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Cleve Anthony
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Abstract

The Typhon project aims to develop a methodology and technical infrastruc-
ture to support the graceful evolution of hybrid polystores, where multiple,
possibly overlapping NoSQL and SQL databases may co-evolve consistently.
This paper has for objective to improve the performance of the polystore
by using a benchmark to analyse and make some recommendation and use
visualisation tools to get keys information. Based on a threefold approach, we
have made a literature review for each topic, bring a contribution and adapt
the finding to the polystore environment, and created an implementation. The
output of this research is a set of tools and recommendations to improve query
performance and help users make the appropriate choice in designing the data
model. Those tools could be integrated into the Typhon environment and help
the user unleash the full potential of polystore.

Keywords: Polystore, Benchmark, Recommendation, Visualisa-
tion



Chapter 1

Introduction

1.1 Context

Times as flies, technology evolve quickly. There was a time where data banks were the must-have. From

data banks to the relational database management systems(RDBMS), from the RDBMS to NoSQL

database and now polystore, every paradigm change has brought new possibilities. This paper is con-

cerned with the performance of polystore and, more specifically, Typhon polystore.

Since 70’s the relational model has not evolved. Codd proposed the relational model to protect users

against change in data representation. This model relies on a means of describing data with its natural

structure only by well-known tables and relationships[7]. The principle based on the acronym ACID

for Atomicity, Consistency, Isolation, and Durability was enunciated by Haerder and Reuter a few years

later [17].

NoSQL comes from ”non-SQL” or ”non-relational”, coined in a paper by Neal Leavitt. ”Will NoSQL

Databases live up to their promise?” was one of the first paper to compare RDMBS to NoSQL. The

biggest advantage is the data model fit the data. ACID not compliance and scaling performance are

evoked as advantages also.[26]

The database market has changed, ”One size fits all” is no longer valid. The database must fit user

needs. Inbound or outbound, aggregation or other primitives, the architecture of processing, availability,

synchronisation are all criteria that could impact the database choice[38].

Many companies used multiple database management systems, but communication between database

paradigms can be tricky and time-consuming. Polystore, also defined as polyglot persistence, is a solution

who make paradigm co-exist to increase performance.[37]

User needs are the start of every product reflection and can drive product requirement. Multiple

group of actors are competing on the market of hybrid polystore.The most well-knows project’s name

are BigDawgs and Typhon. The implementation of polystore can be from simple to really complex based

on the coupling between database systems and implementation choice that are made by developers.

The BigDawg approach consists into storing the same data set into different data engine and use the

data engine that provides the highest performance response to a particular query. The polystore has

for purpose to seamlessly queried different data models from different database. Composed of several

layers, figure:1.1, an interface layer has for purpose to communicate with the common interface/API, a

1



1.1. CONTEXT CHAPTER 1. INTRODUCTION

island layer with an island for each database systems and underneath database systems. An island can

interrogate its database system or another by using the shim operation. The cast operation is dedicated

to do a data transformation from one data model to another. All those operation have for purpose to

make the system appear to the user as a single entity.[4, 13]

Figure 1.1: BigDawg Architecture

The Typhon approach is also based on a four layer architecture. The first is composed of multiple in-

terface accessible by Eclipse plugging for the data model creation and generate the docker-compose script

to run multi-container Docker applications or by using a browser and connect to local host addresses.

The second layer is composed of a layer multiple container exchanging information and interconnected

with the third layer composed of specific database containers. The last layer is composed of systems

of records. Two languages have been developed to allow user to interact seamlessly with the different

database paradigm. TyphonML to create a model and TyphonQL to query the model. The process

behind the deployment can be seen in the figure 1.2.

Figure 1.2: Typhon Deployment

2



1.2. OBJECTIVE CHAPTER 1. INTRODUCTION

BigDawg and Typhon have both the same purpose : allow user to interact with multiple databases

paradigms but they do not have the same approach.

Criterion Typhon polystore BigDawgs
Own modelling language? Yes No
Own querying language? Yes Yes
Is/Has a middleware? Yes Yes
System of records based on a new paradigm? No No

Table 1.1: Comparison between BigDawgs and Typhon

This thesis tries to be as generic as possible but every contribution will be oriented towards improving

the Typhon polystore and increase the user-friendliness of the systems.

1.2 Objective

One of the main aspect of the Typhon project is the continuous polystore evolution tools. This tool has

for purpose to exploit the polystore query events captured by the monitoring mechanisms in order to

recommend possible polystore schema reconfigurations (be they intra-paradigm or inter-paradigm). The

goal of this Master’s thesis is to contribute of the polystore evolution tools by proposing a consistent

set of tools for continuous evolution of the hybrid polystore, for recommending polystore schema recon-

figurations when relevant, and for informing the polystore evolution process. The recommendation will

mainly focus on improving data access performance. The visualisation will improve user experience and

help user to create meaningful queries.

1.3 Workflow

The workflow proposed, based on a literature review, the contribution is threefold. First, a performance

analysis also know as benchmark is conducted. Second, recommendation to improve performance of one

query or to improve the all set of query are proposed based on test performed with the benchmarking

tools and existing recommendation in the literature. Finally with the help of visualisation technique a

dashboard should be implemented to improve usability of the recommendation systems.

1.4 Methodology

This master thesis as for purpose to collect, transform and apply knowledge related to database man-

agement systems to polystore database toward a main goal, improving the performance. Polystore

developments are new and this thesis try to explore main concern users and developers can have related

to benchmarking, recommendation and visualisation of model.

The remainder of this thesis is structured as follows. The followings, literature review chapter presents

findings about the three main topics, namely that they focus on benchmarking, recommendation and

visualisation. Chapter 3 present how to evaluate performance of a polystore. This evaluation of perfor-

mance is done by applying benchmarking technique into the polystore. Chapter 4 will use the knowledge

3



1.4. METHODOLOGY CHAPTER 1. INTRODUCTION

acquire to create recommendation to improve the performance of a polystore. Chapter 5 then helps the

user to get back some understanding of the models by using a visualisation tools. The purpose of the

visualisation tool is to let the user understands how the model is composed to help him applied change

operators, modification of the model, or formulated some queries. Chapter 6 closes with a conclusion by

resuming each chapter and starts discussion about interesting topics and future works.

4



Chapter 2

Literature review

From a open-eyed on three main topic, benchmarking, recommendation and visualisation, this literature

review has for purpose to explore best practice in every domain and prepare them to a polystore context.

The intend behind this literature review is to collect information to help us to contribute to the main goal :

”Improve query performance”. The benchmarking will focus on ”How to make a database benchmark”,

the recommendation will gather information of how to improve specific database paradigm and the

visualisation will focus on the creation of a visual to help user to create query.

2.1 Benchmarking

Conduct a performance analysis process is a complicated task. The first step is to explore common

pitfalls to avoid making one during the Typhon benchmark. After that, we are going to explore the

existing tools and hardware configuration. Data generation and queries are the following subjects to be

studied the mimic reality. To end this literature review, we will explore the subject matter of how to

expose the result.

One goal of this review is to know how to conduct a performance analysis of a database. This

performance analysis should probe the complete system, also know as the macro-benchmark. On the

opposite, micro-benchmark tends to explore a particular aspect of a system[18]. Another goal is to

provide a solution to evaluate recommendation for the second part of this works. The benchmark has

two roles: the first one to compare polystore against other database management system and the second

one to provide a point of comparison between two queries optimisation strategies.

2.1.1 Common pitfalls

Commons error in performance analysis could be generalised to other sciences like the non-reproducibility

and source of non-determinism of experience. More specific to computer science subjects like incorrect

code, or more specific to database topic, optimises query and ignoring preprocessing time. This section

will describe the common pitfalls which could appear during a benchmark.

5



2.1. BENCHMARKING CHAPTER 2. LITERATURE REVIEW

Non-reproducibility

Every student who has one day took a science course must remember the first rule: ”Every experiment

must be reproducible”. Computer science does not derogate from the ground rule. Configuration pa-

rameters and source code should be available[35]. Experiments can not always be fully reproducible

(e.g. due to legal concern). It is then important to be able to characterise the level. The depth is

how much the experiment is made available or archived. Another concern is portability: can results be

reproduced in the original environment or a different one? The last concept is the coverage, partial or

full reproducibility of the experiment.[12]

Ignoring noise and source of non-determinism

The Source of non-determinism can be the system, the application or the environment[19]. Comparison

between two database paradigm can only be fair if the same query is performed on each system. Make

a comparison between a full-fledged DBMS and a standalone program could lead to uneven result due

to queries parallel processing or another process.[35] Flushing cache12 and restart database is needed

to conduct cold run. It is not always possible, especially in a cloud environment. The most important

aspect to cold, warm and hot runs is to avoid comparison[19, 35].

Incorrect code

Due to development, a bug in implementation could still occur during the performance analysis. The

correctness of the result should be the primary concern.[35]

Optimisation

We need to do the optimisation with care in performance analysis. We need to configure each DBMS

to reach a top performance to produce a fair comparison, but optimisation should never improve per-

formance in a specific benchmarking test. Maximise the system’s performance by database optimisation

should be done correctly. One usage of the benchmark is to compare two solutions. One is often the

author algorithm or technique compared to an existing system. That could lead the author to poorly

optimise the state of the art to make his solution look better than another. One recommendation is

to follow guidelines or to explore configuration used in previous publication.[35] Standardised bench-

mark specifications could lead to optimisation toward a specific benchmark[35] or benchmarketing when

benchmark a create to fit DBMS for marketing reason[31].

Ignoring preprocessing time

Indexing, a prepossessing task, takes time to construct and, depending on the DBMS, could lead to a sig-

nificant difference in performance. The construction of preprocessing should be taken into consideration

if preprocessing are not available in every system.[35]

1echo 3 > /proc/sys/vm/drop caches with root privileges on linux systems
2sync && sudo purge on macOS

6
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2.1.2 Benchmarking tools

TPC Benchmark and Yahoo! Cloud Serving Benchmark (YCSB) are the most well know benchmark-

ing tools. The existing solutions are not suited for Typhon Polystore. Unit against benchmarketing

techniques (running tailored benchmarks to increase sales), a small group of individuals contributes to

creating a fair and neutral means to compare performance. The Transaction Processing Performance

Council (TPC) is composed of influential academic database experts and well-known industry leaders[31].

TPC does not provide an easy parametrizable framework to assess the performance of a database. YCSB

framework was created by Yahoo! to provide a comparison solution for cloud database. The framework

evaluates a database based on the cloud needs like scale-out, elasticity and high availability, which are not

the primary concern of Typhon polystore. YCSB provide an open-source solution with a set of workloads

specified with principal features (Insert, Update, Read and Scan) which could inspire our solution[8].

