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Design of a vaccination law for an

age-dependent epidemic model using state
feedback
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* University of Namur, Department of Mathematics and naXys, Rue
de Bruzelles 61, B-5000 Namur (e-mail: candy.sonveaux@unamur.be;
joseph.winkin@Qunamur.be).

Abstract: An age-dependent epidemic model is studied with the goal of designing a state
feedback stabilizing vaccination law to eradicate a disease. This model consists of a set of
three nonlinear partial-integro differential equations (PIDE). A salient feature of the dynamical
analysis is the fact that, if the basic reproduction number is greater than one, then the disease-
free equilibrium is unstable. In view of this, we provide a linearizing state feedback vaccination
law that is deduced from the one obtained for the PIDE model discretisation with respect
to the age. Conditions guaranteeing stability of the closed-loop system and positivity of the
feedback control are obtained using Isidori’s theory and semigroup theory. Numerical simulations

complete the analysis.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Infinite-dimensional systems, positive systems, (un)stability of equilibria, nonlinear
control, partial integro-differential equations, epidemiology

1. INTRODUCTION

Understanding the evolution of an epidemic is crucial to
be able to act on it and to eradicate the disease. One way
to counter the disaster brought by some epidemics is to
develop effective vaccines and to adopt an appropriate
vaccination strategy. In this paper, the second part is
achieved by studying an extended version of the SIR model
developed by Kermack and Mckendrick (1991) where the
individuals age is taken into account. This is motivated
by the fact that vaccination strategies may depend on
the age of individuals. In such models, the population
is assumed to be divided in three groups: the class S of
susceptible individuals who can catch the disease, the class
I of infected individuals who can transmit the disease and
the class R of recovered individuals who are assumed to
be permanently immune to the disease.

This paper is organized as follow. First, the age-dependent
model is introduced. It consists of a set of three nonlinear
partial-integro differential equations. Then, in Section 3,
the results of the dynamical analysis of the system are
reported and a result on the stability of the equilibria is
highlighted. In view of this result, a feedback vaccination
law is introduced in Section 4 and the global lineariz-
ing stability analysis of the feedback is performed. This
analysis is inspired by Isidori’s theory (Isidori (1995))
but applied to infinite dimensional system. Moreover, it
is shown that, under appropriate choices of the feedback
gains, the vaccination law is non-negative, ensuring its
physical feasibility. Finally, in the last two sections, the
results are illustrated by numerical simulations.

2. MODEL DESCRIPTION

In this paper, an age-dependent epidemic model is studied
to describe the propagation of a disease. The individuals
age is considered since several epidemiological factors are
age-dependent, vaccination being one of them. An adapted
version of the SIR model Kermack and Mckendrick (1991)
is used which is inspired by the one described in Bastin
and Coron (2016). The dynamics of the disease propaga-
tion is described by a system of nonlinear partial integro-
differential equations (PIDE)

(Or+0a) S (t,a) == (O (t,a) + p(a)) S (L, a)
— B(a)S (t,a) /0 " g (4, b) do,

(Or +04) I (t,a) = — (u(a) +7v(a))I(t a) (1)
4 B(a)S (ta) /0 " ) db,

(0 +04) R(t,a) = O (t,a) S (t,a) +v(a)I(t,a)
—p(a) R(t, a)

under non-negative initial conditions S (0,a) = Sy (a),
I1(0,a) = Ip(a), R(0,a) = Rg(a) and boundary condi-
tions S (¢,0) = B, I(¢,0) =0, R(¢,0) = 0.

The quantities S(t,a),I(t,a) and R(t,a) denote the age-
densities of susceptible, infected and recovered individuals
at time t¢ respectively. Remark that, in the following, the
terms S-, I- and R-individuals will refer to susceptible,
infected and recovered individuals, respectively. By the
definition of density, the number of S-individuals between
two given ages b and c¢ is obtained by integrating S(¢, a) on
the interval [b, c]. The sum of those three quantities gives
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the density of the total population denoted as P(¢,a). The
function O(t,a) is the input variable and represents the
vaccination rate of S-individuals. In this model, we assume
that the population is closed. Therefore, a change in the
total size of the population is only due to birth and mortal-
ity with respective rates B, assumed to be constant, and
u(a). Moreover, we assume that the disease is transmitted
by contact between S- and I-individuals with a disease

transmission rate given by [(a) 1(t, b)db. Finally the

0
recovery rate of the disease is given by the coefficient v(a).
Observe that all these parameters are nonnegative.

3. DYNAMICAL ANALYSIS

This section is dedicated to the well-posedness of the
model and the stability analysis of its equilibria.

