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Abstract
The recent advances in deep learning have been1

beneficial to automatic sign language recognition2

(SLR). However, free-to-access, usable, and acces-3

sible tools are still not widely available to the deaf4

community. The need for a sign language-to-text5

dictionary was raised by a bilingual deaf school6

in Belgium and linguist experts in sign languages7

(SL) in order to improve the autonomy of students.8

To meet that need, an efficient SLR system was9

built based on a specific transformer model. The10

proposed system is able to recognize 700 different11

signs, with a top-10 accuracy of 83%. Those results12

are competitive with other systems in the literature13

while using 10 times less parameters than existing14

solutions. The integration of this model into a us-15

able and accessible web application for the dictio-16

nary is also introduced. A user-centered human-17

computer interaction (HCI) methodology was fol-18

lowed to design and implement the user interface.19

To the best of our knowledge, this is the first pub-20

licly released sign language-to-text dictionary us-21

ing video captured by a standard camera.22

1 Introduction23

24

The rise of deep learning [LeCun et al., 2015] led to the25

creation of successful methods to process unstructured data26

such as images, videos or texts. These achievements are27

reflected in sign language recognition (SLR). The field has28

gained in popularity [Koller, 2020] as it provides a challeng-29

ing benchmark for gesture or poses recognition. Indeed, to30

correctly classify signs, a model should be able to grasp fa-31

cial expressions and precise hand gestures [Stokoe, 1972].32

Moreover, there is a clear societal dimension for such tech-33

nologies, such as the sign language-to-text dictionary which34

is proposed here to help the deaf community.35

Technological advances alone cannot explain the success36

of SLR. In the past decades, linguists began to have access37

to affordable storage and recording devices. It facilitated the38

study of sign languages (SL) and has encouraged several re-39

search teams to create digital sign language corpora. In the40

meantime, the expansion of smartphones and social networks 41

led to the creation of groups on social media platforms in 42

which deaf users can share SL vocabulary or communicate 43

online. The increasing availability of sign language (SL) data 44

allows machine learning (ML) researchers to exploit those 45

corpus [Fink et al., 2021] or crowdsource [Vaezi Joze and 46

Koller, 2019] social media platforms to build large-scale SL 47

datasets suitable for deep learning. 48

Despite those advances, few tools are available to the deaf 49

community. Initiatives led to the creation of lexicons for sign 50

language enabling to search for a sign corresponding to a 51

written word1. However, the opposite is not possible as those 52

tool does not offer a search from a sign to a written word. 53

This work proposes to enhance those tools by providing a dic- 54

tionary searchable via a webcam recording. This dictionary 55

is, to the best of our knowledge, the first publicly available 56

sign language-to-text dictionary2 using only video informa- 57

tion from a simple webcam to identify the sign. 58

The overall process leading to the creation and use of our 59

dictionary is summarized in Figure 1. A corpus of French 60

Belgian Sign Language (LSFB) built by a team of linguists 61

from the LSFB laboratory (LSFB Lab) of Namur [Meurant, 62

2015] is used as a database for the system. A cleaned version 63

of the corpus [Fink et al., 2021] is used as a dataset for the 64

machine learning pipeline. This paper focuses on the creation 65

of a lightweight model for SLR using an architecture similar 66

to the one introduced by Vision Transformer (ViT) [Dosovit- 67

skiy et al., 2021]. In addition, the integration of the result- 68

ing model into a web application is also presented. A user- 69

centered approach is followed for ensuring the stakeholder’s 70

requirements meeting on the resulting dictionary. This en- 71

sures that our tool will actually be useful to the deaf commu- 72

nity, as confirmed by its quick adoption after its public release 73

in October 2022. 74

This paper is organized as follows. Section 2 introduces 75

the stakeholders of the SLR system along with its require- 76

ments. Then, Section 3 discusses the research in SLR. Sec- 77

tion 4 gives more information about the dataset used in this 78

work and its specificities. Section 5 describes the architec- 79

ture developed for the dictionary and reports results for var- 80

ious architectural choices. A quantitative evaluation of the 81

1auslan.org.au
2dico.corpus-lsfb.be

https://auslan.org.au/about/dictionary/
https://dico.corpus-lsfb.be/
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Figure 1: The high-level processes that lead to the creation and manipulation of the bidirectional sign language dictionary. (1)
The LSFB Lab collected and annotated a large corpus of French Belgian Sign Language (LSFB) [Meurant, 2015]. (2) The
corpus was preprocessed and cleaned to create a sign language dataset [Fink et al., 2021]. (3) The dataset is used to train our
SLR model. (4) An interface was built to capture the user’s signs and use them to query the dictionary (5). The dictionary
proposes possible translations to the user along with definitions and usage examples in text and in video (6).

