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University of Namur
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5000 Namur, Belgium

Abstract

Symbolic execution is a technique which allows to automatically generate test inputs
(and outputs) exercising a set of execution paths within a program to be tested. If the
paths cover a sufficient part of the code under test, the test data offer a representative
view of the program’s actual behaviour, allowing to detect failures and correct faults.
Relational databases are ubiquitous in software, but symbolic execution of the programs
that manipulate them remains a non-trivial problem, because of the complex structure
of such databases and the complex behaviour of the SQL statements. In this work,
we define a symbolic execution for SQL code and integrate it with a more traditional
symbolic execution of normal program code. The database tables are represented by
relational symbols and the SQL statements by relational constraints over these symbols
and the symbols representing the normal variables of the program. An algorithm based on
these principles is presented for the symbolic execution of simple Java methods, reading
and writing with transactional SQL in a relational database, the latter subject to data
integrity constraints. The algorithm is integrated in a test data generation tool and
experimentally evaluated over thousands of program paths including real application code.
The target language for the constraints produced by the tool is the SMTv2 standard and
the used solver is Microsoft Z3. The results show that the proposed approach allow to
generate meaningful test data for database programs, including valid database content, in
reasonable time.
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1. Introduction

In current software development practice, testing [1, 2] remains the primary approach
to improve the reliability of software. This motivates [3] much research on efficient
techniques to automate all aspects of the software testing process. Of particular interest is
the automation of test data generation [4] for functional testing of units of code, where the
idea is to automatically generate a representative set of inputs (and outputs) for a program
fragment under test (typically a function or method). These data can subsequently be
compared with the function’s expected behaviour in order to detect failures and correct
faults. Moreover, once a suitable set of test data has been generated (and verified), it can
be used as reference data for continued (regression) testing of the code.

While different approaches exist towards the automatic generation of test data, symbolic
execution [5] has been recognised as a promising technique for so-called white-box or
glass-box testing [6, 7, 8, 9, 10], where the idea is to generate input data that in some way
cover a sufficiently large part of the control-flow graph of the function under test [4]. The
symbolic execution process traverses the control-flow graph of a program or function by
executing the code over symbolic values instead of concrete values [5]. Each time a control
dependency is encountered, the symbolic execution process proceeds along one of the
possible paths, thereby generating constrains upon the symbolic values such that when
the program variables have values that satisfy these constraints, the real execution would
proceed along the selected path. The process terminates when a sufficiently large (and
diverse) number of paths through the control-flow graph have been explored according to
some coverage criterion [4]. For each path, the constraints that have been collected along
are regrouped in a so-called path-constraint which is subsequently solved, resulting in a
set of concrete test values for the program variables that make the real execution proceed
along the given path. Test data generation based on symbolic execution is now at the
core of various popular open-source and commercial testing tools [9].

Although test data generation techniques are maturing, barely few works [11, 12, 13]
have studied how to automate the generation of representative test data for programs
that interact with a database, i.e., programs that intensively read and write into a large,
persistent, and highly-structured relational database [14] using SQL statements. In this
work, we detail, formalise and evaluate an approach that defines a symbolic execution for
SQL code and integrates it with a more traditional symbolic execution of typical program
code. The data generated by our technique constitutes test data that includes database
content in addition to values for the program variables. Consequently, it can serve to
test the program at hand, including the interaction between the code and the relational
database.

Enabling test data generation for database intensive programs is a non-trivial extension
of known data generation techniques. In a database program, the database can be seen
as a particular kind of container for some of the values manipulated by the program.
During symbolic execution, these values must thus be represented symbolically and
subsequently constrained to allow the proper generation of test data, including an input
and output database content. Nevertheless, the symbolic representation of these values
raises difficulties as the database is a container of particularly complex shape: its content
must obey the so-called database schema, defined using SQL DDL code [14]. This database
schema defines a set of tables where the database content will be stored. Each table can
be seen as representing a mathematical relation, i.e., a set of tuples with no limit on the
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potential number of tuples. The schema typically also describes a set of data integrity
constraints that must be enforced by the relations in the tables, like the primary key,
foreign key or check constraints. These constraints are particularly complex as they are
first-order logic constraints. For instance, a primary key constraint states that for all
couples of tuples in the relation represented by a table, the value of the primary key fields
cannot be all equal.

A program typically interacts with the database by using SQL [14] query statements
and DML statements that are embedded in the program’s source code. As such, SELECT
queries allow to gather values from the database tables in order to copy them into the
program variables. DML statements INSERT, UPDATE and DELETE allow to modify
the content of the database tables, typically in function of the value of the program
variables. Symbolic execution of such SQL statements raises difficulties due to their
complex behavior. Firstly, SQL is a declarative language: SQL statements express the
desired action over the content of the database relations, but they do not explicit the (often
complex) control-flow necessary to compute this action. In practice, during execution,
these SQL statements are sent by the database program – using a dedicated API – to
the DataBase Management System (DBMS) [14], an external component responsible for
the interpretation and execution of SQL code over the database. The DBMS keeps an
optimised and persistent internal representation of the database and manages concurrent
distant accesses by allowing the database programs to use transactions [14]. Secondly,
the execution of DML INSERT, UPDATE or DELETE statements by the DBMS does
not only consist in modifying the content of the database, but also in checking that
these modifications do not let the database in a state where the integrity constraints
defined in the schema are violated. If an integrity constraint violation is detected, the
DML statement execution fails and the database remains unmodified. As a consequence,
during symbolic execution each INSERT, UPDATE or DELETE statement will have to
be treated as an if-then-else statement with a particularly complex condition:

if (Program variables and Database are in a state
where the SQL statement will not violate any constraint ) {

Execute the SQL statement!
} else {

Signal a constraint violation !
}

The technique that we detail in this work overcomes these difficulties by modelling every
table in the database as a variable typed as a mathematical relation over simple domains,
like the integers. Each SQL statement in the program can then be modelled as a relational
operation over these relational variables as well as the traditional program variables. By
defining a symbolic execution over this relational version of the program, we can derive a
set of path constraints over the values of both the program’s relational and traditional
variables. The generated path constraints will thus include symbols representing simple
program values as well as symbols representing the relations in the database tables.
Furthermore, each path constraint must be combined with the schema constraints in order
enforce data integrity of the database content. The result is a complex constraint system
that mixes traditional constraints on the program’s variables with relational constraints
over the relational variables. Each solution to the combined constraint system describes
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test data, including a valid initial and final state for each table in the database, such that
when the program is executed with respect to these data values (including the database),
the execution will follow the path represented by the constraint system. In our work,
we use the SMTv2 [15] language logic to express these combined constraint systems, in
a similar way to the scheme proposed in [16] for relational constraints modelling. The
constraints are solved using the Z3 [17] solver, which is at the core of several existing
symbolic execution tools (e.g. [18, 19]).

