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Symmetry breaking and Turing patterns
on networks and higher-order structures

NONLINEAR BEASTS
AND WHERE TO FIND THEM

by Riccardo Muolo

Abstract: In the 50s, Alan Turing introduced and described a pattern-formation mecha-
nism involving two interacting chemical species driven by diffusion. Since then, Turing
patterns have been found in chemical, biological and even quantum systems, just to
mention a few. In 2010, the theory was then extended to networked systems, opening
a new framework with great potential. In this thesis we study the emergence of Turing
patterns on networks and their generalizations; moreover, we establish a bridge with
the theory of synchronization by emphasizing the similarities existing between the two
frameworks. We then show how the network formalism is versatile and well-suited to
study the emergence of new forms of Turing-like patterns, which would not be possible
to obtain in its original framework, and how to better understand their phenomenolog-
ical characterization. In the second part of the work, we further extend the theory to
the new and exciting framework of many-body and high-order interactions. Instead of
a network, the support is given by high-order structures such as hypergraphs and sim-
plicial complexes. Stressing again the analogy between the synchronization framework
and the Turing one, we develop a theory of Turing patterns on hypergraphs by extending
an elegant and powerful formalism developed from synchronization. Finally, by using
the mathematical tools of algebraic topology, we study diffusion-driven instabilities for
topological signals defined on simplicial complexes.



Brisure de symétrie et motifs de Turing
sur réseaux et structures d’ordre supérieur

NONLINEAR BEASTS
AND WHERE TO FIND THEM

par Riccardo Muolo

Résumé: Dans les années 50, Alan Turing a introduit et étudié un mécanisme pour
expliquer la formation de motifs basé sur la présence de deux espèces chimiques en
interaction, en s’appuyant sur la diffusion. Depuis lors, des motifs de Turing ont été
découverts dans des systèmes chimiques, biologiques et même quantiques, pour n’en
citer que quelques-uns. En 2010, la théorie a ensuite été étendue aux systèmes en ré-
seau, ouvrant ainsi un nouveau cadre avec un très grand potentiel. Dans cette thèse,
nous étudions l’émergence des motifs de Turing sur les réseaux et leurs généralisations;
en outre, nous établissons un pont avec la théorie de la synchronisation en mettant en
évidence les similitudes qui existent les deux cadres. Nous montrons ensuite pourquoi
le cadre des réseaux est polyvalent et bien adapté à l’étude de l’émergence de nouveaux
motifs similaires à ceux de Turing, qu’ils seraient impossibles à obtenir dans le cadre
d’origine, et comment mieux comprendre leur caractérisation phénoménologique. Dans
le deuxième partie de ce travail, nous développons davantage la théorie au nouveau et
passionnant cadre des interactions à plusieurs corps et d’ordre supérieur. Au lieu d’un
réseau, le support est donné par des structures d’ordre supérieur, telles que des hy-
pergraphes et des complexes simpliciaux. Insistant davantage sur l’analogie entre la
synchronisation et celui de l’instabilité de Turing, nous développons une théorie des
motifs de Turing sur les hypergraphes en adaptant un élégant et puissant formalisme
développé pour la synchronisation. Enfin, en utilisant les outils mathématiques de la
topologie algébrique, nous étudions les instabilités basées sur la diffusion pour les si-
gnaux topologiques sur des complexes simpliciaux.

Ph.D. thesis in Applied Mathematics
Date: 20/04/2023
Department of Mathematics, naXys Research Institute
Promoter: Professor Timoteo CARLETTI
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In 1952 Alan Turing was prosecuted for his homosexuality,
which was illegal in the UK.

More than 70 years later, despite some progress,
members of the LGTBQ+ community worldwide
still face discrimination, bullying and violence.

This work is dedicated to all those who are fighting for equality.

v



vi



Contents

Introduction xi

I Pairwise interactions 1

1 Beyond the Turing mechanism: new frontiers of pattern formation on net-
works 3
1.1 Turing theory on networks: from lattices to non-normal structures . . . 4
1.2 Synchronization dynamics from the Turing perspective . . . . . . . . . 7
1.3 Inertia-driven and other oscillatory patterns . . . . . . . . . . . . . . . 9
1.4 Systems without diffusion and non-reciprocal interactions . . . . . . . . 11
1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Synchronization dynamics on non-normal networks: the trade-off for op-
timality 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Optimal synchronization: Directed vs. Non-normal networks . . . . . . 18

2.2.1 The case of normal directed networks . . . . . . . . . . . . . . 21
2.2.2 The case of non-normal directed networks . . . . . . . . . . . . 22

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 SM 1: Another example of non-normal network . . . . . . . . . . . . . 26
2.5 On the basin of attraction and non-normality . . . . . . . . . . . . . . . 27

3 Finite propagation enhances Turing patterns in reaction–diffusion networked
systems 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Reaction-diffusion system with finite propagation on networks . . . . . 33
3.3 Turing instability in networked reaction-diffusion systems with finite

propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Conditions for the stability of p1 . . . . . . . . . . . . . . . . . 37
3.3.2 Conditions for the instability of pα . . . . . . . . . . . . . . . 38

vii



Contents

3.4 The FitzHugh-Nagumo model . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 SM 1: The Routh-Hurwitz criterion . . . . . . . . . . . . . . . . . . . 50

3.6.1 Application of the criterion to the stability of p1(λ ) . . . . . . . 50
3.6.2 Application of the criterion to the stability of pα(λ ) . . . . . . 50

3.7 SM 2: Non-relativistic limit of inertia-driven instability . . . . . . . . . 52
3.8 SM 3: Existence of Turing instability in linear kinetic systems . . . . . 55

4 Non-reciprocal interactions enhance heterogeneity 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 The Brusselator model . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 The Mimura-Murray model . . . . . . . . . . . . . . . . . . . 68
4.3.3 The Volterra model . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.4 The FitzHugh-Nagumo model . . . . . . . . . . . . . . . . . . 70
4.3.5 The Stuart-Landau model . . . . . . . . . . . . . . . . . . . . 71
4.3.6 A sufficient condition for d ≥ 2 . . . . . . . . . . . . . . . . . 72

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 SM 1: About the spectrum of the reactive Laplacian in case of recipro-

cal interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 SM 2: Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . 75
4.7 SM 3: Analysis of the Brusselator model . . . . . . . . . . . . . . . . . 79
4.8 SM 4: Analysis of the Mimura-Murray model . . . . . . . . . . . . . . 80
4.9 SM 5: Analysis of the Volterra model . . . . . . . . . . . . . . . . . . 81
4.10 SM 6: Analysis of the FitzHugh-Nagumo model . . . . . . . . . . . . . 82
4.11 SM 7: Analysis of the Stuart-Landau model . . . . . . . . . . . . . . . 84
4.12 SM 8: Instability onset in the general d-dimensional case . . . . . . . . 86
4.13 On the different Laplacian operators and their use . . . . . . . . . . . . 88

II Higher-order interactions 91

5 From pairwise to many-body and higher-order interactions 93
5.1 Higher-order structures: simplicial complexes and hypergraphs . . . . . 94
5.2 A formalism to study the stability of the homogeneous solution . . . . . 96
5.3 From many-body to higher-order and topological signals . . . . . . . . 100
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Turing patterns in systems with higher-order interactions 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Reaction–Diffusion systems on higher-order structures . . . . . . . . . 106
6.3 Turing theory with nonlinear diffusive-like coupling . . . . . . . . . . . 108

6.3.1 Turing patterns in networked systems with nonlinear diffusion . 109
6.3.2 The Brusselator model with cubic diffusion . . . . . . . . . . . 110

6.4 Higher-order interactions . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



Contents

6.4.1 Natural coupling . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.2 Regular topologies . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.3 General topologies . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 SM 1: Formalism mapping . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Diffusion-driven instability of topological signals coupled by the Dirac op-
erator 125
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Turing theory for topological signals . . . . . . . . . . . . . . . . . . . 129
7.3 Interacting topological signals of nodes and links with Dirac reaction

term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3.1 Conditions for the onset of the Turing instability . . . . . . . . 134
7.3.2 Numerical results on a benchmark network . . . . . . . . . . . 137

7.4 Interacting topological signals of nodes and links with Dirac cross-
diffusion term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4.1 Cross-diffusion term linear in the Dirac operator . . . . . . . . 141
7.4.2 Cross-diffusion term cubic in the Dirac operator . . . . . . . . . 142
7.4.3 Numerical results with a cubic Dirac cross-diffusion term . . . . 143

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.6 SM 1: Basics properties of algebraic topology . . . . . . . . . . . . . . 145
7.7 SM 2: Square Lattice with periodic boundary conditions . . . . . . . . 149
7.8 SM 3: Turing patterns with a linear Dirac term . . . . . . . . . . . . . . 150
7.9 SM 4: Turing patterns with a cubic Dirac term . . . . . . . . . . . . . . 150

III Conclusions and perspectives 153

Conclusions and future directions 155

Summary of other coauthored papers 159

Publications 161

Acknowledgements 163

Bibliography 165

ix



Contents

x



Introduction

" Chaos is merely order waiting to be deciphered"
José Saramago

Recurrently in nature, we witness processes of self-organization, resulting from the
interactions among many elementary units [1]. From the synchronous firing of fireflies
in the rain forest [2], to the flocking of birds in the sky of southern European cities at
sunset [3], we are continuously stunned by the harmony and mesmerizing beauty of
these phenomena. The observation of such behaviors in natural and engineered systems
has triggered the curiosity of scientists, who have tried to prove theoretically and exper-
imentally the spontaneous emergence of order in controlled environments. One of the
most popular theories accounting for such diversity was proposed by the British mathe-
matician Alan Turing (1912-1954) in a seminal paper of 1952 [4]. The mechanism pro-
posed by Turing relies on diffusion: in fact, the latter is the factor promoting the forma-
tion of patterns, which is astonishing given its usual role in homogenization processes.
In a nutshell, the model consists of two (chemical) species lying in a homogeneous
stable state, meaning that their concentrations do not vary in time nor throughout the
spatial domain. We proceed by applying an external perturbation to the system, which
has to be spatially inhomogeneous. Such symmetry breaking activates the diffusion,
because now the concentrations are not homogeneous and their gradient is non-zero.
Under certain conditions, which can be found analytically, the state becomes unsta-
ble and this amplification of the perturbation in the linear regime, called also Turing
or diffusion-driven instability, drives the system away from the homogeneous equilib-
rium. When the nonlinearities of the model become relevant, the system settles onto a
new stable state, which is spatially inhomogeneous and what we call a Turing pattern.
Turing himself admitted that in nature there are never homogeneous states, but systems
rather move from pattern to pattern. However, already the fact that it is mathematically
possible to prove the emergence of inhomogeneous states is remarkable and for this
reason Turing’s original paper is, to this day, one of the milestones in the study of self-
organization. This spontaneous emergence of spatial structures is strongly counterintu-
itive, especially given that diffusion is normally associated to homogeneization, rather
than inhomogeneization. Consequently, Turing theory was neglected by the chemical
and, especially, the biological community. The interest on the theory sparked in the
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Introduction

70s, thanks to the work of Gierer and Meinhardt, who described Turing’s mechanism
as an activator and an inhibitor species undergoing diffusion-driven instability [5]. All
these features were already present in Turing original work, but Gierer and Meinhardt’s
reinterpretation allowed for a better understanding and a wider diffusion, especially in
the chemical and biological communities. Nonetheless, to obtain experimentally Turing
patterns proved to be a difficult task, and they were obtained only half a century later
[6, 7]. The main limitation is the difference in the diffusion coefficients’ magnitude
required by the theory for the instability to develop, namely the inhibitor has to diffuse
much faster than the activator, which is difficult to reproduce experimentally. Then, we
find ourselves surrounded by patterns, we have an elegant theory accounting for such
diversity, but we cannot experimentally match the observations. Paraphrasing Fermi’s
paradox on extraterrestrial life, where are all the Turing patterns? Such discrepancy
motivated a part of the research carried out on Turing instability. In fact, Turing’s orig-
inal setting consists of two species(1), with no external effects, no noise, on a smooth
domain, etc. Scholars have tried to add realistic assumptions, e.g., by increasing the
number of species [9], by adding noise [10], and so on, to observe whether it was easier
to obtain patterns or not. In most cases the answer is affirmative: realistic assumptions
relax the conditions for patterns formation, which means that Turing theory is a good
theory, epistemologically speaking. One issue that arises is whether patterns obtained
in different settings can still be named Turing patterns; throughout this work we will
argument that this is not an issue and that, yes, they are Turing patterns.

The framework in which this thesis is developed is that of discrete support and it is
schematized in Figure I.1. Instead of studying diffusion on a continuous domain, hence
dealing with partial differential equations (PDEs), as in Turing’s original framework(2),
our manifold will be a discrete structure, being a network or a higher-order one. We
will, in fact, consider n identical units x⃗i, whose dynamics are given by a nonlinear
function f⃗ (⃗xi). Each of those units is isolated and can be thought as lying in the space
of nodes (blue in the Figure). Moreover, they are coupled with one another through
the network’s links (red). As we will see in the second part of the thesis, not all inter-
actions are pairwise and some systems exhibit higher-order (many-body) interactions,
which can be modeled through hyperedges (orange). The resulting dynamical equa-
tions will then be ordinary differential equations (ODEs), since the space is identified
by the nodes. Note that, in the schematization of Figure I.1, the dynamics take place
only within the nodes, while links and hyperedges model the way in which the elemen-
tary units are coupled. We can consider the nodes as well-mixed environments, where
no spatial inhomogeneities are present and, hence, mean field equations describe the
local system’s behavior, i.e., inside each node. Thinking in the framework of Turing
instability, when the concentrations in every node are all equal, then neither a "spatial"
gradient, i.e., across the nodes, is present nor diffusion (interaction) takes place between
the nodes. To have n isolated systems is equivalent to deal with n copies of the same

(1)Actually, Turing discussed also the setting of three interacting species and he concluded that this allowed
for oscillatory patterns, but did not develop the mathematics, which was dealt with by other researchers in
later years [8].

(2)Turing’s original framework consisted of a lattice ring [4]. The latter is a continuous support, but, to be
precise, a theory of Turing patterns for PDEs was developed later [11].

xii



INTRODUCTION

basic system, the units being identical. We can now proceed as above and perturb in-
homogeneously such stable state, hence activating the interactions between the nodes,
which can lead to the formation of Turing patterns. Each single node’s dynamics can
still be approximated by a well-mixed environment, while the differences in concen-
trations, i.e., the patterns, are between different nodes. In Chapter 7, we will show
that this framework can be extended: in fact, thanks to the tools of algebraic topology,
we can study a diffusion-driven instability mechanism also for topological signals, i.e.,
variables defined not only on nodes, but also on links and hyperedges. The dynamical
equation of the figure, as well as pairwise and higher-order structures, will be discussed
more in details in the following pages.

Figure I.1: From the left, the typical form of the dynamical equations for an ensemble of coupled elementary
units. Such units have their own dynamical equation (blue) and interact in a pairwise fashion (red) and higher-
order one (orange). On the right, we represent such interactions: the (isolated) units lie in the nodes (blue),
the pairwise coupling is modeled by the links (red) and many-body interactions by the hyperedges (orange).

The thesis is organized in two parts: one regarding pairwise interactions and the
other one devoted to the study of higher-order structures. Each part has its own intro-
duction, Chapters 1 and 5 respectively, followed by three and two papers respectively.
Each paper, Chapters 2, 3, 4, 6 and 7, is preceded by a short introduction, summarizing
the main results and putting them in context with the rest of the thesis. Moreover, Chap-
ters 2 and 4 are followed by a short comment, which clarifies some points discussed in
the papers. It was our choice to leave the papers in their original form, with the excep-
tion of some editing and minor changes, which have been made for sake of uniformity,
mainly for what concerns notation and orthography.
Chapter 1 introduces Turing theory on networks and discusses a broadening of the Tur-
ing framework, which will then be developed in the following three chapters. In Chapter
2, we extend the theory for oscillatory systems by considering non-normal networks as
their support and showing that the homogeneous state is much more fragile in such
cases; then, in Chapter 3, we consider networked systems when an upper bound on the
signal propagation is present, and revisit the emergence of Turing patterns. Chapter 4
goes further beyond the Turing framework, as a Turing-like instability is studied for
systems where no diffusion takes place. The second part is about higher-order interac-
tions, which are introduced in Chapter 5. Chapter 6 develops a theory of Turing patterns
for systems with many-body interactions, while, in Chapter 7, we consider topological
signals on higher-order structures. In the Conclusions, some open questions and future
perspectives will be discussed. The thesis is concluded with the summary of other rel-
evant results obtained throughout this PhD, which go beyond the Turing theory and did
not fit in the narrative.
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Besides proposing the work done by the candidate, the main goal of this thesis is
twofold: firstly, to revisit Turing theory on networks through the formalism of syn-
chronization dynamics, proving that the former, at all effects, belongs to Dynamics on
Networks; then, to further extend the boundaries of what are normally considered as
Turing patterns, by showing that Turing-like patterns emerge even when the framework
seems, in principle, far from the original Turing one. Whilst the first part, regarding
pairwise interactions, deals with a well developed framework, as Turing patterns on
networks have been thoroughly studied over the past decade, the papers in the second
part are among the firsts of their kind and, thus, have a more didactic and fundamental
structure.

The work of this thesis has been carried out at Université de Namur and the Namur
Institute for Complex Systems (naXys) from January 1st 2020 up to the day of the de-
fense and funded by the Fond National de la Recherche Scientifique, FNRS, and the
region Wallonia through a FRIA PhD Grant FC 33443. Some parts of the work have
been developed in collaboration with other international research groups. A first visit
(10 days, Jan 2020) to the MACSI at University of Limerick (Ireland) in the group of
Professor James Gleeson was funded by the Erasmus+ and partly led to Chapter 2. A
second shorter visit (1 week, Jan 2022) was funded by the Bridge Grant of the Young
Researchers of the Complex Systems Society (yrCSS) and inspired a work that is cur-
rently in preparation (see Conclusions and perspectives in Part III). The Erasmus+ also
funded a visit (2 weeks, May 2022) to the group of Professor Mattia Frasca at Univer-
sità di Catania (Italy), which partly led to Chapter 6 and to a work that is not part of
the main thesis (see Summary of other coauthored papers in Part III). Moreover, such
collaboration is still ongoing and other joint projects are currently discussed. Through
the FRIA fundings, a short visit at Università degli Studi di Firenze (Italy) in the group
of Professor Duccio Fanelli (1 week, June 2022) was important in the finalization of
Chapter 7. The Royal Academy of Arts and Sciences of Belgium and additional fund-
ing from the FNRS (Mobility Out Grant) allowed for a long visit (2 months, Sep-Nov
2022) in the group of Professor Stefanella Boatto at the Mathematical Institute of Uni-
versidade Federal do Rio de Janeiro (Brazil), which resulted in a work that is currently
being finalized and is thus not part of the thesis (see Conclusions and perspectives in
Part III). Moreover, the FRIA funding allowed for a short visit (1 week, Nov 2022) to
the group of Professor Juan Ignacio Perotti at Universidad Nacional de Córdoba (Ar-
gentina), inspiring a work that is still ongoing (see Conclusions and perspectives in
Part III). Moreover, before joining naXys, first as a Teaching Assistant in September
2019, then as a FRIA PhD Student from January 2020, I was for a year a PhD Student
of Systems Biology at VU Amsterdam (The Netherlands) within the Marie Curie ITN
SynCrop, funded by the EU through the Horizon 2020 program. The research carried
out in that year resulted in a paper published in a biology journal and, thus, far from the
work of this thesis (see Summary of other coauthored papers in Part III).
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Part I

Pairwise interactions

1





Chapter 1
Beyond the Turing mechanism:
new frontiers of pattern formation
on networks

The most wide-spread interpretation of Turing’s original framework consists of two in-
teracting species and it is mainly based on two pillars: the presence of a homogeneous
stable fixed point and the successive activation of diffusion which provokes the instabil-
ity. Alternatively, diffusion can be thought as always present and the distinction is made
between homogeneous perturbations, which do not disrupt the stable state, and inho-
mogeneous ones, which yield instability. The two interpretations are equivalent and
both consist of a symmetry breaking mechanism. However, over the years, such theory
has been extended and many different settings have been studied [12]. Turing patterns
have been found adding a differential flow, i.e., a drift, meaning that the diffusion is
anisotropic due to a transport term [13, 14], noise, i.e., a source of constant perturbation
endogenous to the system [10], cross-diffusion, i.e., the diffusion of a species has an
effect on the variation of the other one and vice versa [15], an upper bound to the signal
propagation, i.e., the equations become hyperbolic due to an inertia in the propagation
[16] (and see Chapter 3), just to make a few examples. Moreover, recent findings have
shown theoretical and experimental evidence of Turing patterns in quantum [17] and
nanoscale systems [18]. We can extend the Turing framework in another direction, by
considering three or more interacting species: in this case the system can exhibit os-
cillatory patterns, which are not allowed in the classical Turing setting [9, 19]. Such
phenomenon, already discussed by Turing in his original paper, is found in the litera-
ture as wave instability [20, 8], despite the fact that diffusion is again the key factor.
Interestingly, in some cases considered within the framework of Turing instability, e.g.,
when a differential flow is present, patterns can be oscillatory, but are called Turing pat-
terns (or drift-induced Turing patterns). The hyperbolic case is even more peculiar: in
fact, patterns that are solely due to the inertia in the propagation of the signal are called
wave patterns, because it was thought that they are always oscillatory, and patterns due
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1 - Beyond the Turing mechanism

to diffusion are called Turing patterns even when the stability of the homogeneous state
is lost before the diffusion is active [16, 21, 22]. We will show that these interpreta-
tions are not correct in Chapter 3. There seem to be already a few inconsistencies in the
nomenclature and characterization of Turing patterns, which in the network framework,
as we will see in the next pages, become even more manifest. The question we try to
answer in this Chapter is the following: when can we call an instability leading to the
formation of patterns "Turing Instability"? Of course, the answer depends on the inter-
pretation of the Turing mechanism and, in the end, it is more important to understand
the phenomenon we are dealing with, rather than its name. We, however, believe that
a reflection in such sense is necessary, given the confusion and the arbitrariness of the
definitions used in the literature.
Before proceeding in the analysis, we would like to add one more thing. All the varia-
tions of Turing’s original framework consist in getting closer to the experimental setting
in order to fill the gap between theory and observations: nature is noisy, the signal does
not propagate at infinite speed, etc. In almost every case(1) the system becomes unsta-
ble for a larger range of parameters, hence the formation of patterns is enhanced. In
our opinion, the fact that, by adding more realistic hypotheses, the theory improves is a
good indication of its epistemological value.

In the next section we will go through the basics of Turing theory on networks,
showing how certain kinds of topologies enhance the formation of patterns. Then we
will highlight the analogy between the Turing framework and the synchronization one,
showing that the former can be revisited with the formalism of the latter, hence intro-
ducing Chapter 2. Successively, we will focus on oscillatory patterns, which do not
coincide with what are called "wave" patterns in the literature, and show the incongru-
ence of such nomenclature, focusing in particular on the case of hyperbolic reaction-
diffusion systems, which are the subject of Chapter 3. Lastly, we will present a mech-
anism qualitatively very similar to the Turing one and show that it can yield patterns
even in systems where no diffusion takes place. The latter will be further examined in
Chapter 4, ending the part of this thesis focused on pairwise interactions.

1.1 Turing theory on networks: from lattices to non-
normal structures

Our framework for this first part is the network one, i.e., the "manifold" where our dy-
namics take place is discrete. To use the word manifold may seem audacious, but, as we
will see in the second part (Chapters 5-7), thanks to topology, we can appreciate a much
deeper connection between continuous and discrete space. Let us leave the latter for a
discussion further in the thesis and consider, for the moment, the case networks. The
dynamical processes we will be interested in take place in the nodes, while links medi-
ate the interactions between the latter. Without links we would have n isolated systems,
but as soon as we "switch them on" our system becomes a whole and the interactions

(1)An interesting exception is the case of time-varying networks [23], in which the presence of a dynamic
support leads to a shrinking of the instability region [24]. Such case will not be examined throughout this
thesis.
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among the nodes may yield a different and much richer dynamics than the decoupled
case.

Turing theory was studied on discrete support first by Othmer and Scriven in two
pioneering works in which they zoomed into Turing’s continuum to consider actual
cells where the reactions were taking place, connected in various lattices configura-
tions [25, 26]. Othmer and Scriven’s vision was certainly ahead of time, as network
theory would become popular only thirty years later, with the works of Albert and
Barabasi [27], Newman [28], Strogatz [29], Pastor-Satorras and Vespignani [30], to
name a few. For this reason, the works on lattices are still anchored to the duality
continuum-discrete. In fact, Othmer and Scriven’s approach is a development of the
discretization already present in Turing’s original paper. The first work where Tur-
ing theory is studied using the modern tools of Network Science is due to Nakao and
Mikhailov [31], in a milestone paper which opened the way to a new line of research.
All successive works on Turing patterns on networks owed their main implant to such
paper and this thesis is no exception. The key idea of Nakao and Mikhailov’s work is
the main pillar of everything discussed in this thesis and will be found in every Chapter,
except for Chapter 5. However, being so important, let us see, in a nutshell, in what
it consists through the key points. We start from the equations describing an isolated
system of two species u and v, given by the following nonlinear equations

{
u̇(t) = f (u(t),v(t))
v̇(t) = g(u(t),v(t))

(1.1.1)

and assume that there exists a stable equilibrium point (u∗,v∗), solution of the isolated
system. We then proceed by coupling through a network n interacting copies of the
above system. As we have discussed, diffusion plays a key role in Turing’s mechanism.
On networks, the role of diffusion is filled by the Discrete Laplacian, a matrix whose
entries are given by Li j = Ai j − kiδi j, with Ai j entries of the adjacency matrix A and ki
node degree. Such Laplacian, also called combinatorial Laplacian [32], provides the
way in which the units are coupled(2). The diffusion is then proportional to a constant
D, which is specific for each species and is called diffusion coefficient. The form of
reaction-diffusion equations hence is





u̇i = f (ui,vi)+Du

n

∑
j=1

Li ju j

v̇i = g(ui,vi)+Dv

n

∑
j=1

Li jv j

∀i = 1,2, . . . ,n (1.1.2)

The units being identical, (u∗,v∗) is also a solution of the coupled system. Hence,
these equations can be linearized around the the equilibrium point (u∗,v∗), for every

(2)We will see in Chapter 3 a different definition of the combinatorial Laplacian, which is obtained from
the incidence matrix. The two definitions are equivalent, although the latter allows us to generalize to higher
orders of interactions, as we will show in Chapters 5 and 7.
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node i, giving 



δ u̇i = fuδui + fvδvi +Du

n

∑
j=1

Li jδu j

δ v̇i = guδui +gvδvi +Dv

n

∑
j=1

Li jδv j

(1.1.3)

where δui = ui − u∗, δvi = vi − v∗ are the inhomogeneous perturbations and fu the
derivative of function f with respect to variable u computed on the fixed point (analo-
gously for the others). By defining ζ⃗ = (δu1, . . . ,δun,δv1, . . . ,δvn)

⊤, we can rewrite
the latter in compact form, we obtain

˙⃗
ζ = (In ⊗J0 +L⊗D) ζ⃗ (1.1.4)

where D=
(

Du 0
0 Dv

)
, J0 =

( fu fv
gu gv

)
is the Jacobian matrix of the isolated system and ⊗ is

the Kronecker product. Equation (1.1.4) determines the evolution of the perturbation:
the system will relax back to the homogeneous equilibrium or exponentially escape to-
ward another attraction point depending whether the largest real part of the spectrum
of the 2n×2n matrix In ⊗J0 +L⊗D is positive or negative. However, the basis arbi-
trarily chosen is not ideal to study the evolution of the perturbation, as the (potential)
instability modes are not decoupled. The ingenious idea of Nakao and Mikhailov, pre-
viously used by Turing himself in the case of continuous support, was to expand the
perturbation on the basis of the Laplacian’s eigenvectors, which are orthonormal the
network being symmetric. In the new basis, the 2n×2n system is decomposed onto n
2×2 systems. For α = 1, ...,n, we obtain then

˙⃗
ξα =

[
J0 +Λ

(α)D
]

ξ⃗α = Jα ξ⃗α (1.1.5)

where ξ⃗α =
(ûα

v̂α

)
is the perturbation in the new basis and Λ(α) is the α-th eigenvalue

of L, which is either zero or negative. By analyzing the stability of matrix Jα , one can
find the conditions for the emergence of patterns. Note that, the support (i.e., the opera-
tor’s spectrum) being discrete, there will always be finite size effects: in fact, while the
continuous counterpart obtained by studying the stability as a function of a continuous
parameter in place of the discrete Λ(α) may be unstable, it can happen that the interval
of values yielding instability does not contain any discrete instability mode.

Another interesting fact about the above analysis, which could be noticed also from
Equations (1.1.2), is that the difficulty of the problem does not change with the topol-
ogy. On continuous support there is a notable difference between studying the problem
on a 1D-lattice or on a Rienmannian surface [33]: the structure of Equations (1.1.5)
remains the same, but the Laplacian operator changes. In our framework, instead, the
diffusion operator is a matrix, whose eigenvectors are easily computable independently
of the network(3), and the numerical problem to be solved remains an ODE one. This is

(3)This is not true anymore for the case of multiplex [34, 35] and multilayer networks [36], where computing
the spectrum of the Laplacian requires a perturbative approach. However, the statement in the text is true for
any network, hence excluding multilayer structures.
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particularly interesting, considering that some network topologies do not have a trivial
embedding, or even no embedding at all [37] and the power of this approach becomes
manifest when studying directed [38] and non-normal [39] topologies. In fact, while
on continuous support one would have to deal with a drift term to account for the priv-
ileged direction of diffusion [40], the expansion of the perturbation on the Laplacian’s
eigenbasis can be generalized even when such basis is not orthonormal or generalized
eigenvectors are needed, cases which will be discussed in the next Chapter and, thor-
oughly, in Chapter 4, Section 4.6.

Let us conclude with a comment. It is sometimes said that physics mainly breaks
down to two things: a linearization and a change of basis. Nakao and Mikhailov’s
elegant solution of the Turing problem on networks is a remarkable example of this.

1.2 Synchronization dynamics from the Turing perspec-
tive

It is common to see Turing pattern formation within the realm of physical chemistry
or partial differential equations. However, the problem can be reformulated within the
framework of Dynamics on Networks and we will show in this section its analogy to the
formalism used of synchronization dynamics [41, 42]. The study of synchronization dy-
namics is a vast field and many different frameworks and models are investigated. The
most common is certainly the Kuramoto model [43], where the oscillators are in general
not identical. Instead, we will focus our attention on a different approach to synchro-
nization, namely that developed by Pecora and Carroll in a seminal paper that opened
a new line of research [44]. Scholars of such field are accustomed to study systems of
identical units coupled through a network. Before proceeding any further, we need to
make an important clarification: a homogeneous (global synchronous) solution exists
because we are considering n identical units, condition that is not generically matched
in the Kuramoto framework, where, in fact, there is no homogeneous solution. For ev-
ery unit x⃗i, which can have a chaotic or periodic dynamics(4), the equation describing
the system takes the following form

˙⃗xi = f⃗ (⃗xi)+σ

n

∑
j=1

Ai j⃗g(⃗x j, x⃗i) (1.2.1)

where n is the number of interacting units (i.e., nodes of the network), x⃗ ∈ Rl is the
dynamical variable, f⃗ a nonlinear vectorial function describing the dynamics of the
decoupled system, σ the coupling strength and g⃗ a vectorial function describing the
coupling between the units through the network topology. The latter needs to be non-
invasive, i.e., g⃗(⃗x, x⃗) = 0, which guarantees the existence of the global synchronous
solution x⃗1 = ... = x⃗n ≡ x⃗∗(t) [44](5). In general, the coupling is also diffusive-like,

(4)The following discussion was originally developed for chaotic oscillators, but it remains valid also for
periodic ones.

(5)Especially in the literature on synchronization, the synchronous solution is indicated with x⃗s, rather than
x⃗∗. Let us also remark that the synchronous solution can be time-dependent or -independent; in the next pages
we will not always explicit the dependence on time when cleared by the context.
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1 - Beyond the Turing mechanism

i.e., g⃗(⃗x j, x⃗i) = h⃗(⃗x j)− h⃗(⃗xi), meaning that it can be linearly approximated by a Fickean
diffusive process(6). Also in this case, the interest is to study if and how the coupling
affects the dynamics of the isolated system. In particular, in such framework the main
research question is whether all the interacting units will follow the same trajectories,
i.e., they will be globally synchronized following x⃗∗(t), or a perturbation will disrupt
the collective motion. The stability of the synchronous solution can be studied through
the Master Stability Function (MSF), a powerful numerical tool developed by Pecora
and Carroll in the aforementioned paper [44]. The procedure will be detailed in Chap-
ters 2 and 5, but let us go through the key points, so to show the similarities between
this framework and the Turing on network’s one. In a nutshell, the synchronous solu-
tion is perturbed and the maximum Lyapunov exponent is computed as a function of a
continuous coupling parameter. The equation for the perturbation linearized about the
synchronous solution is

˙⃗
ζ =

(
In ⊗J f +L⊗Jh

)
ζ⃗ (1.2.2)

where now the perturbation vector ζ⃗ has dimension nl and the l × l matrices J f and Jh

are the Jacobian of functions f⃗ and h⃗ respectively. Let us point out that the Jacobian
matrices are computed on the synchronous solution, hence they will be, in general,
time-dependent. The network Laplacian appears due to the hypothesis of diffusive-like
coupling(7). In order to decouple the modes, we need to perform a change of basis and,
from the above ln× ln system, get n l × l ones. If we transform through the basis of
eigenvectors of the matrix L, Equation (1.2.2) becomes for each mode α

˙⃗
ξα =

[
J f +Λ

(α)Jh

]
ξ⃗α = Jα ξ⃗α (1.2.3)

where again Λ(α) is the α-th eigenvalue of L. The first mode, associated to the 0 eigen-
value, is the perturbation parallel to the synchronized solution, i.e., the equation for the
isolated systems. All the other modes are orthogonal to the synchronization manifold
and the computation of the MSF reveals if one of them drives the system away from the
synchronous state.

If all that sounds familiar, it is because the procedure and the philosophy behind
it is similar to what we have shown in the previous section to compute the dispersion
relation in the context of Turing patterns. The key difference between the two frame-
works is that, when studying Turing patterns, the coupling needs to change the stability
of the fixed point (from stable to unstable) to yield an interesting dynamics [46]. Taken
that into account, one can consider the homogeneous fixed point as the synchronous
solution, x⃗∗ ∈ R2, i.e., a two species system, Jh the diagonal matrix of the diffusion co-
efficients and the dispersion relation as the maximum Lyapunov exponent as a function

(6)The hypothesis of diffusive-like coupling function, besides simplifying the problem, allows to develop
an elegant and powerful formalism [45], that we will use in Chapter 6 to develop Turing theory for systems
with higher-order interactions.

(7)In Pecora and Carroll’s original work, the coupling matrix was not exactly the Laplacian, but a very close
relative. The above discussion bears the same philosophy of the original work, but it is presented in a revisited
formulation.
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of the coupling, i.e., the MSF, to recover exactly the equation of the previous section,
i.e., Equation (1.1.4). There is another caveat in this analogy. The dispersion relation
has a physical meaning, i.e., it relates to the wave-number of the perturbation driving
the system away from the equilibrium, besides the stability properties, while the MSF
merely indicates the latter. We can say that the dispersion relation is a MSF, but not all
MSFs are dispersion relations.
When the isolated system has a stable fixed point, i.e., a negative Lyapunov exponent,
we talk about dispersion relation, when it has a stable limit cycle, i.e., zero Lyapunov
exponent(8), we talk about Floquet multipliers and when it has a strange attractor, i.e,
positive Lyapunov exponent, we talk about Lyapunov exponent. Mutatis mutandis, the
analysis is very similar and in the end the objective is to study the stability of the whole
system, i.e., the n interacting units, as a function of the coupling. In the case of fixed
point the MSF can be computed analytically, while for the other cases, the linearized
system being non-autonomous, we need to resort to numerical simulations, as discussed
in details in Chapter 2. Nonetheless, there is a notable exception, the Stuart-Landau
models, that is also the normal form of the Hopf-Andronov bifurcation [48], for which
the Jacobian of the system computed on the limit cycle is constant and the MSF can be
computed analytically; such model will be discussed in Chapter 4.

After what we have shown in this section, we can conclude that the techniques ap-
plied to investigate the emergence of Turing patterns are analogous to those used to
study the stability of the synchronous states for coupled oscillators on networks. Given
that the community of synchronization is larger than that of Turing patterns on net-
works, it may seem at first that the latter may benefit more from such connection, as
all the insights and techniques developed in the former framework can be transported in
the new context. It is indeed the case of the work presented in Chapter 6, where we have
adapted an elegant formalism developed in the context of synchronization dynamics to
Turing theory. However, also the study of Turing patterns on networks can very well
contribute to the study of synchronization by looking at the problem from a different
perspective(9). This is the case of the work presented in the next Chapter, where, thanks
to a theory which was developed for Turing patterns, we have been able to give a con-
tribution in the field of synchronization by proving that a certain kind of networks is not
optimal for synchronization, in contrast to what it was thought before.

1.3 Inertia-driven and other oscillatory patterns
In Chapter 3 we study the emergence of patterns when the signal propagation is finite,
the latter being a necessary assumption when the reaction-diffusion process takes place
on a large domain. Leaving a formal derivation for later in the thesis, the reaction-
diffusion equations take the following form

(8)A zero Lyapunov exponent, on the other hand, does not imply that the isolated system has a stable limit
cycle, since also centers and quasi-periodic dynamics yield a zero Lyapunov exponent [47].

(9)Let us remember that, while the reformulation of Turing theory on network is rather new, it carries
decades of insights developed experimentally and theoretically on continuous support.

9



1 - Beyond the Turing mechanism





u̇i + τuüi = f (ui,vi)+Du

n

∑
j=1

Li ju j

v̇i + τvv̈i = g(ui,vi)+Dv

n

∑
j=1

Li jv j

(1.3.1)

where now τu and τv are the inertial times in the propagation of species u and v respec-
tively(10). On continuum support, such equations are called hyperbolic, because that
is the kind of PDEs we would obtain, in contrast with the "classic" parabolic reaction-
diffusion equations. The emergence of Turing patterns for hyperbolic reaction-diffusion
equations has been studied for equal [16] and different [21] inertial times, but never on
networks, and that is what we did [49], which is the subject of Chapter 3.
Moreover, studying Turing instability for hyperbolic systems on discrete support al-
lowed us to reinterpret the kinds of patterns we observed. In fact, a class of patterns
emerges, which is solely due to the inertia in the signal propagation, and they are called
wave patterns in the literature. Such nomenclature is rather peculiar, mainly because
this kind of patterns are also stationary and then because the physical reason for their
existence is the inertia in the signal propagation, while classical wave patterns emerge
because of the interactions of three (or more) reacting and diffusing species [8]. It is
true, as rightly pointed out in [22], that a necessary condition for the emergence of os-
cillation is a third time derivative, which makes the two frameworks mathematically
similar, however the physical reason is intrinsically different. Because of that we re-
named this kinds of patterns inertia-driven.

In mathematics and physics there is often an opposition to renaming phenomena,
which is in our opinion correct. In fact, we should always try to understand if what
we are observing has already been observed in different circumstances and try to find
common patterns rather than differentiate our results from what is already known. Sci-
ence is full of examples of "name changing", which later mislead the attribution of the
discovery. One of the most notable cases in nonlinear science regards Chimera States,
which where first discovered by Kaneko in the late 80s in maps [50], Cerdeira and col-
laborators in Josephson junctions [51], Kuramoto, Nakao and Battogtokh in systems of
non-locally coupled oscillators (Ginzburg-Landau systems, Rössler oscillators, logistic
maps) [52, 53, 54, 55, 56] and identical phase oscillators [57], but were then renamed
"Chimeras" by Strogatz and Abrams citing only the last of the previous references [58].
Nevertheless, we would like to stress the fact that the case of inertia-driven patterns is
different, as we are not only renaming, but reinterpreting the phenomenon. The name
wave patterns is misleading because such patterns are not always oscillatory, but can
also be stationary, independently of the imaginary part of the unstable modes. Addition-
ally, they are solely caused by the inertia in the signal propagation, as much as classical
Turing patterns are caused by the diffusion. In analogy with diffusion-driven, we be-
lieve that inertia-driven is the most correct form to address such patterns. Moreover,
in the context of hyperbolic reaction-diffusion system, the inertial times may cause a

(10)The finite propagation velocity for the species will thus be V =
√

D/τ .
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loss of stability of the homogeneous stable state, hence diffusion-driven patterns are no
longer due to a Turing instability, as we would lose the main feature of homogeneous
stable equilibrium. Surprisingly, in the literature these patterns are considered Turing
patterns and the fact there is no stable homogeneous equilibrium is ignored [16, 21, 22].
In our work we show that whether the instability is a Turing instability or not depends
on the values of the inertial times.
The case for which the homogeneous stable equilibrium loses its stability is sometimes
called Hopf instability or Turing-Hopf instability, even though sometimes also an insta-
bility leading to oscillatory patterns is called in such a way [59, 60]. We do not believe
that this characterization makes sense in the context of networks. In fact, the loss of
stability of the fixed point may result in stable limit cycle, hence every node would
oscillate on the same attractor and the global system would still be in a homogeneous
stable state. As previously shown, such homogeneous stable state can undergo a Turing-
like bifurcation and become unstable due to diffusion. Hence, when the homogeneous
equilibrium is no longer stable, we are not dealing with a Turing-like instability. It is
also interesting to note, as it will be shown in the next Chapter, that, despite a non-zero
imaginary part of the dispersion relation (or MSF, in this context), the patterns can be
stationary. The problem of pattern prediction remains an open problem and we cannot
know a priori whether the observed patterns will be stationary or oscillatory, but we
need to resort to numerical simulations to have an answer.

1.4 Systems without diffusion and non-reciprocal inter-
actions

We have learned that diffusion is the essence of the Turing-instability. But then also
noise, a differential flow or certain network topologies can drive the instability together
with diffusion. In some cases, instability is purely due to the inertia in the signal prop-
agation. We are slowly moving away from Turing original framework, but from a net-
work perspective its philosophy still holds: n isolated systems lie in a homogeneous
stable state, that is disrupted by an inhomogeneous perturbation. One could ask: can
we avoid diffusion tout court and still observe patterns?
There are indeed many systems where no diffusion takes place but which exhibit pat-
terns, for instance photosentive chemical reactions, where the reactants interacts via
emission of photons without any displacement of particles [61, 62, 63]. Interactions
without diffusion are often called non-local interactions and have been studied in chem-
ical [64] and ecological [65] systems. The mechanism of instability is intrinsically dif-
ferent from the Turing one, despite some similarities, i.e., the homogeneous stable state
is disrupted by an inhomogeneous perturbation. However, let us consider the network
framework, with n isolated units interacting with each other without diffusion. Let us
start by the equations for the isolated units, i.e., the local interactions

{
u̇i = f (ui,vi)

v̇i = g(ui,vi)
∀i = 1, . . . ,n (1.4.1)
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1 - Beyond the Turing mechanism

If we now assume that the species in node i can interact non-locally with species in the
adjacent nodes, we can represent the long-range interactions in the following way





u̇i =
1
ki

n

∑
j=1

Ai jF(ui,vi,u j,v j)

v̇i =
1
ki

n

∑
j=1

Ai jG(ui,vi,u j,v j)

(1.4.2)

where the nonlinear function F (resp. G) is such that F(ui,vi,ui,vi) = f (ui,vi), meaning
that, when the non-local interactions are inactive, we recover the local dynamics. If we
now define the matrix

Li j =
Ai j

ki
−δi j

and write for variable u (resp. v)

u̇i =
1
ki

n

∑
j=1

Ai jF(ui,vi,u j,v j)+ f (ui,vi)− f (ui,vi)

we obtain




u̇i = f (ui,vi)+
n

∑
j=1

Li jF(ui,vi,u j,v j)

v̇i = g(ui,vi)+
n

∑
j=1

Li jG(ui,vi,u j,v j)
(1.4.3)

which is, indeed, similar to the reaction-diffusion system (1.1.2), even though no dif-
fusion takes place. The matrix L is called reactive or consensus Laplacian and has
analogous properties to the diffusion (combinatorial) one. The intuition leading to such
form of the equations describing non-local interactions was made by Cencetti and col-
laborators [66], who showed that one can obtain a Turing-like mechanism of pattern
formation with purely reactive interactions. Such non-local interactions are sometimes
called long-range interactions, which may be misleading. In fact, long-range interac-
tions are usually referred to interactions due to nodes which are not directly connected
with each other, but still affect the dynamics [67]. In this context, we will consider
long-range interactions as non-local interactions, stressing the fact that the elementary
units interact with each other without any displacement of particles.

Moreover, interactions are in general non-reciprocal, meaning that the underlying
network is asymmetric(11). The effects of non-reciprocal interactions has been thor-
oughly studied in the framework of Turing patterns [38, 40], population dynamics [68]
and, recently, phase transitions [69], just to mention a few examples, and in all cases
it seems that non-reciprocity greatly enhances the possibility and variety of observed
patterns. In Chapter 4, we will study the case of non-reciprocal non-local interactions

(11)More than asymmetric, real-world networks are non-normal, as shown in [39]. The effects of non-
normality will be discussed in Chapter 2.
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and, in particular, focus on the effects of such asymmetry in the formation of patterns,
showing more in general that, indeed, patterns emerge more easily in such a context.
We will also show that the analysis performed to study the stability of the system after
an inhomogeneous perturbation of the homogeneous stable state closely resembles that
shown at the beginning of this Chapter for reaction-diffusion systems, hence justifying
the inclusion of such framework in the Turing one.

1.5 Discussion
Answering the question at the beginning of this Chapter, we gave, of course, a subjec-
tive version of the story, which is based on the work done and is strongly influenced
by the received training and the researchers with whom we had the luck to collabo-
rate. Far from a definitive word, our is more an exercise to bring out the absurdity of
a strict characterization, which ignores not only multiple contradictions but also clear
evidence, so that as a community interested in Turing patterns we can move forward,
away from obsolete classifications. We have seen that what it is called Turing patterns
is rather arbitrary and that we should not be strict in the nomenclature. Either we call
Turing patterns only the patterns due to the original Turing mechanism (two species and
diffusion-driven) and exclude the rest, or we acknowledge that all patterns shown in the
previous pages are undeniably inspired by Turing’s work. We could call Turing patterns
the patterns due to the original Turing mechanism and call all the rest Turing-like pat-
terns. To add clarity, we could add the driver of the instability, in order to distinguish
them among each other, and so call them drift-Turing patterns, wave-Turing patterns or
inertia-Turing patterns as we did in one of our works [49] (Chapter 3).

As discussed in the previous paragraphs, in the following three chapters we will
find three different settings in which patterns emerge, none of which is close to the
classical Turing setting. But there is absolutely no doubt that they are inspired by Turing
original idea, to which they have a huge intellectual debt. All these works are Turing
paper’s great-great grand-children, and this stands also for those within the framework
of higher-order interactions, which will come in the second part of this thesis. All the
patterns found in the next pages deserve, in our opinion, to bear Turing’s name.
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Chapter 2
Synchronization dynamics on
non-normal networks: the
trade-off for optimality

The framework of Turing instability on networks is connected to that of synchroniza-
tion, even though at first sight they may appear far. In fact, we can consider n systems
of 2 species in a limit cycle regime and couple them through a network, to then observe
either the disruption of the homogeneous synchronized solution due to diffusion or the
system going asymptotically back to the latter state [46]. As we have seen in Chapter 1,
the two frameworks are related, so what is valid in one should stand also in the other. We
knew that when the homogeneous stable state is a fixed point, a linear stability analysis
might fail in predicting the instability if the system is on top of a non-normal network,
as it has been shown in previous studies [70, 71]. The research question driving the
development of the following paper was whether an analogous mechanism could be
observed in the framework of synchronization.
This question was answered positively and it stimulated a discussion in the community
[72, 73] whether certain networks are optimal for synchronization or not. First of all, let
us stress that what we intend with "optimal for synchronization" slightly differs from
the one given in [74], and this could have been the source of some misunderstanding.
Secondly, the latter authors refer to the synchronizability of the network and their theo-
retical study is correct, namely the system synchronizes provided the initial perturbation
is sufficiently small. On the other hand our approach focused on the difference of sizes
the perturbations can have, once the underlying network is non-normal or not. Indeed,
we numerically showed that the optimal networks presented in [74] are strongly non-
normal and, hence, although they may seem a good choice to enhance synchronization,
their homogeneous (synchronized) state is weak against finite perturbations; stated dif-
ferently, the basin of attraction of the synchronous manifold can be very small and thus
"invisible" to finite perturbations. With those caveats, we can affirm thus that our nu-
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2 - Synchronization dynamics on non-normal networks

merical results are solid and, in fact, they have been criticized but without being proven
wrong. Eventually, two independent groups replicated and corroborated our numeri-
cal results [75, 76]: non-normal networks make the synchronized solution weaker with
respect to finite perturbations and stability can be lost even when a linear stability anal-
ysis predicts otherwise. All this is in agreement with the known results on non-normal
matrices and operators [39, 77]. Moreover, in [75] it is proven that, among all the non-
normal networks, only star-networks are actually optimal for synchronization. This is
clear, because one node affects all other and only ad hoc perturbations can drive the
system away from the equilibrium. The interested reader may follow the whole story,
starting with [78] (i.e., this very Chapter), then the comment [72], the reply [73] and
the final word [75, 76]. The busy reader, after this Chapter, may go directly to [75].
Working on the paper below was extremely interesting and educational, because we
put on the "hat" of Turing pattern formation to enter the world of synchronization and
looked at things from a different perspective. It was fascinating how we could give a
contribution to a field, in principle, not too close. Nonetheless, there are still many open
questions on non-normality and its effects on the dynamics and this topic is just starting
to be investigated. Some of these points will be discussed at the end of the Chapter, in
Section 2.5.