best-performing model is reported. Section 6 explains how82

the web application integrating the model was designed, im-83

plemented and evaluated using a user-centered approach. Fi-84

nally, Section 7 concludes and discusses future works.85

2 Stakeholders and Requirements86

It is important to notice that sign languages are not universal87

and may vary depending on the country or region. The system88

presented in this paper focuses on the French Belgian Sign89

Language (LSFB). Nevertheless, the overall process followed90

to build the system is transferable to any sign language (SL),91

provided that the amount of available data is sufficient.92

Our project was initiated by the French Belgian Sign Lan-93

guage Laboratory (LSFB Lab) of Namur, where linguists94

have been working on the LSFB since early 2000. They col-95

lected videos of SL conversations to better study and char-96

acterize the language. They also released a text-to-sign lan-97

guage lexicon. The LSFB Lab collaborates with Sainte-98

Marie, a bilingual French and LSFB school located in Na-99

mur. The creation of a sign language-to-text dictionary could100

improve the autonomy of deaf students. Thus, the school was101

interested and involved in the creation of the interface.102

Discussions with the stakeholders allowed us to gather re-103

quirements for the application. First, the system should be104

robust to variations. The users are not expected to stand in a105

controlled environment with uniform background and light-106

ning or to wear specific clothing. Also, skin color and any107

other physical characteristics should have no influence.108

The system should not rely on expensive, impractical or109

hard-to-find hardware. Thus, the dictionary should only rely110

on video captured by a standard webcam that can be found on111

laptops or smartphones. The association hosting the system112

cannot afford a server with GPUs. Thus, the algorithm must 113

run efficiently on CPU only. Finally, the system should an- 114

swer in less than 10 seconds to a query. This ensures that the 115

interface is fluid and not frustrating to use. 116

3 Related Work 117

Sign language recognition is gaining in popularity in machine 118

learning [Koller, 2020]. Continuous SLR aims to translate 119

SL sentences directly into text, while isolated SLR focuses 120

on classifying a single sign. This section focuses on isolated 121

sign language recognition using RGB data, as our system can 122

only rely on raw videos for its predictions and its aim is not 123

to recognize and translate entire sentences. 124

The first vision-based SLR systems relied on handcrafted 125

features like the work of [Huang and Huang, 1998] us- 126

ing Otsu thresholding to isolate the hands. Those methods 127

were only capable of recognizing a limited number of signs 128

(< 100) from a few signers (< 5). The use of sequential mod- 129

els such as Hidden Markov Models led to the first system able 130

to recognize larger sign vocabulary like in the work of [Kadir 131

et al., 2004] that achieved 92% accuracy for 164 signs. By 132

using dynamic time warping, [Wang et al., 2012] achieve 133

impressive results with 78% top-10 accuracy on 1,113 signs 134

using 20 frames and meta-information about the number of 135

hands used to perform the sign and the handedness of the 136

signers. However, those systems are sensitive to changes in 137

lighting, background and signer variations. 138

The success of convolutional neural networks (CNN) for 139

computer vision along with the development of large pub- 140

lic datasets for sign language allowed the creation of algo- 141