2.1.3 Experimental setup - Hardware configuration

The easiest way to make the experience reproducible is to facilitate other people to conduct the same

benchmark by providing the configuration. Ceesay et al. have proposed a solution to make benchmarking

easier to set up by containerising the tools and settings. Two main components are the plug functional and

the play functional. They are respectively in charge of eliminating the manual processes by auto-detecting

settings, adding them to the configuration files, and running the benchmark.[5] It is recommended to

fix the environment with slight variation as possible to focus on a specific factor. Depending on the

environment fixing all the parameters may not be possible. It is then recommended to change the

execution order randomly. The minimal description should include software (and version), operating

system version, and compiler flags. Depending on the relevance, should include details of the network,

the connection bus, or the main memory bandwidth[19]. Even in a fixed environment changing an

innocuous aspect of an experimental setup could lead to bias. Mytkowicz et al. pointed out that a

simple change as the UNIX environment size could lead to a change in performance. Make an exhaustive

list of bias is not a solution to avoid them in performance analysis. Learn to deal with it is a better

solution. A solution to reduce bias is to generate many experimental setups and then use statistical tools

to compare results. To detect if an incorrect conclusion was reached from our data, we could use causal

analysis. This solution does not exclude bias totally but tends to reduce them. [30]

2.1.4 Data generation and Queries

The last concern to evaluate a database performance are the generation of data and query. We are going

to analyse the tools used by well-known benchmark and independent tools.

Each benchmarking tools has its generator or its solution to populate the database. For exam-

ple, TCP-H speaks about ”The queries and the data populating the database have been chosen to

have broad industry-wide relevance.”[40] . TCP-C define a database schema in his documentation.[39].

YCSB provide a workload and allow the user to create its own if needed[15]. The workload characteris-

tics(proportion of: create, read, update and delete query) allow testing a broad sort of user need[8].

Independent workload generator like NoWog tries to fill the void left by traditional benchmarking

tools. NoWog is a workload generator based on a specific grammar that is independent of a particular

NoSQL database paradigm. Synthetic workloads are developed to have similar characteristics to real

7
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workloads and test the three majors indicators: volume, velocity and variety[1] (extended with value and

veracity [10]).

2.1.5 Exposing the result

Making a performance analysis without falling into common pitfalls is not all. The last step is to expose

the result without changing the reality. We should consider a set of common-sense rules in each paper.

The first is to report the unit unambiguously and always use the official notation(e.g. Bytes with B

and Bits with b). The second rule is to provide all the result and not only the ones with the desired

effect. Taking special care to use summarising ratio with parsimony and report if the measurement is

deterministic. The last tips are to plot as much information as possible, this recommendation will allow

users to compare the result with our conclusion. [19]

2.1.6 Expected criteria for a benchmark

In the following section, special care will be provided to avoid common pitfalls previously cited. We have

defined a list of criteria to respect (table: 2.1). We have attributed importance to each rule based on

the following nomenclature.

• Req. for Required: Minimum criteria to conduct a performance analysis.

• Exp. for Expected: Give additional information to the user. This information can facilitate the

process of reproducibility.

• Opt. for Optional: Information that helps to explain the context but not mandatory for the

reproduction.

Criterion Details Req. Exp. Opt.

Hardware description
Processor Model / Accelerator

RAM Size / Type / Bus Info

NIC Model / Network Infos

Query description List of query
Model description Complementary information on the model
Database description Version and Configuration
Optimisation Optimise each query
Avoid Bias Large number of experimental setups
Detect Bias Causal analysis
Set of query CRUD(Create, Read, Update, Delete)
Dataset Data from the database
Database Images Container with database image

Table 2.1: criteria for a benchmark

8



2.2. IMPROVING A DATABASE MODEL CHAPTER 2. LITERATURE REVIEW

2.2 Improving a database model

Improving the performance of query performed on a database can be done based on different strategies.

Even the most simple database can be decomposed into two-layer at the highest level of abstraction, a

physical layer composed of disk storage and database management software. On top of those layers, we

have the programming language, which interrogates the hardware based on the translation of commands.

2.2.1 Database performance optimisation by hardware tuning

The hardware evolve at a high pace due to new discovery or linked to the Moore’s law. Database solution

providers, like Oracle, also propose some warranty or evolution in they contract. This evolution and

warranty make the hardware on of the easiest solution to increase performance of a database management

systems.

When a company needs better performance for the database system, it is easier to improve the hardware.

This modification of hardware can be after finding the bottleneck from changing a disk, adding some

RAM, changing the CPU, etc.

In their articles, J. Cieslewicz and K. A. Ross have explained the evolution of hardware for database

management systems and present some change possible towards modern architecture. As they have said:

”Database optimization for modern hardware is an area of research where the work is never finished”.[6]

2.2.2 Database performance optimisation by software tuning

Improving query performance based on modification into the application layer is usually not the primary

concern of companies due to the task’s complexity. Usually, database systems are tuned in by creators

or by a community of developers in open source.

2.2.3 Database performance optimisation by the data model and query op-

timisation

Improving the data model or query to be more efficient is usually done based on best practice or tests.

Database management systems provide solutions like an index to increase a query’s performance and

solution provided by best practice like use the most precise type when you defined a field in an SQL

database. Every improvement can have disadvantages, and it is usually a matter of compromise. We

need to improve the global performance of the polystore. We will enhance each query to reduce kink in

query formulation and then have a global approach to optimise queries.

One query at a time Improving the performance of a query is not always possible. The formulation

of the query or the data models can be improved. First of all, the data models must be examined. Is it

an index? Are the type of data well adjusted? The second concern is the query, and some tools can be

used to review the execution plan.

Multiple query at a time NoSQL paradigms are easier to scale. There are used because the number

of request on a system is high. The increase of request on a database is due to the rise in usage of
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systems. Today, a database is more queried, and those queries have different shapes. Taking into account

the number of occurrence of each query has more sense but is not always possible. Each improvement

on one query can have disadvantages on another one. Adding an index on a database that is most of the

time used to perform ”create” queries will negatively impact the global performance.

2.2.4 How to improve a specific language?

MariaDB - Relational

In the relational paradigm, we can categorise query based on the type of CRUD operations or based on

the query’s complexity depending on the structure. If a query interrogates one table, we can say that

a simple query. If a query interrogates two or more tables, we can say that it is a more complex query.

The easiest way to increase the performance of a simple query is to create an index on the where clause’s

attribute. For more complex queries, indexing can be a solution, but the order of the argument in a

query could also vary the performance.

Indexing There are four possibles types of index in a relational database: primary keys (unique and

not null), unique indexes (unique and can be null), plain indexes (not necessarily unique) and full-text

indexes (for full-text searching).[14]

It is recommended to create an index to match the queries based on the application’s needs. Any extra

will waste resources. Using the ”EXPLAIN” statement can help to decide which columns need indexing.

If there are queries that contain the keyword ”Like”, it is also recommended to use a full-text index. Re-

moving a rarely used index could increase INSERT and UPDATE performance(The information Schema

INDEX STATISTICS provide info on the index’s usage).[14]

Joins Joins two or more tables in a query could take some time. SQL is a declarative or non-procedural

language. Those types of languages specify what is to be done rather than how to do it. [9] In this case,

we ask for specific data from a specific location. The particularity of a declarative language is that the

database management system handles a query execution plan. Thus, we have almost no possibilities to

modify performance.

Leis et al. have explored how database management system deals with joins queries and how to improve

performance using different estimations like cardinalities. [27]

Types Using the most precise type for an attribute can increase the performance significantly. For

example, storing an uniqueID composed of a numeric value into a String is nonsense. [33]

Cassandra - Key-value database

Key-value databases are from the NoSQL family. In this subsection, we are going to explore the rec-

ommendation provided for data modelling. As Typhon used Cassandra, we are going to explore recom-

mendation for this database. Those recommendations could slightly differ from one database to another

database, but principles are similar.

10
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Data Modeling Data modelling is query-driven and implies starting from the query to create a

database structure. There is no join in Cassandra. All the information needed must be at the same

table. The last big difference with a relational database is the duplication of data across multiple tables.

Choosing the right primary and partition key is fundamental to have a good performance. The syntax

used to create a primary key is essential. In the example below, the primary key is composed of three

arguments. The first is the id and is called the ”partition key”, the second and last argument is ”clus-

tering key”. Partitioning is done by the id, and in the partition, rows are ordered by ”productName”

and ”suppliersId”. The partition key can be composed of multiple arguments grouped using parentheses.

Choosing the right partition key is essential. By reducing the number of partition read, the performance

is improved.

With the last release of Cassandra (4.0) materialised view was implemented but are still experimental.

Thus, this solution does not take the materialised view into account. In a latter development, MV could

reduce disk space needed as the view tables are constructed from data in another table called the base

table. [21]

1 CREATE TABLE Products (

2 id uuid ,

3 productName text ,

4 quantityPerUnit text ,

5 unitPrice float ,

6 unitsInStock int ,

7 unitOnOrder int ,

8 reorderLevel int ,

9 discontinued boolean ,

10 categoriesId text ,

11 suppliersId text ,

12 PRIMARY KEY (id , productName , suppliersId)

13 ) WITH CLUSTERING ORDER BY (productName DESC)

Neo4J - Graph database

One of the most used graph databases is Neo4J. As Typhon used it, we will explore what is possible to

do and how to increase the performance. This paper will only take the modelling aspect because Typhon

handles the rest.

The Neo4J’s documentation has a complete chapter on performance improvement. Two mains aspects

are index and create a graph that corresponds to the queries executed on the database.

Index In Neo4J, there are two different types of index. The first one is full-text. Those are optimised

for indexing and searching text. The only way to access the index is by being queried explicitly via

procedures. The second type is the b-tree. Those could be created and dropped using Cypher. Cypher’s

query planner integrated b-tree index when needed. [20]
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Graph Modeling As with NoSQL, the first aspect to take into account is the queries. Queries could

highly impact performance. For example, a client who lives in the UK. If we have a query that looks

for all the clients who lived in a country, we should create a node for the UK with a label country and

compare the client nodes and the country nodes. If the only access one client and want is country. We

should make a property named ”Country”. With a relatively small dataset, the impact could be trivial

but not with a big dataset.[2, 16]

MongoDB - Document database

MongoDB is the last database paradigm where are going to explore. MongoDB is a NoSQL and document

database. Like the two NoSQL databases previously studied, it is recommended to start from the queries

to model the database. MongoDB documentation has a large section dedicated to performance. Each

of the following paragraphs develops a recommendation. We have already reduced recommendations to

the limits of Typhon.

Data modeling and sizing memeory Data with a 1:1 relation should be modelled in a single

document(embedding). This choice induces better performance for read operations. Referencing should

be used when

• A document is frequently read but contains data that is rarely accessed. Embedding this data

increases only the in-memory requirements (the working set) of the collection.

• One part of a document is frequently updated and constantly growing in size, while the document’s

remainder is relatively static.

• The combined document size would exceed MongoDB’s 16MB document limit, for example, when

modelling many:1 relationships, such as product reviews to a product. [25]

Index There are seven types of index in MongoDB. Regular index for matching the entire value of a

field (1). Compound index for index composed of multiple attributes (2). Text index to match a specific

word in a text (3). Wildcard index for supporting queries against unknown or arbitrary fields (4). Partial

index for only indexing document that succeeds a conditions(5). Multi-key index: to index each element

of an array (6). Case insensitive index: to avoid the use of regex for case insensitivity (7). [23]

Multi-document Transaction The multi-document transaction appears with version 4.0. As Mon-

goDB was not previously designed to handle this scenario, some limits must be respected. By default,

the transaction runtime limits are 60seconds, and it is recommended to modify less than 1000 documents

per query.[24]

2.3 Visualisation of a database model

The goal is to create a good visualisation tool to help the user executes efficient queries on the polystore.