R. Muolo, T. Carletti, J.P. Gleeson & M. Asllani. Entropy 23 (1), 36 (2021) [78]
This article is open access.

Abstract
Synchronization is an important behavior that characterizes many natural and human
made systems composed by several interacting units. It can be found in a broad spec-
trum of applications, ranging from neuroscience to power-grids, to mention a few. Such
systems synchronize because of the complex set of coupling they exhibit, the latter be-
ing modeled by complex networks. The dynamical behavior of the system and the
topology of the underlying network are strongly intertwined, raising the question of the
optimal architecture that makes synchronization robust. The Master Stability Function
(MSF) has been proposed and extensively studied as a generic framework to tackle syn-
chronization problems. Using this method, it has been shown that for a class of models,
synchronization in strongly directed networks is robust to external perturbations. In
this paper, our approach is to transform the non-autonomous system of coupled oscil-
lators into an autonomous one, showing that previous results are model-independent.
Recent findings indicate that many real-world networks are strongly directed, being po-
tential candidates for optimal synchronization. Inspired by the fact that highly directed
networks are also strongly non-normal, in this work, we address the matter of non-
normality by pointing out that standard techniques, such as the MSF, may fail in pre-
dicting the stability of synchronized behavior. These results lead to a trade-off between
non-normality and directedness that should be properly considered when designing an
optimal network, enhancing the robustness of synchronization.
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2.1 Introduction

2.1 Introduction
Systems in nature are often constituted by a large number of small parts that con-

tinuously interact with each other [79, 41]. Although it might be possible to accurately
know the dynamics that characterize each of the individual constituents, it is, in general,
nontrivial to figure out the collective behavior of the systems as a whole resulting from
the individual/local interactions. A relevant example is provided by a system composed
by an ensemble of coupled non-linear oscillators, that behave at unison driven by the
non-local interaction, then the system is said to be synchronized [80, 41]. Synchro-
nization has been extensively studied in network science as a paradigm of dynamical
processes on a complex network, mainly due to the essential role of the coupling topol-
ogy in the collective dynamics [79]. Its generic formulation allowed researchers to use
it to model several applications, ranging from biology, e.g., neurons firing in synchrony,
to engineering, e.g., power grids [42]. The ubiquity of synchronization in many natu-
ral or artificial systems has naturally raised questions about the stability and robustness
of synchronized states [81, 82, 83, 74]. In their seminal work, Pecora and Caroll [44]
introduced a method known as Master Stability Function (MSF) to help understand the
role that the topology of interactions has on system stability. Assuming a diffusive-
like coupling among the oscillators, the MSF relates the stability of the synchronous
state to the nontrivial spectrum of the (network) Laplace matrix; in particular, it has
been proven that the latter should lie in the region where the Lyapunov exponent that
characterizes the MSF takes negative values [41, 84]. For a family of models (e.g.,
Rössler, Lorenz, etc.) whose stable part of the MSF has a continuous interval where the
(real part of the) Laplacian’s eigenvalues can lie, it has been proven that they maximize
their stability once the coupling network satisfies particular structural properties. Such
optimal networks should be directed spanning trees and without loops [83, 74]. These
networks have the peculiarity of possessing a degenerate spectrum of the Laplacian ma-
trix and laying in the stability domain provided by the Master Stability Function. The
Laplacian degeneracy is also often associated with a real spectrum or with considerably
low imaginary parts compared to the real ones [85, 77].

The vast interest in complex networks in recent years has also provided an abun-
dance of data on empirical networked systems that initiated a large study of their struc-
tural properties [86]. From this perspective, it has been recently shown that many real
networks are strongly directed, namely they possess a high asymmetry adjacency ma-
trix [39]. Most of these networks present a highly hierarchical, almost-DAG (Directed
Acyclic Graph) structure. This property potentially makes the real networks suitable
candidates for optimally synchronized dynamical systems defined on top of them. An-
other aspect which is unavoidably associated with the high asymmetry of real networks,
is their non-normality [39], namely their adjacency matrix A satisfies the condition
AAT ̸= AT A [77]. The non-normality can be critical for the dynamics of networked
systems [87, 39, 70, 88, 89, 90]. In fact, in the non-normal dynamics regime a finite
perturbation about a stable state can undergo a transient instability [77] which because
of the non-linearities could never be reabsorbed [87, 39]. The effect of non-normality in
dynamical systems has been studied in several contexts, such as hydrodynamics [91],
ecosystems stability [92], pattern formation [93], chemical reactions [94], etc. How-
ever, it is only recently that the ubiquity of non-normal networks and the related dy-
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2 - Synchronization dynamics on non-normal networks

namics have been put to the fore [87, 39, 70, 88, 89, 90]. In this paper, we will elaborate
on these lines showing the impact of non-normality on the stability of a synchronous
state. We first show that a strongly non-normal network has, in general, a spectrum very
close to a real one and that this in principle should imply a larger domain of parame-
ters for which stability occurs, for systems with a generic shaped MSF. For illustration
purposes, we will consider the Brusselator model [95, 96], a two-species system with a
discontinuous interval of stability in the MSF representation. We will also examine the
limiting cases of our analysis to two simple network models [40], namely a (normal)
bidirected circulant network and a (non-normal) chain, both with tunable edge weights
in such a way to allow a continuous adjustment respectively of the directedness and
non-normality.

The MSF relies on the computation of the Lyapunov exponent, and thus in the case
of time-dependent systems, it does not possess the full predictability power it has in
the autonomous case (fixed point in/stability). For this reason, we will use a homoge-
nization method, whose validity is limited to a specific region of the model parameters,
allowing us to transform the linearized periodic case problem into a time-independent
one [97]. This way, we remap our problem to an identical one studied in the context
of pattern formation in directed networks where spectral techniques provide significant
insight [38, 40]. Such an approach allows us on one side to assess the quantitative
evaluation of the role of the imaginary part of the Laplacian’s spectrum in the stability
problem. On the other it permits the use of numerical methods, such as the pseudo-
spectrum [77] in the study of the non-normal dynamics. To the best of our knowledge,
this is the first attempt to use such techniques in the framework of time-varying sys-
tems, being the theory of non-normal dynamical systems limited so far to autonomous
systems [77]. As expected, the non-normality plays against the stability of the synchro-
nized ensemble of oscillators. Furthermore, a high non-normality translates to a high
spectral degeneracy, which brings to a large pseudo-spectrum, indicating a high sensi-
bility toward the instability. Clearly, the directionality and the non-normality stand on
two parallel tracks regarding the stability of synchronized states and their robustness.
As a conclusion of our work, we show that the most optimal design should be looked at
as a trade-off between a high and low directionality/non-normality. Such choice should
depend either on the magnitude of perturbation or the ratio directed vs. non-normal of
the network structure.

2.2 Optimal synchronization: Directed vs. Non-normal
networks

We consider a network constituted of n nodes (e.g., the idealized representation of a
cell), and we assume a metapopulation framework, where the species dynamics inside
each node is described by the Brusselator model, a portmanteau term for Brussels and
oscillator. It has been initially introduced by Prigogine & Nicolis to capture the auto-
catalytic oscillation [95] phenomenon, resulting from a Hopf bifurcation curve in the
parameter plane. This will be the framework we will consider in the following, neglect-
ing thus the fixed point regime. Species can migrate across nodes with a diffusion-like
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mechanism. In formulae, this model translates to a reaction-diffusion set of equations:




u̇i = 1− (b+1)ui + cu2
i vi +Du

n

∑
j=1

Li ju j

v̇i = bui − cu2
i vi +Dv

n

∑
j=1

Li jv j

∀i = 1, . . . ,n (2.2.1)

where ui and vi indicate the concentration of the two species per node, Du, Dv are their
corresponding diffusion coefficients, and b, c are the model parameters. The coupling
is represented by the matrix A, whose non-negative entries Ai j represent the strength of
the edge pointing from node j to node i. The entries of the Laplacian matrix L are given
by Li j = Ai j − kin

i δi j where kin
i = ∑ j Ai j stands for the in-coming degree of node i, i.e.

the number of all the entering edges into node i. We want to emphasize here that many
other coupling operators are also possible; nevertheless, most of them will reduce at the
linear level to a Laplacian involving the differences of the observable among coupled
nodes [41], i.e., ∑

n
j=1 Li jx j = ∑

n
j=1 Ai j(x j − xi). This form ensures that the coupling is

in action only when the observable assume different values in two coupled nodes.
The reason for choosing such a model, as mentioned earlier, is mainly due to the

discontinuous interval of the stability domain provided by the MSF of the problem (as
it can be noticed in the inset of Figure 2.3 a)). To proceed with the stability analysis, we
first need to identify the homogeneous periodic solution, u⃗∗(t) and v⃗∗(t), hereby called
the synchronized manifold (or synchronous solution) and then to linearize the system
around this. Let us introduce the perturbations for the i-th node by δui and δvi, then the
linearized equations describing their evolution are given by:

δ u̇i =

[
fuδi j +Du

n

∑
j=1

Li j

]
δu j + fvδvi

δ v̇i = guδui +

[
gvδi j +Dv

n

∑
j=1

Li j

]
δv j

∀i = 1, . . . ,n
(2.2.2)

where the partial derivatives are given by fu = −(b+ 1)+ 2cu∗(t)v∗(t), fv = cu∗(t)2,
gu = b− 2cu∗(t)v∗(t), and gv = cu∗(t)2. Notice that the partial derivatives of the re-
action part are evaluated on the synchronized manifold. This translates into a time-
dependent Jacobian matrix due to the periodicity of the solutions and thus to a non-
autonomous linear system.

To make a step forward let us introduce the following compact notation; let ζ⃗ =
(δu1, . . . ,δun,δv1, . . . ,δvn)

T be the 2n-dimensional perturbation vector, D the diago-
nal diffusion coefficients matrix and J(t) the time-dependent Jacobian matrix, hence
Equation (2.2.2) can be rewritten as

˙⃗
ζ = (In ⊗J(t)+L⊗D) ζ⃗ , (2.2.3)

where ⊗ is the coordinate-wise multiplication operator. Then, we proceed by diago-
nalizing the linearized system using the basis of eigenvectors of the network Laplace
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Figure 2.1: The network toy models for the case of a normal bidirectional circulant network, panel a), and a
non-normal bidirectional chain, panel b). c) Normalized Henrici’s departure from non-normality as a function
of tuning parameter ε for the non-normal model. We observe that starting from 0, the network is symmetric,
and the non-normality increases as the weight of the reciprocal edges decreases, taking the maximal value of
non-normality in the limit when ε = 0. In this case, the Laplacian’s spectrum is degenerate.

b)a)

Figure 2.2: a) MSF for the Brusselator model with b = 2.5, c = 1 (limit cycle regime), Du = 0.7, Dv = 5 on
a circulant network of 20 nodes; Λ(α) indicates the the Laplacian’s eigenvalues, of which we plot only the
real part. In this setting the system should remain stable after a perturbation: in fact, when the network is
symmetric (ε = 1), the discrete MSF (black dots) lies on the continuous one (magenta line); however, when
we introduce an asymmetry in the topology as ε decreases (red and blue dots), the MSF reaches the instability
region, and the system loses synchronization. b) The equivalent representation in the complex domain where
the instability region is shaded magenta and the discrete Laplacian’s spectrum is denoted by the symbols. For
the network topology with at least one eigenvalue that lies in the instability region, the synchronized state is
lost.

operator L. Notice that this is not always possible because the Laplacian matrix of
directed networks might not have linearly independent eigenvectors. We will assume
such a basis to exist for the time being, and we will consider such an issue again when
discussing the non-normal case. Denoting by ξ⃗ the transformed perturbations vector,
Equation (2.2.3) becomes

˙⃗
ξ = (In ⊗J(t)+ΛΛΛ⊗D) ξ⃗ (2.2.4)

where ΛΛΛ denotes the diagonal matrix of the Laplacian’s eigenvalues. The largest Lya-
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2.2 Optimal synchronization: Directed vs. Non-normal networks

punov exponent of Equation (2.2.4), known in the literature as the Master Stability
Function [44, 84, 41, 79], is thus a function of the eigenvalues ΛΛΛ. Let us stress that
the study of the stability of a general non-autonomous system is normally not possible
through the classical spectral analysis, and one has therefore to resort to the MSF.

Before proceeding in the quest for the optimal network topological features that
minimize the MSF, we will introduce two simple network models, shown in Figure 2.1,
for which we can tune the directionality and the non-normality acting on a single pa-
rameter. In the first case, Figure 2.1 a), we consider a bidirectional circulant network,
i.e., a network whose adjacency matrix is circulant [98], made by two types of links,
one of weight 1 forming a clockwise ring and the other winding a counterclockwise
ring of tunable weights ε . The latter can vary in the interval ε ∈ [0,1] exploring in this
way the possible topologies from a fully symmetric case when ε = 1, to a totally mono-
directed network when ε = 0. Since such a network is circulant, the adjacency matrix
will be normal, a property that is inherited by the Laplace operator. On the contrary, if
we remove two reciprocal links, respectively, of weights 1 and ε , we obtain instead a
non-normal network, as depicted in Figure 2.1 b). In this case, the adjacency matrix is
non-normal [77], a feature also reflected on the Laplacian matrix. Even in this case, we
can tune the non-normality by varying the ε parameter in the unitary interval as for the
previous case, this can be appreciated from the results shown in Figure 2.1 c) where we
report the normalized Henrici index, a well-known proxy of non-normality, as a func-
tion of ε . The main advantage of using the above network models is the existence of a
basis of eigenvectors for the Laplacian matrix. In the first network model, this is due to
the normality of the graph Laplacian, while in the second one it is because of the tridi-
agonal form of the coupling operator(1). This property is essential for the applicability
of the MSF analysis, which otherwise requires some caveats [74].

2.2.1 The case of normal directed networks
We start by considering the bidirected circular network and studying the linear stabil-
ity of the synchronized state using the MSF analysis. The results shown in Figure 2.2
a), indicate that the network topology increasingly contrasts the stability of the syn-
chronous manifold when the directionality increases. In fact, when the MSF computed
for the directed network is compared to the symmetric case used as reference line (the
continuous magenta curve), we can always observe larger values, which moreover in-
crease as ε decreases (for the same fixed Laplacian’s eigenvalue). Because of the cir-
culant property of the Laplace matrix, its spectrum can be explicitly computed [40]
Λ(α) = 1+ ε +(1+ ε)cos(2απ/n)+ i(1− ε)sin(2απ/n). One can easily notice that,
for ε = 0, the spectrum distributes uniformly onto the unitary circle centered at (1,0)
as also shown in Figure 2.2 b) in blue stars. On the other side, when ε = 1, the net-
work turns symmetric, making the spectrum real. The MSF formalism ultimately relies
on the maximum Lyapunov exponent, which, despite having proven its validity in rul-
ing out the chaotic behavior of dynamical system [80], remains grounded on numeri-
cal methods. To improve our analytical understanding of the problem, we proceed by
transforming Equation (2.2.4) into an autonomous one, allowing in this way to deploy

(1)This follows from the fact that every tridiagonal matrix is similar to a symmetric one. However, the set
of eigenvectors is not the same; they are linearly independent in both cases
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2 - Synchronization dynamics on non-normal networks

the spectral analysis tools. This method is part of the broader set of homogenization
methods that aim at averaging a time-dependent system to obtain a time-independent
one [97]. Such methods have been found useful also for the stability analysis of syn-
chronized states [99, 46]. The resulting autonomous version of the MSF is sometimes
referred to as the dispersion relation [93]. The mathematical validity of the proposed
approximation is grounded on the Magnus series expansion truncated at the first order
[46]; hence, the set of model parameters for which we expect a good agreement with
the original model corresponds to the case when higher-order terms are negligible. For
more details, the interested reader should consult [46]. In formula, it translates to

J(t)−→ ⟨J⟩T =
1
T

∫ T

0
J(τ)dτ (2.2.5)

Remarkably, as shown in Figure 2.3, this approximation yields qualitative results
in excellent agreement with the original model for a specific range of parameters. An
alternative to this approach is to apply a perturbative expansion near the bifurcation
point, obtaining this way the time-independent Ginzburg-Landau normal form [100].
However, the effectiveness of the latter method is exclusively limited to parameters
values very close to the stability threshold. In this sense, our approach is more general,
both from allowing a larger set of parameters where the method remains valid, and at
the same time, it is independent of the choice of the model compared to previous works
[48]. The passage to an autonomous system is also essential in explaining the effect
of the imaginary part of the Laplacian’s eigenvalues in the newly obtained stability
function, the dispersion relation. It has been rigorously shown in [38, 40] that the
dispersion relation increases proportional to the magnitude of the imaginary part of the
spectrum. We already observed similar results for the case of the MSF presented in
Figure 2.2. We can in this way conclude that the averaging method sheds light on the
role of the directed topology in the destabilization of a synchronized regime.

2.2.2 The case of non-normal directed networks
The analysis performed in the previous section has been based on the study of the lin-
earized system, in some cases, however, such analysis is not sufficient to understand the
outcome of the nonlinear system. In Figure 2.4 we consider again the MSF computed
for the directed chain previously introduced (panel b) of Figure 2.1). From Figure 2.4
b) one might naively conclude that the system will synchronize, since the MSF is non-
positive for all values of R(Λ(α)). Moreover, the spectrum is completely real (see panel
b)) and thus there cannot be any contribution from the imaginary part of the spectrum.
However, a direct inspection of the orbit behavior (panel c)) clearly shows that the sys-
tem does not synchronize. Once the system is defined on a symmetric support, the
synchronized behavior is recovered (panel d)).

This diversity of behavior is related to the non-normal property of the considered
network, indeed it has been recently proven that such structural property can strongly
alter the asymptotic behavior of networked systems [101]. A finite perturbation about
a stable equilibrium goes through a transient amplification (see Figure 2.4 d)) pro-
portional to the level of non-normality before it is eventually reabsorbed in the linear
approximation [77], while in the full non-linear system the finite perturbation could
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b)a)

Figure 2.3: a) The comparison of the MSF and dispersion relation for the Brusselator with model parameters
b= 3, c= 1.8, Du = 0.7, Dv = 5. We depict in magenta the MSF of the system in a limit cycle regime and cyan
the dispersion relation of the averaged autonomous system. Inset: Similar comparison for a set of parameters
where the instability occurs. Notice also the lack of continuity of the stability interval of eigenvalues. b) The
same representation in the complex domain. We see that for the chosen values of the parameters, the two
approaches give an excellent agreement in predicting the instability interval.

c) d)

b)a)
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ui

Figure 2.4: Desynchronization in a non-normal network. The parameters for the Brusselator model are as
follows: b = 2.5, c = 1, Du = 0.7, Dv = 5 on the (directed chain) non-normal network of 20 nodes with
ε = 0.1 of Figure 2.1 b). As it can be observed from panels a) and b), respectively, for the MSF and the
stability region, the set of parameters is such that the MSF is neatly stable. Nevertheless, the instability
occurs as shown by the pattern evolution in panel c) at odd with the outcome that would have been expected
from the symmetrized version. Such a result is strong evidence of the role of the network non-normality in
the nonlinear dynamics of the system under investigation. The mechanism that drives the instability in the
non-normal linearized regime manifests in the transition growth of the perturbations vector ζ⃗ (t) eq. (2.2.3),
the blue curve in panel d), before the system relaxes to the oscillatory state of the equilibrium. Such growth
might transform in a permanent instability for the nonlinear system u⃗(t) = [u(t),v(t)], red curve.
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Figure 2.5: a) The pseudo-spectral description of the stability of the directed chain of 20 nodes for the
Brusselator model with b = 2.5, c = 1.12, Du = 0.7, Dv = 5, and an initial condition perturbation of the
average magnitude δ = 0.1. We show the pseudo-spectra for three different values of the control parameter
ε for the chain network, emphasizing the considerably large difference between the pseudo-spectra regions
and the spectrum of the Laplacian matrix. Inset: the pseudo-spectra for many other values of the perturbation
magnitude δ for the chain with ε = 0.1. Notice that although the eigenvalues do not lie inside the instability
region due to the lack of an imaginary part, the pseudo-spectra might do. b) The comparison between the
expected outcome as predicted from the MSF and the actual outcome as measured by the standard deviation
of the desynchronized pattern. The stability basin (shaded gray) projected onto the limit cycle plane for the
non-normal case, panel c1) and the symmetrized (normal) one, panel c2), calculated over 300 different initial
conditions (of the same averaged magnitude) and a perturbation whose maximum magnitude varies from
10−3 to 1. Inset: In the y-axis we plot the points of limit cycle we perturb and in the x-axis the magnitude
of the perturbation; the colormap gives the fraction of orbits that conserve the synchronized regime. It can
be clearly noticed that the attraction basin for the non-normal network is strongly reduced, though not at the
same amount compared to where the perturbation occurs.

persist indefinitely. Up to now, this analysis has been limited to the case of autonomous
systems; in this paper for the first time we extend it to the periodic time-dependent case
making use of the homogenization process. This explains the permanent instability,
shown in Figure 2.4, causing the loss of stability for the synchronized state.

The non-normal dynamics study cannot be straightforwardly tackled with the ana-
lytical methods of the local stability, mostly because the instability occurs in a highly
nonlinear regime. Such condition requires a global analysis that can be obtained using
the numerical technique based on a spectral perturbation concept known as the pseudo-
spectrum. For a given matrix A the latter is defined as σ(Aδ ) = σ (A+E) , for all
||E|| ≤ δ where σ(·) represents the spectrum and || · || a given norm. The package
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EigTool [102] allows us to compute and draw in the complex plane the level curves of
the pseudo-spectrum for a given value of ε . Although the pseudo-spectrum is not suf-
ficient to fully explain the system behavior, it is certainly of great utility in estimating
the role of non-normality in the dynamical outcomes. In particular, in panel b) of Fig-
ure 2.5 we report level curves of the pseudo-spectrum for three different values of the
parameter ε representing the reciprocal links of the directed chain. Notice that by in-
creasing the non-normality of the toy network, the pseudo-spectrum will also increase
the chances of intersection with the instability region. In panel b) of Figure 2.5, we
have shown a comparison between a proxy of the presence of a synchronized state, i.e.
the standard deviation(2) of the asymptotic orbit behavior S and the MSF demonstrat-
ing a clear different behavior. For all the considered values of ε , the MSF is always
negative suggesting a stable synchronized state, on the other hand S becomes positive
and large for small enough ε , testifying a loss of synchronization. The dependence on
the different values of the initial conditions is further shown in panels c1) and c2). As
expected, the instability is more probable for both larger values of non-normality and
magnitude of the initial conditions. In particular, it can be observed that the synchro-
nization basin of attraction is strongly reduced for the non-normal network compared
to the normal one, and moreover its width varies along the limit cycle, implying that
desynchronization will depend also on the point at which the perturbation starts.

2.3 Conclusions
In this paper, we have studied the quest for the optimal conditions ensuring the sta-
bility of synchronization dynamics in directed networks. Such conditions determine
the design of a networked system that makes the synchronization regime as robust as
possible. Previous results have proven that a strictly directed topology is necessary for
the synchronized state’s robustness. Based on the well-known Master Stability Func-
tion, it has been shown that directed tree-like networks are optimal for models with
a discontinuous interval of the Laplacian’s spectrum in the stability range of MSF.
Here, we have extended such results proving that they are generally independent of
the dynamic model. Using an averaging procedure, we transformed the problem from a
time-dependent (non-autonomous) to a time-invariant (autonomous) one. This method
allows to prove that networks whose Laplacian matrix exhibits a spectrum that lacks an
imaginary part are the most optimal. In general, the loss of synchronization increases
with the magnitude of the imaginary part of the spectrum. Secondly, recent findings
have shown that real-world networks present strong directed traits, resulting in a strong
non-normality. This latter feature can play a very important role in the linear dynam-
ics influencing the local stability of the synchronized state through a strong transient
amplification of the perturbations. We have extended the idea of non-normal dynam-
ics to the case of non-autonomous synchronization dynamics, revealing how network
non-normality can drive the system to instability, thus increasing the understanding of

(2)For a given species, e.g., u, the standard deviation at a given time t is S(t) =
√

1
n−1 ∑

n
i=1 (ui(t)− û(t))2,

where n is the number of nodes and û(t) = 1
n ∑

n
i=1 ui(t). We can observe that such quantity is 0 if the system

is synchronized, i.e., ui(t) = û(t) ∀t, while a value different from 0 indicates that not every node has the same
concentration at any given time.
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2 - Synchronization dynamics on non-normal networks

synchronization in complex networks. We have also numerically quantified the effect
of non-normality in driving the instability through the pseudo-spectrum technique. In
conclusion, we have analytically and numerically demonstrated that there is no com-
pelling recipe for optimal network architecture in order to conserve the synchronized
state, but rather a trade-off between the network directedness and its non-normality. We
are aware that the interesting outcomes of the interaction of structural non-normality
networks with the fascinating synchronization phenomenon require deeper and further
investigation (e.g. synchronization basin). In this sense, with this work we aim to
initiate a new direction of research of the synchronization problem.

2.4 SM 1: Another example of non-normal network
In this Section, we extend our results of the main text to a family of random networks
with a tunable level of non-normality and systematically study the loss of synchroniza-
tion in relation to the control parameter. We initially start with an (unweighted) directed
Erdős-Rényi random graph [103] with a fixed number of nodes N and a probability p0
of having a directed edge from node i to node j. Notice that such Erdős-Rényi networks,
being directed, will be automatically non-normal, and their non-normality will depend
on the density of the edges and the eventual hierarchy of the network structure [39]. Our
primary step for generating random networks with tunable non-normality is to increase
the network directionality, more precisely we remove entries form the lower triangular
part of the adjacency matrix; this corresponds to the removal of links at random with
probability p. The latter will be our control parameter. As can be observed from Figure
2.6, panel a), the non-normality of the network, measured with the normalized Henrici
index, monotonically increases for increasing values of the control parameter p.

To emphasize the consequence of the increasing non-normality in the stability of the
synchronized regime, we systematically investigate the behavior of the system of cou-
pled Brusselator oscillators(3). As shown in Figure 2.6, the fraction of simulations for
which the system does not synchronize when the random network becomes more non-
normal increases (red curve), compared to the symmetrized counterpart (green curve)
where synchronization is always achieved. This is thus the same qualitative result and
prediction presented in the main text for the two simple networks. Furthermore, for
values of the control parameter p ≳ 0.75, the networks’ Laplace spectrum becomes de-
generate, and the Master Stability Function approach cannot be used in its simplified
form due to the lack of an eigenvector basis. Nevertheless, the fraction of cases where
the system desynchronizes keeps increasing as in the case of non-degenerate spectra.

As a conclusion, we can state that the results we have shown in this paper are valid
more generally, beyond the model used for the generation of the synthetic networks
and directly related to the amount of the non-normality of the underlying networked
structure.

(3)Notice that the set of parameters, in this case, is far from the region where the averaging method presented
in the main text is valid.

26



2.5 On the basin of attraction and non-normality

a) b)

Figure 2.6: a) The normalized Henrici departure from non-normality d̂ vs. the control parameter p averaged
over 500 independent realizations of networks generated with the algorithm described in the text for 50 nodes,
and p0 = 0.2. We can observe that the non-normality of the ensemble of networks increases with the control
parameter. For a given threshold of the control parameter p, the networks become degenerate (depicted in
dashed line). b) The fraction of the outcomes of integrating the Brusselator model when the synchronization
is lost averaged over 500 different initial conditions (red curve). The parameters are b = 5, c = 1.6, Du = 0.6
and Dv = 4.5, and the networks generated as in the left panel. For comparison, we have also shown the
outcomes of the symmetrized network (green curve), where the synchronization is conserved in any case.
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Figure 2.7: Attraction basin of the homogeneous (synchronous) state as a function of the perturbation δ

for different non-normal networks. We use the standard deviation (std) as a proxy for synchronization, i.e.,
when std= 0 the system is synchronized. We can see that, while on a symmetric network (green dots) we
always achieve synchronization (i.e., the attraction basin of the homogeneous state is large), on a non-normal
network, finite perturbations destroy the synchronized state, meaning that the attraction basin has shrunk.
Moreover, we can observe that such shrinking increases with the non-normality, given by the parameter ε

(the smaller the parameter, the larger the non-normality). The networks are as in Figure 2.1b and the model
parameters as in Figure 2.5.

This section was not part of the original paper, but was added to further discuss the
relation between non-normality and the shrinking of the attraction basin.
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2 - Synchronization dynamics on non-normal networks

In the above Chapter, we conducted a numerical study proving that the homoge-
neous (synchronous) state of a system is significantly weakened, i.e., its attraction basin
is strongly reduced, by increasing the non-normality of the network, consistently with
previous results [39, 70, 87, 91]. Nonetheless, there are many open questions, espe-
cially regarding the basin of attraction and its relation with the non-normality. Some
of the cited works, such as [70, 75], included a part concerning the attraction basin,
showing that it shrinks when the network is non-normal. In the above Chapter, we also
discuss such property in Figure 2.5. We hereby add a supplementary Figure 2.7, to bet-
ter explain our results. From the latter figure, we can clearly appreciate that the basin
of attraction shrinks as the non-normality of the network increases. All the cited results
are universal with respect to the considered model (as long as they admit a homoge-
neous stable state), but they are restricted to particular choice of non-normal network.
Except for directed star-network, for which it is obvious that the attraction basin does
not shrink, we do not have a general theory relating some non-normality measure with
the robustness of the attraction basin. Hence, it would be compelling to conduct a com-
prehensive study of the attraction basins for different kinds of non-normal networks, of
the kind that has been carried out in [104] for symmetric networks, comparing differ-
ent network features with the minimal perturbation capable of driving the system away
from the equilibrium.
Unrelated to the attraction basin issue, another interesting study which could be con-
ducted is to relate the non-normality of the network to the synchronizability properties
of Kuramoto oscillators. The formalism behind the study of synchronization in the
Kuramoto model is different from the one above, mainly because in general there is
no homogeneous state (the oscillators not being identical), hence we would not have
a shrinking of the attraction basin of the synchronized state. Nonetheless, it would be
instructive to vary the non-normality of a network of Kuramoto oscillators as the one
in Figure 2.1b and observe the effect on their synchronization. One important caveat
would concern the coupling strength: in fact, in the Kuramoto model, the coupling
strength is crucial in the phase-transition from asynchrony to synchrony and, when
varying the non-normality by lowering the strength of the return links as in Figure 2.1b,
we would lower the global coupling strength.
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Chapter 3
Finite propagation enhances
Turing patterns in
reaction–diffusion networked
systems

The classic diffusion equation relies on the assumption of infinite propagation of the
signal, which works very well only for small domains. Following the analysis of Cat-
taneo [105], reaction-diffusion equations subject to an upper bound on the propagation
become hyperbolic, i.e., there is a second time derivative term accounting for the relax-
ation time, adding in the picture a coefficient representing the inertia in the propagation.
Since the Turing mechanism has been applied also in the case of large domains, e.g.,
in ecosystems [106], it would be interesting to study which are the effects of imposing
an upper bound to the propagation. Of course, we were not the first ones to ask this
question and the aforementioned problem was studied on continuous support for the
case of equal inertial times for both species [16].

Hence, we started by studying the case for different inertial times and by realizing
that the networked structure allowed for different interpretations of the patterns. First of
all, the classical Turing region shrinks due to the inertial times, responsible of disrupting
the homogeneous stable state, which becomes an inhomogeneous oscillatory solution.
This happens also in the case of equal inertial time, but on continuous support it is
more difficult to notice, as every oscillatory aspatial solution is called Hopf instability.
However, we have seen that on networks there exist homogeneous oscillatory solutions,
i.e., when all units oscillate with same frequency and phase about a limit cycle. This
case is different, because the state is inhomogeneous even before a spatially inhomo-
geneous perturbation, hence it is not a Turing-like instability. Moreover, we noticed
that, when the support is a network, the classical distinction between Turing and wave
instability becomes inadequate as we may have oscillatory patterns even with unstable
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3 - Finite propagation and Turing patterns

modes without imaginary part and also the opposite case where stationary patterns are
found while conditions would suggest oscillations. Until now, the prediction of patterns
remains an open question. In fact, we cannot know a priori whether a pattern will be
stationary or oscillatory from a linear stability analysis, but we need to resort to numer-
ical simulations.

T. Carletti & R. Muolo. Journal of Physics: Complexity 2 (4), 045004 (2021) [49]
This article is open access.

Abstract
We hereby develop the theory of Turing instability for reaction-diffusion systems de-
fined on complex networks assuming finite propagation. Extending to networked sys-
tems the framework introduced by Cattaneo in the 40’s, we remove the unphysical
assumption of infinite propagation velocity holding for reaction-diffusion systems, thus
allowing to propose a novel view on the fine tuning issue and on existing experiments.
We analytically prove that Turing instability, stationary or wave-like, emerges for a
much broader set of conditions, e.g., once the activator diffuses faster than the in-
hibitor or even in the case of inhibitor-inhibitor systems, overcoming thus the classi-
cal Turing framework. Analytical results are compared to direct simulations made on
the FitzHugh-Nagumo model, extended to the relativistic reaction-diffusion framework
with a complex network as substrate for the dynamics.

3.1 Introduction
A blossoming of regular spatio-temporal patterns can be observed in nature. These are
the signature of self-organized processes where ordered structures emerge from disor-
dered ones [107, 108]. Very often, the interaction among the microscopic units, by
which the system is made of, can be modeled by means of reaction-diffusion equations
that describe the deterministic evolution of the concentrations both in time and space,
the latter being a regular substrate [108] or a discrete one, e.g., a complex network [109].
Spatially homogeneous equilibria of a reaction-diffusion system may undergo a sym-
metry breaking instability, when subjected to a heterogeneous perturbation, eventually
driving the system toward a patchy, i.e., spatially heterogeneous, stationary or oscilla-
tory solution, as firstly explained by Alan Turing [4] in the 50’s and corroborated exper-
imentally almost four decades later [6, 7, 110]. Nowadays, applications of the Turing
instability phenomenon go well beyond the original framework of the morphogenesis
or chemical reaction systems and it stands for a pillar to explain self-organization in
nature [111, 29, 112]. The conditions for the emergence of Turing patterns have been
elegantly grounded on the interplay between slow diffusing activators and fast diffus-
ing inhibitors [5]; indeed this determines a local feedback, short range production of
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3.1 Introduction

a given species, which should be, at the same time, inhibited at long ranges. Starting
from these premises, scholars have been able to extend the original Turing mechanism
to non-autonomous systems, e.g., evolving domains [113, 33] or time dependent diffu-
sion and reaction rates [114], as well as discrete substrates, e.g., lattices [26] or com-
plex networks [31], and their generalization, e.g., directed networks [38], multiplex
networks [34] and recently to time varying networks [115, 116]. The interested reader
can consult the recent review [12] for a modern perspective on Turing instability.

As previously observed, at the root of Turing instability there is a reaction-diffusion
process which is thus grounded on a (nonlinear) "heat equation", namely a parabolic
partial differential equation (PDE) with a nonlinear source term. The latter PDE is
characterized by an infinite fast propagation of the initial datum along the support-
ing medium and, thus, it can accurately model the physical phenomenon only in cases
of very large diffusivity, D ≫ 1. To overcome this drawback, scholars have consid-
ered more realistic frameworks. In particular Cattaneo proposed in 1948 to modify the
constitutive equation (Fick’s first law) by including a relaxation term with some given
characteristic inertial time, τ > 0. Operating in this framework, Fick’s second law re-
turns a modified diffusion equation allowing also for a second derivative with respect to
time [105, 117, 118, 119]. The resulting equation is nowadays known in the literature
as the Cattaneo equation as well as the telegraph equation, the damped nonlinear Klein-
Gordon equations or the relativistic heat equation, depending on the research field and
on the feature one is interested to emphasize [120]. In any case, its main characteristic
is to exhibit a finite propagation velocity, V =

√
D/τ , and moreover in the limit of arbi-

trarily small relaxation time, τ → 0, one recovers Fick’s second law and thus a parabolic
reaction-diffusion model with an infinite propagation velocity. Our focus being the role
of the finite propagation, we will hereby name such framework finite-velocity as done
in [121] or sometimes relativistic heat equation although no Lorentz phenomena are at
play, to recall the existence of a maximal allowed velocity as for the speed of light in
relativity theory; we thus operated a different choice with respect to [16, 21], where the
name “hyperbolic reaction-diffusion equations” has been preferred.

The aim of this paper is to study the conditions for the onset of Turing instability,
being them stationary or oscillatory patterns, for a reaction-diffusion system defined
on top of a complex network and modified according to the Cattaneo recipe, to allow
for a finite propagation velocity (Section 3.1). We thus consider two different species
populating a network composed by n nodes. When species happen to share the same
node, they interact via nonlinear functions f (ui,vi) and g(ui,vi), being ui and vi the
species concentrations at the i-th node. On the other hand, they can diffuse across the
available network links. The local currents, i.e., associated to each links, are assumed to
satisfy a modified constitutive equation, Fick’s first law, that includes a relaxation term
with a given inertial time. Hence, the continuity equation, Fick’s second law, allows
to derive a modified local diffusion term, i.e., defined on the node. The latter, together
with the reaction part, determines the hyperbolic reaction-diffusion system defined on
top of a complex network, we will hereby be interested in.

Our work extends to the network case, the study presented in [16], realized under
the simplifying hypothesis of equal inertial times for the two species, namely τu = τv,
and assuming a continuous substrate. Indeed, we hereby assume generic inertial times
for each species, τu ̸= τv. Let observe that our results established for a discrete sub-
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strate, can be straightforwardly extended to the continuous case and thus they complete
the work done in [16] to allow for different inertial times. This setting has been re-
cently studied in [21] in the framework of hyperbolic reaction-diffusion models with
cross-diffusion defined on a continuous substrate. Differently from our approach of
directly adapting the Cattaneo idea to the current flowing on each network link, the au-
thors of [21] have used Extended Thermodynamics [122]; the resulting characteristic
polynomial (see below) we obtained is different from the one given in [21] and it allows
us to draw several interesting conclusions.

The Turing mechanism relies on the assumption of the existence of a stable ho-
mogeneous equilibrium that looses its stability once subjected to spatially heteroge-
neous perturbations, in presence of a diffusive term; for this reason, such process is also
known as diffusion-driven instability. The system can then exhibit stationary spatially
heterogeneous solutions as well as time oscillatory ones. The same mechanism can be
proven to hold true in the new proposed framework of the hyperbolic reaction-diffusion
systems defined on top of a complex network (Section 3.1). The dispersion relation,
which ultimately signals the onset of the instability, is a function of the discrete spec-
trum of the Laplace matrix, namely the diffusion operator associated to the underlying
network. Let us mention that cross-diffusion is excluded. The dispersion relation is
obtained from the roots of the fourth order characteristic polynomial. To progress with
the analytical understanding of the problem, we resort to the Routh-Hurwitz stability
criterion [123, 124, 125], allowing to prove the (in)stability feature of a real coefficients
polynomial. Let us observe that this criterion is a widely used tool in dynamical systems
and control theory (see, e.g., [119]).

We have shown that the use of the inertial times strongly enlarges the parameter
region for which Turing instability and Turing-waves can emerge, even beyond the
classical Turing conditions of fast inhibitor and slow activator. For generic values of
the inertial times, τu ̸= τv, we have proven that Turing patterns can set up with a fast
activator and slow inhibitor, with species exhibiting the same diffusion coefficients and
even with an inhibitor-inhibitor system. As in these cases classical Turing instability
cannot develop and being the latter solely due to the presence of the inertial times, we
propose to call them inertia-driven instability, that can result into stationary or wave-
like phenomena. Of course, the proposed framework allows to prove the existence of
Turing instability also for an inhibitor diffusing faster than the activator, as for the non-
relativistic framework.

In the particular case where both species have the same inertial time, we have shown
that the stability of the homogeneous solution is conditional to the inertial time; indeed
there exists a threshold, τmax, beyond which the homogeneous equilibrium turns out to
be unstable. The system exhibits thus patterns but they cannot be associated to Turing
instability, even if they are indistinguishable from the latter. Moreover, the threshold
τmax depends on the model parameters and there are combinations of the latter for which
it is arbitrary large; stated differently, for such parameters the homogeneous equilibrium
is always stable (with respect to the inertial time).

The theoretical framework hereby proposed has been complemented with a ded-
icated numerical analysis of the FitzHugh-Nagumo model [126, 127, 128] (see Sec-
tion 3.4), that is a nonlinear system often used as paradigm for the study of the emer-
gence of Turing patterns [129, 130, 131, 132] as well as for synchronization phenom-
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ena [133, 134]. The FitzHugh-Nagumo model has thus been extended to the framework
of hyperbolic reaction-diffusion networked systems. We have numerically found sta-
tionary patterns as well as synchronized oscillatory ones. We have also found new
interesting solutions for which the dispersion relation has limited predictive power; in-
deed, we showed the existence of two sets of model parameters associated to similar
dispersion relations, for which the unstable modes have a nontrivial complex compo-
nent, but in one case the solution oscillates in time whereas in the second it converges
to a stationary pattern.

The proposed framework tackles thus the issue of infinite propagation velocity for
networked reaction-diffusion systems, and it is general enough to account for novel
interesting results, strengthening the importance of self-organization in nonlinear net-
worked system. In particular the possibility to prove the emergence of Turing patterns,
the latter being stationary or wave-like, in the case of activator diffusing faster than the
inhibitor but also in the case of inhibitor-inhibitor systems, could provide new insights
into the fine tuning problem [135, 12] and propose a novel view on experimental results.

3.2 Reaction-diffusion system with finite propagation on
networks

The aim of this section is to extend Cattaneo’s idea to a discrete substrate, i.e., to deal
with a networked system. We will briefly show how to modify networked reaction-
diffusion systems in order to allow for a finite velocity of propagation.

Let us thus consider a network made of n nodes and connected by a collection of m
undirected links allowing for pairwise exchanges among nodes. Such structure can be
encoded into the n×m incidence matrix, B. Let e = (i, j) be the link connecting nodes
i and j, then Bie = −1, B je = 1 and Bℓe = 0 for all ℓ ̸= i, j. From this matrix we can
build the Laplace matrix, L = −BB⊤, where ⊤ denotes the matrix transpose(1). The
Laplace matrix is symmetric by construction and thus it admits a set of orthonormal
eigenvectors, ϕ⃗(α), and real non-positive(2) eigenvalues Λ(α), for α = 1, . . . ,n. By con-
struction ∑ j Li j = 0, hence the largest eigenvalue is Λ(1) = 0 associated to the eigenvec-
tor ϕ⃗(1) = (1, . . . ,1)⊤/

√
n. The diagonal element −Lii defines the nodes degree, say ki,

namely the number of incidents links of the i-th node; hence we can rewrite L = A−D,
where D = diag(k1, . . . ,kn) and A is the adjacency matrix, that is Ai j = 1 if and only if
nodes i and j are connected, encoding thus the coupling network.

Let us now focus on the diffusion of a single species in the network, the generaliza-
tion to more species being a direct extension. Let u⃗(t) = (u1(t), . . . ,un(t))⊤ denote the
state of the system at time t, where ui(t) is the density of the species in node i at time
t. Let e = (i, j) be a link in the network and let χe(t) be the current flowing through
it at time t; then, borrowing the constitutive equation, namely Fick’s first law, from the

(1)The definition of B, and hence of L varies. For example, in [86] the incidence matrix is n×m, hence
L =−B⊤B.

(2)The matrix L is negative-semidefinite. Indeed let ϕ⃗(α) be any orthonormal eigenvector, then
(ϕ⃗(α),Lϕ⃗(α)) = Λ(α) and at the same time (ϕ⃗(α),Lϕ⃗(α)) = −(ϕ⃗(α),BB⊤ϕ⃗(α)) = −(B⊤ϕ⃗(α),B⊤ϕ⃗(α)) =
−||B⊤ϕ⃗(α)||2 ≤ 0.
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continuous framework, we can state that

χe(t) =−Du [u j(t)−ui(t)]≡ Du

[
B⊤u⃗(t)

]
e

(3.2.1)

that is, the current is proportional to the difference of the densities in the nodes forming
the link and flowing from higher concentrations to lower ones(3), being Du the diffu-
sion coefficient of species u. By defining the currents vector χ⃗ = (χe1 , . . . ,χem)

⊤, the
continuity equation can be written as

u̇i(t) =− [Bχ⃗(t)]i (3.2.2)

namely the variation of ui is proportional to the sum of the currents entering and exiting
from node i. The classical Fick’s second law follows by combining the above equations

˙⃗u(t) =−Bχ⃗ =−DuBB⊤u⃗ = DuL⃗u (3.2.3)

where we can realize [26, 31] that L replaces the second order differential operator used
in the continuous substrate case and thus the model given by (3.2.3) exhibits infinite
propagation velocity.
To overcome this problem we modify, as Cattaneo did, the constitutive equation (3.2.1)
by introducing a relaxation factor with some characteristic inertial time τu > 0, namely

χe(t)+ τuχ̇e(t) = Du

[
B⊤u⃗(t)

]
e

(3.2.4)

Combining this equation with the continuity equation (3.2.2) allows us to obtain

˙⃗u(t) = −Bχ⃗ =−B
[
−τu

˙⃗χ +DuB⊤u⃗(t)
]
= τuB ˙⃗χ −DuBB⊤u⃗(t)

= −τu ¨⃗u+DuL⃗u(t) (3.2.5)

eventually providing the generalized Cattaneo equation defined on networks

˙⃗u(t)+ τu ¨⃗u(t) = DuL⃗u(t) (3.2.6)

The latter can be seen as a modification of the “heat equation” defined on network by
the inclusion of a second order time derivative, returning thus a relativistic or hyperbolic
heat equation.

Consider now two different species populating a network composed by n nodes
and let us denote by ui and vi, i = 1, . . . ,n, their respective concentrations on node
i. When species happen to share the same node, they interact via nonlinear functions
f (ui,vi) and g(ui,vi). On the other hand, they can diffuse across the available network

(3)Let us observe that, despite the different sign in front of Equation (3.2.1), the latter is the analogous of
Fick’s first law in the continuous setting: the current flows from regions of higher concentration to regions
of lower one. Indeed, once we fix the link “ordering” as e = (i, j), then the current χe will be positive, i.e.,
respecting the link ordering if ui > u j , while the current will be negative, i.e., opposite to the link order if
ui < u j .
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links accordingly to the modified Cattaneo equation (3.2.6). The model can hence be
mathematically expressed in the form





u̇i + τuüi = f (ui,vi)+Du

n

∑
j=1

Li ju j

v̇i + τvv̈i = g(ui,vi)+Dv

n

∑
j=1

Li jv j

∀i = 1, . . . ,n (3.2.7)

where Du > 0 (resp. Dv > 0) is the diffusion coefficients of species u (resp. v) and
τu > 0 (resp. τv > 0) the inertial time for species u (resp. v).

3.3 Turing instability in networked reaction-diffusion
systems with finite propagation

The Turing mechanism is the result of a diffusion-driven instability, namely a homo-
geneous stable equilibrium of the reaction-diffusion system turns out to be unstable,
with respect to inhomogeneous spatial perturbations, once the diffusion is at play. The
aim of this section is to determine the conditions for such instability to develop in the
relativistic, i.e., in presence of a maximal allowed velocity, reaction-diffusion systems
defined on networks given by Equation (3.2.7).

Let us hence assume there exists a homogeneous solution of (3.2.7), that is ui(t) =
u∗ and vi(t) = v∗ for all i = 1, . . . ,n and t > 0. Namely u∗ and v∗ should satisfy
f (u∗,v∗) = g(u∗,v∗) = 0. Being the latter equilibrium solely determined by the re-
action terms, it happens to be also an equilibrium for the non-relativistic system. Let us
denote by δui(t) = ui(t)−u∗ and δvi(t) = vi(t)− v∗ the perturbations from the homo-
geneous solution. In order to determine the time evolution of the latter, we use (3.2.7),
keeping only the first order terms in the perturbation (the latter assumed to be small).
We thus obtain





δ u̇i + τuδ üi = fuδui + fvδvi +Du

n

∑
j=1

Li jδu j

δ v̇i + τvδ v̈i = guδui +gvδvi +Dv

n

∑
j=1

Li jδv j

∀i = 1, . . . ,n (3.3.1)

where we employed the fact that ∑ j Li j = 0 to nullify the terms ∑ j Li ju∗ and ∑ j Li jv∗.
Let us also stress that throughout the rest of the section the partial derivatives, i.e., fu ≡
∂ f/∂u and similarly for the other ones, are evaluated at the homogeneous equilibrium
(u∗,v∗).

