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Résumé

Les matériaux 2D, composés d’un ou quelques atomes d’épaisseur, sont étudiés depuis
leur découverte en 2004 pour leur propriétés électroniques et optiques uniques, per-
mettant d’entrevoir des applications dans divers domaines. Par exemple le graphène
en tant que matériau transparent conducteur pourrait être intégré dans des panneaux
solaires ou dans des smartphones. D’un autre côté, certains dichalcogénures de métal de
transition tel que le diséléniure de molybdène sont des semi-conducteurs qui pourraient
se substituer aux semi-conducteurs conventionnels dans les puces électroniques. Dans
ces matériaux 2D, des plasmons peuvent également être observés. Ces phénomènes
de résonance entre la lumière et les électrons libres, sont à l’origine d’un confinement
intense de l’énergie électromagnétique autour de nanoparticules et autres structures de
taille nanométrique. Cela rend possible le design de guide d’ondes optique bien plus petit
que ceux actuellement utiliser ou encore la création de biosenseurs de grande sensibilité.

Pour étudier les propriétés optiques des matériaux 2D et en particulier les plasmons,
de nombreuses méthodes d’électrodynamique classique adaptées aux matériaux « volu-
miques » sont utilisées. Cependant, des questions se posent sur la façon de modéliser ces
matériaux d’épaisseur atomique de manière adéquate. Faut-il considérer une épaisseur
finie pour la couche 2D ou peut-on les modéliser comme une couche infiniment fine ?
Est-ce que l’anisotropie des matériaux 2D joue un rôle déterminant dans leur réponse
optique ? Dans cette thèse, des éléments de réponses sont apportés en comparant analy-
tiquement et numériquement les différents modèles utilisés. Notamment, il est montré
que les modèles isotropes sont peu adaptés et que les modèles anisotropes d’épaisseur
respectivement finie et infiniment fine sont relativement similaires tant que le déphasage
de l’onde dû au feuillet 2D n’est pas trop importante.

D’un autre côté, des nanostructures de matériaux 2D peuvent être étudiés de manière
quantique, en considérant la structure atomique du matériau et en résolvant de manière
approximée l’équation de Schrödinger. La fonction diélectrique microscopique obtenue
à partir de ces calculs permet d’étudier les plasmons dans ces nanostructures. Dans cette
thèse, il est montré que du graphène corrugué peut contenir des plasmons localisés dans
les corrugations. Ce type de surface permet d’exalter la réponse optique de certaines
molécules de façon à ce qu’on puisse les détecter même en quantité infime. Il est
également prouvé théoriquement dans la thèse que des plasmons peuvent se propager
dans des joints de grains de diséléniure de molybdène. La caractérisation de ces matériaux
et la détermination du nombre de défauts linéaires serait donc possible par l’observation
de résonances plasmoniques.
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Abstract

2D materials, composed of one or a few atoms thick, have been studied since their
discovery in 2004 for their unique electronic and optical properties, allowing to fore-
see applications in various fields. For example, graphene as a transparent conductive
material could be integrated in solar panels or smartphones. On the other hand, some
transition metal dichalcogenides such as molybdenum diselenide are semiconductors
that could replace conventional semiconductors in electronic chips. In these 2D materials,
plasmons can also be observed. These phenomena of resonance between light and free
electrons, are at the origin of an intense confinement of the electromagnetic energy
around nanoparticles and other structures of nanometric size. This makes it possible to
design optical waveguides much smaller than those currently used or to create highly
sensitive biosensors.

To study the optical properties of 2D materials and in particular plasmons, many clas-
sical electrodynamic methods adapted to "bulk" materials are used. However, questions
arise on how to model these atomically thin materials adequately. Should we consider
a finite thickness for the 2D layer or can we model is as an infinitely thin layer? Does
the anisotropy of 2D materials play a determining role in their optical response? In this
thesis, some answers are brought by comparing analytically and numerically the different
models used. In particular, it is shown that isotropic models are not very well adapted
and that anisotropic models of respectively finite and infinitely thin thickness are rela-
tively similar as long as the phase shift of the wave due to the 2D film is not too important.

On the other hand, nanostructures of 2D materials can be studied in a quantum
way, considering the atomic structure of the material and solving the Schrödinger
equation in an approximate way. The microscopic dielectric function obtained from
these calculations allows to study plasmons in these nanostructures. In this thesis, it
is shown that corrugated graphene can sustain plasmons localized in the corrugations.
This type of surface allows to exalt the optical response of some molecules such that
they can be detected even in extremely small quantities. It is also theoretically proven
in the thesis that plasmons can propagate in molybdenum diselenide grain boundaries.
The characterization of these materials and the determination of the number of linear
defects would thus be possible by the observation of plasmonic resonances.

v



vi



Contents

Remerciements i

Abstract v

Table of contents viii

List of publications ix

Introduction xi

1 Plasmonics in 2D materials 1

1.1 Optics and plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 2D materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 2D materials optics and plasmonics . . . . . . . . . . . . . . . . . . . . 11

2 The dielectric function 19

2.1 Microscopic description of the dielectric function . . . . . . . . . . . . 20
2.2 Macroscopic description of the dielectric function . . . . . . . . . . . . 34
2.3 The local response approximation . . . . . . . . . . . . . . . . . . . . . 45

3 Numerical methods for optics 51

3.1 Rigorous coupled wave analysis for anisotropic media . . . . . . . . . . 52
3.2 The discrete dipole approximation . . . . . . . . . . . . . . . . . . . . . 54
3.3 The surface integral equation method . . . . . . . . . . . . . . . . . . . 56

4 Plasmons in gold nanowires 59

4.1 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Spectra and maps for the selected particles . . . . . . . . . . . . . . . . 61
4.3 Dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Effect of the nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Effective models and optical response of 2D materials as anisotropic

materials 69

5.1 Effective models for the dielectric function of 2D materials and het-
erostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Numerical methods describing 2D materials . . . . . . . . . . . . . . . 77
5.3 Optical spectra of anisotropic and structured 2D materials . . . . . . . 91

6 Brewster angle shift with conducting 2D materials 101

6.1 Physical origin of the phenomenon . . . . . . . . . . . . . . . . . . . . 102
6.2 Numerical approximation of the shift . . . . . . . . . . . . . . . . . . . 102
6.3 Application to graphene and other 2D materials . . . . . . . . . . . . . 107
6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vii



7 Plasmons in nanostructured 2D materials 113

7.1 Plasmons in graphene nanodisks . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Plasmons in corrugated graphene . . . . . . . . . . . . . . . . . . . . . 120
7.3 Plasmons in grain boundaries of TMDs . . . . . . . . . . . . . . . . . . 129

Conclusions and perspectives 139

Appendix 142

Bibliography 164

viii



List of publications

[A] B. Majérus, J. Butet, G. D. Bernasconi, R. T. Valapu, M. Lobet, L. Henrard, and O. J.
F. Martin, Optical Second Harmonic Generation from Nanostructured Graphene: A
Full Wave Approach, Opt. Express 25, 27015 (2017).
DOI: 10.1364/OE.25.027015

[B] B. Majérus, M. Cormann, N. Reckinger, M. Paillet, L. Henrard, P. Lambin, and M.
Lobet, Modified Brewster Angle on Conducting 2D Materials, 2D Mater. 5, 025007
(2018).
DOI: 10.1088/2053-1583/aaa574

[C] B. Majérus, E. Dremetsika, M. Lobet, L. Henrard, and P. Kockaert, Electrodynamics
of Two-Dimensional Materials: Role of Anisotropy, Phys. Rev. B 98, 125419 (2018).
DOI: 10.1103/PhysRevB.98.125419

[D] G. Dobrik, P. Nemes-Incze, B. Majérus, P. Süle, P. Vancsó, G. Piszter, M. Menyhárd,
B. Kalas, P. Petrik, L. Henrard and L. Tapasztó, Large-Area Nanoengineering of
Graphene Corrugations for Visible-Frequency Graphene Plasmons, Nat. Nanotechnol.
17, 61 (2022).
DOI: 10.1038/s41565-021-01007-x

[E] M. Pelaez-Fernandez, B. Majérus, D. Funes-Hernando, R. Dufour, J.-L. Duvail, L.
Henrard, and L. Arenal, Toward Laser-Induced Tuning of Plasmonic Response in
High Aspect Ratio Gold Nanostructures, Nanophotonics, vol. 11, no. 16, 2022, pp.
3719-3728 (2022).
DOI: 10.1515/nanoph-2022-0193

[F] B. Majérus, L. Henrard, and P. Kockaert, Optical modelling of 2D materials and
multilayer systems: a complete picture, submitted (2022).

[G] B. Majérus, E. Guillaume, and L. Henrard,Anisotropy and effective medium approach
in the optical response of 2D material heterostructures, manuscript in preparation
(2022).

ix



x



Introduction

At the beginning of the 21st century, materials science has been challenged by the
incredible rise of the research on 2D materials, materials with one or a few atoms of
thickness [1]. Since the first experimental isolation of graphene, a layer of carbon atoms
arranged in a honeycomb lattice, by Geim and Novoselov [2, 3], hundred thousands of
papers have been published, exploring the electronic, optical, and mechanical properties
of a large variety of 2D materials.

As a flexible transparent conductor with an extremely small thickness, graphene
has gained much attention in the early 2000s. It was quickly expected that graphene
could be integrated into electronic devices. While this idea has been discarded since
then, principally because graphene is a gapless semi-metal [4], nanostructured graphene
has been investigated in order to modify its electronic properties. Other 2D materials
have also grasped growing interest in the scientific community [1]. Some like MoS2
are semi-conductors, which could lead to the design of field effect transistors of atomic
thickness [5]. Another famous 2D material is hexagonal boron nitride (hBN), often
associated with other 2D materials in order to improve their stability and electronic
properties [6].

These 2D materials have also been investigated for their optical properties. As an
electronic conductor, graphene absorbs a small part of the light incident on it [7]. In
the range of micro-waves, it can even absorb a high proportion of the incoming energy
in some conditions [8]. Other peculiar optical effects such as the Goos-Hänchen shift
[9–11] and the Brewster angle [12–18] are modified by the presence of a 2D materials
at the surface of a dielectric. In this thesis, the shift of the Brewster angle induced by a
conducting 2Dmaterial has been investigated. It is shown that for 2Dmaterials with small
conductivity, the shift is proportional to the conductivity. Using this result, experimental
determination of the conductivity of graphene from the measurement of the Brewster
angle shift has been performed. It is also shown that a significant modification of the
angle can be controlled actively by applying a gate voltage to the graphene samples.

In order to study optical phenomena in 2D materials in a classical electrodynamics
framework, accurate and efficient models should be used. Indeed, bulk materials are
generally considered in state-of-the-art methods, and including 2D materials is not
straightforward. A first question on the modelling is how different are models which
consider the 2D layer as infinitely thin (2D models) to models with a small but finite
thickness (3D model)s. These two kinds of models have been adopted indifferently in the
literature but few studies have been performed to justify their use. Another challenge
in the modelling of 2D material is their intrinsic anisotropy. This optical anisotropy
is sometimes disregarded in numerical simulations. Few articles has yet investigate
these questions [19–23]. For example in [19] and [24], they compared the 2D and the
3D models but only at normal incidence, which does not permit to study the effect of
the anisotropy. In the most complete study to date [21], the models (2D, 3D, isotropic
and anisotropic) are compared based on ellipsometric and reflectivity measurements.
However, a more general theoretical study has not been proposed before.

A large part of this thesis is focused on these anisotropy and thickness considerations.
The goal is to propose a coherent overview of themodelling of 2Dmaterials and determine

xi



the limits of the common models. The appropriate response functions are rigorously
derived for in-plane and out-of-planes excitations from amicroscopic point of view. Based
on these responses function, the models are compared numerically and analytically. It
is shown that 2D and 3D anisotropic models are equivalent for small phase shifts in
the 2D materials but that the isotropic 3D model can be inaccurate due to fake plasmon
resonances. Furthermore, effective models are proposed to describe heterostructures of
2D materials.

Another optical phenomena observed in nanostructured 2D materials are surface
plasmon resonances [25]. Plasmons results from strong light-matter interactions, in
which the free electrons of a metal are in resonance with the electromagnetic field
[26]. At a plasmonic resonance, the electromagnetic energy is confined in a small re-
gion near the particle. Plasmons have been studied for several decades, in particular
in noble metal nanoparticles, and are especially of great interest for applications in
biosensing and photonics. For example, nanowires and nanorods have been proposed as
plasmonic waveguides [27–29]. With a largely reduced sized compared to conventional
glass waveguides, these metallic nanostructures are of fundamental interest in order to
manipulate and propagate light at a sub-wavelength scale. Recent studies on nanowires
have shown that Fabry-Pérot plasmonic modes follow the dispersion relation of polari-
tons in infinite nanowires [30–32]. In particular, high aspect-ratio nanowires exhibit
plasmonic resonances at relatively low energy and long wavelength [33]. One of the
chapters of this thesis is dedicated to our research article on the plasmonic resonances
in high aspect-ratio gold nanowires. In particular, the robustness of the plasmons when
modifying the morphology of the edges of the nanowires is investigated. It is shown that
at low energy, the plasmons remain unaffected by the presence of spherical nanoparticles
at the extremities of the nanowires. On the other hand, at high energy, when the size
of the nanoparticles is of the order of the plasmon wavelength, the plasmon energy is
shifted. As the morphology of the nanowires may be changed after the synthesis of
the nanowire by means of laser irradiation, this may be proposed as a way to tune the
plasmonic responses.

In graphene and other 2D materials, plasmons exhibit larger confinement and can
even be actively tuned [25]. For graphene nanoparticles, the plasmonic resonances occur
in the terahertz or infrared ranges [34]. Researches are currently performed to attempt to
shift the resonance in the visible range. As the resonance energy increase when the size
of the nanoparticle decrease, graphene nanoparticles of the size of a few nanometers have
been suggested. However, as the size decrease, quantum effects become significant, and
charge scattering on the edges tends to damp critically the plasmons [35]. Nonetheless,
the plasmon resonances in graphene nanoparticles, and the resulting field enhancement,
could be used for different purposes such as biosensing and optical characterization.
Surprisingly, plasmonic resonances may also occur in nanostructured 2D insulators and
semi-conductors, owing to atomic defects in their structures. Indeed, some linear defects
or edges in semiconductors 2D materials have been shown to be metallic channels [36,
37].

The last part of the thesis is focused on the study of plasmonic resonance in nanos-
tructured 2D materials. First, it is shown how plasmons in a dimer of graphene disk
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enhance the electric field [38]. This high electric field can be used to enhance the non-
linear response, and it is shown how the geometry influences this response. Two other
nanostructures have been investigated. These are systems of size around the nanometer,
where quantum effects are prevailing. Therefore the optical properties of the system
must be calculated in a quantum framework. The plasmons are analyzed using the
microscopic dielectric function derived from time-dependent density functional theory.
The first system is corrugated graphene. It is shown that localized plasmons with a
resonance frequency in the visible range occur in the corrugation. Graphene plasmons
in the visible range were long-awaited because extremely small nanoparticles, in which
plasmon damping is high due to the charge carriers scattering on the edges, are needed
[39]. Such corrugated graphene can serve as an efficient substrate to enhance the Raman
response of specific molecules [40]. The second system is a linear grain boundary in
transition metal dechalcogenides which contains metallic states [41]. In consequence,
these linear defects may sustain propagating plasmons. Therefore, optical characteriza-
tion of the number of defects could be performed by analyzing the plasmonic response
of the considered samples.

The manuscript is organized in the following manner:

• The first chapter is a short introduction to optics and plasmonics, in general, and
in the context of 2D materials.

• In the second chapter, an overview of the calculation of the dielectric function
from a microscopic point of view is presented. This will be useful to describe the
method of analysis of plasmons in nanostructure. Then the method to obtain the
macroscopic permittivity from the microscopic dielectric function is detailed.

• State-of-the-art methods for studying optics and plasmonics in classical systems
are described in the third chapter. Three complementary methods are detailed: the
rigorous coupled wave analysis (RCWA), the discrete dipole approximation (DDA),
and the surface integral equation (SIE).

• In chapter four, the numerical analysis of localized plasmons in gold nanowires is
compared with experimental results.

• In the fifth chapter, the different ways to model 2D materials are described and
compared, accounting for the anisotropy. In particular, the different surface sus-
ceptibilities that should be used for the in-plane polarization and the out-of-plane
polarization are derived. The effective models for vertical and horizontal het-
erostructures are presented. In the sixth chapter, the shift of the Brewster angle
due to conducting 2D materials is demonstrated, and it is shown how to retrieve
experimentally the surface susceptibility with a non-contact method.

• The last chapter describes some cases of plasmonic resonances in nanostructured
2Dmaterials. First, nanodisks of graphene are investigated in a classical framework.
The last two sections are centered on quantum systems with atomic structures
responsible for extremely confined plasmons. First, it is shown that corrugated

xiii



graphene sustains localized plasmons in its corrugations. Then, propagating plas-
mons in metallic grain boundaries and edges of transition metal dechalcogenides
are investigated.
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Chapter 1

Plasmonics in 2D materials

1.1 Optics and plasmonics . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 2D materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 2D materials optics and plasmonics . . . . . . . . . . . . . . . . 11

With their large variety of electronic and mechanical properties and their extremely
small thickness, 2D materials are good candidates to replace bulk materials in lots of
devices. Their optical properties have interested researchers in nanophotonics and
plasmonics, with possible applications in biosensing, waveguides, and photovoltaics.
This first chapter is a short overview of optics for 2D materials. In the first section, a
theoretical introduction to plasmonics is proposed. Then, common 2D materials are
presented. Finally, in the last section, the optical response of graphene in particular and
the plasmonic properties of 2D materials and nanostructured 2D materials are described.
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Chapter 1

1.1 Optics and plasmonics

The vast majority of optical phenomena observed in everyday life are explained using
classical electrodynamics. This theory, governed by Maxwell’s equations established
in the mid-19th century, is still one of the most successful and employed in applied
physics and engineering. Among all the peculiar phenomena discovered and explained
more recently using classical electrodynamics stands those in the field of plasmonics.
Plasmons are collective oscillations of free electrons strongly coupled to the electric
field in metals. In particular, surface plasmons occur at the metal-dielectric interface of
metallic structures or nanoparticles. As visible light or other electromagnetic waves can
couple to such plasmons, the electromagnetic energy is confined at a scale much smaller
than the wavelength, allowing to manipulate light at the nanoscale, or to enhance the
field intensity up to extreme value. These properties of plasmons permit a broad range
of applications in various domains such as plasmonic waveguides, better photovoltaic
efficiency or ultrasensitive biosensing.

Classical electrodynamics

The Maxwell’s equations are at the core of classical electrodynamics. Their macroscopic
forms are written [42]:

∇ ·D = ρf , (1.1)

∇ ·B = 0, (1.2)

∇× E = −∂B
∂t
, (1.3)

∇×H = µ0Jf +
∂D

∂t
, (1.4)

where ρf and Jf are the charge and current densities of the free charges. The constitutive
equations are

D = ε0εE, (1.5)

and
H =

1

µ0µ
B, (1.6)

where ε and µ are the relative permittivity and permeability of the medium. If these
quantities are known, the system of equations can be solved to determine the fields.
Other relevant quantities such as the Poynting vector, the scattering cross section or the
reflected/transmitted intensity may be calculated from the total fields. Note that, in this
thesis, only non-magnetic materials are considered (µ = 1). In a homogeneous medium,
the solution of the Maxwell equations is the solution to the following wave equation:

∇×∇× E = −ε 1
c2
∂2E

∂t2
, (1.7)

which is a plane wave:
E = E0e

i(k·r−ωt), (1.8)

2



Plasmonics in 2D materials

In inhomogeneous media, the electromagnetic wave undergoes discontinuities at the
interfaces between materials. The boundary conditions at the interfaces between two
media 1 and 2 of different permittivities are found from Maxwell’s equations:

n · [D2 −D1] = σ, (1.9)

n · [B2 −B1] = 0, (1.10)

n× [E2 − E1] = 0, (1.11)

n× [H2 −H1] = Js, (1.12)

with σ and Js the surface charge and surface current densities and n the unit vector
normal to the interface. These equations are used to calculate the charges at the interface
from which the induced coulomb potential can be obtained. It will be shown in a later
chapter that these equations must be generalized in the case of 2D materials lying at the
interface.

The Drude model

As plasmons occur in metals, different models has been established to describe the
frequency dependency of the permittivity. In the Drude model, the motion of the free
electrons is described by a damped oscillator [43]. The dielectric function is given by

ε (ω) = 1−
ω2
p

ω2 + iγω
, (1.13)

where γ is the damping frequency, and ωp, the plasma frequency, depends only on the
charge density. The real part of the dielectric function ε1 is then

ε1 (ω) = 1−
ω2
p

ω2 + γ2
. (1.14)

At high frequencies, ω ≫ γ, the real part of the permittivity vanishes at the plasma
frequency ωp. According to eq. (1.5), it means that an electric field is sustained in the
absence of a displacement field. Reminding that the displacement field corresponds to
the field generated by the external source (without the metallic media), the electric field
is thus self-sustained. In reality, the imaginary part of the permittivity is small but not
negligible. Then the total field is very large compared to the displacement field and in
phase quadrature with it. Inverting the Drude formula, one obtain

1

ε (ω)
= 1−

ω2
p

ω2
p − ω2 − iγω

, (1.15)

which, at the plasma frequency, becomes

1

ε (ωp)
= 1− iωp

γ
. (1.16)
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The imaginary part of this function becomes large at the plasma frequency for low
damping. Therefore, the function L (ω) defined by

L (ω) = −Im
(

1

ε (ω)

)
(1.17)

has a peak at the plasma frequency. However this resonant phenomenon is not excitable
by light. Indeed, from eq. (1.7) for a plane wave, it can be written

k (k · E)− k2E = −ε ω
c2
E (1.18)

which, for ε → 0, is only possible for k � E. This corresponds to a longitudinal wave
which cannot be excited by transverse waves such as light waves. These longitudi-
nal resonant waves are the volume plasmons of metals. They can be observed using
characterisation techniques involving electrons. For example, in electron energy loss
spectroscopy (EELS), a beam of high energy electrons is focused on the sample and,
based on the loss of energy of the electrons received on the detector, the energy of the
plasmon can be determined. Longitudinal waves can be detected since the electrons can
transfer their momentum to the plasmon. Theoretically, it can be shown that the EELS
intensity is proportional to the function L (ω) defined above. As the energy loss of the
electrons is maximal when this function is maximal, it is called the loss function [43].

Surface plasmons

As the volume plasmons described above cannot be excited by light, its interest in optics
is limited. However, plasmons taking place at the surface of metal and metallic particles
may be excited by light and have been intensively investigated for various domains of
application in optics.

Surface plasmon polaritons (SPPs) stand at the interface between a dielectric and an
extended metallic material. Transverse magnetic (TM) waves can propagate along the
surface in both media with wave vector β, while only evanescent waves are possible
in the perpendicular direction. As an example, figure 1.1 (from [43]) displays the real
(solid lines) and imaginary (dashed lines) parts of the dispersion relation of a silver/air
(gray curve) and silver/silica (black curve) interface calculated using the Drude dielectric
function.

At the surface plasmon frequency, given by

ωsp =
ωp√
1 + εm

(1.19)

with ωp the plasma frequency and εm the permittivity of the dielectric, the wave vector is
maximum (or infinite if there is no loss) and the plasmon wavelength is greatly decreased
compared to the free-space wavelength. However, as the dispersion curve lies below
the corresponding light line, a direct coupling between light and the SPP is not possible.
Various phase-matching techniques have been developed to excite SPPs with light as,
for example, prism coupling, grating coupling or near-field illumination [43].
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Figure 1.1: Dispersion relation of SPPs at the interface between a Drude metal with
negligible collision frequency (γ = 0) and air (gray curves) and silica (black curves).
Reproduced from [43].

The second type of surface plasmons are localized surface plasmons (LSP) at the
surface of nanoparticles. These plasmons are electromagnetic standing waves on closed
metallic surfaces. For dipolar modes, such as represented in figure 1.2 reproduced from
[44], the particle’s polarizability is maximum at the plasmon frequency. For spheres
much smaller than the wavelength, the condition to have a localized surface plasmon
resonance (LSPR) is

Re (ε (ω)) = −2εm. (1.20)

For larger spheres, the Mie theory predicts that the resonance energy is redshifted
compared to this value [43]. For different sizes, shapes and compositions of the particles,
the resonance frequency is also modified. In consequence, a large variety of particles
has been investigated to characterize their properties.

Plasmons may also be studied by considering the microscopic dielectric function
of an inhomogeneous medium. This microscopic function contains all the information
about the optical response of the considered system. Therefore, when surface plasmons
are excited inside the nanostructure, the total field is large compared to the applied field
and the real part of the dielectric function vanishes [45]. In order to model this dielectric
function in nanostructures, a single-pole model has been proposed, based on the Lorentz
dielectric function for bound charges [45, 46]:

ε (ω) = 1 +
ω2
p

ω2
0 − (ω + iγ)2

(1.21)

This function is represented in figure 1.3. The real part of the dielectric function crosses
zero at two frequencies. Near the frequency ω0, the dielectric function goes from positive
to negative values. As the imaginary part of the dielectric function is large at ω0, the
loss function is not high. At the frequency ωpl =

√
ω2
p + ω2

0 , the real part of dielectric
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Figure 1.2: An instantaneous snapshot of the localization of an optical field in a nanosys-
tem. (a) When an external light wave is incident on a silver sphere, its electric field E0

periodically displaces the sphere’s electrons with respect to the lattice. The result is
an oscillating electron density, a localized surface plasmon. (b) The electric field (black
arrows) from displaced electrons is greatly amplified on opposite sides just outside a
silver 10-nanometer-diameter sphere, as calculated here for a resonant photon energy of
3.5 eV. Inside the sphere, the electric field is uniform (red arrows) and is on the same
order of magnitude as the local field outside the sphere. Reproduced from [44].

function goes from negative to positive value, the imaginary part of the dielectric function
is small and the loss function is maximum. This frequency ωpl corresponds to the plasmon
resonance frequency.

Quantum effects

The surface plasmons on nanoparticles and on planar surfaces are explained quite
comprehensively by the classical electrodynamics theory. However, when the size of the
structure or the nanoparticle is shrunk to a few nanometers, quantum effects become
significant [35]. The quantum effects are many. Most importantly, there is a quantisation
of the energy level. But other effects should be accounted: the electronic states of the
edges must be considered when the number of edge atoms becomes significant; the size
of the particles becomes smaller than the mean free path of electrons and tunneling
effects are possible. A full quantum electrodynamics theory is not always necessary but
the electronic properties of the nanostructures must be determined using the quantum
theory.

Applications

Interestingly, the plasmonic properties of nanoparticles have been used for centuries
without an understanding of the underlying phenomena. Stained glass and other decora-
tive items such as the Lycurgus cup have been manufactured using colloidal metallic
nanoparticles to obtained peculiar coloration [44]. But recently, plasmonic effects have
been mostly used for biosensing. Due to the dramatic effect of the environment on the
plasmonic resonance, in particular in presence of molecules, specific molecules can be
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Figure 1.3: Real part of the dielectric function (top) and loss function (bottom) for the
Lorentz model of eq. (1.21).

detected. It is used, for example, in antigenic test [44, 47]. Another effect useful for
biosensing is the enhancement of the electric field near plasmonic particles. In Raman
spectroscopy, the inelastic optical response of molecules is strongly dependent on the
local electric field. The principle of surface enhanced Raman spectroscopy is to use a
plasmonic surface to benefits from the intense field. This method enables to detect a
single molecule due to plasmonic resonance on plasmonic surfaces [40]. Other applica-
tions are, for example, plasmonic waveguides that can transmit information using light
through nanostructure [48], or increasing the light capture in photovoltaic panels [49].

1.2 2D materials

Since the beginning of the century, the interest for 2D materials has been growing
intensively. During the last 2 decades, more than 200 000 research works on graphene
or 2D materials were published in peer-reviewed journals, mobilizing thousands of re-
searchers1. In this context, the diversity of the materials and their properties is extremely
large. I present here a few of these materials and their general properties before focusing
on their optical properties in the next section.

More than 1500 2D materials have been identified, though most of them only theo-
retically [50]. Among them is, of course, graphene, which has been focusing attention
as much in the academic realm than in the mainstream media. Its relatively easy isola-
tion, the abundance of its source component and its peculiar mechanical and electrical
properties are certainly the reasons of this success [51].

However, for more than 15 years now, other 2D materials have grasped a growing
interest owing to their various properties. Like graphene, some 2D materials are the
fundamental component of layered materials, like transition metal dichalcogenide or

1According to the research portal Scopus, on July 2022.
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Figure 1.4: a) Flat graphene crystal in real space (perspective view). b) The same for
corrugated graphene. The roughness shown imitates quantitatively the roughness found
experimentally. Reproduced from [53].

hexagonal boron nitride (hBN). On the other hand, some 2D materials do not have bulk
counterparts. It is the case of graphene-like group IV honeycomb materials: silicene,
germanene and stanene [1].

At first, due to thermodynamic considerations, 2D materials were thought to be
unstable [1]. In reality, acoustic phonons do not prevent the isolation of 2D materials
but are responsible of the presence of ripples in 2D materials [52, 53] see figure 1.4.
Therefore, although extremely flat graphene has been realized using mica substrate [54],
a 2D materials cannot be perfectly flat. Conversely, ultra-corrugated 2D materials may
be obtained by amplifying these natural ripples, which can dramatically change the
properties of the materials, as it will be shown in chapter 4.

These materials have various electronic properties, ranging from insulator to semi-
conductor, semi-metal, conductor and superconductor. In consequence, they have been
suggested as candidates for various applications in electronics, optronics, photovoltaics,
sensing, photonics and much others [1, 55].

Few applications with low quality graphene are already commercialized. Batteries,
conducting inks, lubricants and even padel rackets benefit from the peculiar properties
of graphene [55]. However, several challenges are still to be overcome to achieve
industrialisation, especially in the production of high quality 2D materials at large scale.

Synthesis of 2D materials

Graphene was first isolated by mechanical exfoliation using adhesive tape [2]. Though
this method produces graphene flakes of high quality, the size of the flakes is often
limited to less than a micrometer squared [56], and it has a poor reproducibility. Note
that for industrial use, chemical exfoliation, which produces 2D materials in solvent is
also possible, with a lower quality [57].

Exfoliation is not possible for 2Dmaterials without 3D counterparts but othermethods
have been developed. One of the most efficient way to synthesized 2D materials in large
quantities is the chemical vapor deposition (CVD) [58]. In production of graphene using
CVD, a carbon source is heated until the carbon is deposited on a metallic substrate.
The use of CVD enables the control of the shape and the size of the graphene flakes:
single crystal graphene flakes can now reach the millimeter scale [58]. Other growth

8



Plasmonics in 2D materials

Figure 1.5: In 2D materials, (a–c) vacancies, disorder and dopants create point defects.
Edges, and interfaces (d,e) create line defects. Adapted from [61].

techniques are also used, like e-beam evaporation or molecular beam epitaxy, depending
on the substrate and the wanted 2D materials or heterostructures [59, 60].

Defects are a major obstacle to produce 2D materials with high quality (mainly high
electron mobility). Those defects can be point defects such as vacancies, disorder or
substitution (dopants) and line defects such as edge reconstructions or grain boundaries
and interfaces, as depicted on figure 1.5 [61]. Controlling the size of single-crystal 2D
materials is thus a critical point to master before industrialisation of 2D materials whose
quality must be high. However, those defects can be desired features, for example in the
chemical doping of a material. Grain boundaries can also be a platform for plasmonics.
Such optical effets in grain boundaries are discussed in chapter 4.

Graphene

Graphene has been first isolated in 2004 by Nobel prize Andre Geim and Konstantin
Novoselov. In their paper [2], they provided experimental proofs to the ambipolar
behaviour of the few layers graphene. Graphene is a material consisting of carbon
atoms disposed in honeycomb lattice, with 3 valence electrons forming σ bonds (sp2
hybridisation). The last valence electron, which is in a π-state, is responsible for the
semi-metallic character of graphene. In the band structure of graphene, the π-states
form a conical band, with the valence and conduction bands touching at the point K
and K ′, see fig 1.6. Therefore graphene is considered as a semi-metal with a zero band
gap because the conductivity does not vanish at 0K . The most interesting electronic
property of graphene is its linear dispersion near theK points. This means that electrons
behave like massless Dirac fermions, with an effective velocity of c/300 [4]. The mobility
of charge carriers in graphene is also particularly high: experimentally, it can reach
more than 120 000 cm2V-1s-1 [62, 63]. As explained above, this mobility can be highly
limited depending on the quality of the fabrication method, the number of defects and
the substrate.

