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Dynamical systems on hypergraphs

Timoteo Carletti and Duccio Fanelli

Abstract We present a general framework that enables one to model high-order
interaction among entangled dynamical systems, via hypergraphs. Several relevant
processes can be ideally traced back to the proposed scheme. We shall here solely
elaborate on the conditions that seed the spontaneous emergence of patterns, spa-
tially heterogeneous solutions resulting from the many-body interaction between
fundamental units. In particular we will focus, on two relevant settings. First, we will
assume long-ranged mean field interactions between populations, and then turn to
considering diffusive-like couplings. Two applications are presented, respectively to
a generalised Volterra system and the Brusselator model.

1 Introduction

The study of many body interactions has a long history in science and technology,
and relevant results have been obtained under the assumption of regularity of the
underlying substrates, where the dynamics eventually develops. When regularity
gets lost, general results are scarce and simplifying assumptions, which implement
dedicated approximations, need to be put forward. It is for instance customary to
reduce the many body exchanges within a pool of simultaneously interacting entities
to a vast collection of pairwise contacts, a working ansatz which drastically reduces
the intimate complexity of the scrutinised dynamics. Governing dynamical systems
are hence cast on top of networks [2, 9] with diverse and variegated topologies: each
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node contains a replica of the original system, and the strength of interaction is set
by the weight of the associated link.

Despite this crude approximation, relevant results have been obtained which bear
general interest [38, 6, 30]. At the same time many examples of systems exist for
which the above assumption holds true just as a first order approximation [7, 29].
To overcome this intrinsic limitation, the effect of aggregated structures of nodes,
such as cliques, modules or communities [38, 21] has been recently addressed in
the literature. This implies analysing the cooperative interference within bunches of
tightly connected nodes and assessing their role in shaping the ensuing dynamics,
in the framerwok of a generalized picture which accounts for multiple pairwise
exchanges.

There are however several examples where the interactions among individuals,
being them neurons [42, 31], proteins [18], animals [1, 24] or authors of scientific
papers [39, 11], cannot be reduced to binary interactions. The group action is in-
deed the real driver of the dynamics. Starting from this observation, higher-order
models have been developed so as to capture the many body interactions among
individual units. We hereby focus on hypergraphs [8, 17, 23], versatile tools with a
broad potential that is still being fully elucidated. Hypergraphs have been applied to
different fields from social contagion model [15, 20], to the modelling of random
walks [11], from the study of synchronisation [28, 35, 12] and diffusion [20], to
non-linear consensus [37], via the emergence of Turing patterns [12]. It is also worth
mentioning an alternative approach to high-order interactions which exploits the
notion of simplicial complexes [16, 14, 41]. Largely used in the past to tackle opti-
misation or algebraic problems, they have been recently invoked to address problems
in epidemic spreading [10, 26] or synchronisation phenomena [32, 22, 34]. In this
work we will however adopt the viewpoint of hypergraphs, to represent high-order
interactions.

Hypergraphs constitute indeed a very flexible paradigm. An arbitrary number
of agents are allowed to interact: an hyperedge grouping all the involved agents
encodes for the many body interaction, thus extending conventional network models
beyond the limit of binary contacts. A hypergraph can reproduce, in a proper limit, a
simplicial complex and, in this respect, provides a more general tool for addressing
many body simultaneous interactions.

Based on the above, it can be claimed that many body interactions constitute a
relevant and transversal research field that is still in its embryonic stage, in particular
as concerns studies that relate to hypergraphs. Our contribution is positioned in this
context and aims at systematising the study of dynamical systems coupled via a
hypergraph. For a sake of definitiveness, we will hereby consider the interactions to
bemediated by the hyperedges, that is by the (hyper)adjacencymatrix (see Section 2),
or by a diffusive-like process, that is implemented via a properly engineered Laplace
matrix (see Section 3). In both cases, we will be interested in the emergence of
spatially heterogeneous solutions, i.e. coherent and extended patterns.
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2 Hypergraphs and high-order interactions.

The aim of this section is to introduce the formalism of (hyper) adjacency matrix
which enables us to account for the high-order interaction among several identical
dynamical systems. We will then present a first study on the emergence of spatial
heterogeneous solutions, i.e. patterns, for systems interacting via a hypergraph, by
assuming that uncoupled individual units do converge to a (spatially) homogeneous
stable solution.

2.1 Hypergraphs

An hypergraph H(V, E) is defined by a set of nodes, V = {v1, . . . , vn}, and a set
of m hyperedges E = {E1, . . . , Em}, such that for all α = 1, . . . ,m : Eα ⊂ V . If
all hyperedges have size 2 then the hypergraph reduces to a network. A simplicial
complex is recovered if each hyperedge contains all its subsets.

One can encode the information on how the nodes are shared among hyperedges,
by using the incidence matrix of the hypergraph 1, eiα, namely

eiα =

{
1 vi ∈ Eα
0 otherwise .

(1)

Given the latter, one can construct the n × n hypergraph adjacency matrix,

A = e e> , Ai j =
∑
α

eiαejα , (2)

thus Ai j represents the number of hyperedges containing both nodes i and j. Let
us observe that often in the literature the adjacency matrix is defined by imposing
a null diagonal. In the following we will adopt a different notation by defining its
diagonal to contain all 1’s. This in turn amounts to assume the hypergraph to contain
all the trivial hyperedges made of just a single node. Finally we define the m × m
hyperedges matrix

C = e>e , Cαβ =
∑
i

eiαeiβ , (3)

Cαβ counts the number of nodes in Eα ∩ Eβ , hence Cαα is the size of the hyperedge
Eα.