To progress with the analytical understanding, we develop the perturbations on the
eigenbasis of the Laplace matrix δui(t) = ∑α ûα(t)ϕ

(α)
i and δvi(t) = ∑α v̂α(t)ϕ

(α)
i .

Inserting the latter into Equation (3.3.1), we obtain the equation describing the evolution
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of the modes ûα(t) and v̂α(t)




dûα

dt
(t)+ τu

d2ûα

dt2 (t) = fuûα(t)+ fvv̂α(t)+DuΛ(α)ûα(t)

dv̂α

dt
(t)+ τv

d2v̂α

dt2 (t) = guûα(t)+gvv̂α(t)+DvΛ(α)v̂α(t)

∀i = 1, . . . ,n

namely, we end up with n linear 2× 2 systems instead of the initial 2n× 2n one. We
further hypothesize ûα(t) ∼ eλα t and v̂α(t) ∼ eλα t , and, to ensure the existence of a
nontrivial solution, we eventually obtain that the linear growth rate λα should solve

det
(

λα + τuλ 2
α − fu −Λ(α)Du − fv

−gu λα + τvλ 2
α −gv −Λ(α)Dv

)
= 0 ⇔ pα(Λ

(α)) = 0

(3.3.2)
where the fourth degree characteristic polynomial is defined by

pα(λ ) = aλ
4 +bλ

3 + cα λ
2 +dα λ + eα (3.3.3)

whose coefficients are given by

a = τuτv , b = (τu + τv) (3.3.4)

cα = 1− τugv − τv fu −Λ
(α) (τuDv + τvDu) (3.3.5)

dα = −tr(J0)−Λ
(α)(Dv +Du) (3.3.6)

eα = det(J0)+(Dv fu +Dugv)Λ
(α)+DuDv

(
Λ
(α)
)2

(3.3.7)

being J0 =
( fu fv

gu gv

)
the Jacobian of the sole reaction system without diffusive coupling,

hence also named aspatial system, evaluated at the homogeneous equilibrium (u∗,v∗),
tr(J0) = fu + gv its trace and det(J0) = fugv − fvgu its determinant. The coefficients a
and b are positive and do not depend on the index α .

Turing instability arises if the homogeneous equilibrium (u∗,v∗) is stable, namely if
the four roots of the polynomial p1(λ ) all have negative real part(4), while there exists
at least one α > 1 for which the polynomial pα(λ ) does admit at least one root with
positive real part. The root with the largest real part seen as a function of Λ(α) is called
in the literature the dispersion relation, λα := maxi=1,...,4 Rλi(Λ

(α)). Turing instability
is thus equivalent to require λ1 < 0 and λα > 0 for some α > 1, hereby called critical
roots. Indeed, because of the ansatz ûα(t) ∼ eλα t and v̂α(t) ∼ eλα t , the former implies
an initial exponential divergence from the homogeneous equilibrium. In the following
we will also use information about the imaginary part of λα , we thus define ρα :=
maxi=1,...,4{I λi(Λ

(α)) : λα > 0}, i.e., the largest imaginary part of the critical roots. In
case that the imaginary part of the critical root is non-zero, ρα ̸= 0, we are in presence
of a Turing-wave instability, and the perturbation initially exhibits a combination of
exponential growth and oscillating behavior. Eventually the nonlinearities of the model
determine the final pattern, that could result to be stationary or wave-like one.

(4)Inspecting Equation (3.3.2) it is clear that the Λ(1) = 0 eigenvalue represents the behavior of the aspatial
system.
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3.3 Turing instability in networked reaction-diffusion systems with finite propagation

To prove the existence of Turing instability for the system (3.2.7) we shall rely on
the Routh-Hurwitz criterion [123, 124, 125], providing necessary and sufficient condi-
tions to prove that p1 is stable(5) while pα is unstable for some α > 1

Remark (Connection with the relativistic reaction-diffusion system defined on a
continuous substrate) As already remarked, the Laplace matrix L in Equation (3.2.7)
takes the place of the second order differential operator ∇2 = ∑i ∂ 2

xi
. After linearizing

the resulting PDE system about the homogeneous equilibrium, the use of the periodic
boundary conditions and the Fourier series is equivalent to project the linear system
onto the eigenfunctions of ∇2, that is eikx (for k ∈ Z, in the case of a 1 dimensional
spatial domain), whose eigenvalues are −k2. Proceeding in this way, one can determine
a polynomial similar to the one given in (3.3.3), where we have to replace Λ(α) by −k2.
However, let us observe that now the spectrum of L is discrete and thus the dispersion
relation for the networked system will be “sampled” from the one holding in the con-
tinuous case (see red dots on the blue curves in the following figures representing the
dispersion relations). This may introduce finite size effects, as the continuous support
case is capable to exhibit Turing patterns, while the networked one cannot because the
Laplace spectrum has a gap that exactly avoids the region of positive dispersion rela-
tion. To control for this phenomenon, one should be able to relate topological features
of the network to the Laplace spectrum [136, 137].

3.3.1 Conditions for the stability of p1

The aim of this section is to introduce the conditions for the linear stability of the
homogeneous solution of (3.2.7). As already noticed, the coefficients a = τuτv and
b = τu + τv are positive, hence the necessary and sufficient conditions (see SM 3.6) to
ensure the stability of p1 are given by:

1− τugv − τv fu > 0 (3.3.8)
tr(J0) = fu +gv < 0 (3.3.9)

det(J0) = fugv − fvgu > 0 (3.3.10)
(τu + τv)(1− τugv − τv fu)+ τuτvtr(J0) > 0 (3.3.11)

−tr(J0) [(τu + τv)(1− τugv − τv fu)+ τuτvtr(J0)]+

−(τu + τv)
2 det(J0) > 0 (3.3.12)

Before proceeding with the analysis in the general setting, let us consider a special
but relevant case, namely τu = τv = τ . Assuming Equation (3.3.9) to hold true, then
Equations (3.3.8) and (3.3.11) easily follow. Moreover, if 4det(J0) < (tr(J0))

2, then
Equation
(3.3.12) is always satisfied, while if 4det(J0) > (tr(J0))

2, the following upper bound
for τ is obtained to satisfy (3.3.12):

τ < τmax =
−2tr(J0)

[4det(J0)− (tr(J0))2]
(3.3.13)

(5)Let us recall that, borrowed from the theory of the linear stability of dynamical systems, a polynomial
is (asymptotically) stable if and only if all its roots have negative real part, while a polynomial is said to be
unstable if there exists at least one root with positive real part.
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3 - Finite propagation and Turing patterns

This last results will be important in the following, because it states that the stability of
the homogeneous equilibrium depends on τ (see panel b) in Figure 3.1). More impor-
tantly, if τ is large enough, the system (3.2.7) exhibits patterns; they are not emerging
from a Turing mechanism but instead from the instability of the homogeneous equilib-
rium. Let us observe that one cannot discriminate them with respect to Turing patterns
by simple visual inspection.

3.3.2 Conditions for the instability of pα

Using again the Routh-Hurwitz criterion we can prove the existence of (at least) an
α > 1 for which pα is unstable conditioned on the stability of p1.

Observe again that the coefficients a and b are positive. Moreover, by assuming
Equations (3.3.8) and (3.3.9) to hold true and by recalling that −Λ(α) > 0 for all α > 1,
then cα > 0 and dα > 0 (see Equations (3.3.5) and (3.3.6)). In conclusion the unique
coefficient of pα that can be negative is eα . Hence (see SM 3.6) the instability can arise
if one of the following couples of conditions is verified:





B :=−(τu + τv)(Du +Dv)(1− τugv − τv fu)+

+(τu + τv)tr(J0)(τuDv + τvDu)−2tr(J0)(Du +Dv)τuτv +

−(τu + τv)
2(Dv fu +Dugv)> 0 (3.3.14a)

B2 −4(Dvτu −Duτv)
2
[
− tr(J0)(τu + τv)(1− τugv − τv fu)+

−τuτv(tr(J0))
2 − (τu + τv)

2 det(J0)
]
> 0 (3.3.14b)

or
{

Dugv +Dv fu > 0 (3.3.15a)
(Dugv +Dv fu)

2 −4DuDv det(J0)> 0 (3.3.15b)

Let us observe that Equations (3.3.15a) and (3.3.15b) do not depend on τu and τv
and are indeed the same conditions one imposes to obtain the Turing instability in the
classical, i.e., non-relativistic setting [31]. In particular, they require Dv > Du. How-
ever, Equations (3.3.14a) and (3.3.14b) do not ask for such condition on the diffusivi-
ties, implying that the hypothesis of a finite propagation velocity allows to enlarge the
parameter region for which Turing instability arises, in particular allowing for Dv ≤ Du.

Based on the above, one can conclude that if the patterns with positive inertial times
are due to Equations (3.3.15a) and (3.3.15b), then they persist also in the non-relativistic
limit, τu → 0 and τv → 0. On the other hand, if the instability has been initiated by
conditions Equations (3.3.14a) and (3.3.14b), we can show (see SM 3.7) that, in the
non-relativistic limit, the patterns fade out and disappear for positive and sufficiently
small inertial times.

To start our analysis, let us thus consider the case Du =Dv =D. As already observed
Equation (3.3.15a) cannot be satisfied having by Equation (3.3.9) the fact that tr(J0)< 0,
thus this cannot be a path toward Turing instability. On the other hand, let us reorganize
terms and rewrite condition (3.3.14a) as follows

B|Du=Dv=D =−2D
[
τu + τv +(τ2

u − τ
2
v ) fu + τu(τv − τu)tr(J0)

]
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3.3 Turing instability in networked reaction-diffusion systems with finite propagation

and observe that if τu ≥ τv then B|Du=Dv=D < 0. Indeed, fu > 0, being u the activator
species, and tr(J0)< 0 by the stability assumption on p1(λ ); hence the term in brackets
on the right-hand side is the sum of three positive terms, from which the claim follows.
On the contrary, if τu < τv, then B|Du=Dv=D > 0 provided

−tr(J0)>
τu + τv

τu(τv − τu)
− τu + τv

τu
fu

Finally, condition (3.3.14b) no longer depends on D and can thus be verified by a suit-
able choice of the remaining parameters.

In conclusion, we can have Turing instability also in the case of equal diffusivites,
Du = Dv, provided the inhibitor has a larger inertial time than the activator, τv > τu.

Let us conclude this section by considering again the case τu = τv = τ . Because of
the previous analysis, we have to assume Du ̸= Dv, otherwise no Turing instability can
develop. Then Equation (3.3.14a) simplifies into

B|τu=τv=τ =−2τ [(Du +Dv)+ τ(Dv −Du)( fu −gv)]

Being v the inhibitor species we have gv < 0, hence, if Dv > Du, we can conclude
that the term in brackets on the right-hand side is the sum of positive terms and thus
B|τu=τv=τ < 0. On the other hand, if Dv < Du, we can have B|τu=τv=τ > 0 provided that

τ >
Du +Dv

Du −Dv

1
fu −gv

Finally, the remaining condition (3.3.14b) can be rewritten as

4τ
2 [(Du +Dv)

2 +2DuDvtr(J0)−4τ
2(Dv −Du)

2 detJ0
]
> 0

and a straightforward computation allows to show that it is satisfied if

τ >
DuDvtr(J0)+

√
[DuDvtr(J0)]

2 +4(D2
v −D2

u)
2 det(J0)

4(Dv −Du)2 det(J0)

Let us stress that in this setting, Dv < Du, the conditions (3.3.15a) and (3.3.15b)
cannot be satisfied, hence the emergence of Turing instability is solely due to the finite
propagation velocity and imposes a lower bound on the inertial time. Before introduc-
ing the model we will use to present our results, let us emphasize two more relevant
results. First, the proposed framework allows to prove the emergence of Turing insta-
bility also in an inhibitor-inhibitor system, that is fu < 0 and gv < 0; indeed, while
Equation (3.3.15a) cannot hold true, Equations (3.3.14a) and (3.3.14b) can be satis-
fied for suitable choice of the parameters, as we will show below (see Figure 3.8 and
the associated discussion). Second, inertia-driven Turing instability cannot manifest in
suitable m-species linear kinetic models, as described in the following remark.

Remark (Kinetic linear systems) As shown in [138], an m-species non-relativistic
kinetic system can be expressed as a polynomial differential equation assuming mass-
action for the reaction rates; however, not all polynomials can be considered models of
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3 - Finite propagation and Turing patterns

chemical reactions [139] because of the possible presence of negative cross terms, i.e.,
the abundance of a species decreases in a process where it is not involved. The absence
of negative cross effects in the case of first order kinetic differential systems, prevents
the Turing instability [138]. We can prove a similar result to hold true in the relativistic
framework, provided all the species have the same inertial time and the ratios of the
diffusion coefficients divided by the inertial time are large enough (see SM 3.8).

3.4 The FitzHugh-Nagumo model
The aim of this section is to present an application of the theory hereby developed. For
sake of definitiveness, we decided to use the FitzHugh-Nagumo model [126, 127, 128],
but our results go beyond the chosen model. The FitzHugh-Nagumo model (for short
FHN) is a paradigmatic nonlinear system already used in the literature to study the
emergence of Turing patterns [129, 130, 131, 132] as well as synchronization phenom-
ena [133, 134]. Let us observe that this model is not a kinetic one, since the −v term
appearing in the rate evolution for u, expresses a negative cross-effect [138], at the
same time this supports our statement that Turing instability finds applications beyond
the morphogenesis and chemical frameworks. Our choice relies also on the observation
that such model has been conceived in the framework of neuroscience as a schematiza-
tion of an electric impulse propagating through an axon. For this reason, we believe that
it would make a suitable setting to account for a finite velocity propagation of signals
and it could be interesting for future applications. The FHN model can be described by
the system of ODEs 




u̇ = µu−u3 − v

v̇ = γ(u−βv)
(3.4.1)

where the parameters µ , γ and β are assumed to be positive. We will hereby focus on its
behavior close to the fixed point (u∗,v∗) = (0,0). The linear stability analysis ensures
stability of the latter under the conditions µ < γβ and µβ < 1 (see panel a) in Fig-
ure 3.1). Let us observe that, once such conditions are not met, the system undergoes a
supercritical Hopf-Andronov bifurcation [47]: the equilibrium point becomes unstable
giving birth to a limit cycle solution. In this study, we will limit ourselves to the former
case, leaving the oscillating case for a future work.

Consider now n identical copies of the FitzHugh-Nagumo model (4.3.10) interact-
ing with each other through a diffusive-like coupling and assume to work in the Cat-
taneo framework presented in Section 3.1. The resulting model can thus be written as





u̇i + τuüi = µui −u3
i − vi +Du

n

∑
j=1

Li ju j

v̇i + τvv̈i = γ(ui −βvi)+Dv

n

∑
j=1

Li jv j

∀i = 1, . . .n (3.4.2)

where Du (resp. Dv) is the diffusion coefficients of species u (resp. v) and τu (resp. τv)
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3.4 The FitzHugh-Nagumo model

the inertial time for species u (resp. v). The matrix L is the Laplace matrix describing
the diffusive coupling among the FitzHugh-Nagumo systems.

Remark (About the network substrate) The possible onset of Turing instability de-
pends both on the dynamical system as well as the network substrate via the eigenvalues
Λ(α) of the associated Laplace matrix, L. As previously stated, a discrete topology may
affect the dynamics due to finite size effects. Because a comprehensive study of such
impact on Turing instability goes beyond the scope of this paper and, for sake of defini-
tiveness, we decided to use an Erdős-Rényi random graph [140] made of n nodes and
each couple of nodes having a probability p ∈ (0,1) to be linked. In the following, we
fixed n = 30 and p = 0.1 and we also checked that the resulting network is connected.

In the rest of this Section we will present our analysis about the emergence of
Turing instability in the relativistic FHN defined on networks (3.4.2). Let us start
by determining the parameter region associated to a stable homogeneous equilibrium,
(u∗,v∗) = (0,0). Panel a) of Figure 3.1 represents the classical case where we assume
an infinite propagation velocity, namely τu = τv = 0. The stability region (black) is
delimited by the conditions µ < γβ (red line) and µβ < 1 (yellow line). In panel b)
we report the case of equal inertial times, τu = τv = 1; we can observe that the stability
region (black and shades of gray) is contained in the previous one, being delimited by
the same conditions and in addition by Equation (3.3.12) (blue line). As previously ob-
served, the stability of the homogeneous solution depends on the value of τu = τv = τ ,
meaning that the equilibrium loses its stability if the inertial time is too large, as shown
by Equation (3.3.13). The gray shaded region in panel b) has thus been colored accord-
ing to lnτmax: smaller values are associated to lighter shades of gray. On the contrary,
in the black region any positive value of τ returns a stable homogeneous equilibrium
(being τmax = ∞). In the remaining panels of Figure 3.1 we considered different inertial
times, τu = 5 and τv = 1 in panel c), and τu = 1 and τv = 5 in panel d). The stabil-
ity region (black) is delimited by the same lines as before, with the exception of the
case τu < τv, where an extra condition needs to be considered, i.e., Equation (3.3.11)
(green line). We are now able to study the emergence of Turing instability under the
assumption τu = τv = τ . In panel a) of Figure 3.2 we report the region (black) in the
parameter space allowing for classical Turing instability to arise for a choice of the
diffusivities Du < Dv. Such region is contained in the one associated to a stable homo-
geneous solution and it is now also bounded by the conditions Dv fu+Dugv = 0 (dashed
blue line) and (Dugv +Dv fu)

2 −4DuDv det(J0) = 0 (dashed red line). The same values
of the parameters are used in panel b), assuming now the inertial times to be positive,
τu = τv = 1; the Turing region (black and shades of gray) is smaller, as it is also de-
limited by the condition Equation (3.3.12) (blue line). Once again, the shades of gray
represent the values of lnτmax to ensure the stability of the homogeneous solution (see
Equation (3.3.13)). Finally, in panel c), we report the analysis of a setting for which
classical Turing instability can never emerge because the inhibitor diffuses slower than
the activator, Du = 2.2 >Dv = 0.2. The instability being determined by the inertial time
τ > 0, we named it inertia-driven instability. The Turing region (black and shades of
gray) is now delimited also by the condition Equation (3.3.14b), where again the shades
of gray represent the values of lnτmax.
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⌧u = ⌧v = 0

Figure 3.1: Parameter region associated to the stability of the homogeneous solution for the FHN model. For
a fixed value of γ = 4, we study the stability of the homogeneous equilibrium (ui,vi) = (0,0), i = 1, . . . ,n, as
a function of β and µ: the black regions denote stability while white ones instability. Panel a) corresponds
to the classical setting, i.e., τu = τv = 0, the remaining panels are associated to positive values of the inertial
times, τu = τv = 1 (panel b)), τu = 5 and τv = 1 (panel c)) and τu = 1 and τv = 5 (panel d)). In all the
panels, the red line denotes the condition tr(J0) = 0, while det(J0) = 0 is represented by the yellow one;
these two lines determine the boundary of the stability region in the classical setting. Such region is shrunk
in the case of positive inertial times because of the additional constraints, Equation (3.3.11) (green line) and
Equation (3.3.12) (blue one). The gray shaded region in panel b), colored according to lnτmax, is associated
to a stability of the homogeneous equilibrium constrained to a bound on τ , see Equation (3.3.13), while in
the black region any positive value of τ is admissible.

The impact of τmax can be appreciated in Figure 3.3, where we report for few generic
sets of parameters the dispersion relation, λα , as a function of Λ(α), the eigenvalues of
the Laplace matrix, L. In panel a), we show the dispersion relation for the choice
τu = τv = 1 and (β ,µ) = (0.8,1.0), lying in the Turing instability region (yellow star
in the panel c) of Figure 3.2). We can observe that the homogeneous equilibrium is
stable (the dispersion relation is negative for Λ(1) = 0), but it turns out to be unsta-
ble under heterogeneous perturbations (there exist α > 1 (red dots) for which λα > 0)
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3.4 The FitzHugh-Nagumo model
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Du = 0.2 and Dv = 2.2
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Figure 3.2: Parameter region associated to Turing instability for the FHN model, τu = τv. For a fixed value
of γ = 4, we study the onset of Turing instability (black regions) close to the homogeneous equilibrium
(ui,vi) = (0,0), i = 1, . . . ,n, as a function of β and µ . Panel a) corresponds to the classical setting, i.e.,
τu = τv = 0, the remaining panels are associated to positive values of the inertial times, τu = τv = 1. In
panels a) and b), the diffusivities have been set equal to Du = 0.2 and Dv = 2.2, namely the inhibitor dif-
fuses faster than the activator. Panel c) present a completely new setting where Turing instability can develop
even for a slower inhibitor, Du = 2.2 and Dv = 0.2. In all the panels, the red line denotes the condition
tr(J0) = 0, while det(J0) = 0 is represented by the yellow one. In panels a) and b), the dashed blue line
represents the condition Dv fu + Dugv = 0 (Equation (3.3.15a)), while the dashed red line the condition
(Dugv +Dv fu)

2 − 4DuDv det(J0) = 0 (Equation (3.3.15b)). Together with the blue line in panel b) corre-
sponding to Equation (3.3.12), these lines delimitate the parameter region allowing for Turing instability in
the case Du < Dv. In panel c), corresponding to Du > Dv, a similar parameter region is bounded by the same
blue line but also by the dashed black line, namely Equation (3.3.14b). The gray shaded region in panels b)
and c), colored according to lnτmax, is associated to a stability of the homogeneous equilibrium constrained
to a bound on τ , see Equation (3.3.13), while in the black region any positive value of τ is admissible.

and synchronized oscillatory patterns emerge (see inset where we report(6)), indeed, we
are in presence of an oscillatory Turing instability because ρα > 0 (data not shown).
Panel b) (τu = τv = 2.2 and (β ,µ) = (0.7,1.0), red triangle in the panel c) of Fig-
ure 3.2) corresponds to a similar behavior, the parameters still being in the Turing
region, but conditioned to the value of τmax; the dispersion relation assumes positive
values, but the homogeneous equilibrium is weakly stable, the dispersion relation is
negative but very close to 0 for Λ(1) = 0, being τu = τv = 2.2 close to τmax ∼ 2.31;
again, an oscillating synchronous behavior is observed (inset). In panel c), we used the
same parameters (β ,µ), but we increased the inertial times beyond the critical values,
τu = τv = 3.5 > τmax, and indeed the homogeneous equilibrium is unstable, given that
the dispersion relation is positive for Λ(1) = 0. Again, synchronized oscillatory patterns
emerge (inset), they are indistinguishable from the ones one can obtain from the setting
presented in panels a) and b), but they are not the result of Turing instability.

(6)Throughout this work the numerical simulations have been performed using a 4-th order Runge-Kutta
scheme implemented in Matlab [141] ui(t) vs. t; the code is available upon request to the corresponding
author. The initial conditions have been realized by drawing uniformly random perturbations δ -close to the
homogeneous equilibrium and the simulation time has been taken of the order of − logδ/maxα Rλα . Indeed
according to the ansatz ûα ∼ eλα t and ûα ∼ eλα t , this is the time necessary to (possibly) increase the δ -
perturbation up to a macroscopic size. In the rest of the work we set δ = 10−2, small enough to discriminate
between the onset of the instability using a reasonable simulation time for the values of maxα Rλα we are
dealing with.
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3 - Finite propagation and Turing patterns
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Figure 3.3: Dispersion relation and patterns for the FHN model, τu = τv. For fixed values of γ = 4, Du = 2.2,
Dv = 0.2 and two couples (β ,µ) we show in the main panels the dispersion relation, λα as a function of Λ(α).
Panel a) corresponds to the choice τu = τv = 1 and (β ,µ) = (0.8,1.0) (yellow star in panel c) of Figure 3.2),
lying the Turing instability region and indeed the dispersion relation assumes positive values (red dots lying on
the positive part of the blue curve). The homogeneous equilibrium is stable (the dispersion relation is negative
for Λ(1) = 0), but it turns out to be unstable under heterogeneous perturbations and synchronized oscillatory
patterns emerge (inset), indeed the critical root has positive imaginary part, ρα > 0 (conditions (3.3.14a)
and (3.3.14b) are satisfied). In panel b), we fix τu = τv = 2.2 and (β ,µ) = (0.7,1.0) (red triangle in panel c)
of Figure 3.2), still in the Turing region but conditioned to the value of τmax. The behavior is similar to the one
reported in panel a), but now the homogeneous equilibrium is weakly stable, the dispersion relation is negative
but very close to 0 for Λ(1) = 0, indeed for these values of the parameters we have τmax ∼ 2.31. Again, an
oscillatory behavior is obtained (inset) associated to ρα > 0. In panel c), we used the same parameters
(β ,µ) but we increased τu = τv = 3.5 > τmax and indeed the homogeneous equilibrium is unstable, the
dispersion relation is positive for Λ(1) = 0. Again, synchronized oscillatory patterns emerge (inset), they are
indistinguishable from the ones one could obtain with the parameters used in panels a) and b), but they are
not the result of Turing instability.
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Figure 3.4: Parameter region associated to the inertia-driven instability for the FHN model. For a fixed value
of γ = 4, we study the onset of Turing instability (black regions) close to the homogeneous equilibrium
(ui,vi) = (0,0), i = 1, . . . ,n, as a function of β and µ and driven by the inertial times, τu ̸= τv. Indeed, we
assume Du ≥ Dv, resulting in a setting where classical Turing instability cannot emerge. Panel a) corresponds
to the setting, τu = 5 and τv = 1, Du = 2.2 and Dv = 0.2. In panel b), we use the same diffusivities while the
inertial times are exchanged, i.e., τu = 1 and τv = 5. Panel c) reports result for Du = Dv = 2.2 and τu = 1 and
τv = 5. In all the panels the red line denotes the condition tr(J0) = 0, while det(J0) = 0 is represented by the
yellow one. The green line represents condition (3.3.11), while the magenta one represents condition (3.3.12);
once present, the dashed black line stands for Equation (3.3.14b).
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3.4 The FitzHugh-Nagumo model

We can now consider the more general case of different inertial times and show
the onset of Turing instability for a choice of the diffusivities that cannot allow for the
classical Turing phenomenon, notably because the activator can diffuse faster than the
inhibitor. For this reason, we hereby stress again that inertia-driven instability should
be a suitable name for such phenomena. In Figure 3.4 we report the region (black)
in the parameter space (β ,µ) allowing for Turing instability under the assumptions
τu ̸= τv and Du ≥ Dv. Such region is contained in the region associated to a stable
homogeneous solution (see panels c) and d) of Figure 3.1) and delimited in addition
by the conditions (3.3.11) (green line), (3.3.12) (magenta line) and (3.3.14b) (dashed
black line). We can observe that, for all the choices of the inertial times and diffusion
constants (τu = 5, τv = 1, Du = 2.2 and Dv = 0.2 panel a), τu = 1, τv = 5, Du = 2.2
and Dv = 0.2 panel b) and τu = 1, τv = 5, Du = Dv = 2.2 panel c)), there are always
parameters (β ,µ) allowing Turing instability to occur. One can show that in all the
presented cases we are dealing with a Turing oscillatory instability driven by the inertial
times. We report in Figure 3.5 two generic dispersion relations for the latter settings.
In both cases, we can appreciate the fact that the aspatial solution is stable, indeed
λ1 < 0, while there are α > 1 (red dots) for which λα > 0, testifying the instability
of such equilibrium once subjected to heterogeneous perturbations and resulting into
synchronized oscillatory patterns (see panels c) and f)) associated with a positive ρα

(see panels b) and e)).
The bifurcation regions reported in Figure 3.6 correspond to a parameters setting

for which Turing instability could emerge because the inhibitor diffuses faster than the
activator, Dv > Du, even without the presence of positive inertial times, indeed the
conditions (3.3.15a) and (3.3.15b) are satisfied. However, the resulting patterns and
dispersion relations (see Figure 3.7) are quite different in the relativistic case, τu > 0
and τv > 0. The top three panels refer to a generic point in the Turing region (see panel
b) Figure 3.6), here γ = 4, β = 0.9, µ = 1.0, τu = 1, τv = 2, Du = 0.2 and Dv = 2.2; we
can clearly appreciate that Turing instability is at play. Indeed, the aspatial equilibrium
is stable, λ1 < 0, and there are modes α > 1 for which the dispersion relation is posi-
tive, λα > 0 (panel a)); moreover, such unstable modes are real, being their imaginary
part zero, ρα = 0 (panel b)). One should thus expect the system to settle into stationary
patterns, but that is not the case (panel c)): in fact, the solution departs from the homo-
geneous equilibrium and it spends a transient time (much longer that the initial period
needed to depart from the equilibrium) oscillating with very small amplitudes around
different values, only after this phase the amplitudes increase and a wave develops. Ob-
serve also that each node oscillates about a different average value, which is not the
case in the oscillating patterns shown before. The bottom three panels correspond to a
generic point still in the Turing region (see panel a) Figure 3.6), with γ = 4, β = 0.7,
µ = 1.15, τu = 5, τv = 1, Du = 0.2 and Dv = 2.2 (conditions (3.3.15a) and (3.3.15b) hold
true). The dispersion relation and its imaginary part behave similarly to the previous
case, however now the solution diverging from the unstable homogeneous equilibrium
settles onto a stationary heterogeneous equilibrium (panel f)), as one should expect from
the classical, i.e., non-relativistic, Turing instability.

To the best of our knowledge, this is a remarkable phenomenon that should be taken
into account in the problem of patterns prediction [142]. Indeed, since the seminal paper
by Turing [4], scholars are aware of the existence of stationary Turing patterns, often
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3 - Finite propagation and Turing patterns
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Figure 3.5: Dispersion relation and patterns for the FHN model in the case τu ̸= τv. For a fixed value
of γ = 4 and two couples (β ,µ) and (τu,τv) we show the dispersion relation (panels a) and d)), λα as a
function of Λ(α), the imaginary part of the root with the largest real part, ρα (panels b) and e)), and the time
evolution of the solutions ui(t) (panels c) and f)). The top three panels correspond to the choice τu = 5 and
τv = 1, (β ,µ) = (0.6,1.0), and Du = 2.2 and Dv = 0.2, lying the inertia-driven instability region (see panel a)
Figure 3.4), indeed the conditions (3.3.14a) and (3.3.14b) hold true. The bottom three panels are associated
to τu = 1 and τv = 5, (β ,µ) = (2.5,0.18) and with equal diffusivity Du = Dv = 2.2; these values are still
in the inertia-driven region (see panel c) Figure 3.4) and the conditions (3.3.14a) and (3.3.14b) are satisfied.
In both cases the aspatial equilibrium is stable (λ1 < 0), but it turns out to be unstable under heterogeneous
perturbations and synchronized oscillatory patterns emerge. Being ρα > 0, we are in presence of a Turing-
wave instability driven by the inertial times.

associated to a real dispersion relation, and of oscillatory Turing patterns resulting from
a Turing wave instability. The use of discrete substrates such as networks questioned
this dichotomy and a rule of thumb seems to apply [40]: oscillatory patterns develop if
the most unstable mode has a large imaginary part, ρα ≫ λα . The last example goes in
the opposite direction because here λα > ρα = 0 and the system can exhibit stationary
patterns as well as waves, recalling that the final patterns are initiated by the linear
behavior, but rather shaped by the nonlinear character of the system.

3.5 Discussion
In this work we have improved the Cattaneo framework of relativistic reaction-diffusion
systems to allow for complex network substrates. We have thus analytically studied
the conditions for the emergence of Turing instability, stationary or wave-like, for hy-
perbolic reaction-diffusion networked systems. The introduction of the inertial times
removes the unphysical assumption of infinite propagation velocity and, more impor-
tantly, this new framework allows for Turing patterns to emerge also for parameter
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Figure 3.6: Parameter region associated to Turing instability for the FHN model, Du < Dv. For a fixed value
of γ = 4, we study the onset of Turing instability (black regions) close to the homogeneous equilibrium
(ui,vi) = (0,0), i = 1, . . . ,n, as a function of β and µ and different choices of inertial times, τu and τv, and
of the diffusivities, Du and Dv, in a setting where classical Turing instability could emerge because Du < Dv.
Panel a) corresponds to the setting, τu = 5 and τv = 1, Du = 0.2 and Dv = 2.2, while panel b) shows results
with the same diffusivities but τu = 1 and τv = 2. In all the panels the red line denotes the condition tr(J0) = 0,
while det(J0) = 0 is represented by the yellow one. The magenta line denotes the condition (3.3.12). The
dashed blue line represents the condition Dv fu +Dugv = 0 (Equation (3.3.15a)), while the dashed red line the
condition (Dugv +Dv fu)

2 −4DuDv det(J0) = 0 (Equation (3.3.15b)).

values for which classical, i.e., non-relativistic, Turing instability cannot arise, e.g.,
once the activator diffuses faster than the inhibitor or even in the case of inhibitor-
inhibitor systems. To support the last claim, let us consider a generic quadratic Lotka -
Volterra system [143, 144] involving two species, namely f (u,v) = u(a1 − b1u+ c1v)
and g(u,v) = v(a2 −b2v− c2u), where all the parameters are positive numbers, and let
us consider its relativistic networked extension:





u̇i + τuüi = ui(a1 −b1ui + c1vi)+Du

n

∑
j=1

Li ju j

v̇i + τvv̈i = vi(a2 −b2vi − c2ui)+Dv

n

∑
j=1

Li jv j

∀i = 1, . . . ,n (3.5.1)

The homogeneous nontrivial equilibrium is u∗ = (c1a2 +a1b2)/(c2c1 +b2b1) and v∗ =
(a2b1 − c2a1)/(c2c1 + b2b1), and one can easily show that fu = −b1u0 < 0 and gv =
−b2v0 < 0, provided u∗ > 0 and v∗ > 0, as we will hereby assume; we are hence deal-
ing with an inhibitor-inhibitor system. Contrary to the classical setting where Turing
pattern are not allowed for, in the relativistic framework parameters can be chosen in
such a way that the above system exhibits an inertia-driven instability resulting in an
oscillatory behavior (see Figure 3.8). We have shown that the stability of the homoge-
neous solution is conditional to the inertial time common to both species. There exists
a threshold, τmax, that, if exceeded, returns an unstable homogeneous solution: the sys-
tem exhibits patterns but they are not ascribed to a Turing instability; let us observe
that the latter are indistinguishable from the ones emerging following the Turing mech-
anism. Interestingly enough, such threshold depends on the model parameters and it
can become arbitrarily large for a specific range of the latter; in such case, the homoge-
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Figure 3.7: Dispersion relation and patterns for the FHN model, τu ̸= τv. For a fixed value of γ = 4 and
two couples (β ,µ) and (τu,τv), we show the dispersion relation (panels a) and d)), λα as a function of
Λ(α), the imaginary part of the root with the largest real part, ρα (panels b) and e)), and the time evolution
of the solutions ui(t) (panels c) and f)). The top three panels correspond to the choice τu = 1, τv = 2,
β = 0.9, µ = 1.0, Du = 0.2 and Dv = 2.2, associated to Turing instability (see panel b) Figure 3.6); the
conditions (3.3.15a) and (3.3.15b) hold true. In the bottom three panels, we invert the sizes of the inertial
times, τu = 5 and τv = 1, and the remaining parameters are (β ,µ) = (0.7,1.15), Du = 0.2 and Dv = 2.2,
still in the Turing region (see panel a) Figure 3.6) and the conditions (3.3.15a) and (3.3.15b) are satisfied.
In both cases the aspatial equilibrium is stable (λ1 < 0), but it turns out to be unstable under heterogeneous
perturbations and synchronized oscillatory patterns can emerge. Let us observe that ρα vanishes on an interval
containing all the unstable modes, −Λ(α), and it is positive elsewhere, i.e. in correspondence to decaying
modes, the obtained instability possesses thus both the characteristic of a Turing instability and a Turing-wave.
Indeed, the pattern associated to the first set of parameters (top panels) keeps oscillating after a transient time
(panel c)) while the pattern resulting from the second set of parameters (bottom panels) settle onto a stationary
solution (panel f)).

neous equilibrium is always stable (with respect to the inertial time). For generic values
of the inertial times, τu ̸= τv, we have proven that Turing instability can set up both for
the inhibitor diffusing faster than the activator, Dv > Du, as it occurs in the classical
setting, but also in the complementary regime, i.e., Dv ≤ Du, which is forbidden in the
absence of inertial time. Even more striking, Turing patterns can emerge also in the
case of inhibitor-inhibitor systems. The framework we propose allows to relax the se-
vere parameters conditions for the patterns onset and thus provide new insights into the
fine tuning problem [135, 12]. Hence, existing experiments could also be read with this
novel perspective and analyzed in the proposed framework.

We have complement our general analytical results with a numerical study of the
FitzHugh-Nagumo model extended to the framework of hyperbolic reaction-diffusion
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Figure 3.8: Dispersion relation and patterns for the inhibitor - inhibitor model. We show the dispersion
relation (panel a)), λα as a function of Λ(α), and the time evolution of the solutions ui(t) (panel b)) for the
system (3.5.1), for the choice of parameters: a1 = 4, a2 = 3, b1 = 2, b2 = 1, c1 = 4.7, c2 = 0.5, Du = 0.1,
Dv = 5.2, τu = 1 and τv = 5. We can observe that the homogeneous equilibrium is stable (λ1 < 0), but it
turns out to be unstable under heterogeneous perturbations (red dots in the panel a)) and oscillatory patterns
can emerge (panel b)). The imaginary part of the largest roots is positive (data not shown) and we are thus
dealing with an inertia-driven wave-instability.

networked systems. We have found stationary patterns as well as synchronized oscilla-
tory ones; we have also found an interesting class of solutions where the system spends
a transient time into a stationary-like regime, but then it evolves into an oscillatory one.
This example raises relevant questions about the prediction of the patterns following a
Turing instability, which is, up to now, an open problem [142].

The investigation discussed in this paper could be further extended in several di-
rections. Previous studies have shown that different kinds of networks, such as di-
rected [38] or non-normal ones [39, 70], extend the conditions for the emergence of
patterns and allow for a richer spectrum of instabilities. Moreover, it has been shown
that an instability similar to the Turing mechanism can be obtained by perturbing a sta-
ble limit cycle [46] and that non-normal networks further enhance such instability [78].
Given the oscillatory behaviors of neurons [126, 127] and the non-normal nature of neu-
ral networks [39], an extension toward such direction would open the way to interesting
new results and applications.
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3.6 SM 1: The Routh-Hurwitz criterion
The Routh-Hurwitz criterion [123, 124, 125] is a well known tool of dynamical systems
and control theory, allowing to prove the linear (in)stability of an equilibrium for a time
invariant system(7). Indeed, the latter relies on the spectral properties of the Jacobian
matrix evaluated at the sought equilibrium, which ultimately accounts to determine the
location in the complex plane of the roots of a suitable polynomial.

We hereby present the method using a fourth order polynomial, but it applies to any
given order ones. Let thus p(λ ) = aλ 4 + bλ 3 + cλ 2 + dλ + e be a polynomial with
real coefficients and assume a > 0; the Routh-Hurwitz criterion can be stated using the
Hurwitz matrix associated to p(λ ) and then compute its leading principal minors or
building the Routh-Hurwitz table and check the signs of the first column.

More precisely, a necessary condition, also known in the literature as Stodola crite-
rion [145], for the roots of p(λ ) to have negative real part is that all the coefficients are
positive:

a > 0 ,b > 0 ,c > 0 ,d > 0 and e > 0 (3.6.1)

while a sufficient condition is

a > 0 ,b > 0 ,bc−da > 0 ,d(bc−da)− eb2 > 0 and e > 0 (3.6.2)

3.6.1 Application of the criterion to the stability of p1(λ )

Let us now apply the Routh-Hurwitz criterion to determine the stability feature of the
polynomial p1(λ ) given by Equation (3.3.3), hereby rewritten

p1(λ ) = aλ
4 +bλ

3 + c1λ
2 +d1λ + e1

= τuτvλ
4 +(τu + τv)λ

3 +[1− τugv − τv fu]λ
2 +[−tr(J0)]λ +det(J0)

Being the coefficients of a = τuτv and b = τu + τv positive, the Routh-Hurwitz cri-
terion rewrites:

c1 > 0 ,d1 > 0 ,bc1 −d1a > 0 ,d1(bc1 −d1a)−b2e1 > 0 and e1 > 0

Replacing the definition of the coefficients in the above equation, we straightforwardly
obtain the five conditions (3.3.8)–(3.3.12).

3.6.2 Application of the criterion to the stability of pα(λ )

Let us now study the instability character of pα(λ ), for some α > 1 under the assump-
tion of stability for p1(λ ). We once again rely on the Routh-Hurwitz criterion. Let us
thus rewrite

pα(λ ) = aλ
4 +bλ

3 + cα λ
2 +dα λ + eα

where again a = τuτv, b = τu + τv and

cα = 1− τugv − τv fu −Λ
(α) (τuDv + τvDu) = c1 −Λ

(α) (τuDv + τvDu)

(7)To be more precise, the R-H criterion determines the position of the roots of a given polynomial in the
complex plane. Then, it is applied to study the stability properties of linear systems.

50



3.6 SM 1: The Routh-Hurwitz criterion

dα = −tr(J0)−Λ
(α)(Dv +Du) = d1 −Λ

(α)(Dv +Du)

eα = det(J0)+(Dv fu +Dugv)Λ
(α)+DuDv

(
Λ
(α)
)2

and we emphasized the relation between the coefficients defined for α > 1 and those
for α = 1.

As already observed, the coefficients a and b are positive. Moreover, because of the
assumption on the stability of p1(λ ), we also have c1 > 0 and d1 > 0. Finally, observing
that −Λ(α) ≥ 0 for all α we can conclude that

cα > 0 and dα > 0 ∀α

The Routh-Hurwitz criterion ensures that p1(λ ) is unstable if at least one of the
following conditions is met

i) bcα −dα a < 0

ii) dα(bdα −dα a)−b2eα < 0

iii) eα < 0

Let us first show that condition i) is never met under the assumption of stability of
p1(λ ). From the definitions of the coefficients a, b, cα and dα we obtain

bcα −dα a = (τu + τv)
[
c1 −Λ

(α) (τuDv + τvDu)
]
− τuτv

[
d1 −Λ

(α)(Dv +Du)
]

= (τu + τv)c1 − τuτvd1 −Λ
(α) [(τu + τv)(τuDv + τvDu)− τuτv(Dv +Du)]

= bc1 −d1a−Λ
(α)
(
τ

2
u Dv + τ

2
v Du

)

We can now conclude that bcα − dα a > 0. Indeed, because of the stability of p1(λ ),
bc1 −d1a > 0, and being −Λ(α) > 0 for all α > 1, the claim easily follows.

Let us now consider condition ii) and look for the existence of α > 1 such that

dα(bcα −dα a)−b2eα < 0

We firstly rewrite this equation by using the definition of the involved coefficients
(

d1 −Λ(α)(Dv +Du)
)[

(τu + τv)
(

c1 −Λ(α) (τuDv + τvDu)
)
+

−
(

d1 −Λ(α)(Dv +Du)
)

τuτv)
]
+

−(τu + τv)
2
[

det(J0)+(Dv fu +Dugv)Λ(α)+DuDv

(
Λ(α)

)2
]
< 0

and then we reorganize the terms in the latter, to write it as a second order polynomial
in the variable Λ(α), hence

A
(

Λ
(α)
)2

+BΛ
(α)+C < 0
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3 - Finite propagation and Turing patterns

where, after some algebraic manipulation, we obtain

A = (τuDv − τvDu)
2

B = −(τu + τv)(Du +Dv)(1− τugv − τv fu)+(τu + τv)tr(J0)(τuDv + τvDu)

− 2tr(J0)(Du +Dv)τuτv − (τu + τv)
2(Dv fu +Dugv)

C = d1(bc1 −ad1)−b2e1

The coefficient A is positive, as well as the coefficient C, under the assumption of sta-
bility for p1(λ ). Then, the second order polynomial in Λ(α) can exhibit negative values
if and only if

B > 0 and B2 −4AC > 0

that are exactly the conditions (3.3.14a) and (3.3.14b). Finally, an eigenvalue Λ(ᾱ),
ᾱ > 1, must exist such that

x1 < Λ
(ᾱ) < x2

where x1 and x2 are the two real and negative roots of second order polynomial in Λ(α).
Let us finally consider condition iii) and look for the existence of α > 1 such that

eα = det(J0)+(Dv fu +Dugv)Λ
(α)+DuDv

(
Λ
(α)
)2

< 0

This is a second order polynomial in the variable Λ(α) whose leading coefficient, DuDv,
is positive as well as the constant term, det(J0), because of the stability of p1(λ ). The
polynomial can thus assume negative values if and only if

Dv fu +Dugv > 0
(Dv fu +Dugv)

2 −4DuDv det(J0) > 0

namely, the conditions (3.3.15a) and (3.3.15b). Let us observe that the latter do not
depend on τu and τv and indeed they are the classical conditions required for the Turing
instability to arise [31]: an eigenvalue Λ(ᾱ), ᾱ > 1, must exist such that

η1 < Λ
(ᾱ) < η2

where η1 and η2 are the two real and negative roots of eα = 0.

3.7 SM 2: Non-relativistic limit of inertia-driven insta-
bility

In the main text, we have proven that a Turing instability sets up driven by the inertial
times τu and τv if any couple of conditions Equations (3.3.14a) and (3.3.14b) or Equa-
tions (3.3.15a) and (3.3.15b) are satisfied. Let us observe that the latter do not depend
on the inertial times and thus they can be satisfied for a suitable choice of the model
parameters, also for τu = τv = 0. The same could not hold true for the former one,
explicitly dependent on the inertial times. The aim of this section is thus to study the
non-relativistic limit of the inertia-driven instability.

52



3.7 SM 2: Non-relativistic limit of inertia-driven instability

For sake of definitiveness, let us assume τv = θτu for some θ > 0, that is the inertial
times approach zero with the same rate. The characteristic polynomial given by (3.3.3)
can thus be rewritten as

pα(λ ) = θτ
2
u λ

4 + τu(1+θ)λ 3 +(1− τuĉα)λ
2 +dα λ + eα (3.7.1)

where we have used (3.3.4) to rewrite the coefficients of λ 4 and λ 3, and we have defined
ĉα = gv + θ fu +Λ(α) (Dv +θDu) (see (3.3.5)). Let us observe that dα and eα do not
depend on the inertial times (see (3.3.6) and (3.3.7)).

In the limit τu → 0 the latter results to be a singular polynomial, indeed its degree
jumps from 4 once τu > 0 to 2 for τu = 0. Mathematically this means that two of
the four roots of p(λ ) should diverge to infinity. By determining which ones and the
followed path will allow to conclude about the non-relativistic limit of the inertia-driven
instability.

Let us start by looking at the roots that remain in a bounded domain. To do this let
us set(8) λ = λ0 + τuλ1 + . . . , impose p(λ ) = 0 and by reordering the involved terms
(see Equation (3.7.1)) according to the powers of τu, we eventually get

0= pα(λ ) = λ
2
0 +dα λ0+eα +τu

[
(1+θ)λ 3

0 +2λ0λ1 − ĉα λ0 +dλ1
]
+O(τ2

u ) (3.7.2)

We can thus conclude that λ0 is a solution of the second degree equation

λ
2
0 +dα λ0 + eα = 0 (3.7.3)

while λ1 is obtained by solving

(1+θ)λ 3
0 +2λ0λ1 − ĉα λ0 +dλ1 = 0 (3.7.4)

In conclusion we get for the two roots

λ± = λ0±± τu
ĉα − (1+θ)λ 2

0±
2λ0±+dα

+O(τ2
u ) (3.7.5)

where we denoted by λ0± the two roots of (3.7.3). Let us observe that the latter is the
same second order equation one will obtain in the classical Turing framework; we have
thus shown that in the non-relativistic limit two roots of the fourth degree characteristic
polynomial p(λ ) converge to the roots of the second order polynomial one should deal
with in the classical Turing case.

Let us now study the remaining two roots and determine their path toward infinity.
As already stated, the characteristic polynomial is singular, one should thus resort to
the singular perturbation theory [146]. Let us set λ = ω/τu and evaluate pα(λ ) on
λ = ω/τu, then we get

pα(ω/τu) =
θ

τ2
u

ω
4 +

1+θ

τ2
u

ω
3 +

1− τuĉα

τ2
u

ω
2 +

dα

τu
ω + eα =

=
1
τ2

u

[
θω

4 +(1+θ)ω3 +(1− τuĉα)ω
2 +dα τuω + eα τ

2
u
]
=

(8)To lighten the notation, we will not explicitly write the dependence on Λ(α); our results will thus hold
for all α = 1, . . . ,n.
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3 - Finite propagation and Turing patterns

=
1
τ2

u
qα(ω) (3.7.6)

where the fourth degree polynomial qα(ω) has been defined by the last equality. Let us
observe that pα(λ ) vanishes if and only if qα(ω) does.