Transition metal dechalcogenides

Transition metal dechalcogenides (TMDs) are layered materials of chemical formula
MX2, with a unit cell composed of 1 transition metal atom (M) for 2 chalcogen atoms
(X), disposed on three atomic plane, see figure 1.7 [64]. Each layer of the materials has
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Figure 1.6: Electronic dispersion of graphene. Left: energy spectrum. Right: zoom in of
the energy bands close to one of the Dirac points. Reproduced from [4].

Figure 1.7: (a) Schematic representation of the atomic structure of MX2. The bulk
compound has a 2H −MX2 structure with twoMX2 layers per unit cell, each layer
being built up from a trigonal prism coordination unit. The small green rectangle
represents the unit cell of a monolayer ofMX2, which is doubled (red extension) in the
bulk crystal. (b) Detail of the trigonal prisms for the two layers in the bulk compound,
showing the lattice constants and the definition of the structural angles used in the text.
Reproduced from [64].

a thickness of around 0.6 − 0.7 nm and as graphene in graphite, can be exfoliated to
form a 2D material. Most of them are semi-conductors but some are metals or can even
display super-conductivity. The nature of the 2D materials may be different than the
3D counterparts. For example, the band gap of monolayer MoS2 compared to its bulk
counterpart increases from 0.8 eV to 1.7 eV [64] but changes from indirect to direct
band gap. These semi-conductor 2D materials have been intensively investigated for
applications in electronics, in particular for field-effect transistors [65–67].

Heterostructures

2D materials can be seen as building blocks of artificial layered materials. By assembling
vertically or horizontally 2D materials while taking advantages of the weak van derWalls
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Figure 1.8: The construction of a huge variety of vertical heterostructures becomes
possible using single layers of van der Waals materials as elementary bricks. Adapted
from [68].

interaction between the parallel planes, a large number of new materials can be obtained,
see figure 1.8 [68]. In particular, the hexagonal form of boron nitride, whose structure is
similar to that of graphene, with a lattice mismatch of 1.7 %, is often used in combination
with other 2Dmaterials. It is used as an insulating and protecting layer for the considered
material. Graphene and TMDs encapsulated in hBN have shown extremely high carrier
mobilities even after long exposure to ambient air [68–70]. Another impressive example
of heterostructure are graphene twisted bilayers where a rotation by a “magic” angle of
1.1◦ create a flat-band in graphene which is responsible for superconducting behaviours
[71].

1.3 2D materials optics and plasmonics

Due to their extremely small thickness and their electronic properties, some 2D materials
are of first interest for applications in optics. The metallic ones can be used as transparent
conductors or as platforms for plasmonics with dramatic confinement of the field. Semi-
conductor 2D materials can be used in photovoltaics or LED.

Graphene optics

The most striking optical characteristic of graphene is that the optical absorption in
the visible spectrum is constant and determined by its so-called universal conductivity
σ0 = e2

4ℏ . This phenomenon is explained by the direct interband transitions between
the valence and conduction bands in the linear dispersion regime [72, 73]. However,
graphene is always intrinsically doped and the Fermi level EF is, in general, not located
at the intersection between the conduction and the valence bands, with value ranging
from 0.1 to 1.0 eV. Due to Pauli blocking, interband transition are forbidden below the
incident energy ℏω = 2EF (see figure 1.9a) [73].
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Figure 1.9: Transition in the Dirac cone of graphene. a) direct interband transitions
are only possible when the energy of the transition is larger than 2EF ; b) intraband
transitions need a momentum transfer. Reproduced from [73].

At incident energies larger than 1 eV, the dispersion is not linear (figure 1.6), and the
conductivity varies. In particular, the π-plasmon of graphene is responsible for a high
conductivity around 5 eV. Using the Kubo formalism and a tight binding approach, the
authors of [74] propose the following formula for the interband conductivity:

ℜσinter (ω) = σ0
πt2

12
√
3ℏω

ρ (ℏω/2)
[
18− (ℏω)2 /t2

] [
tanh

ℏω + 2EF

4kBT
+ tanh

ℏω − 2EF

4kBT

]
,

(1.22)
where σ0 = e2

4ℏ is the universal conductivity, t the hoping parameters, and a the carbon-
carbon distance. The density of states ρ(E) is

ρ(E) =
2E

t2π2


1√

F (E/t)
K
(

4E/t
F (E/t)

)
, 0 < E < t,

1√
4E/t

K
(

F (E/t)
4E/t

)
, t < E,

(1.23)

and the functions F (x) and K(m) are:

F (x) = (1 + x)2 − (x2 − 1)
2

4
, (1.24)

K(m) =

∫ 1

0

[(
1− x2

) (
1−mx2

)]−1/2
dx. (1.25)

This conductivity is obtained in an independent particle framework and does not include
electron-hole interactions. For a total description of the UV conductivity, excitonic
effects must be considered. For this purpose, a Fano model is proposed in [73]:

σ′
inter =

(q + Ω)2

1 + Ω2
σinter, (1.26)

where q2 is the ratio of the strengths of the excitonic resonance and the band-to-band
resonance and

Ω =
(ω − ωres)

(Γ/2)
, (1.27)

12



Plasmonics in 2D materials

10-4 10-3 10-2 10-1 100

Energy (eV)

0

5

10

15

C
o
n

d
u
c
ti
v
it
y
 (
σ

/σ
0
) 

E
F
 = 0.2 eV

E
F
 = 0.4 eV

Figure 1.10: Real part of the surface conductivity of graphene calculated from the Kubo
formula in the unit of σ0 = e2

4ℏ . The dotted line corresponds to σ = σ0.

with ωres the resonance energy of the π-plasmon, close to 5 eV and Γ its width. The
imaginary part of the interband term may be then calculated using the Kramers-Kronig
relations.

At energies lower than 2EF , when interband transition are forbidden, intraband
transitions play a major role. However, due to momentum mismatch, these transitions
involve scattering with phonons or defects (figure 1.9b). This scattering can be taken
into account into the damping term of an appropriate Drude model as proposed in [75].
This gives an intraband term for the conductivity :

σintra =
ie2EF

πℏ2 (ω + iτ−1)
. (1.28)

where τ is the relaxation time of the charge carriers. The inter- and intraband
transition conductivities both depend on the Fermi level. By tuning the Fermi level by
means of gate voltage or chemical doping, the optical properties of graphene can be
adjusted, in particular in the infrared range where graphene plasmons take place.

The total surface conductivity of graphene σg = σintra + σ′
inter obtained for the

parameters T = 300 K, τ = 20 fs, t = 2.6 eV, q = −1.7 eV, ℏωres = 4.85 eV, Γ =
780 meV) and for two values of the Fermi level, EF = 0.2 eV (blue) and EF = 0.4
eV (orange) is plotted on a logarithmic scale in figure 1.10. In the thesis, the chosen
values for the relaxation time τ are highly conservative, between 20 and 100 fs, which
corresponds to low quality graphene and has been used frequently in plasmonics [25,
38]. Experimental results in different frequency ranges are consistent with these values
[76]. The modification of the Fermi level does not only change the amplitude of the
conductivity at low energy but also change the energy position of transition between the
interband and the intraband regime (between 0.1 and 1 eV). The universal conductivity
is then attained at different energies. At 5 eV, the peak corresponds to the π-plasmon.

The absorption of a single layer of graphene on a substrate of refractive index n at
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normal incidence is given by [77]:

A =
4Re

(
σg

ε0c

)
∣∣∣1 + n+ σg

ε0c

∣∣∣2 . (1.29)

For suspended graphene (i.e. n = 1), in the visible range, where the conductivity is small
( σg

ε0c
= 0.023), the absorption is given by

A =
σg
ε0c

= 0.023 = 2.3%, (1.30)

which is small enough for graphene to be transparent but large enough to be visible by a
trained naked eye. At smaller frequencies, for example in the GHz range, the conductivity
is larger and the absorption of a single layer of graphene can be as large as 50% [78],
which is surprisingly large for an atomically thin layer. It was even demonstrated that
perfect absorption could be achieve by using metamaterials as substrate [8]. Indeed,
from eq. (1.29) it can be shown that the maximum of absorption of a 2D material on a
substrate is

Amax =
1

1 + n
(1.31)

if the surface conductivity is σg

ε0c
= 1 + n. For an epsilon-near-zero metamaterial, the

refractive index of the substrate n tends to 0 and the absorption can reach 100%. In
practice, the condition that permits a maximum absorption may be achieved with an
heterostructure of 3 graphene layers, isolated by PMMA layers, in the micro-wave range
(figure 1.11a). However, for a finite substrate, the perfect absorption is not possible
but with an adapted thickness of the substrate, near-perfect absorption can be reached
(figure 1.11b) [8].

Graphene plasmonic

As a metallic material, graphene is a good platform for plasmonic. However, as for bulk
materials or thin films, the momentum mismatch prohibits the observation of plasmons
with light in extended graphene. Structuring or nanoparticles must be employed in
order to be able to excite surface plasmons. Due to their low dimensionality, surface
plasmons in structured 2D materials are confined to a volume of size 106 smaller than the
wavelength [25]. Moreover, thanks to the tunability of graphene surface conductivity, the
resonance frequency of graphene plasmons may be adjusted actively with gate voltage.
These advantages have made graphene an important area of research in plasmonics in
the last decade [25, 79, 80].

Graphene has been shown to support SPPs, in nanoribbons for example (see figure
1.12) with a plasmon frequency given by [81]:

ωpl =
e

ℏ

√
EF

πηWεm
, (1.32)
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Figure 1.11: a) Electromagnetic radiation impinging on a graphene- PMMA heterostruc-
ture composed of three PMMA/graphene units, lying on a substrate of refractive index n,
with incident angle θ. b) Absorption of a graphene-PMMA heterostructure consisting of
three PMMA/graphene units on a finite slab of thickness d as a function of thickness of
the substrate d and its refractive index n. Refractive index n varies from 0.04 to 1. Green
dotted line indicates maximal absorption. Reproduced from [8].

Figure 1.12: Guided plasmons in individual doped graphene ribbons. (a) Dispersion
diagram of a self-standing ribbon of widthW = 100 nm and Fermi energy EF = 0.5

eV. (b) Real part of the electric field amplitude (density plots) along the ribbon direction
corresponding to modes labeled A−D in panel (a) for a parallel wave vector k∥ = 0.035

nm-1. Reproduced from [81].
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Figure 1.13: Calculated individual graphene nanodisk absorption cross-section for dif-
ferent Fermi energy values. The inset shows the plasmon induced charge density for a
single nanodisk. Reproduced from [82].

whereW is the width of the ribbon, εm the permittivity of the surrounding medium and
η a parameter that depends only on the product k∥W , with k∥ the wavevector.

In graphene nanoparticles, LSP stands at the edges of the nanoparticles (see for
example figure 1.13). For nanodisks, the plasmon frequency of the dipolar mode is

ωpl =
e

2πℏ

√
12.5EF

ε0d
(1.33)

where d is the diameter of the disk.

In both cases (SPP and LSP), for a characteristic length of about 100 nm, the plasmon
frequency lies between 0.1 and 0.5 eV. To approach the visible frequencies (between 1.5
and 3.5 eV, one must decrease the size of the structure down to a few nanometers [35].
However, for lengths of a few nanometers, quantum effects become significant and free
charge carriers scatter on the edges, decreasing the plasmon lifetimes. This limitation
has tempered the interest for graphene in plasmonics, but graphene plasmons in the
visible are achievable as it will be shown in chapter 4.

Plasmonics with other 2D materials

Graphene is not the only metallic 2D material. For example some TMDs like TaSe2
and VS2, or graphene-like group IV 2D materials as silicene are metallic. Plasmons
have already been detected in the two TMDs mentioned above [36] and in silicene [83].
Moreover, plasmons may be sustained in metallic channels existing in non-metallic 2D
materials due to restructuration at the edges or at boundaries. These kind of plasmons
have been evidenced in MoS2 [36, 37].
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It is worth mentioning here topological insulators which could sustain similar plas-
mons than 2D materials. Topological insulators are insulators that exhibit topologically
protected surface metallic states [84]. These surfaces are in some way analog to metallic
2D materials on a insulating substrate. Plasmons have also been identified on such sur-
faces [85, 86]. Recently, 2D topological insulators, like Jacuntingaite, have been identified
[87]. These 2D materials have topologically protected metallic channel on their edges
and are good candidates to obtained 1D SPPs on their edges.

Conclusions

The large number of 2D materials identified up to now, and the infinite ways to assemble
them in heterostructures, is a playground for materials scientists. At the beginning,
graphene was the center of attention due to its peculiar electronic and mechanical
properties. In optics, the fact that it is a transparent conductor in the visible, and that
its conductivity is tunable at lower frequency make it one of the best candidates for
several applications. However, other 2D materials like TMDs or even van der Waals
heterostructures also exhibit optical and plasmonic behaviours that could be interesting
for applications such as sensing or optoelectronics.
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The dielectric function
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The goal of this chapter is to present how the microscopic dielectric function is calcu-
lated from the electronic structure and how it allows to obtain the macroscopic dielectric
function. The microscopic dielectric function is a central quantity for determining optical
properties and in particular investigate plasmonic resonances of quantum systems. On
the other hand the macroscopic dielectric function is used in classical electrodynamic
methods to determine the optical properties of larger and more complex systems. The
relation between the microscopic and macroscopic dielectric function will also bring
insight on the modelling of 2D materials.
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2.1 Microscopic description of the dielectric function

The dielectric function or relative permittivity is at the core of electromagnetism as
it allows us to describe the electric response of a material to an applied electric field.
In classical electrodynamics, one uses the macroscopic permittivity, resulting from
the spatial average of the fields. For systems at the scale of the nanometer, quantum
effects are non-negligible and a quantum description of the system is necessary. For
2D materials, which are atomically thin, a macroscopic description is still possible but
with a particular care in the use of the dielectric function. However, for 2D material
nanostructures smaller than 10 nm, a quantum method is necessary. For these reasons,
the microscopic version of the dielectric function is convenient. It also gives information
about plasmons in nanometer-sized systems. In this section, the theoretical background
behind the microscopic permittivity is developed succinctly yet comprehensively as the
description in the literature is scattered. Original contributions are proposed with an
emphasis on results that are important for 2D materials and plasmon analysis.

Definition of the microscopic dielectric function

In electrodynamics, the goal is to find the total electromagnetic field of a system for
given charge and current distributions. Rigorously, all charged particles, free and bound
ones, should be considered. For such problem, one must solve the microscopic local
Maxwell’s equations [42]:

∇ · E (r, t) =
ρ (r, t)

ε0
; (2.1)

∇ ·B (r, t) = 0; (2.2)

∇× E (r, t) = −∂B (r, t)

∂t
; (2.3)

∇×B (r, t) = µ0J (r, t) + ε0µ0
∂E (r, t)

∂t
. (2.4)

Compared to the macroscopic Maxwell equations (1.9)-(1.12), with the electric displace-
ment defined by (1.5), here the permittivity does not appear because the material is
directly described by the charge and current densities. The charge and current densi-
ties can therefore be separated into external and internal densities, where the external
densities ρext (r, t) and Jext (r, t) are the causes of an electromagnetic excitation and
the internal densities ρint (r, t) and Jint (r, t) compose the materials of the considered
system. The sources of the excitation are for example dipoles, electron beams or antennas.
In practice, the electric field induced by the external charges is known. The problem
consists then to determine how the internal densities respond to this electric field applied
to the system Eapp (r, t) i.e. to find the induced fields Eind and densities ρind (r, t) and
Jind (r, t) .

Here the case of external sources far from the system is considered. The electromag-
netic field is then described as a plane wave i.e.:

Eapp (r, t) = E0e
i(k·r−ωt)e, (2.5)
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with E0 the amplitude of the field, k the wave vector, ω the angular frequency and e
the unit vector giving the polarisation. To calculate the total electromagnetic field, one
needs to find the tensor ζ (r, r′, t, t′) such that:

Etot (r, t) =

∫ ∫
ζ (r, r′, t, t′)Eapp (r

′, t′) dr′dt′, (2.6)

where the tensorial nature is noted with an overline. The function ζ (r, r′, t, t′) is the
kernel of an integral operator (or transform) that applies on the applied field to give the
total field. Other relevant quantities such as the Poynting vector and the scattering cross
sections are deduced from the total electric fields afterwards. The tensor ζ (r, r′, t, t′)
is in fact the kernel of the inverse of the transform whose kernel is the microscopic
dielectric function ε (r, r′, t, t′) defined as follow:

Eapp (r, t) =

∫ ∫
ε (r, r′, t, t′)Etot (r

′, t′) dr′dt, (2.7)

which is just another way to write the better known constitutive equation of materials:

D (r, t) = ε0

∫ ∫
ε (r, r′, t, t′)Etot (r

′, t′) dr′dt, (2.8)

where the displacement field D (r, t) in a material is associated to the applied field. The
function ζ is now called the inverse dielectric function, is written ε−1 (r, r′, t, t′) and
relates to the dielectric function tensor via:∫ ∫

ε−1 (r, r′, t, t′) ε (r′, r′′, t′, t′′) dr′dt′ = Iδ (r, r′′) δ (t, t′′) , (2.9)

with I the 3×3 identity matrix. Because the response only depends on the time difference
t′ − t and the fields are time harmonic (eq. (2.5)) one can work in the frequency domain
by performing a Fourier transform. Eq. (2.6) can be written as

Etot (r, ω) =

∫
ε−1 (r, r′, ω)Eapp (r

′, ω) dr′. (2.10)

Before describing the derivation of the dielectric function, two remarks should be
done:

• If the applied field is spatially constant, by integrating the inverse dielectric func-
tion over r′, eq. (2.10) becomes:

Etot (r) = ε−1 (r)Eapp. (2.11)

If one chooses an applied field of unit amplitude, the total field is directly given by
the tensorial product of ε−1 and a unit vector Eapp.

• Equation like eq. (2.10) become a matrix equation on a discretized spatial grid:

Etot = ε−1Eapp, (2.12)
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with ε−1 a rank-2 tensor of size 3N × 3N with N the number of grid points. Like
any other inverse function f−1 defined as followed:∫

f−1 (r, r′) f (r′, r′′) dr′ = δ (r, r′′) , (2.13)

the inverse dielectric function matrix is the inverse matrix of the dielectric function
matrix.

Response functions from the linear response time-dependent den-

sity functional theory

For a system of the size of a few Angstroms, optical response functions such as the
dielectric function must be obtain in a quantum framework. They are deduced from
the solutions of the Schrödinger equation. In practice, a number of approximations are
performed in order to decrease the complexity of the problem. The most current one
is the Born-Oppenheimer approximation which states that the kinetic energy of the
nuclei is negligible. The effect of the nuclei is reduced to a static potential V and the
Schrödinger equation becomes

Ĥψ =

[
N∑
i=1

(
− ℏ2

2m
∇2

i

)
+

N∑
i=1

V (ri) +
N∑

i,j<i

U (ri,rj)

]
ψ = Eψ (2.14)

where ψ = ψ (r1, . . . , rN) is the multi-electron wave-function. The first term in the
bracket is the kinetic energy of electrons, the second the potential due to the nuclei
and the third the electron-electron interaction. The complexity of such equations still
increases very quickly with the number of electrons N and other approximations are
generally done. The density functional theory (DFT), which is particularly adapted to
extended materials, has been used in this thesis to calculate the electronic properties of
the systems of interest [88]. The DFT is based on the Hohenberg and Kohn theorem that
states that the total energy is a unique functional of the electron density ρ (r′). In other
words, there is a one-to-one correspondence between the potential and the electron
density, which therefore contains all the information on the many-electron system. Kohn
and Sham then proved that the many-electron problem can be replaced by an equivalent
set of one-electron equations, namely the Kohn-Sham equations [88]:(

− ℏ2

2m
∇2 + VKS (r)

)
ϕi (r) = ϵi (r)ϕi (r) (2.15)

with
VKS (r) = Vion (r) + VH (r) + Vxc (r) . (2.16)

the Kohn-Sham potential. In this equation VH is the Hartree potential:

VH = e2
∫

ρ (r′)

|r′ − r|
dr′ (2.17)
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and Vion is the electron-ion potential. In practice, a pseudo-potential Vext that account
for the core electrons is used instead of Vion to reduce the complexity of the problem.
The last term of eq. (2.16), Vxc is the functional derivative of the exchange-correlation
energy functional:

Vxc (r) =
δExc [ρ (r)]

δρ (r)
(2.18)

The exchange-correlation energy functional can be expressed from the exchange-correlation
energy per electron at point r, exc (r):

Exc [ρ (r)] =

∫
exc (r) ρ (r) dr (2.19)

but cannot be known exactly. The simplest approximation is to consider exc as the
exchange-correlation energy of an electron in an homogeneous electron gas with the
same density as the electron gas at point r. This method is called the local density
approximation (LDA) and has been widely used due to its simplicity and its accurate
results for a large number of systems [88]. Another method, the generalized gradient
approximation (GGA) that account for nearby inhomogeneities in the density has been
proposed by Perdew, Burke and Ernzerhof (PBE) [89]. Both these methods (LDA and
GGA-PBE) have been used in this work.

When Vxc has been calculated, a trial density is chosen and the Kohn-Sham equations
(eq. (2.15)) are solved self-consistently to obtain the orbitals ϕi (r) that reproduce the
true electronic density ρ (r) of the system.

When an time-dependent potential Vext (r, t) is applied on the system, the time-
dependent DFT (TDDFT) must be used to calculate the time dependent wave-functions.
Similarly to the Hohenberg and Kohn theorem, the Runge-Gross theorem shows that
there is a one-to-one mapping between the time dependent density ρ (r, t) and the time
dependent external potential Vext (r, t). Consequently, a time dependent Kohn-Sham
system of equations can be written:(

− ℏ2

2m
∇2 + VKS (r, t)

)
ϕi (r, t) = i

∂

∂t
ϕi (r, t) (2.20)

with the Kohn-Sham potential given by:

VKS (r, t) = Vext (r, t) + VH (r, t) + Vxc (r, t) . (2.21)

The exchange correlation potential Vxc is, in general, a functional of the density and
of the true initial states of the system ψ and must be approximated. An initial set of
orbitals ϕ (r, 0) that reproduces the true density of the ground state must be chosen
and the Kohn-Sham equations (eq. (2.20)) are solved to determine the time-dependent
wave-functions.

In the linear response regime, we consider a small time-varying potential Vapp applied
to a system in its ground state (with Vext,0 the external potential of the ground state):

Vext (r, t) = Vext,0 (r) + Vapp (r, t) (2.22)
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such that only the first order term of the change in electronic density is retained (with
the ground state density ρ0):

ρ (r, t) = ρ0 (r) + ρind (r, t) (2.23)

where the relation between the applied potential Vapp and the induced density ρind is
linear:

ρind (r, t) =

∫ ∫
α (r, r′, t, t′)Vapp (r

′, t′) dr′dt′. (2.24)

To obtain the so-called external polarizability α one must first calculate the irreducible
polarizability α0 defined as follow 1:

ρind (r, t) =

∫ ∫
α0 (r, r′, t, t′) δVKS (r

′, t′) dr′dt′. (2.25)

Using time-dependent perturbation theory, one can show that the irreducible polar-
izability α0 is given, in the frequency domain, by [91]:

α0 (r, r′, ω) =
∑
i,j

(fi − fj)
ϕi (r)ϕ

∗
j (r)ϕj (r

′)ϕ∗
i (r

′)

ω − Ej − Ei + iη
, (2.26)

where Ei is the energy of the electronic ground states i, fi the Fermi-Dirac distribution
and η a smearing parameter. The term δVKS in eq. (2.25) is the change in the Kohn-Sham
potential of eq. (2.21) due to the time-varying potential Vapp:

δVKS (r, t) = Vapp (r, t)+

∫
ρind (r, t)

|r− r′|
dr′+

∫ ∫
fxc [ρ0] ((r, r

′, t, t′)) ρind (r
′, t′) dr′dt′.

(2.27)
The second term in the above equation is the Hartree potential due to the induced charge.
The third term is the variation to the exchange-correlation potential, that depends on
the exchange-correlation kernel fxc, which is the functional derivative of the exchange-
correlation potential evaluated at the ground state density:

fxc [ρ0] (r, r
′, t, t′) =

δvxc [ρ] (r, t)

δn (r′, t′)

∣∣∣∣
ρ0

(2.28)

The external and the irreducible polarizability are related by a Dyson-like equation
[91]:

α (r, r′, t, t′) =α0 (r, r′, t, t′)

+

∫ ∫ ∫
α0 (r, r1, t, t1)

×
(
δ (t1 − t2)

|r1 − r2|
+ fxc [ρ0] (r1, r2, t1, t2)

)
α (r2, r

′, t2, t
′) dt1dt2dr1dr2

(2.29)
1These two polarizabilities have different names in the literature, I have chosen the one given in [90].
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Afterwards, the dielectric function and other response functions can be calculated
from the polarizabilities. This will be done in the next section where a more general
approach, including vector potentials, is proposed.

In the random-phase approximation (RPA), the exchange-correlation kernel fxc is
set to zero, which simplifies greatly eq. (2.29). Although it removes all purely quantum
effects in the calculation of the response function of a quantum system, the RPA has
been widely used due to the simplicity of its implementation and the numerical gain of
neglecting the exchange-correlation kernel functional. The use of the RPA in our case is
justified because only qualitative results were expected.

Two main problems remain when performing TDDFT calculations, in particular
within the RPA, due to the many-body effects. The first is that, when exciting an electron
in the conduction band, we cannot consider the system in its ground state anymore. The
second problem is that the difference between the electronic gap (the energy needed
to create an electron-hole pair) and the optical gap (the electronic gap energy plus the
energy to dissociate the exciton) is not taken into account and the creation of excitons
is neglected. These issues are settled by methods accounting for exchange-correlation
effects. The first problem is solved using the GW approach [92, 93].The second is
overcome using the Bethe-Salpeter equation [92]. However, these two supplemental
methods demand intensive calculations. For optical calculations of large structures the
ground state approach is already computationally demanding and I have decided neither
to use nor to describe these methods here. For more details on DFT, TDDFT and the
particular methods used in this thesis, I suggest the following references: [88, 94–96].

The parameters of the calculations performed in this thesis are given in the appendix.

Linear responses functions in the RPA

In the following, the microscopic dielectric function is derived from response functions
obtained in TDDFT. Here, the RPA is used such that quantum effects are neglected in the
calculations of the optical response function, apart from the calculation of the electronic
ground state of the system. In consequence, the linear response theory developed
thereafter can be applied also to classical systems as proposed in section 2.3. Moreover,
as vector potentials are also considered here, a more general approach is proposed,
compared to the one often provided in the literature [91, 96, 97], where only scalar
potentials are assumed, as shown in the previous section. In the following, the frequency
dependencies are omitted by means of simplicity.

In order to determine the dielectric function, the total field is first expressed as the
sum of the applied field and the induced field:

Etot (r) = Eapp (r) + Eind (r) . (2.30)

By finding a relation between the induced field and the applied field or total field, the
dielectric function may be calculated from the equation above. The induced field can be
expressed from the induced scalar and vector coulomb potential Vind (r) and Aind (r)
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[42]:
Eind (r) = −∇Vind (r)−

∂Aind (r)

∂t
, (2.31)

with
Vind (r) =

1

4πε0

∫
ρind (r

′)

|r− r′|
dr′ (2.32)

and
Aind (r) =

µ0

4π

∫
Jind (r

′)

|r− r′|
dr′. (2.33)

The induced field is then:

Eind (r) = − 1

4πε0
∇
∫
ρind (r

′)

|r− r′|
dr′ − µ0

4π

∂

∂t

∫
Jind (r

′)

|r− r′|
dr′. (2.34)

The induced densities are related to the total potential by the irreducible polarizability
α0 and conductivity σ0 [90] :

ρind (r
′) =

∫
α0 (r′, r′′)Vtot (r

′′) dr′′; (2.35)

Jind (r
′) = iω

∫
σ0 (r′, r′′)Atot (r

′′) dr′′. (2.36)

The irreducible polarizability and conductivity are the response functions of non-
interacting charges to an external potential, or equivalently the response of the charge to
the total potential. They are therefore not the appropriate response functions to describe
the response of the material to an applied field. The irreducible polarizability has already
been discussed in the previous section (eq. (2.25)), where the total potential Vtot is
equivalent to the change in the Kohn-Sham potential δVKS . The irreducible conductivity
is defined from the constitutive equation of the current density in materials:

Jind (r
′) =

∫
σ0 (r′, r′′)Etot (r

′′) dr′′. (2.37)

Here, plane waves are considered. The vector potential of a plane wave is written in the
form

Aapp (r) = A0e
i(k·r−ωt)e (2.38)

in a gauge where the scalar potential is zero, Vapp = 0. However a longitudinal wave
(k � e) can also be described in a gauge where the vector potential is zero:

Aapp (r) = 0 ; Vapp (r) = V0e
i(k·r−ωt). (2.39)

In both gauges, for longitudinal waves, the electric field writes:

Eapp (r) = E0e
i(k·r−ωt)k

k
(2.40)

with E0 = −ikV0 or E0 = −iωA0 and the magnetic field is zero. Therefore, in order
to describe a longitudinal excitation, one only needs the irreducible polarizability to
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calculate a longitudinal dielectric function. In the most general case including transverse
waves, the irreducible conductivity is needed to obtain the dielectric function.

The expressions of the irreducible polarizability and conductivity have both been
derived theoretically from TDDFT [98], as previously shown for the polarizability. How-
ever, due to complexity of the general case, only the longitudinal dielectric function
has been calculated in quantum simulations. Indeed, researchers developing quantum
methods only refer to articles describing the longitudinal case [91, 97, 99–101] and
therefore they use the formalism described in the previous section. The longitudinal
dielectric function is useful for studying volume plasmons which are longitudinal waves.
For light illumination, the wave number k is often considered to be small compared to
characteristic sizes of the materials i.e. the size of the unit cell. It is equivalent to the
electrostatic case. Transverse and longitudinal waves are thus indistinguishable and
the longitudinal dielectric function corresponds to the transverse dielectric function.
However, for high energy electromagnetic waves, for example in case of UV illumination,
the wavelength can be of the same order of magnitude as the length of large unit cells
(for example for nanostructured systems like 2D materials nanoribbons) and the k → 0
limit cannot be taken. In this context, it is of great interest to obtain the transverse
microscopic dielectric function.

In the following, the dielectric function is derived in the most general case from the
irreducible conductivity, with a vector potential of the form (2.38) before particularizing
to the longitudinal case.