rithms robust to variability in the input data. A CNN-based 142

method [Pigou et al., 2016] was able to classify a vocabulary 143



of 100 signs performed by 78 different signers with a top-144

1 accuracy of 60% and a top-10 of 90%. The development145

of sequential models allows leveraging the temporal infor-146

mation in sign language videos. The MS-ASL dataset was147

benchmarked [Vaezi Joze and Koller, 2019] on several archi-148

tectures such as CNN+LSTM and I3D networks with a top-1149

accuracy of 81% for 1,000 signs and 222 signers. Recently,150

transformer networks proved to be efficient in sign language151

recognition. A transformer-based architecture achieved 73%152

accuracy on a vocabulary of 100 signs performed by 67 sign-153

ers by mixing frame information with skeleton metadata ex-154

tracted from the videos [De Coster et al., 2020].155

In parallel, advances in pose estimation led to the creation156

of valuable tools for preprocessing sign language videos.157

OpenPose [Cao et al., 2019] and MediaPipe [Lugaresi et al.,158

2019] provide easy-to-use models to extract skeletons land-159

marks from raw RGB videos. Those skeletons are often used160

as a preprocessing step in SLR [Konstantinidis et al., 2018].161

This work follows this trend by leveraging landmarks.162

Since their creation, transformer-based architec-163

tures [Vaswani et al., 2017] have proven successful on164

tasks such as image classification with the vision transformer165

(ViT) [Dosovitskiy et al., 2021]. This work investigates the166

adaptation of such architectures for isolated SLR.167

4 Dataset168

Our SLR algorithm is trained on one of the largest sign169

language datasets in the world: the French Belgian Sign170

Language (LSFB) dataset [Fink et al., 2021]. It is made of171

50 hours of video, including 37 hours manually annotated by172

linguists from the LSFB Lab. Those videos depict natural173

discussions in LSFB between two individuals. In total, 100174

signers participated in the recording sessions. Videos are175

recorded in a studio with controlled lighting and camera176

position. For each discussion, two videos are recorded, each177

focusing on one of the two signers.178

179

LSFB-ISOL. The dataset exists in two versions: (i) LSFB-180

CONT which contains continuous videos of the whole LSFB181

discussions and (ii) LSFB-ISOL in which all the signs are182

isolated in shorter videos extracted from the continuous183

videos. Only LSFB-ISOL is used here as this paper does184

not focus on continuous SLR but rather on the recognition185

of isolated signs. Resulting videos only contain a single186

sign with an associated label. In total, LSFB-ISOL contains187

4,181 different signs that are performed by the 100 signers.188

In this work, those labels are filtered to only keep the ones189

associated with French translations in the LSFB dictionary190

and having more than 20 examples. This leads to a filtered191

dataset with 700 labels and 77,900 instances.192

The LSFB dataset is challenging as signers are free to193

discuss without vocabulary or rhythm constraints. In this194

context, signers tend to sign more quickly and signs overlap.195

Thus, the start position of each sign depends on the previous196

one.197

198

Pose Features. The dictionary uses pose data extracted199

from frames with MediaPipe [Lugaresi et al., 2019]. As200

shown in Figure 2, a pose contains 65 landmarks for the body 201

pose (23) and the hands (2× 21). As each landmark is made 202

of an x and y component, each pose contains 130 features in 203

total. 204

Figure 2: A frame sampled from the LSFB dataset along with
its corresponding pose extracted using MediaPipe.