Let us now assume(9) ω = ω0+ω1τu+O(τ2
u ), with ω0 ̸= 0. By inserting the former

into qα(ω) and by reordering the terms according to the powers of τu, we get

0 = qα(ω) = θω
4
0 +(1+θ)ω3

0 +ω
2
0 +

+ τu
[
4θω

3
0 ω1 +3(1+θ)ω2

0 ω1 +2ω0ω1 − ĉα ω
2
0 +dα ω0

]
+

+ O(τ2
u ) (3.7.7)

Hence, ω0 ̸= 0 solves the second degree equation

θω
2
0 +(1+θ)ω0 +1 = 0 (3.7.8)

while ω1 is obtained by solving

ω1
[
4θω

2
0 +3(1+θ)ω0 +2

]
= ĉα ω0 −dα (3.7.9)

In conclusion, if θ > 1, we obtain

λ+ =
1
τu

[
− 1

θ
+ τu

ĉα +dα θ

θ −1
+O(τ2

u )

]
(3.7.10)

λ− =
1
τu

[
−1+ τu

ĉα +dα θ

1−θ
+O(τ2

u )

]
(3.7.11)

while, if θ < 1, we obtain

λ+ =
1
τu

[
−1+ τu

ĉα +dα θ

1−θ
+O(τ2

u )

]
(3.7.12)

λ− =
1
τu

[
− 1

θ
+ τu

ĉα +dα θ

θ −1
+O(τ2

u )

]
(3.7.13)

In both cases we have that Rλ± → −∞ in the limit τu → 0 and thus these two roots
cannot modify the (un)stable character of the homogeneous equilibrium.

In conclusion, if τu and τv are positive and sufficiently small, then the onset of
Turing instability is ruled out by the roots (3.7.5), i.e., those associated to the ones
arising in the classical setting. Stated differently, if for τu > 0 and τv > 0, the instability
can be initiated by conditions Equations (3.3.14a) and (3.3.14b), then by decreasing the
inertial times the patterns fade out and disappear before reaching the limit and thus the
transition is not abrupt.

In Figure 3.9 we report numerical results to complement the analytical findings
described above. We selected two generic sets of parameter values γ = 4.0, β = 0.6,
µ = 1.0, Du = 2.2 and Dv = 0.2 (left panel) and γ = 4.0, β = 0.7, µ = 1.15, Du = 0.2
and Dv = 2.2 (right panel), and we study the emergence of an inertia-driven instability as

(9)Let us stress once again that, to lighten the notation, we did not explicitly write the dependence on α .
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3.8 SM 3: Existence of Turing instability in linear kinetic systems

a function of τu and τv. A black dot corresponds to the presence of the instability, while
a white one to its absence. We can observe that the first set of parameters does not allow
the onset of the instability for small enough values of the inertial times, indeed the black
region, bounded below by condition (3.3.12) and above by condition (3.3.14b), does
not intersect the axes τu = 0 or τv = 0. On the other hand the second set of parameters
allows the existence of patterns for τ0 = 0 or τv = 0, the black region (bounded above by
condition (3.3.14b)) reaches the axes. This means that in this case also classical Turing
patterns are allowed.
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Figure 3.9: Non-relativistic limit of inertia-driven instability for the FHN model. For a fixed value of the
model parameters γ , µ , β , Du and Dv, we study the onset of inertia-driven instability (black regions) close to
the homogeneous equilibrium (ui,vi) = (0,0), i = 1, . . . ,n, as a function of τu and τv. Panel a) corresponds
to a setting where classical Turing instability cannot emerge, one can observe that the black region (bounded
below by Equation (3.3.14b) and above by Equation (3.3.12)) does not touch the boundary τu = 0 or τv = 0.
Panel b) refers to a choice of the parameters for which the classical Turing instability can emerge, indeed the
black region (bounded above by Equation (3.3.12)) reaches the boundary τu = 0 or τv = 0.

3.8 SM 3: Existence of Turing instability in linear ki-
netic systems

Let us consider a linear kinetic system involving m chemical species interacting with
each other “inside” the network nodes and allowed to diffuse across the available links
under the constraint of finite propagation. Assuming the network to be composed by
n nodes and to denote the concentration of the m species inside the i-th node by x⃗i =

(x(i)1 , . . . ,x(i)m )⊤ ∈ Rm
+, then the main system (3.2.7) rewrites as

dx(i)j

dt
+ τ j

d2x(i)j

dt2 =
m

∑
l=1

a jlx
(i)
l +D j

n

∑
k=1

Likx(k)j (3.8.1)

∀i = 1, . . . ,n and ∀ j = 1, . . . ,m, where D j > 0 (resp. τ j > 0) is the diffusion coefficient
(resp. the inertial time) for species j = 1, . . . ,m; a jl is the linear kinetic representing the
action of species l on the j-th one and Lik is the Laplacian matrix encoding the network
links.

55



3 - Finite propagation and Turing patterns

To handle this equation, we decompose x⃗i on the Laplacian’s eigenbasis, namely
x(i)j = ∑α x̂α

j ϕ
(α)
i , we insert the latter into Equation (3.8.1) and, making use of the or-

thonormality of the eigenvectors, we eventually obtain

dx̂α
j

dt
+ τ j

d2x̂α
j

dt2 =
m

∑
l=1

a jl x̂α
l +D jΛ

(α)x̂α
j (3.8.2)

∀α = 1, . . . ,n and ∀ j = 1, . . . ,m.
The previous equation can be expressed in a compact form by introducing

⃗̂xα = (x̂α
1 , . . . , x̂

α
m)

⊤, the matrix of the diffusive coefficients D = diag(D1, . . . ,Dm), the
inertial times matrix T = diag(τ1, . . . ,τm), and the linear kinetic matrix a

d2⃗x̂α

dt2 +T−1 d⃗x̂α

dt
−
(

T−1a+Λ
(α)T−1D

)
⃗̂xα = 0 ∀α = 1, . . .n (3.8.3)

Let us assume the matrix A := T−1a to be diagonalizable, i.e., there exist an invert-
ible matrix P such that P−1AP = diag(κ1, . . . ,κm). Hence, by defining y⃗ = P−1⃗x, and
recalling that Λ(1) = 0, we can obtain from (3.8.3)

d2⃗ŷ
dt2 +P−1T−1P

d⃗ŷ
dt

−diag(κ1, . . . ,κm)⃗ŷ = 0 (3.8.4)

To make some analytical progress, let us assume all the inertial times to be equal, i.e.,
τ j = τ for all j = 1, . . . ,m. We have thus to solve m second order linear ODEs with
constant coefficients, depending each one on κ j

d2ŷ j

dt2 +
1
τ

dŷ j

dt
−κ j ŷ j = 0 ∀ j = 1 . . . ,m (3.8.5)

The associated characteristic polynomial is thus λ 2 + 1
τ

λ − κ j = 0, with roots λ =

− 1
2τ

± 1
2τ

√
1+4τ2κ j. One can prove that if Rκ j < 0 and τ|I κ j| <

√
−Rκ j then

Rλ < 0.
Assuming the linear kinetic does not admit cross inhibition terms, namely a jl ≥ 0

for all j ̸= l, then we can conclude that the matrix a is non-negative and this implies
that the matrix A = T−1a is also non-negative, being T a diagonal matrix with posi-
tive entries on the diagonal. Let us define C(α) = −Λ(α)T−1D. Then, the latter is a
diagonal matrix with non-negative elements on the diagonal, being Λ(α) ≤ 0, D j > 0
and τ > 0. We can thus conclude invoking the following result proved in [138]: if A is
stable, i.e., its spectral abscissa(10) is negative, then also A−C is stable for all diagonal
matrix C with non-negative diagonal terms. Indeed, assume A = T−1a to be stable,
i.e. max j Rκ j < 0, and moreover assume to fix τ such that τ|I κ j| <

√
−Rκ j holds

true. Let us observe that, if T−1a has a real spectrum, the latter relation is always satis-
fied. This implies that the homogeneous solution for the aspatial system is also stable.
The Turing instability emerges if one can find α such that Equation (3.8.3) admits an
unstable solution.

(10)The spectral abscissa of a matrix A is defined as max(R(σ(A))), i.e., it is the largest real part of its
spectrum.
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Let ρ
(α)
j , j = 1, . . . ,m, be the eigenvalues of A−C(α) = T−1a+Λ(α)T−1D. Then,

the above quoted result [138] ensures that Rρ
(α)
j < 0 for all j = 1, . . . ,m and α =

1, . . . ,n. Because T−1D is a diagonal matrix, the diagonal elements of A−C(α) are
translated to the left, while the off-diagonal elements do not vary. Invoking the Gerš-
gorin circle theorem [147], we can take the elements of T−1D sufficiently large, i.e.,

D j ≫ 1 or τ ≪ 1, such that τ|I ρ
(α)
j | <

√
−Rρ

(α)
j for all j = 1, . . . ,m, α = 1, . . . ,n.

We can thus conclude that the relation dispersion associated to Equation (3.8.3) is al-
ways negative and thus the Turing instability cannot develop. In conclusion, linear ki-
netic systems without cross inhibition and equal (small) inertial times, or large diffusion
coefficients, cannot exhibit Turing instability in the relativistic framework. The neces-
sity of the latter assumptions remains an open question that we believe goes beyond the
scope of this work.
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Chapter 4
Non-reciprocal interactions
enhance heterogeneity

Diffusion is the main driver of the Turing mechanism, which is in fact also known as
diffusion-driven instability. However, experimental evidence shows that pattern forma-
tion happens as well in systems without diffusion [148, 149]. It would be logical to
think that it makes no sense to talk about Turing pattern formation when no diffusion
takes place. But, as explained in Chapter 1, the Turing framework can be looked from
different angles. If we consider as a main feature the fact that the equilibrium, i.e., the
homogeneous stable state, is disrupted by any interaction with the surroundings, then,
even when such interactions are non-diffusive, we can consider the phenomenon within
the Turing paradigm. Of course, we cannot directly talk about Turing patterns, but the
similarity with the Turing mechanism is, at least according to our vision, undeniable.

Pattern formation for systems without diffusion have been studied by Cencetti and
collaborators [66], where it was shown that a system with local and non-local inter-
actions could be rewritten in a form that resembles reaction-diffusion systems, even
though no diffusion takes place. Let us remark that in the literature there are several
Laplacian operators, each one used to model different phenomena; such point is dis-
cussed in Section 4.13, at the end of the Chapter. Pattern formation in systems with
non-local interactions have been also studied on continuous support [150, 151, 152],
however, it is important to notice that in these works non-local interactions are addi-
tional to diffusion. When the support is a complex network, we are able to obtain
patterns even without diffusion, which makes the latter a natural embedding for this
framework. The following paper extends the framework of [66], but with the differ-
ence that the non-local interactions are non-reciprocal. Besides extending the previous
theory and corroborating it with several numerical examples, we also prove the impor-
tant claim stating that non-reciprocal interactions tout court always enhance the loss of
stability, hence they promote heterogeneity. It would be an important step to have an
experimental proof of this statement and that was the motivation to start a project, cur-
rently ongoing, with our colleagues in Catania. In fact, for a previous work regarding
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remote synchronization [153], they have developed an experimental set up of Stuart-
Landau oscillators coupled through a normalized Laplacian, which is the same kind of
coupling that we used for our theoretical study. In the coming weeks we will be able
to test our theoretical predictions through their experimental apparatus and, hopefully,
being able to further validate our theory.

T. Carletti & R. Muolo. Chaos, Solitons & Fractals 164, 112638 (2022) [154]
This article is not open access, but it is freely available as a pre-print.

Abstract
We study a process of pattern formation for a generic model of species anchored to the
nodes of a network where local reactions take place, and that experience non-reciprocal
non-local long-range interactions, encoded by the network directed links. By assuming
the system to exhibit a stable homogeneous equilibrium whenever only local interac-
tions are considered, we prove that such equilibrium can turn unstable once suitable
non-reciprocal non-local long-range interactions are allowed for. Stated differently, we
propose sufficient conditions allowing for patterns to emerge using a non-symmetric
coupling, while initial perturbations about the homogeneous equilibrium always fade
away assuming reciprocal coupling, namely the latter is stable. The instability, precur-
sor of the emerging spatio-temporal patterns, can be traced back, via a linear stability
analysis, to the complex spectrum of an interaction non-symmetric Laplace operator.
The proposed theory is then applied to several paradigmatic dynamical models largely
used in the literature to study the emergence of patterns or synchronization. Taken to-
gether, our results pave the way for the understanding of the many and heterogeneous
patterns of complexity found in ecological, chemical or physical systems composed by
interacting parts, once no diffusion takes place.

4.1 Introduction
We live in an interconnected world [86, 155] where complex patterns [109] sponta-
neously emerge from the intricate web of nonlinear interactions existing between the
basic units by which the system under study is made of [107]. These emergent struc-
tures can be found in the synchronized activity of neurons, resulting from the exchange
of electrochemical signals via synapses [42, 41], as well as the geometric visual hal-
lucinations product of the retinocortical map linking the retina and the striate cor-
tex [156, 157]. Such self-organized structures can also manifest in groups of fireflies
that flash at unison, each one observing the behavior of their close neighbors [158]. Or
they can materialize as the striped or spotted motifs on the skin of the zebrafish Danio
rerio, due to the long-range interactions between melanophores and xantophores, with-
out requiring diffusion nor any kind of cell motion [148, 149].

The latter phenomena, as well as many other ones modeled within a similar frame-
work of local reactions and long-range interactions without displacement of the reacting
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species, cannot be ascribed to a Turing instability [4], a widely used paradigm for pat-
tern formation. Indeed the latter requires a diffusive process, whereas the common
key factor linking the above examples is the immobility of the reacting species and the
existence of a web of long-range interactions due to some signal propagation.

In this work, we set the theoretical basis for the understanding of self-organization
in systems without diffusing species where asymmetric long-range interactions play a
pivotal role. Network science [86, 155] provides a natural framework where to study
such phenomena. Indeed, local interactions can be described by a dynamical system
evolving on each node, that represents a portion of physical space, say a natural habitat
or a chemical reactor, large enough to contain enough species to describe their evolution
with a nonlinear ordinary differential equation. On the other hand, non-local long-range
interactions can be modeled by links connecting the nodes of the network, allowing thus
species anchored to each distinct node to communicate by exchanging some generic sig-
nals. Let us observe that our definition of local and long-range dynamics can differ from
the one sometimes used in the literature, that considers local dynamics to be related to
the in-node processes but also to the interactions with species sitting in nodes at distance
one, i.e., first neighborhood, while long-range interactions are used to describe far away
interacting nodes, i.e., distances larger than two. For this reason, in this work we name
the latter process non-local long-range interaction; let us notice, however, that when it
will be clear from the context, we will simply use long-range interactions. Let us finally
stress that the latter do not involve displacement of the reacting species, for this reason
the theory hereby developed applies to systems without diffusion. An interesting ex-
ample is the web of chemical light-triggered reactions obtained by connecting reactors
where the local concentration of chemicals, i.e., in each node, determines the amount
of light to be put onto connected distant nodes, i.e., long-range interaction. Chemicals
do not leave any nodes but they interact at distance [61, 62, 63].

In the aforementioned examples, the system converges to a homogeneous solution,
being stationary or time varying, once only local interactions are taken into account,
i.e., long-range ones are silenced, while heterogeneous solutions spontaneously emerge
in presence of a suitable web of interactions among the units. Let us observe that the ex-
istence of an attracting homogeneous solution for the decoupled system is a natural and
largely assumed working hypothesis, see for instance [4] in the framework of Turing
instability or [44] for synchronization.

A preliminary result in this direction has been proposed in [159] with the assump-
tion of reciprocal non-local interactions and treating the latter in a mean-field setting.
There, authors have been able to prove that the stable homogeneous solution, existing
once the long-range interactions have been silenced, can turn unstable by introducing a
suitable symmetric non-local coupling and eventually lead to the emergence of a spa-
tially (and temporally) dependent solution. The aim of the present work is to make
one step forward by studying the general case of non-reciprocal interactions and their
impact on the system outcome. Indeed, the interactions existing among the consti-
tuting units are often not symmetric; this is the case of plant-animal mutualistic net-
works [160, 68], the specific example of sheep and deer [161] or the case of olfactory
receptor neurons in the Drosophila antenna [162], just to mention a few.

Anticipating our conclusion, we claim that the diversity and heterogeneity of pat-
terns observed in nature, being associated to spatial or temporal non-homogeneous
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states, is enhanced by non-reciprocal long-range interactions. The onset of the instabil-
ity, precursor of the pattern, can be detected with a linear stability analysis, providing
a condition on the complex spectrum of a non-symmetric consensus Laplacian oper-
ator resulting from the mean-field ansatz, as we will hereafter explain. The proposed
framework is general enough to cover systems of any dimension d ≥ 2 displaying a
fixed-point or a limit cycle homogeneous solution, once we silence the long-range inter-
actions, by proving the existence of a suitable non-reciprocal web of interactions driving
the emergence of patterns while the latter can never exist in the case of symmetric sup-
port. To emphasize the relevance of the proposed theory to many and different research
domains, we applied the developed theory to several paradigmatic models largely used
in the literature to study the emergence of patterns or synchronization. In conclusion,
the proposed mechanism provides the way for alternative routes to pattern formation,
beyond the Turing one [4, 31], and to the emergence of desynchronized states [44],
suitable for all phenomena where diffusion is not the main driver for the heterogene-
ity of the complex patterns seen in nature, opening thus new possibilities for modeling
ecological, chemical and physical interacting systems, endowed with non-reciprocal
couplings and without diffusing species.

4.2 The model
Let us consider a dynamical system composed by n identical units and assume the d-
dimensional vector x⃗i(t) = (xi1(t), . . . ,xid (t))

⊤ to represent the state of the i-th copy, for
i = 1, . . . ,n. The isolated systems are described by an ordinary differential equation(1),
resulting from the assumption of a “well stirred” distribution of species inside each
node

˙⃗xi = F⃗ (⃗xi) ∀i = 1, . . . ,n (4.2.1)

where F⃗ is a generic nonlinear function responsible for the local interactions, i.e., de-
pending on the species anchored to the same node. Let us now allow each system to
possess non-local interactions, i.e., the growth rate of the system anchored at node i
is influenced by some nonlinear function of the amount of species in distant nodes.
Moreover, we assume the latter to be described by

˙⃗xi =
1

k(in)i

n

∑
j=1

Ai jF⃗ (⃗xi, x⃗ j) ∀i = 1, . . . ,n (4.2.2)

where Ai j is the (possibly weighted) non-symmetric adjacency matrix encoding the
long-range interactions, i.e., Ai j = 1 if and only if node j influences node i. Let
k(in)i = ∑ j Ai j be the in-degree of node i and observe that we allow Aii = 1, thus the
in-degree takes into account also the possible self-loops. Finally, F⃗ (⃗xi, x⃗ j) is a non-
linear function that describes the effect of the j-th system on the i-th one. Moreover,
we require F⃗ (⃗xi, x⃗i) = F⃗ (⃗xi), namely the self-interaction is represented by the original
nonlinear function F⃗ describing the evolution of the isolated systems. This is a natural

(1)Let us observe that the theory hereby developed could be straightforwardly adapted to the case of discrete
time, where, i.e., the ODE is replaced with a finite differences system.
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Figure 4.1: A schematic visual representation of the model (4.2.2). Nodes (large white circles) contain two
species (blue and red dots). We then focus on the growth rate of the “blue” species in the i-th node, that
results from two terms. The first one is the local reaction F⃗ , represented by the light-blue and light-red
curved arrows, involving only “blue” and “red” species indexed by i (green oval). The second contribution
arises from the long-range interactions F⃗ , represented as violet triangles pointing from each nearby node to
the i-th one. The average of these terms impacts the growth rate of the “blue” species in node i (orange oval).

assumption allowing to recover the initial system (4.2.1) composed by isolated units,
i.e., once we set A = In, the latter being the n× n identify matrix(2). Let us observe
that the right-hand side of (4.2.2) can be rewritten as the average of the interactions
perceived by node i, ⟨F⃗ (⃗xi, ·)⟩ = ∑ j Ai jF⃗ (⃗xi, x⃗ j)/k(in)i , hence describing the mean-field
ansatz. Finally, let us stress that species cannot move across nodes: the long-range
interactions are thus mediated by some generic signals, as we have proposed in the
introduction and we will discuss in the following. The model (4.2.2) describes thus lo-
cal interactions coupled with long-range ones without the need of diffusion. This is in
contrast with the fundamental assumption of Turing instability [4, 31], where diffusion
plays a key role, or in the synchronization based on diffusive-like couplings [44, 111]
(see Figure 4.1 for a schematic representation of the proposed model).

(2)Let us observe that this condition has been already used in [159] and it is related to the one adopted
in [45]
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By defining the matrix

Li j =
Ai j

k(in)i

−δi j (4.2.3)

and using the property of the function F⃗ , we can rewrite Equation (4.2.2) as

˙⃗xi = F⃗ (⃗xi)+
n

∑
j=1

Li jF⃗ (⃗xi, x⃗ j) ∀i = 1, . . . ,n (4.2.4)

Once the long-range interactions are silenced and each node interacts only with itself,
then L = 0 and thus Equation (4.2.4) reduces to Equation (4.2.1). Let us observe
that, in the case of reciprocal interactions, the above defined matrix L corresponds
to the consensus Laplace operator [163, 164, 165, 166], also named reactive Laplace
matrix in [159], whose spectrum is real and non-positive. In the case under scrutiny,
involving non-reciprocal interactions, the spectrum is generally complex but one can
prove that Λ(1) = 0 is still an eigenvalue associated to the uniform eigenvector ϕ⃗(1) ∼
(1, . . . ,1)⊤. Moreover, the Geršgorin circle theorem [167] allows to prove that the real
part of the spectrum of L is contained in the strip [−2,0] in the complex plane, hence
L is stable having all the eigenvalues with a negative real part, except for the one equal
to 0. Observe that by using a symmetric network the eigenvalues are real and non-
positive, even if the consensus Laplacian is not symmetric (see SM 4.5). Let us stress
that the operator L results from the mean-field assumption and not from any kind of
diffusive-like process as in the cases where the combinatorial Laplace operator arises
because of Fick’s law.

Let us assume x⃗i(t) = s⃗(t), i = 1, . . . ,n, to be a solution of the initial system (4.2.1);
then, because of the above hypothesis on F⃗ and of the definition of k(in)i , it is also a
spatially-dependent, i.e., node-dependent, solution of Equation (4.2.4). To study the
bifurcation of patchy solutions from the stable homogeneous one, x⃗i(t) = x⃗∗(t) for all
i, we consider a node dependent perturbation about the latter solution, i.e., ζ⃗i(t) =
x⃗i(t)− x⃗∗(t), whose evolution can be studied by inserting it into Equation (4.2.4) and
then keeping only first order terms, assumed to be small enough. Hence we obtain for
all i = 1, . . . ,n

˙⃗
ζi = [J1(⃗x∗(t))+J2(⃗x∗(t))] ζ⃗i +

n

∑
j=1

Li jJ2(⃗x∗(t))⃗ζ j (4.2.5)

where we have introduced the Jacobian matrices J1(⃗x∗) = ∂⃗x1 F⃗ (⃗x1, x⃗2)|(⃗x∗ ,⃗x∗), i.e., the
derivatives are computed with respect to the first group of variables, and
J2(⃗x∗) = ∂⃗x2 F⃗ (⃗x1, x⃗2)|(⃗x∗ ,⃗x∗), i.e., the derivatives are performed with respect to the sec-
ond group of variables. In both cases the derivatives are evaluated on the reference
solution x⃗∗(t). The latter equation encodes n linear systems involving matrices with
size d × d. To progress with the analytical understanding, we assume the existence of
an eigenbasis of right eigenvectors(3) ϕ⃗(α), α = 1, . . . ,nfor L and then, following the

(3)Let us observe that this hypothesis can be relaxed (see SM 4.6) and one could obtain similar results by
invoking the Jordan block decomposition as done in [74] in the case of synchronization. For sake of defini-
tiveness we preferred to present our results under this restrictive assumption, but allowing for straightforward
analysis.
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ideas pioneered by [4, 44], we project the former equation onto each eigendirection,
i.e., ζ⃗i = ∑α ξ⃗α ϕ

(α)
i , to eventually obtain (see SM 4.6)

˙⃗
ξα =

[
J(⃗x∗(t))+J2(⃗x∗(t))Λ(α)

]
ξ⃗α ∀α = 1, . . . ,n (4.2.6)

where J= J1+J2 and Λ(α) is the eigenvalue relative to the eigenvector ϕ⃗(α). The above
equation enables us to infer the (in)stability of the homogeneous solution, x⃗∗(t), by
studying the Master Stability Function [44, 168], namely the largest Lyapunov exponent
of Equation (4.2.6).

To make one step further in the study of the problem, let us hypothesize that each
isolated system converges to the same stationary point, i.e., the stable homogeneous
solution is time-independent, x⃗∗(t) = x⃗∗. Hence Equation (4.2.6) rewrites for all α =
1, . . . ,n, as

˙⃗
ξα =

[
J(⃗x∗)+J2(⃗x∗)Λ(α)

]
ξ⃗α := J(α)

ξ⃗α (4.2.7)

where the constant matrix J(α) has been defined by the latter equation. The homoge-
neous solution will prove unstable to spatially dependent perturbations if (at least) one
eigenmode α̂ exists for which the largest real part of the eigenvalues, λi, of J(α̂) is posi-
tive, the latter being known in the literature with the name of dispersion relation, hereby
denoted by λα = maxi=1,...,d Rλi(Λ

(α)), where we emphasized the dependence of the
latter on the spectrum of the Laplace matrix. Let us observe that the positivity of the
dispersion relation initiates the instability but it does not determine the final outcome
of the system. Convergence to other homogeneous solutions is possible if F⃗ possesses
several zeros, namely if the system (4.2.1) exhibits multiple equilibria. However, this
kind of solution can arise with lower probability with respect to a patchy one; indeed,
assuming to act on a parameter in Equation (4.2.4), then a homogeneous zero of the
latter generically bifurcates in an heterogeneous one.

4.3 Results
For sake of pedagogy and to be able to determine closed and manageable analytical
formulae, let us assume the local systems to be 2 dimensional, i.e., d = 2 in Equa-
tion (4.2.1). Let us however emphasize that, as we will discuss later on, our results go
beyond this simplified framework and we can indeed prove that non-reciprocal interac-
tions can drive the emergence of heterogeneous patterns in any dimension d ≥ 2, even
when this is not possible using a symmetric coupling. Assuming thus d = 2, being the
eigenvalues of J(α) the solutions of the second order equation

λ
2
i − trJ(α)

λi +detJ(α) = 0 (4.3.1)

we can adapt to the present case the analysis done in [38, 40] and express the condition
for the onset of instability, i.e., λα̂ > 0, as follows

∃α̂ > 1 st (I Λ
(α̂))2S2(RΛ

(α̂))≤−S1(RΛ
(α̂)) (4.3.2)

where S2(κ), resp. S1(κ), is a second, resp. fourth, degree polynomial in κ (see SM 4.6
for more details and the explicit form of S1 and S2 in terms of the model parameters).

65



4 - Non-reciprocal interactions enhance heterogeneity

To illustrate the potential of the theory let us consider several examples of dynamical
systems largely used in the literature as paradigmatic models for synchronization or
patterns emergence.

4.3.1 The Brusselator model
Let us consider the Brusselator model [95, 169], often invoked in the literature as a
paradigmatic nonlinear reaction scheme for studying self-organized phenomena, syn-
chronization [78], Turing patterns [31, 34, 36, 115, 40] and oscillation death [170, 171].
The key feature of the model is the presence of two species, reacting via a cubic non-
linearity {

u̇ = 1− (b+1)u+ cu2v

v̇ = bu− cu2v
(4.3.3)

where b > 0 and c > 0 act as tunable model parameters. One can easily realize the
existence of a unique equilibrium u∗ = 1 and v∗ = b/c, that results stable if the Jacobian
of the reaction part evaluated on the equilibrium, JBxl =

(b−1 c
−b −c

)
, has a negative trace,

trJBxl = b− c < 1, and a positive determinant, detJBxl = c > 0.
The model can be expressed in the framework presented in the previous section by

setting x⃗i = (ui,vi) and F⃗ (⃗xi) = (1− (b+ 1)ui + cu2
i vi,bui − cu2

i vi), for i = 1, . . . ,n, to
denote the n isolated systems. For sake of concreteness let us consider the coupling
given by

F⃗ (⃗xi, x⃗ j) = (1− (b+1)ui + cu2
i vi,bu j − cu2

i vi)

where x⃗ j = (u j,v j). Such function clearly satisfies the constraint F⃗ (⃗xi, x⃗i) = F⃗ (⃗xi),
hence Equation (4.2.2) becomes (see SM 4.7)





u̇i = 1− (b+1)ui + cu2
i vi

v̇i = bui − cu2
i vi +b

n

∑
j=1

Li ju j
∀i = 1, . . . ,n (4.3.4)

namely, a set of n Brusselator models (4.3.3) coupled via long-range connections in the
second variable.

Given the above coupling we can explicitly compute the polynomials S1(κ) and
S2(κ) as a function of the model parameters (see SM 4.7) and characterize the insta-
bility region defined by (4.3.2) as reported in panel a) of Figure 4.2, where we show
in the complex plane (RΛ,I Λ) the regions for which the instability condition is sat-
isfied (gray), for a given set of parameters. Patterns emerge if there exists at least one
eigenvalue Λ(α̂) belonging to this region. For sake of simplicity, we hereby assume the
non-reciprocal interactions to be described by a directed Erdős-Rényi network made
of 50 nodes and the probability to create a directed link to be 0.05. The symmetric
coupling is obtained by considering all the existing links to be reciprocal ones and, as
already noticed, the eigenvalues are negative real numbers. In conclusion, if the model
parameters shape an instability region that does not intersect the real negative axis (see
panel a) in Figure 4.2), then only an asymmetric coupling can drive the instability and
the ensuing (oscillatory) patterns (see panel b) in Figure 4.2), while this is impossible
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Figure 4.2: Instability region and patterns for the Brusselator model. In panel a), we report the region of the
complex plane (RΛ,I Λ) for which the instability condition is satisfied (gray). For the chosen parameters
values (b = 4.3 and c = 5.0), we can observe that the instability region does not intersect the real axis and
thus only a non-reciprocal coupling can exhibit complex eigenvalues (white dots), entering into the instability
region and thus initiating the pattern as shown in panel b), where we report ui(t) vs. t starting from initial
conditions close to the stable equilibrium, u∗ = 1. Any symmetric coupling determines real eigenvalue (black
dots in panel a)) that cannot give rise to the instability, as shown in panel c), where we report ui(t) vs. t
starting from the same initial conditions used in panel b). The underlying coupling is obtained with a directed
Erdős-Rényi network with n = 50 nodes and a probability for a directed link to exist between two nodes is
p = 0.05.

for any web of reciprocal long-range interactions (see panel c) in Figure 4.2) and the
system solution converges toward the homogeneous solution(4).

Figure 4.3: Instability region and patterns for the Mimura-Murray model. In panel a), we report the region of
the complex plane (RΛ,I Λ) for which the instability condition is satisfied (gray). For the chosen parameters
values (a = 35, b = 15, c = 20 and d = 2/5), we can observe that the instability region does not intersect the
real axis and thus only non-reciprocal coupling can exhibit complex eigenvalues (white dots) entering into the
instability region and thus initiating the pattern as shown in panel b), where we report ui(t) vs. t starting from
initial conditions close to the stable equilibrium, u∗ ∼ 2.28, v∗ ∼ 3.20. Any symmetric coupling determines
real eigenvalues (black dots in panel a)) that cannot give rise to the instability, as shown in panel c), where
we report ui(t) vs. t starting from the same initial conditions used in panel b). The underlying coupling is
obtained with a directed Erdős-Rényi network with n = 50 nodes and a probability for a directed link to exist
between two nodes is p = 0.05.

(4)Throughout the work, the numerical simulations have been performed by initializing the system δ -close
to the homogeneous equilibrium by drawing uniformly random perturbations in (−δ ,δ ). Then its time evo-
lution has been numerically simulated using a 4-th order Runge-Kutta method over a time span of the order
of − logδ/maxα λα , namely sufficiently long to (possibly) increase the δ -perturbation up to a macroscopic
size.
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4.3.2 The Mimura-Murray model
The second model we consider is the Mimura-Murray system [172, 31, 46, 173]. It
also involves two reacting species, that can be associated to prey and predator, whose
densities denoted by u and v evolve via the nonlinear system of ODEs





u̇ = u
(

a+bu−u2

c
− v
)

v̇ = v(u− (1+dv))
(4.3.5)

where a,b,c and d are positive parameters. The model possesses 6 equilibria, whose
stability and positivity depend on the value of the chosen parameters. We here focus on
the fixed point (u∗,v∗)

u∗ = 1+
bd −2d − c+

√
∆

2d
and v∗ =

bd −2d − c+
√

∆

2d2 (4.3.6)

where
∆ = (bd −2d − c)2 +4d2(a+b−1)

and assume a = 35, b = 15, c = 20 and d = 0.4, which in turn implies (u∗,v∗) ∼
(2.28,3.20). The Jacobian matrix evaluated at the fixed point reads JMM ∼

(1.19 −2.28
3.20 −1.28

)
,

hence, detJMM > 0 and trJMM < 0 and the fixed point is a stable equilibrium.
Let us consider the following long-range coupling

F⃗ (⃗xi, x⃗ j) =

(
ui

(
a+bu j −u2

i
c

− v j

)
,vi (u j − (1+dvi))

)

where x⃗i = (ui,vi) and x⃗ j = (u j,v j). Let us observe that the present coupling contains
nonlinear terms in the variables uiv j and u jvi, while in the previous section we dealt with

a linear term. Let F⃗ (⃗xi) =
(

ui

(
a+bui−u2

i
c − vi

)
,vi (ui − (1+dvi))

)
, then F⃗ (⃗xi, x⃗i) =

F⃗ (⃗xi), and we are thus in the framework of Equation (4.2.2) that now can be rewritten
as (see SM 4.8)




u̇i = ui

(
a+bui −u2

i
c

− vi

)
+

b
c

ui

n

∑
j=1

Li ju j −ui

n

∑
j=1

Li jv j

v̇i = vi (ui − (1+dvi))+ vi

n

∑
j=1

Li ju j

∀i = 1, . . . ,n (4.3.7)

One can realize that we are dealing with n Mimura-Murray models (4.3.5) coupled via
nonlinear long-range connections in both variables.

As explained in the SM 4.8, one can numerically determine the instability region by
evaluating the polynomials S1(κ) and S2(κ) as a function of the model parameters (see
panel a) of Figure 4.3). We can observe that the instability region does not intersect the
negative real axis and thus only complex eigenvalues, associated to non-symmetric cou-
pling can enter into such region. This is the case reported in panel a) of Figure 4.3 and
confirmed by the time evolution of the density ui(t) (panel b) in the case of non sym-
metric long-range interactions and panel c) in the symmetric case). The non-reciprocal
interactions are obtained with a directed Erdős-Rényi network made of 50 nodes and
the probability to create a directed link to be 0.05.
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4.3.3 The Volterra model
By remaining in the framework of ecological models, we consider an application deal-
ing with a Volterra model [174] modified by the assumption of the presence of non-
reciprocal interactions among animals. For sake of pedagogy, we hereby decided to
present our results with a simplified and abstract model that describes the interactions
of preys and predators in an ecological setting. Let us however observe that our theory
could be applied as to include other phenomena, e.g., harvesting [175, 176]. The model
we are interested in results thus to be described by:

{
ẋ =−dx+ c1xy

ẏ = ry− sy2 − c2xy
(4.3.8)

Here x denotes the concentration of predators, while y stands for the preys, and all the
parameters are assumed to be positive. The Volterra model (4.3.8) admits a nontrivial
fixed point, x∗ = c1r−sd

c1c2
, y∗ = d

c1
, which is positive and stable, provided that c1r−sd > 0,

condition hereby assumed to hold true.
Following the above presented scheme, let us now consider the long-range coupling

F⃗ (⃗xi, x⃗ j) =
(
−dxi +ac1x jyi +(1−a)c1xiy j,ryi − sy2

i − c2x jyi
)

where x⃗i = (xi,yi) and x⃗ j = (x j,y j). The parameter a belongs to [0,1] and weights the
contribution arising from the nonlinear terms xiy j and x jyi; such term disappears in the
local dynamics. Let F⃗ (⃗xi) =

(
−dxi + c1xiyi,ryi − sy2

i − c2xiyi
)
, then F⃗ (⃗xi, x⃗i) = F⃗ (⃗xi).

In SM 4.9 we show that the main equation (4.2.2) can now be written as




ẋi =−dxi + c1xiyi +ac1yi

n

∑
j=1

Li jx j +(1−a)c1xi

n

∑
j=1

Li jy j

ẏi = ryi − sy2
i − c2xiyi − c2yi

n

∑
j=1

Li jx j

(4.3.9)

where we can recognize the n copies of the isolated Volterra system (4.3.8) and the
coupling due to the long-range interactions.

We can thus compute the explicit form of the polynomials S1(κ) and S2(κ) as
a function of the model parameters (see SM 4.9) and characterize the instability re-
gion defined by (4.3.2) as reported in Figure 4.4 where we show in the complex plane
(RΛ,I Λ) the regions for which the instability condition is satisfied (gray), for a given
set of parameters. By using again a directed Erdős-Rényi network made of 50 nodes
and the probability to create a directed link to be 0.5 to describe the non-reciprocal
interactions, we can show the existence of eigenvalues Λ(α̂) (white dots in panel a) of
Figure 4.4) belonging to this region, associated thus to a patchy solution (panel b) of
Figure 4.4). The symmetric coupling being associated to a real spectrum is unable to
drive the system away from the homogeneous equilibrium (panel c) of Figure 4.4). Be-
cause of the peculiar shape of the instability region, one can have parameters values for
which the instability region intersects the real axis (see Figure 4.7 in SM 4.9). In this
case also a symmetric coupling can trigger the instability. From this example one can
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Figure 4.4: Instability region and patterns for the Volterra model. In panel a), we report the region of the
complex plane (RΛ,I Λ) for which the instability condition is satisfied (gray). For the chosen parameters
values (c1 = 2, c2 = 13, r = 1, s = 1, d = 0.4 and a = 0.05), we can observe that the instability region does
not intersect the real axis and thus only non-reciprocal coupling can exhibit complex eigenvalues (white dots)
entering into the instability region and thus initiating the pattern as shown in panel b), where we report yi(t)
vs. t starting from initial conditions close to the stable equilibrium. Any symmetric coupling determines real
eigenvalue (black dots in panel a)) that cannot give rise to the instability as reported in the panel c), where
we show yi(t) vs. t. The underlying coupling is a directed Erdős-Rényi network with n = 50 nodes and a
probability for a directed link to exist between two nodes is p = 0.5.

draw a general conclusion: if the instability is possible by using symmetric long-range
interactions, then the same holds true for non-reciprocal ones; on the other hand, pat-
terns resulting from an instability due to non-symmetric interactions can never emerge
if the long-range interactions reciprocate.

Figure 4.5: Instability region and patterns for the FitzHugh-Nagumo model. In panel a), we report the region
of the complex plane (RΛ,I Λ) for which the instability condition is satisfied (gray). For the chosen param-
eters values (α = 1.5, β = 0, γ = 2.5 and µ = 0.01), we can observe that the instability region intersects the
real axis and thus both reciprocal (black dots) and non-reciprocal coupling (white dots) can exhibit eigenval-
ues entering into the instability region and thus initiating the pattern, as shown in panels b) and c) where we
report ui(t) vs. t starting from initial conditions close to the stable equilibrium, u∗ = 0 for the asymmetric
coupling and the symmetric one. The underlying coupling is obtained with a directed Erdős-Rényi network
with n = 30 nodes and a probability for a directed link to exist between two nodes is p = 0.1.

4.3.4 The FitzHugh-Nagumo model
The next system we consider is the FitzHugh-Nagumo model [126, 127, 128], a non-
linear system often used as paradigm for the study of the emergence of Turing pat-
terns [129, 130, 131, 132, 131] as well as for synchronization phenomena [133, 134].
The model has been conceived in the framework of neuroscience as a schematization
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of an electric impulse propagating through an axon. For this reason, we believe that it
would make a suitable example for the long-range interactions we are describing in this
work.

The FitzHugh-Nagumo model can be described by the system of ODEs
{

u̇ = µu−u3 − v

v̇ = γ(u−βv)
(4.3.10)

where the parameters µ , γ and β are assumed to be positive. We will hereby focus on its
behavior close to the fixed point (u∗,v∗) = (0,0). The linear stability analysis ensures
stability of the latter under the conditions µ < γβ and µβ < 1. Let us observe that, once
such conditions are not met, the system undergoes a supercritical Hopf-Andronov bifur-
cation [47]: the equilibrium point becomes unstable giving birth to a stable limit cycle
solution. In this study, we will limit ourselves to the former case, leaving the oscillating
case for a future work. Let us also observe that this model is not a kinetic one, since the
−v term appearing in the rate evolution for u, expresses a negative cross-effect [138];
we can thus claim that pattern formation finds applications beyond morphogenesis and
chemical frameworks.

By setting x⃗i = (ui,vi) and F⃗ (⃗xi) = (µui − u3
i − vi,γ(ui −βvi)), we can expressed

the model in the framework presented in the previous section by using the following
coupling

F⃗ (⃗xi, x⃗ j) = (µui −u3
i − v j,γ(u j − vi))

where x⃗ j = (u j,v j), that clearly satisfies F⃗ (⃗xi, x⃗i) = F⃗ (⃗xi). The main equation (4.2.2)
becomes (see SM 4.10)





u̇i = µui −u3
i − vi −

n

∑
j=1

Li jv j

v̇i = γ(ui −βvi)+ γ

n

∑
j=1

Li ju j

∀i = 1, . . . ,n (4.3.11)

namely a set of n FitzHugh-Nagumo models (4.3.10) coupled via long-range connec-
tions in both variables.

We can then compute the polynomials S1(κ) and S2(κ) (see SM 4.10) and determine
the instability region (gray) as reported in panel a) of Figure 4.5. By using a directed
Erdős-Rényi network made of 30 nodes and the probability to create a directed link to be
0.1 to encode the non-reciprocal interactions, we can show the existence of eigenvalues
(white dots) lying in the instability region and thus allowing for the instability onset
(panel b) of Figure 4.5). Let us observe that, because of the shape of the instability
region, exhibiting a non-empty intersection with the negative real axis, there can also
be symmetric couplings for which patterns do emerge (panel c) of Figure 4.5).

4.3.5 The Stuart-Landau model
As anticipated, the proposed method goes beyond the framework above presented deal-
ing with stationary homogeneous solution, but can be extended to study systems ex-
hibiting an oscillatory behavior, being the latter a regular or a chaotic one. To support
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this claim, let us study for sake of definitiveness the Stuart-Landau system (SL) [177,
100], as a paradigmatic model of nonlinear oscillators. The complex amplitude w
evolves thus in time according to

ẇ = σw−β |w|2w (4.3.12)

where σ = σR + iσI and β = βR + iβI are complex parameters, and we denote by
zR (resp. zI ) the real (resp. imaginary) part of the complex number z. Let us observe
that the SL determines the normal form for a generic system close to a supercritical
Hopf-bifurcation, hence the results hereby presented are more general than the specific
model explored. Let us thus consider a system made of n identical SL oscillators and
set the parameters such that each isolated oscillator converges to the same limit cycle
wLC(t) =

√
σR/βReiωt , ω = σI −βI σR/βR . We are then interested in determining

the conditions responsible for the persistence of this synchronous behavior once the SL
oscillators are allowed to interact through non-reciprocal long-range interactions or, if
on the contrary, an instability sets up and drives the whole system to a new (spatially
possibly) heterogeneous state. Assume again the long-range interactions to be modeled
through a mean field ansatz (4.2.2), for instance

ẇ j =
σ

k(in)j

n

∑
ℓ=1

A jℓwℓ−βw j|w j|2 = σw j −βw j|w j|2 +σ

n

∑
ℓ=1

L jℓwℓ (4.3.13)

where w j is the complex state variable of the j-th SL system and A jℓ encodes the non-
reciprocal coupling. Such system admits a homogeneous stable limit cycle solution if
σR > 0 and βR > 0. We can then show the existence of non-reciprocal couplings able
to trigger the instability by destabilizing the limit cycle solution, eventually driving the
system toward a new heterogeneous wavy solution.

Indeed, according to the theory hereby developed, we can always determine model
parameters allowing for an instability region in the complex plane (see SM 4.11), that
does not intersect the real axis; the spectrum of a reciprocal web of long-range interac-
tions could thus never belong to the instability region (black dots in Figure 4.6) and any
perturbation fades away. On the other hand, the complex spectrum associated to non-
reciprocal couplings could intersect the instability region (white dots in Figure 4.6),
driving thus the system toward the formation of patterns. We can thus state a claim sim-
ilar to the ones made above, namely non-reciprocal long-range interactions can more
easily drive the system toward a desynchronized state.

4.3.6 A sufficient condition for d ≥ 2

As already anticipated, the d = 2 dimensional systems have been presented for sake
of pedagogy, because they allow to obtain explicit and analytical conditions for the
onset of heterogeneous solutions, where the role of the non-reciprocal links is clearly
understood. We are now able to show that similar results hold true in any dimensions,
d ≥ 2, and for generic systems beyond the paradigmatic examples above presented. We
will indeed prove that given a system built using reciprocal interactions for which the
reference solution is stable and thus any small enough perturbation about it will fade
away, then one can always find non-reciprocal interactions capable to destabilize the
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Figure 4.6: Instability region and patterns for the Stuart-Landau model. The region of instability in the
complex plane (RΛ,I Λ) is reported (gray) in panel a). We fixed the model parameters to the values σR = 1,
σI = 4.3, βR = 1 and βI = 1, resulting into an instability region that does not intersect the real axis, thus
only an asymmetric coupling (white dots) can have a complex spectrum entering the instability region and
initiating a heterogeneous pattern as shown in panel b), where we report Rw j(t) vs. time. Any symmetric
coupling determines real eigenvalue (black dots in panel a)) and thus it cannot initiate the instability, in
consequence all the units synchronize (data not shown). The underlying coupling is a directed Erdős-Rényi
network with n = 40 nodes and a probability for a directed link to exist between two nodes is p = 0.08.

reference solution, provided a condition on the model parameters holds true, and can
thus drive the system toward a new heterogeneous asymptotic state.

The starting point is hence the general system given by (4.2.4) and Equation (4.2.7)
obtained by linearizing the dynamics about the stationary reference solution, x⃗∗, and
then by projecting onto the Laplace eigenbasis, ϕ⃗(α), α = 1, . . . ,n. The characteristic
polynomial, whose roots determine the stability feature of the reference solution, is now
given by

pd(λ ) := (−1)d
[
a0λ

d +a1λ
d−1 +a2λ

d−2 + · · ·+ad

]
(4.3.14)

where the coefficients a j, j = 1, . . . ,d, depend on the model parameters and on the
eigenvalues Λ(α). A straightforward computation allows to obtain for instance

a0 = 1 , a1 =−trJ(α) and ad = detJ(α)

with J(α) = J(⃗x∗)+J2(⃗x∗)Λ(α); it is thus clear that Equation (4.3.1) is a particular case
of the latter. A more cumbersome computation (see SM 4.12) allows to obtain an ex-
plicit formula for a2 that will be needed in the following. In the general d-dimensional
case, there are not explicit formulae for the roots of the polynomial pd and, even if
they exist, their use to understand the role of the model parameters and the impact of
the eigenvalues Λ(α) will be hopeless. We have thus to resort to a different approach
based on the Routh-Hurwitz stability criterion [123, 124, 125], allowing to prove the
(in)stability feature of a real coefficients polynomial. In particular, we will use the fact
that a necessary condition to have a stable polynomial, i.e., a polynomial whose roots
have negative real parts, is that all its coefficients exhibit the same sign, in the present
case they should be positive being a0 = 1.

Before proceeding any further, we observe that the coefficients a j of the polynomial
pd are not (in general) real numbers, because of their dependence on the complex Λ(α).
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One cannot thus directly apply the above criterion. To overcome this issue, we introduce
the polynomial q(λ ) of degree 2d given by

q(λ ) := pd(λ )pd(λ ) = λ
2d +b1λ

2d−1 +b2λ
2d−2 + · · ·+b2d

where z denotes the complex conjugate of the complex number z. One can prove (see
SM 4.12) that the roots of this polynomial have the same real parts of the roots of pd
(counted twice) and moreover its coefficients become real numbers, whose expression
can be related to the coefficients of pd .

The proof of our statement proceeds thus as follows. Assume to have a system
whose nodes interact through a symmetric ensemble of links and fix the model parame-
ters in such a way that the reference solution x⃗∗ is stable, with respect to heterogeneous
perturbations. Hence, for all α = 1, . . . ,n, all the roots λi, i = 1, . . . ,d, of pd have
negative real parts and so do the ones of q. Invoking the necessary condition of the
Routh-Hurwitz stability criterion, we can conclude that the coefficients of q are posi-
tive numbers whenever we set I Λ(α) = 0, for all α , because the Laplacian’s spectrum
is real (see SM 4.5)

b j|I Λ(α)=0 > 0 ∀ j = 1, . . . ,2d

We can then prove (we refer to SM 4.12 for more details) that if the model parameters
satisfy the condition

trJ2
2 < 0 (4.3.15)

then we can always find a non-reciprocal coupling such that the imaginary part of the
spectrum satisfies the condition

∃α̂ > 1 s.t.
(
I Λ

(α̂)
)2

>

(
2Ra2 +

[
trJ(α̂)

]2
)∣∣∣

I Λ(α̂)=0

|trJ2
2|

(4.3.16)

ensuring that the coefficient b2 is negative and thus the polynomial q is not stable.
Hence, q admits at least one root, the one associated to α̂ , whose real part is posi-
tive, and so does pd . In conclusion, the reference solution x⃗∗ is unstable, any spatially
inhomogeneous perturbation is amplified and the system moves away from the homo-
geneous solution. Let us observe that we can always build a web of non-reciprocal
interactions satisfying the latter conditions, by using the ideas developed in [178] to
generate asymmetric Laplacian matrices, and thus directed networks, that possess pre-
scribed spectra.