Tensorial dielectric function from the conductivity

In the gauge with Vapp = 0 corresponding to eq. (2.38), one can write from eq. (2.34) and
(2.37)

Eind (r) = i
ωµ0

4π

∫ ∫
σ0 (r′, r′′)

|r− r′|
Etot (r

′′) dr′′dr′. (2.41)

The expression of the irreducible conductivity is given in [98], but as it is quite complex
and it has not been used for calculation of optical spectra, I do not write it explicitly here.
The microscopic irreducible susceptibility χ is defined as:

χ (r, r′) = −iωµ0

4π

∫
σ0 (r′′, r′)

|r− r′′|
dr′′, (2.42)

therefore one obtains:

Eind (r) = −
∫
χ (r, r′)Etot (r

′) dr′. (2.43)

which is the microscopic equivalent of the relation between the polarization density and
the electric field:

P = ε0χMEtot (2.44)
where χM is the macroscopic susceptibility, and P = −Eind. Because the total field is
the sum of the applied field and the induced field, eq. (2.30), from eq. (2.43) one deduces:

Eapp =

∫ (
Iδ (r, r′) + χ (r, r′)

)
Etot (r

′) dr′ (2.45)
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The term inside the parenthesis is the microscopic dielectric function introduced previ-
ously, eq. (2.7):

ε (r, r′) = Iδ (r, r′) + χ (r, r′) = Iδ (r, r′)− i
ωµ0

4π

∫
σ0 (r′′, r′)

|r− r′′|
dr′′. (2.46)

Now, having the microscopic dielectric function, one can invert it to obtain the inverse
dielectric function and the total field can be calculated from the applied field. However,
another conductivity is usually introduced, the external conductivity σ, which is defined
explicitly by [90, 98]:

Jind (r) = iω

∫
σ (r, r′)Aapp (r

′) dr′′, (2.47)

which gives the response of the interacting charges to an applied field. From this quantity
the microscopic external susceptibility ξ is defined:

ξ (r, r′) = −iωµ0

4π

∫
σ (r′′, r′)

|r− r′′|
dr′′, (2.48)

and then
Eind (r) = −

∫
ξ (r, r′)Eapp (r

′) dr′. (2.49)

The macroscopic equivalent of the external susceptibility ξ would be ξM such that

P = ξMD. (2.50)

To the best of my knowledge, ξM is not used in the literature. However, it will later
appeared to be a key quantity in our analysis of the anisotropic optical response of 2D
materials. Now, the inverse dielectric function can be determined using eq. (2.30):

Etot (r) =

∫ (
Iδ (r, r′)− ξ (r, r′)

)
Eapp (r

′) dr′, (2.51)

where the term in the parenthesis is nothing else but the inverse dielectric function
introduced previously:

ε−1 (r, r′) = Iδ (r, r′)− ξ (r, r′) = Iδ (r, r′) + i
ωµ0

4π

∫
σ (r′′, r′)

|r− r′′|
dr′′. (2.52)

Relation (2.51) is now written

Etot (r) =

∫
ε−1 (r, r′)Eapp (r

′) dr′. (2.53)

By inserting eq. (2.53) in eq. (2.41) and identifying with eq. (2.48)-(2.49), the external
conductivity is found directly from the irreducible conductivity:

σ (r, r′) =

∫
σ0 (r, r′′) ε−1 (r′′, r′) dr′′ (2.54)

=

∫
σ0 (r, r′′)

(
Iδ (r′, r′′)− i

ωµ0

4π

∫
σ0 (r′′′, r′′)

|r′ − r′′′|
dr′′′

)−1

dr′′. (2.55)
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Longitudinal dielectric function from the polarizability

The longitudinal dielectric function εL, i.e. the dielectric function for an applied field
and a total field polarized along u = k

k
, is found by projecting the dielectric tensor ε on

this vector:
εL = uT · εu. (2.56)

However, as explained before, in the longitudinal case, one can work in the gauge where
A is zero (eq. (2.39)). It’s common to define a microscopic dielectric function as the
scalar function relating the scalar potentials [97, 101]:

Vapp (r) =

∫
ϵ (r, r′)Vtot (r

′) dr′. (2.57)

The function ϵ (r, r′) is called here the pseudo-dielectric function. Indeed, it differs
from the true microscopic dielectric function ε (r, r′). It is usually called the dielectric
function because the macroscopic average of this dielectric function is the same as the
macroscopic average of the longitudinal dielectric function as it will be shown in the
next section. The difference between ϵ (r, r′) and ε (r, r′) appears by calculating the
applied electric field from the previous equation, projected along u:

uT · Eapp (r) = − ∂

∂u
Vapp (r) =

∫
− ∂

∂u
ϵ (r, r′)Vtot (r

′) dr′, (2.58)

with ∂
∂u

the directional derivative and comparing with

uT · Eapp (r) =

∫
uT ε (r, r′)uuT · Etot (r

′) dr′ (2.59)

obtained from eq. (2.7) projected on u. Before establishing a relation between the pseudo-
dielectric function ϵ and the longitudinal dielectric function εL, the relation between the
polarizability and the pseudo-dielectric function is derived as it is done in most textbooks
and papers [96, 97]. In the frame of RPA, the irreducible polarizability, define implicitly
in eq. (2.35):

ρind (r) =

∫
α0 (r, r′)Vtot (r

′) dr′ (2.60)

is given by eq. (2.26). The external polarizability α is:

ρind (r) =

∫
α (r, r′)Vapp (r

′) dr′ (2.61)

i.e. it is the response function of interacting charges to an applied potential. The induced
potential is obtained by applying the coulomb operator vc on the charge density:

Vind (r) =
1

4πε0

∫ ∫
α0 (r′, r′′)

|r− r′|
Vtot (r

′) dr′′dr′ (2.62)

or
Vind (r) =

1

4πε0

∫ ∫
α (r′, r′′)

|r− r′|
Vapp (r

′) dr′′dr′, (2.63)
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depending on the choice of polarizability. Two pseudo-susceptibilities, χ and ξ, are
defined as the response functions of an induced field to respectively a total and an
applied field:

Vind (r) = −
∫
χ (r, r′)Vtot (r

′) dr′, (2.64)

Vind (r) = −
∫
ξ (r, r′)Vapp (r

′) dr′, (2.65)

with
χ (r, r′) = − 1

4πε0

∫
α0 (r′′, r′)

|r− r′′|
dr′′, (2.66)

ξ (r, r′) = − 1

4πε0

∫
α (r′′, r′)

|r− r′′|
dr′′. (2.67)

These pseudo-susceptibilities are different from the longitudinal components of the
tensorial susceptibilities (the proof is similar than for the pseudo-dielectric function).
The pseudo-dielectric function is, in analogy with the previous development:

ϵ (r, r′) = δ (r, r′) + χ (r, r′) = δ (r, r′)− 1

4πε0

∫ ∫
α0 (r′′, r′)

|r− r′′|
dr′′, (2.68)

or

ϵ−1 (r, r′) = δ (r, r′)− ξ (r, r′) = δ (r, r′) +
1

4πε0

∫ ∫
α (r′′, r′)

|r− r′′|
dr′′. (2.69)

The relations between the polarizabilities is, in analogy with eq. (2.55):

α (r, r′) = α0 (r, r′′)

(
δ (r′, r′′)− 1

4πε0

∫ ∫
α0 (r′′′, r′′)

|r′ − r′′′|
dr′′′

)−1

. (2.70)

which is equivalent to the relation (2.29). Now the relation between the tensorial suscep-
tibility and the pseudo-susceptibility for longitudinal waves can be derived. The induced
field along u is deduced from both gauges (Aapp = 0 or Vapp = 0) such that

−uT · Eind (r) = − ∂

∂u
Vind (r) . (2.71)

Replacing the induced field and potential given by eq. (2.49) and (2.65) and noting from eq.
(2.39) that the applied potential is related to the applied field by Vapp (r) = i

k
uT ·Eapp (r),

eq. (2.71) becomes:∫
uT ξ (r, r′)uuT · Eapp (r

′) dr′ =

∫
∂

∂u
ξ (r, r′)

i

k
uT · Eapp (r

′) dr′, (2.72)

uT ξ (r, r′)u ≡ ξL =
i

k

∂

∂u
ξ (r, r′) , (2.73)

i.e. the longitudinal susceptibility depends of the directional derivative of the pseudo-
susceptibility. Using the relation between the external susceptibilities and the dielectric
functions ((2.52) and (2.69)), it can be proven that the same relation holds between the
pseudo-dielectric function and the tensorial dielectric function:
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uT ε (r, r′)u =
i

k

∂

∂u
ϵ (r, r′) . (2.74)

In conclusion, in the case of longitudinal waves, the tensorial dielectric function and
the pseudo-dielectric function contain the same information and both can be used equally.
Most of the time, only the pseudo-dielectric function is exploited, due to the simplicity
to derive the polarizability from the wave functions (eq. (2.26)), and the ease to use
scalar quantities. For these reasons, in the following sections, only the pseudo-dielectric
function is used.

Fourier transform of the dielectric function

In solid state physics, the dielectric function is used to study the optical properties of
crystalline materials. Due to the structure of these materials, the fields and potentials are
periodic and the calculation of the microscopic dielectric function in the crystal’s unit
cell is sufficient. For plane wave excitations, one can write the potential as a Bloch wave:

V (r) = Ṽ (r) eik·r, (2.75)

where Ṽ (r) is a lattice periodic function. From now, the tilde over a field will signify it
is a lattice periodic function. The relation between the applied field and the total field
(equation (2.57)) writes now

Ṽappe
ik·r =

∫
ϵ (r, r′) Ṽtot (r

′) eik·r
′
dr′. (2.76)

The phase factors can be grouped into the integral:

Ṽapp =

∫
ϵ (r, r′) eik·(r

′−r)Ṽtot (r
′) dr′ (2.77)

or equivalently
Ṽtot (r) =

∫
ϵ−1 (r, r′) eik·(r

′−r)Ṽapp dr
′. (2.78)

It is worth reminding here that the integral is performed over the whole space while
a variable position r in the unit cell is enough to describe the whole system. In DFT
codes, the calculation of the pseudo-dielectric function is in fact the calculation of
ϵ (k, r, r′) ≡ ϵ (r, r′) eik·(r

′−r). The total potential in the unit cell is

Ṽtot (r) =

∫
ϵ−1 (k, r, r′) dr′Ṽapp ≡ ϵ−1 (k, r) Ṽapp. (2.79)

Here ϵ−1 (k, r) is the local inverse dielectric function: it is the ratio between the applied
potential and the total potential at a point r in the unit cell.

Furthermore, as the system is periodic, the dielectric function can be written in the
reciprocal space. In fact, as ground state calculation of the quantum electronic states of
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periodic materials is already performed in the reciprocal space, it is the simplest way to
calculate it. For example, the Fourier transform of the polarizability is

α (k,G,G′) =
1

Ω

∫ ∫
e−iG·rα (k, r, r′) eiG

′·r′dr dr′, (2.80)

with α (k, r, r′) ≡ α (r, r′) eik·(r
′−r) andG,G′ are reciprocal vectors in the first Brillouin

zone. Taking this into account, eq. 2.80 rewrites as

α (k,G,G′) =
1

Ω

∫ ∫
e−i(k+G)·rα (r, r′) ei(k+G′)·r′dr dr′. (2.81)

From eq. (2.26), the well known irreducible polarizability in reciprocal space is obtained :

α0 (k,G,G′) =
1

Ω

∑
q

∑
i,j′

(fiq − fjq+k)
ρiq,jq+k (G) ρ∗iq,jq+k (G

′)

ω − Eiq − Ejq+k + iη
, (2.82)

with
ρiq,jq+k (G) =

〈
ψiq (r)

∣∣ei(k+G)·r∣∣ψjq+k (r)
〉
. (2.83)

The dielectric function in the reciprocal space is

ϵ (k,G,G′) =
1

Ω

∫ ∫
e−i(k+G)·rϵ (r, r′) ei(k+G′)·r′dr dr′. (2.84)

Because the Fourier transform of the coulomb potential vc is of the form 1
|q|2 , it can also

be written as follows [97]:

ϵ (k,G,G′) = δ (G−G′)− 1

ε0 |k+G|2
α0 (k,G,G′) (2.85)

or
ϵ−1 (k,G,G′) = δ (G−G′) +

1

ε0 |k+G|2
α (k,G,G′) . (2.86)

The same procedure can be applied to the tensorial dielectric function and its inverse.

Eigenmode decomposition of the dielectric functions

The dielectric functions and susceptibilities (tensorial or scalar), their inverses and their
counterparts in reciprocal space, when calculated on a spatial grid, are matrix operators
that can be diagonalized. From the eigenvalues and eigenvectors, precious information
about the optical properties can be retrieved, in particular the spatial distributions of the
charges and fields or potentials. This method has been developed first by K. Andersen
from the DTU in [45] and is described in detail here. For simplicity, the k vector is fixed
and is omitted in the following.

The dielectric function matrices are applied to the electric field or potential. Therefore
the right eigenvectors represent the field or potential of the eigenmodes. On a discretized
basis, the eigenvalue equation for the pseudo-dielectric function writes∑

r′

ϵr,r′Vi,r′ = ϵiVi,r, (2.87)
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where Vi,r , an eigenvector, is the total potential of the mode i and ϵi is a constant, i.e. it
differs only by a scalar factor. This means that, for an eigenmode, the applied potential

Vi,app,r = ϵiVi,r (2.88)

is spatially similar to the total potential. The eigenvalues ϵi can thus be considered as
the dielectric function of the mode i.

From the general properties of the eigenvalues and eigenvectors the following facts
are deduced. They will allow us to manipulate the eigenvalues easily afterwards:

• The eigenvalues of ϵ−1
r,r′ are the inverse of the eigenvalues ϵi of ϵr,r′ , ϵ

−1
i = 1

ϵi
;

• The eigenvalues of ϵr,r′ are related to the eigenvalues of χr,r′ by ϵi = 1 + χi;

• The eigenvalues of ϵ−1
r,r′ are related to the eigenvalues of ξr,r′ by 1

ϵi
= 1− ξi.

K. Andersen has shown that the left eigenvectors corresponds to the charge density
noted ρi,r′ [45]. Therefore, in the basis of the eigenvectors, the dielectric function is
written

ϵr,r′ =
∑
i

ϵiVi,rρ
∗
i,r′ , (2.89)

which in reciprocal space is

ϵG,G′ =
∑
i

ϵiVi,Gρ
∗
i,G′ . (2.90)

This representation is useful to calculate the macroscopic dielectric function as it will be
shown in the next section.

The same procedure can be performed for the tensorial dielectric function, which
will result in eigenvectors corresponding to vector potential and current densities, with
similar conclusions.

Plasmons identification from the eigenmode decomposition

It was shown in chapter 1 that a bulk plasmon in a homogeneous material is a collective
excitation of electrons that occurs at a frequency where the macroscopic permittivity is
zero. However, these plasmons cannot be excited by transverse waves as their excitation
needs k ·E ̸= 0. Here, this notion of plasmon is generalized using the eigenmodes of the
system. By means of the properties of the eigenvalues and eq. (2.88), it can be written:

Vi,r = ϵ−1
i Vapp,i,r (2.91)

where Vapp,i,r is an eigenvector of ϵ−1
i corresponding to the applied potential. Then if

ϵi = 0 at a given frequency ω, a potential Vi,r can be sustained without applied potential.
Actually, at that resonance frequency we always have ℜe(ϵi) = 0 and ℑm(ϵi) ≳ 0 such

33



Chapter 2

that at that frequency, a small applied potential results in a large, out-of-phase, total
potential. The loss function for an eigenmode is:

Li = −ℑm 1

ϵi
. (2.92)

As it was shown in chapter 1, the plasmon can be identified when the loss function is
maximum, relatively to the frequency. From the properties of the eigenvalues, the loss
function can be written using the external susceptibility:

Li = ℑm (ξi) , (2.93)
with

Vind,i,r = ξiVapp,i,r. (2.94)
When the loss function is high, the imaginary part of the induced field (in phase quadra-
ture with the applied field) is dominant compared to the real part, and large compared to
the applied field.

To summarize, using the eigenmode method, one can identify plasmons, which have
been characterized here as modes for which the intensity of the induced or total field is
large compared to the applied field. The strength of this method is that it cannot only
identify bulk plasmons but also surface plasmons. If there is a structure in the unit cell,
the surface plasmons around this structure enhance the fields and potentials: a mode
has to be associated to this plasmon. These structures can be confined in either 1 , 2
or 3 dimensions. In the last case, which corresponds to a quantum well, the plasmons
are equivalent to LSPs, while for the first two cases, they are SPPs. However, all these
plasmonic modes are not necessarily detectable. As it will be shown in the next section,
not all modes contribute to the macroscopic dielectric function and only plasmons whose
symmetry permits it are measurable in the far field.

Conclusions

The microscopic dielectric function is a fundamental quantity that contains a lot of infor-
mation about the optical properties of the quantum system. In particular, for structured
systems, the eigenvalue decomposition of the tensor allows us to find plasmonic reso-
nances. However, DFT codes only calculate the longitudinal dielectric function, which
is sufficient for plasmons but could be limiting for studying interaction of transverse
wave with large systems. Moreover, the microscopic dielectric function calculated in
these codes does not corresponds to the usual definition because it relates the scalar
potentials and not the electric fields. As it was shown, this is not a problem because
the two quantities are related but particular care must be taken when manipulating this
microscopic dielectric function, to not misinterpret the results.

2.2 Macroscopic description of the dielectric function

In the same way that the microscopic dielectric function relates the microscopic fields,
the macroscopic dielectric function relates the macroscopic fields i.e. fields that have
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been averaged over the unit cell. The macroscopic fields are plane waves with constant
amplitude because the material is considered homogeneous and infinite. As the material
is homogeneous, the dielectric function is defined using the amplitude of the field :〈

Ẽapp (r)
〉
r
= εM

〈
Ẽtot (r)

〉
r
, (2.95)

where ⟨⟩r represents the spatial average over the unit cell. Here, εM is a tensor. However,
as the material is homogeneous, we can find a basis in which the tensor is diagonal.
Then, the matrix equation above reduces to three independent equations. Without loss
of generality, the polarization can be fixed along one of the principal axis, such that a
single scalar equation remains:〈

Ẽapp,j (r)
〉
r
= εMjj

〈
Ẽtot,j (r)

〉
r
, (2.96)

where
〈
Ẽj (r)

〉
r
means

〈
Ẽ (r)

〉
r
· ej and εMjj = ej · εjjej with ej a unit vector along a

principal axis. By means of simplicity, the index j is dropped in the following. Now we
consider that Ẽapp is constant in space, which is the case for a plane wave, the dielectric
function can be written using eq. (2.10):

εM (k) =

〈
Ẽapp (r)

〉
r〈

Ẽtot (r)
〉
r

, (2.97)

εM (k) =
Ẽapp

1
Ω

∫ ∫
ε−1 (k, r, r′) Ẽappdr′dr

, (2.98)

withΩ the volume of the unit cell. The macroscopic dielectric function is thus the inverse
of the spatial average of the inverse dielectric function:

εM (k) =
1

1
Ω

∫ ∫
ε−1 (k, r, r′) dr′dr

. (2.99)

From eq. (2.52), it comes

εM (k) =
1

1− 1
Ω

∫ ∫
ξ (k, r, r′) dr′dr

≡ 1

1− ξM (k)
, (2.100)

where ξM is the macroscopic external susceptibility. As suggested before, eq. (2.50), this
susceptibility relates the macroscopic displacement fieldD to the polarization field P:

P = ξMD. (2.101)

The usual susceptibility χ defined from P = ε0χ (k)E can be expressed using ξM :

χ (k) = εM (k)− 1 =
ξM (k)

1− ξM (k)
. (2.102)

In chapter 4, it will be shown that the external susceptibility ξ is the proper quantity
to describe the out-of-plane response of 2D materials, while the susceptibility χ is not
convenient.
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In the literature, a distinction is done between the dielectric function including or
not the local field effects. These effects arise from high variations of the electric field
over the unit cell. The dielectric function defined by eq. (2.100) account for the local field
effects. If one neglects the local field effects, the amplitude of the total field or potential
is assumed constant in the unit cell i.e. Etot (r) = Ẽtote

ik·r, similarly to the applied field.
In brief this means that the material does not induces spatial variation of the field. With
this approximation, eq. (2.97) can be rewritten

εM,NLF (k) =

〈
Ẽapp (r)

〉
r〈

Ẽtot (r)
〉
r

(2.103)

εM,NLF (k) =
1
Ω

∫ ∫
ε (k, r, r′) Ẽtotdr

′dr

Ẽtot

=
1

Ω

∫ ∫
ε (k, r, r′) dr′dr. (2.104)

using the subscript NLF for no-local-field. The principal observation here is that the
spatial average of the microscopic dielectric function is equivalent to the macroscopic
dielectric function only if local field effects are negligible. Moreover, from eq. (2.46)
relating the microscopic dielectric function to the microscopic irreducible susceptibility
the previous equation becomes:

εM,NLF (k) = 1 +
1

Ω

∫ ∫
χ (k, r, r′) dr′dr ≡ 1 + χM , (2.105)

where χM is the spatial average of the microscopic irreducible susceptibility. Only if the
local fields are negligible is χM equivalent to χ, the usual susceptibility. Otherwise, the
relation (2.102) should be used.

Longitudinal macroscopic dielectric function

It was shown in section 2.1 that in the case of longitudinal excitation and response, the
pseudo-dielectric function defined from the potential can be used. For a polarization in
the direction of k, eq. (2.97) can be rewritten

εM (k) =

〈
∇ (Vapp (r)) e

−ik·r〉
r

⟨∇ (V (r)) e−ik·r⟩r
(2.106)

because E (r) = Ẽ (r) eik·r = −∇V (r) thus Ẽ (r) = −∇V (r) e−ik·r. Applying the
gradient, it comes, for a uniform applied potential:

εM (k) =

〈
ikṼapp

〉
r〈

∇Ṽ (r) + ikṼ (r)
〉
r

(2.107)

εM (k) =
ikṼapp〈

∇Ṽ (r)
〉
r
+
〈
ikṼ (r)

〉
r

(2.108)
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and, because the spatial average of the gradient of a periodic function is zero, we have,
using eq. (2.79):

εM (k) =
Ṽapp〈
Ṽ (r)

〉
r

=
Ṽapp

1
Ω

∫ ∫
ϵ−1 (k, r, r′) Ṽappdr′dr

(2.109)

εM (k) =
1

1
Ω

∫ ∫
ϵ−1 (k, r, r′) dr′dr

(2.110)

and the macroscopic dielectric function can be also obtained from the pseudo-dielectric
function. Again, if local fields are neglected, one obtains:

εM,NLF (k) =
1

Ω

∫ ∫
ϵ (k, r, r′) dr′dr. (2.111)

In brief, from a macroscopic point of view, for longitudinal waves (and a forteriori for
k → 0), the use of the microscopic pseudo-dielectric function is equivalent to the case
of the tensorial dielectric function.

Macroscopic dielectric function in reciprocal space

In reciprocal space, taking the spatial average over the unit cell is equivalent to take
G = 0. In consequence, the macroscopic dielectric functions are calculated as

εM (k) =
1

ε−1 (k,G = 0,G′ = 0)
, (2.112)

or, when neglecting local field effects:

εM,NLF (k) = ε (k,G = 0,G′ = 0) . (2.113)

These two equations are generally presented in most articles using TDDFT to calculate
the macroscopic dielectric function [96, 97, 99–101].

Long wavelength limit

When k → 0, i.e. the long wavelength limit, the Coulomb kernel 1
ε0|k+G|2 diverges if

G = 0 and particular care must be taken when calculating the irreducible polarizability.
According to [97], the transition matrix can be approximate by〈

ψiq (r)
∣∣ei(k+G)·r∣∣ψjq+k (r)

〉
k→0,G=0

= −ik ⟨ψiq (r) |∇|ψjq (r)⟩ . (2.114)

This equation is in general directly implemented in the DFT codes calculating the
dielectric function.
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Macroscopic dielectric function from the eigenvalue decomposi-

tion

The macroscopic dielectric function can be evaluated using the eigenvalue decomposition
proposed in section (3.1). This approach was not developed by the authors of [45] and it
is therefore an original contribution. The pseudo-dielectric function is decomposed in
reciprocal space. From eq. (2.90), (2.112) and (2.113) one obtains:

εM =
1∑

i ϵi Vi,G=0 ρ∗i,G′=0

, (2.115)

εM,NLF =
∑
i

ϵi Vi,G=0 ρ
∗
i,G′=0. (2.116)

The quantity Vi,G=0 ρ
∗
i,G=0 is the product of the spatial and time averaged values of the

potential and charge density. Here, this quantity can be considered as the weight wi of
the mode i :

wi = Vi,G=0 ρ
∗
i,G=0, (2.117)

such that
εM,NLF =

∑
i

wiϵi, (2.118)

εM =
1∑
iwi

1
ϵi

. (2.119)

If the local fields effect are negligible, then one must have:∑
i

wiϵi =
1∑
iwi

1
ϵi

. (2.120)

Mathematically, this can be verified if either there is only one mode j with non-vanishing
weight, with wj = 1 at a given frequency or if all the eigenvalues are equal since the
sum of the weights is equal to one. The second possibility must be ruled out because the
number of mode is equal to the number ofG vectors, which is arbitrary and depends on
the discretization. Therefore if local field effects are negligible, only one mode is present.
The potential associated to this mode corresponds to a constant field over the unit cell,
which is coherent with the local fields being negligible in homogeneous materials.

For surface plasmon resonances, which are only possible with nanostructures in the
unit cell, ϵi = 0 or more realistically ℜ (ϵi) = 0 at a given frequency, because the total
field becomes very large compared to the applied field. The permittivity εM,NLF does not
account for this fundamental feature because the contribution of one particular mode
with ϵi = 0 is negligible in eq. (2.118) compared to other modes. On the other hand, εM
can account for the corresponding behavior in the dielectric function: indeed if ϵi = 0,
then εM = 0 in eq. (2.119).

From the definition of the loss function and from eq. (2.119), it can be seen that the
macroscopic loss function LM is the weighted sum of the individual loss functions for
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each mode Li:

LM ≡ −ℑm 1

εM
, (2.121)

LM = −ℑm
∑
i

wi
1

ϵi
, (2.122)

LM =
∑
i

wiLi. (2.123)

In fact, this is related to the fact that the macroscopic external susceptibility ξM is directly
the weighted sum of the eigenvalues ξi, as it can be deduced from the relations between
the eigenvalues ϵi and ξi:

ξM =
∑
i

wiξi. (2.124)

The same relation is also valid for the macroscopic internal susceptibility when there
are no local field effect :

χM,NLF =
∑
i

wiχi. (2.125)

It was noticed that, when a plasmonic mode has a large weight, it contributes greatly
to the macroscopic loss function. Moreover, the macroscopic loss function is a linear
combination of the loss function of each mode (see eq. (2.123)). In some sense, the
eigenvalue ϵi can be considered as the macroscopic dielectric function of the particular
substructure responsible for the plasmon in the unit cell. Indeed, if only this plasmonic
mode has a large weight, the macroscopic dielectric function is only dependent on the
corresponding eigenvalue. As the weight is proportional to the average values of the
charge density and potential that are concentrated around the structure responsible for
the plasmon, it will be proportional to the spatial occupation of this structure in the cell.

This method is a powerful tool to obtain a clear spatial description of a complex
quantum system. The main limitation of this method is that the size of system that can
be studied is small due to the high computational resources needed for large systems in
TDDFT.

Example of the eigenvalue decomposition method: graphite

Here, I propose to illustrate the principle of the eigenmode decomposition of the dielectric
function described above on a relatively simple and known system. Graphite as been
chosen because it is related to graphene and its two main volume plasmons, the π and
π + σ plasmons are well described [102, 103]. The loss spectrum is analysed for two
polarizations: perpendicular to the optical axis (parallel to the graphite planes) and
parallel to the optical axis (perpendicular to the graphite planes).

Polarization perpendicular to the optical axis

The dielectric function of graphite is obtained from TDDFT calculations. As an example,
the input files and the script for the eigenmode method are provided in the appendix.
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Figure 2.1: Loss function of graphite with and without local field effects in the direction
parallel to the layers with k = 0.30 Å-1.

Figure 2.2: Loss function of graphite obtained theoretically using DFT with (full line)
and without (dotted line) local field effects and experimentally (square) for an in-plane
momentum k = 0.44 Å-1. Reproduced from [103].

The loss spectrum for an in-plane momentum k = 0.30 Å-1 is represented on figure 2.1.
Two main peaks corresponding to the π-plasmon and the π + σ plasmon are observed,
respectively around 7 eV and 29 eV. Neglecting local field effects is a valid approximation
in this case because the material is homogeneous along the atomic plane. This graph is
consistent with other DFT theoretical and experimental results. For example in [103],
they compared experimental loss spectra with DFT calculation with and without local
field effects (see fig. 2.2) for an in-plane momentum k = 0.44 Å-1. The same feature
appears around 25 eV, in particular without the local field effects.

The eigenmode decomposition of the dielectric function is performed to obtain the
modes individual dielectric functions ε∥i , loss functions L

∥
i and weight w∥

i (figure 2.3).
Only two modes have a non vanishing weight. Moreover, at a given frequency, there is
only one dominant mode whose weight is close to 1 as expected when there is no local
field effects. The first mode is dominant below 7 eV and the second mode is dominant
beyond 7 eV. From the individual loss function, compared to the total loss function of
figure 2.1, it can be seen that these modes correspond respectively to the π and π + σ
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plasmons. As suggested by eq. (2.123), the total loss function is directly the sum of
the individual loss functions of the two modes. The real part of the modes dielectric
functions crosses zero close to the resonance energy, describing a curve as predicted by
the Drude-Lorentz formula given in chapter 1.
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Figure 2.3: Weight, loss function and real part of the dielectric function for the two main
modes of graphite in the direction parallel to the layers.

Polarization parallel to the optical axis

The loss spectrum is quite different in this direction due to the strong anisotropy of
graphite (figure 2.4). A large peak stands around 18 eV. The local fields effects are
significant here because of the layered structure of graphite. In particular the local field
effects tend to decrease the loss response at this peak.
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Figure 2.4: Loss function of graphite with and without local field effects in the direction
perpendicular to the layers.

The eigenmode decomposition confirms that, at a given wavelength, few modes
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contribute to the macroscopic loss function over a total of about 1500 modes. Some
of these modes exhibit a peak in the loss spectrum but only a few of them have the
real part of the dielectric function crossing zero. A mode which have a peak in the loss
spectrum without having the real part of the dielectric function crossing zero will now
be referred as a quasi-plasmon mode. Here, 6 modes have a non negligible weight in the
relevant range, however only 3 modes which contribute to the peak at 18 eV are plotted
for clarity (figure 2.5). The mode shown as dotted blackened on figure 2.5 exhibits a
high loss function but, as its weight is negligible, this mode does not contribute to the
macroscopical optical spectra. In consequence, the peak around 18 eV in the total loss
spectra is due to the other modes (in orange and yellow on figure 2.5).
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Figure 2.5: Weight, loss function and real part of the dielectric function for the two main
modes of graphite in the direction perpendicular to the layers.

In conclusion this example confirms that this method is efficient to discriminate
plasmons in materials and nanostructures.

Separation of bound and free charges

In textbooks of eletrodynamics, the macroscopic Maxwell equations separate the contri-
bution of bound charges and free charges in a material. In particular, Gauss’s law and
Ampère’s law can be written in terms of the density of free charges ρf and the current
density of free charges Jf :

∇ ·D = ρf , (2.126)

∇×H = Jf +
∂D

∂t
, (2.127)

while the polarization density Pb relates only to the bound charges ρb:

∇ ·Pb = −ρb, (2.128)
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with the constitutive equation
D = ε0E+Pb. (2.129)

With these equations, the relative permittivity is

ε = 1 + χb, (2.130)

where the susceptibility χb is related to the behavior of the bound charges via the
polarization density

Pb = ε0χbE. (2.131)
In brief, with the relation (2.130), the permittivity defined as such only accounts for
the bound electrons. In order to include the contributions of the free electrons to the
permittivity, the constitutive equation (2.129) is rewritten [98]:

D = ε0E+Pb +

∫
Jfdt, (2.132)

with Jf = σfE such that
ε = 1 + χb + i

σf
ε0ω

. (2.133)

This approach, which consists in accounting for bound electrons in the susceptibility χb

and for the free electrons in the conductivity σf , has drawbacks. First, in the beginning
of this section, it was shown that the permittivity can be calculated from the microscopic
dielectric function that does not discriminates bound and free electrons. The response of
all electrons is included in the susceptibility. In some physical system, this separation is
even ambiguous, if not arbitrary. In covalent materials, the electrons are delocalized and
the bound charges cannot simply be described as dipoles. In another extreme case, the π
electrons of graphene behave like free electrons in the plane but are necessarily bound
in the plane when the electric field is perpendicular to the sheet. For metamaterials, the
free electrons of metallic components and particles embedded in a dielectric medium
can also be considered as bound to their particles.

Another approach is to consider that the polarization density and the current density
are equivalent quantities that can represent all charges. The first one relates to the
position of the charges while the second relates to the velocity of the charges. To have
a better insight on this, we can look at the average of the polarization density and the
current density over the unit cell Ω :

Pb =
1

V

∫
Ω

ρb (r) r dr, (2.134)

Jf =
1

V

∫
Ω

ρf (r)v (r) dr. (2.135)

To the polarizability of bound charges is associated a current density of bound charge Jb:

Jb =
∂Pb

∂t
=

−i
V

∫
Ω

ρb (r) rω dV, (2.136)

Jb =
−i
V

∫
Ω

ρb (r)vb (r) dV, (2.137)
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with vb = rω is a velocity associated to bound charges for harmonic fields oscillating at
ω. The bound electron current is similar to a free electron current, but is out of phase
with the excitation field. Similarly, to the current density of free charge one associates a
polarization density Pf :

Pf =

∫
Jfdt =

i

V

∫
Ω

ρf (r)
v

ω
dV, (2.138)

Pf =
i

V

∫
Ω

ρf (r)dfdV, (2.139)

with df = v
ω
the distance travelled by the free electrons during a time period of the

oscillating fields. The free electron polarization is similar to a bound electron polarizabil-
ity but is out of phase with the excitation field. Note that the notion of bound electron
current and free electron polarization still make sense. As bound charges are moving, a
current can really be associated to them. On the other hand, a dipole is defined using
the relative distance between charges such that even free electrons can be assigned a
polarization density. With P = Pf + Pb and J = Jf + Jb, one can either choose to
write eq. (2.132) as

D = ε0E+P, (2.140)
or

D = ε0E+

∫
Jdt, (2.141)

which corresponds respectively to these permittivities:

ε = 1 + χall, (2.142)

ε = 1 + i
σall

ε0ω
, (2.143)

where χall and σall are the susceptibility and conductivity due to all the electrons. To
describe a material, one can then choose between conductivity or susceptibility as far
as they are defined in this way. For a metal, the conductivity should be obviously the
convenient choice. However, it would not be a convenient choice for the study of 2D
materials, even for conducting materials such as graphene, see fig 2.6. For 2D materials,
a surface conductivity is sometimes defined such that it does not depend on the arbitrary
choice of the thickness d: σs = σ/d. Thus a surface current density Js (of unit Am-1) is
defined:

Js = Jd = σsE, (2.144)
with an easy interpretation: it is the current I going through a unit length perpendicular
to the flow of charges in the 2D sheet (see figure 2.6a):

Js = Jd =
I

hd
d =

I

h
. (2.145)

But this new concept breaks apart when considering fields perpendicular to the sheet.
Indeed, we have (see figure 2.6b):

Js = Jd =
I

S
d, (2.146)
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Figure 2.6: Representation of a,b) the 2D density current and c,d) the 2D polarization
density for applied electric fields a,c) parallel and b,d) perpendicular to the 2D material.

which is hardly intuitive. The polarization density however has a 2D counterpart which is
just the number of dipole moment by unit area, and this definition holds for all direction
of the fields (see figure 2.6c and d): Ps = Pd = ε0χSE with χS = χd.