The main contribution of this work is a relational symbolic execution algorithm for simple
database programs. This algorithm integrates the technique described in the previous
paragraphs for symbolic execution of SQL code with a classical symbolic execution process
for basic Java statements. This algorithm can be used for symbolic execution of a
language composed of simple Java methods interacting with a relational database using
SQL statements and transactions through JDBC. Given the SQL DDL code describing
the database schema, the Java/SQL code of the method and a finite path in the control
flow graph of this method, the algorithm generates the corresponding constraints in the
SMTv2 language. A test generation tool based on this algorithm has been coded and
used to generate test data for a number of sample Java methods and databases.

This work extends our previous work presented in [20, 21]. It notably adds the support
of SMTv2 as output constraint language. This allows the technique to benefit from the
power of SMT solvers for relational constraint solving [16]. It also provides an extended
experimental evaluation of the technique over thousands of paths in various pieces of
code, including real application code.

The remainder of this paper is organised as follows. Our relational symbolic execution
algorithm is described in section 2. First, we formally define the part of the Java/SQL
syntax that is supported by the algorithm. Then, we systematically describe the
constraint generation rules to be used for the symbolic execution of this sub-language. A
test generation tool based on the algorithm is described and evaluated experimentally
over a set of sample programs in section 3. Finally, some conclusions, related and future
work are discussed in section 4.
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2. A relational symbolic execution algorithm for simple Java/SQL programs

2.1. Syntax of the tested Java/SQL programs

In this section, we define precisely – using a BNF grammar – what subset of the
Java/SQL syntax our algorithm can execute symbolically. This subset has been chosen to
offer a good compromise between simplicity and expressiveness. Without loss of generality,
we consider a single java method that interacts with a relational database. The database
schema describes a set of tables. Each table has a primary key and the attributes can be
constrained by foreign key constraints and check constraints. The code of the method can
contain if-then-else blocks, while loops, return statements and local variable assignments
with typical operators for lists and integers. The method will interact with the database
through SQL base statements, as they are typically used in online transaction processing
(OLTP) programs, and through SQL base primitives for transaction management. The
method receives as input parameters a JDBC connection to the database, a set of integer
lists and an input scanner for integers. The lists model any structured group of inputs
transmitted to the code at method call. The scanner models the method’s access to
simple data from the ”outside world”, like user prompt, network access, etc.

Figure 1 provides an example database program in this particular sublanguage. The
example describes a database with two tables: one for library shelves and one for the
books stored in each of these shelves. The total number of books stored in a shelf is saved
for each shelf. The example also describes a method manipulating this database: it adds
a set of new books to the database and updates the shelves’ books counts. If a book is
added to a non-existent shelf, then the shelf is itself added to the database as well. The
books are inserted one by one in isolated transactions. If a transaction was successful, the
code of the added book is saved in a list, which is returned at the end of the method’s
execution.

In the next paragraphs, the chosen notation for the BNF grammar of the syntax is
standard but includes some additional meta-symbols: {...} (grouping), ? (zero or one
times), * (zero or more times) and + (one or more times). When a single nonterminal
appears several times in a single production, subscript notation allows to distinguish
between the occurrences.

2.1.1. Database program

A database program is composed of the SQL DDL code of the database schema and of
the code of the Java method under test.

〈database-program〉 ::= 〈sql-ddl〉 〈java-method〉

2.1.2. Database schema

The relational database schema is a list of table definitions. This list can be empty,
in what case the program is a traditional program that works independently of any
database. In the list, each table is identified by its name, contains at least one attribute
and endorses exactly one primary key. Foreign keys and additional check constraints can
be declared for a table. A row in a table cannot be deleted or see its primary key value
modified as long as there exists at least another row in the database that references it
(ON DELETE/UPDATE NO ACTION). Semantics of all the schema creation primitives
conforms to the classical SQL DDL specification provided by ISO.
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〈sql-ddl〉 ::= 〈table〉*

〈table〉 ::= CREATE TABLE 〈id〉 (〈att〉+ 〈p-key〉 〈f-key〉* 〈chk〉*);

〈att〉 ::= 〈id〉 INTEGER NOT NULL ,

〈p-key〉 ::= CONSTRAINT 〈id〉cst PRIMARY KEY ( 〈id〉att )

〈f-key〉 ::= ,CONSTRAINT 〈id〉cst FOREIGN KEY ( 〈id〉att ) REFERENCES 〈id〉tab ( 〈id〉re f id )

〈chk〉 ::= ,CHECK (〈id〉 {< | = | >} 〈integer〉)
〈id〉 ::= {a |...| z | A |...| Z}{a |...| z | A |...| Z | 0 |...| 9}*

〈integer〉 ::= -? {1 | ... | 9}{0 | ... | 9}∗ | 0}

2.1.3. Method signature and body

We consider simple Java methods manipulating only internal variables and parame-
ters. Variables can only be typed as ‘int’, ‘java.util.List<java.lang.Integer>’ or
‘java.sql.ResultSet’. The method receives as input parameters a connexion to the
database (typed as ‘java.sql.Connection’), a scanner (typed as ‘java.util.Scanner’)
and some lists of integers (typed as ‘java.util.List<java.lang.Integer>’), where two
distinct list parameters cannot reference a single list object. Its return type can be either
‘void’, ‘int’ or ‘java.util.List<java.lang.Integer>’.

〈java-method〉 ::= 〈type〉 〈id〉 (〈db-con〉,〈inp〉 〈parameters〉) throws SQLException { 〈stmt〉* }

〈type〉 ::= void

| int

| List<Integer>

〈db-con〉 ::= Connection con

〈inp〉 ::= Scanner in

〈parameters〉 ::= {, List<Integer> 〈id〉 }*

The connection with the database is supposed to stay reliable and every SQL statement
to be processed without any technical problem during the method’s execution. The
semantics of all the Java constructs conforms to the classical Java specification and
documentation. The semantics of all SQL statements conforms to the classical SQL
specification provided by ISO.

Common statements and lists management. Common condition, loop and assignment
statements, as well as common integer expressions and boolean conditions can be
used. Lists can be manipulated using the ‘add(int)’, ‘remove(int)’, ‘get(int)’ and
‘size(int)’ methods. The ‘java.util.ArrayList<Integer>’ implementation of these
methods is supposed to be used. A list variable can be ‘null’.