4.4 Conclusion
In conclusion, we have proposed and analyzed a mechanism for pattern formation, be-
ing the latter stationary or time dependent, rooted on the presence of non-reciprocal
long-range interactions, to show that self-organization can manifest without the pres-
ence of diffusion. Long-range non-reciprocal interactions, modeled with a mean-field
scheme, return a consensus Laplace operator, whose complex spectrum sets the condi-
tions for the instability and the ensuing spatial or temporal patterns. The intrinsic asym-
metries within the system, described by non-reciprocal interactions, are the key factor
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4.5 SM 1: About the spectrum of the reactive Laplacian in case of reciprocal
interactions.

in the disruption of the homogeneous solution and thus the driver for the diversity of
patterns of complexity one can observe in nature. The theory has been applied to several
paradigmatic models used in the literature to study the emergence of patterns or syn-
chronization. The proposed mechanism complements thus the Turing one [4, 31] and
it is suitable for all phenomena where patterns emergence is not driven by a diffusive
process, but immobile species interact through non-reciprocal long-range couplings.

4.5 SM 1: About the spectrum of the reactive Laplacian
in case of reciprocal interactions.

Let us assume the network of interactions to be symmetric, Ai j = A ji, for all i and
j, and let us recall the definition of the reactive Laplacian Li j = Ai j/ki − δi j, where
ki = ∑ j Ai j, is the node degree. Let us introduce the symmetric Laplace matrix L sym

i j =

Ai j/
√

kik j −δi j and observe that its eigenvalues are real and negative but the null one.
Let D be the diagonal matrix with the nodes degree on the diagonal, then

L = D−1A− I = D−1/2
[
D−1/2A− I

]
D1/2 = D−1/2L symD1/2

Namely, L and L sym are similar matrices and thus exhibit the same set of eigen-
values.

4.6 SM 2: Linear stability analysis
Let us consider the homogeneous reference solution x⃗∗(t) and a spatially dependent
perturbation about the latter, x⃗i(t) = x⃗∗(t) + ζ⃗i(t), then by inserting this information
into Equation (4.2.2) (main text) and by retaining only the linear terms in ζ⃗i we obtain

˙⃗
ζi = ˙⃗xi − ˙⃗x∗ =

1

k(in)i

n

∑
j=1

Ai jF⃗ (⃗x∗+ ζ⃗i, x⃗∗+ ζ⃗ j)− F⃗ (⃗x∗)

=
1

k(in)i

n

∑
j=1

Ai j

(
∑
ℓ

∂
x(i)ℓ

F⃗ (⃗x∗, x⃗∗)ζ (i)
ℓ +∑

ℓ

∂
x( j)
ℓ

F⃗ (⃗x∗, x⃗∗)ζ ( j)
ℓ

)

= ∑
ℓ

∂
x(i)ℓ

F⃗ (⃗x∗, x⃗∗)ζ (i)
ℓ +

1

k(in)i

n

∑
j=1

Ai j ∑
ℓ

∂
x( j)
ℓ

F⃗ (⃗x∗, x⃗∗)ζ ( j)
ℓ

= J1ζ⃗i +
1

k(in)i

n

∑
j=1

Ai jJ2ζ⃗ j ∀i = 1, . . . ,n

where we recall that J1 = ∂⃗x1 F⃗ (⃗x1, x⃗2)(⃗x∗ ,⃗x∗) and J2 = ∂⃗x2 F⃗ (⃗x1, x⃗2)(⃗x∗ ,⃗x∗). By observing
that F⃗ (⃗x) = F⃗ (⃗x, x⃗), one can prove that ∂⃗xF⃗ := J = J1+J2. Hence, by slightly rewriting
the previous equation, we obtain

˙⃗
ζi(t) = J1ζ⃗i +

1

k(in)i

n

∑
j=1

Ai jJ2ζ⃗ j = J1ζ⃗i +J2ζ⃗i +
n

∑
j=1

(
Ai j

k(in)i

−δi j

)
J2ζ⃗ j
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= (J1 +J2) ζ⃗i +
n

∑
j=1

Li jJ2ζ⃗ j

= Jζ⃗i +
n

∑
j=1

Li jJ2ζ⃗ j (4.6.1)

where we used the matrix L , given by Equation (4.2.3) (main text).
By introducing the n×d vector ζ⃗ = ((⃗ζ1)

⊤, . . . , (⃗ζn)
⊤)⊤, we can eventually rewrite

the latter equation in a compact form as

˙⃗
ζ (t) = [In ⊗ (J1 +J2)+L ⊗J2] ζ⃗ = [In ⊗J+L ⊗J2] ζ⃗ (4.6.2)

where ⊗ denotes the Kronecker product of matrices. In this way, we emphasize the role
of the Jacobian of the isolated system, In⊗J, and the one for the coupling part, L ⊗J2,
that vanishes once we assume A = In.

Equation (4.6.1) is a linear system involving matrices with size nd × nd. One can
reduce the complexity of the latter by assuming the existence of an eigenbasis of L ,
ϕ⃗(α), α = 1, . . . ,n, with associated eigenvalue −2 < RΛ(α) ≤ 0. Then by rewriting
ζ⃗i = ∑β ξ⃗β ϕ

(β )
i and inserting the latter into (4.6.1) we obtain

∑
β

˙⃗
ξβ ϕ

(β )
i = ∑

β

J(⃗x∗(t))⃗ξβ ϕ
(β )
i +

n

∑
j=1

∑
β

Li jJ2(⃗x∗(t))⃗ξβ ϕ
(β )
j

= ∑
β

J(⃗x∗(t))⃗ξβ ϕ
(β )
i +∑

β

Λ
(β )J2(⃗x∗(t))⃗ξβ ϕ

(β )
i

By multiplying by the left eigenvectors ψ
(α)
i and summing over the index i, recall that

∑i ψ
(α)
i ϕ

(β )
i = δαβ , we can obtain Equation (4.2.6) (main text), namely

˙⃗
ξα = J(⃗x∗(t))⃗ξα +Λ

(α)J2(⃗x∗(t))⃗ξα ∀α = 1, . . . ,n

Assuming to deal with d = 2 dimensional systems and with a stationary reference
solution, i.e., x⃗∗(t) = x⃗∗ for all t, one can then realize that the eigenvalues of J(α), λi,
are the solutions of the second order equation

λ
2
i − trJ(α)

λi +detJ(α) = 0 ∀i = 1, . . . ,n

Note that if, on the other hand, we were interested in studying d > 2 dynamical systems,
then we should consider roots of d-degree polynomial equations for which there is no
general closed form solution and thus one has to recur to numerical simulations to
determine the instability region or to other ideas, as we have shown in the main text and
detailed in SM 4.12.

Back to the d = 2 case, one can express the real part of the above roots as:

Rλi =
1
2

(
RtrJ(α)+ γ

)
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where

γ =

√
A+

√
A2 +B2

2
,A =

(
RtrJ(α)

)2
−
(
I trJ(α)

)2
−4RdetJ(α)

and
B = 2RtrJ(α)I trJ(α)−4I detJ(α)

A straightforward but lengthy computation allows to rewrite the condition for instability
Equation (4.3.2) (main text), in terms of two polynomials, S2 of second degree and S1
of fourth degree. More precisely, S2(κ) = c2,2κ2 + c2,1κ + c2,0 with coefficients

c2,2 = −detJ2(4detJ2 − (trJ2)
2)

c2,1 = −∆1(4detJ2 − (trJ2)
2) (4.6.3)

c2,0 = −∆
2
1 +∆1trJtrJ2 −detJ2 (trJ)2

and S1(κ) = c1,4κ4 + c1,3κ3 + c1,2κ2 + c1,1κ + c1,0 with coefficients

c1,4 = detJ2 (trJ2)
2

c1,3 = trJ2(∆1trJ2 +2detJ2trJ)

c1,2 = detJ(trJ2)
2 +2∆1trJtrJ2 +detJ2 (trJ)2 (4.6.4)

c1,1 = trJ(2detJtrJ2 +∆1trJ)

c1,0 = detJ(trJ)2

where we introduced ∆1 = J2,11J22 − J2,12J21 − J2,21J12 + J2,22J11.

Let us now consider the general case in which the existence of an eigenbasis of L is
not guaranteed, namely the Laplace matrix is defective. We can then invoke the Jordan
canonical form theorem to determine an invertible n×n matrix P such that

P−1L P = B = diag(B1, . . . ,Bℓ)

where the B j is the m j ×m j Jordan block, m1 + · · ·+mℓ = n

B j =




Λ( j)

1 Λ( j)

. . . . . .
1 Λ( j)




being Λ( j) the j-th eigenvalue of L . Because Λ(1) = 0 we also have B1 = 0.
Let us again consider Equation (4.6.2). By defining Q = P⊗ Id and η⃗ = Q−1ζ⃗ , we

get

˙⃗η(t) = Q−1 ˙⃗
ζ (t) = (P−1 ⊗ Id) [In ⊗J+L ⊗J2] (P⊗ Id)Q−1

ζ⃗ = [In ⊗J+B⊗J2] η⃗
(4.6.5)
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4 - Non-reciprocal interactions enhance heterogeneity

The vector η⃗ inherits the Jordan decomposition, hence we can write
η⃗ = ((⃗η1)

⊤, . . . , (⃗ηℓ)
⊤)⊤, where η⃗ j is a (d ×m j)-dimensional vector. Equation (4.6.5)

can thus be rewritten as

˙⃗η1(t) =




J
. . .

J


 η⃗1 , (4.6.6)

˙⃗η j(t) =




J
. . .

J


 η⃗ j + (4.6.7)

+




Λ( j)J2

J2 Λ( j)J2
. . . . . .

J2 Λ( j)J2


 η⃗ j ∀ j = 2, . . . , ℓ

The first Equation (4.6.6) returns again the stability condition for the isolated sys-
tems, which is a working assumption for the developed framework. Let us now con-
sider the generic Equation (4.6.8) and by writing η⃗ j = ((⃗η j1)

⊤, . . . , (⃗η jm j)
⊤)⊤, where

η⃗ ji ∈ Rd for all i = 1, . . . ,m j, we get

η⃗ j1 j(t) = J⃗η j1 +Λ
( j)J2η⃗ j1 (4.6.8)

η⃗ j2 j(t) = J⃗η j2 +Λ
( j)J2η⃗ j2 +J2η⃗ j,1 (4.6.9)

...
η⃗ j,m j(t) = J⃗η jm j +Λ

( j)J2η⃗ jm j +J2η⃗ jm j−1 (4.6.10)

To simplify the following analysis, we will assume to deal with a stationary ref-
erence solution x⃗∗(t) = x⃗∗, hence all the involved matrices are constant ones. Hence,
the first Equation (4.6.8) is the analogous of Equation (4.2.6) (main text) and one can
determine a condition on Λ( j) to make the projection η⃗ j1 unstable; in the case d = 2
this accounts to perform the analysis above presented, returning the condition (4.3.2),
where α̂ is replaced by j.

Let us now consider the second Equation (4.6.9) and observe that it is composed by
two terms: the first one involves the same matrix of the first equation, J+Λ( j)J2, while
the second one depends on the projection η⃗ j,1(t). If, for the choice of Λ( j) the matrix is
unstable and thus η⃗ j1(t) has an exponential growth, then the same is true for η⃗ j2(t). By
considering the remaining equations and by exploiting the peculiar shape of the system,
this allows to prove that if the first Equation (4.6.8) returns an unstable solution, then
all the solutions η⃗

( j)
i (t) are unstable as well.

In conclusion, if the Laplace matrix L is defective, one can check the instability
condition on the available eigenvalues and conclude on the emergence of patterns solely
based on this information. Let us observe that this is a sufficient condition. Indeed, it
can happen that the matrix J+Λ( j)J2 is stable, but the presence of Jordan blocks in-
troduces a transient (polynomial) growth in the linear regime that results strong enough
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to limit the validity of the linear approximation. Thus, the nonlinear system could ex-
hibit orbits departing from the homogeneous reference solution and only infinitesimal
perturbations will be attracted to the latter. Stated differently, the stability basin of the
reference solution shrinks considerably in presence of defective Laplace matrix: the so-
lution is thus stable but finite perturbations can be amplified, consistently with previous
results [78].

4.7 SM 3: Analysis of the Brusselator model

Let us consider the two species Brusselator model, F⃗ (⃗xi) = (1−(b+1)ui+cu2
i vi,bui−

cu2
i vi), where x⃗i = (ui,vi), and the non-local coupling given by

F⃗ (⃗xi, x⃗ j) = (1− (b+1)ui + cu2
i vi,bu j − cu2

i vi)

where x⃗ j = (u j,v j). Equation (4.2.2) can thus be rewritten as




u̇i =
1

k(in)i

n

∑
j=1

Ai j
(
1− (b+1)ui + cu2

i vi
)

v̇i =
1

k(in)i

n

∑
j=1

Ai j
(
bu j − cu2

i vi
) ∀i = 1, . . . ,n

By recalling the definition of k(in)i = ∑ j Ai j and observing that the first equation does
not depend on the index j, it can be straightforwardly simplified to return

u̇i = 1− (b+1)ui + cu2
i vi ∀i = 1, . . . ,n

Let us now consider the second equation and isolate the terms not depending on the
index j

v̇i = −cu2
i vi +

b

k(in)i

n

∑
j=1

Ai ju j =

=−cu2
i vi +b

n

∑
j=1

(
Ai j

k(in)i

−δi j

)
u j +bui = bui − cu2

i vi +b
n

∑
j=1

Li ju j

∀i = 1, . . . ,n.
In conclusion, we obtain





u̇i = 1− (b+1)ui + cu2
i vi

v̇i = bui − cu2
i vi +b

n

∑
j=1

Li ju j
∀i = 1, . . . ,n

From the definitions of F⃗ (⃗xi) and F⃗ (⃗xi, x⃗ j), we can compute the associated Jacobian
matrices

JBxl =

(
b−1 c
−b −c

)
and J2 =

(
0 0
b 0

)
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and thus, by using the formulae (4.6.3) and (4.6.4) for the coefficients c1,i, i= 0,1,2,3,4,
and c2,i, i = 0,1,2, we obtain the polynomials S1 and S2:

S1(κ) = c(b− c−1)2(1−bκ) and S2(κ) =−b2c2

The condition that the complex eigenvalues Λ(α) of L have to satisfy to induce an
instability is eventually given by

(I Λ
(α))2 ≥ (b− c−1)2

cb2

(
1−bRΛ

(α)
)

4.8 SM 4: Analysis of the Mimura-Murray model
Let us consider the Mimura-Murray model with reaction terms,

F⃗ (⃗xi) =
(

ui

(
a+bui−u2

i
c − vi

)
,vi (ui − (1+dvi))

)
, where x⃗i = (ui,vi). The chosen non-

local coupling is

F⃗ (⃗xi, x⃗ j) =

(
ui

(
a+bu j −u2

i
c

− v j

)
,vi (u j − (1+dvi))

)

From Equation (4.2.2) we obtain




u̇i =
1

k(in)i

n

∑
j=1

Ai jui

(
a+bu j −u2

i
c

− v j

)

v̇i =
1

k(in)i

n

∑
j=1

Ai jvi (u j − (1+dvi))

∀i = 1, . . . ,n

By using again the definition of k(in)i and isolating the terms independent from j




u̇i = ui
a−u2

i
c

+
ui

k(in)i

n

∑
j=1

Ai j

(u j

c
− v j

)

v̇i =−vi(1+dvi)+
vi

k(in)i

n

∑
j=1

Ai ju j

∀i = 1, . . . ,n

By adding and removing suitable ,terms we eventually obtain




u̇i = ui

(
a+bui −u2

i
c

− vi

)
+

b
c

ui

n

∑
j=1

Li ju j −ui

n

∑
j=1

Li jv j

v̇i = vi (ui − (1+dvi))+ vi

n

∑
j=1

Li ju j

∀i = 1, . . . ,n

The Jacobian matrices follow directly from the definitions of the functions F⃗ (⃗xi)
and F⃗ (⃗xi, x⃗ j)

JMM =

(
u∗ b−2u∗

c −u∗

v∗ −dv∗

)
and J2 =

( b
c u∗ −u∗

v∗ 0

)
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and, from the latter, one can compute the coefficients c1,i, i = 0,1,2,3,4, and c2,i, i =
0,1,2, and eventually the polynomials S1 and S2. In the present case the resulting
expressions are rather unwieldy and not very explicative. However, they can be used to
numerically determine the instability region in the complex plane.

4.9 SM 5: Analysis of the Volterra model
Let us study a set of n coupled Volterra models [174] that describes the interactions
of preys and predators in an ecological setting, where they can interact via long-range
connections modeled by





ẋi =−dxi +ac1yi
1

k(in)i

n

∑
j=1

Ai jx j +(1−a)c1xi
1

k(in)i

n

∑
j=1

Ai jy j

ẏi = ryi − sy2
i − c2yi

1

k(in)i

n

∑
j=1

Ai jx j

By using the reactive Laplacian matrix (4.2.3), we can rewrite the previous equations
as 




ẋi =−dxi + c1yixi +ac1yi

n

∑
j=1

Li jx j +(1−a)c1xi

n

∑
j=1

Li jy j

ẏi = ryi − sy2
i − c2yixi − c2yi

n

∑
j=1

Li jx j

(4.9.1)

where one can easily recognize the in-node Volterra model (4.3.8) and the corrections
stemming from non-local contributions. The Jacobian matrices are obtained as

JV =

(
0 c1x∗

−c2y∗ −sy∗

)
and J2 =

(
ac1y∗ (1−a)c1x∗

−c2y∗ 0

)

where (x∗,y∗) is the homogeneous equilibrium of the Volterra system.
By inserting the given expressions for JV and J2, in the general formulae (4.6.3)

and (4.6.4), we obtain for the coefficients of S2(κ)

c2,2 = −(a−1)(c1r−ds)
(

4
(a−1)(c1r−ds)

c1
+a2d

)

c2,1 = (c1r(a−2)+2ds)
(

4
(a−1)(c1r−ds)

c1
+a2d

)

c2,0 = − (c1r(a−2)+2ds)2

c1
+

(
c1r(a−2)+2ds

c1

)
ads+(a−1)(c1r−ds)a2d

and S1(κ)

c1,4 = −(a−1)(c1r−ds)a2d

c1,3 = ad
(
−(c1r(a−2)+2ds)a+2

s(a−1)(c1r−ds)
c1

)
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c1,2 = (c1r−ds)a2d +2
c1r(a−2)+2ds

c1
ads− (a−1)(c1r−ds)

c2
1

ds2

c1,1 = −ds
(

2
c1r−ds

c1
a+

c1r(a−2)+2ds
c1

s
c1

)

c1,0 =
c1r−ds

c2
1

ds2

Given such polynomials, one can determine the (in)stability region as shown in
Figure 4.4 (main text) or Figure 4.7 and thus conclude about the onset of the instability
according to the position of the complex eigenvalues of the Laplace matrix L . In
Figure 4.7 we report the region of instability (gray) for a set of parameters values
allowing for the emergence of patterns for both the reciprocal and non-reciprocal long-
range interactions. We can observe that, contrary to the case shown in the main text,
now the instability region has a non empty intersection with the real axis, where it lies
the spectrum of the Laplace operator for reciprocal interactions (black dots). We can
thus determine a web of symmetrical long-range interactions for which the Volterra
model (4.3.8) (main text) exhibits an instability and eventually evolves toward a patchy
solution (panel b) of Figure 4.7). A similar result holds true using non-reciprocal long-
range interactions. Indeed, the complex spectrum of the associated Laplace matrix
(white dots in panel a) of Figure 4.7) also lies in the instability region and thus the
system converges to a spatially heterogeneous solution (panel c) of Figure 4.7). The
underlying long-range coupling is a directed Erdős-Rényi network with n = 50 nodes
and a probability for a directed link to exist between two nodes is p = 0.5.

In Figure 4.8, we provide a more global view of the parameters range associated to
bifurcation diagram, showing the parameters values, d and c1, for which the instability
emerges in the case of both reciprocal interactions and non-reciprocal ones (black A
region) and in the case of only non-reciprocal ones (white B region), once the remaining
parameters have been fixed to some generic values. One can clearly appreciate how
large is the latter compared to the former, and thus how more often one can find patterns
due to non-reciprocal interactions instead of reciprocal ones.

4.10 SM 6: Analysis of the FitzHugh-Nagumo model

Let us consider the FitzHugh-Nagumo model, F⃗ (⃗xi) = (µui −u3
i − vi,γ(ui − vi)), with

x⃗i = (ui,vi), and the non-local coupling

F⃗ (⃗xi, x⃗ j) = (µui −u3
i − v j,γ(u j − vi))

with x⃗ j = (u j,v j). From Equation (4.2.2) we obtain




u̇i =
1

k(in)i

n

∑
j=1

Ai j
(
µui −u3

i − v j
)

v̇i =
1

k(in)i

n

∑
j=1

Ai jγ (u j − vi)

∀i = 1, . . . ,n
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Figure 4.7: Instability region and patterns for the Volterra model. We report the region of the complex
plane (RΛ,I Λ) for which the instability condition is satisfied (gray), the instability is at play if at least one
eigenvalue of L belongs to the region. The model parameters have been fixed to the values c1 = 2, c2 = 13,
r = 1, s = 1, d = 0.02 and a = 0.05, and we can observe that the instability region intersects the real axis
and thus both non-reciprocal (white dots) and reciprocal (black dots) interactions can exhibit eigenvalues
entering into the instability region. This in turns implies the existence of an heterogeneous solution for both
the reciprocal (see panel b) where we report the density of preys vs. time) and non-reciprocal (see panel
c) where we report the density of preys vs. time) long-range interactions assumption. In both panels, the
horizontal black line denotes the homogeneous equilibrium y∗.

Figure 4.8: Bifurcation diagram for the Volterra model, reciprocal interactions. We fix the parameters values
c2 = 13, r = 1, s = 1 and a = 0.05, and we show the bifurcation region as a function of the remaining parame-
ters d and c1. The C region (gray) corresponds to an unstable homogeneous equilibrium that remains unstable
even when the coupling is present, being the latter reciprocal or non-reciprocal one; patterns can develop but
they are not due to the interactions. For parameters values in the A region (black), the stable homogeneous
equilibrium is destabilized by the introduction of reciprocal coupling (as well by a non-reciprocal one); the
patterns shown in panels b) and c) of Figure 4.7 associated to the values c1 = 2 and d = 0.02 fall in this class
(yellow dot). Finally in the large B region (white) the homogeneous equilibrium is stable for any reciprocal
coupling, and thus no pattern can develop in this case, however the use of non-reciprocal interactions can
drive the instability and thus the emergence of patterns. The patterns shown in the panel b) of Figure 4.4
(main text) correspond to the values c1 = 2 and d = 0.4, clearly belonging to the B region (blue star).

By using again the definition of k(in)i = ∑ j Ai j, we get




u̇i = µui −u3
i −

1

k(in)i

n

∑
j=1

Ai jv j

v̇i =−γvi +
γ

k(in)i

n

∑
j=1

Ai ju j

∀i = 1, . . . ,n
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hence 



u̇i = µui −u3
i − vi +

n

∑
j=1

Li jv j

v̇i = γ(ui − vi)+ γ

n

∑
j=1

Li ju j

∀i = 1, . . . ,n

The Jacobian matrices can be obtained as follows

JFHN =

(
µ −1
γ −γ

)
and J2 =

(
0 1
γ 0

)

By using the formulae (4.6.3) and (4.6.4), we obtain the polynomials S1 and S2

S1(κ) = γ(µ − γ)2 [(1+κ)2 −µ
]

and S2(κ) =−4γ
2(κ +1)2 − γ(µ − γ)2

The instability is thus realized if the complex eigenvalues Λ(α) of L satisfy the con-
straint

(I Λ
(α))2 ≥ (µ − γ)2

4γ

(1+RΛ(α))2 −µ

(1+RΛ(α))2 +1

4.11 SM 7: Analysis of the Stuart-Landau model
We turn now our attention to the study of the paradigmatic model of nonlinear oscilla-
tors given by the Stuart-Landau system (SL) [177, 100]

dw
dt

= σw−βw|w|2

where σ = σR + iσI and β = βR + iβI are complex model parameters. One can
straightforwardly prove that wLC(t) =

√
σR/βReiωt , ω = σI −βI σR/βR , is a limit

cycle solution of the SL system and it is stable provided σR > 0 and βR > 0.
We then assume to have n identical copies of the SL system coupled through non-

reciprocal interactions and the hypothesis of mean field Equation (4.3.13) (main text),
hereby reported

ẇ j =
σ

k(in)j
∑
ℓ

A jℓwℓ−βw j|w j|2 = σw j −βw j|w j|2 +σ ∑
ℓ

L jℓwℓ

Because of the structure of the coupling, wLC(t) is also a solution of the latter equa-
tion. To inquire about its stability, we consider the perturbation given by w j(t) =
wLC(t)(1+u j(t))eiv j(t), where u j(t) and v j(t) are real and small functions nodes de-
pendent. We then insert the latter into (4.3.13) (main text) and we expand by retaining
only the first order terms, obtaining

d
dt

(
u j

v j

)
=

(
−2σR 0

−2βI
σR
βR

0

)(
u j

v j

)
+∑

ℓ

L jℓ

(
σR −σI

σI σR

)(
uℓ
vℓ

)
(4.11.1)
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We invoke once again the existence of an eigenbasis of the Laplace matrix, ϕ⃗(α),
Λ(α), to decompose the perturbation u j and v j, and eventually get

d
dt

(
uα

vα

)
=

[(
−2σR 0

−2βI
σR
βR

0

)
+Λ

(α)

(
σR −σI

σI σR

)](
uα

vα

)

=
(

J+Λ
(α)J2

)(uα

vα

)
=: J(α)

(
uα

vα

)
(4.11.2)

By inserting the given expressions for J and J2, in the general formulae we obtain
for the coefficients of S2(κ)

c2,2 = −σ
2
I

(
σ

2
R +σ

2
I

)

c2,1 = 2σ
2
I σR (βRσR +βI σI )

1
βR

c2,0 = −σ
2
I σ

2
R

(
β

2
R +β

2
I

) 1
β 2

R

(4.11.3)

while for S1(κ)

c1,4 = σ
2
R

(
σ

2
R +σ

2
I

)

c1,3 = −2σ
2
R

(
2βRσ

2
R +βI σI σR +βRσ

2
I

) 1
βR

c1,2 = σ
2
R

(
5βRσ

2
R +4βI σI σR +βRσ

2
I

) 1
βR

c1,1 = −2σ
3
R (βRσR +βI σI )

1
βR

c1,0 = 0 (4.11.4)

As previously done in the case of the Volterra model, the explicit knowledge of the
polynomial S1 and S2 allows to compute the (in)stability region as shown in Figure 4.6
(main text) or Figure 4.9 in a setting where the instability condition can be realized for
both a reciprocal and non-reciprocal coupling. The instability region (gray) is shown in
the complex plane (RΛ,I Λ) together with the spectrum of a reciprocal web of long-
range interactions (black dots) as well with a non-reciprocal one (white dots): Because
in both cases there are eigenvalues belonging to the instability region, the instability
is possible and thus a spatio-temporal pattern emerges (see panel b) in the case of re-
ciprocal interactions and panel c) for non-reciprocal ones). The numerical simulations
have been perfumed using a 4-th order Runge-Kutta method starting from initial con-
ditions δ -close to the homogeneous limit cycle solution wLC(t) =

√
σR/βReiωt . In

both cases, the maximum of the dispersion relation λα is of order of the unity and thus
a relatively small integration span is sufficient to reveal the wavy solution. The under-
lying coupling is a directed Erdős-Rényi network with n = 40 nodes and a probability
for a directed link to exist between two nodes is p = 0.08. In Figure 4.10, we report
the bifurcation diagram in the plane σI and βI , for σR = βR = 1. Two regions can
be observed: in region A (black), the instability can be initiated by both a reciprocal
and non-reciprocal web of long-range interactions, while, in region B (white), only
non-reciprocal interactions can determine an instability and the ensuing wavy solution.
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Figure 4.9: Instability region and patterns for the Stuart-Landau model. In panel a) we report the region of
the complex plane (RΛ,I Λ) for which the instability condition is satisfied (gray), for the parameters values
σR = 1, σI = 4.3, βR = 1 and βI = −2. We can observe that the instability region intersects the real
axis and thus any kind of coupling, being reciprocal (black dots) or non-reciprocal(white dots), can exhibit
eigenvalues entering the instability region and thus allowing for an instability to set on, followed by a spatio-
temporal patterns as shown in panel b), where we report the real part of the complex state variable wi in the
case of a reciprocal coupling, and panel c), for a non-reciprocal one.

Figure 4.10: Bifurcation diagram for the Stuart-Landau model. For the set of parameters values σR = 1.0 and
βR = 1.0, we report the range of the remaining parameters σI and βI for which the instability can emerge.
In the A region (black), the homogeneous equilibrium is stable and it can be destabilized by a reciprocal
coupling as well as a non-reciprocal one. On the other hand, in the B region (white), the homogeneous
equilibrium is always stable and no pattern can develop using a symmetric coupling. On the contrary, one
can found non-reciprocal couplings capable to destabilize the homogeneous equilibrium and thus the system
to develop a wavy heterogeneous solution. The patterns shown in the panel b) of Figure 4.6 (main text)
correspond to the values σI = 4 and βI = 1 and clearly belong to the B region (blue star). The patterns
presented in Figure 4.9 for parameters values σI = 4 and βI =−2 correspond to the region A (yellow dot).

4.12 SM 8: Instability onset in the general d-dimensional
case

Let us consider n copies of a generic d-dimensional system coupled through non-
reciprocal interactions as in Equation (4.2.4), hereby recalled

˙⃗xi = F⃗ (⃗xi)+
n

∑
j=1

Li jF⃗ (⃗xi, x⃗ j) ∀i = 1, . . . ,n

Assume that there exists a homogeneous solution x⃗i = x⃗x for the decoupled system, that
clearly results a solution also for the coupled one. To study its stability in the coupled
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case, let us linearize the system about this reference solution to obtain Equation (4.2.5),
which can be further analyzed by projecting it onto the Laplacian’s eigenbasis to even-
tually get Equation (4.2.7).

The stability of the reference solution can be determined by studying the sign of the
real part of the roots of the characteristic polynomial (4.3.14)

pd(λ ) := (−1)d
[
a0λ

d +a1λ
d−1 +a2λ

d−2 + · · ·+ad

]

A straightforward computation, ultimately based on the expansion of the determinant
defining the characteristic polynomial, allows to determine

a1 = −tr
(

J1 +RΛ
(α)J2

)
− iI Λ

(α)trJ2 (4.12.1)

a2 =
d

∑
ℓ=1

d

∑
j=ℓ+1

{
(J1 +RΛ

(α)J2)ℓℓ(J1 +RΛ
(α)J2) j j +

− (J1 +RΛ
(α)J2)ℓ j(J1 +RΛ

(α)J2) jℓ+

+ (I Λ
(α))2 [(J2) jℓ(J2)ℓ j − (J2)ℓℓ(J2) j j

]}
+

+ iI Λ
(α)

d

∑
ℓ=1

d

∑
j=ℓ+1

{
(J1 +RΛ

(α)J2)ℓℓ(J2) j j +(J1 +RΛ
(α)J2) j j(J2)ℓℓ+

− (J1 +RΛ
(α)J2)ℓ j(J2) jℓ− (J1 +RΛ

(α)J2) jℓ(J2)ℓ j

}

Assuming to deal with reciprocal interactions, we can show (see SM 4.5) that the spec-
trum is real even if the Laplace matrix is not symmetric. The previous equations sim-
plify by imposing I Λ(α) = 0, and in particular a1 and a2 are real numbers, that are
assumed to be positive because of the assumption of stable equilibrium under symmet-
ric interactions.

Let us now discuss the role of the auxiliary polynomial q(λ ). Let P(z) by a generic
polynomial with complex coefficients. Let us assume z1 to be a simple complex root
and, to simplify, let us also assume to be able to factorize P(z) = (z− z1)P1(z), where
P1(z) has real coefficients. Let us define Q(z) = (z− z1)P(z), then

Q(z) = (z− z1)P(z) = (z− z1)(z− z1)P1(z) = (z2 −2zRz1 + |z1|2)P1(z)

from which it follows that Q(z) has real coefficients and its roots have the same real part
of the roots of P(z) (computed twice in the case of z1). The general strategy would be to
factorize all the complex roots of P(z) and build an auxiliary polynomial Q(z) according
to this recipe. In general, we do not know all such roots and thus we can simply assume
to apply this process to all roots, even to the real ones, i.e., to the whole polynomial,
thus defining Q(z) = P(z)P(z). The resulting polynomial will have a degree equal to
the double of the degree of P(z), all its coefficients will be real by construction and its
roots will have the same real part of the roots of P(z).

By applying such recipe to pd(λ ) = λ d + a1λ d−1 + a2λ d−2 + · · ·+ ad , we obtain
the polynomial q(λ ) = λ 2d + b1λ 2d−1 + b2λ 2d−2 + · · ·+ b2d defined in the main text.
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A direct computation, consisting in equating coefficients of equal powers of λ in q(z)
and pd(z)pd(z), allows to determine

b1 = a1 +a1 = 2Ra1

b2 = a2 +a2 +a1a1 = 2Ra2 + |a1|2

By using the previously obtained expression (4.12.1) for a1, we attain

b1 =−2tr
(

J1 +RΛ
(α)J2

)

and we can observe that it coincides (module a factor 2) with a1 obtained once we im-
pose I Λ(α) = 0; hence b1 results to be always positive, as a1 does. The non-reciprocal
interactions cannot thus change the sign of b1. On the other hand, by using the ex-
pression for a2 given in (4.12.2), we can obtain the conditions presented in the main
text (4.3.15) and (4.3.16) ensuring b2 < 0. Indeed, recalling (4.12.2) we can write

b2 = 2Ra2 + |a1|2 =
(
2Ra2 + |a1|2

)
I Λ(α)=0 +

+2(I Λ
(α))2

d

∑
ℓ=1

d

∑
j=ℓ+1

{[
(J2) jℓ(J2)ℓ j − (J2)ℓℓ(J2) j j

]}
+(I Λ

(α))2 (trJ2)
2

By observing that
(
2Ra2 + |a1|2

)
I Λ(α)=0 > 0, because of the assumption of stabil-

ity of the system using symmetric interactions, we can conclude that b2 can be negative
if (I Λ(α))2 is large enough and

2
d

∑
ℓ=1

d

∑
j=ℓ+1

{[
(J2) jℓ(J2)ℓ j − (J2)ℓℓ(J2) j j

]}
+(trJ2)

2 < 0

After some algebraic manipulations, we can rewrite the term involving the double sum
as

d

∑
ℓ=1

d

∑
j=ℓ+1

{[
(J2) jℓ(J2)ℓ j − (J2)ℓℓ(J2) j j

]} trJ2
2 − (trJ2)

2

2
,

from which the condition (4.3.15) follows. This is a sufficient conditions for the desta-
bilization of the equilibrium solution; if the latter does not hold true, one could in
principle look for other conditions capable to change the sign of one of the remaining
coefficients, b j, of the polynomial q(λ ).

4.13 On the different Laplacian operators and their use
This section was not part of the original paper, but was added to further discuss the use
of the Laplacian operator.

In the above Chapter, we have discussed a framework where non-reciprocal non-
local interactions cause the formation of patterns through a mechanism closely related
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to the Turing one, even if no diffusion takes place. Already during the work, which
eventually lead to the paper, we have struggled to frame the kind of interactions be-
tween the nodes. For us, coming from the Turing framework, it is clear from Equation
(4.2.2) that the interactions are long-range, because the reaction parts involve terms not
limited to single node variables, and non-diffusive, because the coupling is not realized
with a combinatorial Laplace matrix, as described in Figure 4.1. However, as already
discussed in the introduction, in the literature long-range interactions are those occur-
ring between nodes that are not adjacent, hence such adjective may have confused the
reader. On the other hand, non-local couplings are widely used in the study of chimera
patterns and they describe lattices where each node is coupled not only to its direct
neighbors, but also to neighbors at distance greater than 1. Hence, to describe our set-
ting, we opted for a compromise between the two terminologies and chose the term
non-local long-range interactions.
The Laplacian we obtained to describe the interaction process, Equation (4.2.3), is
called consensus or reactive Laplacian and it is a kind of normalized Laplacian, like
the random walk Laplacian [179]. Let us however stress that the consensus Laplacian
performs an average of the connected nodes while the random walk Laplacian does
not. For scholars studying reaction-diffusion processes on networks, "true" diffusion
is always modeled by the combinatorial Laplacian because, for a regular lattice, it is
the equivalent of the Laplace operator on continuous support. Since the latter repre-
sents a diffusive phenomenon once we assume Fick’s law, it is straightforward to use
the former Laplacian to model diffusion on any network topology (see also Chapter
3, where we derive the diffusive process on a general network by using the incidence
matrix). Let us observe that sometimes normalized Laplacians, and in particular the
random walk one, are used to model diffusion. However, this is correct only in the case
of regular networks, otherwise the total mass is not conserved and the process is not
"true" diffusion.
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Part II

Higher-order interactions
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Chapter 5
From pairwise to many-body and
higher-order interactions

Networks are a powerful tool in the modeling of complex systems. Then, why would we
need to go beyond them? Their simple and effective formalism hides a big limitation:
they capture only pairwise interactions among the elementary units. For instance, let us
assume to have three oscillators coupled through a complete network, i.e., each oscilla-
tor is connected to the other two. However, a 3-body interaction may be of a different
nature than a 2-body (pairwise) one. Indeed, there is increasing evidence that many
natural and social systems exhibit higher-order (or high-order) interactions, rather than
pairwise ones. For example, co-authorship networks are intrinsically higher-order, as
they are made of group interactions, i.e., co-authoring a scientific publication, involv-
ing, in general, more than two authors [180]. In competitive ecological networks, it was
found that the effect of one competitor on another one may be affected by the presence
of a third species [181]. Further examples come from neuroscience, where it was ob-
served that pairwise models are not enough in describing neuronal dynamics [182, 183].
Moreover, many-body interactions allow to explain several other phenomena, such as
epileptic seizures in the brain [184], bi-stable visual perception [185], and critical mass
phenomena in the emergence of social conventions [186]. Some of the examples men-
tioned above are not recent. Indeed, as it is common in research, it took a critical
amount of piling up evidence, before the network community turned to this exciting
framework. The mathematical tools were already there, namely hypergraphs [187] and
simplicial complexes [188], and have been the backbone of the successive research, as
much as graph theory had been for network science. Such structures have been used to
review several dynamical processes, such as random walks [189, 190, 191], consensus
[192, 193], epidemics [194] and social contagion [195, 196] and scholars have found
that many-body interactions may dramatically affect the global behavior of the system,
such as explosive (abrupt) transitions from one state to another [197], e.g., from syn-
chronization to decoherence and vice versa [198].
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Other popular emergent properties, such as pattern formation and synchronization,
have been studied and revisited in light of higher-order interactions. Pattern formation
has, however, attracted less attention and the work in this second part of the thesis is an
attempt to fill the gap. For what concerns synchronization of chaotic and periodic oscil-
lators on higher-order systems, a vast literature has developed from the end of the 2010s
up to now, in particular for the Kuramoto model [43]. For example, it was shown that the
latter exhibits abrupt desynchronization and multi-stability when 3-body interactions
replace [199], or are added to [200], pairwise interactions in all-to-all configurations,
i.e., when every oscillator is coupled to all the others. Moreover, still in the framework
of the Kuramoto model, a general theory for any higher-order complex topology has
been developed [201]. In the above works, the dynamics lie in the nodes, whilst the
structure mediates the interactions (pairwise and higher-order) among them. However,
the tools of algebraic topology allow to extend the framework and consider dynamics
not only on the nodes, but also on the links and higher-order hyperedges. We, then, talk
about topological signals, and it was observed that such higher-order dynamics yield
explosive transitions to synchronization [202, 203], in analogy with many-body inter-
actions. The framework of the Kuramoto model is, nonetheless, intrinsically different
from ours. In fact, the former model does not require a homogeneous state, while that
is a necessary condition for the development of our theory. As discussed in Chapter 1,
complete synchronization of chaotic oscillators provides a formalism which, considered
some caveats, fits also the Turing framework, and effects of many-body interactions on
the stability of the synchronous solutions have been studied, for instance, in [204, 45].
The latter is the backbone of the work discussed in Chapter 6, while the theory of topo-
logical signals will be put to use for the paper of Chapter 7. The scope of this Chapter
is to introduce aforementioned works, which are among the firsts of their kind, as Tur-
ing patterns have been studied on higher-order structures only in another previous work
[205]. The basic mathematical tools of higher-order structures will be examined in the
next section. Then, in Section 5.2, we will introduce a formalism to study the stability
of the synchronous solution for systems with many-body interactions, while, in Section
5.3, topological signals on higher-order structures will be discussed.

5.1 Higher-order structures: simplicial complexes and
hypergraphs

Pairwise interactions are encoded through the well-known adjacency matrix A [79]. For
non-weighted networks(1), we have that, if there is a link between two nodes i and j,
the entry Ai j = 1. When dealing with many-body interactions, we resort to adjacency
tensors. A (d+1)-body interaction will be represented through the d-th order adjacency
tensor A(d): the entry A(d)

i j1... jd
= 1 if there is a (d +1)-body interaction between nodes

i, j1, ..., jd . We say that the considered higher-order structure has a hyperedge between
nodes i, j1, ..., jd . Such hyperedges, and thus the adjacency tensors, are symmetric. In

(1)The theory is, of course, more general and so it is for weighted higher-order structures [206]. Nonethe-
less, in the following, we will only address non-weighted hypergraphs and simplicial complexes, hence all
the definitions will be for non-weighted structures.
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light of this new definition, we can observe that the adjacency matrix is a 1-st order
adjacency tensor, since it encodes the 2-body interactions, and can be referred as A(1).
We can also generalize the concept of degree, by defining the d-degree k(d)i as

k(d)i =
1
d!

N

∑
j1,.., jd=1

A(d)
i j1... jd

,

representing the number of hyperedges of order d of which node i is part of. In a sim-
plicial complex, if a d-body interaction is present, then all other sub-interactions need
to be present as well [207]. For example, if there exists a hyperedge between nodes i,
j, k and l, i.e., the 4-body interaction {i, j,k, l}, then there exist also the hyperedges
{i, j,k}, {i, j, l}, {i,k, l} and { j,k, l} (4 3-body interactions), {i, j}, {i,k}, {i, l}, { j,k},
{ j, l} and {k, l} (6 2-body interactions). The definition of hypergraph is less restrictive
and the presence of a d-body interaction does not reveal anything about the presence
of other hyperedges. Their laxer definition makes them more appealing to model large
real-world systems, where it is less likely to have all the sub-interactions active [208].
In order to highlight the distinction between the two higher-order structures, in Figure
5.1, we depict an example of hypergraph and simplicial complex with the same number
of nodes and higher-order interactions. Such structural difference may affect the dy-
namics: for example, it has been recently suggested that synchronization is enhanced
in the Kuramoto model on hypergraphs, respect to the same model on simplicial com-
plexes [209].

Figure 5.1: On the left, a hypergraph of 6 nodes, 4 links and 3 2-hyperedges; on the right a simplicial complex
of 6 nodes, 9 links and 3 2-hyperedges (triangles). We can observe that, for every triangle, all the pairwise
interactions are active in the simplicial complex, whilst the hypergraph does not have such closure relation.

In the literature, scholars tend to refer to higher-order interactions as hyperedges,
when the support is a hypergraph, and simplices, when it is a simplicial complex. More-
over, a d-body interaction is called d-hyperedge or (d−1)-simplex, because in the the-
ory of simplicial complex the nodes are 0-simplices, links (2-body) are 1-simplices,
and so on. We find the latter nomenclature more rigorous, as it comes from algebraic
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topology. Nonetheless, not all hyperedges are simplices, whilst the vice versa is true.
For the following, we have chosen to use the more general, but rigorous, definition of
(d −1)-hyperedge for a general d-body interaction.

In the first part of this work we have dealt with non-reciprocal pairwise interactions,
which are modeled by asymmetric networks. One may wonder whether an analogous
formalism is available also for higher-order structures. Indeed, computer scientists have
been using directed hypergraphs to model the flow of information for over thirty years
[210]. In order to study dynamics on top of them, a tensor formalism for a particular
sub-class of directed hypergraph has been introduced in [211] (see also Summary of
other coauthored papers, at the end of this thesis). The latter does not describe all pos-
sible forms of directed interactions, but allow to perform a semi-analytical study of the
Master Stability Function. Another novel and interesting framework is that of triadic
interactions [212], which will not be discussed further. The above description, both
symmetric and non-reciprocal, falls within the paradigm of many-body interactions. In
fact, the dynamical units are (in) the nodes and the hyperedges mediate the interac-
tions among them. Simplicial complexes can thus be thought as a particular case of
hypergraphs. However, the rigorous definition of simplicial complex and the tools of
algebraic topology allow for a further extension of the framework, yielding what can
be considered as proper higher-order interaction, as we will show at the end of this
Chapter.

5.2 A formalism to study the stability of the homoge-
neous solution

In Chapter 1, we have discussed the stability of an ensemble of n identical units x⃗i,
perturbed in their homogeneous (synchronous) state. For every unit, the dynamics are
described by the following equation

˙⃗xi = f⃗ (⃗xi)+σ

n

∑
j=1

Ai j⃗g(⃗x j, x⃗i) (5.2.1)

where Ai j, i.e., the adjacency matrix, determines the pairwise connections between the
units. In this section we will perform an analogous analysis, extending the framework
by considering systems with many-body interactions, following the formalism devel-
oped by Gambuzza et al. [45] for simplicial complexes. As we have discussed in the
previous section, a simplicial complex may be thought as a hypergraph with a closure
relation, as long as we consider the many-body framework. The aforementioned for-
malism was developed without considering such closure relation and it is more general
than originally thought. In fact, it is suitable for any hypergraph. Let us start with
the dynamical equations for an ensemble of n identical units x⃗i subject to many-body
interactions up to an arbitrary order P (P ≤ n)
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˙⃗xi = f⃗ (⃗xi)+σ1
n
∑

j1=1
A(1)

i j1
g⃗(1)(⃗xi, x⃗ j1)+σ2

n
∑

j1, j2=1
A(2)

i j1 j2
g⃗(2)(⃗xi, x⃗ j1 , x⃗ j2)+

+ · · ·+σP
n
∑

j1, j2,..., jP=1
A(P)

i j1 j2... jP
g⃗(P)(⃗xi, x⃗ j1 , x⃗ j2 , . . . , x⃗ jP)

(5.2.2)

where f⃗ : Rm → Rm describes the local (isolated) dynamics of each unit x⃗i, σd are the
coupling strengths for every order, g⃗(d) : Rm×(d+1) → Rm the coupling functions and
A(d) the adjacency tensors, with d ∈ {1, . . . ,P}. Note that A(1)

i j1
, σ1 and g⃗(1) of the above

equation are exactly Ai j, σ and g⃗ of Equation (5.2.1). To guarantee the existence of
the synchronous solution x⃗1 = · · ·= x⃗n ≡ x⃗∗ [44], we need the coupling functions to be
non-invasive, i.e., g⃗(d)(⃗x, . . . , x⃗) = 0 at each order d. Let us remark that such hypothe-
sis is necessary to proceed with a semi-analytical study of the global synchronization
properties of an ensemble of identical oscillators. In other frameworks, for instance
when dealing with the Kuramoto model, the above assumption is not needed, because
in this case the oscillators have often different proper frequencies and the goal is not to
determine a global (full) synchronization. Without loss of generality, let us assume the
latter to be also diffusive-like, namely

g⃗(d)(⃗xi, x⃗ j1 , x⃗ j2 , . . . , x⃗ jd ) = h⃗(d)(⃗x j1 , . . . , x⃗ jd )− h⃗(d)(⃗xi, . . . , x⃗i)

with
h⃗(d) : Rm×d → Rm

Let us remark that , as long as the coupling is non-invasive, the following analysis
could be more general and does not require diffusive-like coupling functions. However,
through the "glasses" of Turing theory of pattern formation, the coupling is always
diffusive-like. Hence, the choice. Additionally, we require the coupling functions to be
nonlinear, in order to deal with a proper many-body dynamics. In fact, if those would
be linear, the d-body interaction could be reduced to a 2-body one, only by rescaling the
adjacency matrix, which would become weighted [192]. Then, Equation (5.2.2) turns
into

˙⃗xi = f⃗ (⃗xi)+σ1

n

∑
j1=1

A(1)
i j1
(⃗h(1)(⃗x j1)− h⃗(1)(⃗xi))+

+σ2

n

∑
j1, j2=1

A(2)
i j1 j2

(⃗h(2)(⃗x j1 , x⃗ j2)− h⃗(2)(⃗xi, x⃗i))+ · · ·+ (5.2.3)

+σP

n

∑
j1, j2,..., jP=1

A(P)
i j1 j2... jP

(⃗h(P)(⃗x j1 , . . . , x⃗ jP)− h⃗(P)(⃗xi, . . . , x⃗i))

We know that a synchronous solution exists; let us now study its stability against
small perturbations. Hence, let us perturb the solution x⃗∗ with a heterogeneous pertur-
bation, i.e., x⃗i = x⃗∗+ δ x⃗i, ∀ i ∈ {1, . . . ,n}. If we insert the latter into Equation (5.2.3)
and expand up to the first order, we obtain the following expression

δ ˙⃗xi =
∂ f⃗ (⃗xi)

∂ x⃗i

∣∣∣⃗
x∗

δ x⃗i +σ1

n

∑
j1=1

τi j1∂1⃗h(1)(⃗x j1)
∣∣∣⃗
x∗

δ x⃗ j1 +
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+σ2

n

∑
j1, j2=1

τi j1 j2

(
∂1⃗h(2)(⃗x j1 , x⃗ j2)

∣∣∣
(⃗x∗ ,⃗x∗)

δ x⃗ j1 +∂2⃗h(2)(⃗x j1 , x⃗ j2)
∣∣∣
(⃗x∗ ,⃗x∗)

δ x⃗ j2

)
+

+ · · ·+σP

n

∑
j1, j2,..., jP=1

τi j1 j2... jP

(
∂1⃗h(P)(⃗x j1 , . . . , x⃗ jP)

∣∣∣
(⃗x∗,...,⃗x∗)

δ x⃗ j1 + · · ·+

+∂P⃗h(P)(⃗x j1 , . . . , x⃗ jP)
∣∣∣
(⃗x∗,...,⃗x∗)

δ x⃗ jP

)

where ∂i indicates(2) the derivative with respect to the i-th variable of functions h(d) and
the tensors τ are given by

τi j1 = A(1)
i j1

− k(1)i δi j1 , . . . . . . , τi j1 j2... jP = A(P)
i j1 j2... jP

−P!k(P)i δi j1 j2... jP

k(d)i is the d-degree, defined in the previous section, and δi j1... jd is the generalized Kro-
necker delta. By defining

k(d)i, j =
1

(d −1)!