There are two main aspects to consider: the first is the interaction between the user and the polystore,
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and the second is about the visualisation. This section will explore the possibilities and best practice to

create visualisation.

2.3.1 How to design an interface with guidelines?

Even exposed through a navigator, a website is an interface also now as a web user interface. It can

be defined by: ”A Web user interface or Web app allows the user to interact with content or software

running on a remote server through a Web browser. The content or Web page is downloaded from the

Web server, and the user can interact with this content in a Web browser, which acts as a client.”[32].

There are a lot of guidelines to design an interface based on your support. For example, Apple[11]

and Microsoft with fluent[28] have defined the best guidelines to design an interface on their operating

systems. There are web standards developed by the W3C organisation.[45]

2.3.2 How to create a memorable and positive user experience with the

polystore?

My first contact with the polystore left me with a strange feeling of powerful but not usable technology.

This first interaction made me think about the problem of interaction between human and machine. The

experience was not designed for users. The definition from the UX Book for user experience is a good

start to think about the future interface that needs to reconcile user and machine: � User experience

(UX) is the totality of the effect or effects felt by a user as a result of interaction with, and the usage

context of, a system, device or product, including the influence of usability, usefulness and emotional

impact during interaction, and savoring the memory after interaction. “Interaction with” is broad and

embraces seeing, touching, and thinking about the system or product, including admiring it and its

presentation before any physical interaction. �[34]

With the user experience definition in your minds we can start to analyse, design, implement and evaluate

the interface.

2.3.3 What-Why-How model

To satisfy the goal, it is easier to use framework. The What, Why, How is a three-part analysis framework

used in visualisation and more precisely in data-viz. ”Why is the task being performed, what data is

shown in the views, and how is the vis idiom constructed in terms of design choices”.[29]
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Chapter 3

Evaluation of performance

Improving data access performance requires first evaluating the performance. Benchmarking techniques

are well used in a single paradigm database to extract valuable insight and get a landmark between

all the technology available on the market. Those techniques are the first stone to helps us to define

less efficient structures, formulation into the data model or queries. The remainder of this chapter is

organised as follow Composed of five-section, this chapter leads us to solve the problem of conducting a

benchmark in a polystore environment. After a brief introduction, the contribution will be based on the

knowledge acquired during the literature review, an implementation is provided, tested, and results are

exposed. The conclusion review the work and make recommendations to improve the document.

3.1 Introduction

In the Cambridge dictionary, a benchmark is ”a level of quality that can be used as a standard when

comparing other things”[3]. The literature review provides us with a methodology and a list of expected

criteria to satisfy the minimum requirements to do a qualitative performance evaluation (figure 2.1). We

have defined three levels of necessity for criterion from optional to required. The contribution will examine

each of the criteria and translate those criterion to the polystore environment. The implementation will

test the procedure defined in the contribution.

3.2 Contribution

The performance analysis process of Typhon as for goal to state rules on how to take advantage of

the hybrid polystore. Each paradigm, relational, graph, key-value, document as his advantages and

inconveniences. By producing multiple models and make the comparison between queries result, we can

extrapolate recommendation. This contribution is twofold. The first one is about hardware and software

configuration. The second one is about the data model, queries and retrieves result.
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3.2.1 Hardware and software configuration

It is essential to get a complete description of the environment in which tests are performed to allow

complete transparency, reproducibility and the ability to understand the result. We have divided the

description into three-part. The first describes the computer hardware and software; the second is about

Docker, and the last about Typhon. We have provided an extensive description in the appendix. B

Computer

We conducted our experiments on a MacBookPro16,1 composed of one single 6-Core Intel Core i7 of

2.6 GHz with 256 KB L2 Cache per Core and 12MB as L3 Cache. The computer has 16 GB of RAM

(2*8GB - DDR4 - 2667 Mhz) and an APPLE SSD 500GB. The version of OS is macOS 10.15.7 (19H2),

and the kernel version is Darwin 19.6.0.

Docker

Typhon required Docker to launch the polystore. The version of Docker is v19.03.13. To increase the

polystore performance, Docker has access to 6 CPUs, 7.00GB of Memory, 1GB of Swap and 59.6GB for

the disk image.

Typhon

The Typhon polystore environment is composed of multiple images. Each image has a unique ID. Image

ID can be found in the appendix. (B)

3.2.2 Data model, queries and retrieve result

The database needs a model and data to fill it to allow a user to perform queries. The benchmarking

process use performance of queries to compare model, database paradigm or DBMS. Each of these

particularities can influence the final result. Our role is to reduce bias induced by the process to be as

close to reality as possible.

3.2.3 Data and model

Create artificial data has the disadvantage of not representing reality or being incomprehensible. The

goal of the performance analysis is to match the reality. The easiest way to get close to reality is to use

actual data. Disadvantages are multiple. Data are sometimes under copyright, highly protected by the

company due to business secret or by law to protect consumers (e.g. GDPR).

For experimental concern, slow evolution and focus on one element could teach us more than a global

picture. The model used was a part of the well knows Northwind database. It is a sample database used

by Microsoft to allow a user to test database management systems. The Northwind database is strongly

distributed and available on multiple DBMS like Neo4J[41] or MariaDB[36]. The model of Northwind,

figure 3.1, represents fictitious company that imports and exports speciality foods from around the world.

For testing purpose, migrating the entire database from one concept to another and fixing the number

of change to one to be able to extract valuable insight was not possible. We have extracted from the

Northwind model two sub model.
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Figure 3.1: Northwind Diagram

Model 1:

The first model, figure 3.2, is composed of one entity called ”Products” without relation. This entity

will be migrated between each paradigm with its data.

The corresponding syntax in TyphonML:

1 entity "Products" {

2 "ProductId" : int

3 "ProductName" : string [40]

4 "QuantityPerUnit" : string [20]

5 "UnitPrice" : float

6 "UnitsInStock" : int

7 "UnitsOnOrder" : int

8 "ReorderLevel" : int

9 "Discontinued" : string [3]

10 "CategoriesID" : int

11 "SuppliersID" : int

12 }
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Figure 3.2: Model 1 - Products entity (From Northwind Diagram)

13

The migration tools will relocate entities and data from one database to another supported by Typhon

with change operators. For example, the change operator used to migrate the database product to a

key-value database.

1 changeOperators [

2 migrate Products to KeyValueDatabase

3 ]

4

Model 2:

The second model, figure 3.3, comprises two entity ”Products” and ”Suppliers”, with relations between

them. Those entities will be migrated one by one in each paradigm with the related data.

1 entity "Products" {

2 "ProductId" : int

3 "ProductName" : string [40]

4 "QuantityPerUnit" : string [20]

5 "UnitPrice" : float

6 "UnitsInStock" : int

17
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Figure 3.3: Model2 - Products and Suppliers entity (From Northwind Diagram)

7 "UnitsOnOrder" : int

8 "ReorderLevel" : int

9 "Discontinued" : string [3]

10 "CategoriesID" : int

11 "SuppliersID" : int

12 "Suppliers" -> "Suppliers"[1]

13 }

14

15 entity "Suppliers" {

16 "SuppliersId" : int

17 "CompanyName" : string [40]

18 "ContactName" : string [30]

19 "ContactTitle" : string [30]

20 "Address" : string [60]

21 "City" : string [15]

22 "Region" : string [15]

23 "PostalCode" : string [10]

24 "Country" : string [15]

25 "Phone" : string [24]

26 "Fax" : string [24]

27 "HomePage" : text

18



3.2. CONTRIBUTION CHAPTER 3. EVALUATION OF PERFORMANCE

28 "Products" -> "Products"."Products.Suppliers"[0..*]

29 }

30

Queries

Each user or type of user has a favoured type of query. Depending on the need, the performance of a

database could change. If the user tries to understand his business, he will make more read action than

write. To match each user profile, we have defined three batches of queries(3.1). The first one, named

Type 1: ”Heavy create and update” is composed of a majority of create and update operations. The

syntax to formulate an insert or read query is:

1 insert TableName {attributes : value (, attributes: {value)∗ }

1 update TableName Alias

2 where condition

3 set {attribute:value(,attibute:value)∗}

4

This syntax in the Northwind context can give for example:

1 insert Categories {

2 @id:# GenHRCat ,

3 CategoryName : "gen Category"

4 Description : "This is a gen Category"

5 }

6 update Products p

7 where p . ProductName =="Chai" set {price :+ 5}

8

The second type, named Type 2: ”Heavy read” is composed of a majority of read operations. The syntax

and one example can be found bellow.

1 from TableName Alias(,TableName Alias)∗

2 select Alias (. Attribute),(Alias(. Attribute))∗

3 where Condition

4
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1 from Orders o , Shippers s

2 select o.OrderDate , o.@id , o.OrderDate , o.RequiredDate , s.

3 CompanyName , s . Phone

4 where o== s . Orders && s .CompanyName == "Speedy Express"

5

The last type is named Type 3: ”Balanced” is composed of the same quantity of creade,read and update

operation and of 10% of delete operation. This leads us to the syntax and an example of a delete query:

1 delete TableName Alias

2 where condition

3

1 delete Customers c wherec.@id ==# GenHCCons

2

Type Create Read Update Delete

Type1 : Heavy create and update 44% 6% 44% 6%

Type2 : Heavy read 14% 70% 10% 6%

Type3 : Balanced 30% 30% 30% 10%

Table 3.1: Distribution of type of query by user profile

An extended version of the syntax TyphonQL and all the queries used can be found in appendix D.

Result

The result can be seen at different levels. The lowest level, where each query are taken independently.

The higher level where queries results are aggregate based on the type (CRUD) or based on a batch. The

Typhon project provide multiple access to result from the so-called post-execution events (PostEvent),

from the continuous evolution tool or from the benchmark java program. Respectively, raw data, a more

user-friendly approach and system time output.

Each query individually The first aspect to consider is to make recommendations based on single

query performance to improve model performance. Post-Event, continuous evolution tool and java

program are explored to find the best way to improve a single query.

PostEvent PostEvent are event-generated by the TyphonQL engine and published with Apache

Kafka’s help and process with Apache Flink. We could retrieve raw execution rapport by subscribing to

20



3.3. IMPLEMENTATION CHAPTER 3. EVALUATION OF PERFORMANCE

the PostEvent queue.1

Continuous evolution tool The continuous evolution tool provides visual analytics of Polystore

data usage. This visual tool as the advantage to retrieve result for each query and retrieve the result

from similar queries with the help of wildcard.

Java program: Benchmark By capturing in the response header of a query the ”QL-Wall-Time-

Ms”, a java program is capable of getting the exact result for each query.

Batch of queries It is essential to take a step back to get a global view to increase the database

performance. Enhancing a single query could lead to decreasing global performance. Post-Event, con-

tinuous evolution tool and java program are explored to find the best way to retrieve result for a batch

of queries.