3.1 Well-posedness and stability analysis

Assuming that the rate of vaccination is given by a Lip-
schitz continuous state feedback law, the existence and
uniqueness of a solution can be stated using Pazy’s theo-
rem on the existence of a mild solution. See (Pazy, 1983,
Chap.6, Sect. 1). Moreover, it can be shown that this
solution is non-negative, as should be expected, in view
of the physical interpretation of the model. This can be
proven using the method of characteristics and semigroup
theory, as mentioned in Inaba (1990) and Inaba (2017) for
a similar model.
The stability analysis can be performed on the limiting
autonomous system, using the fact that tlggo P(t,a) =
a

P(a) = Bexp u(n)dn). Equilibria can be found for

the "normalized (inodel’7 where the following change of
variables is made:

S(t,a) = P(t,a)s(t,a); I (t,a) = P(t,a)i(t,a); R(t,a) =
P (t,a)r (t,a). In that case, if the basic reproduction num-

ber R(0) defined by
20 (- [ )
(o) P /0 ©* (n) dn | dodb,
b

Amax b
[rore [
0 0
exp 7/ ~v(n)dn |, is smaller than
0

where T'(b) =

1, there is only one equilibrium, the disease-free one
(I(t,a) = 0). Conversely, if R(0) is strictly greater than
1, there are two equilibria, an endemic one and a disease-
free one.

Then, the stability analysis can be performed on the ho-
mogeneous normalized model (obtained using the change
of variables: §(t,a) = s(t,a) — 1). With this system it
can be shown that the principle of linearized stability can
be applied. See Sonveaux and Winkin (2022). Studying
the stability of the linearized homogeneous normalized
model, using semigroup theory and property of operators,
as developed in Inaba (1990), leads to the following result.

Theorem 1. The disease free equilibrium is locally expo-
nentially stable when R (0) < 1. Conversely it is locally
exponentially unstable if R(0) > 1. In that case, the
endemic equilibrium is locally exponentially stable.
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Fig. 1. Density of I-individuals for R(0) = 0.8894

3.2 Numerical simulations

Those results can be illustrated on numerical simulations.
Note that in the simulations, the maximal age, amax,
is fixed to 1 and the choice of parameters implies that
the total population equals 1. Those parameters are the
one used in Okuwa et al. (2019) where some adjustments
were made for the transmission coefficient 5(a) and for
the initial conditions. Here the transmission coefficient is
chosen to be

m@mewe%+$g,

in order to have differentiability. The choice of Fy influ-
ences the basic reproduction number of infection and is
fixed at 600 for Figure 1 and 800 for Figure 2. The change
of initial conditions is given by

So(a) = P(a) = Io(a),

za@:{gﬁﬁ—%w>§£uw>o

Ro(a) =0

where
1 2
. 1 —100 (a2>
Iy (a) = 3¢ x 1073 x P(a).

These choices ensure consistency between initial conditions
and boundary conditions. Note that P(a) represents the
age-density of the population. In all the simulations of
this paper, a tolerance threshold is set to 10~8. Therefore
simulations are stopped when the trajectories reach the
convergence or if the final time, fixed at 20, is reached.

Those simulations corroborate the theoretical results.
Indeed, as stated in Theorem 1, when R(0) is smaller
than 1, the disease is eradicated. This can be observed
in Figure 1 since the infected individuals converge to 0.
Conversely, in Figure 2, R(0) is greater than 1 and the
infected individuals tend to a state where there remain
infected individuals in the population.
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Fig. 2. Density of I-individuals for R(0) = 1.1859
4. FEEDBACK STABILIZATION

In this section, a state feedback law is designed to sta-
bilize the system around the disease free equilibrium. As
mentioned in Sonveaux and Winkin (2022), a feedback law
can be designed, using Isidori’s theory (Isidori (1995)) for a
finite-dimensional model obtained by discretizing Model 1
according to the age of the individuals. Therefore, this law
is linearizing for the discretized model and is stabilizing for
an appropriate choice of the feedback gains. From this law,
the following nonlinear continuous state feedback control
law is deduced by taking a formal limit

O (t.a) = s (a) + / " 5(a) S (t.a) da — 20 (a) — y (a)
w(;z). / 1(t,b)db
/0 (4(a) +~ (@) I (t.a) da

/ b b
0
I(t,a)

B8(a) S (¢ a) /0 " ) db
+ (1 (a) +v(a) (1 (a) + v (a) — a2 (a)) ) (2)

where a; and & are the design parameters. One of the nice
feature of this law is that it linearizes the closed-loop model
in "normal-form”: see (5) - (9). Moreover, in the following,
it is shown that, for a good choice of the design parameters,
this feedback law stabilizes the closed-loop system, leading
to disease eradication. In addition, it is highlighted that,
also for an appropriate choice of the control parameters,
this law is non-negative, therefore ensuring its physical
meaning with respect to the model.