N

∑
k1,...,kd−1

A(d)
i jk1...kd−1

,

which represents the number of hyperedges of order d to which link {i, j} is part and
by observing that tensors τi j1 j2... jd are symmetric, we obtain

δ ˙⃗xi =
∂ f⃗ (⃗xi)

∂ x⃗i

∣∣∣⃗
x∗

δ x⃗i +σ1

n

∑
j1=1

L(1)
i j1

∂1⃗h(1)(⃗x j1)
∣∣∣⃗
x∗

δ x⃗ j1 + · · ·+

+σP

( n

∑
j1

L(P)
i j1

∂1⃗h(P)(⃗x j1 , . . . , x⃗ jP)
∣∣∣
(⃗x∗,...,⃗x∗)

δ x⃗ j1 + · · ·+

+
n

∑
jP

L(P)
i jP ∂P⃗h(P)(⃗x j1 , . . . , x⃗ jP)

∣∣∣
(⃗x∗,...,⃗x∗)

δ x⃗ jP

)

where we have defined the generalized Laplacian matrix(3) for the interactions of order
d as

L(d)
i j =

{
−d!k(d)i i = j

(d −1)!k(d)i, j i ̸= j
. (5.2.4)

Let us observe that, for each order d, the following relation stands

n

∑
j1

L(d)
i j1

∂1⃗h(d)(⃗x j1 , . . . , x⃗ jd )
∣∣∣
(⃗x∗,...,⃗x∗)

δ x⃗ j1 + · · ·+
n

∑
jd

L(d)
i jd

∂d⃗h(d)(⃗x j1 , . . . , x⃗ jd )
∣∣∣
(⃗x∗,...,⃗x∗)

δ x⃗ jd =

(2)Formally, it would be more correct to write ∂ h⃗(1) (⃗x ji )/∂ x⃗ ji as done in [45, 211], however the latter form
risks to be ambiguous with respect to the nodes’ index.

(3)As discussed in Chapter 1, Laplacian matrices are usually defined as to be positive semi-definite in the
framework of synchronization dynamics, while we prefer the negative semi-definite version in the case of
Turing pattern formation. For this reason, the Laplacians used in this Chapter are all negative semi-definite,
while in the original work, where this formalism was introduced, they are positive semi-definite [45].
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=
n

∑
j

L(d)
i j

(
∂1⃗h(d)(⃗x j1 , . . . , x⃗ jd )

∣∣∣
(⃗x∗,...,⃗x∗)

δ x⃗ j1 + · · ·+∂d⃗h(d)(⃗x j1 , . . . , x⃗ jd )
∣∣∣
(⃗x∗,...,⃗x∗)

δ x⃗ jd

)

If, moreover, we define the matrix

J(d)h = ∂1⃗h(d)(⃗x j1 , . . . , x⃗ jd )
∣∣∣
(⃗x∗,...,⃗x∗)

+ · · ·+∂d⃗h(d)(⃗x j1 , . . . , x⃗ jd )
∣∣∣
(⃗x∗,...,⃗x∗)

and the nm-dimensional perturbation vector ζ⃗ = [δ x⃗⊤1 , . . . ,δ x⃗⊤n ]
⊤, Equation (5.2.3) can

be rewritten in a compact form

˙⃗
ζ =

[
In ⊗J f +σ1L(1)⊗J(1)h +σ2L(2)⊗J(2)h + · · ·+σPL(P)⊗J(P)h

]
ζ⃗ (5.2.5)

The above equation describes the perturbation about the synchronous solution x⃗∗,
but, in order to study its stability, we need to decompose the potential instability modes,
i.e., we must diagonalize the system. We know that the generalized Laplacians are
symmetric and zero-row-sum matrices, diagonalizable and with a real negative semi-
definite spectrum, to which corresponds an orthonormal basis. However, this does not
mean that all the generalized Laplacians are diagonalizable on the same basis and, in
general, it is not true. In order to decompose the modes, the authors of [45] considered
the hypothesis of natural coupling, namely ∀⃗x ∈ Rm

h⃗(P)(⃗x, . . . , x⃗) = · · ·= h⃗(2)(⃗x, x⃗) = h⃗(1)(⃗x)

This assumption means that all coupling functions have the same effect, when the whole
system lies in a homogeneous state. The latter leads to

J(P)h = · · ·= J(2)h = J(1)h

Hence, Equation (5.2.5) becomes

˙⃗
ζ =

[
In ⊗J f +(σ1L(1)+ · · ·+σPL(P))⊗J(P)h

]
ζ⃗

If we define the matrix
M = σ1L(1)+ ...+σDL(D)

we can write the following Master Stability Equation describing the dynamics of the
perturbation

˙⃗
ζ =

[
In ⊗J f +M⊗Jh

]
ζ⃗ (5.2.6)

which is analogous to Equation (1.2.2). Let v⃗1, . . . , v⃗n be the orthonormal basis of the
matrix M. By defining the new variable ξ⃗ = (V ⊗ Im)⃗ζ , where V = [⃗v1, . . . , v⃗n], we can
decouple the modes and rewrite, for α = 1, . . . ,n, Equation (5.2.6) as

˙⃗
ξα = [J f +Λ

(α)Jh ]⃗ξα (5.2.7)

where Λ(1), . . . ,Λ(n) are the eigenvalues of the matrix M. As for the pairwise case, the
equation for the largest eigenvalue, Λ(1) = 0, corresponds to the isolated system. In the
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synchronization literature, it is said that the latter describes the linearized motion along
the synchronous solution, while all the other equations describe the motion transverse
to it. In both frameworks, Turing pattern formation and synchronization, only the trans-
verse perturbation can drive the system unstable.

As we will show in the next Chapter, the formalism and techniques discussed above
are ductile and powerful and the reformulation of reaction-diffusion equations is more
general than a previous study of pattern formation in higher-order systems [205]. Nonethe-
less, the fact of projecting the interactions of all orders onto a matrix (M), which gives
us the stability properties of the global system, may lead to the loss of certain local
synchronization patterns, such as cluster synchronization [213].

5.3 From many-body to higher-order and topological
signals

When the dynamics lie on the nodes of the higher-order structure, in the literature we
talk about higher-order interactions. However, the hyperedges mediate concurrent in-
teractions between the units, which remain interactions among 0-simplices (i.e., nodes);
for this reason it would be more correct, in our opinion, to call them many-body inter-
actions. In fact, they cannot model interactions between higher dimensions (simplices),
nor one could move between different orders. Through the tools of algebraic topol-
ogy, and in particular the boundary operators, we can attain such objective: in fact,
this framework allows to study signals on each simplex, and to project them in the
lower and upper dimensions. Such signals could, hence, interact with signals of dif-
ferent dimensions. Already by considering 0- and 1-simplices (i.e., nodes and links),
this formalism appears extremely versatile and, besides bringing new and exciting per-
spectives, it could be use to revisit some already developed frameworks. For instance,
the currents vector χ⃗ seen in Chapter 3, modeling the currents entering and exiting the
nodes, could be rethought as a topological signal on the links. Or, as another example,
some aspects of the theory of temporal networks [214] could be extended by consider-
ing this new framework(4). Interactions regarding topological signals are what, in our
opinion, should be considered as proper higher-order interactions. This last statement
stands in spite of our own works, in which we have dealt with many-body interactions,
but called them higher-order [211, 215]. The first reason for this was that such distinc-
tion has been made clear by Bianconi only recently [207] and most of the community
is not yet familiar with it. The other reason is that such distinction was not completely
clear to us selves and it became clearer while we were working in both frameworks,
i.e., many-body interactions (Chapter 6) and topological signals (Chapter 7). Let us
consider a symmetric network of n nodes and m links. In Chapter 3, we defined the
Laplacian matrix as L =−BB⊤, where B ∈ Rn×m is the incidence matrix, obtained by
choosing an orientation for the links. The first important remark is that such orienta-

(4)One significant difference between the framework of temporal networks and that of topological signal is
that in the latter links are always present, despite the signal being zero, while in the former links can disappear.
Nonetheless, one could consider, for example, the network of all possible interactions among the nodes and
the topological signals on the links as the dynamical variable.
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5.3 From many-body to higher-order and topological signals

tion does not mean that the network becomes directed. The network is and remains
symmetric, whilst defining an orientation on the links is equivalent to choosing a basis
in a vector space. Indeed, different orientations yield different incidence matrices and
the choice of the matrix B, i.e., the base of the system of coordinates, sets the spatial
coordinates. The Laplacian matrix L is, instead, orientation-independent, and it reflects
the structure of the space.
It turns out that the matrix B is known in algebraic topology as the boundary operator
B1. Leaving a detailed discussion for Chapter 7, let us say that B1 maps elements from
the space of the 1-simplices (links) to the space of the 0-simplices (nodes). Its trans-
posed, B⊤

1 , is known as co-boundary operator and performs the opposite action, i.e.,
from 0- to 1-simplices. Using this formalism, we can consider a signal on the nodes,
u⃗ ∈ Rn, and, by means of the co-boundary operator, project it in the space of the links,
namely B⊤

1 u⃗ ∈ Rm. Vice versa, we can project a signal on the links, v⃗ ∈ Rm, onto the
space of the nodes, namely B1⃗v ∈ Rn. The boundary and co-boundary operators can be
seen as analogous to the divergence and gradient in vector calculus: the former lowers
the rank of a tensor, while the latter increases it(5). The network Laplacian obtained
from the boundary and co-boundary operators is known as Hodge Laplacian L0 and
describes the propagation of the signal on the nodes through the links [216]. Indeed,
L0 is exactly the symmetric network Laplacian we have used in Chapter 1 to develop
Turing theory on networks. However, this bridge between network theory and algebraic
topology allows us to go further, as Hodge Laplacians do not stop at the first order. In
fact, with an analogous reasoning, we can model the propagation of the signal on the
links through the nodes, yielding L1 = −B⊤

1 B1. The above discussion can be general-
ized for simplices of any dimensions d. The general formula of the Hodge Laplacians
is the following

Ld = Ldown
d +Lup

d (5.3.1)

where Ldown
d =−B⊤

d Bd is the diffusion of the topological signals between d-simplices
through the lower order (d − 1)-simplices, and Lup

d = −Bd+1B⊤
d+1 is the diffusion of

the d-simplices’ signals through the higher order (d + 1)-simplices. Hodge Lapla-
cians at every order are negative semi-definite. Coming back of the simple higher-
order extension of a network (signals in the nodes and in the links), we obtain that
L0 = Lup

0 = −B1B⊤
1 , because 0-simplices are not the boundary of a lower order struc-

ture and the operator B0 does not exist, hence the signals on the nodes can only prop-
agate through the links. On the other hand, L1 = Ldown

1 = −B⊤
1 B1; in fact, given the

absence of 2-simplices, the signals on the links propagates only through the nodes.
The distinction between many-body and higher-order interactions can be further clar-
ified by comparing the expression of the Hodge Laplacians 5.3.1, with the definitions
of the generalized Laplacians 5.2.4 in the previous section. While the latter encode the
many-body interactions, it is only with Hodge Laplacian that we can properly move to
higher orders.

(5)To further stress the analogy with L, one may as well observe that the vector calculus Laplacian operator
∇2 is defined in vector calculus as the divergence of the gradient.
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5 - From pairwise to many-body and higher-order interactions

5.4 Discussion
Many-body interactions and topological signals are both usually called higher-order
interactions (or also higher-order), even though they are very different in what they
represent. They are considered close topics and are generally discussed together [208,
217, 218]. However, dynamical systems on higher-order structures is a rather young
topic, even for today’s standards, where aging happens quicker than ever; it is possible
that, in the near future, the two frameworks will drift apart and will develop their own
course. Before that, we believe that the community needs to stress the fundamental
differences between the two formalisms. To the best of our knowledge, such distinction
rarely emerges in the literature [207]. Most examples of higher-order systems are, in-
deed, many-body ones, for example, as co-authorship networks [180], epidemics [195]
and ecological [181] processes, while examples of topological signals can be found, for
instance, in brain dynamics [219] and power-grids [220]. More clarity in their distinc-
tion would certainly facilitate the development of the two theories, especially for what
concerns applications.

In Chapter 7, Turing theory is developed for topological signals on higher-order
structures. In the Supplementary Materials, section 7.6, the reader may find a com-
pendium of algebraic topology and Hodge theory, which we have only briefly intro-
duced in this Section. It is important to note that the Laplacians of Chapter 7 are
all positive semi-definite, being defined in the following way: Ldown

n = B⊤
n Bn and

Lup
n = Bn+1B⊤

n+1. Hence, the diffusive coupling in the reaction-diffusion equations
comes with a minus sign.
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Chapter 6
Turing patterns in systems with
higher-order interactions

In the Introduction, we have seen that one limitation of classical Turing theory is the
difference in magnitude between the diffusivities of the two species, which is difficult
to obtain (and observe) experimentally. The above fact motivates most of the research
done in the past years on the subject, i.e., to relax the conditions yielding Turing patterns
by adding realistic hypotheses to the original ideal setting, such as a finite propagation
(see Chapter 3), noise [221], etc. Can we take a step back and modify the starting
framework tout court without any other additional hypothesis? As a matter of fact yes,
and this is what we pursued in the work discussed in this Chapter, where we reformu-
lated the problem originally studied by Turing within the framework of higher-order
(many-body) interactions. Our starting point was the elegant formalism developed by
Gambuzza et al. in [45] for synchronization dynamics on simplicial complexes and its
comparison with a previous extension of Turing theory on hypergraphs [205]. First, we
realized that the former is more ductile and works very well also for hypergraphs (more,
even for directed hypergraphs [211]); then, we proved that it extends the latter, which
results to be a particular case of the former for a specific coupling. This last point is
proven in the appendix of the paper. By reformulating reaction-diffusion equations on
hypergraphs through this new formalism, we observed that higher-order terms could re-
verse the behavior that would be observed in the pairwise setting. In fact, one could be
dealing with diffusion coefficients which would allow (or not) the formation of Turing
patterns, but different diffusivities for higher-order terms may, instead, yield stability
(or instability). Our theoretical setting would turn out particularly useful in applica-
tions where the model parameters are fixed, but different interactions at higher-orders
can process the desired final state.

My contribution This work was conducted with another PhD student, Luca Gallo,
and it is part of his thesis. Together with Luca we worked on two papers in parallel,
one on synchronization [211] and this one on Turing patterns. We jointly developed
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6 - Turing theory with higher-order interactions

the mathematical formalism, built upon a previous work on synchronization [45]. My
additional contribution to this work was to develop the codes and perform the numerical
simulations.

R. Muolo, L. Gallo, V. Latora, M. Frasca & T. Carletti. Chaos, Solitons & Fractals,
166, 112912 (2023) [215]
This article is not open access, but it is freely available as a pre-print.

Abstract
Turing theory of pattern formation is among the most popular theoretical means to
account for the variety of spatio-temporal structures observed in nature and, for this
reason, finds applications in many different fields. While Turing patterns have been
thoroughly investigated on continuous support and on networks, only a few attempts
have been made toward their characterization in systems with higher-order interactions.
In this paper, we propose a way to include group interactions in reaction–diffusion
systems, and we study their effects on the formation of Turing patterns. To achieve
this goal, we rewrite the problem originally studied by Turing in a general form that
accounts for a microscopic description of interactions of any order in the form of a
hypergraph, and we prove that the interplay between the different orders of interaction
may either enhance or repress the emergence of Turing patterns. Our results shed light
on the mechanisms of pattern-formation in systems with many-body interactions and
pave the way for further extensions of Turing original framework.

6.1 Introduction
Many natural and engineered systems exhibit collective behaviors, manifesting them-
selves as spatio-temporal ordered motifs, whose emergence can be explained utterly
by considering the interactions within the system [1]. One of the most elegant and
popular theories for the emergence of self-organized patterns is due to the British
mathematician Alan Turing, who proposed, in the context of morphogenesis, a mech-
anism of pattern-formation rooted on a diffusion-driven instability, which now bears
his name [4]. In a nutshell, the Turing instability results from the combined action of
two processes, (local) reaction and (long-range) diffusion, involving an activator and
an inhibitor species [5, 108]. While each process considered separately would drive
the system to a spatially homogeneous state, there can be conditions on the models
and on the interactions such that any heterogeneous, arbitrarily small, perturbation of
the homogeneous state is amplified and eventually returns a macroscopic patchy (non-
homogeneous) solution, i.e., a Turing pattern. The diffusive terms being the destabi-
lizing factors, the above mechanism is also known in the literature as diffusion-driven
instability.

Despite its generality, the framework requires the involved species to diffuse with
quite different rates, a condition that is not often naturally realized without introducing

104

https://www.sciencedirect.com/science/article/pii/S0960077922010918
https://www.sciencedirect.com/science/article/pii/S0960077922010918
https://arxiv.org/pdf/2207.03985.pdf


6.1 Introduction

additional mechanisms, such as convection, electromagnetic fields, differential adher-
ence. Indeed experimental evidence of the existence of Turing patterns was obtained
almost half a century later in chemical reactions [6, 7] and in Cellular Neural Net-
works [222, 223]. Without adding unnecessary mechanisms and still looking for simple
models, scholars have proposed several variants to the original Turing scheme to facili-
tate the emergence of patterns. For example, noise [10] or an upper bound to the signal
propagation [16, 49] can be added to the picture.

In many relevant applications by their very definition, the local reactions involve
very close species, that can thus be considered spatially separated from other groups.
Starting from this observation, Turing’s idea has been extended to discrete systems:
species occupy spatially limited zones, i.e., nodes, and diffuse across links connecting
different zones. Initially, the theory has been developed as to include regular 1D and
2D lattices [25], and then extended on complex networks [31, 109].

The latter framework has proven particularly fruitful for Turing patterns, especially
for the introduction of asymmetric displacements [40], as in the case of directed net-
works [38] or non-normal ones [70], where it was shown that the Turing mechanism is
enhanced. In particular, such framework is very general and allows to study the Tur-
ing instability on discrete topologies which are not trivially embedded on continuous
domains, as it is the case for regular lattices. Nevertheless, certain dynamics escape
the network framework, as the interactions between the elementary units are not only
pairwise, but can involve several agents at the same time: we are thus in presence of
many-body interactions. Let us here stress that we do not (only) refer to processes
that introduce, possibly small, corrections to the first order model, i.e., the pairwise
coupling, but we overcome this setting and consider cases where higher-order interac-
tions are the main driver. Think of systems where the group interactions of humans
or other social animals determine the dynamics, for example the spreading of viruses
[195, 224]. Or consider processes where crowding is a key factor, as for the case of
random walks [225, 226] or chemical systems [227, 228]. Let us observe that nonlin-
ear terms introduced with the higher-order interaction can be associated to nonlinear
diffusion processes already studied in the literature. Our results differentiate however
from the latter because of the many-body assumption. One thus needs to resort to
more sophisticated mathematical structures, such as hypergraphs or simplicial com-
plexes, which are an extension of networks, beyond the framework of pairwise inter-
actions [208, 217]. Dynamical systems on higher-order topologies have been recently
studied [205, 45], but a general theory of Turing pattern formation on top of such struc-
tures is still lacking. Let us observe that a similar framework has been used to study
synchronization of higher-order coupled oscillators [201]. Reaction-diffusion systems
have been recently studied in the frameworks of topological signals [229], which dif-
fers from the problem we are studying, as in the former species lie in nodes and links,
while in the latter only in nodes. The aim of this paper is to take one step further by
proposing an extension of Turing instability on higher-order topologies. For this scope,
we will employ the formalism developed by Gambuzza et al. [45] in the context of
synchronization.

By performing a linear stability analysis involving a higher-order Laplace matrix
and the Jacobian matrices of the reaction and coupling parts, we will show that the joint
action of higher-order structures and nonlinear interactions is the key feature in driving
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the systems unstable. Then, considering suitable choices of couplings and higher-order
topologies, we will analytically determine the conditions for the instability to occur
by focusing on the role of the diffusion coefficients at every order. As we will show,
having different orders of diffusivity allows either to enhance or to reduce the formation
of Turing patterns with respect to the case of systems with only-pairwise interactions,
by tuning the parameters of the higher-order couplings.

The paper is organized as follows. In Section 6.2 we will set the theoretical ground,
by extending the reaction–diffusion equations originally studied by Turing to the case
of systems coupled through higher-order interactions. In Section 6.3, we will choose a
particular type of nonlinear coupling, namely the diffusive-like cubic one, and we will
analyze the emergence of patterns in the case of systems with only-pairwise interac-
tions. In Section 6.4, we will study the effects of higher-order interactions on Turing
instability. We will first restrict to the particular case of the so-called natural coupling,
which allows for a fully analytical treatment, showing how this is a generalization of
some previous attempts to tackle the problem. We will then relax the natural coupling
hypothesis, and examine an intermediate case with some specific structure, that we call
regular topologies, which also allow an analytical treatment. Lastly, we will consider
the case of the most general higher-order coupling topologies, where only a numerical
study is possible. Finally, in the last section, we will discuss further lines of investiga-
tion and possible applications.

6.2 Reaction–Diffusion systems on higher-order struc-
tures

Let us consider a dynamical system composed by N identical units subject to some
(local) nonlinear reaction dynamics. Assume moreover that many-body interactions,
i.e., interactions in groups of more than two units, are allowed.

Let the state of the i-th unit to be described by the vector x⃗i(t)∈Rm. Then, under the
mentioned assumptions, the evolution rate of the state vector of the i-th unit is governed
by the following equation:

˙⃗xi = f⃗ (⃗xi)+
P

∑
d=1

σd

N

∑
j1=1

· · ·
N

∑
jd=1

A(d)
i j1 j2... jd

g⃗(d)(⃗xi, x⃗ j1 , x⃗ j2 , . . . , x⃗ jd ) (6.2.1)

with i = 1, . . . ,N, where f⃗ : Rm →Rm describes the local nonlinear dynamics. Let P+1
denote the size of the largest group of interacting units; then, g⃗(d) : Rm×(d+1) → Rm,
d ∈ {1, . . . ,P}, are the nonlinear coupling functions ruling the (d + 1)-body interac-
tions, encoded into the adjacency tensors A(d), with A(d)

i j1... jd
= 1 if and only if the d +1

units {i, j1, . . . , jd} interact together, i.e., they are connected by a hyperedge with the
convention that repeated indexes yield a 0 entry. We denote by σd > 0 the coupling
strengths. Let us assume the nonlinear couplings to be diffusive-like, hence for every d
there exists a function h⃗(d) : Rm×d → Rm such that g⃗(d) can be written as:

g⃗(d)(⃗xi, x⃗ j1 , . . . , x⃗ jd ) = h⃗(d)(⃗x j1 , . . . , x⃗ jd )− h⃗(d)(⃗xi, . . . , x⃗i) (6.2.2)
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This definition of g⃗(d) guarantees that the coupling vanishes when all units have the
same state vector, namely g⃗(d)(⃗xi, x⃗i, . . . , x⃗i) = 0. This could be intuitively considered
as a generalization of Fickean diffusion on networks, which tends to homogenize local
differences, hence to vanish in the case of equal system states. In addition, we assume
the existence of x⃗∗ ∈ Rm such that f⃗ (⃗x∗) = 0, meaning that a solution of the N isolated
systems exists. By setting x⃗i = x⃗∗, for all i = 1, . . . ,N, and assuming Equation (6.2.2)
to hold true, then (⃗x1, . . . , x⃗N)

⊤ = (⃗x∗, . . . , x⃗∗)⊤ results to be a spatially independent
solution of Equation (6.2.1). This condition is a prerequisite for Turing instability that,
as mentioned above, is based on the existence of a homogeneous stable equilibrium
eventually destabilized by the diffusion. Notice that the diffusion terms are determined
by the topology of the connections as well as by the parameters entering in the diffusive
couplings, so that all these factors concurrently contribute to the mechanism of Turing
pattern formation in the general model, Equation (6.2.1).

The standard framework to study Turing instability consists of two species reaction–
diffusion systems, thus, even if the proposed framework is quite general, we preferred
in the following to limit our analysis to a 2-dimensional case. Let us thus set m = 2 and
denote the two components of the state vector x⃗i by (ui,vi). Then, by defining

f⃗ (⃗x) = ( f1(u,v), f2(u,v))

and

h⃗(d)(⃗x1, . . . , x⃗d) = (h(d)1 (u1, . . . ,ud ,v1, . . . ,vd),h
(d)
2 (u1, . . . ,ud ,v1, . . . ,vd)) ∀d = 1, . . . ,P

we can rewrite Equation (6.2.1) as





u̇i = f1(ui,vi)+
P

∑
d=1

σd

N

∑
j1=1

· · ·
N

∑
jd=1

A(d)
i, j1,..., jd

[
h(d)1 (u j1 , . . . ,u jd ,v j1 , . . . ,v jd )

−h(d)1 (ui, . . . ,ui,vi, . . . ,vi)

]

v̇i = f2(ui,vi)+
P

∑
d=1

σd

N

∑
j1=1

· · ·
N

∑
jd=1

A(d)
i, j1,..., jd

[
h(d)2 (u j1 , . . . ,u jd ,v j1 , . . . ,v jd )

−h(d)2 (ui, . . . ,ui,vi, . . . ,vi)

]

(6.2.3)
where we have taken into account condition (6.2.2). To focus on the role of higher-order
interactions, we can further simplify the model by assuming that the nonlinear diffusion
does not contain any cross-diffusion term, namely for all d ∈{1, . . . ,P} the function h(d)1

(resp. h(d)2 ) depends only on {u j1 , . . . ,u jd} (resp. {v j1 , . . . ,v jd}). A throughout analysis
of the general case goes beyond the scope of this work and it could be consider in a
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forthcoming study. Under this hypothesis, the examined system is for all i = 1, . . . ,N




u̇i = f1(ui,vi)+
P

∑
d=1

σd

N

∑
j1=1

· · ·
N

∑
jd=1

A(d)
i, j1,..., jd

[
h(d)1 (u j1 , . . . ,u jd )−h(d)1 (ui, . . . ,ui)

]

v̇i = f2(ui,vi)+
P

∑
d=1

σd

N

∑
j1=1

· · ·
N

∑
jd=1

A(d)
i, j1,..., jd

[
h(d)2 (v j1 , . . . ,v jd )−h(d)2 (vi, . . . ,vi)

]

(6.2.4)
In the next sections, we will study the conditions for the emergence of Turing pat-

terns in systems of the form (6.2.4) focusing, one-by-one, on the two novel aspects of
our model. First, we will deal with the study of Turing patterns in the standard case
when only two-body interactions are present (i.e., the model with P = 1), but the dif-
fusive coupling is nonlinear, in Section 6.3. Then, we will investigate the model in
presence of many-body nonlinear diffusive coupling in Section 6.4.

6.3 Turing theory with nonlinear diffusive-like coupling
Let us start with the analysis of the conditions on the fixed point for the isolated system,
that we here indicate as (u∗,v∗). This means to only consider local reaction and silence
the interactions among the different units. The fixed point satisfies the equations

f1(u∗,v∗) = f2(u∗,v∗) = 0

and should be stable, a condition that can be obtained by imposing

trJ0 < 0 and detJ0 > 0 (6.3.1)

where J0 =

(
∂u f1 ∂v f1
∂u f2 ∂v f2

)
is the Jacobian matrix of the reaction function, being ∂a fℓ =

∂ fℓ
∂a (u

∗,v∗), with ℓ ∈ {1,2} and a ∈ {u,v}. We remark that with the notation ∂a fℓ =
∂ fℓ
∂a (u

∗,v∗) we indicate that all the derivatives in the Jacobian matrix are evaluated at
the equilibrium point (u∗,v∗).

Before studying the effects of higher-order terms on the emergence of Turing pat-
terns in the most general system in Equation (6.2.4), let us first analyze the effect of
a nonlinear diffusive coupling in a system with pairwise interactions only, i.e., when
P = 1. This corresponds thus to consider a reactive system where nonlinear diffusion is
present and interactions occur among units that are mapped as the nodes of a complex
network. Let us observe that the problem of Turing instability with nonlinear diffusion
has already been studied, but on a continuous support for the dynamics [230, 231, 232].
The main purpose of the following sections is to extend this analysis to the case of
networked systems and to introduce the reader to the framework of Turing theory on
networks.

For sake of definitiveness, we will present our results by using a cubic diffusion
term. We adopt the same assumption even in the case of higher-order interactions, so
that it will be easier to examine the effects of the latter on the dynamical behavior of
the system.
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6.3 Turing theory with nonlinear diffusive-like coupling

6.3.1 Turing patterns in networked systems with nonlinear diffu-
sion

By setting P = 1 in Equation (6.2.4) we obtain





u̇i = f1(ui,vi)+σ1

N

∑
j=1

A(1)
i j

(
h(1)1 (u j)−h(1)1 (ui)

)

v̇i = f2(ui,vi)+σ1

N

∑
j=1

A(1)
i j

(
h(1)2 (v j)−h(1)2 (vi)

) ∀i = 1, . . . ,N (6.3.2)

These equations can be linearized around the equilibrium point (u∗,v∗), by giving




δ u̇i = ∂u f1(u∗,v∗)δui +∂v f1(u∗,v∗)δvi +σ1

N

∑
j=1

A(1)
i j ∂uh(1)1 (u∗)(δu j −δui)

δ v̇i = ∂u f2(u∗,v∗)δui +∂v f2(u∗,v∗)δvi +σ1

N

∑
j=1

A(1)
i j ∂vh(1)2 (v∗)(δv j −δvi)

(6.3.3)
where δui = ui−u∗, δvi = vi−v∗ and i = 1,2, . . . ,N. Let L(1)

i j = A(1)
i j −k(1)i δi j be the i, j

element of the network Laplacian matrix(1), where k(1)i =∑ j A(1)
i j is the node degree. We

can rewrite the latter equation in compact form to emphasize the 2-dimensional nature
of the problem as

d
dt

(
δui

δvi

)
= J0

(
δui

δvi

)
+σ1

N

∑
j=1

L(1)
i j JH(1)

(
δu j

δv j

)
∀i = 1, . . . ,N (6.3.4)

where JH(1) =

(
∂uh(1)1 (u∗) 0

0 ∂vh(1)2 (v∗)

)
. Let us observe that matrix JH(1) is diagonal, as

there are no off-diagonal terms, due to the assumption of no cross-diffusion terms. By
defining as ζ⃗ = (δu1,δv1, . . . ,δuN ,δvN)

⊤, we can eventually rewrite the last equation
in a compact form

˙⃗
ζ =

(
IN ⊗J0 +σ1L(1)⊗JH(1)

)
ζ⃗ (6.3.5)

where IN is the N ×N identity matrix and ⊗ is the Kronecker product.
The eigenvalues of the 2N ×2N linear system (6.3.5) determine the stability of the

solution x⃗∗ = 0, which corresponds to (ui,vi) = (u∗,v∗) for all i. Being L(1) a symmetric
matrix, one can find a set of orthonormal eigenvectors ϕ⃗(α) associated to eigenvalues
Λ(α), α = 1, . . . ,N. We can then make one step further by projecting Equation (6.3.5)

(1)Let us observe that such matrix has a non positive spectrum and it is the discrete analogous of the
continuous diffusion operator ∇2 once the underlying network is a regular lattice; for this reason, the network
Laplacian matrix plays a relevant role in the context of Turing pattern formation. However, we would like
to point out that in the literature, e.g., consensus and synchronization, it is common to find the Laplacian
matrix defined as L(1)

i j = k(1)i δi j −A(1)
i j (e.g., [86, 45]), having thus a non negative spectrum. In such cases the

coupling term will exhibit a negative sign.
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onto this basis, and thus obtaining N linear and decoupled 2 × 2 systems, each one
depending on a single eigenvalue, namely

d
dt

(
δ ûα

δ v̂α

)
=
[
J0 +σ1Λ

(α)JH(1)

](
δ ûα

δ v̂α

)
:− J(α)

(
δ ûα

δ v̂α

)
∀α = 1, . . . ,N (6.3.6)

Here δ ûα = ∑i δuiϕ
(α)
i and δ v̂α = ∑i δviϕ

(α)
i , are the projection respectively of δui

and δvi on such eigenbasis, and the last equality defines the matrix J(α). Its eigenvalues
can be obtained by solving

det
(

J(α)−λ I2

)
= 0

that is
λ

2 −2tr J(α)
λ +detJ(α) = 0

The root with the largest real part, considered as a function of Λ
(1)
α , is named dispersion

relation, λα = maxλ

(
Λ
(1)
α

)
. If there exists α̂ such that λα̂ > 0, then the equilibrium

solution (ui,vi) = (u∗,v∗) is unstable and a Turing instability is observed, the system
drives away from the homogeneous equilibrium to eventually reach a new, possibly
heterogeneous, solution.

Let us observe that tr J(α) = tr J0 +Λ
(1)
α tr JH . Because h1 and h2 encode a diffusive

coupling, one can safely assume that ∂uh1(u∗) > 0 and ∂vh2(v∗) > 0. Moreover being
Λ
(1)
α ≤ 0 and trJ0 < 0, one can infer that trJ(α) < 0 for all α . In conclusion, a sufficient

condition to have λα̂ > 0 results to be

detJ(α̂) < 0 (6.3.7)

for some α̂ > 1.

6.3.2 The Brusselator model with cubic diffusion
For sake of simplicity and without loss of generality, let us illustrate the above results
using as a reaction part the Brusselator model [95, 96], an extensively adopted dy-
namical system, when it comes to study the emergence of self-organized patterns. In
addition, let us consider a cubic diffusion term. This accounts to set

f1(u,v) = 1− (b+1)u+ cu2v

f2(u,v) = bu− cu2v (6.3.8)

and

h(1)1 (u) = D(1)
u u3

h(1)2 (u) = D(1)
v v3 (6.3.9)
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6.3 Turing theory with nonlinear diffusive-like coupling

where b and c > 0 are model parameters, and D(1)
u > 0 and D(1)

v > 0 are generalized
diffusion coefficients. Hence, the system under investigation reads





u̇i = 1− (b+1)ui + cu2
i vi +σ1D(1)

u

N

∑
j1=1

A(1)
i j1
(u3

j1 −u3
i )

v̇i = bui − cu2
i vi +σ1D(1)

v

N

∑
j1=1

A(1)
i j1
(v3

j1 − v3
i )

(6.3.10)

for which it is straightforward to show the existence of a unique fixed point (u∗,v∗) =
(1,b/c). Correspondingly, the matrices J0 and JH(1) are

J0 =

[
b−1 c
−b −c

]
and JH(1) = 3

[
(u∗)2D(1)

u 0
0 (v∗)2D(1)

v

]
(6.3.11)

Thus, the equilibrium (u∗,v∗) is stable provided that trJ0 = b− c−1 < 0 and detJ0 =
c > 0. The conditions (6.3.7) for the onset of the instability are given by





−c3D(1)
u +(b−1)b2D(1)

v > 0

4b2c3D(1)
u D(1)

v −
(
−c3D(1)

u +(b−1)b2D(1)
v

)2
< 0

(6.3.12)

Let us observe that the above conditions do not depend on σ1. As in the case of Turing
instability resulting from linear diffusion, the relevant parameter is the ratio between
the diffusive coefficients.

In Figure 6.1, we compare the Turing instability regions (i.e., the set of parameters
for which Turing patterns can emerge) obtained in the case of a linear diffusion term and
in the case of a cubic one. By fixing in both cases the diffusion coefficients D(1)

u = 0.1
and D(1)

v = 1, and the coupling strength σ1 = 1, we can observe the following behavior
in the plane (b,c). The instability region is wider in the case of linear coupling than
in the cubic one for large values of the parameters, while the instability region shrinks
to zero more slowly in the case of cubic coupling for small values of the parameters.
This implies that there is a region for large enough values of b and c where the linear
diffusion allows the emergence of Turing patterns, while in the case of cubic diffusion
any initial perturbation about the homogeneous equilibrium fades out. On the contrary,
if b and c are small enough, Turing patterns can emerge under the assumption of cu-
bic diffusion but not if diffusion is linear. These considerations are confirmed by the
dispersion relation as reported in the left panels of Figure 6.1: the reader can clearly
identify the existence of eigenmodes associated to a positive dispersion relation for the
cubic diffusion case (upper panel), while under the assumption of linear diffusion the
dispersion relation is always negative, or the opposite case (bottom panel), where the
dispersion curve associated to nonlinear diffusion is always negative. Let us remark
that the spectrum of the Laplacian Λ(α) is discrete; however, in order to help the reader
to better visualize the results, the dispersion relations are plotted also as continuous
curves.

Let us conclude this section by observing that the standard Turing framework of
linear Fickean diffusion, operating both with networks or continuous supports, requires
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6 - Turing theory with higher-order interactions

Figure 6.1: Turing instability in networks with nonlinear diffusion. Right panel: Turing instability regions for
the Brusselator model with D(1)

u = 0.1, D(1)
v = 1 and σ1 = 1. The analytical red curves indicate the boundary

of the instability regions for the linear coupling, while the blue region is for the cubic coupling, as obtained
numerically. We can observe that, for lower values of the parameters (b,c) the cubic coupling allows for
pattern formation, where the linear one does not, while for greater values we find the opposite situation. This
can be visualized through the dispersion relations reported in the left panels: on the bottom left for lower
values of the parameter (only the system subject to cubic coupling can go unstable), while on the upper left
for greater values of the parameter (only the linear case yields patterns).

the activator species to diffuse faster than the inhibitor one [5], i.e., D(1)
v > D(1)

u . With
the introduction of nonlinear diffusion, such condition can be relaxed, as the system
can yield patterns even with equal diffusivities or with faster activator [230]. This
claim follows directly from conditions (6.3.12) for the specific case of the Brussela-
tor model. However, it is important to note that if one considers the entries of JH(1) as
the “effective” diffusion coefficients, one finds a generalization of the Turing condition
D(1)

v > D(1)
u , which is

(v∗)2D(1)
v > (u∗)2D(1)

u (6.3.13)

for the cubic case. In fact, conditions (6.3.1) and (6.3.7) imply that ∂u f1 < ∂v f2, from
which we obtain

∂u f1(v∗)2D(1)
v > ∂v f2(u∗)2D(1)

u ⇒

∂u f1(v∗)2D(1)
v > ∂v f2(u∗)2D(1)

u > ∂u f1(u∗)2D(1)
u

hence the new condition (v∗)2D(1)
v > (u∗)2D(1)

u .
Let us remark that the above condition is necessary but not sufficient for Turing

patterns. This means that if conditions (6.3.12) are verified, then we have condi-
tion (6.3.13), but the vice versa is not true.

In the following, we will make use of the above results and focus our attention on
the impact of higher-order terms on the onset of the instability. The nonlinear coupling
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is necessary to make such many-body interactions meaningful, as pointed out in [192]:
in fact, if the higher-order coupling is linear, higher-order interactions are nothing more
than the sum of pairwise ones. Moreover, nonlinear couplings are of particular physical
interest, as they can be associated to anomalous diffusion [232].

6.4 Higher-order interactions
Let us now consider the most general case of Equation (6.2.4) with higher-order interac-
tions. For simplicity and without loss of generality, we will limit ourselves to consider
only first and second order interactions, i.e., P = 1 and P = 2. Nevertheless, the the-
ory goes beyond the exposed examples and can be straightforwardly generalized as to
include higher P. The system we are thus interested in is given by





u̇i = f1(ui,vi)+σ1D(1)
u

N

∑
j1=1

A(1)
i j1
(h(1)1 (u j1)−h(1)1 (ui))

+σ2D(2)
u

N

∑
j1=1

N

∑
j2=1

A(2)
i j1 j2

(h(2)1 (u j1 ,u j2)−h(2)1 (ui,ui))

v̇i = f2(ui,vi)+σ1D(1)
v

N

∑
j1=1

A(1)
i j1
(h(1)2 (v j1)−h(1)2 (vi))

+σ2D(2)
v

N

∑
j1=1

N

∑
j2=1

A(2)
i j1 j2

(h(2)2 (v j1 ,v j2)−h(2)2 (vi,vi))

(6.4.1)

where h(1)1 (u) and h(1)2 (v) encode the first order interaction, while h(2)1 (u1,u2) and h(2)2 (v1,v2)
model the second order coupling. We again assume the existence of a homogeneous
solution (ui,vi) = (u∗,v∗) and for it to be stable once we silence both the pairwise cou-
pling, P = 1, and the higher-order one, P > 1. To study its stability under spatially
dependent perturbations, we can follow the derivation presented in the previous section
(see also [45]), that ultimately relies on the computation of a Master Stability Func-
tion [44] in a setting involving a stationary equilibrium and higher-order coupling.

Let us introduce again the perturbation vector ζ⃗ =(δu1,δv1, . . . ,δuN ,δvN)
⊤, where

δui = ui − u∗ and δvi = vi − v∗, then one can straightforwardly show that it evolves
according to

˙⃗
ζ =

(
IN ⊗J0 +σ1L(1)⊗JH(1) +σ2L(2)⊗JH(2)

)
ζ⃗ (6.4.2)

where JH(2) =

(
∂u1 h(2)1 (u∗,u∗)+∂u2 h(2)1 (u∗,u∗) 0

0 ∂v1 h(2)2 (v∗,v∗)+∂v2 h(2)2 (v∗,v∗)

)
and L(2) represents

a generalized Laplacian matrix [45] accounting for the 3-body interactions, whose ele-
ments are given by

L(2)
i j =

{
−∑

N
j,k=1 A(2)

i jk for i = j

∑
N
k=1 A(2)

i jk for i ̸= j
(6.4.3)

In the following, we will examine different cases of coupling: first, in Section 6.4.1,
the so called natural coupling [45, 154], which allows an analytical treatment of the
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6 - Turing theory with higher-order interactions

problem, but does not permit to fully unveil the potential of higher-order terms. The
latter will be fully exploited in Section 6.4.2, where we will present two special cases
of higher-order structures in which, despite the general form of the coupling functions,
a complete analytical study can be performed. Finally, in Section 6.4.3 the scenario
where both the coupling and the topology are general will be dealt with.

6.4.1 Natural coupling

A largely used assumption on the coupling terms h⃗(d) is that, once they are evaluated
on the homogeneous state(2), they return the same value given by h⃗(1), more precisely

h⃗(d)(⃗x, . . . , x⃗) = · · ·= h⃗(2)(⃗x, x⃗) = h⃗(1)(⃗x)

Such condition is known in the literature as natural coupling [45]. In the present frame-
work, this implies that

h(2)1 (u,u) = h(1)1 (u) and h(2)2 (v,v) = h(1)2 (v)

To compare the case P > 1 with the one presented for P = 1, we consider nonlin-
earities based on polynomials and product of variables with total power equal to three,
both in the first and in the second order terms. In particular, we set h(1)1 (u) = D(1)

u u3

and h(1)2 (v) = D(1)
v v3 for the 2-body coupling, while we take h(2)1 (u1,u2) = D(2)

u u2
1u2 and

h(2)2 (v1,v2) =D(2)
v v2

1v2, for the 3-body interaction. Note that this choice for the coupling
functions satisfies the condition of natural coupling as long as

D(1)
u = D(2)

u and D(1)
v = D(2)

v (6.4.4)

Given these coupling functions, we can rewrite Equation (6.4.1) as




u̇i = f1(ui,vi)+σ1D(1)
u

N

∑
j1=1

A(1)
i j1
(u3

j1 −u3
i )

+σ2D(2)
u

N

∑
j1=1

N

∑
j2=1

A(2)
i j1 j2

(u2
j1u j2 −u3

i )

v̇i = f2(ui,vi)+σ1D(1)
v

N

∑
j1=1

A(1)
i j1
(v3

j1 − v3
i )

+σ2D(2)
v

N

∑
j1=1

N

∑
j2=1

A(2)
i j1 j2

(v2
j1v j2 − v3

i )

(6.4.5)

Again, to study the stability of the homogeneous solution (ui,vi) = (u∗,v∗), we
linearize Equation (6.4.5). By resorting to the natural coupling assumption, we can
conclude that JH(1) = JH(2) and thus rewrite Equation (6.4.2) as follows

˙⃗
ζ =

[
IN ⊗J0 +

(
σ1L(1)+σ2L(2)

)
⊗JH(1)

]
ζ⃗ (6.4.6)

(2)In the framework of synchronization dynamics, when all units are in the same state we talk about syn-
chronous solution.
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Figure 6.2: Turing instability with nonlinear diffusion in higher-order structures. Brusselator model with
b = 3, c = 3.5, D(1,2)

u = 0.1, D(1,2)
v = 2, σ1,2 = 1; the initial perturbation is ∼ 10−2. On the upper left

panel, the dispersion law: the blue line is the continuous one, while the magenta dots indicate the discrete
counterpart. On the upper right panel, Turing patterns for the u species. On the bottom panel, the hypergraph
on which the system has been simulated: 11 nodes, 11 links and 3 2-hyperedges (i.e., triangles).

where

JH(1) = 3

[
(u∗)2D(1)

u 0
0 (v∗)2D(1)

v

]

and ζ⃗ = (δu1,δv1, . . . ,δuN ,δvN)
⊤, with δui = ui−u∗ and δvi = vi−v∗. Let us observe

that Equation (6.4.6) recalls the similar result obtained in [205]. However, the mathe-
matical framework here proposed is more general, because it allows to study a broader
class of higher-order couplings (see Section 6.6 for more details).

The natural coupling assumption allowed us to introduce an "effective" Laplacian
that encodes the higher-order structure into a weighted network, whose weights are self-
consistently determined, M = σ1L(1)+σ2L(2). Resorting to the eigenbasis for M, one
can make one step further and project the 2N ×2N linear system onto N linear systems
of size 2 × 2 depending each one on a single eigenvalue, Λ(α), of M, more precisely

d
dt

(
δ ûα

δ v̂α

)
=
[
J0 +Λ

(α)JH(1)

](
δ ûα

δ v̂α

)
:− J(α)

(
δ ûα

δ v̂α

)
∀α = 1, . . . ,N (6.4.7)

where again δ ûα = ∑i δuiϕ
(α)
i , resp. δ v̂α = ∑i δviϕ

(α)
i , is the projection of δui, resp.

δvi, on the eigenvector ϕ⃗α .
Let us observe that the latter equation is formally the same as the one obtained

in the case of pairwise interactions (6.3.6) and thus the same analysis follows, except
that now the eigenvalues depend on the coupling strengths. In Fig, 6.2, we show the
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dispersion relation and an example of Turing patterns for the Brusselator model (Equa-
tions (6.3.8)). Let us notice that the blue curve (top left panel of Figure 6.2) has been
computed by replacing Λ(α) with a continuous variable, corresponding thus to the dis-
persion relation for a system defined on a continuous support with periodic boundary
conditions. Having fixed the topology of binary interactions and the higher-order ones,
hence the matrices L(1) and L(2), we can vary the coupling strengths σ1 and σ2, and
thus letting Λ(α) “slide” along this curve (cyan dots). Stated differently, the Turing in-
stability can be obtained (or repressed) by simply changing the coupling and keeping
the remaining parts of the model unchanged.