PostEvent Aggregation of PostEvent could be a solution to retrieve execution time for a batch of

queries. Due to the complexity of this solution, it has not been implemented.

Continuous evolution tool The continuous evolution tool does not provide information on the

processing time for a batch of queries.

Java program: Benchmark The information provided by the java program benchmark’s execu-

tion make by summing each query’s result is the easiest solution for batch queries.

3.3 Implementation

Each query will be built on top of one or multiple database paradigms to compare the performance

of Typhon. The Typhon polystore is configured to be used with MariaDB, MongoDB, Cassandra and

Neo4J. Respectively relational database, document database, key-value database and graph database.

This section will describe each model and how it could be implemented in a Typhon polystore. Due to

migration problems towards Cassandra and Neo4J this part focus on Relational and Document Database.

3.3.1 How? The benchmarking procedure

1. Polystore is created with the model developed in the contribution: data and model 3.2.3.

2. The polystore is built with docker.

3. The polystore is reset (To create databases structure)

4. The polystore is filled with data with the data ingestion tool provided by the Typhon evolution

tools.

5. Query are executed with the java program developed for this purpose.

1Architecture description could be retrieved in the deliverable 5.3 Event Publishing and Monitoring Architecture
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Figure 3.4: Benchmark result: Heavy Create and Update

6. Cold results are recorded.

7. The databases are reset (To empty the databases)

8. The polystore is filled again.

9. Queries are executed again (Warm test)

10. Warm results are recorded.

11. The polystore is deleted with docker-compose rm -v as recommended in the Typhon documentation.

This procedure is repeated five times.

3.3.2 Queries performed

Based on the profile defined in 3.1 a list of queries have been defined in 3 files. Each file contains 50

queries which are executed by a Java program called ”Benchmark”. The process is composed of 4 steps.

Extract query from .tql files (1), transform query to match API recommendation (2), execute query one

by one (3) and Return time of execution (4).

3.3.3 Result

We have created a model as simple as possible without performance tuning (no index, ...) to have a point

of comparison. The results extracted from the benchmark are of two types: the white and black box.

The choice to keep white box result is to have the maximum of information to explain the variation of

results. Even if the white box results are present, we should only consider the black box results because a

user consider only the time he need to get the result and the purpose of this project is to be independent

of Typhon.

Type 1 (figure 3.4), Type 2 (figure 3.5) and Type 3 (figure 3.6) results are exposed in three figure

bellow. Each exposed the result of 50 queries run five times on the polystore.
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Figure 3.5: Benchmark result: Heavy Read

Figure 3.6: Benchmark result: Balanced
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3.4 Conclusion

This methodology could be improved by running the queries on a different setup and see if similar results

can be observed. The number of queries could also be increased to reduce bias. For that purpose, a

query generator could be implemented. A Jenkins’s test server could also be implemented to improve

performance and reduce manual task. The complexity of creating, launching, deploying a polystore,

making a model evolve, or understanding an error has not eased this procedure’s automation. For

example, It is always necessary to create a model manually or look in the log to understand why a query

failed because the interface only responds with an ”Error”. With this technology’s evolution highly

desired by the public and private sector, this benchmarking process could be smooth out.
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Chapter 4

Recommendation

Improving data access performance requires making some change to the data model or query once we

have acquired more knowledge by testing the model in a benchmarking, for example. Change can be

recommended to a user based on his habit or need. The term ”recommendation” is used to describe

every modelling choice or query adaptation that could improve the performance of the polystore. The

performance criteria are multiple and could be the execution time of one or multiple queries. The

remaining of this chapter is organised as follow. After a brief introduction resuming the literature review

and purpose of this chapter, we will start to contribute to the model evolution, then we will test the

contribution on a Typhon polystore and draw a conclusion from the experimentation.

4.1 Introduction

In the previous chapter, we have created and tested models. The models can be relatively slow for some

queries. There must exist improvement to perform on the data models to increase the performance

of queries. Those improvements are recommendation and, combined with the best practice from the

literature, will be the foundation of a set of rules to improve one query or a list of queries. Every

performance improvement can lead to disadvantages. Those disadvantages could be from multiple types

like increasing disk space needed for indexing, downgrading another query’s performance for splitting an

entity, or time-consuming for migrating database. We will define for each recommendation the impact

positive or negative on the polystore.

4.2 Contribution

In the previous section, we have searched for the best practice already well-known by the database com-

munity. Those best practice could lead to the enhancement of performance in a polystore environment.

Based on the previous chapter, benchmarking a polystore, we will test one by one every recommendation

and assert if there are relevant in a polystore. This section is threefold. The first objective is to sum up

and test each recommendation, the second is to extract recommendations from the test, and the last is

to resume each recommendation and the environment or conditions needed to apply the best practice.
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4.2.1 Sum up literature and adapt to the polystore environment

The literature review though us some recommendation and best practices. Is it possible to adapt those

to the Typhon polystore? We are going to list the evolution allowed and adapt the best practices to the

Typhon polystore.

Typhon evolution possibilities

To be able to optimise a database, we need to stay in the possibilities of evolution provided by the

Typhon polystore. Those evolution are listed below.

• Add/ rename/ remove attribute

• Add/ rename/ remove entity

• Add/ rename/ remove relation

• Add/drop index

• Add/remove attribute to index

• Add/drop Collection Index

• migrate entity

• merge entities

• Split entity vertical/horizontal

• Enable/Disable relation containment

• Enable/Disable relation opposite

• Change attribute type

To apply those evolution, an user need to formulate change operators. For exemple :

1 changeOperators [

2 rename entity Product as NewProduct ,

3 add attribute title : string [255] to Biography ,

4 remove relation "User.biography",

5 AddIndex {table "Inventory.TabDB" as attributes ("Tag.name")}

6 extends tableindex "Inventory.ItemDB" {"Item.shelf"}

7 ]

8

9

26



4.3. IMPLEMENTATION CHAPTER 4. RECOMMENDATION

Adaptation to the Typhon polystore

Is the Typhon evolution language expressive enough to let us improve the polystore? We are going to

explore all the possibilities.

Add index In each paradigm we have explored, it is recommended to use an index to get query

result faster. Indexing will improve read operations for a single or set of queries. Create and update

queries can have a loss of performance.[22]

The expressiveness of NoSQL database The Typhon conception does not allow us to increase

performance on one specific database. One query’s execution time will always be longer on Typhon (with

a MariaDB database) than on a MariaDB database, for example. The increase in execution time can

be explained by the fact that Typhon is a layer on the database. On the other hand, the time needed

to take the output of one query from one database and use it on another database is reduced. Thus we

need to take this advantage to intertwine the paradigm. We need to extract the most used ones to model

document, graph or key-value database based on queries.

It is recommended to keep the relational database for queries that are not often executed. The document

database will be the support for data frequently ask together. The graph database will be the support

when a large number of joins are required. Finally, the key-value database will be used

NoSQL database have the advantage to scale

4.2.2 ACID properties

To be able to create a recommendation for a polystore, we need to discuss ACID and BASE properties.

The polystore, and more precisely TyphonML, hide the complexity of the database:”Using TyphonML,

engineers can model the data that needs to be persistent homogeneously, abstracting over the specificity

of the underlying technologies.”[42]. If the user can not differentiate in which database is the data, how

can we recommend?

A user is choosing by using a relational or NoSQL database. If the user needs scalability, there is more

chance that he will select a NoSQL database, and if he need atomicity, he will more likely choose a

relational database. In the Typhon environment, the user has a limited view of the model. The border

between ACID and BASE is reducing and can lead to surprise for users.

4.3 Implementation

In the previous sections, we explored the literature, list the possibilities of each language and translate

them into TyphonML to improve the performance and finally had a discussion about the properties of the

data models. The goals of this chapter are to make some recommendation to improve the performance

of queries.

To apply the recommendation, we have implemented a model parser to extract info. For example: Do

we have an index in a table?

Due to the Typhon development status, which was still in development during my internship and stopped

now and let a lot of problems of usability, I was not able to test the improvement of the data models on
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actual queries.

4.4 Conclusion

Typhon provides a simple solution to ”rules them all”. By creating a global solution, unique tuning on a

specific database is not easy. For example, the syntax to create a partition key does not exist in Typhon

or Typhon lack of user feedback. Performance tuning and recommendation could be highly improved if a

solution to get the execution plan as it exists in many languages like with explain keyword in MariaDB.

The best way to understand why a query is an anomaly slow is by exploring the execution plan.

Limited by the content available, we have developed a solution to parse a model and a set of queries

to make recommendations in the intend to improve performance. This chapter is the first stone of

recommendation in polystore. Once the expressiveness of the language will increase or the adoption

could generate more and more data, it will become possible to have a more accurate set of rules to

improve the polystore.
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Chapter 5

Data model visualisation

The literature review though us how to design an interface, create a positive user experience and gave us

a methodology with the ”what-why-how” model. With all those elements in mind, how can we create a

useful visualisation to improve the performance of the polystore? The second chapter mainly focuses on

performance assessment, the second focus on how to improve and the goal of this chapter is to help the

user to understand and make some good choice while using the polystore. Usage can be multiple, the

first is to create the model, the second is to use the model and the third is to make the model evolve.

In this chapter, we will try by using the what-why-how methodology to create a useful visualisation.

We need to improve the performance by using visualisation techniques (what), to help the user to adopt

the solution and have more visibility on the model(why) by creating a UML-like schema that should be

integrated into the evolution analytics client (How). This chapter will describe the reflection behind the

conception of this tool. The remainder of this chapter is organised as follow. A brief introduction will

resume the previous work and how we are going to proceed, then a contribution will explore existing

interface and start a thought about the possibilities and implementation of a Typhon model visualisation

will be shown.

5.1 Introduction

The Cambridge dictionary definition of visualisation is: ”the act or an example of creating an image, etc.

to represent something:”[44]. The literature review gave us some insight on how to create an interface,

visualisation tools, how to improve the user experiences and even a methodology. All those insights

need to be transformed toward the goal to help the user to understand the model and how the polystore

works. Starting from the user need and iterate over mockup is the best practice to find a solution that

fits the need. Based on the what-why-how model we have defined the objectif of this visualisation: we

need to improve the performance by using visualisation techniques (what), to help the user to adopt

the solution and have more visibility on the model(why) by creating a UML-like schema that should be

integrated into the evolution analytics client (How). In relational database and graph database, the idea

to create a visualisation to render a model is common. Respectively, Entity-Relationship diagrams and

vertex-edge diagrams, are representations of the real. For key-value and document database, those kinds

of visual do not exist because every document is different or it has no sense to create a visual for it.
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The UML (Unified Modeling Language) is a standard ”helps you specify, visualise, and document mod-

els of software systems, including their structure and design, in a way that meets all of these require-

ments”[43]. There is no standard to represent NoSQL models because they are not fixed in the stone.

When we have to define a model in TyphonML, we need to define the structure of each entity for the

relational or NoSQL paradigms. This definition gives us a foundation to create a visualisation.