+

a1 (a)

4.1 Stabilizing feedback law

In this section, an approach inspired by Isidori (1995)
is used with the particularity to applied on infinite di-
mensional system. This is motivated by the fact that the
vaccination law (2) is deduced from the one obtained using
Isidori’s theory. First, we can observe that the closed-loop
system is given by

(0r +0a) S (t,a) = S (t,a) [=a2 + p(a) + v(a)
7/0 B(a)S(t,a)da

/0 " (ul@) ++(a)) I(t, a)da

/ U (t,a)da
0
I(t,a)

B(a) /0 "t a) da

(1(a) +~(a)) (@2 = (u(a) + ()] (3)
=—(n(a) +7(a)I(ta)
)5S

+8(a) S (t,a) amdx](t,b)db,
= P(a) — S(t,a)

_|_

+

[—a:1+

(at + aa) I (tv a)

R (t,a) I(t,a)

under the same non-negative initial conditions and bound-
ary conditions as Model 1. Observe that the R-individuals
can be obtained by knowing the density of the S-
individuals and the I-individuals and the age-density of
the population, P(a). Remark that this variable does not
depend on time since we assume that the population
has reached a stable age distribution. Therefore, in the
following, we consider only a set of two equations. As in
Isidori’s theory, the following nonlinear coordinates change
is applied,

) t,a),
(t,a) = = (v(a) + p(a)) I (t,a) (4)
(t,a) /O I(t,b)db

to write the system in a so-called "normal-form”. There-
fore, the closed-loop system (3) rewrites

where
s =g (M) @
1 d
@)= 5727 ™)
under non-homogeneous boundary conditions
I(t,0) =0,
S(,0) = 3(0) B / " ) db (8)
0
and initial conditions
I1(0,a)=1Iy(a),
S(0,a) = Sy (a) . (9)

One can observe that the closed-loop in ”normal-form” is
linear. It shows that the state feedback (2) is linearizing
for the model in ”normal-form”, as it is the case in Isidori’s
theory.
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In order to work with homogeneous boundary conditions,
the system is rewritten using Fattorini’s approach on
boundary control systems (see Fattorini (1968)) where the
results are extended to Banach spaces. Therefore (5) - (9)
is equivalent to

1= (A +D)z
z(0) = (0,0)" (10)
_d I
with z = (I,9)", Ay = | da ,
G ——+4+H(al

da
with D (Ag) = {Z € L' (0, amax) X L (0, amax) : Z,
dz
7 € AC[0, amay] , 70 = (ovo)T}
0 0
(50[3(0)3/ . dbo
0

However, in this formulation, D is unbounded. Therefore,
we use an approximation of the Dirac delta §y by replacing
it by dj (a), a term of a Dirac sequence, satisfying proper-
ties developed in (Hinrichsen and Pritchard, 2010, Chap.
2, Sect. 3, Lemma 2.3.4) with oo replaced with apax. The
approximate system is given by

T = (Ao + Dk) Tk

Z5, (0) = (0,0)"
0 0
dk(a)B(O)B/O -db 0

Note that solutions of this approximate system are denoted
by Zy. In the following, it is shown that the infected
individuals converge to zero. First a lemma is needed
implying the convergence to zero of the new variables I},
and Sg. A complete proof of this Lemma is available in
Sonveaux and Winkin (2022) and uses the principle of
invariance stability under system equivalence (Schumacher
(1981))) and the bounded perturbation theorem ((Klaus-
Jochen and Rainer, 2006, Chap. 3, Sect. 1)) to conclude.

and D =

(11)

with Dk =

Lemma 2. Ay + Dy, is the infinitesimal generator of an ex-
ponentially stable Cy—semigroup (T (t))t>0 with growth
bound

wO(T) <—(c2+K)+(1+K(ci—1)—co)||Dpl| <0

if ¢; and ¢y are chosen such that

c1 > maz {17 sup (0 (a) —g(a)%ﬁ()]g}’ (12)
a€[0,amax) K
co > mazx {O,B()Bl(jgogq) - K,
sup (a2 (a) —h (a))} ; (13)
a€[0,amax)
C2 S K (Cl — 1) . (14)

Then, using Lemma 2 that shows that Zj(¢,a) exponen-
tially converges to zero, it follows that so does Iy(¢,a)
which is equal to I(t,a) by the change of variables (4).

Therefore, the eradication of the Ix—population is ob-
tained.

Theorem 3. Let zo, = [lo,,S0,]" € L'(0,amax)’ x
L' (0, amax)+ where L (0, amax)+ refers to the cone of (al-
most everywhere) non-negative functions in L' (0, amax)-
Assume that we choose c1, c2, @1 (a) and @s (a) such that
conditions (12) to (14) are satisfied. Then, the state feed-
back (2) implies the exponential asymptotic convergence
to zero of the infected population Iy (¢, a) as time tends to
infinity:

1k (¢, )|l1 — O as time goes to infinity.