〈stmt〉 ::= if (〈cond〉) {〈stmt〉then*} {else {〈stmt〉else*}}?;

| while (〈cond〉) { 〈stmt〉* };

| {int | List<Integer>}? 〈id〉 = 〈expr〉;
| 〈id〉.add( 〈int-expr〉 );
| 〈id〉.remove( 〈int-expr〉 );
| return 〈id〉;
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〈cond〉 ::= true

| false

| (! 〈cond〉)
| (〈cond〉1 {& | |} 〈cond〉2)
| (〈int-expr〉1 {< | == | >} 〈int-expr〉2)
| (〈id〉 == null)

〈expr〉 ::= 〈int-expr〉 | 〈list-expr〉
〈int-expr〉 ::= 〈id〉
| 〈integer〉
| (〈int-expr〉1 {+ | -} 〈int-expr〉2)
| (〈id〉.get( 〈int-expr〉 ))
| (〈id〉.size())

〈list-expr〉 ::= 〈id〉

| null

| new ArrayList<Integer>()

Interacting with the outside world. The scanner parameter of the method can be used to
get integer data from the ”outside world” (user prompt, network access, reading from a
file, etc.). This interaction is supposed to always succeed, without any technical problem.

〈stmt〉 ::= {int}? 〈id〉 = in.nextInt();

Reading data from the database. Data can be read from the database using simple SQL
queries. The obtained ResultSet can be accessed using the ‘next()’ and ‘getInt(String)’
methods.

〈stmt〉 ::= { ResultSet }? 〈id〉 = con.createStatement().executeQuery(" 〈select-query〉 ");
| 〈id〉.next();
〈select-query〉 ::= SELECT {〈id〉i,}*〈id〉n FROM 〈id〉tab { WHERE 〈db-cond〉 }?

〈db-cond〉 ::= (〈db-cond〉1 {AND | OR} 〈db-cond〉2)
| (NOT 〈db-cond〉)
| (〈id〉 {< | = | >} 〈db-int-expr〉)
〈db-int-expr〉 ::= 〈id〉
| 〈integer〉
| (〈db-int-expr〉1 {+ | -} 〈db-int-expr〉2)
| "+( 〈int-expr〉 )+"

〈int-expr〉 ::= 〈id〉tab.getInt(" 〈id〉att ")

〈cond〉 ::= (〈id〉.next( 〈int-expr〉 ))

Writing data into the database. Data can be written into the database using simple SQL
INSERT, UPDATE or DELETE statements. If the execution of a such a statement
provokes a violation of one of the database schema integrity constraints, the database
remains unmodified by the statement and an exception is thrown within the program and
the method’s execution is stopped. Such exceptions should be caught using a try/catch
structure.

〈stmt〉 ::= con.createStatement().execute(" 〈db-write〉 ");
| try { con.createStatement().execute(" 〈db-write〉 "); }

catch (SQLException e)

{ 〈stmt〉* };
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〈db-write〉 ::= INSERT INTO 〈id〉 VALUES ( { 〈int-expr〉i, }* 〈int-expr〉n )

| UPDATE 〈id〉tab SET 〈id〉att = 〈db-int-expr〉 { WHERE 〈db-cond〉 }?

| DELETE FROM 〈id〉 { WHERE 〈db-cond〉 }?

Transactions management. SQL transactions are managed through the classical commit
and rollback statements. We suppose that a new transaction is automatically started at
the beginning of the method’s execution. The first call to commit or rollback will end this
transaction and then starts a new one. Any subsequent call to commit or rollback will end
the current transaction and start a new one. When a commit statement is executed, it
makes permanent all the changes made to the database by the program since the current
transaction was started. When a rollback statement is executed, it restores the database
to its state at the start of the current transaction. We suppose that all the changes made
to the database since the last transaction was started are automatically committed at the
end of the method’s execution.

〈stmt〉 ::= con.commit() ;

| con.rollback() ;

2.2. Relational symbolic execution algorithm

2.2.1. Inputs and outputs

The proposed algorithm, which is described in this section, receives as inputs the SQL
DLL code describing the schema of the database, the Java code of the method under
test and a single execution path through this method. It produces as output a constraint
system mixing classical constraints with relational constraints. Solutions to this system
are such that when the method is executed with respect to any of these solutions, its
execution will follow the given path.

Coupling this algorithm with any existing technique (e.g. [23, 24, 25, 26]) able to select
a set of paths to test in the program’s control flow graph will allow to generate test data
for these paths. The set of paths for which test data are computed, as well as the process
used to select these paths, are thus parameters of the method that we propose. This
allows the method to be used within the context of different code coverage criteria [4].

The subset of Java/SQL supported by our algorithm allows integers as only primary
type in Java code and database tables. This choice was adopted to make the modelling
and use of the constraint generation rules conceptually simpler. However, this does not
fundamentally limit the power of the proposed technique since all other usual primitive
types such as booleans, strings, and floating point numbers, but also data structures such
as sets, arrays and matrices, and Java objects can be mapped to integers, simulated using
lists of integers, or directly modelled into SMTv2.

The execution path received as input by our algorithm is supposed to be a finite path
in the method’s control flow graph [4]. It defines which branches were taken at each of
the encountered if statements, for each encountered loop how many times its body was
executed (this number must be finite), and for each encountered try/catch statement
whether the catch clause was executed. A path terminates either when the end of the
method is reached or when a return statement is executed.

Our algorithm translates the path into a constraint system, combining the path constraint
with the database schema integrity constraints, expressed in SMTv2 [15], a widely adopted
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language used as the standard language for many SMT solvers. The constraint system
produced for a path can notably be solved using the Z3 solver [17]. Both Z3 and SMTv2
have been shown to be adequate [16] for relational constraint solving and are already at
the core of several symbolic execution tools like [18, 19].

Solving the constraint system generated by the algorithm for a given path allows to
find values for both the inputs and outputs of the analysed Java method. The inputs
include the content of each database table at the start of the method’s execution, the
value of every list received as argument by the method, and a value for the part of the
input stream that is consumed during the method’s execution. The outputs include the
content of each database table at the end of the method’s execution, the final value of
each of the argument lists of the method, and possibly the value returned by the return
statement. If the constraint system produced for a given path has no solution, this means
that the path is infeasible. As the produced constraints are written in a logic that is not
decidable in general [16], it can happen that for a given path the solver may neither be
able to find a solution for the generated constraint system, nor be able to establish that
such a solution does not exist.

2.2.2. Algorithm principle

The algorithm performs a symbolic execution of the program path received as input.
Each of the successive values taken by the method’s variables and by the database tables
during the execution of the path is represented by corresponding symbols and defined by
constraints.

First, symbolic execution generates constraints over the symbols representing the initial
values of the database tables. These constraints state that, initially, each table contains
data that conform to the database schema integrity constraints.

Then, symbolic execution analyses one by one the method’s statements in the order
specified by the path. Each time a statement sets or changes the value of a method
variable or database table, symbolic execution generates constraints over the symbols
representing the new value. These constraints define how the new value can be computed
from the values of the database tables and program variables before the statement’s
execution. Moreover, every time the value of a database table is changed, constraints are
also added to state that the new value enforce the database schema integrity constraints.