5.2 Contribution

Typhon project has already a high number of interfaces. To create a valuable one, we need to evaluate

every interface and understand their purpose. Once every interface have been reviewed, we can start to

thing about how we can create an interface to improve the data access performance.

5.2.1 Existing interface

There are multiple ways to interact with the polystore by a graphical user interface or thought web

service. There a three graphical user interface. The first one is a plug-in in Eclipse, the second one

is the ”polystore service UI”, and the last is the ”evolution analytics client”. Each interface has its

purpose. We will explore how there are build, find the purpose and the most appropriate place to add a

visualisation to help the user create queries.

Eclipse plug-in The first interface is an Eclipse plug-in, figure 5.1. Once the .tml file contains the

model, we can inject the model into Typhon. After a couple of steps, we can launch the polystore in a

console with the command ”docker-compose up –build”.
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Figure 5.1: Eclipse: Typhon plug-in

This interface is essential to parameters databases, but once the polystore is built, no need to come

back to Eclipse.

polystore service UI The second interface is the polystore service UI. This interface helps to manage

the polystore. It is composed of multiple panels. The first allow to manage users. The second on to

manage database (figure 5.2), the third to manage models (figure 5.3) and the last to perform queries

(figure 5.4).
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Figure 5.2: Polystore service UI - Databases

Figure 5.3: Polystore service UI - Models
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Figure 5.4: Polystore service UI - Query

Evolution analytics client or Typhon Monitoring Interface The third interface is the Evolution

analytics client. This interface helps the user to monitor the polystore (figure 5.5), make some change

to the data models by applying change operators (figure 5.6) and get statistics on most used category

and slowest queries (figure 5.7).
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Figure 5.5: Typhon Monitoring Interface - Schema

Figure 5.6: Typhon Monitoring Interface - Evolution
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Figure 5.7: Typhon Monitoring Interface - Queries

There are a lot of tools available to manage the polystore. The first tool, a collection of plug-in, is

entangled in Eclipse. The second is the Polystore Service UI, and the last is the Evolution Analytics

Client. Except in Eclipse, the user can not see the data models. Even when the polystore evolves

(Possibilities to change the data models through a web service), it is no longer possible to visualise the

model. That leads us to identify a problem: A user can not formulate a correct query without knowing

the data models.

5.2.2 Our solution

The purpose of your solution is to improve the understanding and help user to improve data access

performance. This interface could be integrated into the Typhon Monitoring Interface because they

share a common goal to give the user a better understanding of the database and his queries. The

schema into Typhon Monitoring interface has already a visual into the database. On the left pane, three

pie charts let us know the size of the entity, number of CRUD operation and the proportion of queried

entities and on the right pane, the Typhon schema let us know where we can find each entity. On the

other hand with the queries pages, we have two tables providing us with some numbers into the most

frequent query pattern and slowest queries. Our approach is to tackle the first problem by exposing

to the user a UML-like schema and then on top of that we can add some layers of colours, symbols to

represent all the valuable insight that we can get from the analytic tools.

In terms of user experience, the model can quickly became to large for a screen and zooming-out can not

be the only solution. We need to create an interface where the user can move in and zoom-in/zoom-out

when he need to get an overall idea of the model or to know the composition of each component.
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Our solution based on the what-why-how model

What? On short-term : The purpose of our solution is to give back to the user some visibility on

the data models and help him improve queries. On long-term : Monitor queries performance by linking

query performance and the data models.

Why? We want to help the user to understand what is behind the polystore and create an accurate

query.

How? Our solution is to create a UML-like schema to understand what is behind the data models.

Our solution will be integrated to the Evolution analytics client or Typhon Monitoring Interface. This

choice is due to the wish to monitor and improve the data models.

5.3 Implementation

In the previous section, we have defined the what-why-how of the visualisation. In this section we are

going to develop the solution and how the solution works. The model is exposed by Typhon by an API.

We need to get the model from this API, transform the model. Once the model is formatted we can

then produce a visualisation of the model.

5.3.1 Transform the data models

The first component has for goal to transform the data models from .xml to .json and is programmed

in java. This choice has been taken to work with the d3.js library efficiently. After a request to the web

service of Typhon to get the data model, it is transformed.

5.3.2 Create a visualisation tools

This implementation is based on a Simple-HTTP-server lunch with ”python3 -m http.server”. This

allows exposing an HTML file to a localhost address. With the well-known d3.js library, the model is

drawn.

Those are two examples based on data models from the Typhon project. The first one is from VW

(figure 5.8) and the second one is based on the made-up model from Typhon project (figure 5.9).
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Figure 5.8: Solution with VW Data model

Figure 5.9: Solution with example Data model
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5.4 Conclusion

This interface address the most significant problem user can face: missing feedback from the software to

understand what is wrong in a query and doing an accurate query based on the underlining paradigm.

One problem that this solution has been able to resolve yet is improving the performance of the polystore

based on the query performed. One solution is to add layers on top of this solution. Adding a colour

map to identifies tables or field which are the most used/ the slowest.
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Chapter 6

Conclusion & Future Work

6.1 Conclusion

Performance is one of the main argument toward the adoption of a database management system. By in-

creasing performance, we increase also the attractiveness of the system. A polystore has other advantages

than a single paradigm database management system like allowing a user to make queries seamlessly

on multiple databases. The polystore architecture add at least one layer on top of relational or NoSQL

database (figure 1.1, 1.2), this induce degraded performance compare to one database management sys-

tem. To avoid the advantage of being able to query multiple database systems seamlessly being wipe

out by the disadvantage of poor performance, performance is fundamental.

The first chapter of this thesis gave us some context to understand how hybrid polystore works and

divide the work into three sub-topics: benchmarking, recommendation and visualisation. After getting

the big picture and context, we had the opportunity to develop a benchmarking tool and test the tool

onto Typhon polystore. This benchmarking tool uses the API layer exposed by the Typhon polystore

and queries are performed onto a sub-part of the Northwind diagram. Results of the benchmarking were

of two types white box and black box result. To be as generic as possible and be paradigm free we

choose to ignore white-box result to concentrate on black-box result This implementation was tested on

the Typhon polystore but the methodology can be reused on other polystore like BigDawgs. Based on

the benchmarking performance, we have extracted some insight into the result and create some recom-

mendation. For example, add an index to a table. Typhon was a living environment because it was

still in development. The expressiveness of the language increase, it could be interesting to test new

language features. The penultimate chapter was the opportunity to adapt one of the key-feature of a

relational model, the UML schema to help the user to understand what was behind the polystore and

help him to make accurate queries or change operator. Use a UML schema to represent the NoSQL

model is usually not possible due to the flexibility of the language. Typhon reduces this flexibility by

requiring the definition of the model in TyphonML. This reduction of the flexibility allows us to de-

fine based on this model definition a UML schema. Finding the best way to represent each language

was then the next concern. For key-value store and document, we used the same form as for a rela-

tional entity that is a box with a name and then some entity linked by relation. For graph database,

we use the default representation of a circle for a node and a relation between nodes represented by a line.
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6.2 Future Works

My experience in Computer sciences and in the Typhon project has tough me meaningful insight. In

this section, I am going to explore what’s could be done to integrate my solution and what could done to

improve the Typhon polystore. Each part of this work could be integrated into the project at different

place. We are going to describe the integration of each part.

6.2.1 Benchmark integration

The benchmarking tools could help to know what is happening behind the door and what could cause

some latency.

To be accurate this benchmark should reduce from first of all the user’s query and based on the data

of the users. Create a scheduled jobs based on the n most used query and making a report for the user

could help him to improve the database structure.

The benchmarking could also be adapted to be run on multiple systems like BigDawg, another imple-

mentation of a polystore.

6.2.2 Recommendation integration

Recommendation can be static and always be a good idea like fitting the type of a field to the data or

changing based on the model and the query like adding an index. What could improve a model on one

specific use case could cause some latency on another and is a key problem to keep in mind.

Recommendation should be linked to the benchmark to fit to the users need but to make it possible a

step need to be overcome by Typhon to make the database behind the polystore invisible. The polystore

should be able to direct a query toward a paradigm or another based on the query. For example a query

with a lot of joins could be more efficient into a graph database. What query, when to use one or the

other is still to discover once the seamless experience will be effective.

6.2.3 Visualisation integration

For the visualisation, my idea was clear from the beginning create a representation of the data model

and add a heat map on top of it to see where are performed most used query, where are performed less

efficiency queries, etc. With the deadline approaching, I had to reduce the starting ambition. The lack

of data and the complexity to connect the model, queries performance and model visualisation forced

me to reduce my ambition. I would be glad if someone could improve the visualisation by adding this

feature and test it at larger scale.

The visualisation is composed of two part. A back-end responsible to get the data model, transform it

and expose it to the front-end. The second part is a front-end, which with the help of d3.js give form to

the model. As the front-end is uncoupled from Typhon, it could be reused with other polystore.
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6.2.4 User empowerment

We leave in an world were customers take more and more power. This customers empowerment can

be related to his capabilities to quickly change, compare, test, comment and share. The extract the

polystore from the abyss and make it popular the user feedback is critical.

The idea behind the polystore start from a customer need, to be able to make query on multiple database,

by his development the user was more put on a side and to be able to make some query on the polystore

became complicated due to the fact that the user has no view on the model or on what is happening

with his query.

6.2.5 ACID and BASE applied to polystore

ACID and BASE are respectively properties of relational, NoSQL database. As polystore have for purpose

to hide underling database from the user. A thinking need to be orchestrate around the problematic of

ACID and BASE properties. Should we keep the most restricted properties, ACID, or should we take

the BASE as root properties? Is it possible to make them coexist inside a polystore and keep ACID

properties for relational database and BASE for NoSQL and get other properties for the polystore?
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Glossary

Abbreviation - Word Signification

DBMS Database management system
TyphonML Typhon Modelling Language
TyphonQL Typhon Query Language
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Appendix B

Configuration

B.1 Hardware and software configuration

B.1.1 Computer

• Configuration

– Model Name: MacBook Pro

– Model Identifier: MacBookPro16,1

– Processor Name: 6-Core Intel Core i7

– Processor Speed: 2,6 GHz

– Number of Processors: 1

– Total Number of Cores: 6

– L2 Cache (per Core): 256 KB

– L3 Cache: 12 MB

– Hyper-Threading Technology: Enabled

– Memory: 16 GB (2*8GB - DDR4 - 2667 Mhz)

– Boot ROM Version: 1037.147.4.0.0 (iBridge: 17.16.16610.0.0,0)

– SSD Memory ( Capacity: 500,28 GB (500.277.792.768 bytes), Model: APPLE SSD AP0512N,
Link Width: x4,Link Speed: 8.0 GT/s)

• System Software:

– System Version: macOS 10.15.7 (19H2)

– Kernel Version: Darwin 19.6.0

B.1.2 Docker

• Version :

– v19.03.13

• Ressources :

– CPUs : 6

– Memory: 8.00GB

– Swap : 1GB

– Disk image : 59.6GB
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B.1.3 Typhon

Version

• neo4j (Images ID: ce22583052bf)

• mongo (Images ID: c97feb3412a3)

• swatengineering/typhonql-server (Images ID: 64af3c4917e4)

• clms/typhon-polystore-api (Images ID: 14fd01b9a1b5)

• universityofyork/typhon-analytics (Images ID: 47534925b54e )

• meuriceloup/typhon-evolution-analytics-backend (Images ID: f8c6b9ddf1ed)

• meuriceloup/typhon-evolution-analytics-client (Images ID: e32838c674cb)

• meuriceloup/typhon-evolution-analytics-java (Images ID: bf78e8aaa472 )

• cassandra (Images ID: 8baadf8d390f )

• mariadb (Images ID: 3a348a04a815)

• clms/typhon-polystore-ui (Images ID: 14fd01b9a1b5)

• zolotas4/typhon-analytics-auth-all (Images ID: 90904fd7a2dc)

• wurstmeister/kafka (Images ID: 9a5842c217a8)

• wurstmeister/zookeeper (Images ID: 3f43f72cb283)

Database Image Configuration

Figure B.1: Configure Polystore Components
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Figure B.2: Configure Data Analytics

Figure B.3: Choose a DBMS for each database
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Figure B.4: Database settings for RelationalDatabase

Figure B.5: Database settings for KeyValueDatabase
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Figure B.6: Database settings for GraphDatabase
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Figure B.7: Database settings for DocumentDatabase
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Appendix C

Data Ingestion Tool

The following procedure to extract model and data from an existing database is the MacOS ver-
sion. For an extensive description please refer to documentation available at https://github.com/

typhon-project/typhon-evolution or in the Typhon User Guide.