1 We will adopt the convention of using roman indexes for nodes and greek ones for edges.
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2.2 High-order coupling

Let us consider a d-dimensional dynamical system described by the ODE :

dx
dt
(t) = f(x(t)) , (4)

where x(t) = (x1(t), . . . , xd(t))> denotes the state of the system at time t and f is a
generic nonlinear function which describes the rate of variation of x. Assume now to
replicate system (4) into n independent copies, hence yielding a (tensorial) system

dx(i)

dt
(t) = f(x(i)(t)) ∀i = 1, . . . , n , (5)

where x(i)(t) = (x(i)1 (t), . . . , x(i)
d
(t))> denotes the state of the i-th copy of the gen-

eralised system. The whole system will thus be described by the n × d vector
x = (x(1), . . . , x(n))>. Finally we allow each system (5) to simultaneously interact
with many others, and specifically belonging to the same hyperedge.

Let thus Eα be an hyperedge containing the i-th system. Then the growth rate
associated to this latter will depend on all the systems j , i, belonging to the same
hyperedge; moreover we assume such interaction to depend also on the hyperedge
size, ϕ(Cαα), for a generic function ϕ. The system i may belong to several hyperedges
Eα and thus all these contributions should be taken into account to determine its
growth rate. In formula

dx(i)

dt
(t) =

∑
α eiα

∑
j ejαϕ(Cαα)F(x(i)(t), x(j)(t))∑
α eiα

∑
j ejαϕ(Cαα)

∀i = 1, . . . , n , (6)

where we introduced the function F such that F(x(i), x(i)) = f(x(i)) and the term at
the denominator acts as a normalisation factor. We will show later on, that different
functions F can be used to return the same function f.

Let us define the m × m diagonal matrix Φ such that Φαα = ϕ(Cαα) and zero
otherwise. Then we can rewrite Eq. (6) as follows

dx(i)

dt
(t) =

1
di

∑
j

Di jF(x(i)(t), x(j)(t)) ∀i = 1, . . . , n , (7)

where we introduced the matrix D = eΦ e> whose elements read

Di j =
∑
α

eiαΦααejα ∀i , j and Dii = ϕ(1) . (8)

Let us observe that the different definition for the diagonal elements is due to the
inclusion of the trivial hyperedges containing each single node and thus having size
1. Finally let use define di =

∑
j Di j .

Remark 1 (Isolated systems)
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In the case n systems are isolated, i.e. all the hyperedges have size 1, thenCαα = 1
for all α. Observing that a single α′ (the one associated to the unique hyperedge
containing i) does satisfy eiα′ = 1 (all the other ones being zero, eiβ = 0 for all
β = α′), we can rewrite equation (6) by remarking that the sum over j is restricted
to j = i:

dx(i)

dt
(t) =

ϕ(1)F(x(i)(t), x(i)(t))
ϕ(1)

= f(x(i)(t)) ∀i = 1, . . . , n ,

where use has been made of the relation F(x(i), x(i)) = f(x(i)). Because our formalism
contains the trivial case of isolated systems (5), it results thus a natural extension of
the latter.

Remark 2 (Pairwise interacting systems)
In case of systems interacting in pairs, i.e. when all hyperedges have size Cαα = 2

for all α (but the ones associated to the trivial hyperedges containing each node), we
can show that equation (6) converges back to the usual setting of a dynamical model
anchored on a conventional network [13], once we assume ϕ ≡ 1, namely the same
unitary weight is associated to each link.

First of all, let us observe that Dii = (eΦ e>)ii = ϕ(1)Aii while for i , j we have
Di j = (eΦ e>)i j = ϕ(2)Ai j , where we used the definition of the adjacency matrix
that includes self-loops. Then Eq. (7) can be rewritten as

dx(i)

dt
(t) =

∑
j Ai jF(x(i)(t), x(j)(t))

ki
∀i = 1, . . . , n ,

where use has been made of the definition ki =
∑

j Ai j .

2.3 Dynamical behaviour

Assume s(t) to be a solution of the initial system (4), then x(i)(t) = s(t), i = 1, . . . , n,
is trivially also a homogeneous solution of Eq. (5) but also of Eq. (7). Indeed, for all
i = 1, . . . , n one has

dx(i)

dt
(t) =

1
di

∑
j

Di jF(x(i)(t), x(j)(t))
���
x(i)(t)=s(t)

=
1
di

∑
j

Di jF(s(t), s(t))

=
1
di

∑
j

Di jf(s(t)) = f(s(t)) , (9)

where we used the property F(s, s) = f(s) and the definition of di . By definition of s
the rightmost term equals Ûs which thus coincides also with the leftmost term.

Consider now a spatially dependent perturbation, i.e. a node depending one, about
the homogeneous solution, x(i)(t) = s(t) + u(i)(t). Insert this ansatz into Eq. (7) and
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determine the evolution of u(i)(t) by assuming it to be small (i.e. using a first order
expansion), ∀i = 1, . . . , n:

du(i)

dt
(t) +

ds
dt
(t) =

1
di

∑
j

Di jF(s + u(i), s + u(j))

= f(s) +
1
di

∑
j

Di j

(∑̀
∂
x
(i)
`

F(s, s)u(i)
`
+

∑̀
∂
x
( j)
`

F(s, s)u(j)
`

)
= f(s) +

∑̀
∂
x
(i)
`

F(s, s)u(i)
`
+

1
di

∑
j

Di j

∑̀
∂
x
( j)
`

F(s, s)u(j)
`

= f(s) + J1u(i) +
1
di

∑
j

Di jJ2u(j) ,

where we defined the Jacobian matrices J1 = ∂x1F(s, s), i.e. the derivatives are
computed with respect to the first group of variables, and J2 = ∂x2F(s, s), i.e. the
derivatives are performed with respect to the second group of variables. In both
cases the derivatives are evaluated at the reference solution s.