Finally, every time an if, while or try/catch statement is encountered, symbolic execution
generates an additional constraint over the symbols such that when the program is executed
with respect to values satisfying this constraint, the execution is guaranteed to take the
considered path.

2.2.3. Constraint generation rules

In the following paragraphs, we illustrate the execution of the algorithm over the
example database program given in Figure 1. We detail each step of the symbolic
execution process over a path where the while loop is executed once, the else branch
of both the if statements is taken, and the catch clause of the try/catch is executed
(lines 1-6, 8-15, 18-21, 3 and 22). At each step, we present the rules used by our
algorithm to generate the corresponding SMTv2 symbols and constraints. All the
rules that are part of the complete set of rules defining our symbolic execution
algorithm for the fraction of Java/SQL defined in Section 2.1 are either presented during
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one of these steps, or described formally in a set of tables available at the end of this section.

The first step executed by our algorithm is to generate SMTv2 symbols and constraints
for the SQL DDL code of the database schema. For the database schema described in
Figure 1, the generated SMTv2 code is detailed in the frame below, where new symbols and
new symbol types are defined using the SMTv2 keyword ”declare”, while new constraints
are enforced using the SMTv2 keyword ”assert”. First of all, the algorithm generates new
symbol types for the kind of objects stored in each table defined by the schema (the lines
prefixed by (0) in the SMTv2 code below). It will then generate symbols and constraints
describing the input content of each of these tables. The used modelling is inspired by
the one proposed in [16] for relational types. First, a symbol is created (1) to represent
the initial set of objects in each table. Typed as a boolean function, it returns true for
each object present in the input content of the table. Symbols typed as integer functions
are then generated (2) to associate to each object in the table one of its attribute values.
Finally, constraints are generated to enforce on this input content all the check constraints
(3), primary key constraints (4), and foreign key constraints (5) defined in the schema.

Note that the original SQL table and attribute names, as well as the original Java
variable names, are used as SMTv2 symbols, suffixed by the natural number 1 (e.g. book1
or id1 in the SMTv2 code below), which represents the fact that the current symbols
represent the initial values of the represented tables, attributes or variables. Subsequent
values of a same table, attribute or variable will be represented by the same symbol
suffixed with successive numbers.

; New types for tables
(0) (declare−sort book)
(0) (declare−sort shelf)

; Input content of table Book
(1) (declare−fun book1 (book) Bool)
(2) (declare−fun shelfId1 (book) Int)
(2) (declare−fun code1 (book) Int)
(4) (assert (forall ((a book) (b book))

(=> (and (and (book1 a) (book1 b)) (= (code1 a) (code1 b))) (= a b))))

; Input content of table Shelf
(1) (declare−fun shelf1 (shelf) Bool)
(2) (declare−fun numberOfBooks1 (shelf) Int)
(2) (declare−fun id1 (shelf) Int)
(3) (assert (forall ((a shelf )) (> (numberOfBooks1 a) 0)))
(4) (assert (forall ((a shelf ) (b shelf ))

(=> (and (and (shelf1 a) (shelf1 b)) (= (id1 a) (id1 b))) (= a b))))

; Foreign keys
(5) (assert (forall ((a book))

(=> (book1 a) (exists ((b shelf)) (and (shelf1 b) (= (shelfId1 a) (id1 b )))))))

The second step executed by our algorithm is to define a new SMTv2 symbol type
(called BoundedList) for lists of integers. All the symbols that will be subsequently
generated to represent the value of a variable typed as a Java list will be part of this new

11



SMTv2 type. A BoundedList symbol represents a record composed of three fields: the
isNull field is typed as boolean, the size field is typed as integer and the elements field is
typed as array of integers. If the isNull field is true, then the symbol represents the Java
null value. Otherwise, the field size represents the size of the list, and the field elements
represents an array whose indexes 0 to (size − 1) contain the elements of the list in the
right order.

(declare−datatypes ()
((BoundedList (mk−bounded−list (isNull Bool) (size Int) (elements (Array Int Int))))))

The third step executed by our algorithm is to define symbols (typed as BoundedList)
for the initial content of each list parameter of the method. For the example method
considered in this section, the following code is generated:

(declare−const newbooks1 BoundedList)
(assert (=> (not (isNull newbooks1)) (>= (size newbooks1) 0)))

The algorithm can then proceed with the symbolic execution of the method. It follows
the path received as input and considers all statements one by one. In the case of our
example, the two first statements to be executed are assignments. Symbolic execution for
assignment creates a new symbol of the correct type to represent the new value of the
assigned variable (1) and generates constraints to specify that this new symbol contains
the value computed by evaluating the expression on the right of the ‘=’ symbol (2). In
the particular case where a list variable is assigned to a different list variable, the shared
content of the two variables is represented by a single symbol.

(1) (declare−const i1 Int)
(2) (assert (= i1 0))

(1) (declare−const addedbooks1 BoundedList)
(2) (assert (not (isNull addedbooks1)))
(2) (assert (= (size addedbooks1) 0))

The next statement in the path is a while statement. As the path specifies that the
loop body must be executed, a constraint is generated to specify that the loop condition
at this point of time should be true (1). As the ‘size()’ method cannot be called on a
null object without causing a runtime error, a constraint is automatically added to ensure
that the current value of the ‘newBooks’ variable of the method is not null (2).

(1) (assert (and (not (isNull newbooks1)) (< i1 (size newbooks1))))
(2) (assert (not (isNull newbooks1)))

Then the algorithm proceeds with symbolic execution of the statements in the loop
body, as specified within the input path. The first statement is an assignment statement:

(declare−const error1 Int)
(assert (= error1 0))

Symbolic execution for use of the input scanner simply creates a new symbol to represent
the scanned value:
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(declare−const theshelf1 Int)

Symbolic execution for select statements creates new symbols to represent the content
of the ResultSet variable. A first symbol (1) describes the number of rows returned
by the select query. These rows are available through a second symbol (2) which is a
function that returns them in the order in which they are returned by the ResultSet:
(shelves1List 0) will be the first returned row, (shelves1List 1) the second one and so on.

(1) (declare−const shelves1Size Int)
(2) (declare−fun shelves1List (Int) shelf)

The modelling proposed in [16] for constraining the content and cardinality of relations
is then used to specify that a row is part of the ResultSet if and only if it is part of the
current content of the table on which the select query is executed and that it enforces
the WHERE condition of the select query. In practice, new constraints are added (1) to
define a function shelves1InvertedList which is the inverse of shelves1List. This function
is used (1) to ensure that shelves1List defines a one to one correspondence between the
integers 0 6 i 6 shelves1S ize and the elements in the ResultSet. Helper code (2) is also
added to ensure a proper instantiation of the universal quantifiers by the solver.