C.1 Data ingestion tool

1. Download source code from

2. Build source code

1 $ cd da t a i n g e s t i on
2 $ mvn c l ean i n s t a l l
3

3. Modifies the file ’extract.properties’ available in the generate file under the data ingestion/target
directory.

1 URL=jdbc : mysql : // r e l a t i o n a l . f i t . cvut . cz :3306/ northwind
2 DRIVER=org . mariadb . jdbc . Dr iver
3 USER=guest
4 PASSWORD=r e l a t i o n a l
5 SCHEMA=northwind
6

4. Execute the extraction with (Don’t forget to create a directory output or to specify a valid output)
On linux :

1 $ bash da t a i n g e s t i on . sh −ex t r a c t ex t r a c t . p r op e r t i e s output
2

5. Follow Typhon user guide to create a polystore and import shema.tml into your project.

6. Launch the polystore

7. The last step consists in executing the data ingestion scripts (.tql) generated at Step 1.
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Queries

D.1 Typhon Query Language (TyphonQL)

This chapter concentrate all the queries used during the benchmarking process. It’s organised by type
of queries (CRUD). Every query belong to at least one set of query defined in 3.1
The syntax is defined using this rules:

• Keyword are bold

• Text to replace depending on the context are in italics.

• Text between parentheses are optional

• ”*” signify that the text between parentheses just before the symbol could be present 0 or multiple
times.

• The symbol pipe (”—”) signify multiple possibility like ”or”

• TableName: the name of the table or entity where to search.

• Alias: a letter or multiple letter which relate to an table name.

• Attributes : attributes from a table or entity.

• Condition: a filter to satisfied on an entity.

D.1.1 Create Queries

Syntax

1 insert TableName {attributes : value (, attributes: {value)∗ }

D.1.2 Read Queries

Syntax

1 from TableName Alias(,TableName Alias)∗

2 select Alias (. Attribute),(Alias(. Attribute))∗

3 where Condition
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Syntax Condition

1 Alias.Attribute Relation Variable|Alias (. Attribute)

2 (,Alias.Attribute Relation Variable|Alias (. Attribute))∗

D.1.3 Syntax Relation

like in && ——

D.1.4 Update Queries

Syntax

1 update TableName Alias

2 where condition

3 set {attribute:value(,attibute:value)∗}

D.1.5 Delete Queries

Syntax

1 delete TableName Alias

2 where condition

3

D.2 Queries

D.2.1 Heavy read

1 // //// HeavyRead50 Create7 Read35 Update5 Delete3
2

3 from Employees e
4 s e l e c t e . LastName , e . FirstName
5

6 from Customers c
7 s e l e c t c . ContactName
8

9 from Shippers s
10 s e l e c t s . CompanyName , s . Phone
11

12 from Customers c
13 s e l e c t c . CompanyName
14 where c . Country == ”UK”
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15

16 from Orders o
17 s e l e c t o . Fre ight
18 where o . Fre ight >= 100
19

20 from S u p p l i e r s s
21 s e l e c t s . @id
22

23 from Products p
24 s e l e c t p . @id
25 where p . UnitPr ice > 50 && p . Units InStock >= 20
26

27 from Customers c
28 s e l e c t c . @id
29 where c . Country==” Spain ” && c . City==”Madrid”
30

31 from Order Deta i l s o
32 s e l e c t o . @id , o . Quantity , o . UnitPr ice
33 where o . Quantity > 10
34

35 from Products p
36 s e l e c t p . ProductName , p . UnitPr ice
37 where p . ProductName l i k e ” ’ s ”
38

39 from Customers c
40 s e l e c t c . ContactName , c . CompanyName , c . Phone , c . Fax
41 where c . ContactTi t l e == ”Owner”
42

43 from Product p
44 s e l e c t p . ProductName , p . UnitPrice , p . UnitsInStock , p . UnitsOnOrder , p . Discont inued
45

46 from Categor i e s c
47 s e l e c t c . CategoryName , c . Descr ipt ion , c . P i c ture
48

49 from Products p , S u p p l i e r s s
50 s e l e c t p . ProductName , s . CompanyName
51 where p . S u p p l i e r s == s
52

53 from Orders o
54 s e l e c t o . Order Deta i l s
55

56 from Customers c , Orders o
57 s e l e c t c . CompanyName , o . OrderDate , o . Customers
58 where c . Orders == o && c . Country !=”USA”
59

60 from Orders o , Orde r Deta i l s od
61 s e l e c t o . @id , od . Quantity , od . Products
62 where o . Order Deta i l s == od
63

64 from S u p p l i e r s s
65 s e l e c t s . Products
66

67 from Customers c
68 s e l e c t c . Orders
69

70 from Categor i e s c
71 s e l e c t c . Products
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72

73 from Employees e
74 s e l e c t e . Employees 1
75 where e . Country==”USA”
76

77 from Region r
78 s e l e c t r . T e r r i t o r i e s
79 where r . Reg ionDescr ipt ion==” Eastern ”
80

81 from Orders o
82 s e l e c t o . Customers
83

84 from Orders o
85 s e l e c t o . Employees
86 where o . OrderDate l i k e ”1996”
87

88 from Customers c , Orders o , Employees e
89 s e l e c t c . CompanyName , e . LastName , e . FirstName
90 where c==o . Customers && o==e . Orders
91

92 from Employee e
93 s e l e c t e . @id , e . Bir thdate
94 where e . Bir thdate l i k e ”−01−”
95

96 from Employee e
97 s e l e c t e . @id , e . LastName
98 where e . HireDate l i k e ”1992”
99

100 from Orders o , Sh ippers s
101 s e l e c t o . OrderDate , o . @id , o . OrderDate , o . RequiredDate , s . CompanyName , s . Phone
102 where o== s . Orders && s . CompanyName == ”Speedy Express ”
103

104 from Products p
105 s e l e c t p . ProductName
106 where p . ProductName l i k e ”ch”
107

108 from Customers c , Orders o , Orde r Deta i l s od , Products p
109 s e l e c t c . CompanyName , p . ProductName , od . Quantity
110 where c . CompanyName == ”White Clover Markets” && c== o . Customers && o == od .

Orders && od== p . Order Deta i l s
111

112 from Employees e
113 s e l e c t e . Tit l eOfCourtesy
114

115 from Products p
116 s e l e c t p . ProductName , p . UnitPrice , p . Units InStock
117

118 from Products p
119 s e l e c t p . ProductName , p . UnitPrice , p . Units InStock
120 where p . Discont inued==”0”
121

122 from Products p
123 s e l e c t p . ProductName , p . UnitPrice , p . Units InStock
124 where p . Discont inued==”1”
125

126 from S u p p l i e r s s
127 s e l e c t s . Phone
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128 where s . CompanyName==” Exot ic L iqu ids ”
129

130 i n s e r t S u p p l i e r s {
131 @id:#GenHRComp,
132 CompanyName : ”gen Company” ,
133 ContactName : ”gen and son” ,
134 ContactTit l e : ”gen Georges ” ,
135 Address : ”Angel ’ s s t r e e t ,14 ” ,
136 City : ”Namur” ,
137 PostalCode : ”5000” ,
138 Country : ”Belgium”
139 }
140

141 i n s e r t Categor i e s {
142 @id:#GenHRCat ,
143 CategoryName : ”gen Category ” ,
144 Desc r ip t i on : ” This i s a gen Category ”
145 }
146

147 update Products p
148 where p . ProductName ==”Chai”
149 s e t { p r i c e :+ 5}
150

151 i n s e r t Products {
152 @id:#GenHRProduct ,
153 ProductName : ”gen Product” ,
154 QuantityPerUnit : ”One un i t ” ,
155 UnitPr ice : 1 . 0 ,
156 Units InStock : 10 ,
157 UnitsOnOrder : 0 ,
158 ReorderLevel : 1 ,
159 Discont inued : ”0” ,
160 Categor i e s : #GenHRCat ,
161 S u p p l i e r s : #GenHRComp
162 }
163

164 i n s e r t Products {
165 @id:#GenHRProduct2 ,
166 ProductName : ”gen Product two” ,
167 QuantityPerUnit : ”Two uni t ” ,
168 UnitPr ice : 5 . 0 ,
169 Units InStock : 2 ,
170 UnitsOnOrder : 10 ,
171 ReorderLevel : 2 ,
172 Discont inued : ”0” ,
173 Categor i e s : #GenHRCat ,
174 S u p p l i e r s : #GenHRComp
175 }
176

177 update S u p p l i e r s s
178 where s . @id == #GenHRComp
179 s e t {Products +: [#GenHRProduct,#GenHRProduct2 ]}
180

181 update Categor i e s c
182 where c . @id == #GenHRCat
183 s e t {Products +: [#GenHRProduct,#GenHRProduct2 ]}
184
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185 i n s e r t Employees {
186 @id:#GenHREmployee ,
187 LastName : ”gen” ,
188 FirstName : ”Bob” ,
189 T i t l e : ”Mr” ,
190 BirthDate : ”2000−01−01” ,
191 HireDate : ”2020−01−01” ,
192 Notes : ”Not a v a i l a b l e ” ,
193 PhotoPath : ” http :// goog le . com” ,
194 Sa lary : 1000 .0
195 }
196

197 i n s e r t Customers {
198 @id:#GenHRCons ,
199 CustomerID : ”GENCU” ,
200 CompanyName : ”Gen Customer” ,
201 ContactName : ”Ana Lyse”
202 }
203

204 i n s e r t Orders {
205 @id : #GenHROrder ,
206 OrderDate : ”2020−11−01” ,
207 Employee : #GenHREmployee ,
208 Customer : #GenHRCons
209 }
210

211 update Employees e
212 where e . @id == #GenHREmployee
213 s e t {Orders +: [#GenHROrder ]}
214

215 update Customers c
216 where c . @id == #GenHRCons
217 s e t {Orders +: [#GenHROrder ]}
218

219 d e l e t e Orders o
220 where o . @id == #GenHROrder
221

222 d e l e t e Customers c
223 where c . @id == #GenHRCons
224

225 d e l e t e Employees e
226 where e . @id == #GenHREmployee

Appendix/Queries/HeavyRead.tql

D.2.2 Heavy create and update

1 // //// Heavycreateandupdate50 Read3 Create22 Update22 Delete3
2

3 from Orders o , Sh ippers s
4 s e l e c t o . OrderDate , o . @id , o . OrderDate , o . RequiredDate , s . CompanyName , s . Phone
5 where o== s . Orders && s . CompanyName == ”Speedy Express ”
6

7 from Products p
8 s e l e c t p . ProductName , p . @id , p . UnitPrice , p . UnitsInStock , p . UnitsOnOrder
9 where p . ProductName l i k e ”ch”
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10

11 from Customers c , Orders o , Orde r Deta i l s od , Products p
12 s e l e c t c . CompanyName , p . ProductName , od . Quantity
13 where c . CompanyName == ”White Clover Markets” && c== o . Customers && o == od .