By using the fact that Ûs = f(s) and by slightly rewriting the previous equation, we
obtain

du(i)

dt
(t) = J1u(i) +

1
di

∑
j

Di jJ2u(j) = J1u(i) + J2u(i) +
∑
j

(
Di j

di
− δi j

)
J2u(j)

= (J1 + J2)u(i) +
∑
j

Li jJ2u(j) ,

where we defined the matrix operator

Li j =
Di j

di
− δi j . (10)

By introducing the n × d vector u = (u(1), . . . , u(n))> we can rewrite the latter
equation in a compact form as:

du
dt
(t) = [(J1 + J2) ⊗ In + J2 ⊗ L]u , (11)

where In is the n × n identity matrix and ⊗ is the Kronecker product of matrices.
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One can prove that L is a novel (consensus) high-order Laplace matrix 2 , i.e. it
is nonpositive definite, the largest eigenvalue is Λ(1) = 0 and its is associated to the
uniform eigenvector φ(1) ∼ (1, . . . , 1)>.

Recalling the relation f(x) = F(x, x) one can prove that:

∂xf := J = J1 + J2 ,

and thus rewrite Eq. (11) as

du
dt
(t) = [J ⊗ In + J2 ⊗ L]u . (12)

This is a linear system involving matrices with size nd × nd. To progress with
the analytical understanding, we employ the eigenbase of L, to project the former
equation onto each eigendirection

du(α)

dt
(t) =

[
J(s(t)) + J2(s(t))Λ(α)

]
u(α) , (13)

where Λ(α) is the eigenvalue relative to the eigenvector φ(α). The above equation
enables us to infer the stability of the homogeneous solution, s(t), by studying the
Master Stability Function, namely the real part of the largest Lyapunov exponent of
Eq. (13). To illustrate the potentiality of the theory we shall turn to considering a
specific application that we will introduce in the following.

2.4 Results

In the above analysis we have obtained a one-parameter family (indexed by the
eigenvalues Λ(α)) of linear but (in general) time dependent systems (13). For the
sake of simplicity we will hypothesise the homogenous solution to be stationary and
stable, s(t) = s0. In this way we will hence assume each isolated system to converge
to the same stationary point. This simplifies the study of Eq. (13), by allowing us to
deal with a constant linear system. Let us observe that one could in principle study
the more general setting of a time dependent solution, by using the Floquet theory in
case of a periodic orbit or the full Master Stability Function in the case of irregular
oscillators.

2 Let us introduce Lsym = d−1/2LHd−1/2, where d is the diagonal matrix containing the di ’s
on the diagonal and LH is the high-order (combinatorial) Laplace matrix defined in [12]. Then
Lsym = Di j/

√
did j−δi j fromwhich it immediately follows that Lsym is symmetric and nonpositive

definite; indeed take any x ∈ RN \ {0}, N standing for the dimension of the matrices, then
(x, Lsymx) = (d−1/2x, LHd−1/2x) ≤ 0 where the last inequality follows from the fact that LH is
nonpositive definite. Finally let us observe that L = d−1LH = d−1/2Lsymd1/2, hence, L is similar
to Lsym and, thus they display the same non-positive spectrum. Moreover this implies also that
−2 ≤ Λ(α) ≤ 0.
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As a concrete application we will consider a Volterra model [33] which describes
the interaction of prey and predators in an ecological setting :{

Ûx = −dx + c1xy
Ûy = ry − sy2 − c2xy ,

(14)

here x denotes the concentration of predators, while y stands for the prey and Û the
time derivative. All the parameters are assumed to be positive; in the following we
will make use of the choice c1 = 2, c2 = 13, r = 1, s = 1 and d = 1/2, but of course
our results hold true in general. The Volterra model (14) admits a nontrivial fixed-
point, x∗ = c1r−sd

c1c2
, y∗ = d

c1
, which is positive and stable, provided c1r − sd > 0. In

the case under scrutiny, we have x∗ = 3/52 ∼ 0.0577 and y∗ = 1/4.
Following the above presented scheme, let us now considering n replicas of

the model (14), each associated to a different ecological niche and indexed by the
node index i. Assume also that species can sense the remote interaction with other
communities populating neighbouring nodes. For instance, the competition of prey
for food and resources can be easily extended so as to account for a larger habitat
which embraces adjacent patches. At the same time, predators can benefit from a
coordinated action to hunt in team. For a sake of definitiveness we will study in the
following the high-order coupling (let us stress once again that several “microscopic”
high-order models can give rise to the same network-aggregate model) defined by:{

Ûxi = −dxi + ac1yi
1
di

∑
j Di j xj + (1 − a)c1xi 1

di

∑
j Di j yj

Ûyi = ryi − syi 1
di

∑
j Di j yj − c2yi

1
di

∑
j Di j xj ,

(15)

where the matrix Di j encodes for the high-order interaction among nodes i and j,
taking into account the number and size of the hyperedges containing both nodes
(see (8)). The parameters a ∈ [0, 1] describes the relative strength with which
the predators in node i increase because of the “in-node” predation or because of
the interaction among predators in the hyperedges. The case a = 1 corresponds to a
purely in-node process while if a = 0 a coordinated action to hunt in team is assumed
to rule the dynamics. Preys feel the competition for the resources with preys living
in nodes belonging to the same hyperedge (second term on the right hand side of the
second equation of (15)) as well from predators in the same hyperedge (rightmost
terms in the same equation). Birth and death of both species are local, i.e. due to
resources available in-node.