(1) (declare−fun shelves1InvertedList (shelf) Int)
(2) (declare−fun shelves1Trigger (Int) Bool)
(1) (assert (and (>= shelves1Size 0)

(=> (= shelves1Size 0)
(forall ((c shelf )) (not (and (shelf1 c) (= (id1 c) theshelf1 )))))))

(1) (assert (forall ((c shelf ))
(=> (and (shelf1 c) (= (id1 c) theshelf1 ))

(and (>= (shelves1InvertedList c) 0) (< (shelves1InvertedList c) shelves1Size )))))
(1) (assert (forall ((c shelf ))

(=> (and (shelf1 c) (= (id1 c) theshelf1 ))
(= c (shelves1List ( shelves1InvertedList c ))))))

(1) (assert (forall (( i Int))
(=> (and (>= i 0) (< i shelves1Size))

(= i ( shelves1InvertedList ( shelves1List i ))))))
(1) (assert (forall (( i Int))

(! (=> (and (>= i 0) (< i shelves1Size))
(and (shelf1 ( shelves1List i )) (= (id1 ( shelves1List i )) theshelf1 )))

(2) :pattern (shelves1Trigger i))))
(2) (assert (=> (>= 0 shelves1Size) (shelves1Trigger 1)))
(2) (assert (forall (( i Int))

(! (=> (and (>= i 0) (< i shelves1Size))
(shelves1Trigger (+ i 1)))

:pattern (shelves1Trigger i))))

As the path specifies that the else branch of the if statement must be executed this
time, a constraint is generated to specify that the condition of the if should be false, i.e.
that shelves.next() should return true.

For each ResultSet object, the algorithm records the number of times the next()
method has been called on this object. This value represents the index increased by one
of the row pointed by the cursor of the ResultSet at the current execution state of the
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path. When the boolean value returned by the ‘next()’ method is used in an if or while
condition, this value states if the number of rows in the ResultSet is greater or equal to
the number of times the ‘next()’ method has been called so far on this ResultSet. In
this case, shelves.next() will return true if the ResultSet shelves contains more than
one row (as shelves.next() has been called once on the ResultSet):

(assert (not (not (>= shelves1Size 1))))

Symbolic execution for update creates a new symbol (1) typed as an integer function,
that will replace the previous symbol associating the attribute value to each object in
the table. As this new symbol is the second one to represent the value of the attribute
numberO f Books, it is named numberO f Books2. A couple of constraints (2)(3) is then
generated to relate the old and new attribute values in the table: one for the rows that do
not match the WHERE condition (2), and one for those that do (3). Finally, constraints
are added to specify that no integrity constraint was violated during the update. In this
case, a constraint (4) is added to state that the updated attribute values still enforce the
check constraint defined in the database schema.

(1) (declare−fun numberOfBooks2 (shelf) Int)
(2) (assert (forall ((p shelf ))

(=> (or (and (shelf1 p) (not (= (id1 p) theshelf1))) (not (shelf1 p)))
(= (numberOfBooks2 p) (numberOfBooks1 p)))))

(3) (assert (forall ((p shelf ))
(=> (and (shelf1 p) (= (id1 p) theshelf1))

(= (numberOfBooks2 p) (+ (numberOfBooks1 p) 1)))))
(4) (assert (forall ((a shelf ))

(> (numberOfBooks2 a) 0)))

Subsequently, as in our example the path specifies that the catch block of the try/catch
statement must be executed, a constraint (1) is added to ensure that the program variables
and the database are in a state where the INSERT execution will violate a schema integrity
constraint. In this case, the constraint states that the inserted row has a similar primary
key as the primary key of an existing row in the table or that the inserted row has a
foreign key value that does not reference any existing row in the shelf table. Constraints
are also automatically added to ensure that the ‘size()’ (2) and ‘get(int)’ (3) methods
do not cause any runtime error.

(1) (assert (or (exists ((a book)) (and (book1 a)
(= (code1 a) (select (elements newbooks1) i1))))

(forall ((a shelf )) (=> (shelf1 a)
(not (= (id1 a) theshelf1 ))))))

(2) (assert (not (isNull newbooks1)))
(3) (assert (>= i1 0))
(3) (assert (< i1 ( size newbooks1)))

The content of the catch block is then symbolically executed:

(declare−const error2 Int)
(assert (= error2 1))

As the path specifies that the else branch of the if statement must be executed this
time, a constraint is generated to specify that the condition of the if should be false:
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(assert (not (= error2 0)))

Symbolic execution for Rollback statements tells the algorithm to represent the current
content of each database table using the symbols that were representing the content of
the table just before the last start of a new transaction (saved by the algorithm at the
beginning of the method execution and after each call to commit or abort). In this case,
the database state is restored to its state at the method start, i.e. the algorithm rewinds
the counters for the database symbols and symbols book1, code1, shel f Id1, shel f 1, id1
and numberO f Books1 represent the content of the database after the ‘con.rollback()’
statement.

The assignment statement is then symbolically executed:

(declare−const i2 Int)
(assert (= i2 (+ i1 1)))

As the path specifies that the loop body must not be executed any more, a constraint
is generated to specify that, at this point in time, the loop condition should be false:

(assert (not (and (not (isNull newbooks1)) (< i2 (size newbooks1)))))
(assert (not (isNull newbooks1)))

As a return statement is met, the algorithm stops and returns the generated SMTv2
constraint model. The Z3 solver [17] can be asked to find a valuation for the defined
symbols satisfying the constraints. As the algorithm records what symbols represent the
initial, respectively final, values of a variable or table, the input and output values of
the method (for the considered path) can easily be extracted from the solution to the
constraint system.

