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The intrinsically disordered DPF3 zinc finger 
protein: a promising new target in cancer 
therapy
Julien Mignon1,2,3,*, Tanguy Leyder1, Catherine Michaux1,2,3

Introduction

Understanding and targeting cancer are major health concerns around the world. In 2020, the 
number of new cancer cases reached 19.3 million and the number of cancer-associated deaths rose 
to 10 million on a worldwide scale. According to the latest estimations, 28.4 million of new cases 
are expected by 2040 [1]. Deregulation of proteins is notoriously recognized to be involved in cancer 
pathogenesis, development, proliferation, invasion, and survival. Amongst them, peculiar proteins are 
particularly overrepresented. These are referred to as intrinsically disordered proteins.

Intrinsically Disordered Proteins and Cancer

Towards the end of the 1990s, the “disorder-function” paradigm was introduced in the protein 
field. This paradigm defies the classical “one sequence-one structure-one function” by stating that a 
significant number of proteins are fully functional while being natively unfolded. These are referred 
to as intrinsically disordered proteins (IDPs). More precisely, IDPs typically lack a stable hydrophobic 
core, or active site, and rather exist as a dynamic ensemble of heterogeneous conformers [2,3]. Indeed, 
IDPs do not fold into a well-defined and unique tertiary structure to gain function. Their highly 
flexible nature allows them to modulate their conformation, through posttranslational modifications 
(PTMs), for example, and to promiscuously interact with a large variety of biomolecular partners 
(e.g., other proteins, nucleic acids, or lipids). Consequently, IDPs are notably known to act as hubs 
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Abstract
Cancer is a worldwide human disease of great concern, in which proteins are known to be highly involved, 
especially the group of intrinsically disordered proteins (IDPs). Due to their disorder-associated properties 
and floppy structure, IDPs remain difficult to target, requiring the design of new anticancer strategies. In that 
context, the zinc finger protein DPF3 has been identified as an amyloidogenic IDP involved in numerous 
cancer types, such as breast, brain, bone marrow, kidney, and lung cancer. Therefore, investigating DPF3 
druggability will help to elucidate its oncogenic mechanisms, as well as to pave the way towards efficient 
IDP-specific therapies. 
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in protein-protein interactions networks and to endorse numerous 
biological functions, such as cellular signaling, chromatin modelling, 
splicing, transcriptional and translational regulation [4-7].

Such multifunctionality and conformational plasticity come with 
the cost of being highly sensitive to deregulation [8]. Sequence-based 
predictions have estimated that ~79% of human cancer-associated 
proteins are IDPs or contain at least one intrinsically disordered 
region (IDR) of 30 or more successive residues [9]. Thus, IDPs have 
increasingly attracted attention in cancer targeting over the last two 
decades. Although disordered oncogenic transcription factors or 
regulators, such as p53, c-Myc, and the nuclear protein 1 (NUPR1), 
have successfully been targeted by small molecules, IDP-specific 
drug design remains very challenging [8,10-12]. Indeed, given their 
intrinsic dynamic properties, conventional structure-based strategies 
are quickly limited when applied to IDPs. Currently, three strategies 
have been proposed for targeting IDPs in cancer. The first strategy 
consists in blocking the protein-protein interaction interface of an 
IDP with its ordered partner. For instance, formation of p53/mouse 
double minute 2 (MDM2) complex was successfully prevented by 
docking molecules into the p53-related binding pocket of MDM2. 
The second one aims at disrupting the biological function of the 
IDP-partner complex by interfering with complex as a whole. In 
that purpose, a class of disassemblers, called Myc-pathway response 
agents (MYRAs), was found to inhibit the DNA binding function 
of c-Myc/Max complexes. Finally, the third strategy, the most 
challenging, seeks to shift and stabilize the conformational ensemble 
of an IDP towards another ensemble or an inactive folded state. 
In that sense, trifluoperazine was identified as a selective and high-
affinity binding agent for NUPR1 whose use was shown to stop 
tumor growth of pancreatic cancer cells [11,13,14].