By using the new Laplace matrix (10) we can rewrite the previous model (15) as:{
Ûxi = −dxi + c1yi xi + ac1yi

∑
j Li j xj + (1 − a)c1xi

∑
j Li j yj

Ûyi = ryi − sy2
i − c2yi xi − syi

∑
j Li j yj − c2yi

∑
j Li j xj ,

(16)

where one can easily recognise the in-node Volterra model (14) and the corrections
stemming from high-order contributions.

As previously shown, in the general setting (see (9)) the homogenous solution
(x∗, y∗) is also a solution of the coupled system (15), that is xi = x∗ and yi = y∗
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solves the latter. In the following we will prove that such solution can be destabilised
due to the high-order coupling so driving the system towards a new heterogenous,
spatially dependent, solution. To prove this claim, we will linearise system (14) about
the homogeneous equilibrium by setting ui = xi − x∗ and vi = yi − y

∗ and then make
use of the eigenbase of the Laplace matrixL, (Λ(α), φ(α)), to project the linear system
onto each eigenmode, that is ui =

∑
α uαφ(α)i and vi =

∑
α v

αφ
(α)
i :

d
dt

(
uα

vα

)
=

[(
0 c1x∗

−c2y
∗ −sy∗

)
+ Λ(α)

(
ac1y

∗ (1 − a)c1x∗

−c2y
∗ −sy∗

)] (
uα

vα

)
=

(
J + Λ(α)J2

) (
uα

vα

)
=: J(α)

(
uα

vα

)
. (17)

The homogenous solution will prove unstable if (at least) one eigenmode ᾱ exists
for which the largest real part of the eigenvalues of J(ᾱ) is positive. The real part of
the largest eigenvalue λ as function of Λ(α) is called the dispersion relation. One
can easily realise that λ is the solution with the largest real part of the second order
equation

λ2 − trJ(α)λ + det J(α) = 0 .

Hence the required condition for the instability is

trJ(α) > 0 or trJ(α) < 0 and det J(α) < 0 . (18)

A straightforward computation returns

trJ(α) = −sy∗+Λ(α) (−s + ac1) and det J(α) = c1y
∗
(
1 + Λ(α)

) [
Λ
(α) (c2x∗(1 − a) − asy∗) + c2x∗

]
.

Let us recall that the homogenous equilibrium is stable for the decoupled system cor-
responding to settingΛ(1) = 0. Indeed trJ(1) = −sy∗ < 0 and det J(1) = c1c2x∗y∗ > 0.
We have thus to determine the existence of (at least one) ᾱ ≥ 2 for which the condi-
tions for instability (18), allowing us to prove the positivity of λ

(
Λ(ᾱ)

)
. In Fig. 1 we

report a case where the high-order coupling is able to destabilise the homogenous
solution (panel b), thus returning a patchy solution (panels c and d) for the involved
species. Finally let us observe that interestingly some niches (6 over 20) become
empty, that is deprived of any species.

Another evenmore interesting case is reported in Fig. 2. In this case the uncoupled
homogeneous equilibrium yields x̃ = 0 and ỹ = r/s. When extending the study to
account for multi body interactions, predators do survive in each niche while the
preys go through extinction in a few location (6 nodes over 20). Generally the density
of preys is lower than the equilibrium value found in the isolated case.
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Fig. 1 Patterns in the Volterra model with high-order interactions (I). In panel a) we represent
the hypergraph used to model the high-order interactions among species living in different niches.
The hypergraph is composed of n = 20 nodes and it has been generated using a random attachment
process and it is composed by 20 trivial hyperedges of size 1, 11 hyperedges of size 2, 10 hyperedges
of size 3 and 1 hyperedge of size 4. In panel b) we report the dispersion relation for the Volterra
model (15), the red symbols refer to λ

(
Λ(α)

)
, α ∈ {1, . . . , n}, while the blue line denotes the

dispersion relation for the Volterra model reformulated on a continuous support. In panel c) we
show the time evolution of the predator density in each node as a function of time, xi (t); let us
observe that in (almost) each node the density of predators is much larger than the corresponding
homogenous equilibrium x∗ ∼ 0.0577 (blue). Panel d) report the time evolution of the prey density
in each node as a function of time, yi (t); let us observe that in (almost) each node the density of
preys is much lower than the corresponding homogenous equilibrium y∗ = 1 (green). The model
parameters have been set to c1 = 2, c2 = 13, r = 1, s = 1, d = 1/2 and a = 1/2. We fix ϕ(c) = cσ

with σ = 1.5.