For these reasons, at least in section involving the anisotropy of graphene, the choice
of the susceptibility (eq. (2.142)) rather than the conductivity, is preferably used in the
thesis.

2.3 The local response approximation

For systems that are larger than a few nanometers in size, quantum calculations are
impossible. Most optical calculations of classical systems are performed using the
framework of the local response approximation. In this approximation, one assumes
that the electric field varies slowly in the near vicinity of r. Using a Taylor expansion of
Etot around r, eq. (2.7) writes, for r′ close to r:

Eapp (r) =

∫
ε (r, r′) dr′Etot (r) , (2.147)

or, equivalently
Eapp (r) = εM (r)Etot (r) , (2.148)

with εM the macroscopic permittivity of the material at r. This approximation is valid
as long as there are no interfaces between different materials. Indeed, such interfaces
are responsible for high gradients of electric field due to the change of permittivity and
the Taylor expansion is not valid anymore. To study complex systems with different
materials, a second approximation is implicitly taken: the interfaces between different
materials are infinitely thin and the local response approximation can be applied on
both sides infinitely close to the interfaces. In the equations, it can be translated to the
definition of a local dielectric function ε̃ (r) which, at a particular point r, is equal to the
macroscopic dielectric function of the (homogeneous) material at this point. The local
dielectric function is thus defined in a piecewise manner :

ε̃ (r) =
∑

εiΩi (r) (2.149)
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where Ωi (r) is the Boolean function equal to 1 in the regions of the system where
ε̃ (r) = εi and 0 elsewhere. However, this local dielectric function is fundamentally
different from the microscopic dielectric function of the system which relates the applied
field to the total field at every point in space (equation (2.11)). Instead, it relates the local
displacement field to the local total field (D = εE) but the displacement field does not
correspond to the external applied field anymore as it accounts for the fields induced by
the charges at the interfaces between different materials. In practice, the local dielectric
function is used to treat the boundary conditions, which allows us to calculate the surface
charge and surface current densities. Once the densities are known, the total potentials
or fields are calculated from Coulomb’s law.

Here, a new classical method is presented, using a similar development than the
derivation of the microscopic dielectric function, in order to illustrate how the local
dielectric function is used to calculate total fields of macroscopic system. Here the media
are assumed isotropic such that the local dielectric function is a scalar. First, let us note
that, with the updated constitutive equation (2.132), we have:

∇ ·D = ρ− ρb − ρf = 0, (2.150)

by virtue of the continuity equation ∇ · Jf = −∂ρf
∂t

, of eq. (2.128), and of the
microscopic Gauss’s law, ∇ · E =

ρb+ρf
ε0

= ρ
ε0
. Therefore, eq. (2.126) does not stand

anymore. Developing the displacement field, one can isolate the charge density:

∇ · (ε0εE) = 0, (2.151)

ε0∇ε · E+ ερ = 0, (2.152)

ρ (r) = −ε0
∇ε
ε

· E. (2.153)

For sharp boundaries, the dielectric function can be described by some kind of Heaviside
function, whose gradient is the Dirac function: it confirms that charges are located at
the boundaries. It is possible to have a smoother transition by replacing the Heaviside
function with a sigmoïde function. For example, the transition along the direction x,
between two media with respective permittivity εa and εb can be expressed by the
dielectric function:

ε(x) =
εb − εa
1 + e−ηx

+ εa, (2.154)

with η the smoothing parameters: the larger η the sharper the boundary.

For a sphere of radius rs and of permittivity εb in a medium of permittivity εa, a
radial form of the function may be used

ε(r) =
εb − εa

(
rs
r

)η
1 +

(
rs
r

)η , (2.155)

and the term ∇ε
ε
becomes:

∇ε
ε

=
(εb − εa) ηr

−1

(rη + rηs ) (εb + εar
η
sr−η)

er, (2.156)
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with er the radial unit vector.

Replacing (2.153) in the Coulomb potential, it comes for the induced potential:

Vind (r) = − 1

4πε0

∫
1

|r− r′|
ε0
∇ε (r′)
ε (r′)

· Etot (r
′) dr′, (2.157)

and for the induced electric fields:

Eind (r) =
1

4πε0

∫
∇r

1

|r− r′|
ε0
∇ε (r′)
ε (r′)

· Etot (r
′) dr′, (2.158)

Eind (r) =
1

4πε0

∫
(r− r′)

|r− r′|3
ε0
∇ε (r′)
ε (r′)

· Etot (r
′) dr′. (2.159)

By identification with the definition of the microscopic irreducible susceptibility (2.43)
one have:

χ (r, r′) = − 1

4π |r− r′|3 ε (r′)
(r− r′)∇ε (r′) , (2.160)

with (r− r′)∇ε (r′) a dyadic product such that the tensor components can be written:

χi,j (r, r
′) = − 1

4π |r− r′|3 ε (r′)
((r− r′) · ei) (∇ε (r′) · ej) . (2.161)

From the irreducible susceptibility, the tensor elements of the effective dielectric function
of the system may be calculated:

εi,j (r, r
′) = 1 + χi,j (r, r

′) . (2.162)

This dielectric function can be inverted to find the microscopic inverse dielectric function.
Then, from eq. (2.11) ,

Etot (r) = ε−1 (r)Eapp (2.163)

the total electric field can be calculated. In brief, the method describing the derivation of
the microscopic dielectric function is general and can also be applied to larger systems to
calculate the effective dielectric function of a complex system. In practice, this method
is inefficient because it requires to discretize all the space. State-of-the-art methods
available are far more efficient as they benefit from large optimization. Moreover, they
often rely on a discretization of either only the volume of the particle or the surface of
the particle.

Effective medium theory for multilayers

When the size of periodic structure in a material is small enough compared to the
wavelength in the medium, generally around 10 times smaller, one can consider that the
applied electric field is constant over the structure. In the same way that a macroscopic
permittivity can be found for homogeneous materials, an effective permittivity can
be calculated for such materials. This is the principle of optical metamaterials whose
refractive index can be designed at wish using structured materials. When the dielectric
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function εi,j (r, r′) is known, as exemplified in the last paragraph, one uses eq. (2.99) to
calculate the effective permittivity. For example, in periodically layered system, it has
been shown rigorously that the effective permittivities of the system is [104]:

ε
∥
eff =

∑
i

di
L
εi, (2.164)

1

ε⊥eff
=
∑
i

di
L

1

εi
, (2.165)

where the superscripts⊥ and ∥ respectively means that the electric field is perpendicular
or parallel to the layer, di is the thickness of each layer of the unit cell and L its total
thickness. Interestingly, using the irreducible and the external susceptibilities χ∥

eff =

ε
∥
eff − 1 and ξ⊥eff = 1− 1

ε⊥eff
, one can write the previous two equations as

χ
∥
eff =

∑
i

di
L
χ
∥
i , (2.166)

ξ⊥eff =
∑
i

di
L
ξ⊥i . (2.167)

The external susceptibility is revealed to be an adequate tool to study the out-of-plane
component of the fields in layered materials. In particular, it will play an important role
in the description of 2D materials.

These relations can be determined by considering the boundary conditions at inter-
faces. For a polarization that is tangential to the interfaces, the electric fields must by
conserved at the interfaces. As the field can thus be considered constant everywhere,
the effective irreducible susceptibility is:

χ
∥
eff =

〈
P ∥〉

ε0 ⟨E∥⟩
=

∑
i fiP

∥
i

ε0E∥ =
∑
i

di
L

P
∥
i

ε0E
∥
i

=
∑
i

di
L
χ
∥
i , (2.168)

where fi is the filling fraction of the layer i in the unit cell and E∥ = E
∥
i for each layer i

due to the conservation of the tangential field. Similarly, for a polarization perpendicular
to the layers, the displacement field is conserved at the interfaces and is thus constant in
the unit cell. The external susceptibility is then, from eq. (2.101),

ξ⊥eff =

〈
P⊥〉
⟨D⊥⟩

=

∑
i fiP

⊥
i

D⊥ =
∑
i

di
L

P⊥
i

D⊥
i

=
∑
i

di
L
ξ⊥i , (2.169)

with D⊥ = D⊥
i for each layer i. Equations (2.164) and (2.165) can be retrieved by the

same reasoning.

These effective models may be generalized in the case of continuous variations of
the dielectric function. Indeed with di → 0, eq. (2.164) and (2.165) becomes

ε
∥
eff =

1

L

∫
ε (x) dx, (2.170)
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and
1

ε⊥eff
=

1

L

∫
1

ε (x)
dx, (2.171)

if the dielectric function varies along x.

These effective models are useful to study complex systems whose characteristic
sizes are much smaller than the wavelength. However, plasmonic resonances cannot be
captured by such approximations. Due to this limitations this method is restricted to
few interesting systems. In general, one needs a complete method to calculate the fields.
Some of these methods are presented in the next chapter.
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Numerical methods for optics

3.1 Rigorous coupled wave analysis for anisotropic media . . . . . . 52
3.2 The discrete dipole approximation . . . . . . . . . . . . . . . . . 54
3.3 The surface integral equation method . . . . . . . . . . . . . . . 56

The theoretical study of nanomaterials and nanoparticles requires adapted tools,
that depends on the geometry and the size of the considered system. In particular, 2D
materials are anisotropic and their low dimensionality makes their modelling more
complex. Particular care is therefore needed in the choice of the methods. The aim of
this chapter is to present the various, state-of-the-art, methods used throughout this
thesis. The rigorous coupled wave analysis allows to study stratified media containing
periodic structures. In the discrete dipole approximation, nanoparticles are discretized
into dipoles. The surface integral equation method consists to discretize the surface of a
nanoparticle which is generally much faster than a volume discretization.
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3.1 Rigorous coupled wave analysis for anisotropic

media

The rigorous coupled wave analysis is a method developed first in 1981 by M. Moharam
and T. Gaylord [105, 106] to study inhomogeneous layered structures. Each layer is
homogeneous in its normal direction but periodically structured in the in-plane direction.
A MATLAB implementation of this method has been developed by Pr. O. Deparis [107].
Although this method is able to characterize the structural anisotropy of layeredmaterials,
the original description does not account for the intrinsic anisotropy of the components
themselves. Recent papers proposed an anisotropic version of the RCWA [108, 109].
In parallel, master student E. Guillaume developed its own version of the anisotropic
RCWA under supervision of Pr. L. Henrard and myself [110]. This anisotropic version is
particularly interesting when studying structured 2D materials for which the anisotropy
in the out-of-plane direction cannot be ignored. In the following, I briefly describe the
basic principles of the RCWA method with a highlight on the modification of the method
for anisotropic media. This section is highly inspired from E. Guillaume master thesis
[110] and from O. Deparis course on photonics [111].

If the layered system is stratified along the z axis (figure 3.1), only anisotropic
materials whose dielectric tensor can be written as follows are considered 1:

ε̄ =

 εxx εxy 0
εyx εyy 0
0 0 εzz


The periodicity of the dielectric function in a layer implies

ε(i,j)
(
r⃗∥
)
= ε(i,j)

(
r⃗∥ + R⃗∥

)
(3.1)

with ε(i,j) the element i, j of the tensor, r⃗∥ = (x, y) and R⃗∥ is a translation vector of the
periodic lattice. Inside the unit cell, the dielectric function consists of a host medium
within which islands of different shapes and permittivities are included:

ε(i,j)
(
r⃗∥
)
= ε

(i,j)
h +

∑
l

(
ε
(i,j)
l − ε

(i,j)
h

)
Ω(l)

(
r⃗∥
)

(3.2)

1This makes sense as the optical axis is often either parallel or perpendicular to the plane.
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Figure 3.1: Schematic view of a laterally structured layered material. Reproduced from E.
Guillaume master thesis [110].
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where Ω(l) is a Boolean function describing the geometry of the island, ε(i,j)h the permit-
tivity of the host medium and ε(i,j)l the permittivity of the island. The bidimensionnal
Fourier series of Ω(l) is

Ω(l) (r⃗) =

ng∑
g⃗

Ω
(l)
g⃗ e

ig⃗·r⃗ (3.3)

where g⃗ is a vector of the reciprocal lattice and ng gives the number of g⃗ vectors in the
sum. The Fourier series of the dielectric function of a layer is then written

ε(i,j)g = ε
(i,j)
h δg,g0 +

∑
l

(
ε
(i,j)
l − ε

(i,j)
h

)
Ω(l)

g (3.4)

where g0 is the 0th order term of the Fourier series.

From Maxwell’s equations, one finds the following system of coupled equations:

dEx,g

dz
=

i

ωε0
(kx + gx)

∑
g′′

1

ε(zz)

∣∣∣∣
g−g′′

[
Hx,g′′

(
ky + g′′y

)
−Hy,g′′ (kx + g′′x)

]+ iωµ0Hy,g

dEy,g

dz
=

i

ωε0
(ky + gy)

∑
g′′

1

ε(zz)

∣∣∣∣
g−g′′

[
Hx,g′′

(
ky + g′′y

)
−Hy,g′′ (kx + g′′x)

]− iωµ0Hx,g

dHx,g

dz
=

i

ωµ0
(kx + gx) [Ey,g (kx + gx)− Ex,g (ky + gy)]− iωε0

∑
g′′

(
ε(yx)

∣∣∣
g−g′′

Ex,g′′ + ε(yy)
∣∣∣
g−g′′

Ey,g′′

)
dHy,g

dz
=

i

ωµ0
(ky + gy) [Ey,g (kx + gx)− Ex,g (ky + gy)] + iωε0

∑
g′′

(
ε(xx)

∣∣∣
g−g′′

Ex,g′′ + ε(xy)
∣∣∣
g−g′′

Ey,g′′

)
.

(3.5)

Compared to the isotropic case, the diagonal components of the permittivity tensor
replace the scalar permittivity appropriately, while the out-of-diagonal components
are responsible for another coupling between the fields. There is thus coupling of the
fields due to the intrinsic anisotropy of the materials and coupling due to the structural
anisotropy.

The system of equations (3.5) must be solved simultaneously for all components.
This system can be written in the form:

dF̄

dz
= AF̄,with F̄ =


Ēx

Ēy

H̄x

H̄y

 (3.6)

where Ēx, Ēy, H̄x, H̄y are supervectors containing all the Fourier components of the
fields. The solution relates the fields in the layer j to the fields in the layer j − 1:

F̄(zj−1) = eA(zj−1−zj)F̄ (zj) (3.7)

or also:
F̄(zj−1) = TjF̄ (zj) (3.8)
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where Tj is the transfer matrix of the layer j 2. The transfer matrix of the N layers
embedded between an incident medium and a substrate is found by multiplying the
transfer matrix altogether:

F̄inc = T1T2...TN F̄
sub = TF̄sub. (3.9)

This global transfer matrix T relates the fields in the incident medium (incident
i+ and reflected r−) to the field in the substrate (incident i− and refracted t+) in the
polarisation basis: [

i+

r−

]
=

[
T++ T+−

T−+ T−−

] [
t+

i−

]
. (3.10)

It is however more intuitive, and more stable numerically, to use the scattering matrix
Sj of each layer: [

t+

r−

]
=

[
S++
j S+−

j

S−+
j S−−

j

] [
i+

i−

]
(3.11)

where the elements of Sj depend on the elements of Tj . The scattering matrices are
then assembled together to form the diffusion matrix of the complete multilayer system
using the Pendry "multiplication". Once the fields are known in the incident medium and
in the substrate, one can calculate the electromagnetic flux of the incident, reflected and
transmitted waves, respectively J+

inc, J−
inc, J+

sub. The total reflectance and transmittance
coefficient are then given by:

Rtot =

∣∣∣∣J−
inc

J+
inc

∣∣∣∣ (3.12)

Ttot =

∣∣∣∣J+
sub

J+
inc

∣∣∣∣ (3.13)

and the absorptance is then given by

Atot = 1−Rtot − Ttot. (3.14)

Other quantities, like the specular reflectance and transmittance, the local fields and the
Stokes vectors can also be calculated. In this thesis, only the total intensity coefficients
R, T and A are used.

3.2 The discrete dipole approximation

The discrete dipole approximation (DDA) is a method developped first by Purcell and
Pennypacker in 1973 [112] and then by Draine and Flatau in 1994 [113], who developed
the program ddscat that calculates the field scattered by a group of dipoles of given polar-
izability. In 2010, Nicolas Geuquet developed the program ddeels under the supervision
of L. Henrard in order to obtain the EELS spectra of nanoparticles [114]. Both programs
have been used in this thesis.

2In practice, the fields are expressed in a basis of polarisation of the incident field, and an orthogonal
transformation must be applied to T and F̄.
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In the DDA, a nanoparticle is discretized in a large number (N ) of dipoles such that
the distance between two dipoles d is much smaller than the wavelength. The criteria
often retain is :

|n| kd < 0.5 (3.15)
with |n| the modulus of refractive index of the material of the particle and k the wavenum-
ber. The dipolar moment Pi of a dipole is proportional to the local field at its position :
Eloc

i = Eloc (ri) :
Pi = αiE

loc
i (3.16)

with αi the polarizability of the dipole. This polarizability can be described by a Clausius-
Mossotti-like formula for a dipole of cubic volume d3 and permittivity ε = n2. The field
induced by a dipole j on the dipole i, Eind

i,j is

Eind
i = −e

ikrij

r3ij

(
k2rij × (rij ×Pi) +

(1− ikrij)

r2ij

(
r2ijPi − 3rij (rij ·Pi)

))
(3.17)

with rij = rj − ri. The previous equation can be expressed as a matrix product:

Eind
i =

∑
j ̸=i

AijPj. (3.18)

The local field is the sum of the applied field Eapp
i and the fields induced by the N − 1

other dipoles such that the dipolar moment becomes

Pi = αi

(
Eapp

i +
∑
j ̸=i

AijPj

)
. (3.19)

By definingAii = αi, one have an set of N inhomogeneous linear equations:

N∑
j

AijPj = Eapp
i . (3.20)

For optical calculation, as in ddscat, the applied field is in the form of a plane wave:

Eapp
i = E0e

(ik·ri−iωt) (3.21)

and the optical extinction cross section is

Cext =
4πk

|Eapp|2
N∑
j

Im
(
Eapp,∗

j ·Pj

)
. (3.22)

For electron energy loss spectroscopy simulation as in ddeels, with an electron trajectory
along the z-axis, the applied field is in the form:

Eapp
i,x =

eω

2πε0v2
e(iω

zi
v )di,x

di
K1

(
ωdj
v

)
; (3.23)

Eapp
i,y =

eω

2πε0v2
e(iω

zi
v )di,y

di
K1

(
ωdj
v

)
; (3.24)
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Eapp
i,z =

eω

2πε0v2
e(iω

zi
v )iK0

(
ωdj
v

)
. (3.25)

with Km is the modified Bessel function of order m and v the electron velocity. The
energy loss probability of the electron is

Γ (ω) =
1

πℏ2
N∑
j

Im
(
Eapp,∗

j ·Pj

)
. (3.26)

Remarkably, this loss probability is somehow similar to the loss spectra L (ω) obtained
from eq. (2.93). To observe this, an appropriate external polarizability αe

j can be written
for each dipoles as follows

Pj = αe
jE

app
j (3.27)

and the previous equation becomes

Γ (ω) =
1

πℏ2
Im

(
N∑
j

αe
j

)
|Eapp

i |2 . (3.28)

The loss spectra is indeed proportional to the imaginary part of the external polarizability
of the whole system, in a way analogous to what has been shown for the external
susceptibility in eq (2.93).

3.3 The surface integral equation method

The surface integral equation (SIE) method is based on the computation of the surface
charges and surface currents at the boundary of nanoparticles from which one obtains
the induced fields. The principles are similar to the boundary element method (BEM)
except that, in the BEM, the equations for the potential are solved while in the FEM, the
fields equations are considered.

Supposing a region 1 of volume V1 inside which one delimits a region 2 of volume
V2 by a surface S. The applied field Einc (r) which exists in region 1, induces charges on
the surface S. The equation governing the electric and magnetic charge currents is(
ωµi

i

∫
S

dS ′Ḡi (r, r
′) · J (r′)−

∫
S

dS ′ [∇′Ḡi (r, r
′)
]
·M (r′)

)
tan

=

{(
Einc

1 (r)
)
tan

: i = 1

0 : i = 2

(3.29)
where the index tan indicates that the component tangential to the surfaces is taken and
Ḡi is the dyadic Green’s function define for each region i = 1, 2 by

∇×∇× Ḡi (r, r
′)− k2i Ḡi (r, r

′) = 1̄δ (r, r′) . (3.30)
The integral of eq. (3.29) is solved using the so called Method of Moments (MoM)
where the surface S is approximated using a discrete mesh and the surface currents are
developed in a basis

J(r) =
N∑

n=1

αnfn(r), (3.31)

56



Numerical methods for optics

M(r) =
N∑

n=1

βnfn(r). (3.32)

For a triangular mesh, the RWG basis can be used [115]. The problem then reduces
then to a 2N × 2N matrix inversion.

Ei(r) ={ +
− }

∑
n

[
−αn

ωµi

i

∫
Sn

dS ′Ḡi (r, r
′) · fn (r′) + βn

∫
Sn

dS ′ [∇′Gi (r, r
′)]× fn (r

′)

]

+

{
Einc

1 (r) : i = 1 and r ∈ V1

0 : i = 2 and r ∈ V2
(3.33)

The scattering cross-section is

σφ
sca(θ) = 4πR2 |Esca (rφ(θ))|2

|Einc|2
, φ = ∥,⊥,

with Esca = E1 − Einc
1 .

This method is also used to determined the second harmonic generation (SHG) by
nanoparticles [116]. Once the electric field (at the fundamental frequency) inside the
material is known, the nonlinear polarization, the source of the SHG, is calculated at the
surface of the nanoparticle:

P
(
r+
)
= χ(2)E

(
r−
)
E
(
r−
)

(3.34)

where the + superscripts indicates that the fields is taken just above the surface and the
− superscript, just below. The non-linear susceptibility χ(2) is a rank 3 tensor for which
only the contribution coming from the surface is considered, because it is the dominant
one [116]. The boundary conditions may therefore be written for the fields at the second
harmonic. The method of moments is used again to solve the problem, with the surface
currents at the second harmonic developed in the RWG basis to calculate the second
harmonic electric field. The scattering cross-section at the second harmonic can then be
calculated.
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Plasmons in gold nanowires

4.1 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Spectra and maps for the selected particles . . . . . . . . . . . . 61
4.3 Dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Effect of the nanoparticles . . . . . . . . . . . . . . . . . . . . . 64

One of the applications of plasmons is the guiding of light by squeezing it into
subwavelength nanostructures. Such waveguides can be nanowires which absorb light
at an extremity and emit it at the other side. The robustness of the plasmon with respect
to the morphology is important as defects are always possible. In this chapter, plasmons
in high aspect-ratio gold nanowires are investigated. These nanowires sustain standing
wave-like plasmons at energies ranging from 0.1 eV to 1.2 eV. The modification of the
morphology of their extremities is also studied. Experimental results are compared to
numerical ones performed using the DDA method.
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This article is a summary of our article [E] with an emphasis on the simulation
results. This article is the result of a project unrelated to 2D materials leaded by Dr Mario
Palaez-Fernandez (MPF) and Pr. Raul Arenal from the Institute of Nanoscience of Aragon,
of the University of Zaragoza. MPF performed EELS characterization of high aspect
ratio gold nanowires and nanodumbbells. With master student Romain Dufour, and Pr.
Luc Henrard, we have numerically investigated the EELS response of the corresponding
nanoparticles. The results have been published in the journal Nanophotonics. These
results will serve as a nice example of the use of a numerical method to study plasmons
in metallic nanostructures. In this case, the DDA was more convenient due to the high
aspect ratio of the particles. Indeed, for large particles in general, it is preferable to use
a method in which the surface is discretized (eg. FEM or BEM) instead of the volume
(DDA, FDTD), because the volume grows faster with the characteristic lengths than the
surface. However, for large aspect ratio particles (nanowires, thin disks), the surface
grows as fast as the volume and the DDA is even more efficient than the BEM.

Metallic nanowires have attracted special interest [27, 29, 117] given their potential
use as nanophotonic waveguides, allowing for a much smaller circuitry than their
glass counterparts[28, 30]. The high aspect ratio in nanowires also enables to tune the
plasmonic resonance to lower energies [31] or to lower the excitation damping [32]. The
Fabry-Pérot (FP) resonances for finite size NW have been shown to follow the dispersion
relations close to that of an infinite NW, following the basic ideas of FP interference or
standing waves [30–32, 118].

Recent studies have shown that it is possible to change the morphology of these
nanowires bymeans of laser irradiation, allowing to tune the response of high aspect-ratio
nanostructures [119, 120]. However, the study of very high aspect-ratio Au nanostruc-
tures is quite experimentally challenging because they sustain many long wavelength
FP modes taking place at low energies (down to 0.1 eV) and most examples found in
the literature present a much lower aspect-ratio besides very recent exceptions for Cu
nanowires [33].

This EELS study on diverse high aspect-ratio plasmonic nanostructures (namely,
plain nanowires, half-dumbbells and dumbbells) shows that, whereas some of the FP
modes are extremely robust against such changes of morphology, higher energy (shorter
wavelength) modes are affected and can be tuned by a modification of the shape of their
extremities.

4.1 Particles

The particles that have been synthesized and characterized are gold nanowires (NW) of
length around 3− 4µm, with spherical nanoparticles (NP) potentially attached to their
extremities to form half-dumbbells (hDB) and full dumbbells (DB). The dumbells and
half-dumbells are obtained by laser irradiation that induces the gold melting at the ends
of the NW and the formation of gold nanoparticles attached to the NW. The images of
these nanoparticles obtained from scanning transmission electron micoscopy (STEM)
are shown on figure 4.1 along with a sketch specifying the actual dimensions of the
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Plasmons in gold nanowires

Figure 4.1: STEM pictures and sketch of a) the nanowire, b) the half dumbbell and c) the
dumbbell. Reproduced from paper [E].
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Figure 4.2: Simulated EELS spectra of the nanowire (left) and the dumbbell (right).

particles.

Each particle has been modeled in ddeels as cylinders, with spheres at its extremities
for DB and hDB. In the present study, the number of dipoles is taken between 38,000 for
the smaller nanowire and 110,000 for the longer dumbbell, with a discretization ranging
from 4 to 8 nm. The refractive index of gold is taken from [121].

4.2 Spectra and maps for the selected particles

For the sake of brevity, only the EELS spectra and EELS maps of the NW and the DB
are shown here. For the full analysis, the reader may refer to the main article [E]. The
spectra are obtained by choosing the impact parameter (the position of the electron
beam in the plane perpendicular to it) just next to the particle, at mid-distance along the
main axis. The maps are obtained at a fixed energy by scanning the surrounding of the
particle while changing the impact parameter.

The spectra of the NW and DB (figure 4.2) exhibit a high number of peaks that

61



Chapter 4

Figure 4.3: a) STEM image of the nanowire. b) Experimental (top) and simulated (bottom)
EELS maps of the FP modes. c) Experimental (top) and simulated (bottom) EELS maps of
the surface mode. Reproduced from paper [E].

have been assigned in the literature to the nanostructure behaving like a quantified
Fabry-Pérot resonator [31, 32, 118]. However, modes with minima at the center of the
particles are not visible on these spectra because of the position of the impact parameter.
The spectra also present one small feature at high energy (2.4 eV) related to surface
plasmon modes of the NW and the NPs.

The maps of each mode have been calculated and compared to the maps obtained by
the non-negative matrix factorization (NMF) decomposition of the EELS spectrum-image
(SPIM) [122, 123] for the nanowire (figure 4.3) and for the dumbbell (figure 4.4). The
simulations reproduce quite well the FP modes visible in the experimental map despite
the energy shift, particularly important at low energy for the nanowire. The FP modes
are not dramatically modified by the change of morphology at the end of the nanowire.

4.3 Dispersion relations

A wavelength and thus a wavevector k can be associated with each FP peak excitation:

k = (n− 1) · π/LAN (4.1)

were n is the number of anti-nodes (excluding the tips) of the EELS map and LAN is the
distance between the two furthest antinodes being measured.
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Figure 4.4: a) STEM image of the dumbbell. b) Experimental (top) and simulated (bottom)
EELS maps of the FP modes. c) Experimental (top) and simulated (bottom) EELS maps of
the surface mode. Reproduced from paper [E].

Figure 4.5: a) Dispersion relation of an infinite gold NW (R=15 nm) for m=0 (black curve)
and m=1 (blue curve) compared with the data obtained from EELS spectra for finite
NW (L=3 µm). × are for simulated EELS and • are for experimental EELS. The error
bars indicate the 0.05 eV experimental spectral resolution. b) Dispersion of the m=0
branch of infinite gold NW of R = 55 nm compared with the data extracted from the
experimental (open squares and circles) and simulated (crosses) EELS spectra of finite
size gold dumbbell and half-dumbbell. The error bars indicate the 0.05 eV experimental
spectral resolution. Reproduced from paper [E]. For the simulations, the dielectric
function is taken from Ref. [121].

63



Chapter 4

On figure 4.5a, the experimental and simulated dispersion relations associated with
the FP modes of the 3 µm long NW (symbols) is compared with the dispersion relation
of an infinite NW of the same radius (solid line), calculated using the retarded theory of
the SPP on a cylinder [124] adapted for complex dielectric functions. These simulations
confirm that a finite size NW behaves like a FP cavity with no modification of the
wavelength of the SPP. The good agreement between FP mode resonance energies and
the SPP of the same wavenumber confirms that EELS experiments excite the totally
symmetricm = 0 mode for an eimϕ angular dependence of the induced field [33]. This
totally symmetric mode can also be excited by light polarised along the NW axis and it
is even the dominant mode in this case for small radius NWs [125]. The dipolarm = ±1
plasmons are the modes that are predominantly excited by light with a transverse
polarisation.

All the plasmon modes (for all m) rapidly converge to the planar surface plasmon
energy at 2.45 eV for large k (see figure 4.5a inset). This gives rise to the small energy
peak (2.4 eV) in the simulated EELS spectra. As these high k modes cannot be resolved,
a continuous excitation probability is observed along the NW and at its extremity.

The solid black line on figure 4.5b gives the analytical dispersion of them = 0 of a
perfect infinite NW of radius of 55 nm. The dispersion relations deduced from the EELS
data of finite DB and HDB follow it closely. The SPPs can then be regarded as intrinsic
modes of the NW itself, regardless of the shape of the extremities. This brings us to the
question of the role of the extremity on the FP modes.

4.4 Effect of the nanoparticles

The comparison between the simulated EELS spectra of NW, DB and hDB of the same
total length of 4.3 µm with a radius of 56 nm show very similar resonances for the low
energy modes (figure 4.6a). On the contrary, a comparison with a NW whose length is
reduced to the distance between the spherical extremities displays different resonances
at higher energies.

The influence of the extremities on the FP modes of the DB can be further analysed
on figure 4.6b, where the EELS spectra of NW (RNP = 56 nm) is compared with the ones
of DB for different diameters of the spherical ends ( RNP = 104 nm and RNP = 128
nm). The influence of the modification of the extremity is clearly negligible for the low
energy, low k (high wavelength) modes and starts to be noticeable when the wavelength
of the FP is similar to the size of the perturbation.

This is also illustrated on the figure 4.7 where the simulated EELS map and the
associated loss profile are detailed for two specific FP modes of the NW, the DB and
the hDB systems. The FP mode at 0.73 eV (n = 5, λ = 1698 nm) is present for the
three plasmonic systems with very similar EELS maps and loss profiles, including at the
extremities of the NW. The change of the shape of the extremities, induced by the laser
treatment, does not influence neither the energy of the plasmonic response of the NW,
nor the field distribution.
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Figure 4.6: a) Comparison of the simulated EELS loss spectra of NWs of total length
L = 4140 nm for an impact parameter at the mid-length: Dumbbell shape (Black), plain
NW (Blue), half-dumbbell shape (dot-dashed green). The radius of the spheres at the
extremity is 128 nm. The spectrum for a NW of length L = 3648 nm is displayed for
comparison (grey dashed). b) Simulated EELS spectra of plain NW and of dumbbell
shape structures of total length L = 4140 nm with various radii of the spheres at the
ends of the NW (RNP = 104 nm and RNP = 128 nm). Reproduced from paper [E].