Observe that the convergence is proven for the approxi-
mate system (11). However, we are interested in the con-
vergence of the infected individuals trajectories of system
(3).

An intuition to obtain this result consists in observing the
limit of the error’s dynamics E(t,a) = Tx(t,a) — Z(t, a).
This dynamics tends, as k goes to infinity, to E = DE
whose solution is F which is identically zero. Therefore,
we can assume that Z (¢, a) tends to Z(t,a) as time tends
to infinity. Theorem 3 would then conclude the conjecture.

Conjecture 4. The state feedback (2) implies the exponen-
tial convergence towards zero of the infected population
I(t,a), as time tends to infinity.

4.2 Nonnegativity of the feedback law

Since the feedback law represents the vaccination rate, it
has to be non-negative to make physical sense. Therefore,
the design feedback parameters need to be tuned in order
to ensure non-negativity of the feedback law. Observe
that the conditions (12) - (14) only affects the conver-
gence speed of the system. Therefore, in the following, the
feedback gains can be tuned appropriately to ensure the
nonnegative property of the vaccination.

Theorem 5. Define
sup  p(a);T' =

a€[0,amax]

sup  v(a)
a€[0,amax]

vV =

and N the total population. Taking
az(a) = 3v +2I'+ B(a)N (15)
a(a) = = (u(a) +v(a)) (u(a) +v(a) —az)  (16)
yields the local exponential stability of the closed-loop
system (3) with the non-negative vaccination law (2).

Proof. Condition (16) simplifies the vaccination law
(2). Moreover, definition of v, I' and the estimate

/ I(t,b)db < N lead to the following inequality for
0
the vaccination law,
@(t,a)Z&z(a)—i—/ B(a)S (t,a)da —2v —T
0
—B(a)N — (v +71).
Then condition (15) implies that
Ot a) > / " 8(a)S (1, a) da
0

which is always non-negative.
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4.3 Numerical simulations

The previous results can be observed thanks to numerical
simulations. The same parameters as in Section 3.2 are
used. Figure 3 shows the density of I-individuals when R(0)
is greater than 1 and the vaccination law (2) is applied.
As mentioned in Conjecture 4, we observe that the disease
becomes eradicated from the population. Observe that we
do not consider fatal disease in the model since only the
natural death rate, described by p(a), is taken into ac-
count. However, even for non-fatal illness, it is interesting
to eradicate the disease because infected individuals can
end up with serious sequels. Moreover, Figure 4 shows
that the vaccination law remains non-negative all the time,
ensuring its physical meaning. The strategy suggested by
Figure 4 is to vaccinate less young and old people and focus
the efforts on people who are in classes of age with more
infected individuals initially. The proposed law features a
transient phase, for each age where lots of individuals are
vaccinated, that is followed by a steady-state. Therefore,
it is interesting to wonder if a static vaccination law O(a)
could be enough to obtain disease eradication. The last fig-
ures are obtained by applying the feedback-law ©(a) (see
Figure 6) corresponding to the limit of (¢, a), as time goes
to infinity. Only numerical results were investigated in this
case. Figure 5 shows that the use of a static vaccination
law implies disease eradication. The convergence rate is
similar as the one obtained with the state-feedback law.
However, Figure 7, representing the difference between
infected individuals obtained using the static law and those
with the dynamical law, highlights the fact that they are
less infected individuals with the dynamical law. This is a
consequence of the transient phase of the dynamical law.

5. CONCLUDING REMARKS

The results of the dynamical analysis of an age-dependent
SIR model were reported using the principle of linearized
stability. It led to Theorem 1 where the unstability of the
disease-free equilibrium has been highlighted in the case
where the basic reproduction number R(0) is greater than
1. Therefore, a linearizing feedback law has been proposed.
It was shown that, under appropriate choices of the design
parameters, it is stabilizing while being non-negative.

o(t,a)
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Fig. 4. Dynamics of the feedback vaccination-law
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However, since the control law is a state feedback, the
knowledge of all state variables is needed, which is not
possible in practice. Therefore, the design of a state
observer will be needed to reconstruct the whole state.
Moreover, in view of the numerical results obtained for
the static vaccination law deduced from the state-feedback
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) 0
time 01 7y age

Fig. 7. Difference between I-individuals obtained with the
static law (I,) and those obtained with the dynamical
law (Id)

one, investigating the performance of this static law in the
analytical framework could be interesting. It would also
be of interest to apply this theory on real data, which are
for instance widely available in the case of the COVID19
pandemic.
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