Orders && od== p . Order Deta i l s
14

15 i n s e r t S u p p l i e r s {
16 @id:#GenHCComp,
17 CompanyName : ” generate Company” ,
18 ContactName : ” generate and son” ,
19 ContactTit l e : ” generate Georges ” ,
20 Address : ”Angel ’ s s t r e e t , 14” ,
21 City : ”Namur” ,
22 PostalCode : ”5000” ,
23 Country : ”Belgium”
24 }
25

26 i n s e r t Categor i e s {
27 @id:#GenHCCat ,
28 CategoryName : ” generate Cat” ,
29 Desc r ip t i on : ” This i s a generate Category ”
30 }
31

32 update Products p
33 where p . ProductName ==”Chai”
34 s e t { p r i c e :+ 5}
35

36 i n s e r t Products {
37 @id:#GenHCProduct ,
38 ProductName : ” generate Product” ,
39 QuantityPerUnit : ”One un i t ” ,
40 UnitPr ice : 1 . 0 ,
41 Units InStock : 10 ,
42 UnitsOnOrder : 0 ,
43 ReorderLevel : 1 ,
44 Discont inued : ”0” ,
45 Categor i e s : #GenHCCat ,
46 S u p p l i e r s : #GenHCComp
47 }
48

49 i n s e r t Products {
50 @id:#GenHCProduct2 ,
51 ProductName : ” generate Product two” ,
52 QuantityPerUnit : ”Two uni t ” ,
53 UnitPr ice : 5 . 0 ,
54 Units InStock : 2 ,
55 UnitsOnOrder : 10 ,
56 ReorderLevel : 2 ,
57 Discont inued : ”0” ,
58 Categor i e s : #GenHCCat ,
59 S u p p l i e r s : #GenHCComp
60 }
61

62 i n s e r t Products {
63 @id:#GenHCProduct3 ,
64 ProductName : ” generate Product three ” ,
65 QuantityPerUnit : ”One package ” ,
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66 UnitPr ice : 45 . 0 ,
67 Units InStock : 3 ,
68 UnitsOnOrder : 4 ,
69 ReorderLevel : 1 ,
70 Discont inued : ”0” ,
71 Categor i e s : #GenHCCat ,
72 S u p p l i e r s : #GenHCComp
73 }
74

75 update S u p p l i e r s s
76 where s . @id == #GenHCComp
77 s e t {Products +: [#GenHCProduct,#GenHCProduct2,#GenHCProduct3 ]}
78

79 update Categor i e s c
80 where c . @id == #GenHCCat
81 s e t {Products +: [#GenHCProduct,#GenHCProduct2,#GenHCProduct3 ]}
82

83 i n s e r t Employees {
84 @id:#GenHCEmployee ,
85 LastName : ” Generate ” ,
86 FirstName : ”Bob” ,
87 T i t l e : ”Mr” ,
88 BirthDate : ”2000−01−01” ,
89 HireDate : ”2020−01−01” ,
90 Notes : ”Not a v a i l a b l e ” ,
91 PhotoPath : ” http :// goog le . com” ,
92 Sa lary : 1000 .0
93 }
94

95 i n s e r t Customers {
96 @id:#GenHCCons ,
97 CustomerID : ”GENCU” ,
98 CompanyName : ”Gen Customer” ,
99 ContactName : ”Ana Lyse”

100 }
101

102 i n s e r t Orders {
103 @id:#GenHCOrder ,
104 OrderDate : ”2020−11−01” ,
105 Employee : #GenHCEmployee ,
106 Customer : #GenHCCons
107 }
108

109 i n s e r t Orde r Deta i l s {
110 @id : #OrderDeta i l s ,
111 UnitPr ice : 1 . 0 ,
112 Quantity : 5 ,
113 Discout : 0 . 0 ,
114 Products : #GenHCProduct ,
115 Orders : #GenHCOrder
116 }
117

118 i n s e r t Orde r Deta i l s {
119 @id : #OrderDetai l s2 ,
120 UnitPr ice : 5 . 0 ,
121 Quantity : 2 ,
122 Discout : 0 . 5 ,
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123 Products : #GenHCProduct2 ,
124 Orders : #GenHCOrder
125 }
126

127 update Orders o
128 where o . @id == #GenHCOrder
129 s e t {Order Deta i l s +: [# OrderDetai l s2 ,# OrderDeta i l s ]}
130

131 update Products p
132 where p . @id == #GenHCProduct
133 s e t {Order Deta i l s +: [# OrderDeta i l s ]}
134

135 update Products p
136 where p . @id == #GenHCProduct2
137 s e t {Order Deta i l s +: [# OrderDeta i l s2 ]}
138

139 update Employees e
140 where e . @id == #GenHCEmployee
141 s e t {Orders +: [#GenHCOrder ]}
142

143 update Customers c
144 where c . @id == #GenHCCons
145 s e t {Orders +: [#GenHCOrder ]}
146

147 i n s e r t Employees {
148 @id:#GenHCEmployee2 ,
149 LastName : ” Generate ” ,
150 FirstName : ”Mario” ,
151 T i t l e : ”Mr” ,
152 BirthDate : ”1999−01−01” ,
153 HireDate : ”2020−06−01” ,
154 Notes : ”Not a v a i l a b l e ” ,
155 PhotoPath : ” http :// facebook . com/Mario” ,
156 Sa lary : 2000 .0 ,
157 Employees 1 : #GenHCEmployee
158 }
159

160 update Employees e
161 where e . @id == #GenHCEmployee
162 s e t {Employees +: [#GenHCEmployee2 ]}
163

164 i n s e r t Orders {
165 @id : #GenHCOrder2 ,
166 OrderDate : ”2020−11−01” ,
167 Employees : #GenHCEmployee ,
168 Customers : #GenHCCons
169 }
170

171 i n s e r t Orde r Deta i l s {
172 @id : #OrderDetai l s3 ,
173 UnitPr ice : 1 . 0 ,
174 Quantity : 5 ,
175 Discout : 0 . 0 ,
176 Products : #GenHCProduct ,
177 Orders : #GenHCOrder
178 }
179
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180 i n s e r t Orde r Deta i l s {
181 @id : #OrderDetai l s4 ,
182 UnitPr ice : 5 . 0 ,
183 Quantity : 2 ,
184 Discout : 0 . 5 ,
185 Products : #GenHCProduct2 ,
186 Orders : #GenHCOrder
187 }
188

189 i n s e r t Orde r Deta i l s {
190 @id : #OrderDetai l s5 ,
191 UnitPr ice : 2 . 0 ,
192 Quantity : 1 ,
193 Discout : 1 ,
194 Products : #GenHCProduct3 ,
195 Orders : #GenHCOrder
196 }
197

198 update Orders o
199 where o . @id == #GenHCOrder2
200 s e t {Order Deta i l s +: [# OrderDetai l s3 ,# OrderDetai l s4 ,# OrderDeta i l s5 ]}
201

202 update Products p
203 where p . @id == #GenHCProduct
204 s e t {Order Deta i l s +: [# OrderDeta i l s3 ]}
205

206 update Products p
207 where p . @id == #GenHCProduct2
208 s e t {Order Deta i l s +: [# OrderDeta i l s4 ]}
209

210 update Employees e
211 where e . @id == #GenHCEmployee2
212 s e t {Orders +: [#GenHCOrder2 ]}
213

214 update Customers c
215 where c . @id == #GenHCCons
216 s e t {Orders +: [#GenHCOrder2 ]}
217

218 i n s e r t Customers {
219 @id:#GenHCCons2 ,
220 CustomerID : ”GENTW” ,
221 CompanyName : ”Twin Customer” ,
222 ContactName : ”Ty Phon”
223 }
224

225 i n s e r t Orders {
226 @id : #GenHCOrder3 ,
227 OrderDate : ”2020−11−01” ,
228 Employees : #GenHCEmployee2 ,
229 Customers : #GenHCCons2
230 }
231

232 update Customers c
233 where c . @id == #GenHCCons2
234 s e t {Orders +: [#GenHCOrder3 ]}
235

236 update Employees e
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237 where e . @id == #GenHCEmployee2
238 s e t {Orders +: [#GenHCOrder3 ]}
239

240 i n s e r t Orde r Deta i l s {
241 @id : #OrderDetai l s6 ,
242 UnitPr ice : 2 . 0 ,
243 Quantity : 1 ,
244 Discout : 1 ,
245 Products : #GenHCProduct ,
246 Orders : #GenHCOrder3
247 }
248

249 update Products p
250 where p . @id == #GenHCProduct
251 s e t {Order Deta i l s +: [# OrderDeta i l s6 ]}
252

253 i n s e r t Orde r Deta i l s {
254 @id : #OrderDetai l s7 ,
255 UnitPr ice : 2 . 0 ,
256 Quantity : 1 ,
257 Discout : 1 ,
258 Products : #GenHCProduct3 ,
259 Orders : #GenHCOrder3
260 }
261

262 update Products p
263 where p . @id == #GenHCProduct3
264 s e t {Order Deta i l s +: [# OrderDeta i l s7 ]}
265

266 i n s e r t Orde r Deta i l s {
267 @id : #OrderDetai l s8 ,
268 UnitPr ice : 2 . 0 ,
269 Quantity : 1 ,
270 Discount : 1 ,
271 Products : #GenHCProduct2 ,
272 Orders : #GenHCOrder3
273 }
274

275 update Products p
276 where p . @id == #GenHCProduct2
277 s e t {Order Deta i l s +: [# OrderDeta i l s8 ]}
278

279 i n s e r t Categor i e s {
280 @id:#GenHCCat2 ,
281 CategoryName : ” generate Cat n2” ,
282 Desc r ip t i on : ” This i s a generate Category number two”
283 }
284