6.4.2 Regular topologies
Let us now relax the natural coupling assumption by setting different diffusion coef-
ficients at the different considered order, i.e., D(1)

u ̸= D(2)
u and D(1)

v ̸= D(2)
v , but keep-

ing the same form for the coupling functions. Namely we take h(1)1 (u) = D(1)
u u3 and

h(1)2 (v) = D(1)
v v3 for the 2-body coupling, while we take h(2)1 (u1,u2) = D(2)

u u2
1u2 and

h(2)2 (v1,v2) = D(2)
v v2

1v2 for the 3-body coupling. It would also be possible to adopt dif-
ferent coupling functional forms for each order, but, as it will be clear in the following,
it is more interesting to focus on the diffusion coefficients, the latter having a key role in
the Turing mechanism of pattern formation. Nevertheless, the following analysis could
be easily extended to a setting in which coupling functions have different form, as long
as they remain diffusive-like.

The starting point for the linear stability analysis is, again, Equation (6.4.2); how-
ever, because JH(1) ̸= JH(2) , one cannot simplify the latter equation to obtain the analo-
gous of Equation (6.4.6). In the same spirit of simplifying the stability equation, we can
observe that in general the two Laplacians do not commute, thus, they cannot be simul-
taneously diagonalized. In conclusion, one cannot determine a single equation, depend-
ing on the spectrum of the involved Laplacian matrices, and proceed with the analysis
as done in the case of the Master Stability Function. The numerical computation of the
eigenvalues of the 2N ×2N linear system would not allow a clear understanding of the
role of the involved parameters.

There are however some higher-order structures allowing for a complete analytical
description: this is the case whenever the higher-order Laplacian matrix is a multiple
of the network Laplacian one. We will call topologies with the above property regular
topologies. Tetrahedra or icosaedra are examples of regular topologies as well as the
triangular lattice with periodic boundary conditions, i.e., a 2-torus paved with triangles,
that we hereby analyze in details. Let us observe that we assume the nodes forming a
triangle (of first order interactions) to be also part of a 3-body interaction; for this reason
we will call it triangular 2-lattice. In this case, each node interacts with its six neighbors
through six 2-body interactions and six 3-body interactions

Let us consider a triangular 2-lattice of N nodes, where each node i has 6 incident
links. Its first order Laplacian will then be

L(1)
i j =

{
−6 if i = j

A(1)
i j otherwise
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6.4 Higher-order interactions

If now each node will also have 6 incident triangles, we have that

N

∑
j,k=1

A(2)
i jk = 2 ·6 = 12 and

N

∑
k=1

A(2)
i jk = 2A(1)

i j

From the definition of the second order Laplacian, Equation (6.4.3), we obtain the rela-
tion

L(2) = 2L(1) (6.4.8)

hence, the two Laplacians can be both diagonalized through the eigenvectors of L(1).
Equation (6.4.2) now takes the form

˙⃗
ζ =

(
IN ⊗J0 +L(1)⊗ (σ1JH(1) +2σ2JH(2))

)
ζ⃗ (6.4.9)

We can then proceed in projecting on the eigenvectors of L(1), by obtaining

d
dt

(
δ ûα

δ v̂α

)
=
[
J0 +Λ

(α)(σ1JH(1) +2σ2JH(2))
](

δ ûα

δ v̂α

)
∀α = 1, . . . ,N (6.4.10)

which is analogous to Equation (6.4.7), due to the properties of the topology. The
Laplacian’s eigenvalues Λ(α) can be effectively replaced by a continuous parameter,
which is the continuous spectrum of the corresponding diffusion operator, allowing
us to have an analytical expression of the dispersion law. The above result can be
straightforwardly generalized to all regular topologies.

Let us point out that the assumption of L(2) to be proportional to L(1) allows to
emphasize the effects of higher-order interactions, which would not be possible to fully
appreciate under the natural coupling assumption. In fact, one can deal with sets of pa-
rameters which do not allow the formation of patterns by considering the sole pairwise
interactions, i.e., condition (6.3.13) would not be satisfied, (v∗)2D(1)

v < (u∗)2D(1)
u , and

thus patterns could not develop, but the appropriate values of the second order couplings
would make possible the Turing instability. This is the case shown in Figure 6.3, where
we can observe the dispersion law and an example of a pattern obtained with the Brus-
selator model on a triangular 2-lattice of 16 nodes; we notice that, while the pairwise
case (red curve) never allows instability, the higher-order one yields Turing patterns.
Let us remark that the dispersion law is a function of the spectrum of the Laplacian
L(1).

Let us stress that it is also possible to find the opposite case, in which pairwise
interactions would normally give rise to Turing patterns, but the presence of higher-
order ones annihilates them and stabilizes the system, as exemplified in Figure 6.4.

The interplay between nonlinear diffusion and regular topologies could be better
highlighted by rewriting (6.4.10). Under our working assumptions, we have

JH(1) = 3


D(1)

u 0

0
(

b
c

)2
D(1)

v


 and JH(2) = 3


D(2)

u 0

0
(

b
c

)2
D(2)

v


 (6.4.11)

We can hence define the effective diffusion coefficients

Deff
u = σ1D(1)

u +σ2D(2)
u and Deff

v = σ1D(1)
v +σ2D(2)

v (6.4.12)
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6 - Turing theory with higher-order interactions

Figure 6.3: Triangular 2-lattice of 16 nodes with periodic boundary conditions; Brusselator model with b =

5.5, c= 7, D(1)
u = 1, D(1)

v = 0.5, D(2)
u = 0.1, D(2)

v = 1, σ1 = 0.01 and σ2 = 1; the initial perturbation is ∼ 10−2.
In the left panel, the dispersion law for the higher-order case (blue line and magenta dots) compared with the
case where only pairwise interactions are present (red line and cyan dots). In the right panel, an example of a
Turing pattern for the u species.

Figure 6.4: Triangular 2-lattice of 16 nodes with periodic boundary conditions; Brusselator model with b =

5.5, c = 7, D(1)
u = 0.1, D(1)

v = 1.5, D(2)
u = 1, D(2)

v = 0.5, σ1 = 0.7 and σ2 = 0.2; the initial perturbation is
∼ 10−2. In the left panel, the dispersion law for the higher-order case (blue line and magenta dots) compared
with the case where only pairwise interactions are present (red line and cyan dots). As the higher-order
dispersion law is always negative, there is no emergence of Turing patterns, as also shown in the right panel
for the u species.

so that we can cast (6.4.9) in the following way

˙⃗
ζ =

(
IN ⊗J0 +L(1)⊗Jeff

H

)
ζ⃗ (6.4.13)

where

Jeff
H = 3


Deff

u 0

0
(

b
c

)2
Deff

v


 (6.4.14)

By projecting on the eigenvectors of L(1), we obtain a new form of Equation (6.4.10),
namely

d
dt

(
δ ûα

δ v̂α

)
=
[
J0 +Λ

(α)Jeff
H

](
δ ûα

δ v̂α

)
∀α = 1, . . . ,N (6.4.15)

Following the steps presented above to determine the onset of Turing instability, we can
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6.4 Higher-order interactions

now obtain 



−c3Deff
u +(b−1)b2Deff

v > 0

4b2c3Deff
u Deff

v −
(
−c3Deff

u +(b−1)b2Deff
v

)2
< 0

(6.4.16)

From the latter relations it emerges that Turing patterns are the result of the interplay
not only between the model parameters and the diffusion coefficients, but also with the
strength of the interactions at every order.

In the next section, we will study the general case where, in absence of specific as-
sumptions on the coupling or on the structure, an analytical study cannot be performed,
and we thus have to resort to numerical simulations. But before that, let us examine a
particular case of regular topology, where the Laplacians of all orders can be diagonal-
ized simultaneously: the all-to-all coupling, where every possible d-body interaction is
active. When dealing with such coupling, the analysis is not restricted to some orders of
interactions, but can be extended to all of them. Nonetheless, without further ado, let us
again restrict the analysis to first- and second-order interactions. For N interconnected
systems, we have L(2) = (N − 2)L(1) (see [45] for a detailed analysis); let us observe
that this is again a case where L(2) is proportional to L(1)). However, here the propor-
tionality constant depends on the system’s size. Based on the above, Equation (6.4.2)
can be rewritten as

˙⃗
ζ =

(
IN ⊗J0 +σ1L(1)⊗

(
JH(1) +

σ2

σ1
(N −2)JH(2)

))
ζ⃗ (6.4.17)

Projecting again on the eigenvectors of L(1) we obtain

d
dt

(
δ ûα

δ v̂α

)
=

[
J0 +σ1Λ

(α)

(
JH(1) +

σ2

σ1
(N −2)JH(2)

)](
δ ûα

δ v̂α

)

∀α = 1, . . . ,N

Let us observe that Λ(α) ∈ {0,N}, hence the dispersion law depends on the number
of nodes. The above equation indicates that it is possible to decompose the instability
modes. For a given value of N, having fixed the ratio σ2/σ1, we can vary the value
of σ1, thus generating a continuous curve. Observe that such a curve allows us to
check for the onset of Turing instability on the “all-to-all” configuration. Indeed, when
the curve is negative Turing instability cannot occur for any value of σ1, while Turing
patterns can emerge in the opposite case. Hence, the continuous curve, as function
of a parameter γ = σ1Λα , can be subsumed in the framework of the Master Stability
Function approach [44].

To provide a numerical example, let us consider an ensemble of N Brusselator
systems interacting in the all-to-all configuration, with h(1)1 = D(1)

u u3, h(1)2 = D(1)
v v3,

h(2)1 (u1,u2) = D(2)
u u2

1u2 and h(2)2 (v1,v2) = D(2)
v v2

1v2, and with the values of the diffu-
sion coefficients set such that the coupling functions do not satisfiy the natural coupling
condition. In Section 6.5, we report a case analogous to that displayed in Section 6.3,
namely, patterns emerge due to higher-order interaction. Also in this case, with the
appropriate coupling functions we can obtain the opposite situation, i.e., higher-order
interactions annihilate patterns, which would otherwise emerge with the sole pairwise
ones.
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6 - Turing theory with higher-order interactions

Figure 6.5: All-to-all 2-hypergraph of 5 nodes; Brusselator model with b = 5.5, c = 7, D(1)
u = 1, D(1)

v = 0.1,
D(2)

u = 0.07, D(2)
v = 1, σ1 = 0.01 and σ2 = 1; the initial perturbation is ∼ 10−2. On the left panel, the

discrete dispersion law; note that the continuous curve is a fictitious dispersion law, but it is a Master Stability
Function, as explained in the text. For this reason, the continuous curve can be thought as a function of a
parameter γ . On the right panel, an example of a Turing pattern for the u species.

Figure 6.6: Left panel: Brusselator model with D(1)
u = 1, D(1)

v = 0.5, D(2)
u = 0.1, D(2)

v = 2, σ1 = 0.1 and
σ2 = 1. The setting does not allow for Turing patterns when only pairwise interaction are considered, hence
to obtain the instability region we need to include also higher-order (3-body) interactions (the region of
parameters where patterns are obtained is shown in orange). Numerical simulations of the system with
b = 5.5 and c = 7 without (resp. with) higher-order terms show that Turing patterns are not obtained (resp.
are obtained) as confirmed by the total pattern amplitude [31] in blue (resp. orange) on the lower (resp.
upper) inset. Right panel: Brusselator model with D(1)

u = 0.1, D(1)
v = 0.5, D(2)

u = 0.01, D(2)
u = 1, σ1 = 0.2

and σ2 = 1. The instability region when only pairwise interactions are considered is depicted in blue, while
in orange the one obtained when also higher-order ones are active; note that the blue region is a subset of the
orange one. For both panels, the initial perturbation is ∼ 10−2 and the hypergraph is that of in Figure 6.2.

6.4.3 General topologies
Let us now focus on the most general case, in which arbitrary higher-order topologies
are considered and the coupling is not restricted to the natural coupling form. Follow-
ing the same reasoning of the previous section, we use different diffusion coefficients,
while the coupling functions remain of the same form. In such setting, we cannot have a
semi-analytical form of the dispersion law, because the Laplacian matrices cannot be di-
agonalized simultaneously. Hence, we will resort to numerical simulations to determine
the onset of the Turing instability. Based on the above discussion, we thus performed
a dedicated numerical analysis of this scenario that allows us to fully exploit the pres-
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ence of higher-order terms. The results are reported in Figure 6.6 where we show the
parameters region associated to a Turing instability in the case of the Brusselator model
in Equation (6.4.5) for two different sets of values of the weights σi. On the left panel,
the first order diffusion coefficients (i.e., pairwise) do not allow Turing instability (since
(v∗)2D(1)

v > (u∗)2D(1)
u ), on the other hand the presence of higher-order diffusion with a

suitable choice of the weights σi allows the formation of patterns. On the right panel,
instead, Turing instability arises even in the pairwise setting, but many-body interac-
tions are still beneficial as they yield a larger region of parameters for which patterns
can be obtained.

Let us conclude by remarking that, in analogy with the setting studied in the pre-
vious section (i.e., regular topologies), it is also possible to find couplings such that
higher-order interactions hamper the formation of Turing patterns, which would nor-
mally arise when the interactions are limited to be pairwise.

6.5 Discussion
In this work, we have formulated a general theory to study the emergence of Turing
patterns for dynamical systems where many-body interactions are taken into account,
modeled by using higher-order interactions. Our framework goes beyond the one re-
cently proposed [205] that, as shown in the SM (Section 6.6), can be recovered as a spe-
cial case of the theory hereby developed. Our framework is inspired by the work of [45]
dealing with synchronization in higher-order structures and allows to obtain Turing pat-
terns in settings where it would be otherwise impossible, e.g., by restricting to pairwise
interactions. At the same time, it also permits to suppress the instability which would
occur with only pairwise interactions, depending on the desired applications. We have
shown that including diffusion terms from higher-order interactions may either widen
the region of parameters where patterns occur, or, on the contrary, reduce its extension.
This can be achieved acting solely on the diffusion coefficients, but also using different
coupling functions. The detailed analytical study we performed provided us a clear un-
derstanding of the role of the model parameters, as well as of the higher-order topology
in the pattern emergence. This further flexibility in the choice of the parameters can
shed light on the fine tuning problem [135] and benefit the field of optimal control of
patterns [233, 234, 235]. In fact, one could choose the appropriate coupling functions
and/or diffusion coefficients in order to obtain the desired inhomogeneous state.

A natural extension of our framework would be to study Turing-like instability
emerging from a limit cycle: in fact, it has been shown that a similar instability mech-
anism can occur also when the homogeneous stable state is a limit cycle [46, 78]. In
many applications, where it is important to control the emergence of synchronization,
such as neuroscience, our theory could provide to be extremely useful. Moreover, ex-
ploring the onset of Turing patterns in the newly developed framework of M-directed
hypergraphs [211] could provide another interesting direction where to focus the atten-
tion in future works.
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6 - Turing theory with higher-order interactions

6.6 SM 1: Formalism mapping
In this SM, we show how the formalism introduced in [205] to study the formation
of Turing patterns on hypergraphs can be recovered from the mathematical framework
developed in [45] for the analysis of synchronization of chaotic oscillators in simplicial
complexes. Note that the latter also applies to the case of hypergraphs, as discussed
in [211].

We start from the dynamical system (6.2.1). First, we assume the coupling functions
g⃗(d) to be of the form

g⃗(d)(⃗xi, x⃗ j1 , x⃗ j2 , . . . , x⃗ jd ) = ϑ(d +1)[γ (⃗x j1)− γ (⃗xi)+ · · ·+ γ (⃗x jd )− γ (⃗xi)]

= ϑ(d +1)

[
d

∑
n=1

γ (⃗x jn)−dγ (⃗xi)

]
(6.6.1)

where ϑ : R−→R is a generic function of the number of nodes involved in the higher-
order interaction, i.e., the size of the hyperedge or of the simplex, while γ : Rm −→
Rm is a generic function encoding the contribution of the node state vectors to the
coupling. Note that, given the form in Equation (6.6.1), all the coupling functions are
non-invasive. Equation (6.2.1) can be hence rewritten as

˙⃗xi = f⃗ (⃗xi)+σ1

N

∑
j1=1

A(1)
i j1

ϑ(2)[γ (⃗x j1)− γ (⃗xi)]+

+σ2

N

∑
j1=1

N

∑
j2=1

A(2)
i j1 j2

ϑ(3)[γ (⃗x j1)+ γ (⃗x j2)−2γ (⃗xi)]+ · · ·

+σP

N

∑
j1=1

· · ·
N

∑
jP=1

A(P)
i j1 j2... jP

ϑ(P+1)

[
P

∑
n=1

γ (⃗x jn)−Pγ (⃗xi)

]
(6.6.2)

Noticing that each adjacency tensor A(d) is symmetric with respect to its d + 1 in-
dices, i.e., A(d)

i j1 j2... jd
= A(d)

π(i j1 j2... jd)
, where π is a generic permutation of the indices, we

can simplify the coupling terms, thus writing Equation (6.6.2) as

˙⃗xi = f⃗ (⃗xi)+σ1

N

∑
j1=1

A(1)
i j1

ϑ(2)[γ (⃗x j1)− γ (⃗xi)]+

+2σ2

N

∑
j1=1

ϑ(3)[γ (⃗x j1)− γ (⃗xi)]
N

∑
j1=1

A(2)
i j1 j2

+ · · ·

+PσP

N

∑
j1=1

ϑ(P+1)[γ (⃗x j1)− γ (⃗xi)]
N

∑
j2=1

· · ·
N

∑
jP=1

A(P)
i j1 j2... jP

(6.6.3)

By recalling the definition [45] of the generalized d-degree, k(d)i j , of a link (i, j),
which represents the number of d-order structures the link (i, j) is part of

(d −1)!k(d)i j =
N

∑
l2=1

· · ·
N

∑
ld=1

A(d)
il1l2...ld

(6.6.4)
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and by noticing that k(1)i j = A(1)
i j , we can write the equations governing the dynamics of

the system as

˙⃗xi = f⃗ (⃗xi)+σ1

N

∑
j=1

k(1)i j ϑ(2)∆ j +2σ2

N

∑
j=1

k(2)i j ϑ(3)∆ j + · · ·

+P(P−1)!σP

N

∑
j=1

k(P)i j ϑ(P+1)∆ j

(6.6.5)

where we have relabeled index j1 as j, and where we have defined ∆ j = γ (⃗x j)− γ (⃗xi).
By considering the higher-order incidence matrix [205], eiα , defined as

eiα =

{
1 vi ∈ Eα

0 otherwise
(6.6.6)

where Eα can represent either a hyperedge or a simplex, we can now write Equa-
tion (6.6.5) as

˙⃗xi = f⃗ (⃗xi)+σ1

N

∑
j=1

∑
α:Eα=2

eiα e jα ϑ(2)∆ j +2σ2

N

∑
j=1

∑
α:Eα=3

eiα e jα ϑ(3)∆ j

+ · · ·+P!σP

N

∑
j=1

∑
α:Eα=P+1

eiα e jα ϑ(P+1)∆ j

(6.6.7)

In fact, as for each order d of the higher-order interactions, the factor eiα e jα is equal to
one when both nodes i and j belong to Eα , by summing over all j ̸= i, each summation
has exactly k(d)i j non-zero terms.

Lastly, by assuming the d-th coupling strength to be σd = ε/d!, we finally obtain

˙⃗xi = f⃗ (⃗xi)+ ε

N

∑
j=1

∑
α

eiα e jα ϑ(Eα)[γ (⃗x j)− γ (⃗xi)] (6.6.8)

which recovers the dynamical system analyzed in [205] as we set ϑ(Eα) = Eα − 1.
Hence, the mathematical framework here considered permits to extend the analysis of
Turing pattern formation on hypergraphs, as it allows to consider more general coupling
functions.
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Chapter 7
Diffusion-driven instability of
topological signals coupled by the
Dirac operator

In the previous Chapter, we have seen a higher-order extension of Turing theory, from
the many-body perspective. Despite the novelty of the work, the setting resembles the
pairwise one and what changes is the possibility of having many-body interactions, pos-
sibly with different diffusivities, affecting thus the final state of the system. In fact, both
species have the node as a support and, instead of diffusing through links, they diffuse
through hyperedges. In this work, we enter the actual higher-order setting, a new frame-
work mathematically and conceptually, whose possibilities are yet to be fully exploited.
By using the tools of algebraic topology, we are able to further push the boundaries of
the Turing framework and couple species lying in different manifolds, namely on the
nodes and on the links. In such context, it is more appropriate to talk about topological
signals, rather than species, as the latter is tied to the framework where all the interact-
ing units are of the same nature. Topological signals have been studied in the frame-
work of synchronization dynamics and, in particular, for the Kuramoto model [202],
but never to investigate the emergence of Turing patterns. The main difference between
the two frameworks is that the former deals with non-identical units, hence, in gen-
eral, there does not exist a homogeneous solution of the whole coupled system, which
always exists in the latter, the oscillators being identical. In the framework of Turing
patterns, when the manifold where the dynamics take place is restricted to the nodes, a
homogeneous state can always be achieved for connected networks and a diffusive-like
coupling. On the other hand, when also signals on links are considered, a homogeneous
state exists if and only if the network is Eulerian, i.e., every node has an even degree,
as we prove in the next pages. Such constraint may seem limiting, but is the price to
pay if we want to consider higher-order signals. On the other hand, this allows us to re-
lax the strict condition on the diffusion coefficients, as Turing patterns can be obtained
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7 - Diffusion-driven instability of topological signals

even with equal diffusivities for the signals on the nodes and on the links. Nonethe-
less, the perspective can be reversed to transform constraint on the nodes’ degrees in
an opportunity: if the application requires inhomogeneity, one can consider simplicial
structures that do not allow a homogeneous state due to their topological conformation.
This becomes particularly relevant in the case of synchronization, where the goal of cer-
tain applications is not to achieve it [236]. Another relevant aspect of Turing instability
for topological signals is that we lose the activator-inhibitor dichotomy, as patterns are
obtained only when both signals are inhibitors.

Note Until this point, all Laplacians encountered throughout this thesis are negative
semi-definite. For this reason, in the brief introduction to higher-order dynamics given
in Section 5.3 of Chapter 5, we have reformulated and defined the Hodge Laplacians
as negative semi-definite matrices. In this paper the notation and some definitions are
a bit different from those used in the rest of the work and, whilst we tried as much
as possible to uniform the manuscript, some changes would have altered too much the
original work or made the notation extremely heavy. This is why, for example, the
Laplacians encountered in this Chapter are positive semi-definite, or the vectors do not
have the ·⃗ symbol.

My contribution This work was conducted with two PhD students, Lorenzo Gi-
ambagli and M. Lucille Calmon, and it may result in part of their theses. Lorenzo and
M. Lucille mainly developed the theoretical framework, while my contribution mainly
regards the development of Turing theory and the numerical study.

L. Giambagli, M.L. Calmon, R. Muolo, T. Carletti & G. Bianconi, Physical Review
E, 106, 064314 (2022) [229]
This article is not open access, but it is freely available as a pre-print.

Note During the revision of this thesis, we realized that Figure 7.7a) had a mistake
in the values of the color scale. In the following Chapter it has been fixed, but in the
original paper we could not, as it was already published.

Abstract
The study of reaction-diffusion systems on networks is of paramount relevance for the
understanding of nonlinear processes in systems where the topology is intrinsically dis-
crete, such as the brain. Until now, reaction-diffusion systems have been studied only
when species are defined on the nodes of a network. However, in a number of real
systems including, e.g., the brain and the climate, dynamical variables are not only de-
fined on nodes but also on links, faces and higher-dimensional cells of simplicial or cell
complexes, leading to topological signals. In this work, we study reaction-diffusion
processes of topological signals coupled through the Dirac operator. The Dirac oper-
ator allows topological signals of different dimension to interact or cross-diffuse as it
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7.1 Introduction

projects the topological signals defined on simplices or cells of a given dimension to
simplices or cells of one dimension up or one dimension down. By focusing on the
framework involving nodes and links, we establish the conditions for the emergence of
Turing patterns and we show that the latter are never localized only on nodes or only on
links of the network. Moreover when the topological signals display a Turing pattern
their projection does as well. We validate the theory hereby developed on a benchmark
network model and on square lattices with periodic boundary conditions.

7.1 Introduction
Nature is a blossoming of patterns, namely spatially heterogeneous structures, spon-
taneously emerging from the web of nonlinear interactions existing among the many
basic units constituting the system under scrutiny [95, 42]. Scholars have developed
theories capable of dealing with both stationary patterns [4, 31, 109] and time-varying
ones [43, 237, 41, 238, 24]. Such research has been developed in the framework of
network science [155, 86, 239, 240] relying on the assumption that system interactions
can be sufficiently well described by using a pairwise representation: the basic units
composing the system exhibit their own dynamics, i.e., a local evolution law associ-
ated with each node of the network, and then they interact by diffusing or via non-local
(long-range) interactions, by using the available links.

Networks, however, only capture pairwise interactions while higher-order inter-
actions [207, 208, 241, 242, 243, 244, 245, 218] are crucial to describe several em-
pirical systems in physics, biology, neuroscience, or social sciences. Interestingly,
recent research taking into account higher-order interactions is rapidly changing our
understanding of the relation between the structure and function of complex systems
[207, 217, 246].

Simplicial complexes are higher-order networks that come with extremely rich and
useful structures inherited from discrete topology [207, 247, 216]. Roughly speaking,
a simplicial complex is a topological structure that, in addition to nodes and links, also
contains triangles, i.e., 3-body interactions, tetrahedra (i.e., 4-body interactions) and so
on. Even more generally cell complexes [248] also include the other convex polytopes,
i.e., not only triangles and tetrahedra but also squares, pentagons, etc., and hypercubes,
orthoplexes etc. One can thus consider topological signals defined on nodes and links,
but also on higher-order structures [207]. Examples of topological signals occur, for
instance, in Figure 7.1: We schematically represent the dynamical state of a simplicial
complex encoded by the vector neuronal networks, where the interaction between two
neurons is mediated by the synaptic signal [249]. Recent scientific literature points out
the relevance of edge signals also in large-scale brain networks [250, 251], and in bio-
logical transportation networks [252, 253]. Edge signals occur also in power-grids [220]
or in traffic on a road network [254, 255, 256, 257]. Moreover, edge signals might also
represent a number of climate data such as currents in the ocean and velocity of wind
that can be projected on a suitable triangulation of the Earth’s surface [256, 257]. Topo-
logical signals can undergo higher-order simplicial synchronization [202, 258, 259, 260,
203, 261, 262, 263, 264], and higher-order diffusion [260, 265, 266]. Moreover, datasets
of topological signals can be treated with topological signal processing [254, 189, 257]
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7 - Diffusion-driven instability of topological signals

and with topological machine-learning tools [267, 268, 269, 270]. Note that this in-
creasing interest in topological signals occurs while the entire field of dynamical pro-
cesses on simplicial complexes and hypergraphs is bursting with significant research
activity [199, 271, 45, 272, 273, 274, 190, 201, 275, 276, 277, 278].

Topological signals of a given dimension can be coupled by higher-order Lapla-
cians, also called Hodge-Laplacians or combinatorial Laplacians [207, 279, 216]. How-
ever, the Dirac operator [280, 281, 282, 283] is necessary to couple topological signals
of different dimension such as interacting signals defined on nodes and links of a net-
work. For instance, the dynamics of neuronal networks can be modeled by using two
different topological signals: one defined on the nodes (the activity of each neuron)
and the other defined on the edges (the neurotransmitter current across each synapse).
Interestingly, the Dirac synchronization, which stems from the adoption of the Dirac
operator to couple topological signals of different dimension, provides a topological
and local pathway toward explosive synchronization and rhythmic phases [261, 262].

In this paper, we propose a framework to reveal Turing patterns of reacting species
described by topological signals defined on the cells of different dimensions (nodes,
links, triangles, squares) coupled through the Dirac operator. Our main goal is to con-
sider reaction-diffusion systems [108] and extend the Turing theory developed so far on
networked systems [31] to the framework of simplicial and cell complexes.

Turing’s original framework involved two reacting species whose stable homoge-
neous equilibrium can turn out to be unstable once the species are allowed to diffuse
and suitable conditions of the species diffusion coefficients are assumed [4]. Gierer
and Meinhardt later emphasized that for the Turing instability to set up, one of the two
species needs to be an activator while the other should be an inhibitor, and moreover
the latter needs to diffuse much faster than the former [5]. The theory was succes-
sively extended to regular lattices by Othmer and Scriven [25] and finally to complex
networks by Nakao and Mikhailov [31]. Let us emphasize that network patterns are
equilibrium states of the system with a dependence on the node. The latter framework
has been further expanded considering directed networks [38], multiplex [34], tempo-
ral networks [115], and non-normal networks [70], just to mention a few. In all the
above settings, the two species react in each node while diffusing through the links. For
signals defined exclusively on the nodes, cross-diffusion terms have been introduced in
Refs. [15, 284]. Turing patterns on higher-order structures have been recently studied
in Refs. [205, 215]. Note however that our approach is different because in those works
the dynamics are restricted to nodes, while links and higher-order structures support the
generalized diffusion.

In this paper we provide a general theory describing reaction-diffusion systems
of topological signals of different dimension (i.e., defined on nodes, links, triangles,
squares, etc.) coupled with the Dirac operator. In particular, we consider two different
settings. In the first case, we assume the reaction term to be solely responsible for the
coupling of signals of different dimension, and the diffusion term is modeled by the
Hodge-Laplacians. In the second case, we assume the diffusion also to include cross-
diffusion terms coupling the dynamics of signals in different dimension. For sake of
simplicity, in this work, we will focus our analysis on the case of coupled nodes and
links signals, which is arguably also the most relevant to applications. Indeed, it is
a common scenario to have localized reactions and quantities produced in the nodes,
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7.2 Turing theory for topological signals

to flow across links connecting couples of node; in some cases, links themselves are
dynamical entities, whose behavior influences the local reactions but can also be in
turn influenced by the latter. We derive the conditions under which stable Turing pat-
terns can be observed, and we highlight the differences between the dynamics with and
without cross-diffusion terms. The analytical results derived in general are presented
with applications to square lattices with periodic boundary conditions and validated by
numerical simulations on a benchmark network.

The paper is structured as follows. In Section II we outline a general theoretical
framework for investigating Turing patterns of topological signals, and we distinguish
the case in which there is only a Dirac reaction term while diffusion is dictated by
Hodge-Laplacians and the case in which we introduce also Dirac cross-diffusion terms
describing diffusion processes among signals defined on different dimensions. In Secs.
III and IV we focus on topological signals defined on nodes and links of the network,
and we define the conditions for the onset of the Turing instability when only a Dirac
reaction term is considered (Section III) and when additionally Dirac cross-diffusion
terms are introduced (SectionIV). The theoretical insights gained in Section III and IV
are tested and validated on a benchmark model. Finally, in Section V we provide the
concluding remarks. The paper is enriched with a few Appendixes (Supplementary
Materials) providing background information on algebraic topology, some details of
the derivations discussed in the main body of the work, and simulations results on Tur-
ing patterns of topological signals defined on nodes and links of a square lattice with
periodic boundary conditions.

7.2 Turing theory for topological signals
We are interested in studying reaction-diffusion systems defined on simplicial and cell
complexes (for an introduction to such topological structures and their main proper-
ties see SM 7.6). This entails defining appropriate reaction and diffusion terms. In a
network, the reaction term is localized on nodes, where the interacting species can be
found. When the interacting species are associated with simplices of different dimen-
sion, a Dirac reaction term that uses the Dirac operator is required to allow topological
signals of different dimension to interact. In a network, concentrations can flow from
one node to one of its neighbors, passing through links, namely the structure one dimen-
sion above. A similar idea can be applied in simplicial complexes: quantities defined
on links can flow among links by using the faces they share, hence again the structures
one dimension above. There is, however, a second possibility: they can use structures
one dimension below, i.e., nodes, to communicate. Such processes can be described
by introducing the Hodge-Laplacian operator, which describes uncoupled diffusion of
topological signals of any given dimension. However, Hodge-Laplacians describe diffu-
sion terms that act on topological signals of any given dimension separately. Requiring
a diffusive coupling of topological signals of different dimension can only be achieved
by considering Dirac cross-diffusion terms which involve odd powers of the Dirac op-
erator. Specifically, this includes cross-diffusion terms that are linear or cubic in the
Dirac operator.
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Figure 7.1: We schematically represent the dynamical state of a simplicial complex encoded by the vector
ΦΦΦ = (u,v,w)⊤ and the vector ΨΨΨ = DΦΦΦ = (û, v̂, ŵ)⊤. In particular we represent topological signals and
projected topological signals supported on 0, 1 and 2-simplices respectively in panels a), b), and c). The
Dirac operator D projects the topological signals of each dimension either one dimension up or one dimension
down, and it leads to projected components defined on nodes (û = B1v, links v̂ = B2w+B⊤

1 v, and triangles
ŵ = B⊤

2 v). Here û = B1v describes the link signals projected on the nodes; B⊤
1 u indicates the irrotational

component of v̂ and describes the projection of the node signals on the links; B2w indicates the solenoidal
component of v̂ and describes the projection of the triangle signals on the links; and finally B⊤

2 v describes the
projection of the link signals on the triangles.

Here we propose a theory of Turing instability for topological signals and to this
end we consider simplicial complexes and cell complexes of dimension d and species
living on nodes, links, triangles, etc. In the present terminology, the concentration of the
species living on nodes is a 0-topological signal, while the concentration of the species
defined on links is a 1-topological signal, etc. The dynamical state of the structures we
are considering is described by a vector Φ, which is the direct sum of all topological
signals defined on the simplicial or cell complex. For example, in a (d = 2)-dimensional
cell complex with N0 nodes, N1 links, and N2 2-dimensional cells (such as triangles,
squares, pentagons, etc.), we have

Φ =




u
v
w


 (7.2.1)

where u ∈ RN0 ,v ∈ RN1 ,w ∈ RN2 are the vectors of concentration of species defined on
nodes, links and 2-dimensional cells respectively. These signals can only interact with
each other when we consider their projection to simplices of one dimension up or one
dimension down. This projection is performed by applying the Dirac operator D to Φ

obtaining new (projected) signals (for the definition of the Dirac operator see SM 7.6),
i.e.,

Ψ = DΦ =




û
v̂
ŵ


 (7.2.2)
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7.2 Turing theory for topological signals

where û ∈ RN0 , v̂ ∈ RN1 , ŵ ∈ RN2 are defined on nodes, links and 2-dimensional cells
respectively. In a general cell complex of dimension d = 2, the Dirac operator D is a
M×M matrix with M = N0+N1+N2 which can be expressed in terms of the incidence
matrices B1,B2 (defined in SM 7.6) and their transpose as

D =




0 B1 0
B⊤

1 0 B2
0 B⊤

2 0


 (7.2.3)

We therefore obtain that the projected signal Ψ is given by

Ψ = DΦ =




û
v̂
ŵ


=




B1v
B⊤

1 u+B2w
B⊤

2 v


 (7.2.4)

where B⊤
1 u and B2w describe the irrotational part and the solenoidal part of the link

signal v̂ respectively. Therefore, the dynamical state of the cell complex comprises both
the topological signals Φ and their projections Ψ =DΦ (see Figure 7.1 for a schematic
illustration). Note that the Dirac operator can be seen as the “square root" of the higher-
order or Hodge-Laplacian operator L as

L = D2 =




L0 0 0
0 L1 0
0 0 L2


 (7.2.5)

where L0 = B1B⊤
1 ,L1 = B⊤

1 B1 +B2B⊤
2 and L2 = B⊤

2 B2 are the Hodge-Laplacians act-
ing on topological signals of dimension zero, one, and two respectively, and describing
higher-order diffusion (for details see SM 7.6) [260, 265, 266]. In particular, in the
case of a simplicial complex we have that L0 describes diffusion from nodes to nodes
through links, L1 describes diffusion from links to links either through nodes or through
triangles and, L2 describes diffusion from triangles to triangles through links. Here we
propose a Turing instability theory for topological signals where the topological signals
ΦΦΦ can be coupled to the projected topological signals Ψ either through a Dirac reaction
term or through a Dirac diffusion term or both. In the presence of a Dirac reaction term
and a Laplacian diffusion term, the reaction-diffusion process of a topological signal is
defined as

Φ̇ = F(Φ,DΦ)− γL Φ (7.2.6)

where F(Φ,DΦ) is the Dirac reaction term coupling each topological signal of dimen-
sion n with the nearby topological signals of dimension n+ 1 or n− 1 projected to
dimension n. In particular F(Φ,DΦ) here indicates a generic nonlinear function, as-
sumed to be applied component-wise on the vectors. For instance for d = 2 we have

F(Φ,DΦ) =




f0(u,B1v)
f1(v,B⊤

1 u+B2w)
f2(w,B⊤

2 v).


 (7.2.7)

where fn(x,y) are nonlinear functions, such that
f1(u,B1v)= ( f1(u1,(B1v)1), . . . , f1(uN0 ,(B1v))N0) etc. The matrix γ in Equation (7.2.6)

131



7 - Diffusion-driven instability of topological signals

is a diagonal matrix,

γ =




D0 0 0
0 D1 0
0 0 D2


 (7.2.8)

where Dn is the diffusion constant acting on topological signals of order n. Therefore,
Equation (7.2.6) describes topological signals defined on the cells of the cell complex
that react with the projection of the topological signals defined in different dimension
while undergoing higher-order diffusion.

Note that from the dynamical system given by Equation (7.2.6), one can derive the
dynamics of the projected signal Ψ = DΦ which is given by

Ψ̇ = F̂(Φ,Ψ)−DγDΨ (7.2.9)

where F̂(Φ,Ψ) = DF(Φ,Ψ). In the case of diffusion constants independent on the
order of the simplices, i.e., for Dk = D for all k = 0,1,2, this equation reduces to

Ψ̇ = F̂(Φ,Ψ)− γL Ψ (7.2.10)

Therefore, in this case the dynamics of the projected signal is the same as the dynamics
of the signal Φ (Equation (7.2.6)) provided that F(Ψ,Φ) = F̂(Φ,Ψ) = DF(Φ,Ψ) as
for instance in the case of square lattices with periodic boundary conditions.

We now consider Dirac cross-diffusion terms enforcing diffusion of signals across
different dimensions. In particular, we consider including a linear or a cubic Dirac
cross-diffusion term, which are proportional to a linear or cubic power of the Dirac
operator, respectively. Let us observe that this is a natural choice, since as already ob-
served, the second power of the Dirac operator is a diagonal matrix containing Hodge-
Laplacians on its diagonal. In the case of a linear Dirac cross-diffusion term, the
reaction-diffusion dynamics take the form

Φ̇ = F(Φ,DΦ)− γ̃DΦ− γL Φ (7.2.11)

where γ̃ is the diagonal matrix of cross-diffusion constants D̃n,

γ̃ =




D̃0 0 0
0 D̃1 0
0 0 D̃2


 (7.2.12)

In this case, the corresponding projected signals Ψ = DΦ obey the dynamical system
of equations

Ψ̇ = F̂(Φ,Ψ)−D γ̃Ψ−DγDΨ (7.2.13)

If the diffusion and cross-diffusion constants are the same and γ and γ̃ are proportional
to the identity matrix, then we have that both γ and γ̃ commute with the Dirac operator
D and the dynamics of projected signals becomes

Ψ̇ = F̂(Φ,Ψ)− γ̃DΨ− γL Ψ (7.2.14)

Therefore, in this case too, as long as F̂(Φ,ψ) = DF(Φ,Ψ) can be written as the reac-
tion term F(Φ,Ψ) (as happens for square lattices with periodic boundary conditions, for
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7.2 Turing theory for topological signals

example), the equation for the signal is equal to the equation for the projected signals.
In the case of a cubic Dirac cross-diffusion term, we have instead that

Φ̇ = F(Φ,DΦ)− γL Φ− γ̃D3
Φ (7.2.15)

The corresponding projected dynamics read,

Ψ̇ = F̂(Φ,Ψ)−DγDΨ−D γ̃L Ψ (7.2.16)

which reduces to
Ψ̇ = F̂(Φ,Ψ)− γL Ψ− γ̃D3

Ψ (7.2.17)

when, again, both γ and γ̃ are proportional to the identity matrix.
In all the considered cases, the Turing mechanism requires the presence of a stable

homogeneous equilibrium once the diffusion part is silenced. Such a state turns out
to be unstable for suitable values of the diffusion coefficients and conditions on the
underlying topology. Eventually, arbitrarily small initial perturbations around the ho-
mogeneous state will grow exponentially and ultimately return a pattern, i.e., a spatially
heterogeneous solution.

When dealing with topological signals, a necessary condition is that the homoge-
neous state vector h = (1, . . . ,1)⊤ is in the kernel of the Dirac operator h ∈ ker(D) or,
equivalently,

Dh = 0 (7.2.18)

In the conventional node-to-node diffusion case, in which only the node signal is con-
sidered, such a condition is always satisfied for a connected network. However, when
the state vector includes both nodes and links signals, Equation (7.2.18)then requires

B1h = 0 and B⊤
2 h = 0 (7.2.19)

where h = (1,1 . . . ,1)⊤ is a homogeneous N1-dimensional column vector defined on
the links of the network.

By assuming to have a 1-simplicial complex, (i.e., a network) we discard the pres-
ence of 2-dimensional cells (such as triangles, squares, pentagons,etc.). In that case
B2 = 0, and the second of the conditions in Equation (7.2.19) is trivially satisfied. Let
us now focus on the remaining condition. Tackling this problem becomes much easier
by noticing that the i-th row of the boundary operator is equal to minus the divergence
of node i. Such equivalence, proven in [216], can be exploited to construct a simplicial
complex with the wanted property.

By requiring that every node has an equal amount of in-coming and out-going links,
we thus ensure that a homogeneous signal, namely an edge-flow directed as indicated
by the links orientation(1), has zero divergence. To sum up, the following analysis
grounded on the conditions given in Equation (7.2.19), holds for every network (1-
dimensional cell complex) whose nodes have an even number of connected edges. No-
table examples of these networks are square lattices with periodic boundary conditions.

(1)Let us stress that we are dealing with undirected network and thus the incoming / outgoing edges are
defined with respect to the ordering of the simplicial or cell complex.
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Note that the analogous condition applying to 2-dimensional cell complexes is
much more demanding. In particular no 2-dimensional simplicial complex admits a
homogeneous eigenvector in the kernel of the Dirac operator. However it was recently
shown [258] that 2-dimensional cell complexes built from square lattices with periodic
boundary conditions obey this property. More generally it is possible to show that d-
dimensional cell complexes built from d-dimensional square lattices obey this property
for any dimension d.

7.3 Interacting topological signals of nodes and links
with Dirac reaction term

7.3.1 Conditions for the onset of the Turing instability
In this section we focus on reaction-diffusion systems involving topological signals
defined on the nodes and on the links of a network. Our goal is to derive the dispersion
relation, roughly speaking the largest Lyapunov exponent of the homogeneous state
considered as a function of the model parameters and of the topological structure. This
allows us to determine the conditions for the Turing instability onset in the presence
exclusively of a Dirac reaction term that couples the two topological signals of different
dimension, while the diffusion part is modeled with the relevant Hodge-Laplacians ,
i.e., driven by Equation(7.2.6) which we rewrite here for convenience

Φ̇ = F(Φ,DΦ)− γL Φ (7.3.1)

In a network we have Φ = (u,v)⊤ and F(Φ,DΦ) =
(

f (u,B1v),g(v,B⊤
1 u)
)⊤ where

f and g are two generic nonlinear functions, assumed to be applied component-wise on
the vectors, i.e., f (u,B1v) = ( f (u1,(B1v)1), . . . , f (uN0 ,(B1v))N0). Here γ reduces to the
(N0 +N1)× (N0 +N1) block diagonal matrix with structure

γ =

(
D0IN0 0

0 D1IN1

)
(7.3.2)

where D0 and D1 indicate the diffusion constants of the species defined on nodes and
links respectively and INa indicates the Na ×Na identity matrix, a = 0,1. The Dirac
operator D and the Hodge-Laplacian operator L are defined as the (N0 +N1)× (N0 +
N1) matrices with block structure

D =

(
0 B1

B⊤
1 0

)
, L = D2 =

(
L0 0
0 L1

)
(7.3.3)

If follows that the dynamics driven by Equation (7.3.1) can be rewritten explicitly as

u̇ = f (u,B1v)−D0 L0 u

v̇ = g
(

v,B⊤
1 u
)
−D1 L1 v

(7.3.4)

where D0 > 0 (resp. D1 > 0) is the diffusive coefficient of species u (resp. v). For
instance, resuming the biological example from the introduction where neurotransmit-
ters concentration and neuronal activity are schematized by topological signals, we can
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think of v as the synaptic signal, and of u as a neuron signal. In this setting the Dirac
operator is capable of properly connecting the lower and higher dimensional signals,
by acting as an effective and simple dynamical operator. In the spirit of Turing the-
ory, let us silence the diffusive terms and look for a homogeneous solutions, i.e., the
existence of u∗ = u0h and v∗ = v0h, for some constants u0 and v0. Because of the as-
sumption on the underlying simplex, we have B1v∗ = 0 and B⊤

1 u∗ = 0. The existence
of a homogeneous fixed point reverberates on the structure of f ,g such that

0 = f (u∗,0) and 0 = g(v∗,0) (7.3.5)

which in turn yields that u0 and v0 are solutions of f (u0,0) = g(v0,0) = 0.
To study the stability feature of the homogeneous equilibrium, we consider a homo-

geneous perturbation about the latter, δu = u−u∗ and δv = v− v∗. Hence by lineariz-
ing (7.3.4), we obtain

δ u̇ = ∂u f (u∗,0)δu

δ u̇ = ∂vg(v∗,0)δv
(7.3.6)

where we used again the conditions h = (1, . . . ,1)⊤ ∈ kerB1 and h ∈ kerB⊤
1 to remove

some terms in the previous equation. The condition for the stability is thus

∂u f (u∗,0)< 0 and ∂vg(v∗,0)< 0 (7.3.7)

Let us observe that Equation (7.3.7) implies that both species are self inhibitors, this
is the result of the peculiar form of Equation (7.3.4), and of the assumption B1v∗ = 0
and B⊤

1 u∗ = 0 which ultimately decouples the dynamics of the two species in the linear
regime. This is at odd with the classical Turing instability where patterns can never
emerge in the inhibitor-inhibitor setting, unless some additional assumptions are made
[49].

We now focus on the stability of such equilibrium once subjected to heterogeneous
perturbations, hence not in the kernels of L0 and L1. Let us linearize Equation (7.3.4)
about the equilibrium solution, by obtaining

δ u̇ = (∂u f )δu+(∂B1v f )B1δv−D0 L0 δu

δ v̇ = (∂B⊤
1 ug)B⊤

1 δu+(∂vg)δv−D1 L1 δv
(7.3.8)

where ∂B1v f and ∂B1v f denote the scalars indicating the derivative of f , g with respect
to their second argument, (i.e., the projected higher and lower dimensional signal re-
spectively) calculated at the homogeneous stationary solution.