3 Hypergraph and high-order diffusive-like coupling

In the previous section we have introduced and studied the problem of the emergence
of a spatially heterogenous solution in a system of several identical dynamical units
coupled together via the (hyper) adjacencymatrix of the hypergraph. In particular the
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Fig. 2 Patterns in the Volterra model with high-order interactions (II). Using the same hyper-
graph shown in Fig. 1 we study the emergence of patterns close to the homogeneous equilibrium
x̃ = 0 and ỹ = r/s = 1. We report in panel a) the dispersion relation for the Volterra model (15), the
red symbols refer to λ

(
Λ(α)

)
, α ∈ {1, . . . , n}, while the blue line denotes the dispersion relation

for the Volterra model computed on a continuous support. In panel b) we show the time evolution
of the predator density in each node as a function of time, xi (t); let us observe that in each node
the density of predators is positive in striking contrast with it happens for the uncoupled system.
Panel c) reports the time evolution of the prey density in each node as a function of time, yi (t); let
us observe that in each node the density of preys is much lower than the homogenous equilibrium
y∗ = 1 (green) and in 8 niches the preys have gone through extinction. The model parameters have
been set to c1 = 2, c2 = 13, r = 1, s = 1, d = 1/2 and a = 1/2. We fix ϕ(c) = cσ with σ = 1.5.

microscopic units defining the system are constrained to stay anchored to the node
where they interact with those sharing the same location and those belonging to nodes
of the incident hyperedges. In this sectionwewill present amodified framework based
on the assumption that the basic units can travel across the hypergraph jumping from
node to node via the available hyperedges.

Starting from the definition of hyper adjacency matrix, Eq. (2), the notion of
(combinatorial) Laplace matrix for networks can be straightforwardly generalised
to the case of hypergraphs [27, 35], by defining kiδi j − Ai j , where ki =

∑
j Ai j .

Let us however observe that the latter does not account in full for the higher-order
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structures encoded in the hypergraph. Notably, the sizes of the incident hyperedges
are neglected.

To overcome this limitation, authors of [11] studied a randomwalk process defined
on a generic hypergraph using a new (random walk) Laplace matrix. It is worth
mentioning that the transition rates of the associated process, linearly correlates with
the size of the involved hyperedges. Stated differently, exchanges are favoured among
nodes belonging to the same hyperedge (weighted according to its associated size).
Note that a similar construction has been proposed in [19] to extract a n-clique graph
from a network. The main difference in the present case is that hyperedges can have
an heterogeneous size distribution and thus provide a more flexible framework for
tackling a wide range of problems.

For the sake of completeness, let us briefly recall the construction of the random
walk process on a hypergraph and invite the interested reader to consult [11] for fur-
ther details. The agents are located on the nodes and hop between them. In a general
setting, the walkers may weight hyperedges depending on their size, introducing a
bias in their moves that we shall encode into a function ϕ of the hyperedge size. This
yields the weighted adjacency matrix D = eΦ e>, already defined in Eq. (8) and
hereby recalled:

Di j =
∑
α

eiαΦααejα ∀i , j and Dii = ϕ(1) ,

where Φ is the diagonal matrix whose elements read ϕ(Cαα). The transition proba-
bilities of the examined process are then obtained by normalising the columns of the
weighted adjacency matrix Ti j =

Di j

di
for all i, where again di =

∑
j Di j .

Let us briefly observe that assuming ϕ(c) = cσ allows to cover several existing
models of randomwalks on hypergraphs. For σ = 1, we get the randomwalk defined
in [11], while for σ = −1 we obtain the one introduced by Zhou [45]. Finally, the
case σ = 0 returns a random walk on the so called clique reduced multigraph. The
latter is a multigraph where each pair of nodes is connected by a number of edges
equal to the number of hyperedges containing that pair in the hypergraph.

From the above introduced transition probabilities one can define the random
walk Laplacian generalising that of standard networks, Li j = δi j −Ti j , and eventually
derive the (combinatorial) Laplace matrix,

LH = D − d , (19)

this latter will be employed in the following to model diffusion on higher-order
structures. In the above equation, matrix d displays, on the diagonal, the values
di =

∑
j Di j and zeros otherwise. It is clear from its very definition that D takes into

account both the number and the size of the hyperedges incident with the nodes. It
can also be noted that D can be considered as a weighted adjacency matrix whose
weights have been self-consistently defined so as to account for the higher-order
structures encoded in the hypergraph.

Consider again the d-dimensional system Eq. (4) described by local, i.e. aspatial,
equations:
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dx
dt
= f(x) x ∈ Rd , (20)

and assume further n identical copies of the above system coupled through a hy-
pergraph. In this way each copy of the system attached to a node of a hypergraph
belonging to one (or more) hyperedge. Units sharing the same hyperedge are tightly
coupled, due to existing many body interactions. In formulas:

dxi
dt
= f(xi) + ε

∑
α:i∈Eα

∑
j∈Eα

ϕ(Cαα)
(
G(xj) −G(xi)

)
,

where xi denotes the state of the i-th unit, i.e. anchored to the i-th node, ε the strength
of the coupling, ϕ is the function encoding the bias due to the hyperedge size and
G a generic nonlinear coupling function. From the definition of eiα one can rewrite
the previous formula as

dxi
dt
= f(xi) + ε

∑
α, j

eiαejαϕ(Cαα)
(
G(xj) −G(xi)

)
= f(xi) + ε

∑
j

Di j

(
G(xj) −G(xi)

)
= f(xi) + ε

∑
j

(
Di j − diδi j

)
G(xj)

= f(xi) + ε
∑
j

LH
ij G(xj) , (21)

where we have used the above definitions for di and LH
ij . Let us stress once again

that the whole high-order structure is encoded in a n × n matrix. Hence there is no
need for tensors and this simplifies the resulting analysis.