For the FP mode n = 13, the resonance occurs at E = 1.66 eV (λ = 607 nm) for
the perfect NW, at E = 1.75 eV (λ = 560 nm) for the DB and at E = 1.70 eV (λ = 591
nm) for the HDB. A larger damping of the SPP (and shorter propagation length) at this
energy explains why the loss probability is lower for all the nanostructures than for
the lower energy modes (see the loss profile). It is assumed that, contrary to the FP
modes at larger wavelength, the shape of the extremities modifies the reflection of the
SPP at these extremities. The change of the reflection coefficient is further evidenced
in the profile of the hDB. The position of the maximum loss probabilities follows the
pattern of the NW on the perfect extremity whereas it follows the pattern of the DB
on the side of the spherical protrusion. This highlights also to role of the shape and
of the size of the nanoparticles at the tip of the NW on the exact FP mode energies at
small wavelengths. The correct description if this shape and size is then important to
predict the exact energy of these modes. This is also illustrated by the dependence of
the loss spectra with the size of the spherical NP (figure. 4.6b). This gradual shift of the
FP modes energies can be associated with a continuous modification of the reflection
coefficient with the size of the extremities. This explains why the match between the
simulations and the experimental data are less good for the hDB, which displays a less
spherical extremity and a small modification of the other end. (figure 4.5).

Conclusions

Nanowires with high aspect ratio sustain Fabry-Perrot-like plasmonic modes. The
modification of the extremities of high aspect ratio metallic NW by laser irradiation
enables the control the resonance energy for small wavelength plasmon modes whereas
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Figure 4.7: a) Simulated EELS maps for the FP modes around 0.73 eV (first and second
maps) and 1.7 eV (third and fourth maps), for the dumbbell with RNP = 128 nm (first
and third maps) and the plain NW (second and fourth maps). b) and c) EELS profiles.
Reproduced from paper [E].
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longer wavelength modes stay almost unperturbed. The robustness of the dielectric
response of the NW against the modification of the extremities reinforces their potential
interest as nanophotonic waveguides and low energy resonators. On the other hand, the
laser induced tuning of the plasmonic response is of great interest for nanophotonics
applications.
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Effective models and optical response
of 2D materials as anisotropic materi-
als

5.1 Effective models for the dielectric function of 2D materials and
heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Numerical methods describing 2D materials . . . . . . . . . . . 77
5.3 Optical spectra of anisotropic and structured 2D materials . . . 91

2D materials offer a large variety of optical properties. In order to perform numerical
simulations to predict these properties, an accurate modeling is necessary. However, the
low dimensionality of these materials is an obstacle because the permittivity is most
commonly defined for bulk, 3D materials. Different approaches have been proposed
to model 2D materials. Here, these methods are presented and compared analytically
and numerically. Effective models for vertical and horizontal heterostructures are also
proposed. Using these models, the effects of the intrinsic anisotropy of 2D materials and
heterostructures on the optical spectra are investigated.
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5.1 Effective models for the dielectric function of 2D

materials and heterostructures

The description of the EM response of a single 2D material layer has been debated
recently [20–23, 126–129]. Two approaches have been widely proposed to describe
the optical response of 2D materials: a thin film (3D) model which assigns an effective
permittivity to a layer with a given thickness, and a surface polarizability (2D) model
which sets a surface response function at the interface between two media [19, 22,
128, 130–133]. These two models have drawbacks because the thickness cannot be
defined unambiguously as it will be illustrated below. Moreover, the anisotropy of the
2D materials has been ignored sometimes, due to the simplicity of the isotropic thin film
model[13, 134–138]. Nevertheless, recent ellipsometry results on MoSe2 and graphene
have proven that the out-of-plane component of the susceptibility and conductivity
tensor may play a crucial role in the optical response of 2D materials [21, 22].

The modelling of the EM response of heterostructures of 2D materials is also crucial
in view of the increasing importance of these systems. Indeed, the optical properties of
these vertical heterostructures ([13, 77, 139–146]) and horizontal heterostructures ([81,
141, 147]) have been investigated extensively in the last decade. The high number of
possible heterostructures and their atomic complexity, as well as their intrinsic anisotropy
demand a robust but computationally tractable approach.

In this section, the results of work [G] are presented. An original description of
the effective permittivity of 2D materials is proposed, based on the microscopic ap-
proach discussed in chapter 2. The link between the surface response function of 2D
materials and the effective permittivity is rigorously demonstrated. Then, the proposed
approach is extended to determine the effective permittivity of vertical and horizontal
heterostructures.

Permittivity and surface susceptibilities of 2D materials

2D materials cannot be considered strictly 2D because the wave function extends in
the normal direction. Therefore the microscopic dielectric function varies along this
direction. The exact description of the permittivity of 2D materials at the atomic level has
never been investigated although it should be possible to calculate it from the microscopic
dielectric function obtained in TDDFT. Until now, theoretical and experimental studies
have only given the average of the permittivity over a thickness L [21, 22, 126, 148].
In the most general case, the layer of thickness L is embedded between two media of
different permittivities εa and εb as represented in figure 5.1, left. However, as depicted on
the right of the same figure, this layer can be imagined as the 2D material with thickness
d surrounded by two vacuum layers1. This representation corresponds to the thin film
model (figure 5.2a). It is often used to model 2D materials in numerical simulations, in
particular with d = L, i.e. with no vacuum layer. In another model, the 2D material

1These vacuum layers may for example represent the vacuum layers of the supercell used in TDDFT.
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Figure 5.1: Model of a 2D material thick layer in between two media. The layer corre-
sponds to the 2D material sandwiched between two vacuum layers.

a) b) c)

Figure 5.2: Permittivity of the 2D material in the supercell; a) constant permittivity model
b) strictly 2D model c) realistic model.

is infinitely thin (d→ 0) and the permittivity is represented using a Dirac distribution
(figure 5.2b). It corresponds to a finite surface polarization at the interface between
two materials. These two models are described in more details in the next section. In a
more realistic model, the permittivity is maximum at the center of the atomic layer and
decreases rapidly to the permittivity of vacuum after a few Angrstöm, as represented on
figure 5.2c.

The average permittivity of the layer of thickness L depends on L (more precisely
on the quantity of vacuum in the layer) and is thus an extensive quantity. In TDDFT
for instance, the macroscopic dielectric function of 2D materials depends on the size of
the chosen supercell size. To accurately describe the optical response of a material, an
intensive quantity is more appropriate. In the following, it is shown that the surface sus-
ceptibility is an intensive quantity for 2D materials. To describe the relation between the
permittivity and the surface susceptibility, the effective model for multilayers described
at eq. (2.164) and (2.165) is applied to the three layers system shown in figure 5.1, right.
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In-plane polarization

Eq. (2.164) for fields polarized along x or y gives

ε
∥
eff =

∑
i

di
L
εi, (5.1)

ε
∥
eff =

L− d

L
εvac +

d

L
ε
∥
2D, (5.2)

with ε∥eff the effective (or average) permittivity of the three layer system and ε∥2D the
permittivity of the 2D material of thickness d for in-plane polarization. It has been shown
that the effects of the local fields on the optical properties of stratified media and 2D
materials for this polarization are negligible due to their homogeneity [102, 126]. For
this reason, the equation (2.105), (the relation between the macroscopic permittivity and
the microscopic irreducible susceptibility when local field effects can be neglected) is
used, and ε∥eff becomes

ε
∥
eff = 1 +

1

L

1

S

∫ ∫
χ∥ (r, r′) d3r′d3r (5.3)

with S = V/d the surface of the unit cell, V its volume and χ∥ (r, r′) is a scalar function
as only one polarization is considered. The surface irreducible susceptibility χ∥

S for
in-plane polarization of a 2D material may now be defined as

χ
∥
S =

1

S

∫ ∫
χ∥ (r, r′) d3r′d3r (5.4)

such that

ε
∥
eff = 1 +

χ
∥
S

L
. (5.5)

This relation between the effective permittivity of 2D materials and their surface irre-
ducible susceptibility has been intensively used in the last 15 years to model 2D materials,
most of the time combined with no response for out-of plane excitations. [130–133]. The
surface susceptibility is independent of the chosen thickness L because the integral on
r is performed over L but only the part of the integration over d does not vanish. The
equation (5.5) confirms that ε∥eff is dependent of the chosen thickness L. In particular,
the effective permittivity tends to infinity when the thickness of the layer vanishes.

Out-of-plane polarization

Eq. (2.165) for fields polarized along z gives

1

ε⊥eff
=
∑
i

di
L

1

εi
, (5.6)

1

ε⊥eff
=
L− d

L

1

εvac
+
d

L

1

ε⊥2D
, (5.7)
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where ε⊥2D is the permittivity of the layer of thickness d for this polarization. Here,
because the LF are not negligible, one must use eq. (2.100) to obtain the effective
permittivity of the layer:

1

ε⊥eff
= 1− 1

L

1

S

∫ ∫
ξ⊥ (r, r′) d3r′d3r (5.8)

The surface external susceptibility is then defined as

ξ⊥S =
1

S

∫ ∫
ξ⊥ (r, r′) d3r′d3r (5.9)

and the effective permittivity of the layer is

ε⊥eff =
1

1− ξ⊥S
L

. (5.10)

For the same reason as before, the surface external susceptibility is independent of the
thickness wherever the permittivity depends on the thickness. Surprisingly here, when
L → 0, ε⊥eff → 0. This feature will be investigated later. The previous relation can be
inverted if one wants to obtain the surface external susceptibility from the dielectric
function:

ξ⊥S = L

(
ε⊥eff − 1

ε⊥eff

)
. (5.11)

In some theoretical studies [20, 22], an equivalent equation was employed:

χ⊥
S = L

(
ε⊥eff − 1

ε⊥eff

)
. (5.12)

Although the result is the same, it must be noted that the quantity χ⊥
S as defined above

cannot verify

P = ε0
χ⊥
S

L
E (5.13)

as it should be expected from a surface irreducible susceptibility. Actually from eq. (2.102)
relating the external susceptibility to the irreducible susceptibility, it can be shown that
χ⊥
S is not independent of the thickness and is therefore an inadequate quantity to describe

2D materials out-of-plane response:

χ⊥
S = Lχ⊥ = L

ξ⊥

1− ξ⊥
=

ξ⊥S

1− ξ⊥S
L

. (5.14)

If ξ⊥S does not depends of L, then χ⊥
S does.

The effective permittivity ε∥eff and ε⊥eff are bulk quantities that are inherently linked
to methods describing 2D materials as thin films while the surface susceptibilities can be
used to define a surface polarization field that is purely 2D. These models are the subject
of the section 5.2.
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Figure 5.3: Vertical (a) and horizontal (b) heterostructures may be represented using an
effective thin film model (c) or a an effective 2D model (d).

Effective medium theory for heterostructures

Heterostructures are associations of various materials to form composite nanomaterials.
For 2D materials, there are vertical heterostructures that are overlays of 2D materials,
sometimes called van der Waals heterostructures because the 2D layers interact via
van der Waals interactions [68, 140] and also horizontal heterostructures or ribbons
of 2D materials. In the following, effective models are proposed for each kind of het-
erostructures. The in-plane and out-of-plane surface susceptibility of vertical (figure
5.3a) and horizontal (figure 5.3b) heterostructures may be related to the bulk effective
permittivity of a thin film of finite thickness (figure 5.3c) or to a surface susceptibility
(figure 5.3d). By means of simplicity, the case L = d of the model represented in figure
5.2b is chosen, such that there is no vacuum inside a layer. This can be done because the
surface susceptibility of a thin layer of vacuum is zero.

Vertical heterostructures

For vertical heterostructures, eq. (2.164) and (2.165) of the effective model for multilayers
are applied to a stack of 2D materials of susceptibilities χ∥

S,i and ξ⊥S,i. For in-plane
polarization, it gives

ε
∥
eff = 1 +

∑
χ
∥
S,i

L
(5.15)

with the sum over all layers surface susceptibility indexed i and L the total thickness of
the multilayer. This model is of course valid only if the total thickness is smaller than
the wavelength (L≪ λ). The effective surface susceptibility of the multilayer may be
defined as χ∥

S,eff = L (εeff − 1), such that

χ
∥
S,eff =

∑
χ
∥
S,i. (5.16)

Similarly, for the out-of-plane polarization we have:

1

ε⊥eff
= 1−

∑
ξ⊥S,i
L

(5.17)
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Figure 5.4: a) Schematic view of the unit cell (in yellow) including the ribbon of 2D
materials of thickness L and a part of the substrate and of the incident medium in the
unit cell for a total thickness H . b) View of the unit cell with the different interfaces
labeled from A to F.

and
ξ⊥S,eff =

∑
ξ⊥S,i. (5.18)

In particular, eq. (5.16) and (5.18) applied toN layers of graphene give an effective surface
susceptibility that is N times the surface susceptibility of a single layer, as previously
shown for the in-plane case [77].

These two equations (5.16) and (5.18) will be called the additivity rules of the suscep-
tibilities for vertical heterostructures

Horizontal heterostructures

The case of horizontal heterostructures or ribbons is more complicated. The effective
permittivity of thick ribbons or nanowires is generally given by the same equations used
for multilayers, where the equations for parallel polarization (2.164) and perpendicular
polarization (2.165) are, respectively, used for polarization parallel and perpendicular to
the wire [145, 149]. However, in the case of 2D materials, particular care must be taken
because of the extremely thin thickness.

To develop the model, one must consider the displacement fieldD and the electric
field E in a unit cell (in yellow in figure 5.4a for an heterostructure made of 2 materials)
including a part of the substrate and a part of the incident medium of large thicknesses
compared to the thickness of the 2D ribbons L. The total thickness of the system, noted
H must still verify the conditionH << λ. The fields must be evaluated at several points
at the different interfaces of the system (figure 5.4b).

If the electric field is polarized along the y-axis, it is conserved at the interfaces at all
points A, B, C, D and F 2. Therefore the electric field is constant over the whole structure,
which is the condition to apply the equation (2.164) and the effective susceptibility of
the layer is

χy
S,eff =

∑
fiχ

y
S,i. (5.19)

2Actually these points are lines along the y-axis.
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where fi is the volume filling fraction of each type of ribbon in the layer of thickness L.

If the electric field is polarized along the x-axis, the electric field is conserved at the
interface at all points A, B, C and D. However, at all points F, the displacement field is
conserved and the electric field is discontinuous. Therefore, neither the electric field nor
the displacement field are constant over the whole structure, and a fortiori over the two
ribbons. The conditions to apply the effective model for parallel polarization (eq. (2.164))
or perpendicular polarization (eq. (2.165)) are not fulfilled.

Nonetheless, as the thickness L is supposed to be much smaller than the total thick-
ness H and most importantly, if the width of each ribbon is much larger than L, the
electric field does not vary rapidly in the layer, except close to point F. Consequently, in
a first approximation, the electric field is constant over the two ribbons and eq. (2.164)
can again be used to obtain the effective susceptibility of the layer:

χx
S,eff =

∑
fiχ

x
S,i (5.20)

which gives the same value than the effective susceptibility for the y polarization if all
components are isotropic. The layer can thus be approximated as isotropic in its plane.

Finally, for electric fields along the z-axis, the displacement field is conserved at the
interfaces A, B, C, D but not F, where the electric field is conserved. Because the layer is
extremely thin, the displacement field can be approximated as constant over the ribbons
and the effective model for perpendicular polarization can be used (eq. (2.165)):

ξzS,eff =
∑

fiξ
z
S,i (5.21)

Notice that this later development is valid even for width of the same order of
magnitude than the wavelength.

As a consequence of the in-plane isotropy of the effective model, the optical response
of such structured 2D materials at normal incidence does not depend on the polarization
except if there are features that cannot be captured by the effective model. For instance,
as surface plasmon resonances are phenomena appearing due to structurating of the
material, they cannot be detected in the optical spectra of the effective layer. Therefore,
comparing the spectra of the effective system to the exact system and inspecting the
discrepancies can highlight the plasmonic resonances taking places in the ribbons.

Equations (5.20) and (5.21) differ from the effective model sometimes used for 2D
materials ribbons, reproduced here from the effective model for thick ribbons [145, 150,
151]:

ξxS,eff =
∑

fiξ
x
S,i (5.22)

χy,z
S,eff =

∑
fiχ

y,z
S,i (5.23)

The original model proposed for 2D materials (eq. (5.19)-(5.21)) is now referred as the
thin-ribbon model, and the model of eq. (5.22) and (5.23) is referred as the thick-ribbon
model. The validity of these models are tested numerically in section 5.3.
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Conclusion

In this section, the two permittivity models that are used to represent 2D materials have
been described. In particular, the permittivity of the 3D model has been shown to be
dependent on the thickness while the surface susceptibility describing an infinitely thin
layer is truly intrinsic to the 2D materials. Effective models of heterostructures have also
been proposed. All these models are tested numerically in the two next sections.

5.2 Numerical methods describing 2D materials

Using the models presented in the last section, the thin film (3D) model and the surface
polarization (2D) model are presented here. Then analytical and numerical comparisons
of the 3D and 2D models are performed. Only transverse magnetic (TM) waves are
considered here, because transverse electric (TE) waves cannot excite the out-of-plane
response of layeredmaterials. A large part of the results of this section has been published
in our article [C].

3D thin film model

The thin film refers to the model presented above where the permittivity of the 2D
material is taken constant over a thickness d. With such model, it is straightforward
to include a 2D layer in a numerical method such as the transfer matrix method. The
basic transfer matrix method only accounts for isotropic layers so that in much studies,
the 2D layers are assumed to be isotropic [130–133]. Here, the transfer-matrix method
developed in [152] for an anisotropic material layer is used. In this frame, for p-polarized
light impinging on uniaxial materials, the transfer matrix of a single layer is given by:

T =

[
cos δ − i

η
sin δ

−iη sin δ cos δ

]
(5.24)

with

δ = kd

√
ε∥ − ε∥

ε⊥
n2
a sin

2 θi (5.25)

and
η =

1√
1
ε∥

− n2
a

ε∥ε⊥
sin2 θi

(5.26)

where na is the refractive index of the incident isotropic medium and θi the incident
angle. The Fresnel coefficients are [152]:

rp =
η0B − C

η0B + C
(5.27)

tp =
2na

cos θt

1

η0B + C
. (5.28)
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with
B = cos δ − i

ηb
η
sin δ (5.29)

and
C = −iη sin δ + ηb cos δ (5.30)

ηa = na

cos θi
, ηb = nb

cos θt
, nb the refractive index of the isotropic substrate and θt the

refraction angle.

The reflection and transmission coefficient are then calculated using

R = |rp|2 , (5.31)

T =
εak

b
z

εbkaz
|tp|2 . (5.32)

2D polarization sheet model

In the 2D polarization sheet model, as described in our article [C], a surface polarization
PS is defined at the interface (at z = 0) between the incident medium and the substrate:

P = PSδ (z) . (5.33)

Here, δ (z) is the dirac distribution such that P diverge at z = 0 due to the vanishing
thickness, but PS is finite. For in-plane polarization, this corresponds to the model
suggested in figure 5.2c. Indeed, if one takes χ∥ (z) = χ

∥
Sδ (z), where χ

∥
S is finite (χ∥ (z)

diverges at z = 0), then

P ∥ = ε0χ
∥E∥ (5.34)

P ∥ = ε0χ
∥
Sδ (z)E

∥ (5.35)
P ∥ = PSδ (z) (5.36)

with
P

∥
S = ε0χ

∥
SE

∥. (5.37)

Taking χ∥ (z) = χ
∥
Sδ (z) corresponds to a permittivity

ε∥ (z) = 1 + χ
∥
Sδ (z) (5.38)

with an average value over a thicknessL (supposing the 2D sheet is embedded in vacuum)
of

ε
∥
eff =

1

L

〈
ε∥ (z)

〉
= 1 +

χ
∥
S

L
(5.39)

as expected, since ⟨δ (z)⟩ = 1. Note that ε∥ (z) → ∞ at z = 0, in order to have a finite
response for a vanishing thickness.

For out-of-planes polarization, the 2Dmodel is a little bit different because the surface
external susceptibility must be used instead. The polarization field is written

P⊥ = ξ⊥D⊥. (5.40)
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Writing the external susceptibility ξ⊥ (z) = ξ⊥S δ (z) with ξ⊥S finite as shown in section
5.1, the polarization field becomes

P⊥ = ξ⊥S δ (z)D
⊥ (5.41)

P⊥ = P⊥
S δ (z) (5.42)

with
P⊥
S = ξ⊥SD

⊥. (5.43)
However the permittivity is now

ε⊥ (z) =
1

1− ξ⊥S δ (z)
(5.44)

and ε⊥ (z) → 0 for z = 0 with an average value over the thickness L of

ε⊥eff =
1

1− ξ⊥S
L

. (5.45)

This is explained intuitively by the fact that ε⊥eff is not the appropriate volume response
function, but its inverse or ξ⊥eff are more appropriate.

Therefore ε⊥ (z) cannot be described by a Dirac function as sketch in figure 5.2b.
Let us suppose that, instead of being described by Dirac functions, the irreducible and
external susceptibilities vary as Gaussian functions

χ (z) or ξ (z) ∝ 1

a
√
π
e−(

z
a)

2

(5.46)

with a standard deviation σ = a√
2
, such that when a → 0, the delta distribution is

recovered. According to eq. (5.38) and (5.44) the in-plane and out-of-plane permittivities
vary differently. In figure 5.5, the variations of the permittivity in the z direction for in-
plane (a), and out-of-plane polarizations (b) are represented using the Gaussian model, for
different values of a in unit of an arbitrary unit distance z0. For the in-plane polarization,
the permittivity truly tends to a Dirac function while for the out-of-plane polarization,
the permittivity tends to zero at the center, but is discontinuous close to the edges. In
order to verify and explain this trend, the microscopic dielectric function of a 2D material
obtained using TDDFT should be analyzed.

Note that taking
P⊥
S = ε0χ

⊥
SE

⊥ (5.47)
as it was done in recent papers [22, 128], is not valid because χ⊥

S is not adapted for this
polarization. Indeed, the relation between the irreducible and external susceptibilities
(2.102) is

χ⊥ =
ξ⊥

1− ξ⊥
. (5.48)

Therefore

χ⊥
S δ (z) =

ξ⊥S δ (z)

1− ξ⊥S δ (z)
, (5.49)

χ⊥
S =

ξ⊥S
1− ξ⊥S δ (z)

(5.50)
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Figure 5.5: In-plane and out-of-plane permittivities of a 2D material if one takes a surface
irreducible/external susceptibility that varies as a Gaussian function in the unit cell along
z, with different values of the parameter a for an arbitrary distance z0.

As ξ⊥S is finite, χ⊥
S vanishes at z = 0. Then, if P⊥

S has to be finite in eq. (5.47), the null
value of χ⊥

S at the interface requires E⊥ to be infinite in the polarizing sheet, which is
not physical. On the contrary the use of equation (5.43) make complete sens as both ξ⊥S
and D⊥ are finite and well defined at the interface.

Fresnel coefficients

The Fresnel coefficients can be derived from the 2Dmodel. For this purpose, the boundary
conditions accounting for these surface polarizations (eq. (5.37) and (5.43)) at the interface
between two media of permittivity εa and εb are considered. The following development
has been described in details in article [C], although the irreducible susceptibility was
used for the out-of-plane response. This has only a minor impact on the results of the
paper, and they have been corrected here. The wavevector k is chosen into the xOz
plane (ky = 0), with

kz = ±
√
k2ε− k2x. (5.51)

for transverse magnetic waves. The relation between the components of D is, from
Maxwell equations,

Dz = −kx
kz
Dx (5.52)

It has been shown, when a surface polarization stands at the boundary, that the boundary
conditions are [153, 154]:

ez × [Bb −Ba] = µ0
∂

∂t
PS, (5.53)

ez × [Eb − Ea] = − 1

ε0
∇P⊥

S . (5.54)
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The first equation corresponds to the boundary conditions from textbooks [42], while
the right-hand side of the second equation is null for interfaces between bulk materials.
These equations become, given the expressions of PS established above,

kaz
kbz
Dt

x = Di
x −Dr

x + ikazχ
∥
SE

s
x, (5.55)

εa
εb
Dt

x = Di
x +Dr

x + ikxξ
⊥
SD

s
zεa (5.56)

where the superscripts i, r and t refer respectively to the incident, reflected and transmit-
ted waves. The superscript s refers to the field at the interface. It has been suggested to
use the average value of the fields in the incident medium and in the substrate in order
to estimate these surface fields [155]:

Es
x =

Ei
x + Er

x + Et
x

2
; (5.57)

Ds
z =

Di
z +Dr

z +Dt
z

2
. (5.58)

However our article [C], a first order approximation (valid for small phase shifts) is
performed by neglecting the effect of the polarization sheet and assuming the continuity
of these fields. Then, the surface fields are chosen as Ds

z = Dt
z and Es

x = Et
x. By setting

r = −D
r
x

Di
x

(5.59)

and
t =

kaz
kbz

Dt
x

Di
x

(5.60)

the Fresnel coefficients, the system of equations (5.55)-(5.56) becomes

t =
εbk

a
z

εakbz
− εbk

a
z

εakbz
r + i

k2x
kbz
ξ⊥S εbt, (5.61)

t = 1 + r + i
kbz
εb
χ
∥
St. (5.62)

The Fresnel coefficients are obtained by solving the above system:

rp = −na cos θt − nb cos θi + i cos θi cos θtkχ
∥
S − in3

anb sin
2 θikξ

⊥
S

na cos θt + nb cos θi − i cos θi cos θtkχ
∥
S − in3

anb sin
2 θikξ⊥S

, (5.63)

tp =
2nb cos θi

na cos θt + nb cos θi − i cos θi cos θtkχ
∥
S − in3

anb sin
2 θikξ⊥S

. (5.64)

where the subscript p is added to recall the polarisation However, this solution does not
strictly conserve the energy in a sense that R + T ̸= 1 when χS

x and ξSz are real (i.e.
there is no absorption) [22]. Fortunately, when the phase shift is small i.e. kχS

x ≪ 1;
kξSz ≪ 1, the energy is still approximately conserved. It is consistent with the first order
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approximation performed above. I proposed another slightly different version where,
instead of taking Es

x = Et
x, I take Es

x = Ei
x:

rp = −
na cos θt − nb cos θi + i cos θi cos θtkχ

∥
S − in3

anb sin
2 θikξ

⊥
S + n2

anb cos θi sin
2 θik

2ξ⊥S χ
∥
S

na cos θt + nb cos θi − i cos θi cos θtkχ
∥
S − in3

anb sin
2 θikξ⊥S − n2

anb cos θi sin
2 θik2ξ⊥S χ

∥
S

,

(5.65)

tp =
2nb cos θi

na cos θt + nb cos θi − i cos θi cos θtkχ
∥
S − in3

anb sin
2 θikξ⊥S − n2

anb cos θi sin
2 θik2ξ⊥S χ

∥
S

.

(5.66)
This version is consistent with the conservation of energy. However a second order term
appears (including k2ξ⊥S χ

∥
S) and it cannot be considered as a first order approximation.

Further researches on this problem have been performed recently, principally by P.
Kockaert of the ULB, and are the subject of a manuscript submitted to a peer-reviewed
journal [F].

Analytical comparison of the models

A first analysis can be done by comparing the Fresnel coefficients obtained using both
models, when the thickness of the 3D model tends to zero. From the 3D model, eq. (5.27)
and (5.28), using the relation between the permittivities and the susceptibility, and taking
the limit kd → 0, except when kd multiplies the susceptibilities, i.e. kdχ∥ = kχ

∥
S and

kdξ⊥ = kξ⊥S , the Fresnel coefficients become

rp = −
(na cos θt − nb cos θi) cos δ − i

(
nanb

δ

kχ
∥
S

− kχ
∥
S

δ
cos θi cos θt

)
sin δ

(na cos θt + nb cos θi) cos δ − i

(
nanb

δ

kχ
∥
S

+
kχ

∥
S

δ
cos θi cos θt

)
sin δ

(5.67)

tp =
2nb cos θi

(na cos θt + nb cos θi) cos δ − i

(
nanb

δ

kχ
∥
S

+
kχ

∥
S

δ
cos θi cos θt

)
sin δ

(5.68)

with δ defined in eq. (5.25) becoming

δ = kna cos θi

√
χ
∥
Sξ

⊥
S . (5.69)

Note that, if the out-of-plane response is negligible (ξ⊥S ∼= 0), one obtains

rp = −(na cos θt − nb cos θi) + ikχ
∥
S cos θi cos θt

(na cos θt + nb cos θi)− ikχ
∥
S cos θi cos θt

(5.70)

tp =
2nb cos θi

(na cos θt + nb cos θi)− ikχ
∥
S cos θi cos θt

(5.71)

which are equivalent to the Fresnel coefficients obtained from the 2D surface polarization
model with no out-of-plane response employed in 2D materials optics for years [8, 77,
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Figure 5.6: Representation of 2D polarization sheet model (left) and 3D thin-film model
(right). Adapted from [C].

127]. Moreover, this formula satisfy the energy conservation. Therefore, the two models
are strictly equivalent when there is no out-of-plane response for a vanishing thickness.

Taking the first order in sin δ and cos δ in eq. (5.67) and (5.68), the Fresnel coefficients
obtained from the 2D model (eq. (5.63) and (5.64)) are retrieved. However, higher order
terms cannot be recover from the 2D model. Rigorously, the two models cannot be
equivalent but, for small phase shift, they give nearly equal results. This is verified
numerically hereafter.

At the first order, the transfer matrices of the 2D materials in the thin film model
and in the 2D model can also be compared as done in our article [C]. Actually, because
the 2D model has no thickness, the matrices cannot be compared directly. In figure 5.6,
the two models are represented. In the 2D model, the wave travels a distance da through
medium a and a distance db through medium b, on opposite sides of the interfaces, while,
in the 3D model, this distance is included in the effective thin film. In consequence,
the transfer matrix for the 2D sheet has to be multiplied (before and after) by matrices
representing the propagation in media a and b. In the article, it was shown that the two
models are equivalent at the first order if the following relations are verified:

ε
∥
eff =

da
d
εa +

db
d
εb +

χ
∥
S

d
, (5.72)

1

ε⊥eff
=
da
d

1

εa
+
db
d

1

εb
− ξ⊥S

d
. (5.73)

These equations can also be found from the effective model of multilayers applied to the
structure of figure 5.6 and therefore are fully consistent.

A practical example is helpful to understand the utility of these equations. Let
us imagine a structure composed of 5 identical layers of susceptibilities χ∥

S and ξ⊥S of
total thickness L laying on the substrate of permittivity εb (figure 5.7). In the thin film
model (right), each layer has an effective permittivity εeff with a thickness d, which is
equivalent to a layer of vacuum including a 2D sheet of susceptibilities χ∥

S and ξ⊥S . The
total system has then a thickness of L = 5× d and susceptibilities χ∥

S,tot = 5× χ
∥
S and

ξ⊥S,tot = 5× ξ⊥S according to the additivity laws of the susceptibilities (equations (5.16)
and (5.18)). In order to be equivalent, the structure on the left (2D model) must have
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Figure 5.7: Representation of the two model for a system of 5 identical 2D layers.

the same effective surface susceptibilities over the thickness L, such that the effective
permittivity of the layer of thickness L is the same in both systems. By choosing to
put the 2D layer at the bottom level of the thin film (i.e. db = 0)3, the effective surface
susceptibilities over the thickness L in the 2D model are (from eq. (5.16) and (5.18)):

χ
∥
S,eff = χ

∥
S,2D + χ

∥
S,a (5.74)

and
ξ⊥S,eff = ξ⊥S,2D + ξ⊥S,a (5.75)

where χ∥
S,2D and ξ⊥S,2D are the surface susceptibilities of the 2D sheet of vanishing

thickness, and χ∥
S,a and ξ⊥S,a are the equivalent surface susceptibilities of a layer of

thickness L of the incident medium:

χ
∥
S,a = (εa − 1)L, (5.76)

ξ⊥S,a =

(
1− 1

εa

)
L. (5.77)

If one imposes χ∥
S,eff = χ

∥
S,tot and ξ⊥S,eff = ξ⊥S,tot (the surface susceptibilities of a layer

of thickness L in both models must be equivalent), the surface susceptibility of the 2D
sheet must be:

χ
∥
S,2D = χ

∥
S,tot − χ

∥
S,a = 5× χ

∥
S − χ

∥
S,a (5.78)

ξ⊥S,2D = ξ⊥S,tot − ξ⊥S,a = 5× ξ⊥S − ξ⊥S,a (5.79)

which is equivalent to the equations (5.72) and (5.73), with da = d = L and db = 0.