Multiple reasons motivate the use of poses instead of di- 205

rectly using the RGB frames: 206

(i) Less information is contained in a pose. An RGB frame 207

of size 224x224 contains 150k values while a pose of 208

65 2D coordinates only contains 130 values. This rep- 209

resents a significantly smaller feature space that is easier 210

to work with. 211

(ii) Some bias appear in the LSFB datasets, e.g., the uni- 212

form background and controlled lightning. This can 213

cause bias if the training is performed directly on the 214

frames. However, the poses are extracted with Medi- 215

aPipe which is trained with respect to guidelines that 216

prevent issues such as physical biases (background, 217

light condition, etc.) and ethical biases (morphology, 218

gender, skin color, etc.) [Lugaresi et al., 2019]. There- 219

fore, this paper “delegates” some potential biases to Me- 220

diaPipe by using poses. 221

(iii) Poses only contains information about the joints of the 222

signer. Therefore, irrelevant information, e.g., the color 223

of the clothes, is not used to make the prediction. This 224

prevents overfitting by filtering information. It also 225

makes the model robust to those variations by design. 226

Features are processed to avoid a discontinuity in pose se- 227

quences and to mitigate vibrations caused by a lack of preci- 228

sion in the pose estimation. Linear interpolation is used to fill 229

in missing values. Then, a filter [Savitzky and Golay, 1964] is 230

used with a moving window of size 7 and a polynomial order 231

of 2 to smooth values and thus mitigate vibrations. 232

5 Model Design 233

This section introduces the SLR model integrated to the dic- 234

tionary. First, the overall architecture is described and re- 235

sults are reported for various meta-parameters. The best- 236

performing model is discussed and other results found in the 237

literature are reported. 238

5.1 Model Architecture 239

The success of transformer-based architectures in computer 240

vision motivates their use for the challenging task of SLR. 241



As the target is a specific class (i.e., type of sign) for a se-242

quence of frames constituting a sign, the decoder part of the243

transformer architecture [Vaswani et al., 2017] is not useful244

in our case. Instead, the architecture is inspired by the vi-245

sion transformer (ViT) [Dosovitskiy et al., 2021] for image246

classification. Figure 3 shows the high-level architecture of247

our sign language classifier. The linear embedding reduces248

the dimensionality of the input data before applying a posi-249

tional encoding on each token. The positional encoding is250

a 1D trainable vector added to each input token. A classi-251

fication token is added to the sequence as introduced in the252

ViT paper. This token is then passed as input to the multi-253

layer perceptron (MLP) containing a normalization layer [Ba254

et al., 2016] followed by a linear layer in order to predict a255

label for the sequence. The detailed architecture for the two256

other components is discussed in the following sections.257

5.2 Training Setup258

This section presents the training setup used to create our259

models. The filtered LSFB-Isol dataset presented in Section 4260

is used, with a total of 77,900 instances and a vocabulary of261

700 signs. The dataset is split into a training set containing262

70% of the data and a test set containing the remaining. The263

signers appearing in the training set are not in the test set, to264

assess the ability of the model to deal with new signers. The265

MediaPipe landmarks are extracted from each clip. Only the266

landmarks are provided as input to our model, i.e., there are267

130 input features. The raw video frames are not used.268

All the models are trained using the same training scheme.269

The optimizer is a SGD with a learning rate of 2× 10−3 and270

a momentum of 0.9. The loss function is the classical cross-271

entropy loss. The models are trained for 600 epochs. As272

recommended by [Vaswani et al., 2017], a warmup phase is273

performed. A linear warmup is applied during the first 200274

epochs. The batch size is set to 128. The metric used to com-275

pare each model is the standard accuracy. The clip sequences276

exceeding the maximal sequence length are cropped and the277

ones that are shorter are masked.278

5.3 Transformer Encoder Architecture279

A transformer encoder is made of one or several encoder lay-280

ers containing a multi-head attention layer and a feed-forward281

network [Vaswani et al., 2017]. The number of encoder lay-282

ers and attention heads has an influence on the performance283

and complexity of the model. To determine the transformer284

encoder architecture for our SLR model, a grid search on sev-285

eral meta-parameters was performed (see Table 1). The max-286

imal length of signs sequences is set to 50 and the embedding287

size of the tokens is set to 96. In total, 16 configurations were288

considered and the results are reported in Table 2.289

Number of attention heads 2, 4, 8, 16
Number of encoder layers 1, 2, 4, 6

Table 1: The meta-parameters considered during the grid
search for the transformer encoder architecture (see Table 2).

On the training set, the accuracy score rises as the model290

complexity increases, but it is not the case with the test accu-291

Nb. layers Nb. heads Train acc. Test acc.
2 61.2% 50.7%
4 67.2% 51.3%
8 66.4% 44.9%1

16 68.0% 45.3%
2 79.4% 51.6%
4 80.7% 51.9%
8 81.3% 47.3%2

16 79.8% 41.9%
2 93.7% 48.5%
4 93.8% 45.0%
8 94.0% 42.1%4

16 94.4% 37.2%
2 98.0% 41.1%
4 98.8% 33.8%
8 99.1% 35.5%6

16 99.0% 26.3%

Table 2: Training and test accuracy for the 16 models trained
to find the best meta-parameters for the transformer encoder.
The best training and test accuracy are highlighted.

racy. It can be observed that models quickly overfit when they 292

are more complex. The best performances are obtained with 293

a transformer encoder with 2 layers and 4 attention heads. 294

Thus, those meta-parameters were chosen for our model. 295

5.4 Embedding Block Architecture 296

The linear embedding and position encoding block reduce the 297

dimensions of the input and add position information to each 298

token before passing them to the transformer encoder. To find 299

the best sequence length and token size, several architectures 300

are considered for the embedding block. Table 3 summarizes 301

the combinations of meta-parameters. The transformer en- 302

coder block is the one selected in the previous section. Once 303

again, a grid search was applied to test all the combinations of 304

those two meta-parameters. Table 4 summarizes the results. 305

Tokens size 64, 80, 96, 112
Max sequence length 30, 50, 60

Table 3: Summary of the meta-parameters considered during
the grid search for the embedding block (see Table 4).