By exploiting the fact that
∑

j LH
ij = 0 for all i = 1, . . . , n, it is immediate to

conclude that the aspatial reference solution s(t), i.e. the time dependent function
solving Eq. (20), is also a solution of Eq. (21). A natural question hence arises:
what can we say of the stability of the homogeneous solution for the system in its
diffusive-like coupled variant?

To answer to this question one introduces again the deviations from the reference
orbit, i.e. ui = xi−s. Assuming this latter to be small, one can derive a self-consistent
set of linear differential equations for tracking the evolution of the perturbation in
time. To this end, we make use of the expression in the above Eq. (21) and perform
a Taylor expansion to the linear order of approximation, to eventually get:

dui

dt
= J(s(t))ui + ε

∑
j

LH
ij JG(s(t))uj , (22)

where J(s(t)) (resp. JG(s(t))) denotes the Jacobian matrix of the function f (resp. G)
evaluated on the trajectory s(t).

We can improve on our analytical understanding of the problem by employing
again the eigenbase of the Laplace matrix LH . Being the latter symmetric there
exists a basis of orthonormal eigenvectors, φ(α)H , associated to the eigenvalues Λ(α)H .
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We can then project ui on this basis and obtain, for all α:

dyα
dt
=

[
J(s(t)) + εΛ(α)H JG(s(t))

]
yα , (23)

where yα is the projection of ui on the α-th eigendirection.
The (in)stability of the homogenous solution s(t) can be checked by looking at

the eigenvalue of the linear system (23), and more specifically the eigenvalue with
the largest real part. In a general framework, where i.e. s(t) depends on time, we are
dealing with a time dependent eigenvalue problem that can be tackled by using the
Master Stability Function [40, 25]. For simplicity we will hereby solely consider the
case of a stationary reference orbit, i.e. s(t) = s0. In this way Eq. (23) can be directly
solved by using spectral methods. We invite the interested reader to refer to [12]
where the general case of a periodic or even a chaotic s(t) has been analysed.

3.1 Turing patterns on hypergraphs

The problem introduced in the previous section opens up the perspective to address
the notion of a Turing instability on hypergraphs. Indeed, according to the Turing
instability mechanism, a stable homogeneous equilibrium becomes unstable upon
injection of a heterogeneous, i.e. spatially dependent, perturbation once diffusion and
reaction terms are simultaneously at play. The Turing phenomenon is exemplified
with reference to 2 dimensional systems. In the following we will consequently
assume d = 2 and rewrite xi = (ui, vi) as well as f(xi) = ( f (ui, vi), g(ui, vi)), where
the index i = 1, . . . , n refers to the specific node to which the dynamical variables
are bound. Hence Eq. (21) becomes{

Ûui = f (ui, vi) + Du
∑

j LH
ij u j

Ûvi = g(ui, vi) + Dv
∑

j LH
ij vj

, (24)

where Du and Dv replace the diffusion coefficients of species u and v in the case of
network and can thus be called generalised diffusion coefficients. At first sight, the
above model seems to solely account for binary interactions. However, higher-order
interactions are also present, as encoded in the matrix LH . Finally, let us observe that
if the hypergraph is a network, then LH reduces to the standard Laplace matrix and
thus Eqs. (24) converges to the usual reaction-diffusion system defined on a network.

The condition for the emergence of a Turing instability can be assessed by per-
forming a linear stability analysis about the homogeneous equilibrium [36, 4, 5, 3],
as previously shown. Assuming G to be the identity function and the reference orbit
to coincide with a stable stationary equilibrium s0 = (u0, v0), Eq. (22) simplifies into:{

Ûδui = ∂u f (u0, v0)δui + ∂v f (u0, v0)δvi + Du
∑

j LH
ij δu j

Ûδvi = ∂ug(u0, v0)δui + ∂vg(u0, v0)δvi + Dv
∑

j LH
ij δvj ,
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where δui = ui − u0 and δvi = vi − v0. By exploiting again the eigenbasis of the
Laplace matrix we can write δui(t) =

∑
α ûα(t)φαi and δvi(t) =

∑
α v̂

α(t)φαi . Finally
the ansatz, ûα(t) ∼ eλα t and v̂α(t) ∼ eλα t , allows us to compute the dispersion
relation, i.e. the linear growth rate λα = λ(ΛαH ) of the eigenmode α, as a function of
the Laplacian eigenvalue ΛαH .

As it can be straightforwardly proved, the linear growth rate is the largest real part
of the roots of the second order equation

λ2
α −λα

[
trJ0 + Λ

α
H (Du + Dv)

]
+ det J0 +Λ

α
H (Du∂vg+Dv∂u f )+DuDv(Λ

α
H )

2 = 0 ,
(25)

where J0 =
(
∂u f ∂v f
∂ug ∂vg

)
is the Jacobian matrix of the reaction part evaluated at the

equilibrium (ui, vi) = (u0, v0). In Eq. (25), tr(·) and det(·) stand respectively for the
trace and the determinant. The existence of at least one eigenvalue Λα̃H for which
the dispersion relation takes positive values, implies that the system goes unstable
via a typical path first identified by Alan Turing in his seminal work. At variance,
if the dispersion relation is negative the system cannot undergo a Turing instability:
any tiny perturbation fades away and the system settles back to the homogeneous
equilibrium.