This example highlights the fact that the incidence medium and the substrate play
a crucial role when comparing the 2 models. If the incidence medium is vacuum, the
transition between the two models is quite straightforward using eq. (5.5) and (5.10). In
other cases, the propagation of the wave in the incidence medium layer of thickness L
must be taken into account in the model.

3Although this choice is natural for a 2D material deposited on a substrate, da = 0 could also have
been chosen without modifying the conclusions.
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Numerical comparison of the models

In this paragraph, the numerical results reported [C] are summarized. The 2D (surface
polarization) and 3D (thin film) models are compared numerically using the methods
described in the beginning of this section, respectively the polarization sheet and the
transfer matrix methods. The 2D model is used with no out-of-plane response (ξ⊥S = 0)
and the 3D model with either no out-of-plane response (ε⊥ = 1) or an isotropic response
(ε⊥ = ε∥). These models have been commonly used in the literature [13, 19, 130–138],
in particular the 2D model and the isotropic thin film model, because they are simpler
to implement numerically. However, some researchers have recently investigated the
out-of-plane response of 2D materials [18, 20–22]. Nonetheless, as the out-of-plane
response is negligible in the visible light and infrared (IR) for most 2D materials and in
particular for graphene, the "no out-of-plane response" model is actually pretty accurate.
Note that our methods are able to take into account the true value of the out-of-plane
susceptibility but at the moment of the publication of the paper, I haven’t done the
TDDFT calculations of the out-of-plane response of graphene and other 2D materials.

The system studied in the article is a 2D material with a thickness of 0.34 nm, in
contact with vacuum, and lying on a substrate of constant refractive index n = 1.5.
The incidence angle is 75◦ in TM polarization in order to maximize the anisotropic
response. The transmittance from the 2D polarization model and the thin film model
are calculated as function of the real and imaginary parts of the normalized surface
irreducible susceptibility kχ∥

S . The surface susceptibility spans over several orders of
magnitude, including the susceptibility of graphene in the visible and IR ranges. Figures
5.8 and 5.9 display the relative error on transmittance defined as:

∆T =
T2D − Ttf
T2D

(5.80)

where T2D and Ttf are the transmittances calculated using the 2D model and the thin
film model, respectively. Two incident wavelengths are compared: in the IR, λ = 1550
nm, and in the visible, λ = 700 nm, respectively on the left and on the right of figures
5.8 and 5.9.

In the comparison between the 2D model and the anisotropic ("no out-of-plane
response") thin film model (figure 5.8), the transmittance computed in both models are
obviously in excellent agreement. The small phase shift condition (

∣∣∣Re(kχ∥
S

)∣∣∣ ≪ 1)

is thus satisfied for a large range of 2D susceptibilities. When the small phase shift
condition is relaxed (

∣∣∣Re(kχ∥
S

)∣∣∣ ⪆ 1), a larger error ∆T is obtained, corresponding to
the yellow bands on the left and right sides of figure 5.8 a and b. The difference is of
course larger at smaller wavelengths since the phase shift scales with k = 2π

λ
.

When comparing the 2D model with the isotropic thin film model (figure 5.9), the
differences are much more important. Note that the scale of∆T is different on figure 5.8
and figure 5.9. For a better interpretation of the results of the isotropic case, a range of
values of the susceptibility is encircled which displays the susceptibility of graphene at
each corresponding wavelength based on the Kubo formula (see chapter I) for a range of
Fermi levels from 0.05 eV to 1 eV and a range of relaxation times from 10 fs to 200 fs.
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Figure 5.8: Relative difference∆T between the transmittance computed in the 2D model
and in the anisotropic thin film models, with respect to the real and imaginary parts
of the 2D material susceptibility. The system considered is vacuum/2D material/glass.
The refractive index of glass is taken as 1.5. a) Infrared EM radiation (λ = 1550 nm); b)
Visible light (λ = 700 nm). Adapted from [C]

Note that for the anisotropic case (figure 5.8), we observe a particularly small ∆T with
maximum of 2 · 10−3% in these ranges. Notably, a high value of ∆T is observed on a
vertical line in figure 5.9 corresponding to Re

(
χ
∥
S

)
= −d, for which the real part of the

permittivity ε = 1 + χ
∥
S/d vanishes. This shows, similarly to what was reported in [24],

that an artificial plasmonic resonance is predicted by an isotropic thin film model, due
to the artificial metallic nature of the out-of-plane component of the permittivity tensor.
This nonphysical resonance could have dramatic effects on the prediction of the optical
properties.

To investigate further the influence of the anisotropy, the difference between the
transmittance obtained with the isotropic and anisotropic thin film models for graphene,
as a function of the incident wavelength and of the thin film thickness is presented in
figure 5.10. The two models give very similar results for a ratio λ/d > 1000 i.e for very
small kd (under the dashed line). This validates the fact that the anisotropy of graphene
has been often disregarded without consequences on the validity of the conclusions if
the chosen thickness of the thin film is at least three orders of magnitude lower than
the wavelength. This relatively good prediction within the isotropic thin-film model is
explained in the article [C] by the fact that, when

∣∣∣χ∥
S

∣∣∣2 ≫ d2, (5.81)

the isotropic thin film model is equivalent to the anisotropic 2D model (with ξ⊥s = 0).

86



Effective models and optical response of 2D materials as anisotropic materials

Figure 5.9: Same as figure 5.8 for the isotropic thin film model. The circled areas locate
graphene’s adimensional parameter k0χs. To determine it, the Kubo formula is used at a
fixed wavelength of 700 nm (right) or 1550 nm (left), over a range of Fermi levels from
0.05 eV to 1 eV and a range of relaxation times from 10 fs to 200 fs. Within this range of
parameters, an artificial plasmonic resonance appears on the left panel. Adapted from
[C].

Figure 5.10: Difference of transmittance ∆T between the isotropic and anisotropic thin
film models of graphene for a system air/graphene/glass. The refractive index of glass is
taken as 1.5. Graphene is modeled using the Kubo formula with EF = 0.4 eV,τ = 100 fs.
The red dotted line represents a thickness equal to 1/1000 of the wavelength. Adapted
from [C].
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Ellipsometry

Ellipsometry is a powerful spectroscopic technique allowing to obtain information on the
optical properties of materials. It gives experimentally access to the complex reflectance
ratio

ρ =
rp
rs

= tanΨ ei∆. (5.82)

Optical constants of graphene and other 2D materials have been obtained by ellipsom-
etry [21, 138]. However, the susceptibilities obtained using different models, the 2D
anisotropic (with no out-of-plane response) and the 3D isotropic, in ellipsometry mea-
surements onMoS2 are different [21]. An explanation and a correction to this error can be
brought by an analytical analysis. Using the Fresnel coefficients, isotropic ellipsometric
ratios reported in the article [C] are:

ρ

ρ0
= 1 + 2i

εbk
a
zk

2
x

(εakbz)
2 − (εbkaz )

2

(
χ
∥
S − εaεbξ

⊥
S

)
. (5.83)

where ρ0 is the ellipsometric ratio without 2D material The factor in the parentheses is
defined as the ellipsometric susceptibility

χell = χ
∥
S − εaεbξ

⊥
S . (5.84)

If the thin film is isotropic, one has:

ξ⊥S =
χ
∥
S

1 + χ
∥
S/d

(5.85)

by means of the equations relating the two susceptibilities (eq. (2.102)). With εa = 1, the
ellipsometric susceptibility from eq. (5.84) is

χell =
[
χ
∥
S

]
i

1− εb

1 +
[
χ
∥
S

]
i
/d

 (5.86)

with
[
χ
∥
S

]
i
the in-plane susceptibility deduced from the isotropic model. From the

anisotropic model with ξ⊥S = 0, χell is simply

χell =
[
χ
∥
S

]
a

(5.87)

with
[
χ
∥
S

]
a
the in-plane susceptibility deduced from the anisotropic model. Comparing

eq. (5.86) and (5.87), the relation between the susceptibilities from the two models (2D
anisotropic and 3D isotropic) is expressed as

[
χ∥
s

]
a
=
[
χ∥
s

]
i
− εbd+

εbd

1 +
[
χ
∥
S

]
i
/d
. (5.88)
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Figure 5.11: Values of Re
(
χ
∥
S

)
for MoS2 single layer retrieved with the isotropic thin

film model (
[
χ
∥
s

]
i
, blue curve and x symbol) and the anisotropic current sheet model

(
[
χ
∥
s

]
a
, black curve and □ symbol). Data from ref [21]. The red curve (⋄ symbol) is

calculated from
[
χ
∥
s

]
i
shifted by −εbd and is almost superimposed with the black curve.

The dielectric function of N-BK7 glass (substrate used in ref [21]) is taken from Sellmeier’s
equation provided by Schott [156]. Reproduced from [C].

Because, in general,
[
χ
∥
S

]
i
≫ d, the last term of (5.88) can be ignored. Finally, the

correction to the isotropic model is[
χ∥
s

]
a
=
[
χ∥
s

]
i
− εbd (5.89)

In figure 5.11 the susceptibility obtained from the experimental data from [21] are plotted
as well as the correction proposed above. In conclusion, the surface susceptibility of 2D
materials can be obtained using the isotropic thin-film model if the phase-shift is small
enough.

Effective thickness for numerical efficiency

In a thin film model, the thickness may be chosen arbitrarily as long as it is small enough
compared to the wavelength, even in an isotropic model (as long as the out-of-plane
response is negligible) as shown above. The permittivities are defined using the surface
susceptibilities eq. (5.5) and (5.10):

ε
∥
eff = 1 +

χ
∥
S

L
, (5.90)

ε⊥eff =
1

1− ξ⊥S
L

(5.91)
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Figure 5.12: Scattering cross section by a ribbon of graphene of widthw = 2µm obtained
using the DDA in ddscat, for different dipole sizes.

where the value of L must be consistent with the thickness in the methods (for example
those presented in section 3). A thickness as small as 3.34Å for graphene is then not
required for example.

Onemay take advantage of this fact to increase the efficiency of numerical simulations.
In methods in which the discretization of the particle must be isotropic (the size of the
volume or surface elementsmust be the same in all directions), choosing a larger thickness
permits to decrease drastically the number of elements, hence the computational effect.

In the discrete dipole approximation, if the dipole lattice is cubic and the distance
between the dipoles is less than one nanometer, a structure of a few hundred of nm2 of
surface of 2D materials would require millions of dipoles. Using a much larger effective
thickness allows us to perform calculations much faster without loss of accuracy as
far as the effective permittivity is adapted for each size. I have tested this assumption
for the IR response of a system of a graphene ribbons of two micrometers wide using
the program ddscat. The scattering cross-section has been calculated for three different
lattice parameters: d1 = 1 nm , d2 = 4 nm and d3 = 10 nm, resulting in a number of
dipoles respectively equal to N1 = 40000, N2 = 2500 and N3 = 400 (figure 5.12). Thus
the computation time was greatly reduced with larger dipoles, respectively t1 > 3 days,
t2 = 5 h and t3 = 2 h. The dipolar plasmonic resonance at 0.034 eV is nonetheless still
well described using a larger grid parameter.

Conclusions

2D materials and heterostructures may be equivalently defined as surface polarization
sheets or as thin films to a certain extent. The two methods are shown to be equivalent
for small phase-shift, and it can even be numerically efficient to use large thickness in
the thin film model. However, for large thickness, particular care must be taken. In
particular, in the isotropic case, artificial plasmonic resonances can appears in spectra.

90



Effective models and optical response of 2D materials as anisotropic materials

5.3 Optical spectra of anisotropic and structured 2D

materials

In this section, the optical spectra of several 2D materials, and structured 2D materials
are analyzed. The effective models of the previous section are tested based on ab-initio
calculations and using the methods shown in the same section (2D polarization sheet
and 3D thin film). A particular attention is put on the influence of the anisotropic and
the out-of-plane response of these materials. It is expected that materials with a larger
thickness, i.e. with more atoms along the out-of-plane direction, such as TMDs, have a
larger out-of-plane response.

The surface susceptibility of different 2D atomic systems have been calculated using
the TDDFT implementation in the GPAW code [157, 158], within the random-phase
approximation: graphene, hBN, graphene - hBN bilayer, corrugated graphene and MoSe2
(details of the TDDFT calculations are given in the appendix). Because the DFT is
performed using a plane-wave extension, a large vacuum layer must be included in each
unit cell in order to avoid the interactions between the repeating layers. The thickness
of this vacuum must be chosen to converge the results and values between 10 and 15Å
are usually taken. The range of energy is chosen from 0 to 20 eV. It therefore account for
UV light excitation, where the out-of-plane response is expected to be relevant. There is
no focus on lower energy (in the IR of THz range) because phonons are not described in
TDDFT.

Corrugated graphene is modelled using a unit cell containing 50 atoms forming a hill
of height 0.25 nm in a cell of height 2.50 nm as described in our article [D] and, later,
in section 7.2. The height of the superlattice of graphene and h-BN is 2.70 nm. For the
bilayer, the graphene and hBN layers are separated by 0.34 nm, which corresponds to
the interlayer distance in graphene and is close to the average interlayer distance of
graphene-hBN heterostructures accounting for van der Walls corrections [159]. The
total height of the cell is 2.0 nm. The GW and BSE calculations were not performed due
to computational limitations, as explained in section 2.1, which could result in inaccurate
optical spectra, in particular for semiconductor (MoSe2) and insulator (BN). However,
the focus here is on the effect of the anisotropy for optical response of heterostructures,
therefore the same level of approximation is considered to be enough when comparing
systems. The effective models for the response functions and heterostructures remain
valid for all levels of approximation.

Surface susceptibility

The computed surface susceptibilities of the different 2D materials are shown on figure
5.13. For graphene and hBN, the π and the π+σ plasmons are found around respectively
4.5 eV and 14 eV in the in-plane susceptibility as expected without the GW and BSE
correction [103]. The GW correction tends to blueshift the plasmon energy and the BSE
has the inverse effect which produces a global blueshift of less than 0.5 eV [129, 160–162].
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Figure 5.13: In-plane surface irreducible susceptibility (left) and out-of-plane surface
external susceptibility (right) of (from top to bottom) graphene, hBN, corrugated graphene
and MoSe2. The solid line is the real part, the dashed line is the imaginary part.

The susceptibility of the corrugated graphene has been published in the article [D]. The
in-plane susceptibility of MoSe2 is slightly different than previously reported [163], but
this can be attributed to the approximation described above.

The imaginary part of the out-of-plane susceptibility, responsible for the absorption
is null below 10 eV for graphene and hBN such that the role of the anisotropy will only be
relevant at higher energy, in the UV, as mentionned previously. For corrugated graphene
and MoSe2 the imaginary part of the out-of-plane susceptibility increases slowly already
at energy below 10 eV, due to the atomic structure extending in the normal direction.
However, the real part of the out-of-plane susceptibility is also relevant as it can be
measured using ellipsometry [22]. It is much higher for materials with a larger thickness
such as MoSe2. This is explained by the fact the real part of the susceptibility is related
to the density of dipole moment, and the dipole moment is larger when the distance
between the charge is longer.

Comparison with the literature

The out-of plane surface susceptibilities or conductivities of some 2D materials have
already been calculated from ab initio approaches in recent papers [20, 126, 164]. How-
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ever, particular care must be taken considering the out-of-plane susceptibility. In ref
[20], the authors obtained the surface conductivities of graphene and silicene from the
macroscopic dielectric functions using the following equations:

σ
∥
S = −iε0ωL

[
ε
∥
eff − 1

]
(5.92)

and

σ⊥
S = −iε0ωL

[
1− 1

ε⊥eff

]
. (5.93)

These equations are equivalent to eq. (5.5) and (5.10) although the authors remain
elusive on the origin of eq. (5.93). Their calculated surface conductivities for graphene
are replicated on figure 5.14, on the left. The top panel represents the real part of
the conductivity, the bottom one represents the imaginary part, with, in black, the in-
plane surface conductivity, and in red the out-of-plane conductivity. The conductivity of
graphene (figure 5.14, right panel) obtained using the calculated surface susceptibilities of
figure 5.13 (top panel) does not correspond to their results. In particular, my calculations
predicts a much smaller out-of-plane response. In their paper, the authors suggest that,
for a large vacuum layer in the cell (L→ ∞), the following relation holds:

L

[
1− 1

ε⊥eff

]
= L

[
ε⊥eff − 1

]
. (5.94)

According to this, the surface conductivity in the out-of-plane direction is

σ⊥
S = −iε0ωL

[
ε⊥eff − 1

]
. (5.95)

Using this equation, the surface conductivities obtained in [20] can be reproduced (figure
5.14, middle panel). However, their approximation is not justified rigorously in [20] and
it seems that this approximation is not valid in this particular case as equations (5.93)
and (5.95) do not give the same results.

Long range interactions

It has been shown that artificial long range coulomb interactions occur for out-of-plane
polarization [126] even for large vacuum layers between the periodically repeated planes
of 2D materials in the superlattice of the TDDFT calculations. Ideally these long range
interactions must be cut off to study the out-of-plane response of 2D materials. In [126],
the authors proposed a mixed-spaced approach to avoid this interaction. By means of
simplicity and lack of time, this approach was not implemented here. However, with
a large vacuum layer, these interactions can be reduced. To investigate this effect, the
surface external susceptibility of graphene for the out-of-plane polarization has been
calculated for different sizes of the cell and with different k-grid discretization. In figure
5.15, this susceptibility is plotted for two large values of the vacuum thickness, and
for a non trivial k-grid discretization along the z-axis. Below 11 eV, the curves are
superimposed. At higher energies, differences appear. First, the fact that increasing
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Figure 5.14: Real (top) and imaginary (bottom) parts of the surface conductivity for
in-plane (black) and out-of-plane (red) polarization. Left: reproduced from [20]; middle:
same as on left, reproducedwith eq. (5.92) and (5.95); right: same as on the left, reproduced
with eq. (5.92) and (5.93).

the size of the cell changes the susceptibility is an argument in favor of the long range
interactions. Then, using a k-grid with more points along the z-axis also changes the
average (macroscopic) surface susceptibility which should not be the case if there were
no interaction between the repeated layers. However, it seems that using the finer k-grid
has a low impact on the spectra for a cell of height 2.68 nm suggesting that, for this
quantity of vacuum (a layer of 2.34 nm), a convergence is nearly obtained. However,
due to computational limitations, the convergence has not been verified further.

Vertical heterostructures

Two kinds of heterostructures are studied here. First, a multilayer with a large number
of identical layers (graphene in this case) in order to estimate the limits of the 2D model
compared to the thin film model for heterostructures. The graphene layers must not be
interacting such that the system can indeed be considered as a graphene multilayer and
not graphite. These structures have been synthesized experimentally up to a few layers
using the transfer techniques on CVD graphene [138]. Then, a graphene-hBN bilayer,
which has also been synthesized [165, 166] and whose optical properties have already
been studied extensively for in-plane polarizations [142, 143, 161]. These systems are
used to illustrate the effective model proposed in the first section of this chapter.

In Fig 5.16, the absorption of a single sheet of graphene (black), a multilayer of 10
sheets (blue) and a multilayer of 20 sheets of graphene (red) calculated using the thin
film model (solid lines) and the polarization sheet model (dotted lines) are shown. The
thickness of a single 2D layer is 3.35Å in the thin film model. The angle of incidence is
70◦ in TM polarization and the refractive index of the substrate is constant (n = 1.5). For
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Figure 5.15: Surface external susceptibility for graphene in the out-of-plane polarization.
Three case have been considered: a supercell of height 2.01 nm, a supercell of height
2.68 nm and a supercell of height 2.68 nm with a finer k-grid for the representation of
the wave-function in the out-of-plane direction.

a single layer and for 10 layers, the two models agree quite perfectly. It shows that the
2D model is quite robust even for large number of layers. For 20 layers, the discrepancies
between the models become significant at large energy, in particular around the π + σ
plasmon. In this case, the wavelength in the layer becomes too small compared to
thickness L.

Now, the surface susceptibilities of a graphene-hBN vertical heterostructure as ob-
tained by TDDFT are compared to the effective susceptibilities calculated using the
susceptibilities of a single layer of graphene or hBN and the additivity rules, equations
(5.16) and (5.18) (figure 5.17, dotted lines) with the real part (left) and imaginary part
(right) of χ∥

S (top) and ξ⊥S (bottom) represented. The effective model is accurate for χ∥
S

except around the π-plasmon at 4.5 eV. This suggests a coupling between the corre-
sponding π-plasmons of each 2D material because this coupling cannot be captured by
the effective model as explained in the first section of the chapter. For ξ⊥S , the effective
model fails to reproduce the exact model at high energy, over 10 eV though the global
trend is conserved. This is due to long range electronic interactions mentioned above.

In conclusion, the effective model for vertical heterostructures reproduces quite well
the exact model though care must be taken for plasmonic resonances and with the long
range interaction for out-of-plane polarization.

Horizontal heterostructures

Two horizontal heterostructures are studied here: stacking of graphene nanoribbons
to test the validity of the effective models presented in section 5.1 and graphene-hBN
nanoribbons that present interesting optical properties [147, 167]. In section 5.1, a model
adapted for 2D material ribbons was presented, in contrast to the model usually adopted
for bulk material ribbons and sometimes also 2D materials. These models are referred as
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Figure 5.16: Absorption by a single layer (black), 10 layers (blue) of graphene and 20
layers (red) at an incident angle of 70° calculated using the thin film model (solid line)
and the 2D model (dotted line).

Figure 5.17: Surface susceptibilities of a graphene-hBN heterostructures from the full
system (black lines) and the effective model (red lines). The real part is on the left, the
imaginary part on the right.
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Figure 5.18: Absorption by ribbons of graphene with filling factor of 0.75 at an incident
angle of 70°, polarized perpendicularly to the ribbons, for one layer (left), one hundred
layer (right).

the thin-ribbon model and the thick-ribbon model respectively. Graphene ribbons of 15
nm, spaced by 5 nm of air, corresponding to a filling factor of f = 0.75 are considered. To
test the thick-ribbon model, an unrealistic stacking of 100 ribbons with a total thickness
of 35 nm is used. The RCWA offers the exact solutions as long as the results are converged
in respect to the number of plane waves in the Fourier series4. However due to the
impossibility to use the RCWA for non-planar or finite systems, the effective models
remain interesting. In figure 5.18, the RCWA simulations that account for the lateral
heterostructure is compared to the thin-ribbon and the thick-ribbon models, for a single
layer of graphene (left) and for a multilayer of 100 sheets of graphene. The thin ribbon
model is accurate for ribbons of a single sheet of graphene while the thick ribbon model
is better for the multilayer but it appears that no model fits well for both.

To better understand the transition between the two models, the relative error
between each effective model and the RCWA solution, obtained as the area between the
curves, is displayed on figure 5.19. It confirms that, as shown before for very few layers,
the thin ribbon model is accurate whereas, for several tens of layers, the thick ribbon
model works better. In between, for a number of layers from 3 to 30, the error is over 15
% for both models and a full description of the system is necessary.

A system of alternating ribbons of single layer graphene and h-BN, with a width
of respectively 15 nm and 5 nm is now investigated. This kind of system could sustain
plasmons [167], which could be spotted by comparison between the effective and exact
models, as explain in section 5.1. In figure 5.20, the three models are compared: the
RCWAmethod, the effective thin film model and the effective surface current model. The
three models are in almost perfect agreement, except at two particular energy values.
Around 5 eV, the two effective models agreed but fail to reproduce the exact results.
This can be explained by a plasmonic resonance that cannot be captured by effective
models. This discrepancy was not visible in the graphene-air system which suggests
that the plasmon originated from a coupling between the π-plasmon of graphene and
that of h-BN similarly to the case of vertical heterostructures. At high energy, above 15

4For this particular system, the results converged with a small number of plane waves.
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Figure 5.19: Relative error of the effective models (thin ribbon and thick ribbon) compared
to the exact RCWA solution.
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Figure 5.20: Absorption by alternating ribbons of graphene and hBN, with filling factor
respectively of 0.75 and 0.25, at an incident angle of 70◦, polarized perpendicularly to
the ribbon, for three different models: exact model with RCWA (solid red line), effective
thin film model (solid grey line), effective surface current model (dotted black line).

eV, the exact and the effective thin film models are in agreement but the surface current
model differs. At high energy, it is expected that the wavelength is small enough that
the small phase shift approximation is not valid anymore, as already explained in the
previous subsection. The strong result here is that a system composed of two structured
anisotropic thin materials can be accurately described by an analytical 2D polarization
sheet model.

Role of the out-of-plane component

In this short section the influence of the calculated out-of-plane component of the
dielectric tensor on the optical spectra is analysed for five systems composed with
2D materials. In particular, the domain of validity of the isotropic or no out-of-plane
response models for describing the permittivity are investigated. The five systems are:
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pristine graphene, graphene-hBN vertical heterostructure, ribbons of graphene and
hBN, corrugated graphene and MoSe2. The results are plotted on figure 5.21. For each
system, the absorption is calculated, at an incident angle of 70◦ in TM polarization, with
three different cases for the out-of-plane component: the DFT-calculated z-component
(red solid line), no out-of-plane response (ε⊥ = 1) (black dashed line) and an isotropic
response (ε⊥ = ε∥) (black dotted line). As expected for all systems, because the imaginary
part of the surface susceptibility ξ⊥S becomes large as energy increases, the out-of-plane
response is non-negligible at high energy, starting at 10 eV. In particular, the model
without out-of-plane response gives the worst approximation in this range. For MoSe2
and corrugated graphene, these differences are even larger because of the large thickness
of these materials. At lower energy, the isotropic model is inaccurate around 6− 8 eV
for all systems containing graphene. The additional peak appearing between 6 and 8 eV
is due to artificial plasmonic resonances due to the metallic behaviour of graphene in the
normal direction as seen in the previous section and highlighted in our article [C]. In
conclusion, the isotropic model for 2D materials should be avoided because of artificial
peaks at low energy while the no out-of-plane response model is still accurate below 10
eV. At higher energy, where the out-of-plane response is significant, the complete model
should be used.

Conclusions

The original effective models developed in section 5.1 for vertical and horizontal het-
erostructures have proven to be robust to predict optical spectra. The models for vertical
heterostructure reproduce quite well the susceptibility of a bilayer of graphene-hBN
from the susceptibility of each 2D material and the absorption of graphene multilayers
from both the 2D and 3D methods. Only plasmonic excitation cannot be predicted by
the effective models. For horizontal heterostructures and ribbons, two models have been
proposed, depending on the thickness of the ribbon. It is shown that the thin ribbon
model is good for single to 3-layer ribbons while the thick-ribbon model is better for
materials with thickness larger than 30 nm. In many cases, if possible, the RCWA should
be used because it gives the exact solution. However, for non-planar surfaces or highly
complex structures, the effective model is obviously much easier to implement.

On the modelling of the isotropy of a single layer, it has been shown that the isotropic
model for 2D materials is worse than a model without out-of-plane response for metallic
2D materials because of an artificial plasmonic resonance. For the considered materials,
at high energy, the fully anisotropic model should be used to accurately describe the
optical response, in particular for materials with larger extension in the normal direction,
like MoSe2 or corrugated graphene.
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Figure 5.21: Absorption spectra of (from top to bottom) pristine graphene, graphene-hBN
vertical heterostructure, ribbons of graphene and h-BN, corrugated graphene and MoSe2.
The red solid line corresponds to the DFT-calculated anisotropic model, the dashed black
line corresponds to a model without out-of-plane response and the dotted black line
corresponds to an isotropic model.
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Brewster angle shift with conduct-
ing 2D materials
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When a 2Dmaterial is deposited on a dielectric surface, it slightly modifies the optical
properties of the system, including the reflection and transmission at the interface. An
example of that is the shift of the Brewster angle, the angle at which a p-polarized light
ray is not reflected. The shift depends on the conductivity of the 2D materials. Graphene,
as a semi-metallic 2D material, is therefore a great candidate to experimentally highlight
this shift. In this chapter, the origin of the shift is explained, and its relation with the
conductivity is explicitly given. The theoretical results are compared with experimental
measurements of the shift.
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A particular optical phenomenon attributed to a conducting 2D material is the shift
it induces on the Brewster angle. A conducting layer at the interface between two media
changes the condition at which the reflected wave vanishes in the transverse magnetic
polarization. This effect has been reported several times in the last few years [12–18]
but our article [B], published in 2018, is one of the first comprehensive study of the
phenomenon, with experimental measurements performed on graphene and graphene
multilayers. As visible light and IR are considered, the out-of-plane response can be
neglected, at least for graphene. It was shown later that this out-of-plane response could
have an effect on the shift of the Brewster angle of graphene [18]. To be coherent with
our article [B], the surface conductivity is used to describe the electromagnetic response
of 2D materials. Here, the article is summarized with a focus on the theoretical results. It
is shown that this phenomenon can be used to measure the conductivity of 2D materials.
Moreover, due to the optical tunability of graphene in the IR range, an active modification
of the shift is possible, paving the way to practical applications in telecommunications.

6.1 Physical origin of the phenomenon

The Brewster effect occurs when light is not reflected in p-polarization [168]. This arises
when the polarization density Ptot in the dielectric material is parallel to the wavevector
of the reflected wave kr (figure 6.1a). In the classical case, i.e. without conducting layer
at the interface, the only component of the polarization density is due to the local electric
dipoles excited by the refracted wave, i.e. Ptot = Pbulk. It follows that θB + θB2 = π/2
where θB stands for the incident Brewster angle and θB2 for the corresponding refracted
angle. The formula giving the Brewster angle is retrieved from Snell law:

tan θB =
n2

n1

. (6.1)

This situation is no longer valid once a conducting 2D material lies at the interface
(figure 6.1b). Indeed, a bidimensionnal current density, J2D = σ2DE with σ2D the 2D
conductivity, can occur and is related to a planar component of the polarization density
P2D =

∫
J2Ddt. The higher the 2D conductivity, the closer to the interface the total

polarization density direction and the higher the Brewster angle shift. In the limit of an
infinite 2D conductivity, the modified Brewster angle θ′B tends to π/2.

6.2 Numerical approximation of the shift

To calculate the modified Brewster angle, the generalized reflection Fresnel coefficient
in p-polarization should be canceled out once a 2D conducting plane is inserted between
two semi-infinite dielectric media of refractive index n1 and n2. If one neglects the
out-of-plane response, the reflectance is given from eq. 5.63:

Rp =

∣∣∣∣∣n1 cos θ2 − n2 cos θ1 − σS

ϵ0c
cos θ1 cos θ2

n1 cos θ2 + n2 cos θ1 +
σS

ϵ0c
cos θ1 cos θ2

∣∣∣∣∣
2

. (6.2)
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a

b

Figure 6.1: Incident p-polarized electromagnetic wave of wavevector ki at Brewster
angle θB impinging on the interface between two dielectric media of refractive indexes
n1 and n2. The reflected (transmitted) wave has a wave vector kr (kt) and the reflected
(refracted) angle θB (θB2) a) Classical Brewster effect, b) Modified Brewster effect due to
the presence of a 2D conducting layer at the interface. Reproduced from [B].
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Figure 6.2: Reflectance in p-polarized radiation of a single graphene layer lying over a
silicate substrate (n2 = 1.92) at 30 GHz for the bare substrate (blue line), a real conduc-
tivity (σS = 0.37 ε0c, red line) and a conductivity with an artificially high imaginary
part (σ2D = 0.37 + 0.37i ε0c, yellow line). The Brewster angle θB of bare substrate, the
modified Brewster angle θ′B due to the presence of a 2D conductivity at the interface and
the modified quasi-Brewster angle θQB are indicated on the figure. Reproduced from [B].

To obtain the exact value of this modified Brewster angle θ′B for real σS , one should
cancel RP which leads to the condition:

n1 cos θ2 − n2 cos θ1 −
σS
ϵ0c

cos θ1 cos θ2 = 0. (6.3)

This equation corresponds to a quartic equation in cos θ1 and can be solved numerically
to extract θ1 ≡ θ′B for a given σ2D. For example, CVD graphene in the microwave range
has particularly high surface conductivity σS = 0.37 ε0c (at 30 GHz [77]). As shown in
figure 6.2a, the subsequent shift of the Brewster angle is 67.0◦ − 62.4◦ = 4.6◦ (n1 = 1,
n2 = 1.92 for SiO2 at 30GHz). If the imaginary part of the conductivity is non-zero, the
minimum reflectance in p-polarized radiation is never zero and has its minimal value
(R0) at the quasi-Brewster angle θQB . However, even for an intentionally high imaginary
part (for instance ℜ(σ) = ℑ(σ)), R0 is very small and θQB ≈ θ′B (figure 6.2a).

