborhood size
of 103, we have maximum gain in terms of both RNX and GNN . Second, with all
three datasets, t-SNE (the blue curve of RNX) better preserves the neighborhood
information with both small and large neighborhood sizes. Third, for CIFAR10,
the RNX curve of HCt-SNE does not make distinctions between small and large
neighborhood size since this method is regularized by a (supervised) hierarchical
structure, which is far different from the neighborhood information. And finally,
HCt-SNE and supervised UMAP have better gain in terms of GNN , particular
for CIFAR10, while the original t-SNE has almost no gain with both small and
large neighborhood size.

9.4 Choosing the Regularization Coefficient α
in HCt-SNE

As presented in Chapter 4, the regularization coefficient α is the most important
hyperparameter we need to tune in HCt-SNE. In our experiment, we use
an old t-SNE embedding as initialization for a quick convergence (after 100
iterations as shown in the figures below). With a medium-size dataset (a subset
of 10K images), a learning rate η = N/12 is used as suggested by Kobak
and Berens (2019). Recalled from Algorithm 1, the regularization coefficient α
determines the balance between the unsupervised objective (t-SNE KL loss) and
the supervised objective (regularization term built upon constraints/supervised
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(a) MNIST (b) Fashion-MNIST

(c) CIFAR10

Figure 9.9: The overall loss of HCt-SNE is a combination of the original KL loss of
t-SNE and the regularization term, balanced by the coefficient α. The overall loss is
shown in red with the scale on the right axis. The regularization is shown in blue in
log scale on the left axis.

information from users):

LHCt−SNE = Lt−SNE + α
(
Lintra + Linter

)
︸ ︷︷ ︸
regularization terms

. (9.1)

In order to choose an acceptable value for this hyperparameter, we need
to observe the values of both the regularization and the combination of this
regularization with the unsupervised objective KL loss. Figure 9.9 shows the
overall loss function of HCt-SNE and the regularization term for three datasets
with the following chosen regularization coefficients α: 7.5×10−4 for MNIST
and Fashion-MNIST, and 5×10−3 for CIFAR10. Notice that these values of
α for each dataset are chosen manually by a trial-and-error process. We still
need a suitable metric to measure the compromise between the two objectives
in HCt-SNE in order to tune this hyperparameter automatically.
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9.5 Pairwise Constraints with DR Methods

In this thesis, we have proposed constrained methods using fixed position
constraints on individual points and hierarchical constraints on semantic groups.
Another type of constraint, pairwise constraint, is widely used in semi-supervised
classification and constrained clustering methods. As presented in Chapter 3,
this kind of constraint is also used for DR, particularly to enhance the covariance
matrix in PCA/LDA-based methods and to enhance the neighbor graph for
graph-based methods. In these existing methods, the pairs are used to modify
the feature weights of the data via weighted distances between similar/dissimilar
points. For short-term future work, we propose to use these pairwise constraints
to modify the weight of each pair. Since preserving pairwise constraints can be
interpreted as, in a narrow sense, preserving distances, this kind of constraint
can be integrated into DR methods that do not have an explicit distance-
preservation criterion such as t-SNE (or PCA).

9.5.1 Pairwise Constraints to Enhance Gram Matrix for PCA

Based on the usage of the Gram matrix XXT to derive PCA components
instead of the covariance matrix, our idea is to modify pairs of instances
connected by the pairwise constraints to enhance this Gram matrix.

All the principal components can be derived from the data matrix XN×p of
N instances and p features using SVD as

XN×p = UN×NSN×pV
T

p×p,

ZN×k = U [:, : k]N×kS[: k, : k]k×k,
(9.2)

where U is a unitary matrix and S is the diagonal matrix of singular values.
From this formulation, the column of V are principal directions and the columns
of US are principal components. The two matrix U ,S can also be obtained
from the Gram matrix G = 1

N−1XX
T , where they are the eigenvectors and

eigenvalues of the eigen decomposition of G, respectively. Based on observation,
the Gram matrix is modified as G′ij = ωijGij , where{

ωij > 1 if (i, j) is a must-link/similar pair,

ωij < 1 if (i, j) is a cannot-link/dissimilar pair.
(9.3)
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Figure 9.10: Demonstration for the idea of integrating pairwise constraints into the
Gram matrix for PCA for the Digit dataset. On the left is the result of the original
PCA. On the right is the result of a modified version of PCA using Gram matrix
enhanced by pairwise constraints.

A preliminary result of this idea is presented in Figure 9.10 for the Digits
dataset (1797 handwritten digits of gray-scale 8x8 images). Extensive experi-
ments and comparisons with other methods, as well as a study on the effect
of the number of pairs should be conducted in future work. We also need to
find out a reasonable explanation for the axes in the visualization (and an
interpretable interpolation of the data points along the axes).

9.5.2 Pairwise Constraints to Enhance the Affinities in t-SNE

Inspired by the idea of class-aware t-SNE (cat-SNE) (de Bodt et al., 2019), we
propose to use pairwise constraints to modify the affinity matrix P in t-SNE.
cat-SNE uses class labels to produce a better version of this affinity matrix P
by filtering out the points in a neighborhood but do not belong to the same
class. We also modify this matrix P , simply by enhancing a pair pij by a weight
ωij , such as the one proposed in equation 9.3. A preliminary result of this idea
is presented in Figure 9.11 for a subset of 10K images of the MNIST dataset.

In summary, these preliminary results only show a small suggestion about
the effect of pairwise constraints to modify the weights of pairs in order to
enhance the representation of HD data (via a Gram matrix or an affinity matrix).
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(a) t-SNE (b) Class-aware t-SNE

(c) t-SNE with an enhanced affinity matrix P

Figure 9.11: Preliminary result of t-SNE visualization with an enhanced affinity matrix
P for a subset of 10K images of the MNIST dataset (c), in comparison with the
original t-SNE visualization (a) and the class-aware t-SNE (b).

We can achieve an improvement in the separation of groups in the visualization,
however, more work should be done to create a robust method that can work
with a very limited number of pairs.
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