To proceed further with a concrete example we selected the Brusselator reaction
system [44, 43]. This is a nonlinear model defined by f (u, v) = 1 − (b + 1)u + cu2v
and g(u, v) = bu − cu2v, where b and c act as tunable parameters. In Fig. 3 we
report the results for a choice of the model parameters giving rise to Turing patterns
(b = 4, c = 6, Du = 0.02 and Dv = 0.17) and the same hypergraph previously used
in Figs. 1 and 2. The dispersion relation (panel a) is clearly positive for a selection
of Λ(α)H (red points). The homogeneous solution becomes hence unstable and the
ensuing patterns are displayed in panels b) and c).

4 Conclusions

Complex systems are composed of a large number of simple units, mutually in-
teracting via nonlinear exchanges. Many-body interactions sit hence at the root of
a large plethora of spontaneously emerging phenomena, as exhibited by complex
systems. The former are often reduced to a vast collection of pairwise interactions,
involving agents interacting in pairs. This enables one to model the inspected prob-
lem as a dynamical system flowing on a conventional binary network, a powerful
approximation that allows for progresses to be made. In many cases of interest, this
reductionist choice constitutes a rough first order approximation to the examined
dynamics and more precise models are to be invoked which encompass for the
high-order interactions being at play.

In this work, we presented a general framework which allows one to account
for multi-body interacting systems coupled via a hypergraph. This materialises in
a natural extension of the conventional network paradigm. More specifically, we
considered the problem of the emergence of heterogeneous stable solutions in inter-
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Fig. 3 Turing patterns in theBrusselatormodel with high-order diffusive-like couplling. Using
the same hypergraph shown in Fig. 1 we study the Turing patterns emerging from the homogeneous
equilibrium (u0, v0). We report in panel a) the dispersion relation for the Brusselator model defined
by the reaction terms f (u, v) = 1−(b+1)u+cu2v and g(u, v) = bu−cu2v; the red symbols refer
to λ

(
Λ
(α)
H

)
, α ∈ {1, . . . , n}, while the blue line denotes the dispersion relation for the Brusselator

model defined on a continuous support. In panel b) we show the time evolution of the u variable in
each node as a function of time, ui (t). Panel c) reports the time evolution of the v variable in each
node as a function of time, vi (t). The model parameters have been set to b = 4, c = 6, Du = 0.02
and Dv = 0.17. Hence u0 = 1 and v0 = b/c = 2/3. We fix ϕ(c) = cσ with σ = 1.5.

connected systems, under the assumption that, once isolated, all units converge to
the same, and thus globally homogenous, solution. The high-order interaction is the
driver of the resulting patchy states, which emerge as follow a symmetry breaking
instability caused by the injection of a tiny non homogeneous perturbation. This can
be though as a generalisation of the Turing instability on hypergraphs. In particular,
we considered the interaction mediated by the number of interacting neighbouring
units, namely the size of the hyperedge, and a diffusive-like process, again biased
by the number of neighbours. In both cases we provided sufficient conditions for the
emergence of spatial patterns.

Our findings have been corroborated by numerical simulations applied to two
reference models. A Volterra model that describes the interaction among predators
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and prey in ecological niches, and the Brusselator model, a prototype model of
nonlinear dynamics, that describes the interaction among reacting and diffusing
chemicals.

The proposed framework goes beyond the examples hereby presented and, because
of its generality, it could prove useful in tackling those problems were simultaneous
many-body interactions within a complex environment are to be properly accounted
for.

References

1. P. A. Abrams. Arguments in favor of higher order interactions. The American Naturalist,
121:887, 1983.

2. Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews
of modern physics, 74(1):47, 2002.

3. M. Asllani, D.M. Busiello, T. Carletti, D. Fanelli, and G. Planchon. Turing patterns in multiplex
networks. Physical Review E, 90:042814, 2014.

4. Malbor Asllani, Tommaso Biancalani, Duccio Fanelli, and Alan J. McKane. The linear noise
approximation for reaction-diffusion systems on networks. The European Physical Journal B,
86(11):476, 2013.

5. Malbor Asllani, Joseph D. Challenger, Francesco Saverio Pavone, Leonardo Sacconi, and
Duccio Fanelli. The theory of pattern formation on directed networks. Nature Communications,
5(1):4517, 2014.

6. Albert-László Barabási et al. Network science. Cambridge university press, 2016.
7. Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex

networks. Science, 353(6295):163–166, 2016.
8. Claude Berge. Graphs and hypergraphs. North-Holland Pub. Co. American Elsevier Pub. Co,

1973.
9. Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang. Complex

networks: Structure and dynamics. Physics Reports, 424(4-5):175–308, 2006.
10. Á. Bodó, G.Y. Katona, and P.L. Simon. Sis epidemic propagation on hypergraphs. Bull. Math.

Biol., 78(4):713, 2016.
11. T Carletti, F. Battiston, G. Cencetti, and D. Fanelli. Random walks on hypergraphs. Physical

Review E, 101:022308, 2020.
12. Timoteo Carletti, Duccio Fanelli, and Sara Nicoletti. Dynamical systems on hypergraphs.

Journal of Physics: Complexity, 1(3):035006, aug 2020.
13. Giulia Cencetti, Federico Battiston, Timoteo Carletti, and Duccio Fanelli. Generalized patterns

from local and non local reactions. Chaos, Solitons and Fractals, 134:109707, 2020.
14. Owen T Courtney and Ginestra Bianconi. Generalized network structures: The configuration

model and the canonical ensemble of simplicial complexes. Physical Review E, 93(6):062311,
2016.