Protein Aggregation in Cancer

Although mainly investigated in the context of 
neurodegenerative diseases, aggregation processes could also prove 
relevant in cancer pathogenesis. Indeed, over the last decade, 
various studies have suggested that cancer could be an aggregation-
related or a conformation-dependent disease. Phenotypically, 
protein aggregation in cancer is associated to uncontrolled cell 
growth and tumor maintenance in contrast to neurodegeneration 
where aggregates lead to cell death. The most documented case in 
this regard is the tumor repressor p53, which is highly sensitive 
to misfolding and is able to fibrillate in cancer tissues [15-18]. 
Misfolded p53 assemble into amyloid-like aggregates, suppressing its 
pro-apoptotic function in cancer cells. It was also demonstrated that 
p53 anticancer activity could be restored by mutating aggregation-
promoting regions in its sequence, thus preventing the formation of 
high-order oligomers or fibrillar structures [19]. Recently, another 
tumor suppressor, the phosphatase and tensin homolog (PTEN), 
which shares similar features with p53, including several IDRs and 
a high PTM sensitivity, has been identified as a potential cancer-
associated aggregating protein. Computational analyses revealed that 
PTEN and its clinically relevant mutants have a high aggregation 
propensity, which likely participates in cancer phenotypes [20].

DPF3 is a Cancer-Associated Protein

Double plant homeodomain (PHD) fingers 3 (DPF3) is 
a eukaryotic epigenetic regulator belonging to the D4 protein 
family [21]. This protein is found as a cofactor within the BRM/
BRG1-associated factors (BAF) complex [22]. In human and other 

mammals, BAF is an analogue to switch/sucrose non-fermentable 
(SWI/SNF) complex, which is responsible for chromatin 
remodeling [23]. DPF3 acts as a BAF recruiter and a histone reader 
by recognizing modifications histone tails. More specifically, the two 
PHD zinc finger (ZnF) domains bind to acetylated or methylated 
lysine residues on histones H3 and H4, regulating the transcription 
of target genes [24].

From a pathophysiological point of view, DPF3 is notably 
involved in various cancer types. It was first identified as a 
contributor in breast cancer susceptibility and severity in women 
of European ancestry [25]. Indeed, genetic polymorphisms in 
intron 1 of DPF3 on the chromosome 14q24.3-q31.1 have been 
associated to lymph node metastasis, tumor size, earlier age of 
onset, and higher risk of developing breast cancer. Variations in the 
intron size is likely to change DPF3 expression. More recently, the 
function of DPF3 in breast cancer has been unraveled, showing 
that its downregulation promotes the proliferation and motility of 
cancer cells [26]. Mechanistically, DPF3 negative regulation leads 
to the phosphorylation of the Janus kinase 2 (JAK2) and the signal 
transducer and activator of transcription 3 (STAT3), as well as to the 
hyperactivation of the JAK2/STAT3 signaling pathway, involved in 
cancer growth. It was proposed that STAT3 interacts with DPF3 and 
binds to its promoter. This hypothesis is supported by the reported 
binding ability of STAT5 to DPF3 promoter. Indeed, DPF3 was 
found to be upregulated and the STAT5 pathway activated in 
myeloid cells of patients suffering from chronic lymphocytic 
leukemia, a blood and bone marrow cancer, resulting in malignant 
cells proliferation [27].

DPF3 also plays a role in brain cancer, such as glioblastoma 
multiforme, in which it is responsible for maintaining the stemness 
of glioma initiating cells [28]. Such cells strongly contribute to the 
spread of glioblastoma and resistance mechanisms to anticancer 
drugs. Through knockdown assays, it was revealed that DPF3 along 
with another member of the D4 family, DPF1, is crucial for tumor 
growth and propagation, as well as cellular survival.