Augmenting the maximal size of the sequence seems to 306

be damageable to the performance, and the embedding size 307

should remain moderate. As in Table 2, too complex models 308

tend to overfit. The best model is obtained with a maximal 309

sequence length of 30 and an embedding size of 80. 310

5.5 Results and Discussions 311

Our best-performing architecture uses a transformer encoder 312

with 2 layers and 4 attention heads with a maximal sequence 313

length of 30 frames and a token size of 80. It reaches a top-1 314

accuracy of 54% and a top-10 accuracy of 83% on the test 315

set. The top-10 accuracy is relevant in our use case as the 316

user of the dictionary could choose the correct sign out of 317

the 10 proposed by the system. The average recall and pre- 318

cision obtained by the model are respectively 43% and 51%. 319
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MLP classifier

Figure 3: Summary of the architecture used for LSFB recognition. The input is a sequence of skeletons extracted using
MediaPipe [Lugaresi et al., 2019]. Each skeleton is embedded using a linear layer and a positional encoding is added to the
resulting vector. A classification token is added at the start of the sequence as introduced by ViT. Then, the sequence of resulting
tokens is sent to a transformer encoder. The classification token is then used to predict the label for the sign.

Max. seq.
length

Embedding
size Training acc. Test acc.

64 70.7% 52%
80 76.7% 54.4%
96 81.2% 53.6%30

112 84.2% 50.5%
64 69.9% 48.6%
80 75.9% 47.9%
96 79.7% 46.7%50

112 84.0% 49.4%
64 68.9% 42.8%
80 75.3% 44.2%
96 80.1% 47.0%60

112 83.2% 46.7%

Table 4: Training and test accuracy for the 12 models trained
using various sequence lengths and embedding sizes. The
best training and test accuracy are highlighted.

The per-class accuracy shows that classes with more exam-320

ples are better identified by the model. Due to the unbalanced321

nature of the data, the most common signs have hundreds of322

examples while the least represented appears only 20 times323

leading to a great disparity in per-sign accuracy. The model324

also frequently mistakes signs presenting the same hand con-325

figuration and gestures.326

To better assess the performances of our model regarding327

previous works, Table 5 reports results obtained by models328

using RGB video for isolated sign recognition. Only mod-329

els trained on datasets with a similar number of signers and330

vocabulary are reported.331

Notice that those results should be taken with caution as332

they are obtained on different datasets captured in different333

conditions and using distinct sign languages. For instance,334

the LSFB dataset and the BSL-1K [Albanie et al., 2020] are335

the only reported datasets containing signs extracted from 336

sentences, making them much more challenging. It may not 337

be relevant to compare the accuracy obtained on datasets that 338

are so different. It is done here to give an indicative assess- 339

ment of our system. Actually, the performances in real-world 340

conditions may be radically different and the only relevant in- 341

dicator of performance is the adoption of the system by users. 342

A key advantage of our LSFB classifier is that it proposes 343

the lightest architecture for SLR currently available with, at 344

least, 10 times fewer parameters than others methods. It is 345

also lighter than a MobileNet [Sandler et al., 2018] network 346

designed to run on embedded devices. Despite that, the accu- 347

racy of our method is in the same range as the performance 348

obtained by other models in the literature. The LSFB classi- 349

fier is light enough to run on CPU efficiently, which is key for 350

its adoption by non-profit stakeholders that have not enough 351

resources and technical knowledge to maintain a GPU server. 352

Our overarching goal is to maximise its societal impact. 353

6 System Integration 354

To achieve tangible societal impact, according to United Na- 355

tions’ Sustainable Development Goals [UN, 2015] and par- 356

ticularly the goal 4 “Quality Education“ and the goal 10 “Re- 357

duced Inequalities“, the model is integrated into a free and 358

accessible system: the sign language-to-text dictionary which 359

has been publicly released and is already used by the deaf 360

community. 361

As illustrated in Figure 4, the system takes the form of a 362

web application combining the features and appearance in- 363

spired by well-established online textual dictionaries such as 364

Google Translate3 or Linguee4. The dictionary allows users 365

3translate.google.com
4www.linguee.com

https://translate.google.be/
https://www.linguee.com/


Authors Vocabulary Signers Parameters Top-1 Top-10 Dataset Base architecture
[Izutov, 2020] 500 222 8.3M 63.36 - MS-ASL S3D
[Izutov, 2020] 1000 222 8.3M 45.65 - MS-ASL S3D
[Li et al., 2020] 1000 116 12M 47.33 84.33 WLASL I3D
[Albanie et al., 2020] 1000 40 12M 65.57 - BSL-1K I3D
[Liao et al., 2019] 500 8 11.4M 89.8 - DEVISIGN-D Resnet + LSTM
LSFB classifier (ours) 700 100 782k 54.4 83.4 LSFB-ISOL ViT