Equation (6.3) can be solved approximately for small angular shift ∆ = θ′B − θB .
Here, I propose another approximation than those made in the article [B]. With θ′B2 the
refracted angle at the shifted Brewster incidence, defining α = n2

n1
, β =

√
1 + α2 the

following relations can be written:

sin θB =
α

β
cos θB =

1

β

cos θ′B =
1− α∆

β
cos θ′B2 =

1

β

(
α− ∆

α2

)
(6.4)

where I used the first order approximations cos∆ ∼= 1, sin∆ ∼= ∆ and ∆2 ∼= 0. The
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solutions to eq. (6.3) is then:

∆ =
σS

ε0c

α
(

σS

ε0c
+ n1β

)
+ 1

α3

(
σS

ε0c
− n1β

) . (6.5)

If n2 ≫ n1
1 and σS

ε0c
≪ 1, the approximation for low conductivity presented in the

article [B] is retrieved:
∆ =

n1

n2
2

σS
ε0c

. (6.6)

This equation is remarkable by its simplicity and shows that the shift in Brewster angle
depends linearly on the conductivity for small conductivity. Figure 6.3a shows the
Brewster angle as a function of the surface conductivity, for the exact value retrieved
numerically from (6.3), and the approximated value. The first approximation (eq. (6.5), in
red) is close to the exact solution (in black) while the second approximation (6.6, in blue) is
valid only for low conductivity. To better estimate the validity of the approximations, the
relative error made on θ′B , compared with the exact solution for the two approximations
is depicted on figure 6.3. The horizontal dashed line indicates a 1% error and defines
roughly our domain of validity of the approximations. The second approximation is only
valid for surface conductivity verifying

σS
ε0c

< 0.2 (6.7)

as, for example, graphene in the visible range (see later). It should be emphasized
that those approximations were derived considering the a purely real 2D conductivity.
However, as demonstrated earlier, θQB and θB′ do not significantly differ for a small
imaginary part of the 2D conductivity.

The previous analysis is for an infinite substrate. However in order, to better corre-
spond to experimental situations, the finite thickness of the substrate should be accounted
for. This finite thickness is responsible of backside reflections at the second interface
between the substrate and the surrounding medium. This situation can be handled by
adapting the reflection coefficient. The reflection coefficient of eq. (6.2) is now written
R12,c where the first subscript stands for the direction of propagation of the wave, from
medium 1 (incident) to medium 2 (substrate) here, and the second subscript for the
presence of the conducting layer at the interface (c) or not (f , "free"). If the thickness
of the substrate is much bigger than the coherence length (in the experiment, a Xenon
light is used, with small coherence length), interferences can be neglected and the total
reflectance becomes [169]:

Rtot = R12,c + T12,cR21,f

∞∑
i=0

(
Ri

21,cR
i
21,f

)
T21,c (6.8)

with
T12,c = T21,c =

4n1n2 cos θ1 cos θ2∣∣∣n1 cos θ2 + n2 cos θ1 +
σ
ε0c

cos θ1 cos θ2

∣∣∣2 , (6.9)

1This seemingly very strong condition is justified retrospectively by the simplicity and validity of the
obtained formula.
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Figure 6.3: a) Shifted Brewster angle for the approximation of equations (6.5) (approx-
imation 1) and (6.6) (approximation 2). b) Relative errors on the approximations with
n2 = 1.5.

the transmittance at the first interface, and the sum is done over all themultiple reflections.
Calculating analytically the sum in equation (6.8), it gives:

Rtot = R12,c +
T 2
12,c

1−R12,fR12,c

R12,f (6.10)

As the first term of equation (6.10) vanishes at the modified Brewster angle θ′B (for
a real conductivity), the second vanishes at the usual Brewster angle θB due to the
factor R12,f (see figure 6.4, in red for = R12,c, in blue for R12,f ). In the vicinity of both
Brewster angles (which are separated by a few degrees), reflectance is close to zero and
transmittance is close to unity. Therefore, the coefficient in front of R12,f is close to
unity near the Brewster angles. Moreover, near these angles, the curve corresponding to
the total reflectance can be approximated as the sum of two parabolas, using a series
expansion of each term around their zeros. As R12,f and R21,c are very similar functions,
corresponding to the same reflection phenomena with a small perturbation for R12,c, the
quadratic coefficients of both parabolas are the same. With this condition, the minimum
of the resulting curve arises exactly at the middle between the two minima ie. the
total quasi-Brewster angle (where the reflectance is minimum) θ′′B considering a finite
substrate, is half way between the usual Brewster angle θB and the modified Brewster
angle θ′B :

θ′′B =
θ′B + θB

2
(6.11)

and it consequently gives a angular shift divided by two compared to the value for an
infinite substrate:

∆ = θ′′B − θB =
θ′B − θB

2
. (6.12)

Therefore, the approximations (6.5) and (6.6) must be scaled down by a factor 1
2
when

considering a finite substrate.
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Figure 6.4: Reflectance for a plane wave at the interface between air (n1 = 1) and
silica glass (n2 = 1.5) , with or without graphene (σ/ε0c = πα) at the interface and
considering finite or infinite substrate. Reproduced from [B].

6.3 Application to graphene and other 2D materials

The Brewster shift can be evaluated in graphene using the Kubo formula described
in section 1.3 2. The Brewster angle can be tuned by adjusting the Fermi level EF as
depicted in figure 6.5 for different realistic values of the Fermi level and for a single
layer of graphene deposited on silica glass with a frequency dependent refractive index
reported in the literature [170]. The modification of the Fermi level from 0.3 to 0.5 eV
causes a shift as high as∆ ≈ 1◦ in the C-band (around 1550 nm) of telecommunications.
The largest shift in Brewster angle is predicted around 266 nm and is related to the
excitonic resonance [74, 171]. Other conducting 2D materials are emerging such as
silicene, germanene or stanene. Optical conductivities of those materials are scarcely
available [172, 173]. Table 6.1 reports the expected shift in Brewster angle at some
particular wavelengths using data from [172]. The substrate is considered as silica glass
as before. The shift can also be quite large for those other 2D materials, even in the
visible range.

Heterostructures and multilayers of 2D materials can also be considered in order to
modify the conductivity. As seen before, the effective 2D conductivity can be defined
as the sum of the conductivity of each 2D material layer i.e. σ2D,tot =

∑
σ2D,i [77,

171]. This approximation stands if the different layers are electronically decoupled with
respect to each other, e.g. by the insertion of a dielectric layer or by a twisted stacking
in the case of graphene.

2Temperature here is T = 300 K, the relaxation time is τ = 75 fs. The hopping parameter from the
tight-biding model is t = 2.6 eV and the parameters of the Fano model for the excitonic correction are
q = −1.4 eV, Eres = 4.85 eV, Γ = 780 meV
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Figure 6.5: Modified Brewster angle for graphene deposited on silica glass for several
Fermi level values obtained by solving equation (6.3) numerically. The shaded area cor-
responds to the region of the experiment, i.e. UV, visible and near-infrared. Reproduced
from [B].

2Dmaterial σ/ε0c Wavelengthλ [nm] ∆θ [deg]

Stanene 0.092 708 2.5
Stanene 0.177 413 4.7
Stanene 0.1898 331 5.0
Silicene 0.093 608 2.5
Silicene 0.328 260 8.3

Germanene 0.092 608 2.5
Germanene 0.188 342 5.0
Germanene 0.171 273 4.4

Table 6.1: Shift in Brewster angle due to a conducting 2D material deposited on silica
glass for several wavelengths. The 2D conductivity is taken form reference [172] and
the shift is calculated using equation (6.6). Reproduced from [B].
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Figure 6.6: Optical image of the multilayer sample. Reproduced from [B].

6.4 Experimental results

Samples with respectively one, two and three graphene layers transferred on silica
glass were fabricated (figure 6.6). The samples were then characterized by simultaneous
micro-reflection and micro-Raman mapping using a home-made set-up as described in
[174] to verify the number of layers on the sample. The three layers sample is of lower
quality with much uncertainty in the number of layers over the analyzed surface.

The determination of the modified Brewster angle was done using spectroscopic
ellipsometry from the ultraviolet (UV) to the near-infrared (NIR) spectral range, i.e.
from 230 to 960 nm. The spectral and angular evolution of one of the two normalized
Fourier coefficients of the ellipsometric signal (the β coefficient) was used to determine
the Brewster angles. At a given wavelength, the coefficient β was acquired for several
incident angles around the Brewster angle of the glass substrate, from 52◦ to 64◦ by step
of 0.2◦. Close to the Brewster angle, β depends linearly on the incident angle θ and its
value is zero at this particular angle [175]. The Brewster angle is deduced by fitting the
data using a linear regression model.

The value of the Brewster angle shift ∆ can be evaluated for a single graphene
layer in the NIR-visible domain if one uses the universal conductivity (σ0 = πα ε0c) in
equation (6.6) divided by two in order to take backside reflections into account. With
n1 = 1 and n2 = 1.5, one gets

∆ ≈ 1

2

n1

n2
2

πα ≈ 0.29◦. (6.13)

Figure 6.7a shows the experimental Brewster angle measured on the bare glass substrate,
as well as on mono-, bi- and trilayer graphene areas. The mean values of the Brewster
angle are plotted with the corresponding confidence interval (confidence level arbitrarily
fixed at 99.9 %), resulting from data analysis on 9 different acquisitions on arbitrarily
selected zones of each graphene area. An increase of the Brewster angle of about 0.3◦
per graphene layer is observed in the visible range, in very good agreement with the
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prediction (eq. 6.13). In the UV spectral range, the peak at 268 nm corresponds to the
π-plasmon. These measurements confirm that the deposited graphene is responsible for
these modifications of the Brewster angle [176]. The optical conductivities of one, two
and three layers are deduced from equation (6.6) (figure 6.7b). In the visible and near
infrared range, the conductivity is close to the universal constant value σ0 = πα ε0c
for one layer, and 2σ0 for two layers, as expected for high quality graphene. The three
layer area shows a larger shift than foreseen. This has to be related with the larger
uncertainty on the number of layers and the presence of structural imperfections. Indeed,
the statistical analysis using Raman spectroscopy following the approach described in
[174] has shown that the uncertainty for the three layers area is much larger than for the
other areas, see fig. 6.8. Apart from that, our results are in line with the one obtained by
Mak et al which are based on the optical measurement of the reflectance contrast [171].

At higher energy (UV), the position of the peak at 268 nm (4.6 eV) is in good agree-
ment with Mak et al. The intensity of the peak is greatly enhanced, nearly reaching eight
times the universal conductivity for a single layer and up to eighteen times for three
layers, while the previously cited work gives a maximum value of less than four times
the universal conductivity for a single layer and fifteen for three layers. As the approxi-
mation of low conductivity is no more valid in this range, quantitative conclusions on
the resonant maximal value of the conductivity cannot be drawn.

Conclusion

The Brewster angular shift is explained by the change in the effective polarization of the
substrate accounting for the conducting layer at the interface. This shift can be easily
determined by an approximated formula for a given material. On the other hand, the
conductivity of the 2D material or the number of layers may be determined with a non-
invasive method from the measurement of the Brewster angle on a coated substrate. Due
to graphene tunability, it can be used to actively control the optical reflection at surfaces
by means of a gate voltage. Applications in telecommunications could be imagined. For
example, in [16], they proposed an ultra-broadband THz intensity modulator based on
the control of the Brewster angle using the tunability of the conductivity of graphene.
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Figure 6.7: a) Brewster angle θB for a glass substrate (black), a mono- (red), bi- (green)
and trilayer (blue) graphene. Inset: zoom in the 750 − 950 nm region. b) Retrieved
conductivity using the second approximation. Doted lines correspond tomultiple integers
of σ0. Reproduced from [B].

Figure 6.8: Number of layers histograms for the monolayer region (left), the bilayer
region (middle) and the trilayer region (right). Reproduced from [B].
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Plasmons in nanostructured 2D mate-
rials

7.1 Plasmons in graphene nanodisks . . . . . . . . . . . . . . . . . . 114
7.2 Plasmons in corrugated graphene . . . . . . . . . . . . . . . . . 120
7.3 Plasmons in grain boundaries of TMDs . . . . . . . . . . . . . . 129

Conducting 2D materials sustain propagating and localized plasmons in the same
manner than metallic nanoparticles do. In the first section, localized surface plasmon
resonances (LSPRs) are investigated in graphene nanosdisks and nanodisk dimers in a
classical framework. Second harmonic generation is efficient in such system thanks to
the plasmonic resonance. Then, corrugated graphene is shown to exhibit LSPRs in the
visible range using TDDFT. These plasmons, localized in the nanometer-sized ripples of
graphene, have been experimentally detected using surface enhance Raman spectroscopy.
In the last part, 1D polaritons are theoretically investigated. Those plasmons appear in a
1-dimensional conducting channel, arising from atomic restructuration in 2D materials.
This phenomenon is investigated for metallic grain boundaries and edges of TMDs.
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7.1 Plasmons in graphene nanodisks

In this section, I briefly summarize the results of our article [A], obtained during and after
my internship in the laboratory of nanophotonics and metrology of Pr. O. Martin, form
the EPFL, Switzerland. One of the research themes of his lab is the study of non-linear
phenomena from metasurfaces or plasmonic nanostructures.

Non-linear phenomena such as second-harmonic generation (SHG), sum-frequency
generation or four-wave mixing require high field intensity to be efficient [177]. The
field enhancement caused by plasmon resonances can efficiently increases the non-
linear response. 2D materials have been studied for several years for their potential
applications in non-linear optics [178]. A large variety of non-linear phenomena have
been investigated in 2D materials and heterostructures in the recent years [179–183].

In the article [A], field enhancement close to graphene nanodisks and nanodisk
dimers is investigated. The SHG response of such systems is studied, as a function of
relative positions of the disks.

Plasmon in a single graphene disk

The plasmonic resonances of graphene disks of diameters of several tens to several
hundreds of nanometers have been largely investigated in the last decade [38, 82, 184–
188]. First, these results are reproduced for a single nanodisk of 100 nm using a SIE
method coupled with an eigenmode method. The surface integration has been performed
with an optimized approach in order to improve the numerical accuracy [189]. This
improvement was mandatory due to the very short distance between opposite triangles
in the discretization mesh, a direct consequence of the ultra-low thickness (of 0.5 nm)
of the material with respect to the average triangle size. The permittivity of graphene
is obtained using the Kubo formula (see section 1.3), with typical value for the Fermi
energy (EF = 0.4 eV), the relaxation time τ (ℏτ−1 = 1.6 meV) and the temperature of
T = 300 K [25, 38]. Furthermore, a term has been added to the conductivity to take into
account the contribution of the edge electron states, resulting from the finite nature of
the nanostructures [190] (the reader may refer to [A] for more details). The nonlinear
polarization is computed considering the component χ2

nnn of the surface tensor, where n
denotes the normal to the surface mesh triangles. The implementation of all the tensor
elements in the SIE formalism, which is straightforward, is not mandatory to assess the
multipolar nature of the second harmonic wave. Moreover, the frequency dependence
for χ2

nnn which is set to 1 in the present work, is not considered here, allowing to obtain
qualitative results. The incident plane wave propagates perpendicularly to the disk. The
scattering cross-section from a single graphene nanodisk is plotted in figure 7.1, on
the left. The scattering spectrum reveals two peaks, one at 0.153 eV and the other at
0.307 eV. It was demonstrated that, if only the Drude-like conductivity of graphene is
considered, the resonance frequency ωpl of the dipolar mode for a single nanodisk of
suspended graphene (without substrate), depends on its diameter and the Fermi energy
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Figure 7.1: On the left: scattering by a 100 nm diameter graphene nanodisk (logarithmic
scale) as a function of the incident electromagnetic wave energy ; on the right: eigenmode
patterns at 3 different energies. The three eigenmodes found between 0.1 and 0.32 eV
corresponding respectively to: a dipolar mode, a quadrupolar mode, and an octupolar
mode. Red and blue colors correspond to positive and negative surface charges whereas
white represents a zero surface charges. Reproduced from [A].

and is given by (see section 1.3):

ℏωp =
e

2π

(
12.5EF

ε0d

)1/2

. (7.1)

For the chosen parameters, this equation gives a resonant energy at 0.151 eV. The
maximum of the first peak in the scattering cross-section spectrum occurs at 0.153
eV, indicating that this resonance corresponds to the dipolar mode. This observation
is confirmed by an eigenmode analysis (figure 7.1, on the right) which is in excellent
agreement with eq. (7.1). The small difference in energy is attributed to the modification
of the conductivity caused by the electronic edge states, which are not considered in
eq. 7.1. A second resonance is observed at 0.307 eV (see eigenmode in figure 7.1 on the
right). A multipolar analysis revealed that this mode corresponds to an octupole. The
eigenmode analysis revealed a third mode at 0.204 eV, corresponding to a quadrupolar
resonance. However, this mode cannot be excited due to its symmetry, hence the absence
of a corresponding peak in the scattering spectrum.

Plasmon in a dimer of graphene disks

In this section, dimers composed of graphene nanodisks with different gap sizes g are
considered (figure 7.2). The z-axis is defined perpendicular to the graphene plane and the
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Figure 7.2: Schematic view of the graphene disk dimer with gap size g, diameter d and
vertical shift h. Reproduced from [A].

x-axis and y-axis are defined, respectively, parallel and perpendicular to the dimer axis.
The incident wave propagates along the z-axis and is polarized along the x-axis. The
gap size g (measured along the x-axis) ranges from 2 nm to 640 nm. For extremely small
distances, e.g. 2 nm, quantum effects such as quantum tunneling arise [191, 192] but most
importantly the kind of edge termination near the gap region influences dramatically
the field enhancement [38]. As these effects have not been taken into account here, the
results obtained for a gap size of 2 nm should be put into perspective.

Three peaks are observed in the scattering cross-section spectrum (figure 7.3, top
panel). The two peaks at low energy blueshift as the gap size increases. On the contrary,
the spectral position of the highest energy peak (around 0.3 eV) is only slightly influenced
by the gap size. Interestingly, the scattering intensity does not decrease significantly
with the increase of the gap size for the dipolar mode (figure 7.3, inset).

It is well known that, due to the coupling between the LSPRs, the near-field intensity
is enhanced in the nanogap [193]. In particular, it was shown that this enhancement
could be as high as 106 for graphene disks [38]. The spectra for the field amplitude
enhancement, Et

Eapp
with Et the amplitude of the total field and Eapp the amplitude of

the applied field , evaluated at the center of the nanogap for different gap sizes (figure
7.3, bottom panel), clearly indicate that there are other modes excited between 0.2 eV
and 0.3 eV, not visible in the far-field response. The charge distributions at all the
resonant frequencies are represented in figure 7.4 for a gap size of 2 nm. The dipolar
and quadrupolar bonding modes correspond to the two modes at low energies observed
in the spectra. Their bonding nature results in the adequate symmetry for these modes
being excited by an incident plane-wave at normal incidence. The bonding dipolar mode
permits to enhance the intensity in the nanogap by up to seven orders of magnitude, in
agreement with previous research [38]. The other modes also have a bonding nature, but
it takes place between higher order modes. For all the observed modes, the near-field
enhancement increases as the distance between the graphene nanodisks decreases.

It is thus expected that the SHG process would be greatly enhanced at these reso-
nances when the gap size is small, in particular for an incident energy of 0.135 eV. This
prediction is investigated in the next section.
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Figure 7.3: Dimers of graphene disks. Top panel: Scattering cross-section shown in
logarithmic scale; inset: zoom on the dipolar mode at the resonance; bottom panel:
Enhancement of the field intensity between the two disks shown in logarithmic scale; as
function of the incident wave energy for a dimer of 100 nm diameter graphene disks
with gap sizes ranging from g = 2 nm to 640 nm. There is no vertical shift between the
two disks (h = 0 nm). Reproduced from [A].
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Figure 7.4: Normalized imaginary part (five first column) and real part (last column) of
the charge distribution at the graphene nanodimer surface, evaluated at the energy of
each peak observed in figure 7.3. Reproduced from [A].
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Figure 7.5: Second harmonic intensity shown in linear scale ; inset: zoom on the dipolar
mode at the resonance - as function of the incident wave energy for a dimer of 100 nm
diameter graphene disks with gap sizes ranging from g = 2 nm to 640 nm. Reproduced
from [A].

SHG by a dimer of graphene disk

It is well known that SHG is not possible for centrosymmetric materials such as graphene.
However this argument is only valid in the electric dipolar approximation and for local
dynamical conductivity. At local surface plasmon resonance, high local field and gradient
lead to high multipolar response, as predicted for graphene [194]. SHG response is also
expected for nanostructured systems for which the symmetry is locally broken at the
edge.

Contrary to the expectations, the SHG scattering cross-section is not enhance for the
smaller gaps (figure 7.5). It is even the inverse that happens for the dipolar mode. The
larger the gap, the higher the SHG response. This behavior is explained by the so called
silencing of the SHG emitted from the gap due to the symmetry of the nonlinear sources.
The same effect has been reported in the case of dimers composed of gold nanorods
[195]. Indeed, the sources of the second harmonic waves standing at each side of the
nanogap oscillate out of phase. As a consequence, the SH waves coming from each side
of the nanogap tend to annihilate each other in the far-field, suppressing an otherwise
high contribution to far-field SH intensity. This silencing effect increases as the distance
between the nanodisks, i.e. between the out-of-phase SH sources, decreases. This tends
to compensate the fundamental intensity enhancement occurring in the gap, resulting
in an attenuation of the SHG.

In order to overcome the limitation in the SHG yield due to the silencing effect, it
is necessary to reduce the destructive interference between the SH fields coming from
the nonlinear sources at each side of the nanogap. One simple way to achieve this is to
vertically shift, i.e. along the propagation direction z of the incident wave (see figure 7.2),
one of the nanodisks relatively to the other. The maximum of SH intensity is plotted as
a function of the vertical shift in figure 7.6. Although a small vertical shift of 1 or 2 nm
already dramatically enhances the SH intensity in the near-field (figure 7.6, left panel,
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Figure 7.6: SHG from a dimer composed of two 100 nm graphene nanodisks with a gap
size g = 2 nm as a function of the vertical shift h between the disks. Left panel: near-field
intensity in the middle of the gap in the xy plane and next to the top or bottom disk;
Right panel: far-field intensity. Reproduced from [A].

the intensity is taken 1 nm away from the edge of a disk), the symmetry breaking is
not high enough to stop the destructive interference occurring in the far-field (figure
7.6, right panel). A vertical shift as high as 20 nm is required to maximize the SHG in
the far-field. Indeed, the symmetry breaking along with a strong enhancement of the
near-field intensity allows an improvement in the yield of the SHG. For a gap size of 2 nm,
the vertical shift permits to enhance the SHG up to a factor of 10. This phenomenon can
also be used to determine the vertical shift between two adjacent graphene nanodisks,
with a resolution close to 1 nm. This high resolution is directly related to the vanishing
thickness of the graphene layer.

Conclusions

Surface plasmon resonances in dimers of graphene disks dramatically enhance the
electric field intensity. Although the enhancement is larger for closer nanodisks, the
silencing effect decreases the SHG coming from the disks. A symmetry breaking enables
to greatly enhance the second harmonic response of the system. Here, a vertical shift
between the disks is proposed but various methods are also possible such as a difference
in the Fermi energy of the graphene disks or different substrates for each disk.

Second harmonic effects in graphene nanostructures have been continuously theoret-
ically studied in the recent years, for example in nanoribbons and nanosquares [120, 196,
197], but experimental investigations are still lacking to confirm the second harmonic
generation in graphene nanostructures.
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7.2 Plasmons in corrugated graphene

As seen in the previous section, plasmons in nanostructured graphene occurs in the
infrared or THz range for particles sizes around hundreds of nanometers. According to
eq. (7.1) [34], the plasmon frequency scale as ωpl ∝ d−1/2 with d the characteristic length
of the nanoparticle. In order to exploit graphene plasmons in the visible range, the size
of the nanoparticles must be shrunk to a few nanometers. However, at such a small
scale, the losses become prohibitive due to the charge carrier scattering on the edges
[35, 39]. In article [D], it is shown that strong nanocorrugation in graphene enables
the confinement of plasmonic resonance in nanometer-size structures. The resonance
frequency of these plasmons is actually in the visible range which is of great interest
for applications in biosensing or wave-guiding. The results of [D] are discussed in this
section

Experimental evidences of plasmons in corrugated graphene

When graphene sheets are synthesized, they are not completely flat. Microscopic ripples
form in supported graphene as well as in suspended graphene such that it is thermo-
dynamically stable [54]. These defects do not normally have a major impact on the
electronic and, a fortiori, optical properties of graphene. However, amplifying these
ripples may change the fundamental properties of graphene and paves the way for a
various range of new properties. The team of Levente Tapasztó of the Centre for Energy
Research in Budapest has synthesized graphene with unprecedentedly strong nanoscale
corrugations. They performed cyclic thermal annealing on mechanically exfoliated
graphene flakes on SiO2/Si substrate. The resulting samples have been analysed through
topographic STM (figure 7.7) . The root mean square roughness value extracted is esti-
mated to 0.5 nmwith an aspect ratio hmax/R = 0.5, where hmax stands for the maximum
height of the corrugation and R stands for the in-plane radius of the corrugation.

SERS measurements were performed on the different samples. The most striking
result was the observation of a strong Raman signature for an excitation at 633 nm
on the corrugated graphene (figure 7.8) compared to the quasi-flat graphene, without
exposing it to any chemical solution. The analysis of the spectrum revealed that this
strong signature originated from Copper(II) phthalocyanine (CuPC) molecules, one of
the most current dye, probably present due to contamination. It was determined by STM
that the CuPC molecules were present at a very low density. The observation of a peak
due to CuPC that is 20 times higher than the G band of graphene indicates that there is
a huge enhancement of the Raman response due to the corrugated graphene. Such high
enhancement in SERS is usually due to plasmonic resonance in the substrate at the given
excitation frequency. This leads to the hypothesis that corrugated graphene is a good
platform to sustain high quality plasmons. In the following, I show that theoretically,
plasmons are possible in graphene ripples.
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Figure 7.7: On the left: topographic STM images of graphene sheets prepared by cyclic
thermal annealing, displaying particularly strong nanoscale corrugations, with lateral
size below 10 nm and height of about 1 nm; on the right: typical graphene ripple
geometries measured for nanocorrugated (hmax/R ∼ 0.5) and as-exfoliated (quasi-
flat) graphene (hmax/R ∼ 0.15) on SiO2; x and z are the in-plane and out-of-plane
coordinates, respectively. Reproduced from [D].

Figure 7.8: Raman spectra (633 nm) of quasi-flat (a) and nanocorrugated (b) graphene
sheets subjected to air, the latter detecting high intensity CuPC contamination peaks
from nominally clean laboratory air. Reproduced from [D].
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Figure 7.9: Model geometry of the corrugated graphene. (a) 3D image of the geometry
(b) 2D top view of the geometry. The C-C bonds around the hill are colored. Reproduced
from [D].

Theoretical model of corrugated graphene

The corrugated graphene cannot be directly simulated using the conductivity of graphene
in classical electrodynamics because the fundamental electronic properties of graphene
are modified. Therefore, DFT calculation must be performed on a simplified system to
study the optical properties of such system. Indeed, the corrugations observed experi-
mentally are much larger that what is possible to study in TDDFT. A smaller system,
representing a ripple with the same aspect ratio as the graphene corrugations presented
in figure 7.7 (hmax/R ∼ 0.5) has been proposed. In the DFT unit cell, 50 atoms are
disposed with a hill of 2.5Å height and a vacuum layer of 25Å (figure 7.9). In this case,
the curvature of the ripple is approximately the same as in the synthesized samples.
The main influence of the corrugations on the electronic properties can therefore be
reproduced. Obviously, this theoretical model has a periodicity that is not present in the
real samples. However, this periodicity was not expected to dramatically change the
optical properties.

To investigate the influence of nanoscale deformations on the electronic structure
of graphene, tunnelling spectroscopy measurements were performed (figure 7.10a).
Tunnelling spectra acquired on nanocorrugations display distinctive features (peaks
and shoulders) around ±450 mV compared to spectra measured on quasi-flat areas of
the same sample. The density of states averaged over the graphene nanocorrugation
calculated using the DFT code SIESTA (figure 7.10b) displays good agreement with the
experimental tunnelling spectra. Plotting the spatial distribution of the calculated local
density of states (LDOS) at energies near the LDOS peak clearly provides evidence for
electronic states localized on the graphene nanoprotrusion (figure 7.10b inset).

Optical response of corrugated graphene

Ellispometry measurements were performed in order to obtain the refractive index and
the surface conductivity of the corrugated graphene samples.
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Figure 7.10: Electronic structure of graphene nanocorrugations. a) Tunnelling spectra
measured on D ∼ 5 nm graphene corrugations with aspect ratios (hmax/R) ∼ 0.4˘0.5,
displaying peak-/shoulder-like features around ±450 mV. The inset shows tunnelling
spectra recorded on quasi-flat areas of the sample. b) DFT-calculated (with SIESTA)
electronic density of states averaged over a model graphene nanoprotrusion of similar
aspect ratio (hmax/R ∼ 0.4). The inset shows the spatial distribution of the LDOS,
revealing the localization of specific electronic states on the nanocorrugation. Spectra of
different colours have been acquired at different spatial locations for both nanocorrugated
and flat areas. Reproduced from [D].

In parallel, the surface susceptibilities have been computed in the TDDFT approach
using the GPAW code (details can be found in the appendix). The in-plane conductivity of
flat and corrugated graphene in reduced unit of the theoretical conductivity of graphene
in the visible range (σ0 = e2/4ℏ) is shown in figure 7.11. The computed conductivity of
flat graphene is approximately σ0 in the infrared and visible range and slightly increases
in the UV range due to the presence of π-plasmon.

In the visible range (500 - 800 nm), well-defined peaks appear. Some of these peaks
can be related to the optical transitions associated with the maxima (peaks) in the DOS
(figure 7.12, calculated with GPAW), although no one-to-one correspondence can be
established. For example, the peak at 785 nm corresponds approximately to the transition
energy indicated on figure 7.12 of 1.59 eV.

The experimental and simulated surface conductivities and refractive indexes are
shown in figure 7.13. There is reasonably good agreement between the curves despite
the fact that the atomic configuration is simplified compared to the corrugation of the
sample. This good agreement shows that the theoretical model catches the main optical
features of the corrugated graphene samples.
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Figure 7.11: Conductivity of flat and corrugated graphene in the visible and infrared
ranges. Reproduced from [D].
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Figure 7.12: Density of states of the graphene corrugation with high aspect ratio, calcu-
lated in TDDFT with GPAW. Reproduced from [D].
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Figure 7.13: Comparison of optical conductivity obtained from DFT calculations and
refractive index and extinction obtained from spectroscopic ellipsometry measurements
displaying a reasonably good agreement up to 750 nm. Reproduced from [D].

Plasmon eigenmode analysis of corrugated graphene

The eigenmode analysis presented in section 2.1 was performed on the system of figure
7.9 using the GPAW code [198]. Over the 673 eigenmodes, 4 of them display interesting
features (figure 7.14). Two of the modes (mode 2 in blue, mode 4 in green) have the real
part of the eigenvalue crossing the zero line, at 2.9 eV and 3.1 eV for mode 2 and at 3.9
eV for mode 4. Their respective loss functions have peaks around the corresponding
energies. However, two other modes have large loss functions, modes 1 (red) and 3
(purple), in particular where their dielectric function is close to zero. To fix the ideas, for
each mode, one frequency is selected, represented by a vertical line in figure 7.14: 1.9 eV
for mode 1, 2.9 eV for mode 2, 3.6 eV for mode 3 and 3.9 eV for mode 4.

To determine which modes are crucial for the optical properties, the weight of each
mode is calculated (figure 7.16). The two modes which have their dielectric function
crossing the zero line (modes 2 and 4) have a vanishing weight, hence they cannot be
excited by light and they do not contribute to the macroscopic spectra (figure 7.15).
However, the two other modes have approximately a unit (maximum) weight in the
frequency range where their loss function is high (below 3.2 eV for mode 1 and above
3.2 eV for mode 3). In consequence, for energy lower than 3.2 eV, the mode 1 determines
the optical behavior of the ripple, while at energy larger than 3.2 eV, it is determined by
the mode 3.

The spatial charges distribution corresponding to these 4 main eigenmodes are
plotted in figure 7.17. The first mode is a dipolar mode localized around the hill, which
is coherent with the fact that this resonant mode is visible in the macroscopic spectra.
The others modes exhibit more complicated behavior with partially delocalized charges.
These charge distributions show that the plasmon are mainly localized around the ripple.

Scanning near-field optical microscopy (SNOM) has also been performed on the
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Figure 7.14: Result of the eigenmode analysis. Top: Real part of each eigenvalue εi;
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Figure 7.17: 3D charge density distributions of a) mode 1 at 1.9 eV b) mode 2 at 2.9 eV c)
mode 3 at 3.6 eV d) mode 4 at 3.9 eV.

samples. Interference patterns have been observed on the SNOM image (figure 7.18),
suggesting the presence of propagating plasmons in nanocorrugated graphene. It has
been theoretically predicted and experimentally confirmed that when separated nanos-
tructures, hosting localized plasmons, are located in the close vicinity of each other (at
a distance smaller than the excitation wavelength), their interaction can give rise to
propagating plasmon modes [26, 199]. However, the TDDFT calculation do not corrobo-
rate this hypothesis. Indeed, when an excitation with a non-vanishing momentum k is
chosen, the optical spectra does not change and in particular the peak do not shift in
energy. Therefore the plasmons evidenced by the eigenmode method have no dispersion.
In consequence these propagating plasmons cannot be describe by our simple theoretical
model and are not described in details here.