Deregulation of DPF3 expression, in the 14q24 renal cell 
carcinoma (RCC) susceptibility risk locus, has recently been 
related to higher renal cancer risk [29,30]. It was found that DPF3 
overexpression leads to the activation of oncogenic pathways by 
expressing cancer-associated proteins, such as the cell migration-
inducing and hyaluronan-binding protein (CEMIP) and the 
interleukin-23 receptor (IL-23R). CEMIP acts as an apoptosis 
inhibitor, while IL-23R is an activator of STAT3 pathway, which is 
essential to RCC oncogenesis. Reduction of apoptosis and STAT3 
activation all together promote tumor growth. Regarding RCC, it 
has also been highlighted that the hypoxia-inducible transcription 
factor (HIF) is able to mediate DPF3 regulation by binding on a 
RCC risk locus in chromosome 14q24.2. This suggests that, through 
DPF3, HIF signaling impacts chromatin remodeling, enhancing 
cell growth and increasing the risk of developing RCC [30]. Most 
recently, the function of one of the two isoforms of DPF3, known as 
DPF3a, in clear cell RCC has been further explored. It was unveiled 
that upregulated DPF3a promotes RCC metastasis through the 
activation of the transforming growth factor beta (TGF-β) signaling 
pathway [31]. From a mechanistic point of view, DPF3a is able to 
bind to the SMAD nuclear-interacting protein 1 (SNIP1), leading to 
the formation of a complex with the mothers against decapentaplegic 
homolog 4 (SMAD4) and the p300 histone acetyltransferase (HAT). 
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SNIP1, which is an IDP, serves as a bridge in the complex and 
interacts with DPF3a C-terminal domain via its N-terminal IDR. 
Activation of p300 HAT, the main transcriptional regulator of 
the TGF-β pathway, increases histone acetylation, resulting in the 
expression of genes related to cell migration.

Finally, through gene expression and network approaches, 
DPF3 has been identified as a prognostic marker for lung cancer and 
chronic obstructive pulmonary disease [32]. Notably, DPF3 appears 
to improve the survival duration of lung cancer patients. 

DPF3 is a Prone-to-Aggregate Intrinsically Disordered 
Protein

Although DPF3 has already been detected in cancer and 
other pathological contexts, such as heart hypertrophy [33,34], 
male infertility [35,36], and Hirschsprung’s disease [37], the 
structural data available for this protein are very limited. As briefly 
aforementioned, DPF3 actually exists into two isoforms referred to 
as DPF3b and DPF3a, respectively. Their sequence composition and 
length differ at the C-terminus. Where DPF3b has the typical D4 
family PHD tandem, DPF3a displays a truncated one, resulting in 
an incomplete first PHD ZnF and a C-terminal domain of unknown 
function. Nevertheless, the latter was shown to bind to SNIP1 in 
clear cell RCC [31]. 

In our two latest works, we have succeeded in unraveling 
the structural properties and in vitro behavior of each DPF3 
isoform [38,39]. By combining sequence-based prediction tools 
and biophysical techniques (light scattering, spectroscopy, and 
microscopy), we have revealed that DPF3b and DPF3a are both 
IDPs. They are rich in disorder-promoting residues, adopt expanded 
and collapsed conformations, lack a hydrophobic core, and have 
few secondary structure elements (α-helix or β-sheet). Though the 
two isoforms share similar features, DPF3a has shown to exhibit 
a higher content in intrinsic disorder than DPF3b thanks to its 
floppy C-terminal IDR. Interestingly, DPF3 isoforms are also very 
prone to self-aggregate into fibrillar structures. Indeed, similar 
to other neurodegeneration-associated IDPs, such as α-synuclein 
and the protein tau, DPF3 possesses amyloidogenic properties. 
Over a period of a few days, the two isoforms transition into more 
compact β-sheet-rich conformers, leading to the emergence of 
unique aggregation-specific spectral fingerprints. We found out that 
DPF3 first assembles into spherical oligomers, which then cluster 
and elongate to form straight and twisted fibrils. Such fibrils were 
positive to amyloid-specific dyes, such as thioflavin T or Congo red.

DPF3 as a New Target in Cancer Therapy

In conclusion, IDPs are unique and cell-essential proteins, whose 
prevalence in cancer and other human diseases have led to great 
interest in elucidating their biophysical and druggable properties. In 
that context and thanks to its disordered character, DPF3 appears as 
a new promising drug target to design IDP-specific therapies against 
cancer, whether through blocking its protein-protein interactions 
or “freezing” its conformational distribution. Targeting DPF3 will 
enhance the knowledge around cancer-associated proteins and will 
help to rationalize IDPs druggability. Furthermore, investigating 
DPF3 (non-)aggregated state in cancer cells could open new ways 
to abrogate its oncogenic functions either by preventing or inducing 
its aggregation.
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