Table 5: This table reports the score obtained by other researchers on various datasets for isolated SLR using only RGB video.
The number of parameters for each architecture is reported. Our solution has, at least, 10 times fewer parameters than other
methods.

to sign in front of their camera to search for the literal trans-366

lation of a sign in French. Users are invited to sign during a367

fixed time window. Then, they are able to browse the propo-368

sitions made by the model to find the corresponding sign in369

the dictionary. For the selected predicted sign, all the possible370

French translations are displayed. Moreover, for each trans-371

lation, the application displays bilingual examples showing372

how the sign is used in a real SL video sentence alongside373

with its French translation. This allows users to understand374

the use of the sign in different contexts. The dictionary dras-375

tically increases the autonomy of deaf people. It is also a use-376

ful tool for French-speaking people learning sign language or377

sign language interpreters who can perfect their knowledge378

by browsing contextual examples of signs.379

The remaining of this section discusses the design and im-380

plementation of the dictionary. The compliance with the re-381

quirements elicited by the stakeholders is also assessed.382

6.1 Design and Implementation383

In order to put the user in the center of the process, the de-384

sign phase started with requirements engineering activities385

with the stakeholders. First, based on semi-conducted discus-386

sions, four personas [Lallemand, 2018] were created (deaf387

user, deaf student, bilingual teacher, and sign language ex-388

pert). This HCI good practice helped to identify the tar-389

get users for the dictionary and the scope of their require-390

ments. Moreover, a comparison of famous online dictionar-391

ies or translators (e.g., Google Translate, DeepL, Microsoft392

Bing) was conducted to confront their features with the needs393

of the personas. This then initiated the design of low and394

high-fidelity prototypes [Lallemand, 2018] for the dictionary.395

Those artifacts were evaluated in a continuous collaboration396

and validation with the four users representing each persona397

(2 deaf students, 1 bilingual teacher, 1 sign language expert),398

stakeholders (2 project leaders), and experts in HCI (1 UX399

expert and 1 inclusive UX expert). Finally, as the website400

is used by deaf people, great care has been taken to ensure401

accessibility. Guidelines for the design of interfaces suited402

for deaf people were searched. The web content accessibil-403

ity guidelines (WCAG2) [Caldwell et al., 2008] proposed by404

the W3C provide some general recommendations to design405

inclusive websites but nothing specific to the context of deaf-406

ness. Therefore, the rest of the literature was explored and407

examined. Among the identified works, the guidelines were408

sometimes not the primary focus of the study or were too gen-409

eral for our purpose. There was a need for precision, com-410

pleteness and cohesion. The work by [André, 2022] gath- 411

ered, classified, and completed the recommendations found 412

in the literature to establish a checklist for the creation of UX 413

adapted to deafness (e.g., transforming all sound signals to 414

visual ones, using icons instead of texts). Those recommen- 415

dations were applied to the creation of our dictionary. 416

To transform the prototype into a working web applica- 417

tion, all the components were implemented and connected 418

together. The frontend of the application uses MediaPipe to 419

extract the poses on the client side. Thus, only the landmarks 420

extracted on the devices of the users are sent to the server 421

to reduce the bandwidth needs and to preserve the privacy 422

of users. A RESTful API provides endpoints to retrieve the 423

possible translation for a given sign and the video example 424

from the corpus LSFB. The API rely on our model to predict 425

the label of a sign given MediaPipe landmarks. The global 426

architecture is depicted in Figure 5. 427

6.2 Requirements Assessment 428

To assess the conformity of the user requirements, a usabil- 429

ity testing [Lallemand, 2018] approach was followed. The 430

main goal was to collect qualitative data to improve the sys- 431

tem following a feedback loop mechanism. Six realistic us- 432

age scenarios mixing success and failure cases were proposed 433

to the four users. It should be noted that tester users were not 434

involved in the dataset creation, few years earlier. Those sce- 435

narios forced them to go through all the application function- 436

alities, allowing us to observe their reactions and spot their 437

difficulties. The tests were followed by a survey and a semi- 438

conducted discussion [Lallemand, 2018] to assess the feeling 439

of users about the web application. Each test session was 440

recorded by two cameras and two microphones. An observer 441

took notes on an observation grid to spot all the hesitations or 442