For our example, the data that were obtained from the solution to the constraint system
are summarised in the following tables:

Inputs
Name Symbol(s) Value
TABLE
shelf

CONTENT:
shel f 1,
ATTRIBUTES:
id1
numberO f Books1

id n.Books
6 1
12 1

TABLE
book

CONTENT:
book1
ATTRIBUTES:
code1
shel f Id1

code s.Id
4 12

newBooks newbooks1 [4]
in.nextInt() theshel f 1 [6]

Outputs
Name Symbolic(s) Value
TABLE
shelf

CONTENT:
shel f 1,
ATTRIBUTES:
id1
numberO f Books1

id n.Books
6 1
12 1

TABLE
book

CONTENT:
book1
ATTRIBUTES:
code1
shel f Id1

code s.Id
4 12

newBooks newbooks1 [4]
addedBooks addedbooks1 []

For sake of completeness, the following tables define the constraint generation rules
used by our algorithm in case of an Insert (table 1), Update (table 2), Delete (table 3) or
Add/Remove (table 4) statement. Table 5 explains the abbreviations used in the previous
tables.
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Table 1: Constraints generation rules for INSERT statements

INSERT INTO 〈id〉 VALUES (〈int-expr〉1 , ... , 〈int-expr〉i , ... , 〈int-expr〉n)

if (no exception thrown in path for this INSERT ) {

; Inserted primary key value does not already exist
(assert(forall((a 〈id〉))(⇒ (name(〈id〉) a)(not (= (name(pk) a) smt2O f (〈int-expr〉pkpos ))))))

; Inserted values constrained by the ith foreign key reference existing rows

(assert (exists ((a fktab
i ))( and (= (name(fkpk

i ) a) smt2O f (〈int-expr〉fkpos
i

)) (name(fktab
i ) a))))

; Symbol for new table content
(declare−fun freshSym (〈id〉) Bool)
; Constraints describing new table content
(assert (forall ((a 〈id〉)) (⇒ (name(〈id〉) a) (freshSym a))))
(assert (exists ((a 〈id〉)) (and (= (atti a) smt2O f (〈int-expr〉i)) (freshSym a))))
(assert (forall ((a 〈id〉))
(⇒ (and (not (name(〈id〉) a))(not (= (atti a) smt2O f (〈int-expr〉i))))(not (freshSym a)))))

; No duplicate inserted row
(assert (forall ((a 〈id〉) (b 〈id〉))
(⇒ (and (and (freshSym a) (freshSym b)) (= (pk a) (pk b))) (= a b))))

} else {
// Logical disjunction between every possible constraint
// violation given the database schema and this insert:

; The inserted primary key value already exists in the table
(exists ((a 〈id〉)) (and (name(〈id〉) a) (= (name(pk) a) smt2O f (〈int-expr〉pkpos ))))

; ith inserted foreign key value does not reference a row:

(forall ((a fktab
i ))(⇒ (name(fktab

i ) a) (not (= (name(fkpk
i ) a) smt2O f (〈int-expr〉fkpos

i
)))))

; An inserted attribute violates the ith check constraint :

(not (coright
i smt2O f (〈int-expr〉copos

i
)))

}
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Table 2: Constraints generation for UPDATE statements

UPDATE 〈id〉 SET 〈id〉att = 〈db-int-expr〉 WHERE 〈db-cond〉

if (no exception thrown in path for this UPDATE ) {

; Symbol for new attribute values
(declare−fun freshSym (〈id〉) Int)
; Constraints describing new attribute values
(assert (forall ((a 〈id〉)) (⇒ (or (and (name(〈id〉) a) (not smt2O f (〈db-cond〉,〈id〉,a)))
(not (name(〈id〉) a))) (= (freshSym a) (name(〈id〉att) a)))))

(assert (forall ((a 〈id〉)) (⇒ (and (name(〈id〉) a) smt2O f (〈db-cond〉,〈id〉,a))
(= (freshSym a) smt2O f (〈db-int-expr〉,〈id〉,a)))))

; Update on attribute constrained by ith foreign key does not let pending references
(assert (forall ((a 〈id〉)) (⇒ (name(〈id〉) a)
(exists ((b fktab

i )) (and (name(fktab
i ) b) (= (freshSym a) (name(fkpk

i ) b)))))))
; Update on attribute constrained by primary key does not let duplicate attribute values
(assert (forall ((a 〈id〉) (b 〈id〉))
(⇒ (and (and (name(〈id〉) a) (name(〈id〉) b)) (= (freshSym a) (freshSym b))) (= a b))))

; Update on primary key referenced by ith foreign key does not let pending references

(assert (forall ((a ifktab
i )) (⇒ (name(ifktab

i ) a)
(exists ((b 〈id〉))( and (name(〈id〉) b) (= (name(ifkatt

i ) a) (freshSym b)))))))
; Update on attribute constrained by ith check constraint does not violate the constraint

(assert (forall ((a 〈id〉)) (coright
i (freshSym a))))

} else {
// Logical disjunction between every possible constraint
// violation given the database schema and this update:

; Update on primary key leads to duplicate attribute values
(exists ((a 〈id〉) (b 〈id〉)) (and (and (name(〈id〉) a) (and (name(〈id〉) b) (not (= a b))))
(or (and smt2O f (〈db-cond〉,〈id〉,a) (and smt2O f (〈db-cond〉,〈id〉,b)

(= smt2O f (〈db-int-expr〉,〈id〉,a) smt2O f (〈db-int-expr〉,〈id〉,b))))
(and (not smt2O f (〈db-cond〉,〈id〉,a)) (and smt2O f (〈db-cond〉,〈id〉,b)

(= (name(〈id〉att) a) smt2O f (〈db-int-expr〉,〈id〉,b)))))) )
; Update on primary key referenced by the ith foreign key lets pending references

(exists ((a 〈id〉) (b 〈id〉)) (and (and (name(〈id〉) a) (name(ifktab
i ) b))

(and (and (not (= (name(〈id〉att) a) smt2O f (〈db-int-expr〉,〈id〉,a)))
(= (name(〈id〉att) a) (name(ifkpk

i ) b))) smt2O f (〈db-cond〉,〈id〉,a))))
; Update on attribute constrained by ith foreign key lets pending references
(exists ((a 〈id〉)) (and (and (name(〈id〉) a) smt2O f (〈db-cond〉,〈id〉,a))
(not (exists ((b name(fktab

i ))) (= (name(fkpk
i ) b) smt2O f (〈db-int-expr〉,〈id〉,a))))))

; Update on attribute constrained by ith check constraint violates the constraint
(exists ((a 〈id〉)) (and (and (name(〈id〉) a) smt2O f (〈db-cond〉,〈id〉,a))

(not (coright
i smt2O f (〈db-int-expr〉,〈id〉,a)))))

}
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Table 3: Constraints generation for DELETE statements

DELETE FROM 〈id〉 WHERE 〈db-cond〉

if (no exception thrown in path for this DELETE ) {

; Symbol for new table content
(declare−fun freshSym (〈id〉) Bool)
; Constraints describing new table content
(assert (forall ((a 〈id〉))
(= (freshSym a) (and (name(〈id〉) a) (not smt2O f (〈db-cond〉,〈id〉,a))))))

; Delete does not let pending references for ith foreign key

(assert(forall ((a fktab
i ) (b 〈id〉))

(⇒ (and (name(〈id〉) b) (and (not (freshSym b)) (name(ifktab
i ) a)))

(not (= (name(pk) b) (name(ifkatt
i ) a))))))

} else {
// Logical disjunction between every possible constraint
// violation given the database schema and this update:

; Delete lets pending references for ith foreign key

(exists ((a fktab
i ) (b 〈id〉))

(and (and (and (name(〈id〉) b) (name(ifktab
i ) a) ) smt2O f (〈db-cond〉,〈id〉,b))

(= (name(pk) b) (name(ifkatt
i ) a))))

}

Table 4: Constraints generation for add(int) and remove(int) statements

〈id〉.add( 〈int-expr〉 );

(declare−const freshSym BoundedList)
(assert (not (isNull name(〈id〉))))
(assert (not (isNull freshSym)))
(assert (= (size freshSym) (+ (size name(〈id〉)) 1)))
(assert (= (elements freshSym)
(store (elements name(〈id〉)) (size name(〈id〉)) smt2O f (〈int-expr〉))))

〈id〉.remove( 〈int-expr〉 );

(declare−const freshSym BoundedList)
(assert (not (isNull name(〈id〉))))
(assert (not (isNull freshSym)))
(assert (≥ (size name(〈id〉)) 1))
(assert (= (size freshSym) (− (size ”+ oldVar+ ”) 1)))
(assert (≥ smt2O f (〈int-expr〉) 0))
(assert (< smt2O f (〈int-expr〉) (size name(〈id〉))))
(assert (forall (( i Int)) (⇒ (and (≥ i 0) (< i smt2O f (〈int-expr〉)))
(= (select (elements name(〈id〉)) i ) (select (elements freshSym) i )))))

(assert (forall (( i Int)) (⇒ (and (≥ i smt2O f (〈int-expr〉)) (< i (size freshSym)))
(= (select (elements name(〈id〉)) (+ i 1)) (select (elements freshSym) i )))))
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Table 5: Abbreviations list
Abbreviation Meaning
freshSym A new symbol name that has still not been used in the SMTv2 code

generated so far.
smt2O f (x) Java condition/expression x translated into a corresponding SMTv2

condition/expression.
smt2O f (x, t, r) SQL condition/expression x evaluated for row r in table t translated

into a corresponding SMTv2 condition/expression.
name(x) if (x refers to a database table name) then

The symbol that represents the current content of table x
else if (x refers to a database attribute name)
The symbol that represents the current values of attribute x
else if (x refers to a Java variable name)
The symbol that represents the current content of the Java variable x

atti Name of the ith attribute in the list of attributes of table 〈id〉
pk Name of the primary key attribute of table 〈id〉.
pkpos Position of primary key in the list of attributes of table 〈id〉
fktab

i Name of the table referenced by the ith foreign key in the list of foreign
keys of table 〈id〉

fkpk
i Name of the primary key attribute of the table referenced by the ith

foreign key in the list of foreign keys of table 〈id〉
fkpos

i Position of the foreign key attribute, declared by the ith foreign key in
the list of table 〈id〉, in the list of attributes of table 〈id〉

ifktab
i Name of the table where is declared the ith foreign key referencing table

〈id〉 in the whole schema
ifkatt

i Name of the foreign key attribute declared by the ith foreign key
referencing table 〈id〉 in the schema

copos
i Position of the attribute constrained by the ith check constraint declared

in table 〈id〉

coright
i Inverted right part of the ith check constraint declared in table 〈id〉 (i.e.

inverted right part of ”a > 0” is ”< 0”)
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3. Relational symbolic execution for database programs testing: an experi-
mental validation

3.1. Symbolic execution and path exploration

Originally introduced in [5], symbolic execution has been used as the core principle of
many test data generation techniques. In most of these techniques (see e.g. [27, 28] for an
overview), symbolic execution is performed for a finite set of finite paths that are statically
computed from the control-flow graph in accordance with a given coverage criterion [4].
By solving the constraints associated to each of the paths, one obtains a set of inputs and
outputs that satisfy the given coverage criterion.

On the other hand, test data generation techniques that combine symbolic execution
with a dynamic path exploration process have also been proposed (see e.g. [24, 25, 26]).
The point of using a dynamic path exploration process is to provide symbolic execution
with additional runtime information, to make it more effective [10, 28]. In practice, the
program is first executed on concrete inputs to produce concrete outputs, but the code
is instrumented so that symbolic execution is performed together with this normal run
of the program, thereby generating the constraint system corresponding to the concrete
execution. By flipping some of the constraints among those generated by this symbolic
execution, one may produce constraints whose solution describes new concrete inputs
triggering the execution of a different path. The process is then repeated with these new
inputs until a set of inputs and outputs has been generated for a set of paths covering a
sufficient part of the code, again according to some coverage criterion [4].

The technique we propose in this paper is orthogonal to the path exploration process,
and can be combined with both a static or dynamic approach. However, in order to
evaluate the ability and efficiency our technique, we have built a prototype tool that
implements our relational symbolic execution for the defined subset of Java/SQL DML
based on a static path exploration process.

3.2. Evaluation process

Our tool works as follows. Given a program to test, the code is analysed statically
to select a set of paths to test in the program’s control-flow graph. In a nutshell, the
tool simply performs a depth-first search of the control-flow graph, selecting all possible
paths that execute the body of each loop in the program at most K times, where K is an
parameter of the tool. Consequently, the test data generated by our prototype satisfy a
finitely applicable variant of the common path-coverage criterion [4], similar to the loop
count-K criterion originally proposed in [29].

For each generated path, the tool applies the relational symbolic execution algorithm
proposed in section 2, and solves the produced constraints using the Z3 [17] solver. If
the solver finds a solution for the constraints, input and output data (including database
content) is extracted from this solution and recorded as constituting a test-case. Once
all the paths have been explored, a so-called test-suite comprising all the generated
test-cases is returned to the user. If, on the other hand, the constraint set is found to be
unsatisfiable, this means that the considered path cannot correspond to a real execution,
and the process simply continues with the next path. The tool also keeps a separate list
of the paths for which the solver cannot solve properly the constraints. This can happen
as the constraints are written in a logic that is not decidable in general [16].
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We have evaluated our prototype tool by using it to generate test data for eighteen
Java methods, each of them performing SQL operations over a relational database. The
methods we have used for the evaluation can be divided into three groups:

• The first group of methods were simply crafted to systematically evaluate the correct
symbolic execution of the different constructs of the Java/SQL sub-language proposed
in section 2.1. As such, the methods in this group exercise the different behaviours
of the integer and list operators, conditional and loop statements, SQL statements
and transaction management primitives.

• The second group contains the methods that were used to evaluate a previous
version of our prototype [21]. The first method in this group performs repeated
manipulations of integers and lists using assignment, if and while statements. The
second method performs many interleaved reads and writes in a database containing
four tables (representing regular or prospect customers that make purchases of
products). The third method mixes SQL statements with traditional Java code and
uses SQL transactions. The manipulated database contains two tables that represent
authors writing theater plays.