15. Guilherme Ferraz de Arruda, Giovanni Petri, and Yamir Moreno. Social contagion models on
hypergraphs. Phys. Rev. Research, 2:023032, 2020.

16. Karel Devriendt and Piet VanMieghem. The simplex geometry of graphs. Journal of Complex
Networks, 7(4):469–490, 2019.

17. Ernesto Estrada and Juan A Rodríguez-Velázquez. Complex networks as hypergraphs. arXiv
preprint physics/0505137, 2005.

18. Ernesto Estrada and G.J. Ross. Centralities in simplicial complexes. applications to protein
interaction networks. J. Their. Biol., 438:46, 2018.

19. T S Evans. Clique graphs and overlapping communities. Journal of Statistical Mechanics:
Theory and Experiment, 2010(12):P12037, dec 2010.



18 Timoteo Carletti and Duccio Fanelli

20. Guilherme Ferraz de Arruda, Michele Tizzani, and Yamir Moreno. Phase transitions and
stability of dynamical processes on hypergraphs. arXiv preprint arXiv:2005.10891, 2020.

21. Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics
Reports, 2016.

22. L. V. Gambuzza, F. Di Patti, Gallo L., S. Lepri, M. Romance, R. Criado, M. Frasca, V. Latora,
and S. Boccaletti. The master stability function for synchronization in simplicial complexes.
arXiv preprint arXiv:2004.03913v1, 2020.

23. Gourab Ghoshal, Vinko Zlatić, Guido Caldarelli, andMark EJ Newman. Random hypergraphs
and their applications. Physical Review E, 79(6):066118, 2009.

24. Jacopo Grilli, György Barabás, Matthew J Michalska-Smith, and Stefano Allesina. Higher-
order interactions stabilize dynamics in competitive network models. Nature, 548(7666):210,
2017.

25. LiangHuang, Qingfei Chen, Ying-ChengLai, and LouisMPecora. Generic behavior ofmaster-
stability functions in coupled nonlinear dynamical systems. Physical Review E, 80:036204,
2009.

26. Iacopo Iacopini, Giovanni Petri, Alain Barrat, and Vito Latora. Simplicial models of social
contagion. Nature communications, 10(1):2485, 2019.

27. J. Jost and R. Mulas. Hypergraph laplace operators for chemical reaction networks. Advances
in Mathematics, 351:870, 2019.

28. A. Krawiecki. Chaotic synchronization on complex hypergraphs. Chaos, Solitons and Fractals,
65:44, 2014.

29. R. Lambiotte, M. Rosvall, and I. Scholtes. From networks to optimal higher-order models of
complex systems. Nat. Phys., 15:313, 2019.

30. Vito Latora, Vincenzo Nicosia, and Giovanni Russo. Complex networks: principles, methods
and applications. Cambridge University Press, 2017.

31. L.-D Lord, P. Expert, H.M. Fernandes, G. Petri, T.J. Van Hartevelt, F. Vaccarino, G. Deco,
F. Turkheimer, and M.L. Kringelbach. Insights into brain architectures from the homological
scaffolds of functional connectivity networks. Front. Syst. Neurosci., 10:85, 2016.

32. Maxime Lucas, Giulia Cencetti, and Federico Battiston. A multi-order laplacian framework
for the stability of higher-order synchronization. arXiv preprint arXiv: 2003.09734v1, 2020.

33. Alan J McKane and Timothy J Newman. Predator-prey cycles from resonant amplification of
demographic stochasticity. Physical review letters, 94(21):218102, 2005.

34. Ana P. Millán, Joaquín J. Torres, and Ginestra Bianconi. Explosive higher-order kuramoto
dynamics on simplicial complexes. Phys. Rev. Lett., 124:218301, 2020.

35. Raffaella Mulas, Christian Kuehn, and Jürgen Jost. Coupled dynamics on hypergraphs: Master
stability of steady states and synchronization. Physical Review E, 101:062313, 2020.

36. Hiroya Nakao and Alexander S. Mikhailov. Turing patterns in network-organized activator-
inhibitor systems. Nature Physics, 6:544, 2010.

37. Leonie Neuhäuser, Andrew Mellor, and Renaud Lambiotte. Multibody interactions and non-
linear consensus dynamics on networked systems. Physical Review E, 101(3):032310, 2020.

38. Mark EJ Newman. Networks: An Introduction. Oxford University Press, 2010.
39. A. Patania, G. Petri, and F. Vaccarino. The shape of collaborations. EPJ Data Sci., 6:18, 2017.
40. Louis M Pecora and Thomas L Carroll. Master stability functions for synchronized coupled

systems. Physical Review Letters, 80(10):2109, 1998.
41. Giovanni Petri and Alain Barrat. Simplicial activity driven model. Physical Review Letters,

121(22):228301, 2018.
42. Giovanni Petri, Paul Expert, Federico Turkheimer, Robin Carhart-Harris, David Nutt, Peter J

Hellyer, and FrancescoVaccarino. Homological scaffolds of brain functional networks. Journal
of The Royal Society Interface, 11(101):20140873, 2014.

43. I. Prigogine and R. Lefever. Symmetry breaking instabilities in dissipative systems. ii. J.
Chem. Phys., 48:1695, 1968.

44. I. Prigogine and G. Nicolis. Symmetry breaking instabilities in dissipative systems. J. Chem.
Phys., 46:3542, 1967.

45. Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clus-
tering, classification, and embedding. In Advances in neural information processing systems,
pages 1601–1608, 2007.