We now note that the network Laplacians L0 = B1B⊤
1 and L1 = B⊤

1 B1 are isospec-
tral, i.e., they have the same non-zero spectrum. The N̂ non-zero eigenvalues Λk

0 with
1 ≤ k ≤ N̂ of L0 and L1 can be expressed as the square of the singular values bk of B1,
i.e., Λk

0 = b2
k . The eigenvectors ψm

0 and ψm
1 of L0 and L1 can be adopted as a basis to

perform the singular value decomposition of B1. On a connected network these eigen-
vectors include the eigenvectors ψk

0 and ψk
1 corresponding to the non-zero eigenvalue

Λk
0 = Λk

1 = b2
k , the eigenvector φ h

0 = (1, . . . ,1)⊤ of L0 associated to the zero eigenvalue
Λ0 = 0 and the eigenvectors ψ l

1 associated with the zero eigenvalues Λl
1 = 0 of L1. In-

terestingly the eigenvectors ψk
0 and ψk

1 associated to the eigenvalue Λk
0 = Λk

1 = b2
k > 0
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obey
B1ψ

k
1 = bkψ

k
0 B⊤

1 ψ
k
0 = bkψ

k
1 (7.3.9)

Using these results, the signals δu and δv, as well as the projected signals δ û =
B1δv and δ v̂ = B⊤

1 δu, can be projected onto the basis of the eigenvectors ψm
n of Ln

(with n= 0,1 for the analyzed case) corresponding to the non-zero eigenvalues Λk
0 = b2

k .
We obtain

⟨ψk
0 ,δu⟩= δ ûk ⟨ψk

1 ,δv⟩= δ v̂k (7.3.10)
⟨ψk

0 ,B1δv⟩= bkδ v̂k ⟨ψk
1 ,B

⊤
1 δu⟩= bkδ ûk (7.3.11)

where ⟨·, ·⟩ denotes the scalar product. By using Equation (7.3.10) and Equation (7.3.11),
we can project in Equation (7.3.8) the equations for δu onto ψk

0
⊤ and the ones for δv

on ψk
1
⊤, with k such that Λk

0 = Λk
1 = b2

k ̸= 0, to eventually obtain:

dδ ûk

dt
= (∂u f )δ ûk +(∂B1v f )bkδ v̂k −D0b2

kδ ûk

dδ v̂k

dt
= (∂vg)δ v̂k +

(
∂B⊤

1 ug
)

bkδ ûk −D1b2
kδ v̂k

(7.3.12)

It is interesting to notice that the leftover modes are those associated to the eigen-
vectors spanning the kernel space of both L0 and L1. Since in the relevant case of a
connected network, the eigenvector associated to the zero eigenvalue is the homoge-
neous one, i.e it is aligned to the stationary state u∗ of the nodes, it follows that δu
will never have a component along this eigenvector. However, we need to consider the
projection of δv onto the eigenvectors ψ l

1 associated with the zero eigenvalues of L1,
by obtaining

dδ v̂l

dt
= (∂vg)δ v̂l (7.3.13)

Hence these modes are always stable due to the second condition in Equation (7.3.7).
The instability is realized if the linear system (7.3.12) admits at least one unstable

mode; more precisely we have to compute the eigenvalues of the matrix

Jk =

(
∂u f −D0b2

k bk∂B1v f
bk∂B⊤

1 ug ∂vg−D1b2
k

)
(7.3.14)

and determine if there is k for which the associated eigenvalue, λ (bk), has a positive real
part. Let us notice that the latter is usually named dispersion relation in the literature.
The eigenvalues of Jk can be obtained by solving

λ
2 +λΓ1

(
b2

k
)
+Γ2

(
b2

k
)
= 0 (7.3.15)

where Γ1
(
b2

k

)
and Γ2

(
b2

k

)
are given by

Γ1
(
b2

k
)

= b2
k(D1 +D0)− (∂vg+∂u f ) (7.3.16)

Γ2
(
b2

k
)

= a2b4
k +a1b2

k +a0 (7.3.17)
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with
a2 = D0D1

a1 =−
(

D1∂u f +D0∂vg+∂B⊤
1 ug ∂B1v f

)

a0 = ∂u f ∂vg

(7.3.18)

Since both the leading coefficient of Equation (7.3.15) and Γ1(b2
k) are positive, the

existence of a solution with a positive real part requires that Γ2(b2
k) < 0 for some k.

Let us observe that Γ2(b2
k) given by Equation (7.3.17) is a parabola in b2

k with positive
concavity, a2 = D0D1 > 0, and positive constant term, a0 = ∂u f ∂vg > 0. Therefore, to
satisfy the condition Γ2(bk)< 0 with a real bk, a necessary condition is

D0∂vg+D1∂u f +∂B⊤
1 ug ∂B1v f > 0 (7.3.19)

By using these conditions we can guarantee that Γ2(b2
k)< 0 if the minimum of the

parabola is negative. A straightforward computation returns the condition

(
D0∂vg+D1∂u f +∂B⊤

1 ug∂B1v f
)2

> 4D0D1∂u f ∂vg (7.3.20)

Let us observe that differently from the classical Turing framework, such condition
depends on the diffusive coefficients separately and not on their ratio.

In conclusion, we have hence found the conditions for the onset of Turing instability
for topological signals whose dynamics are described by Equation (7.3.4), namely the
stability of the homogeneous solution given by Equation (7.3.7) and the existence of
at least one unstable mode according to Equations (7.3.19) and (7.3.20). Moreover

the roots of Equation (7.3.15) are given by λ1,2 = −Γ1 ±
√

Γ2
1 −4Γ2, but Γ1 > 0 and

Γ2 < 0, and thus λ1,2 are real numbers. Consequently, the corresponding patterns are
stationary.

Let us now note that as expected, when the topological signals on nodes and links
are not coupled by the Dirac reaction term, i.e., when

F(Φ,DΦ) = F(Φ) =

(
f (u)
g(v)

)
(7.3.21)

we can never have Turing patterns. In fact in this case we would have ∂B⊤
1 ug= 0,∂B1v f =

0 and Equation (7.3.19) cannot be satisfied together with Equation (7.3.7). A major re-
sult of this study is that the Turing instability of the topological signals of a network will
never be localized only on nodes or only on links but will always involve both nodes and
links signals. Moreover, we also obtain that if the original signals Φ = (u,v)⊤ display
a Turing pattern, the projected dynamics of DΦ = (B1v,B⊤

1 u)⊤ also do.

7.3.2 Numerical results on a benchmark network
The aim of this section is to validate the above results with a numerical study. To
focus on the novelty of the framework and to remove unnecessary complicated features,
we will build a toy model with cubic nonlinearities to test our theory (see SM 7.7
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7 - Diffusion-driven instability of topological signals

for additional results on topological Turing patterns on the square lattice with periodic
boundary conditions). By keeping the same notation as before, i.e., u is the signal on
the nodes and v that on the links, the equations of our model read

u̇ =−au−bu3 + cB1v−D0 L0 u

v̇ =−αv−βv3 + γB⊤
1 u−D1 L1 v (7.3.22)

where a,b,c,α,β ,γ are non-negative real parameters.
System (7.3.22) admits (u0,v0) = (0,0) as equilibrium point. By computing the

Jacobian of the system evaluated at this point, we get

J0 =

(
∂u f ∂B1v f

∂B⊤
1 ug ∂vg

)
=

(
−a c
γ −α

)

The system exhibits a Turing instability if the above parameters satisfy the condi-
tions (7.3.7), (7.3.19) and (7.3.20), that we now rewrite

a > 0 α > 0, cγ > αD0 +aD1 (7.3.23)
(cγ −αD0 −aD1)

2 > 4D0D1aα (7.3.24)

and the simplicial complex is such that h ∈ kerL1.
A simple example of a 1-dimensional simplicial complex satisfying the latter con-

dition is provided by a network of 12 nodes and 16 links, whose nodes degrees are
even and with closed loops. Note that the latter is chosen to be a subset of a square
lattice. In Figure 7.2 we report the result of numerical simulation clearly showing the
emergence of Turing patterns, namely stationary equilibria where the concentrations
vary across nodes and links. Moreover, the system state is far from the homogeneous
solution (u0,v0) = (0,0). In Figure 7.2.a the nodes and links are colored according to
the asymptotic concentration of respectively u and v and we can thus have a geometrical
view of the emerging pattern. On the other hand a dynamical view is presented in Fig-
ure 7.2.b− c where we report the nodes concentration, ui(t), and links concentration,
vi(t), as a function of time, and we can observe the deviation from the homogeneous
solution and the stationary asymptotic behavior of the solution. From this figure one
can clearly appreciate the onset of the instability at short time because of the Turing
condition, namely the positive dispersion relation (see Figure 7.3), pushing the initial
conditions far from the equilibrium state (u0,v0) = (0,0). Interestingly we observe that
the projected dynamics also display a Turing pattern (see Figure7.2.d and Figure7.2.e).

To have a global view, we report in Figure 7.3 the Turing region in the plane (c,γ),
i.e., the pairs for which the Turing instability is realized. In the main panel (B) we show
the maximum of the real part of the dispersion relation as a function of c and γ by using
a color code, white corresponding to the impossibility of Turing instability while red
to yellow are associated with the onset of the instability. The left panels, (A1), (A2)
and (A3), correspond to a choice for which Turing patterns cannot emerge as confirmed
by the negativity of the dispersion relation (A1) and the vanishing of the node and link

amplitude (A2 and A3). The latter is defined by Anode(t) =
√

∑
N0
i=1(ui(t)−u0)2 for

the nodes and Alink(t) =
√

∑
N1
j=1(v j(t)− v0)2 for the links, where u0 (resp. v0) is the
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7.3 Interacting topological signals of nodes and links with Dirac reaction term

Figure 7.2: a) Turing patterns for species defined on nodes and on links described by model (7.3.22) on a
network satisfying the conditions for the existence of a homogeneous equilibrium. In panels b) and c) we
depict time series of the two species u and v on the nodes and the links, respectively, while panels d) and e)
show the time series of the projection of the two species with the action of the boundary operator B1. The
parameters are a = α = b = β = γ = D0 = D1 = 1 and c = 6. The perturbation defining the initial condition,
is ∼ 10−2.

nodes (resp. links), homogeneous equilibrium value. The right panels are associated
with parameters inside the Turing region, and indeed the dispersion relation assumes
positive values (C1) and the node and link amplitude are strictly positive (C2 and C3).
Let us observe that the amplitude can be thus considered as an order parameter capable

139



7 - Diffusion-driven instability of topological signals

of distinguishing between the presence or the absence of patterns.

Figure 7.3: Turing region in the parameters space (c,γ). In the main panel (B), we report the region of pa-
rameters for which the Turing instability emerges; having fixed a = α = b = β = D0 = D1 = 1 we show the
maximum of the real part of dispersion relation as a function of c and γ , by using a color code (yellow corre-
sponding to large values, red to small but positive ones and white to negative ones). The black solid curves is
given by cγ =

√
4D0D1aα +αD0 +aD1 (see Equation (7.3.24)). Panels A1), A2) and A3) correspond to the

choice (c,γ) = (2,2) that lies outside the Turing region; one can observe that the dispersion relation (panel
A1) is negative and indeed patterns cannot develop as shown by the node (resp. link) amplitude (panel A2)
resp. A3) decaying to 0. Panels C1, C2 and C3) show similar results but for (c,γ) = (6,2) inside the Turing
region; the dispersion relation (C1) reaches positive values and the node (resp. link) amplitude stabilizes far
from zero (see panels C2 and C3).

Figure 7.4: We report the distribution of the node (a) and link (b) amplitude of the Turing patterns obtained by
numerically simulating 5000 times system (7.3.22) with the parameters used in Figure 7.2 and by changing
the initial conditions.

Having fixed the topology of the support and the model parameters, nodes and links
amplitudes depend on the initial conditions and the peculiar dynamical path followed
by the system to settle into the pattern. In Figure 7.4 we report the distribution of Anode
and Alink once we repeat several times the numerical simulations by changing the initial
conditions. We can observe that both distributions are peaked at some value and the
dispersion is relatively small, however let us stress that the link amplitude distribution
is very skewed.
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7.4 Interacting topological signals of nodes and links with Dirac cross-diffusion term

7.4 Interacting topological signals of nodes and links
with Dirac cross-diffusion term

We now consider the dynamics including the Dirac cross-diffusion terms. In particular
we first cover the linear cross-diffusion case and leave the analysis of the cubic cross-
diffusion term to a next section.

7.4.1 Cross-diffusion term linear in the Dirac operator
Topological signals on nodes and links can be coupled by a linear cross-diffusion term,
leading to the reaction-diffusion dynamics

Φ̇ = F(Φ,DΦ)− γ̃DΦ− γL Φ (7.4.1)

where the dynamical state of the network is captured by the vector Φ = (u,v)⊤. The
diagonal (N0 +N1)× (N0 +N1) matrix γ̃ of cross-diffusion constants is here chosen to
have block structure

γ̃ =

(
D01IN0 0

0 D10IN1

)
(7.4.2)

In particular the coupled dynamics of the topological signals u and v can be re-written
as

u̇ = f (u,B1v)−D01B1v−D0 L0 u

v̇ = g
(

v,B⊤
1 u
)
−D10B⊤

1 u−D1 L1 v
(7.4.3)

In SM 7.8 we prove that system (7.4.1) can be mapped onto (7.3.1) and thus results
from the previous section can be used to derive the conditions under which the reaction-
diffusion dynamics with the linear cross-diffusion term display Turing patterns. These
conditions are the stability of the homogeneous solution (7.3.7) and the existence of at
least one unstable mode that is guaranteed by the following two conditions to hold true:

A = D0∂vg+D1∂u f +(∂B⊤
1 ug−D01)(∂B1v f −D10)> 0

A2 > 4D0D1∂u f ∂vg (7.4.4)

Let us stress a major consequence of these conditions, i.e., the cross-diffusion term
is the driver for the instability. Indeed the cross-diffusion term enforced through the
Dirac operator allows the onset of Turing patterns also in situations where patterns can
never emerge if we silence cross-diffusion. In particular, we can observe Turing patterns
in the presence of Dirac-type crossed-diffusion patterns, also when the reaction term
only depends on Φ but not on DΦ, i.e.,

F(Φ,DΦ) = F(Φ) =

(
f (u)
g(v)

)
(7.4.5)

as long as Equation (7.3.7) and Equations (7.4.4) hold which can occur as long as
D01D10 > 0. Let us recall that, as discussed in the previous section, under the latter
assumption (7.4.5), Turing patterns cannot develop in absence of linear cross-diffusion
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7 - Diffusion-driven instability of topological signals

terms. Indeed if D01 = D10 = 0, the variables ui and vi in system (7.4.3) become de-
coupled and thus, because of condition (7.3.7) and the non-positivity of the spectra of
L0 and L1, the homogeneous equilibrium is stable also with respect to heterogeneous
perturbations.

Let us conclude this section by observing that Turing instability can also emerge for
systems where the coupling is realized solely with the Dirac operator, i.e., there is no
need to include the two Hodge-Laplacian matrices, L0 and L1 in Equation (7.4.3). This
claim can be proven by simply setting D0 = D1 = 0 into Equation (7.4.4) and requiring
thus

(∂B⊤
1 ug−D01)(∂B1v f −D10)> 0

the second relation in (7.4.4) being automatically satisfied.

7.4.2 Cross-diffusion term cubic in the Dirac operator
Cross-diffusion terms for topological signals can be also implemented with a cubic
Dirac operator in the reaction-diffusion dynamics

Φ̇ = F(Φ,DΦ)−L (γΦ+ γ̃DΦ) (7.4.6)

which can also be written in terms of the signals u of the nodes and the signals v of the
links as

u̇ = f̃ (u,B1v)−L0(D0u+D01B1v)

v̇ = g̃
(

v,B⊤
1 u
)
−L1(D1v+D10B⊤

1 u)
(7.4.7)

Starting from the existence of a homogeneous equilibrium (u∗, v∗) that we assume to be
stable with respect to homogeneous perturbations, we can determine the conditions for
the onset of Turing instability. We thus consider perturbations about such equilibrium,
δu = u−u∗, δv = v− v∗, whose evolution is given by the linearized system

δ u̇ = (∂u f )δu+(∂B1v f )B1δv−L0(D0δu+D01B1δv)

δ v̇ = (∂B⊤
1 ug)B⊤

1 δu+(∂vg)δv−L1(D1δv+D10B⊤
1 δu)

(7.4.8)

Considering the stability of perturbations within the kernel of the Laplacians leads to
the stability conditions given by Equation (7.3.7), because of the assumption B1h =
B⊤

1 h = 0 where h = (1, ...,1)⊤.
On the other hand, by considering a generic perturbation and projecting it on the

Laplacian eigenbasis, we obtain a new Jacobian matrix, Jk

Jk =

(
∂u f −D0b2

k bk∂B1v f −D01b3
k

bk∂B⊤
1 ug−D10b3

k ∂vg−D1b2
k

)
(7.4.9)

whose spectrum determines the stability of the heterogeneous perturbation and thus the
possible onset of the instability.

The eigenvalues of Jk are determined by solving

det

(
∂u f −D0b2

k −λ bk∂B1v f −D01b3
k

bk∂B⊤
1 ug−D10b3

k ∂vg−D1b2
k −λ

)
= 0 (7.4.10)
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which can be rewritten as

λ
2 +λ Γ̃1

(
b2

k
)
+ Γ̃2

(
b2

k
)
= 0 (7.4.11)

where Γ̃1(b2
k) = Γ1(b2

k) is given by Equation (7.3.16) and is then always positive if the
homogeneous equilibrium is stable. In this scenario Γ̃2(b2

k) is a cubic polynomial in b2
k ,

given by
Γ̃2(b2

k) = ã3b6
k + ã2b4

k + ã1b2
k + ã0 (7.4.12)

with

ã3 = −D01D10, (7.4.13)
ã2 = (D0D1 +D01∂B⊤

1 ug+D10∂B1v f ) (7.4.14)

and ã1 = a1, ã0 = a0. As for the case without cross-diffusion, also in this setting, only
stationary Turing patterns can be observed.

We consider exclusively the situation in which we have D01D10 < 0 which enforces
the stability of modes corresponding to large values of Λ0. In this case, the conditions
to observe stationary Turing patterns are, in addition to (7.3.7), that one of the two
following inequalities needs to be satisfied

ã2 = D0D1 +D01∂B⊤
1 ug+D10∂B1v f < 0

ã1 = −
(

D1∂u f +D0∂vg+∂B⊤
1 ug ∂B1v f

)
< 0 (7.4.15)

together with
2D0D1K++D2

0D2
1 +K2

− > 0 (7.4.16)

where K± is given by
K± = D01∂B⊤

1 ug±D10∂B1v f (7.4.17)

(see SM 7.9 for the derivation of these results).
Interestingly, from this study it emerges that for a cubic Dirac cross-diffusion term,

as long as D01D10 < 0 we cannot observe the onset of the Turing instability for a reac-
tion term of the type F(Φ,DΦ) = F(Φ). Indeed in this case we have ∂B⊤

1 ug = 0 and
∂B1v f = 0 and hence neither one of the conditions (7.4.15) can be satisfied when the
stability condition (7.3.7) holds.

7.4.3 Numerical results with a cubic Dirac cross-diffusion term
Let us now numerically validate the above analysis of the reaction-diffusion system
with cubic Dirac cross-diffusion terms. By considering the benchmark model (7.3.22)
with the addition of cubic Dirac cross-diffusion terms, we obtain

u̇ = −au−bu3 + cB1v−L0(D0u+D01B1v)

v̇ = −αv−βv3 + γB⊤
1 u−L1(D1v+D10B⊤

1 u) (7.4.18)

Let us assume conditions (7.3.7), (7.4.15) and (7.4.16) to hold true, and, to be con-
crete, let us consider the case D01 < 0 and D10 > 0. Assuming once again to work with
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Figure 7.5: a) Turing patterns for the species on the nodes and on the links described by model (7.4.18) on a
network satisfying the conditions for the homogeneous equilibrium; b) dispersion relation: in blue we depict
the continuous curve, computed by replacing the discrete parameter b2

k with a continuous variable, while the
cyan dots are the actual dispersion relation, where now the onset of the Turing instability is a function of the
(real) spectrum of L0, i.e., computed by using the discrete values of b2

k . In panels c) and d) we depict time
series of the two species u and v on the nodes and the links, respectively, while panels e) and f ) show the
time series of the projection of the two species with the action of the boundary operator B1. The parameters
are a = 0.8, α = 1.3, b = 1, β = 0.5, c = 8, γ = 2, D0 = 0.5, D1 = 1, D01 =−1.5 and D10 = 0.4; the initial
perturbation is ∼ 10−2.
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Figure 7.6: Panel a) shows a simplicial complex of dimension 2, with simplicial orientation induced by a
labeling of the nodes. The boundary of the 2-simplex [1,2,3] highlighted in panel Panel b) is shown in panel
c)
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7.5 Conclusions

the simplicial complex used in the previous section, then Turing patterns can emerge
as shown in Figure 7.5.a, where nodes and links, colored according to the asymptotic
values of ui and vi, clearly show a dependence of the solution on the latter ones. In
Figure 7.5.c− e we report the temporal evolution of ui(t), vi(t) and one can clearly
appreciate how far from the homogeneous state they are; a similar result can be ob-
served for their projections B⊤

1 u and B1v. Finally, the dispersion relation is presented
in Figure 7.5.b to support the claim of short time instability.

7.5 Conclusions
In this paper we have formulated reaction-diffusion dynamics of topological signals
defined on nodes, links, and higher-order simplices of simplicial complexes or cells of
cell complexes. In this framework, each species of reactants lives on simplices or cells
of a given dimension, for instance in a simplicial complex of dimension d = 2 one would
consider three kind of species living on nodes, links and triangles. Species associated
to simplices of different dimension can be coupled thanks to the Dirac operator which
projects a signal defined on n-dimensional simplices either one dimension up or one
dimension down. In the proposed reaction-diffusion dynamics, the coupling can then
be enforced either by a Dirac reaction term or/and Dirac cross-diffusion terms. After
discussing the general framework valid for simplicial and cell complexes of arbitrary
dimension, we focus on the reaction-diffusion dynamics of topological signals defined
on networks, i.e., coupling the dynamics between links and nodes, and we establish
conditions for the onset of the Turing instability. The latter conditions are derived when
signals of different dimension are only coupled with the Dirac reaction term, as well as
when they are also coupled by a linear or a cubic Dirac cross-diffusion term.

We have found that the Turing patterns arising from the reaction-diffusion dynamics
of topological signals are never localized only on nodes or links of the network. Instead
they always involve both node and link signals. Moreover, the projection of the link
signals on the nodes, and the projection of the node signals onto the links are shown to
also display a Turing pattern.

We also observe that when the reaction term does not depend on the projected signal,
the Turing pattern can be observed only in presence of a linear Dirac cross-diffusion
term.

Our results are validated on a small toy model for the reaction-diffusion of topolog-
ical signal on a network, and on simulations of square lattices with periodic boundary
conditions.

7.6 SM 1: Basics properties of algebraic topology
Simplicial and cell complexes, the boundary and co-boundary operators

A d-dimensional cell complex S is a collection of cells whose dimension n is smaller
or equal to d which is closed under the inclusion of the cells’ faces. The n-dimensional
cells are convex polytopes of dimension n, i.e., for n = 0 they are nodes, for n = 1
they are links, for n = 2 they are triangles, squares, pentagons etc. and for n = 3 they
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are tetrahedra, hypercubes, orthoplexes etc. The faces of an n-cell are the (n − 1)-
dimensional cells at its boundary. A special case of cell complex is a simplicial com-
plex which is only formed by simplices, i.e., cells whose underlying network structure
is a clique, such as nodes, links, triangles, tetrahedra and so on. The cells of a cell
complex are oriented and typically for simplicial complexes the orientation of the sim-
plicial complex induced by the nodes label is used, for instance a link [i, j] is positively
oriented if i < j and similarly a triangle [i, j,k] and all the triangles obtained by a cyclic
permutation of the indices are positively oriented if i < j < k. For more information
about simplicial and cell complexes see Refs.[207, 218, 285].

The topology of cell complexes can be investigated using methods coming from
algebraic topology. Let us indicate with Nm the number of m-dimensional cells present
in the considered cell complex. In algebraic topology the cells µ

(m)
n of dimension n of

a simplicial complex define the basis of a vector space Cn of n-chains. Therefore, a
n-chain c ∈ Cn is a finite linear combination of the n-cells µ

(m)
n with 1 ≤ m ≤ Nn with

coefficients ci

c =
Nn

∑
m=1

ciµ
(m)
n (7.6.1)

The boundary of a chain can be obtained from a chain by applying to it the boundary
operator ∂n : Cn →Cn−1 which is represented by the boundary matrix Bn.

The boundary matrix Bn is a Nn−1×Nn rectangular matrix of elements [Bn]µ,µ ′ =+1
if µ is a (n−1)-dimensional face of the n-cell µ with coherent orientation, [Bn]µ,µ ′ =
−1 if the orientation is not coherent, and [Bn]µ,µ ′ = 0 if µ is not a face of µ ′. In the
particular case of B1, we have for instance

[B1]iℓ =





1 if ℓ= [ j, i] and j < i
−1 if ℓ= [i, j] and i < j
0 otherwise

(7.6.2)

once we assume the orientation to be induced by the nodes labels. As an example, the
matrix B1 and B2 of the simplicial complex shown in Figure 7.6 are given by

B1 =

[1,2] [1,3] [1,4] [1,5] [2,3] [3,4] [3,5]





[1] −1 −1 −1 −1 0 0 0
[2] 1 0 0 0 −1 0 0
[3] 0 1 0 0 1 −1 −1
[4] 0 0 1 0 0 1 0
[5] 0 0 0 1 0 0 1
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and

B2 =

[1,2,3]





[1,2] 1
[1,3] −1
[1,4] 0
[1,5] 0
[2,3] 1
[3,4] 0
[3,5] 0

The set of all the boundary matrices Bn with 0 ≤ n ≤ d of a simplicial complex fully
encodes the topology of the simplicial complex. The adjoint of the boundary operator
or co-boundary operator is represented by the matrix B⊤

n .

The Hodge-Laplacians and the Dirac operator of a cell complex

Starting from the boundary and the co-boundary operators, we define the higher-order
Laplacians and the Dirac operator.

The Laplace operator [279, 216, 207] of order n, also called n-Hodge-Laplacian,
describes higher-order diffusion from n-cells to n-cells and are Nn×Nn matrices defined
as

Ln = B⊤
n Bn +Bn+1B⊤

n+1 = Ldown
n +Lup

n (7.6.3)

for 1 ≤ n < d. For n = 0 and n = d, the Hodge-Laplacians L0 and Ld are respectively
given by L0 = Lup

0 = B1B⊤
1 and Ld = Ldown

d = B⊤
d Bd .

The action of the Hodge-Laplacian can be interpreted as follows. The term Lup
n rep-

resents the diffusion between n-cells through shared (n+ 1)-dimensional cells. In the
case of a network, as previously noticed, this is the combinatorial Laplacian, where con-
centrations on nodes diffuse through incident links. The term Ldown

n represents diffusion
between n-cells through shared (n−1)-cells, i.e., incident (n−1)-faces. For instance in
a network (i.e., a 1-simplicial complex) L1 = Ldown

1 determines diffusion from links to
links through nodes. From this definition, it is clear that the Hodge-Laplacian of order
n only acts on topological signals of dimension n. Therefore, the n-Hodge-Laplacian
cannot couple signals of different dimension. In order to couple signal of different di-
mension, we require the Dirac operator [280, 281, 282, 283], D , which is encoded by
an M×M matrix where M = ∑

d
n=0 Nn and has elements

Dµ,µ ′ =

{
[Bn]µ,µ ′ if |µ ′|= |µ|+1 = n
[B⊤

n ]µ,µ ′ if |µ|= |µ ′|+1 = n (7.6.4)

where with |µ| we indicate the dimension of the cell µ . It follows that in a two dimen-
sional cell complex, the Dirac operator has the block structure

D =




0 B1 0
B⊤

1 0 B2
0 B⊤

2 0


 (7.6.5)
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while in a network the Dirac operator is given by

D =

(
0 B1

B⊤
1 0

)
(7.6.6)

It follows that the Dirac operator, differently from the Hodge-Laplacian, can couple
topological signals of different dimension. In particular the Dirac operator can be used
to project a topological signal of any dimension n onto simplices of dimension n+ 1
and n−1. One of the most significant properties of the Dirac operator is that it can be
considered the “square root" of the Laplacian. In fact we have

D2 = L = L0⊕L1⊕ . . .⊕Ld (7.6.7)

For instance, for a simplicial complex of dimension d = 2 we have

D2 = L =




L0 0 0
0 L1 0
0 0 L2


 (7.6.8)

and for a network

D2 = L =

(
L0 0
0 L1

)
(7.6.9)

Interestingly, both the Hodge-Laplacians and the Dirac operator can be extended to treat
weighted simplicial complexes (see for instance [206]).

Major Spectral properties of the boundary operators, the Hodge-Laplacians and
the Dirac operator

The n-order Hodge-Laplacian [279, 216, 207] is a semi-definite positive operator whose
kernel has dimension equal to the n-th Betti number βn, i.e., the degeneracy of its null
eigenvalue is equal to the Betti number βn. In addition to this, the Hodge-Laplacians
obey the Hodge decomposition which implies that the space of n-chains can be decom-
posed as

Cn = im(B⊤
n )⊕ker(Ln)⊕ im(Bn+1) (7.6.10)

where the kernel of the Hodge-Laplacians are given by

ker(L0) = ker(B⊤
1 ) ker(Ln) = ker(Bn)∩ker(B⊤

n+1) (7.6.11)

The Dirac operator [280] has a kernel given by the direct sum of the kernels of the
Laplacians,

ker(D) = ker(L ) = ker(L0)⊕ker(L1)⊕ . . .⊕ker(Ld) (7.6.12)

The non-zero spectrum of the Dirac operator is formed by the concatenation of the
spectra of the Hodge-Laplacians taken with positive and negative sign. Let us now focus
on the spectrum of the Hodge-Laplacians L0 and L1 defined on a network, and reveal
the relation between their spectra and the singular values of the boundary operator B1.
Since L0 = B1B⊤

1 and L1 = B⊤
1 B1 it follows that L0 and L1 are isospectral, i.e., they
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have the same non-zero eigenvalues and any eigenvalue Λk
0 of L0 can be written as

Λk
0 = b2

k where bk indicates the non-zero singular eigenvalues of the boundary matrix
B1. We note however that the degeneracy of the zero eigenvalue Λ1

a = 0, a = 0,1 is
different for L0 and L1. Indeed, for L0 the degeneracy of the zero eigenvalue is β0, i.e.,
the number of connected components of the network, while for L1 it is given by β1, i.e.,
the number of independent cycles of the network. Therefore, for a network that has the
topology of a linear chain with periodic boundary conditions when N0 = N1, we have
β0 = β1 = 1, for a tree when we have N1 = N0 − 1 we have β0 = 1 and β1 = 0 and in
general for a connected network we have β0 = 1, β1 = N1 −N0 + 1. Let us denote by
ψk

a the eigenvector of La associated to the non-zero eigenvalue Λk
a, for a = 0,1, namely

La ψk
a = Λk

aψk
a , then we have by the properties of the singular value decomposition

applied to B1 that
B1ψ

k
1 = bkψ

k
0 , B⊤

1 ψ
k
0 = bkψ

k
1 (7.6.13)

7.7 SM 2: Square Lattice with periodic boundary con-
ditions

For this case of interest, where the cell complex is a d-dimensional square lattice with
periodic boundary conditions (p.b.c.), interesting phenomena occur. For a rectangu-
lar portion of a d-dimensional square lattice with linear size Lm in the direction m,
the eigenvalues and the eigenvectors of the graph Laplacians L0 and L1 can be easily
computed [207]. Indeed the eigenvectors of L0 are the Fourier modes of the lattice as-
sociated with wave number q = (q1,q2, . . . ,qm, . . . ,qd) and the eigenvalues of L0 can
be expressed as

Λ0(q) = 4
d

∑
m=1

sin2(qm/2) (7.7.1)

The periodic boundary conditions impose

qm =
2π

Lm
n̂m n̂m = 0,1,2 . . .Lm −1 (7.7.2)

The analysis that has been carried out for the case presented in the main text will
let us to conclude that as soon as an eigenvalue returns a positive dispersion law, i.e.,
λ (b2

k)> 0, the corresponding eigenspace will be constituted by one periodic eigenvec-
tor that spans the nodes and one, again periodic, that spans the links. Consequently, as in
the general case, the arising instability cannot be confined to the space of nodes or links,
here too. To be concrete, we have numerically analyzed the dynamical system (7.3.22)
defined on a 4× 4 2-dimensional lattice with p.b.c.. The results are depicted in Fig-
ure 7.7: on the left column, panels a), c) and e), refer to the case where there is single
unstable mode, while on the right column (panels b), d) and f )), multiple unstable
modes are allowed. Let us first observe that the critical mode, i.e., the one associated
to the largest value of the dispersion relation, is the same for both parameter configu-
rations; we also remark that to each mode, except for the 0-th one, there are associated
several linearly independent eigenvectors, four vectors in the case of a 4×4 lattice with
p.b.c. When only one mode is unstable (see panel c) in Figure 7.7), we observe that

149
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the signal on the nodes exhibits a (horizontal) striped-like pattern and the signals on
the links are non-zero only when the link connects nodes with different signals values
(Figure 7.7a). Such ordered structure is destroyed when multiple modes are unstable
(Figure 7.7b,d). When there is a single unstable mode, the stationary pattern is a linear
combination of the 4 eigenvectors associated to such mode (Figure 7.7e); remarkably
this continues to be true when more than one mode is unstable (Figure 7.7 f ). Let us
conclude by observing that the former result is a slight generalization of the one we
can found in [31], where authors showed that in the case of a unique unstable and non-
degenerate mode, the patterns can be described by such eigenvector, despite the fact
that they are the reflex of a nonlinear process. Here we have shown that the same re-
sult holds true if the unique critical eigenvalue possesses a high-dimensional subspace
spanned by several eigenvectors and even in the case of multiple unstable modes.

7.8 SM 3: Turing patterns with a linear Dirac term
In this SM our goal is to derive the condition for the onset of the Turing instability for
the reaction-diffusion dynamics with linear Dirac cross-diffusion term which we rewrite
here for convenience,

Φ̇ = F(Φ,DΦ)− γ̃DΦ− γL Φ (7.8.1)

We notice that by putting

F(Φ,DΦ)− γ̃DΦ = F̃(Φ,DΦ) (7.8.2)

Equation (7.8.1) reduces to Equation (7.3.1) with Dirac reaction term given by F̃(Φ,DΦ),
i.e. it reduces to

Φ̇ = F̃(Φ,DΦ)− γL Φ (7.8.3)

It follows that the conditions for the onset of the Turing instability can be obtained
directly from Equation (7.3.19) and Equation (7.3.20) by making the substitutions

∂B1 v f → ∂B1 v f −D01 ∂B⊤
1 ug → ∂B⊤

1 ug−D10 (7.8.4)

This allows us to obtain that in the case with linear Dirac cross-diffusion terms we can
observe the onset of the Turing instability when in addition to Equation (7.3.7), the
following two conditions are satisfied:

A = D0∂vg+D1∂u f +(∂B1 v f −D01)(∂B⊤
1 ug−D10)> 0

A2 > 4D0D1∂u f ∂vg (7.8.5)

7.9 SM 4: Turing patterns with a cubic Dirac term
In this SM we derive the condition for the onset of the Turing instability in presence
of a cubic Dirac cross-diffusion term. The Turing instability is observed when the
eigenvalue λ satisfying (7.4.11) is positive. Let us note that the second order equa-
tion (7.4.11) has both leading coefficients positive. According to Descartes’ rule of
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signs, this equation only admits a positive root if Γ̃2(b2
k)< 0. Consequently, a positive

dispersion on a finite number of modes can be guaranteed by requiring that Γ̃2(b2
k)< 0

on a finite range of b2
k . First of all, we need to ensure that Equation (7.4.11) admits no

positive root in the limit b2
k → ∞ to avoid long wavelength instability. This can only

be guaranteed if we impose that D01D10 < 0. This ensures that there is a b̄2
k such that

Γ̃2(b2
k) > 0 for all b2

k > b̄2
k . Note that D01,D10 are not diffusion coefficients but cross-

diffusion coefficients. Indeed they are coupling each signal with the projection of the
signal defined on a different dimension. For this reason we do not need to limit the val-
ues of D01 and D10 to be positive and we can allow negative values while still retaining
their physical meaning. Requiring the existence of positive roots in λ over a finite range
of b2

k < b̄2
k can be done again by studying the roots of Γ̃2 using Descartes’ rule of sign,

remembering that the leading and the last coefficients of Γ̃2(b2
k) are positive (+). As

Γ̃2(b2
k) > 0 in the limit b2

k → ∞, we require that Γ̃2(b2
k) admits a positive root in b2

k to
ensure that the system obeys all conditions required for the existence of Turing patterns.
A change in sign in the coefficients of Γ̃2(b2

k) is a necessary condition to guarantee this,
which leads to patterns of signs (+−−+), (+−++), (++−+). All these have two
sign changes. Hence, applying the rule of sign, Γ̃2(b2

k) can admit either 2 or 0 real
positive roots. We now need to find a condition to exclude the case of 0 positive roots.
To do so, we start by using the rule of sign for the polynomial of opposite sign, Γ̃2(−b2

k),
which yields the number of negative rules of Γ̃2(b2

k). The possible sign patterns (+−
−+), (+−++), (++−+) respectively become (−−++), (−−−+), (−+++).
These all have a single sign change. Hence, by the rule of sign, Γ̃2(−b2

k) has exactly
one positive root. Consequently, Γ̃2(b2

k) has exactly one negative root, provided the
coefficients fall into one of the cases (+−−+), (+−++), (++−+). The last con-
dition can be obtained using the cubic discriminant of Γ̃2(b2

k). Indeed, in the above
three possible cases, we are guaranteed to have a single negative root. There can be 0
or two positive roots. Guaranteeing two positive roots can be done by imposing that all
roots are distinct, and this can be achieved by setting the discriminant of Γ̃2(b2

k) to be
positive. Mathematically, this corresponds to first imposing that one of the following
two conditions is satisfied

D0D1 +D01∂B⊤
1 ug+D10∂B1v f < 0 (7.9.1)

D1∂u f +D0∂vg+∂B1
⊤
1 ug ∂B1v f < 0 (7.9.2)

which constrain the polynomial to one of the above sign patterns, and ensures and the
presence of one negative root and either one or two positive roots. By imposing that the
three roots are distinct mathematically through the discriminant of Γ̃2(b2

k) leads to the
condition

2D0D1K++D2
0D2

1 +K2
− > 0 (7.9.3)

where K± is given by
K± = D01∂B⊤

1 ug±D10∂B1v f (7.9.4)
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Figure 7.7: Model (7.3.22) on a 4× 4 2-dimensional lattice with p.b.c. The periodicity of lattice, shown in
panels a) and b), is represented by adding one column and one row, so that the displayed nodes are 25, but
effectively they are 16. Panels on the left show the case where only one mode contributes to the instability,
while those on the right where multiple modes are unstable, as shown by the dispersion laws in panels c)
and d), respectively. When only one mode is unstable, the nodes’ pattern is striped-like, while the signal
on the links is non-zero only when the given link connects two nodes with different signals, as shown in
panel a); on the other hand, when multiple modes are unstable, such regular structure is lost, as we can
see in panel b). Panels e) and f ) show a comparison of the nodes’ pattern with a linear combination of
the eigenvector associated to the critical mode(s), showing a good accordance. The model parameters are
a = α = b = β = γ = D0 = D1 = 1; c = 4.7 for panels a), c), e), while c = 7.3 for panels b), d), f ); the
initial perturbation is ∼ 10−2.
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Conclusions and future directions

"We can only see a short distance ahead,
but we can see plenty there that needs to be done."

Alan Turing

In this thesis we have explored some extensions of Turing theory of pattern forma-
tion, both in the pairwise setting and in the new and exciting framework of higher-order
interactions. Besides extending the theory, our main goal was to relax the conditions
under which patterns arising from a symmetry breaking mechanism could be inscribed
in a Turing mechanism. We have shown that a discrete topology offers several pos-
sibilities of instability and reinterpretations of the phenomenon: we can have patterns
even when a linear stability analysis predicts otherwise, or without relying on diffusion.
Moreover, when considering higher-order topologies and the mathematical tools devel-
oped in that framework, we can even consider signals on the links, which become not
simply the connectors between the nodes, but part of the support where the dynamics
take place. As for any research, we conclude this journey with more questions than
answers and with further research ideas. In the following, we will discuss some further
developments of the research presented above, some of which are already in the process
of being developed; some others are, for now, only planned.

For what concerns non-normality, we have two interesting ongoing projects that,
hopefully, will see the light in the coming months. The first one, in collaboration with
Doctor Malbor Asllani of Florida State University and Professor James Gleeson of Uni-
versity of Limerick, is about synchronization patterns on real-world networks. Within
the same framework of Chapter 2, i.e., Turing-like instability for oscillatory systems,
we studied what happens when the support is a real-world network, which is known
to be strongly non-normal [39]. We analyzed a data-set of empirical networks, from
food-webs to biochemical ones, and we noticed that, after a symmetry breaking of the
homogeneous synchronized state, some nodes continued to oscillate about the attractor
of the isolated system, while a part was oscillating with the same frequency but differ-
ent amplitude. We realized that the observed patterns were indeed Amplitude Chimeras,
i.e., chimeras with respect to the amplitude rather than the phase [286]. We understood
that such behavior is due to the structure of the eigenvectors, which are strongly local-
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ized for non-normal networks, and that leader nodes, i.e., nodes with only either in- or
out-going links [287], have a pivotal role in the formation of the chimera state. The
next step will be to extend the considered data-set, in order to prove the universality of
the phenomenon. The second work is currently undertaken by a Master Student we are
supervising, Marie Dorchain, who is studying Turing patterns on non-diagonalizable
networks. The goal of this Master project is to determine if and how the generalized
eigenvectors contribute to the formation of the asymptotic pattern and to provide a char-
acterization of the latter.
When studying inertia-driven patterns, we have investigated the phenomenon on sym-
metric support. The network framework facilitates a deeper understanding of the phe-
nomenon and allows for a reinterpretation, but, as we have shown in Chapters 2 and
4, one great advantage of considering a discrete topology is the straightforward ex-
tension to a directed one. We have started exploring the possibility to extend the the-
ory of inertia-driven patterns developed in Chapter 3 to directed networks. We have
preliminary numerical results showing that, as expected, both the diffusion- and the
inertia-driven regions of pattern formation are enhanced when the underlying network
is directed. Now, the challenge is to tackle the problem analytically: for this we could
either apply a generalization of the Routh-Hurwitz criterion for complex polynomials,
or extend the method developed in Chapter 4 to study the onset of instability for sys-
tems of any dimension.
In the introduction of Chapter 4, we discussed the perspective of testing experimentally
our claim that non-reciprocal interactions enhance the possibility of pattern-formation.
This is certainly the work toward which we have more expectations and we are more
excited to develop. Having our theory tested would be extremely pleasant and reward-
ing. With the same purpose, we discussed with our colleagues at University of Catania,
Doctor Valentina Gambuzza and Professor Mattia Frasca, the possibility of experimen-
tally testing the effects of higher-order interactions. However, while their experimental
apparatus is perfectly suited for the pairwise non-local coupling discussed in Chapter
4, how to build integrated circuits representing higher-order coupling is still an open
question and needs to be further investigated. It would be, of course, very exciting per
se to achieve such a task and there are already in line several theoretical works to be
tested. Nonetheless, we hope that one day the theory we developed on Turing patterns
with higher-order interactions, presented in Chapter 6, could be tested. In particular,
it would be extremely interesting to tune the emergence of patterns with the strength
of higher-order interactions; this way it would be possible to obtain the desired state
without having to change the model parameters. Within the same framework, another
interesting study to pursue in the future would be the emergence of Turing patterns in
systems with many-body interactions, when the latter are directed. Such non-reciprocal
higher-order structures have been studied in the context of synchronization dynamics
[211], hence an extension toward the Turing framework would be straightforward.
Also the theory of topological signals provides a fertile ground for applications in neu-
roscience. In fact, there is increasing evidence that neuronal networks should not be
modeled having signals merely in the nodes, but signals (at least) on the links should be
considered. The latter are called edge signals [219]. Together with Lorenzo Giambagli
and Professor Ginestra Bianconi of Queen Mary University of London, we are extend-
ing the model studied in Chapter 7 to settings in which two species lie in the nodes
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and one in the links, coupled through a nonlinear version of the Dirac operator. This
way, we can obtain Turing oscillatory patterns even in models which would not exhibit
such behavior, as it is not allowed for only two interacting species [8]. In the coming
future, we plan to focus on models that are studied in neuroscience and check whether
our extension is able to reproduce the behaviors observed experimentally.
The tools of algebraic topology may as well allow us to rigorously define directed net-
works. In fact, while diffusion on symmetric networks is defined by the boundary op-
erator B1 (see Chapter 7), which gives the coordinates of the considered space, it is not
known how to analogously define a directed Laplacian matrix. We know that diffusion
on a directed network is equivalent to isotropic diffusion with a differential flow, but this
can be easily proven only for a 1-dimensional lattice ring with periodic boundary con-
ditions and a general theory is missing. Together with Professor Juan Ignacio Perotti,
of National University of Córdoba, we are studying the problem from the perspective of
simplicial complexes, trying to formulate a general theory of directed networks using
higher-order vector fields. Such theory would open the way for a generalization of di-
rected networks in higher-order structures, i.e., directed simplicial complexes. Once the
ground is built, it would be exciting to extend Turing theory on such directed higher-
order structures.
Lastly, and not related to Turing patterns, with Professor Stefanella Boatto, of Federal
University of Rio de Janeiro, we are studying a SIR-network model with time-varying
infectivity parameters. During this work, currently in preparation, we observed the im-
pact of the flow of individuals, tourists and climate in the occurrence and in the intensity
of the epidemic. Moreover, we extended the model for non-constant populations and
for time-varying chaotic infectivity parameters. The last part of this work will be to fit
the data of infected individuals of Dengue fever in the city of Rio de Janeiro for the
epidemics 2007-2008 and confront our results with previous models.

Turing theory of pattern formation is often considered a niche topic, more suited
for chemistry or developmental biology journals, rather than network ones. However,
during our work we have been able to show that the network reformulation of the the-
ory relies on a formalism similar to what is commonly used to study synchronization
dynamics. Indeed, we have been able to communicate and collaborate with scholars
of networks and dynamics on network, and the goal for the future is to also reach the
community originally studying Turing patterns for PDEs systems. The main challenge
will be to make a bridge between these two communities and to join the longstanding
expertise on Turing patterns of the latter with the knowledge and tools of networks and
higher-order interactions of the former.

Before concluding, we would like to emphasize how remarkable is that the original
theory branched in such various lines of research. It gives us a feeling of the power of
Turing’s intuition that, more than 70 years after its conception, continues to amaze us.
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Summary of other coauthored
papers

The common message of constraint-based optimization
approaches: overflow metabolism is caused by two growth-
limiting constraints
Mathematicians have always tried to find common features and similarities of the mod-
els they study. French mathematician Henri Poincaré used to say that "Mathematics is
the art of giving the same name to different things". However, not all disciplines bear the
same philosophy, for example biology. My friend and colleague Daan, a mathematician
who moved to theoretical biology, noticed that a certain phenomenon, consisting in an
inefficient usage of resources by cells and called overflow metabolism, was reproduced
by different modeling approaches, which appeared, at first sight, rather different. We
hence analyzed 14 of them, among the most popular and cited papers in the field, from
a mathematical point of view. We realized that all the models could be reformulated as
a linear programming problem and the system would show overflow metabolism when
two constraints were active at the same time. 14 approaches, with 14 different names,
were in the end the same model.

D.H. de Groot, J. Lischke, R. Muolo, R. Planqué, F.J. Bruggeman & B. Teusink.
Cellular and Molecular Life Sciences, 77 (3), 441-453 (2020) [288]
This article is open access.

Abstract
Living cells can express different metabolic pathways that support growth. The criteria
that determine which pathways are selected in which environment remain unclear. One
recurrent selection is overflow metabolism: the simultaneous usage of an ATP-efficient
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and -inefficient pathway, shown for example in Escherichia coli, Saccharomyces cere-
visiae and cancer cells. Many models, based on different assumptions, can reproduce
this observation. Therefore, they provide no conclusive evidence which mechanism is
causing overflow metabolism. We compare the mathematical structure of these mod-
els. Although ranging from flux balance analyses to self-fabricating metabolism and
expression models, we can rewrite all models into one standard form. We conclude
that all models predict overflow metabolism when two, model-specific, growth-limiting
constraints are hit. This is consistent with recent theory. Thus, identifying these two
constraints is essential for understanding overflow metabolism. We list all imposed
constraints by these models, so that they can hopefully be tested in future experiments.

Synchronization induced by directed higher-order inter-
actions
higher-order interactions allow to capture certain features that escape a pairwise (net-
work) description. However, there are many systems in which higher-order interactions
are present but they are non-reciprocal: for example, bullying is a group interaction di-
rected toward one, or more, individuals; or some chemical reactions need more than two
reactants at the same time and there is a privileged direction given by thermodynam-
ics. Directed hypergraphs existed in the literature, but were mainly used in computer
science to model the flow of information and could not be used to study dynamics on
top of them. Together with our colleagues from Università di Catania, we were able to
develop a formalism allowing to overcome this problem. We defined a class of hyper-
graphs where the interactions are directed toward a fixed number of nodes. Our tensor
formalism enables a semi-analytical study of the Master Stability Function and allows
to investigate the stability of the synchronous solution when the system has a directed
hypergraph as a support. Not all types of directed higher-order interactions can be mod-
eled through our formalism, but our study was the first of this kind and it opens the way
for future works in this direction.

L. Gallo, R. Muolo, L.V. Gambuzza, V. Latora, M. Frasca & T. Carletti. Communi-
cations Physics, 5, 263 (2022) [211]
This article is open access.

Abstract
Non-reciprocal interactions play a crucial role in many social and biological complex
systems. While directionality has been thoroughly accounted for in networks with pair-
wise interactions, its effects in systems with higher-order interactions have not yet been
explored as deserved. Here, we introduce the concept of M-directed hypergraphs, a
general class of directed higher-order structures, which allows to investigate dynamical
systems coupled through directed group interactions. As an application we study the
synchronization of nonlinear oscillators on 1-directed hypergraphs, finding that directed
higher-order interactions can destroy synchronization, but also stabilize otherwise un-
stable synchronized states.
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(2019) → link to the paper;

• D.H. de Groot, J. Lischke*, R.M.*, R. Planqué, F.J. Bruggeman & B. Teusink,
The common message of constraint-based optimization approaches: overflow
metabolism is caused by two growth-limiting constraints, Cellular and Molecular
Life Sciences, Volume 77, 3, Pages 441-453 (2020) → link to the paper;

• R.M., T. Carletti, J.P. Gleeson & M. Asllani, Synchronization dynamics in non-
normal networks: the trade-off for optimality, Entropy, Volume 23(1), 36, Pages
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