285 i n s e r t Products {
286 @id:#GenHCProduct4 ,
287 ProductName : ” Generate Product four ” ,
288 QuantityPerUnit : ”One pounds” ,
289 UnitPr ice : 10000 .0 ,
290 Units InStock : 1 ,
291 UnitsOnOrder : 0 ,
292 ReorderLevel : 1 ,
293 Discont inued : ”0” ,
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294 Categor i e s : #GenHCCat2 ,
295 S u p p l i e r s : #GenHCComp
296 }
297

298 update Categor i e s c
299 where c . @id == #GenHCCat2
300 s e t {Products +: [#GenHCProduct4 ]}
301

302 update Order Deta i l s o
303 where o . @id == #OrderDeta i l s8
304 s e t {UnitPr ice : 1000 , Discount : 0}
305

306 d e l e t e Orders o
307 where o . @id == #GenHCOrder
308

309 update Products p
310 where p . ProductName ==”Chai”
311 s e t { p r i c e :− 5}
312

313 d e l e t e Customers c
314 where c . @id == #GenHCCons
315

316 d e l e t e Employees e
317 where e . @id == #GenHCEmployee

Appendix/Queries/HeavyCreate.tql

D.2.3 Balanced read, write and update

1 // //// Balanced50 Create15 Read15 Update15 d e l e t e 5
2

3 from Customers c
4 s e l e c t c . ContactName
5

6 from Employees e
7 s e l e c t e . LastName , e . FirstName
8

9 from Shippers s
10 s e l e c t s . CompanyName , s . Phone
11

12 from Customers c
13 s e l e c t c . CompanyName
14 where c . Country == ”UK”
15

16 from Orders o
17 s e l e c t o . Fre ight , o . @id , o . OrderDate
18 where o . Fre ight >= 100
19

20 from S u p p l i e r s s
21 s e l e c t s . CompanyName
22

23 from Products p
24 s e l e c t p . ProductName
25 where p . UnitPr ice > 50 && p . Units InStock >= 20
26

27 from Customers c
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28 s e l e c t c . CustomerID , c . ContactName , c . CompanyName
29 where c . Country==” Spain ” && c . City==”Madrid”
30

31 from Order Deta i l s o
32 s e l e c t o . @id , o . Quantity , o . UnitPr ice
33 where o . Quantity > 10
34

35 from Products p
36 s e l e c t p . ProductName , p . UnitPr ice
37 where p . ProductName l i k e ” ’ s ”
38

39 from Customers c
40 s e l e c t c . ContactName , c . CompanyName , c . Phone , c . Fax
41 where c . ContactTi t l e == ”Owner”
42

43 from Product p
44 s e l e c t p . ProductName , p . UnitPrice , p . UnitsInStock , p . UnitsOnOrder , p . Discont inued
45

46 from Categor i e s c
47 s e l e c t c . CategoryName , c . Descr ipt ion , c . P i c ture
48

49 from Products p , S u p p l i e r s s
50 s e l e c t p . ProductName , s . CompanyName
51 where p == s . Products
52

53 from Customers c , Orders o , Orde r Deta i l s od , Products p
54 s e l e c t c . CompanyName , p . ProductName , od . Quantity
55 where c . CompanyName == ”White Clover Markets” && c== o . Customers && o == od .

Orders && od== p . Order Deta i l s
56

57 i n s e r t S u p p l i e r s {
58 @id:#GenBComp,
59 CompanyName : ” Generate Company” ,
60 ContactName : ” Generate and son” ,
61 ContactTit l e : ” Generate Georges ” ,
62 Address : ”Angel ’ s s t r e e t , 14” ,
63 City : ”Namur” ,
64 PostalCode : ”5000” ,
65 Country : ”Belgium”
66 }
67

68 i n s e r t Categor i e s {
69 @id:#GenBCat ,
70 CategoryName : ” Generate Cat” ,
71 Desc r ip t i on : ” This i s a generate Category ”
72 }
73

74 update Products p
75 where p . ProductName ==”Chai”
76 s e t { p r i c e :+ 5}
77

78 i n s e r t Products {
79 @id:#GenBProduct ,
80 ProductName : ” Generate Product” ,
81 QuantityPerUnit : ”One un i t ” ,
82 UnitPr ice : 1 . 0 ,
83 Units InStock : 10 ,
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84 UnitsOnOrder : 0 ,
85 ReorderLevel : 1 ,
86 Discont inued : ”0” ,
87 Categor i e s : #GenBCat ,
88 S u p p l i e r s : #GenBComp
89 }
90

91 i n s e r t Products {
92 @id:#GenBProduct2 ,
93 ProductName : ” Generate Product two” ,
94 QuantityPerUnit : ”Two uni t ” ,
95 UnitPr ice : 5 . 0 ,
96 Units InStock : 2 ,
97 UnitsOnOrder : 10 ,
98 ReorderLevel : 2 ,
99 Discont inued : ”0” ,

100 Categor i e s : #GenBCat ,
101 S u p p l i e r s : #GenBComp
102 }
103

104 i n s e r t Products {
105 @id:#GenBProduct3 ,
106 ProductName : ” Generate Product three ” ,
107 QuantityPerUnit : ”One package ” ,
108 UnitPr ice : 45 . 0 ,
109 Units InStock : 3 ,
110 UnitsOnOrder : 4 ,
111 ReorderLevel : 1 ,
112 Discont inued : ”0” ,
113 Categor i e s : #GenBCat ,
114 S u p p l i e r s : #GenBComp
115 }
116

117 update S u p p l i e r s s
118 where s . @id == #GenBComp
119 s e t {Products +: [#GenBProduct ,#GenBProduct2 ,#GenBProduct3 ]}
120

121 update Categor i e s c
122 where c . @id == #GenBCat
123 s e t {Products +: [#GenBProduct ,#GenBProduct2 ,#GenBProduct3 ]}
124

125 i n s e r t Employees {
126 @id:#GenBEmployee ,
127 LastName : ” Generate ” ,
128 FirstName : ”Bob” ,
129 T i t l e : ”Mr” ,
130 BirthDate : ”2000−01−01” ,
131 HireDate : ”2020−01−01” ,
132 Notes : ”Not a v a i l a b l e ” ,
133 PhotoPath : ” http :// goog le . com” ,
134 Sa lary : 1000 .0
135 }
136

137 i n s e r t Customers {
138 @id : #GenBCons ,
139 CustomerID : ”GENCU” ,
140 CompanyName : ”Gen Customer” ,
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141 ContactName : ”Ana Lyse”
142 }
143

144 i n s e r t Orders {
145 @id : #GenBOrder ,
146 OrderDate : ”2020−11−01” ,
147 Employee : #GenBEmployee ,
148 Customer : #GenBCons
149 }
150

151 i n s e r t Orde r Deta i l s {
152 @id : #OrderDeta i l s ,
153 UnitPr ice : 1 . 0 ,
154 Quantity : 5 ,
155 Discout : 0 . 0 ,
156 Products : #GenBProduct ,
157 Orders : #GenBOrder
158 }
159

160 i n s e r t Orde r Deta i l s {
161 @id : #OrderDetai l s2 ,
162 UnitPr ice : 5 . 0 ,
163 Quantity : 2 ,
164 Discout : 0 . 5 ,
165 Products : #GenBProduct2 ,
166 Orders : #GenBOrder
167 }
168

169 update Orders o
170 where o . @id == #GenBOrder
171 s e t {Order Deta i l s +: [# OrderDetai l s2 ,# OrderDeta i l s ]}
172

173 update Products p
174 where o . @id == #GenBProduct
175 s e t {Order Deta i l s +: [# OrderDeta i l s ]}
176

177 update Products p
178 where o . @id == #GenBProduct2
179 s e t {Order Deta i l s +: [# OrderDeta i l s2 ]}
180

181 update Employees e
182 where e . @id == #GenBEmployee
183 s e t {Orders +: [#GenBOrder ]}
184

185 update Customers c
186 where c . @id == #GenBCons
187 s e t {Orders +: [#GenBOrder ]}
188

189 i n s e r t Employees {
190 @id:#GenBEmployee2 ,
191 LastName : ” Generate ” ,
192 FirstName : ”Mario” ,
193 T i t l e : ”Mr” ,
194 BirthDate : ”1999−01−01” ,
195 HireDate : ”2020−06−01” ,
196 Notes : ”Not a v a i l a b l e ” ,
197 PhotoPath : ” http :// facebook . com/Mario” ,
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198 Sa lary : 2000 .0 ,
199 Employees 1 : #GenBEmployee
200 }
201

202 update Employees e
203 where e . @id == #GenBEmployee
204 s e t {Employees +: [#GenBEmployee2 ]}
205

206 i n s e r t Orders {
207 @id : #GenBOrder2 ,
208 OrderDate : ”2020−11−01” ,
209 Employee : #GenBEmployee ,
210 Customer : #GenBCons
211 }
212

213 i n s e r t Orde r Deta i l s {
214 @id : #OrderDetai l s3 ,
215 UnitPr ice : 1 . 0 ,
216 Quantity : 5 ,
217 Discout : 0 . 0 ,
218 Products : #GenBProduct ,
219 Orders : #GenBOrder
220 }
221

222 i n s e r t Orde r Deta i l s {
223 @id : #OrderDetai l s4 ,
224 UnitPr ice : 5 . 0 ,
225 Quantity : 2 ,
226 Discout : 0 . 5 ,
227 Products : #GenBProduct2 ,
228 Orders : #GenBOrder
229 }
230

231 i n s e r t Orde r Deta i l s {
232 @id : #OrderDetai l s5 ,
233 UnitPr ice : 2 . 0 ,
234 Quantity : 1 ,
235 Discout : 1 ,
236 Products : #GenBProduct3 ,
237 Orders : #GenBOrder
238 }
239

240 update Orders o
241 where o . @id == #GenBOrder2
242 s e t {Order Deta i l s +: [# OrderDetai l s3 ,# OrderDetai l s4 ,# OrderDeta i l s5 ]}
243

244 d e l e t e Order Deta i l s o
245 where o . @id == #OrderDeta i l s5
246

247 update Products p
248 where p . @id == #GenBProduct
249 s e t {Order Deta i l s +: [# OrderDeta i l s3 ]}
250

251 update Products p
252 where p . @id == #GenBProduct2
253 s e t {Order Deta i l s +: [# OrderDeta i l s4 ]}
254
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255 update Employees e
256 where e . @id == #GenBEmployee2
257 s e t {Orders +: [#GenBOrder2 ]}
258

259 d e l e t e Order Deta i l s o
260 where o . @id == #OrderDeta i l s4
261

262 update Customers c
263 where c . @id == #GenBCons
264 s e t {Orders +: [#GenBOrder2 ]}
265

266 update Products p
267 where p . ProductName ==”Chai”
268 s e t { p r i c e :− 5}
269

270 d e l e t e Orders o
271 where o . @id == #GenBOrder
272

273 d e l e t e Customers c
274 where c . @id == #GenBCons
275

276 d e l e t e Employees e
277 where e . @id == #GenBEmployee

Appendix/Queries/balanced.tql
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