issues encountered by the user during the scenarios. A briefed 443

sign language interpreter assisted the test conductor when the 444

user was deaf. All the materials used during the tests were 445

translated into sign language by the interpreter. 446

The observations and remarks collected during those tests 447

showed that the users were able to execute all scenarios with- 448

out major difficulties. The success rate for the scenarios 449

ranges from 87% to 98%. The gap is explained by the va- 450

riety of users. Indeed, it has been noticed that children took a 451

little more time, due to their distraction. In general, the first 452

scenario also lasted longer, since users were new to the appli- 453

cation. Finally, users reported that they appreciated the ease 454

of use, simplicity, guidance, and the contextualized exam- 455



Figure 4: Screenshot of the dictionary6 after a successful search. The top of the interface shows the sign performed by the user
along with the possible translation in French. The bottom of the interface gives contextual examples of the selected translation
in sign language (video) and in French (text). Signers can hence improve themselves based on those examples.

LSFB 
Corpus

Web App
Sign Language
Recognition 
REST API

Model

User

Figure 5: The system is made of three artifacts: (i) the web
application that provides an interface for the user and uses
MediaPipe JS to preprocess locally the captured video, (ii)
an API hosting the SLR model and that is linked to (iii) the
corpus database containing lexicon and contextual examples.

ples. However, they also asked for a better tolerance to their456

own inaccuracy while signing. Those insights were compiled457

to serve as the starting point of the next development itera-458

tion [André, 2022], as the dictionary will continue to evolve,459

so as to better meet the deaf community’s needs.460

Regarding the requirements elicited by the stakeholders in461

Section 2, the system is compliant as it has been successfully462

deployed on the server of the LSFB Lab while responding463

in less than 10 seconds to a query. Users can answer their464

request in various environments and lighting conditions.465

7 Conclusion and Future Work466

This work introduces the first dictionary searchable from sign467

language to text, publicly available through a web interface7.468

It relies on a lightweight sign language recognition model, in-469

spired by the recent advances in transformer networks such as470

7dico.corpus-lsfb.be

the Vision Transformer architecture introduced by [Dosovit- 471

skiy et al., 2021]. This work leverages the progress made in 472

pose estimation to achieve SLR on landmarks extracted from 473

videos instead of the raw frames. This further reduced the 474

complexity of the model and it removes several challenges 475

such as the robustness to changes in the recording environ- 476

ment. Those challenges are delegated to pose estimation li- 477

braries such as MediaPipe. Our model is able to classify 700 478

signs with a top-10 accuracy of 83%, and is light enough to 479

be run on embedded devices if needed. The model achieves 480

competitive results while being 10 times lighter than alter- 481

native solutions. The model is integrated into a web dictio- 482

nary allowing the user to search for the meaning of a sign in 483

French. The dictionary is continuously populated by a team 484

of linguists, the LSFB Lab. A user-centered HCI methodol- 485

ogy was followed to design the interface with insights from 486

the stakeholders and future users of the system. An evalu- 487

ation of the tool was performed with the users to assess its 488

compliance with the requirements identified. 489

In future work, metrics-based methods will be explored to 490

train models that recognize more signs by predicting the dis- 491

tance between two signs instead of predicting a label directly. 492

Thus, the model might be able to recognize new signs with- 493

out being retrained. New architectures will be investigated to 494

improve the SLR performance and classification robustness. 495

A new design iteration for the interface will also be con- 496

ducted. A survey will be sent to the users to collect their opin- 497

ions on the UI after a few months of use. Those insights will 498

be considered to upgrade the interface if needed. A browser 499

plugin will also be developed to provide better integration of 500

the tool for the users. The developed dictionary is meant to 501

become a long-lasting tool for the deaf community. 502

https://dico.corpus-lsfb.be/
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Moreover, the developed application does not collect any pri-506

vate data and relies on pose estimation only. Above all, the507

dictionary improves the autonomy of deaf people and con-508

tributes to a more inclusive education system. More gener-509

ally, it supports a better inclusion of the deaf community in510

society, according to SDGs 4 and 10 from United Nations.511
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