EELS spectroscopy of corrugated graphene

In order to explain how localized electronic phenomena happen in the nanocorrugation,
reflection EELS experiments [200] have been performed (figure 7.19). It turned out
that the energy provided by the electron irradiation leads to a rapid (order of seconds)
structural relaxation (smoothing) of graphene nanocorrugation on SiO2 substrate. A
significant quenching of the π-plasmon is observed the EELS spectra of the corrugated
samples. After a few minutes of irradiation, the intensity of this π-plasmon rapidly
evolves into full-intensity peak, corresponding to quasi-flat graphene and associated with
a smoothing of the graphene (figure 7.19a). In the numerical simulation (figure 7.19b) the
quenching and the small red-shift of the π-plasmons of corrugated graphene compared
to flat layer is qualitatively reproduced. However we do not observe the extinction of
the peak because the density of corrugations is much larger in the experimental samples
than in the theoretical system, in which a high number of carbon atoms stands in flat
areas.

The quenching of the π-plasmon is explained by a change of hybridization from sp2
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Figure 7.18: SNOM image (wavelength λ = 488 nm) of nanocorrugated graphene
revealing clear interference maxima and oscillations in the proximity of edges (marked
by dashed lines) and defects. The inset shows a line cut perpendicular to the graphene
edge. 1L represents the single layer and 2L the bilayer graphene areas on the SNOM
images. Reproduced from [D].
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Figure 7.19: a) Reflection electron energy loss spectra of nanocorrugated graphene sheets
as a function of electron irradiation time displaying a strong suppression of the graphene
Pi plasmon peak near 6 eV in corrugated samples that gradually recovers by smoothing
out the corrugation with irradiation dose. b) EELS calculated from TDDFT for flat (green)
and corrugated graphene (red). Reproduced from [D].
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to sp3. This change of hybridization due to the curvature of the corrugated graphene is
probably at the origin of the localization of the charge in the ripples.

Conclusions

Plasmon resonances have been investigated in nanocorrugated graphene. The extremely
small spatial extension of the corrugations allows us to tune the frequency resonance of
the plasmon up to the visible range, which was long awaited. These plasmons have been
theoretically analyzed using the eigenmode decomposition of the dielectric function.
Here, two modes have been shown to contribute to the macroscopic spectra using this
method.

The enhancement of the field due to the plasmon allows us to perform surface
enhanced Raman spectroscopy which has been shown to be very efficient to detect some
molecules in very low concentration. Such SERS substrate are interesting in biosensing.
As an example, diabetics would benefit from SERS if their blood glucose level can be
determined daily from such non-invasive spectroscopy. The only invasive operation
would be the subcutaneous application of a substrate, which must be done only once [40].
However, the bio-compatibility of graphene must be investigated first before considering
such application for corrugated graphene.

7.3 Plasmons in grain boundaries of TMDs

It has been shown before that plasmons can occur in nanoparticles and nanocorrugations
of 2D materials. Here, other types of nanostructure are considered: grain boundaries and
edges. Grain boundaries are line defects present on 2D material with atomic reconstruc-
tions that change the local electronic properties (see section 1.2). Atomic reconstructions
also arise at the edges of nanostructures (e.g. nanoribbons). For nanostructures of the
size of a few nanometers, these atomic reconstructions can dramatically change the
electronic properties in such a way that 1D conducting channel can be formed, even in
insulating or semi-conductor 2D materials [201–203]. These conducting channels are a
good platform to sustain plasmonic resonance confined in 1D. Such extremely confined
plasmons have already been evidenced at the edges of MoS2 nanoribbons [37, 204].

Grain boundaries of 2D materials can also exhibit metallic behavior, such as in
graphene [203], h-BN [202] and TMDs [201]. In particular, mirror twin boundaries (MTB)
are boundaries (sometimes referred as joined edges defects [205]) in 2D TMDs with a
mirror symmetry between the two grains [41, 201, 206–208]. At the boundaries, the
atomic reconstructions change the electronic properties and breaks the spatial symmetry
but far from the boundaries the properties are the same as those of the pristine 2D
materials. Several types of MTB have been identified lately, most of which exhibit
metallic behavior associated with localized electronic states at the Fermi level [41, 201].
For example, in [41], the authors calculated the density of state (DOS) of a MTB of MoSe2,
which shows a non-zero density of state in the bandgap due to the metallic states (figure
7.20).
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Figure 7.20: Calculated DOS of a MoSe2 MTB. The inset shows the simulated STM images
of the corresponding atomic structures. Reproduced from [41].

Some TMDs even exhibit a high density of MTBs, that forms complex quasi-periodic
structures of a few nanometers [209]. Optical phenomena like photo-luminescence [210]
and bi-exciton emission [211] have also been reported in these grain boundaries.

Here, using the eigenmode method, I study the plasmonic response of some MTBs
using the GPAW code. More in-depth investigations could increase the robustness of
this research but it is planned to publish these results in the near future.

Atomic structures of MTB

A single MTB cannot be directly included as a periodic feature in a supercell in DFT
because of the mirror inversion of the lattice. Two solutions exist to overcome this
problem. The first one is to include a second MTB which inverses the lattice again such
that periodic boundary conditions are possible. The second one is to include the MTB in
the middle of a ribbon. For this second solution, a vacuum interval must be added in the
cell in order to avoid interactions between repeated ribbons. Both these solutions have
been used in this work.

TwometallicMTBs, experimentally highlighted in [201], have been selected. Similarly
to what has been done for the numerical modelling in [41], ribbons of MoSe2 containing
these MTBs have been modelled (figure 7.21a,b). The ribbons are periodic along the
x-axis, have a width w of 3.5 nm and the unit cells have a vacuum interval of 1.5 nm.
The first ribbon (figure 7.21a) has edges of selenium atoms (in green). The second one
(figure 7.21b) has edges of molybdenum atoms (in purple). Unrealistically, the edges of
these ribbons are not passivated. For completeness, a passivated ribbon, with hydrogen
atoms bonded to the selenium atoms forming the edges of the first ribbon, has been
considered but the electronic properties of the MTB are not influenced at all by the
passivation of the edges. The focus of this work being in the MTBs, these results are
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Figure 7.21: Structure of MoSe2 with MTBs. a) Ribbon of width 3.5 nm with selenium
boundary in the middle;b) Ribbon of width 3.5 nm with molybdenum boundary in the
middle; c) 2D plane with repeating MTBs. Figure created using the Molecule3D MATLAB
function [212].

therefore not shown here. The last structure that has been modelled is a 2D plane with
periodic alternating repetitions of the two previous MTBs along the y-axis (figure 7.21c).

Band structure of the MTBs

The band structures along the x-axis of the three structures are plotted in figure 7.22.
The metallic states of the MTBs and the edges are associated to the bands crossing the
Fermi level in the band structure. The metallic bands associated to the MTBs or the edges
may be discriminated by analysing the electronic density map for each metallic state.
Master student David Antognini Silva has done it in its master thesis [213]. Those bands
are labelled with B1 for the first boundary (first ribbon, figure 7.22a) and B2a, B2b and
B2c for the second boundary (second ribbon, figure 7.22b). The other metallic bands
are edge states. As the 2D plane of figure 7.21c contains both MTBs, the metallic bands
associated to both MTBs are present in its band structure but not the edge bands (figure
7.22c). This confirms the analysis of the metallic states of [213]. These MTB bands are
only slightly modified for the planar structure of figure 7.21c compared to those of the
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Figure 7.22: Band structure of a) the first ribbon of figure 7.21a; b) the second ribbon of
figure 7.21b; c) the 2D plane of figure 7.21c. The Fermi level is depicted has a horizontal
red line.

ribbons of figure 7.21a and b. It suggest that the localized states do not disturbs one
another.

Eigenmode analysis of the MTBs

At first, only the plasmon in the the first ribbon (figure 7.21a) is investigated. The results
of the eigenmode decomposition for an arbitrary value of the momentum q = 0.15Å−1

are presented in figure 7.23. Three modes are interesting here. The first two modes (blue
and red) are edge modes and have their eigenvalues crossing zero around 0.39 eV, with a
peak at the corresponding energy in the loss spectrum. The last one (yellow) is a MTB
mode and has its eigenvalue crossing zero and the peak of the loss spectrum at 0.55 eV.

To determine the nature of the plasmonic excitation, the potential and charge density
profiles of these modes at the resonance energy are plotted (figure 7.24). On this figure,
the position of the ribbon is delimited by the dashed grey lines. The potential of the first
two modes (in blue and orange) are maximum near the edges, with an inversion of the
sign for the second mode. They are, respectively, the symmetric and anti-symmetric
hybridization of the plasmonic modes of the conducting edges. The third mode is the
plasmonic mode of the MTB, with a maximum value of the potential in the middle of the
ribbon. The charge density profiles are more complicated due to spatial oscillations of
the charge but follow the same trends as the potential.

The weights of these three modes are displayed on figure 7.25. The first edge mode
(symmetric mode) has a large weight below 0.4 eV. The weight is not maximum (w ̸= 1)
because the mode is localized in a small section of the unit cell. As the weight is the
product of the spatial average of the potential and the charge density, (see eq. (2.117)),
delocalized modes contribute more efficiently to the total spectra even if they are non-
resonant. On the other hand, the anti-symmetric mode has a vanishing weight. This
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Figure 7.26: Isosurface of the charge density for theMTBmode at the resonance frequency,
positive potential is in red, negative potential is in blue. Three different times of the
oscillation of period T are considered : t = 0 (left), t = T/4 (middle), t = T/2 (right).

is expected as the average charge and potential of an anti-symmetric mode is null. In
consequence, this mode does not contribute to the macroscopic response of the ribbon.
The MTB mode (mode 3) has a large weight around 0.5 − 0.6 eV, near the resonance
frequency.

To better understand the nature of the plasmon, 3D visualization (as isosurface) of the
potential of the MTB mode is shown in figure 7.26 (positive potential is in red, negative
potential is in blue). It is visualized at three different times (t = 0, t = T/4, t = T/2,
with T the period), in order to show the propagation of the plasmon. It is now clear that
this mode corresponds to a longitudinal wave propagating along the ribbon axis and
centered on the MTB. The plasmon is thus a polariton confined in a 1D grain boundary.
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Figure 7.27: Dispersion relation of the MTB mode.

Dispersion relation of the MTB plasmonic mode

The dispersion relation of the 1D plasmon polariton has been calculated (figure 7.27).
This dispersion is similar to what is obtained for plasmon at the edges of MoS2 ribbons
[204]. In this article, the authors notice that there is non-negligible contribution of the
interband transitions that lower the energy of the plasmon. Here, the slight bend around
q = 0.1Å−1 may be attributed to interband transition but further investigations are still
needed. Due to the momentum mismatch, this kind of plasmon cannot interact with light
but can be excited with fast electrons, similarly to polaritons at the surface of metallic
materials.

Robustness of the MTB plasmon

It has already been observed that the metallic states of the MTB are hardly affected by
the change of the structure (ribbon or 2D plane). Here, the robustness of the plasmon
resonance is investigated further. First, the plasmonmodes of the twoMTBs are compared
to the plasmons modes of the same MTB in the periodic 2D plane (figure 7.28). The
curves for both MTBs (figure 7.21, MTB 1: yellow and orange, MTB 2: blue) are similar
whether they come from the ribbon (solid lines) or the 2D plane (dashed lines). The
change in resonance energy is around 10% for the first MTB and only 1% for the second
MTB. Nevertheless, the global plasmonic behavior of the MTBs does not depend on the
environment of the MTB.

In figure (7.29), the maximum value of the weight of the MTB mode (at 0.45 eV) is
plotted in function of the size of the vacuum layer along the y-axis (perpendicular to
the ribbon). The maximum weight depends quasi-linearly to the vacuum layer size. It
is again explained by the fact that the weight is proportional to the spatial average of
both the charge density and potential, which are localized in the center of the MTB.
Thus, increasing the vacuum layer size does not change the total charge density and
potential associated to the mode but decreases the average. It is expected that the same
decrease in weight happens if the width of the ribbon is increased, without changing
the vacuum layer. However, this has not yet been verified numerically. On the other
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Figure 7.28: Eigenvalues of the dielectric function for two different MTB modes. First
MTB in yellow and orange; second MTB in blue. MTB in the ribbon: solid lines; in the
2D plane: dashed lines.

hand, the eigenvalue of the mode does not change with the size of the cell. Therefore,
the eigenvalue associated to the MTB can be seen as the intrinsic dielectric function of
the MTB.

Modelling large structures

The previous results pave the way to study complex structures composed of MTB like
those observed in [209] (figure 7.30). Indeed, the eigenvalue of the mode corresponds to
the dielectric function of the MTB, which just needs to be scaled depending on the size
of the unit cell. In particular, a structure as in the STM image in figure (7.30) could be
modelled using classical electrodynamics approaches, where the MTB is considered as a
different material with its own permittivity, embedded in a material with the permittivity
of the pristine 2D material. For example in DDA, this particular MTB could be modeled
as line of dipoles with polarizability calculated from the dielectric function of the MTB,
surrounded by dipoles of polarizability calculated from the dielectric function of the
planar MoSe2. A benchmark could be done by comparing the optical spectra of the
periodic structure presented above (figure 7.21c) obtained with this effective method and
with the TDDFT method.

Conclusions

One-dimensional plasmon polaritons have been investigated in TMDs. These plasmons
occur in 1Dmetallic channel originating from atomic reconstructions. The reconstruction
affects the edges of nanoribbons or quantum dots [214, 215] but also grain boundaries
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Figure 7.29: Maximum weight of the MTB mode compared to the size of the vacuum
layer.

Figure 7.30: STM images of a complex structure with MTBs and an atomic model.
Reproduced from [209].
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arising naturally as defects on 2D materials. These grain boundaries can form complex
structures that are difficult to study using an ab initio approach. Therefore, it is suggested
to use an effective model in a classical electrodynamics approach.

Experimentally, the detection of these plasmons can be used to characterize the
materials and estimate the density of defects. On the other hand, one may take advantage
of these plasmons by using the 2D materials as substrate for SERS measurements as
proposed in the previous section with corrugated graphene.
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Conclusions and perspectives

2D materials are a playground for nanophotonic researchers due to the broad variety of
phenomena distinctive from those in bulk materials. In this thesis, two main subjects
were discussed: the modelling of 2D materials and the investigation of plasmons in
nanostructured 2D materials. Several original results have been proposed on these topics,
and a few other in auxiliary works. Hereafter I summarized these findings.

The modelling of 2D materials for optical calculations has been debated recently.
Two models are usually used to describe 2D materials: a 3D model, using an effective
permittivity, and a 2D model, using the surface susceptibility. The difference between
these two models, and in particular the effect of the anisotropy in these models, have
been barely investigated in the literature. On the modelling of 2D materials, I have
theoretically shown that

• the surface irreducible susceptibility χS is the intrinsic response function of a 2D
material only for in-plane polarization. Another response function, the surface
external susceptibility ξs, must be defined for the out-of-plane polarization;

• for a vertical heterostructure, the accurate effective model is to add the surface
irreducible susceptibility of each 2D material for in-plane polarization, and to add
the surface external susceptibility of each 2Dmaterial for out-of-plane polarization;

• for horizontal heterostructure, the accurate optical effective model is to consider
the 2D structure as isotropic in the plane, with a surface irreducible susceptibility
in the plane equal to the weighted sum of the surface irreducible susceptibility of
each 2D materials, while for the out-of-plane polarization, the effective external
susceptibility is the weighted sum of the surface external susceptibility of each 2D
material;

• these effective models are not able to describe plasmonic resonances occurring in
heterostructures and, in general, the RCWA is more adapted to study such systems.
However, for curved system, other complex systems, the effective models could be
efficient when the RCWA cannot be applied;

• the 3D thin film model and the 2D surface polarization sheet model are equivalent
for small phase shift if the anisotropy is accounted for, but the 3D model is more
representative of the reality;

• ideally the isotropic thin film model should not be used, because an artificial
plasmonic resonance may take place for out-of-plane polarization;

• the out-of-plane response of the different 2D materials and nanostructures con-
sidered in the thesis is negligible below 10 eV and becomes important at higher
energies.
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In brief, the appropriate quantities to describe a single 2D material layer are the
surface susceptibilities. However, the most accurate theoretical model for 2D materials
is an anisotropic 3D model due to the non-vanishing thickness of 2D materials.

Further research is needed on some points. First, some approximations have been
done in the TDDFT calculations. In order to obtain better quantitative results for the
optical anisotropic response of 2D materials, the GW and the BSE approaches should be
used. The consequences of the random-phase approximation are also to be discussed in
this context. Moreover, the long range Coulomb interaction arising for the out-of-plane
polarization between repeated layers in the TDDFT calculations also affects substantially
the optical spectra. Some solutions have been proposed in the literature to discard this
effect, and they could be implemented to further increase the accuracy of the calculations.

A further analysis of the microscopic dielectric function of 2Dmaterials is also needed
to determine its spatial variation near the atomic plane, in both in-plane and out-of-plane
polarizations.

Only a few simple systems have been investigated, but a large variety of 2D materials
and heterostructures can be studied using these findings. Besides, these results could
not only be used for better modelling of 2D materials in numerical simulations but also
for a more accurate experimental determination of the optical constants of 2D materials.

A modification of the Brewster angle due to conducting 2D materials deposited on
a dielectric surface has been highlighted in the literature. On this modification of the
Brewster angle, I have reported that

• the surface irreducible susceptibility of a conducting 2D material may be deter-
mined from measurement of the Brewster angle shift induced by the 2D material;

• the Brewster angle can be actively modified by an electric control of the Fermi
level of a graphene layer at the interface, with potential applications in optical
telecommunications.

However, the anisotropy of the 2D material was not accounted in the study, and further
investigations that include the out-of-plane response of the 2D material would permit to
determine more accurately the Brewster shift in the UV.

Plasmons in nanowires of noble metals have been studied recently for their potential
application as nanophotonics waveguides of reduced size compared to conventional
waveguides. About such nanowires, I have reported that

• gold nanowires of high aspect ratio sustain Fabry-Perot plasmonic modes even
below 0.1 eV ;
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• the Fabry-Perot modes are robust against laser-induced modification of the wire
extremities at low incident energy, but can be tuned by laser irradiation at higher
energies.

Further theoretical investigations would be of great interest in order to better under-
stand the effect of nanoparticles at the extremities of the nanowire and their influence
on the reflection coefficient of the electromagnetic wave at these extremities.

Plasmons in 2D materials are interesting for their high confinement and their long
propagation distance. Graphene plasmon resonances stand in the infrared and it has
been long awaited to achieve plasmon resonance in the visible range. On plasmons in
nanostructured 2D materials, I have reported that

• dimers of 100 nm-diameter graphene disks enhance the field drastically at plas-
monic resonance, when the distance between the two disks is close to the nanome-
ter scale;

• second harmonic generation is silenced in these dimers due to the symmetry of
the system, and a slight symmetry breaking greatly increases the second harmonic
response;

• an eigenmode method based on the diagonalization of the microscopic dielectric
function is efficient to study localized or propagating plasmons in nanostructures
of a few nanometers;

• corrugated graphene sustains localized plasmons at resonance frequencies in the
visible range;

• corrugated graphene can be used as a substrate for highly sensitive biosensing
using surface enhance Raman spectroscopy;

• mirror twin boundaries in TMDs are metallic channels that can sustain 1D plasmon
polariton;

• high density of grain boundaries in monolayer 2D materials could be studied using
an effective model in classical electrodynamics if the dielectric function associated
to the grain boundaries is calculated using the eigenmode method.

As it has already been pointed out above, several improvements can be made in the
TDDFT calculations of the corrugated graphene and the grain boundaries of TMDs: cal-
culations performed with the GW and the BSE approaches would give better quantitative
results. Calculating the transverse microscopic dielectric function is also interesting in
order to investigate accurately the optical response of these larger structures.

An effective approach, as proposed in the last point, would need an adapted method
of classical electrodynamics. The DDA method (for example with the homemade code
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ddeels) seems to be an appropriate choice but it is not adapted for periodic materials.
Moreover, the DDA method does not account for non-local dielectric functions. If one
wants to study propagating plasmons, this two features should be implemented.

To conclude, the modelling of 2D materials and their anisotropy is now much clearer
thanks to recent articles, this thesis and the submitted paper [F]. It seems that not much
remains to do on this topic, and now the models can be used to perform more accurate
calculations and experimental determinations of optical constants of 2D materials. For
the study of plasmons in nanostructured 2D materials, the eigenmode method has to be
proven efficient in the investigation of quantum systems. It paves the way to the study
of a large variety of 2D materials structures at the nanoscale.
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Appendix

Inputs file

As an example, the input file to calculate the ground state, the optical response functions
and the eigenmode decomposition of the microscopic dielectric function of graphite is
given below.

1 import numpy as np
2 import scipy.io
3 from ase import Atoms
4 from gpaw import GPAW, PW, FermiDirac
5 from gpaw.response.df import DielectricFunction
6

7 # Creating the unit cell
8 a=1.406643
9 c=3.35
10 pbc=True
11 graphite = Atoms(’C4’,
12 scaled_positions=[(1 / 3.0, 1 / 3.0, 0),
13 (2 / 3.0, 2 / 3.0, 0),
14 (0, 0, 0.5),
15 (1 / 3.0, 1 / 3.0, 0.5)],
16 cell=[(np.sqrt(3) * a / 2, 3 / 2.0 * a, 0),
17 (-np.sqrt(3) * a / 2, 3 / 2.0 * a, 0),
18 (0, 0, 2 * c)],
19 pbc=pbc)
20

21 # Parameters of the GS calculation
22 calc=GPAW(mode=PW(400),
23 xc=’LDA’,
24 kpts=(60,60,20),
25 random=True,
26 occupations=FermiDirac(0.025),
27 nbands=40,
28 convergence={’bands’:30})
29

30 # Launch GS calculation
31 graphite.set_calculator(calc)
32 graphite.get_potential_energy()
33

34 calc.write(’graphite.gpw’,’all’)
35

36 # Parameters for the response functions calculation
37 df=DielectricFunction(calc=’graphite.gpw’,
38 domega0=0.01,
39 omegamax=40.0,
40 eta=0.025,
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41 ecut=80,
42 name=’graphite’,
43 integrationmode=’tetrahedron integration’)
44 q=[1.0/10, 0.0, 0.0 ]
45

46 # calculation of the EELS spetrum
47 df.get_eels_spectrum(q_c=q,filename=’graphite_EELS’)
48

49 #calculation of the susceptibility in direction x
50 df.get_polarizability(q_c=q,direction=’x’,filename=’polarizability_x.

csv’)
51

52 # calculation of the eigenmodes
53 r,w,eigenvalues,omega0,eig0,v_ind,n_ind,weight,v_res,n_res,v_m,n_m=df.

get_eigenmodes(q_c=q)
54

55 # Saving the outputs
56 scipy.io.savemat(’grid.mat’,mdict={’r’:r})
57 scipy.io.savemat(’freq.mat’,mdict={’w’:w})
58 scipy.io.savemat(’eigen.mat’,mdict={’eigenvalues’:eigenvalues})
59 scipy.io.savemat(’omega0.mat’,mdict={’omega0’:omega0})
60 scipy.io.savemat(’eigen0.mat’,mdict={’eig0’:eig0})
61 scipy.io.savemat(’v_ind.mat’,mdict={’v_ind’:v_ind})
62 scipy.io.savemat(’n_ind.mat’,mdict={’n_ind’:n_ind})
63 scipy.io.savemat(’weight.mat’,mdict={’weight’:weight})

Other examples of input files can be found in the website of the GPAW code [158].

Modified script for the calculation of the eigenmodes

The script that calculates the eigenvalues and eigenvectors of the dielectric function
(provided within the code GPAW [158]) has been corrected and modified, in particular
to calculate the weight of each eigenmode. The modifications are notified by a comment
beginning with BM.

1 def get_eigenmodes(self, q_c=[0, 0, 0], w_max=None, name=None,
2 eigenvalue_only=False, direction=’x’,
3 checkphase=True):
4

5 """Plasmon eigenmodes as eigenvectors of the dielectric matrix
."""

6

7 assert self.chi0.world.size == 1
8

9 pd, chi0_wGG, chi0_wxvG, chi0_wvv = self.calculate_chi0(q_c)
10 e_wGG = self.get_dielectric_matrix(xc=’RPA’, q_c=q_c,
11 direction=direction,
12 symmetric=False)
13

144



14 kd = pd.kd
15

16 # Get real space grid for plasmon modes:
17 r = pd.gd.get_grid_point_coordinates()
18 w_w = self.omega_w * Hartree
19 if w_max:
20 w_w = w_w[np.where(w_w < w_max)]
21 Nw = len(w_w)
22 nG = e_wGG.shape[1]
23

24 eig = np.zeros([Nw, nG], dtype=complex)
25 eig_all = np.zeros([Nw, nG], dtype=complex)
26 weight = np.zeros([Nw,nG],dtype=complex) #BM
27 vm=np.zeros([Nw,nG],dtype=complex) #BM
28 nm=np.zeros([Nw,nG],dtype=complex) #BM
29 # Find eigenvalues and eigenvectors:
30 e_GG = e_wGG[0]
31 eig_all[0], vec = np.linalg.eig(e_GG)
32 eig[0] = eig_all[0]
33 vec_dual = np.linalg.inv(vec)
34 omega0 = np.array([])
35 eigen0 = np.array([], dtype=complex)
36 v_ind = np.zeros([0, r.shape[1], r.shape[2], r.shape[3]],
37 dtype=complex)
38 n_ind = np.zeros([0, r.shape[1], r.shape[2], r.shape[3]],
39 dtype=complex)
40

41 # Loop to find the eigenvalues that crosses zero
42 # from negative to positive values:
43 for i in np.array(range(1, Nw)):
44 e_GG = e_wGG[i] # epsilon_GG’(omega + d-omega)
45 eig_all[i], vec_p = np.linalg.eig(e_GG)
46 vec_dual_p = np.linalg.inv(vec_p)
47 overlap = np.abs(np.dot(vec_dual, vec_p))
48 index = list(np.argsort(overlap)[:, -1])
49 if len(np.unique(index)) < nG: # add missing indices
50 addlist = []
51 removelist = []
52 for j in range(nG):
53 if index.count(j) < 1:
54 addlist.append(j)
55 if index.count(j) > 1:
56 for l in range(1, index.count(j)):
57 removelist+= \
58 list( np.argwhere(np.array(index) == j)

[l])
59 for j in range(len(addlist)):
60 index[removelist[j]] = addlist[j]
61

62 vec = vec_p[:, index]
63 vec_dual = vec_dual_p[index, :]
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64 eig[i] = eig_all[i, index]
65 weight[i]=vec[0,:]*(np.transpose(vec_dual[:,0])) #BM:

weight of each mode
66 vm[i]=vec[0,:] #BM: Mean value of potential and charges
67 nm[i]=np.transpose(vec_dual[:,0])
68

69

70 for k in [k for k in range(nG)
71 # Eigenvalue crossing:
72 if (eig[i - 1, k] < 0 and eig[i, k] > 0)]:
73 a = np.real((eig[i, k] - eig[i - 1, k]) /
74 (w_w[i] - w_w[i - 1]))
75 # linear interp for crossing point
76 w0 = np.real(-eig[i - 1, k]) / a + w_w[i - 1]
77 eig0 = a * (w0 - w_w[i - 1]) + eig[i - 1, k]
78 print(’crossing found at w = %1.2f eV’ % w0)
79 omega0 = np.append(omega0, w0)
80 eigen0 = np.append(eigen0, eig0)
81

82 # Fourier Transform:
83 qG = pd.get_reciprocal_vectors(add_q=True)
84 coef_G = np.diagonal(np.inner(qG, qG)) / (4 * pi)
85 qGr_R = np.inner(qG, r.T).T
86 factor = np.exp(1j * qGr_R)
87 v_temp = np.dot(factor, vec[:, k])
88 #BM: I commented this line : n_temp = np.dot(factor,

vec[:, k] * coef_G)
89 n_temp = np.dot(factor,np.conj(np.transpose(vec_dual[k

,:]))) #BM : corrected the calculation of the left eigenvector
90 if checkphase: # rotate eigenvectors in complex plane
91 integral = np.zeros([81])
92 phases = np.linspace(0, 2, 81)
93 for ip in range(81):
94 v_int = v_temp * np.exp(1j * pi * phases[ip])
95 integral[ip] = abs(np.imag(v_int)).sum()
96 phase = phases[np.argsort(integral)][0]
97 v_temp *= np.exp(1j * pi * phase)
98 n_temp *= np.exp(1j * pi * phase)
99 v_ind = np.append(v_ind, v_temp[np.newaxis, :], axis

=0)
100 n_ind = np.append(n_ind, n_temp[np.newaxis, :], axis

=0)
101

102 #BM: Adding a field/charge map to save (e.g. frequency n*20
and mode n*5)

103 if i==20:
104 qG = pd.get_reciprocal_vectors(add_q=True)
105 coef_G = np.diagonal(np.inner(qG, qG)) / (4 * pi)
106 qGr_R = np.inner(qG, r.T).T
107 factor = np.exp(1j * qGr_R)
108 v_res = np.dot(factor, vec[:, 5])
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109 n_res = np.dot(factor, np.conj(np.transpose(vec_dual
[1, :])))

110

111

112 kd = self.chi0.calc.wfs.kd
113 if name is None and self.name:
114 name = self.name + ’eigenmodes.pckl’
115 elif name:
116 name = name + ’eigenmodes.pckl’
117 else:
118 name = ’%+d%+d%+d-eigenmodes.pckl’ % tuple((q_c * kd.N_c).

round())
119

120 # Returns: real space grid, frequency grid,
121 # sorted eigenvalues, zero-crossing frequencies + eigenvalues,
122 # induced potential + density in real space.
123 if eigenvalue_only:
124 pickle.dump((r * Bohr, w_w, eig),
125 open(name, ’wb’), pickle.HIGHEST_PROTOCOL)
126 return r * Bohr, w_w, eig
127 else:
128 pickle.dump((r * Bohr, w_w, eig, omega0, eigen0,
129 v_ind, n_ind, weight,v_res,n_res,vm,nm), open

(name, ’wb’), #BM: added weight,v_res,n_res,vm,nm
130 pickle.HIGHEST_PROTOCOL)
131 return r * Bohr, w_w, eig, omega0, eigen0, v_ind, n_ind,

weight,v_res,n_res,vm,nm #BM: added weight,v_res,n_res,vm,nm

Parameters of the TDDFT calculations

Parameters such as the vacuum layer thickness, the k-point grid, and the cut-off energies
have been selected to converge the desired results (if numerically possible: for corrugated
graphene, the k-point grid is not optimal due to the highly demanding computations).
The parameters for all the systems are displayed in the table below.
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Material vacuum
layer(s)

k-point grid
(x,y,z)

Energy
cut-off

Exchange-
correlation
functional

number
of bands

TDDFT
cut-off
energy

Graphite - (60,20,20) 400 eV LDA 40 80 eV
Graphene 23.5 Å (256,256,1) 350 eV PBE 40 150 eV
hBN 23.5 Å (256,256,1) 350 eV PBE 40 150 eV
Graphene-
hBN 20.1 Å (256,256,1) 300 eV PBE 40 150 eV

MoSe2 12 Å (128,128,1) 400 eV GLLB-SC 240 100 eV
Corrugated
graphene 25 Å (48,48,1) 400 eV LDA 140 20 eV

Ribbons of
MoSe2

15 Å (128,1,1) 400 eV GLLB-SC 240 30 eV

MoSe2 with
2 MTBs 15 Å (64,64,1) 400 eV GLLB-SC 240 30 eV

The choices of the exchange-correlation functionals are explained here:

• For graphite it was shown that the optical constant are well reproduced with the
LDA [103].

• For graphene and hBN, the PBE functionnal is shown to give better results than
LDA [216].

• For corrugated graphene, due to the highly demanding calculations, the LDA was
chosen. It is not a serious downside as only qualitative results are expected.

• For MoSe2, the GLLB-SC is chosen because it is known to give a more accurate
band-gap in semi-conductors [217]. In the figure below, the band structure of
MoSe2 is plotted. The bandgap energy is 1.53 eV which is exactly in the range of
value found by experimental works, between 1.52 and 1.58 eV [218].
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Figure 31: Bandstructure of MoSe2 using the exchange-correlation functional GLLB-SC.
The arrow shows the direct bandgap.
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