• The third group contains Java methods extracted from two real-world applications,
namely UnixUsage2 and RiskIt3, that have also been used as a basis for evaluation of
other works on test data generation for database applications by symbolic execution
[30, 13]. UnixUsage is a monitoring application for Unix, manipulating a database
with eight tables and thirty one attributes. RiskIt is an insurance rate estimation
application, manipulating a database with thirteen tables and fifty-seven attributes.

Together, the eighteen methods from our testbed constitute a set of five hundreds
lines of code, containing notably eighty SQL statements (including SELECT, INSERT,
UPDATE, DELETE statements, as well as transaction management code), over
databases containing up to thirteen tables (subject to primary key, foreign key and check
constraints). The code of these methods, as well as the generated test data, can be found
on the web4. The prototype tool is itself coded in Java 1.6 and run on a dual core Intel
Core i5 processor at 1.8GHz (256 KB L2 cache per core and 3 MB L3 cache) with 8GB of
dual channel DDR3 memory at 1600 MHz. The runtime environment was the Oracle
JVM 1.6.0 45 under a 32-bit edition of Windows 8.1. The version 4.3.0 of the Microsoft
Z3 solver was used.

3.3. Results description

Table 6 synthesises the obtained results. In total 10.159 paths were symbolically
executed and all generated constraint sets were properly solved by the solver: 10.046
paths were discovered to be infeasible (i.e. not corresponding to a real execution), while
test data were extracted from the computed solutions for the remaining 113 paths. The
high number of infeasible paths is principally due to the methods in the second group
(and, to a lesser extend, the methods for testing conditional constructs from the first

2http://sourceforge.net/projects/se549unixusage
3https://riskitinsurance.svn.sourceforge.net
4http://info.fundp.ac.be/~mmr/scp
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group), methods that were particularly constructed in this way for testing the constraint-
generation code. The total time for constraint solving was nine minutes and thirty seconds.

Although the methods from the first group are all small and contain only simple
operations, the results basically serve as a proof of concept showing the ability of our
approach to generate, in a reasonable time, the correct constraints for a set of execution
paths and, by solving them, to be able to either derive test data or correctly show the
unfeasibility of the path.

The results for the methods in the second group reveal important improvements
when compared to a previous version of our tool [21], in which the same methods were
symbolically executed, but the generated constraints were expressed using the Alloy
language [22] and solved using the Alloy analyzer [22]. The Alloy Analyzer solves a set of
relational constraints by setting an upper bound on the size of the relations to be found.
This makes finite the set of possible solutions, which can be exhaustively explored by
transforming the constraints into an equivalent SAT problem, solved by a dedicated SAT
solver. This mechanism is very costly in time and, moreover, did not allow to establish
that a set of relational constraints is unsatisfiable [16]. As a consequence, [21] took more
than eight minutes and a half to find test data for one path in the second sample and
was not able to detect properly any infeasible path. In contrast, the current version of
our tool, which makes use of the Z3 solver took thirty-two seconds to find test data or
to establish unfeasibility for thirty-six paths in the second sample, including the path
considered in [21].

Given the efficiency improvements with respect to our earlier work, we were now able
to test our tool on real-world code. Test data generation for the third group of methods
required to extend our symbolic execution algorithm to handle some new parts of Java and
SQL, used in UnixUsage and RiskIt, or to simulate them in the base language recognised
by the algorithm. In particular, the management of tables with no primary key or with
multiple-attribute primary key was integrated in the algorithm and string management
operations were simulated using either integers or lists of integers. As Table 6 show,
correct test data was generated in just a few seconds and, moreover, the generated test
data allowed to detect a possible failure in the code of RiskIt, where a runtime error is
thrown when the method createNewUser is called on inputs where the inserted job does
not reference any existing occupation or industry.
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4. Discussion

4.1. Conclusions

Symbolic execution is the core process of many existing test data generation techniques
[9]. These approaches explore a representative [4] set of finite paths to test in the program,
either statically [10] or dynamically [24, 25, 26], and execute them symbolically to generate
meaningful test inputs and outputs for the program. In this work, we propose an approach
for the symbolic execution of SQL code, which is a non-trivial extension to traditional
symbolic execution because of the complex structure of relational databases and the
complex behaviour of SQL statements. Given a database program mixing traditional
code with SQL statements, each database table manipulated by the program is modelled
as a variable typed as a relation and each SQL statement as a relational operation over
both these relational variables and the traditional variables of the program. A classical
symbolic execution process can then be applied to produce sets of mixed relational and
conventional constraints over symbols representing the values of both the classical and
relational variables of the program. The resulting path constraints can be unified with
the data integrity constraints from the database schema. Any solution to the resulting
constraint system for a path describes input and output data for the program, including
a valid database content, with respect to which the program can be executed and is
guaranteed to follow the same path for which the constraints were generated.

A complete symbolic execution algorithm has been developed for simple Java methods
that, using SQL statements and transactions, read and write in a relational database; the
latter typically subject to data integrity constraints. Given the schema of the database,
the code of the method and an execution path in this method, our algorithm performs
symbolic execution of the path and produces the corresponding constraints. The algorithm
has been implemented in a tool that has been used to generate test data for a number of
methods interacting with a database, including some real-world application code. For
every tested method, we used the symbolic execution algorithm to generate test data
for a set of paths that is statically generated by a bounded depth-first traversal of the
program’s control-flow graph [4]. Results revealed that the approach can properly consider
thousands of execution paths in a reasonable time and thus generate meaningful test data.

Compared to our previous work [20, 21] where the generated constraints were expressed
using the Alloy language [22] and solved using the Alloy analyser [22], the current
implementation generates SMTv2 [15] constraints which are solved using the Z3 solver
[17] following an approach similar to [16]. SMTv2 is the standard input language for
SMT solvers and Z3 is used as constraint solving back-end in several symbolic execution
tools [18, 19]. Results show that this change makes the approach able to properly detect
infeasible paths, something that the implementation based on Alloy was unable to, and
allows to reduce the time needed for constraint solving by several orders of magnitude.

4.2. Related work

An early work that has considered test data generation for programs interacting with a
relational database is [11]. The paper suggests to transform the program by inserting new
classical variables representing the database structure, and translating all SQL statements
into traditional program code. Classical white-box testing approaches can then be applied
to the normalised program. A conceptually similar but entirely automated technique
is proposed in [13], where an off-the-shelf test generation technique, based on symbolic
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execution and a dynamic path exploration process, is applied to the normalised version of
the program. This latter approach is validated over real application code, considering
methods containing compound SELECT statements.

Normalising SQL code into program code and then performing symbolic execution on
the result is an alternate approach to ours, where the SQL code is directly transformed
into relational constraints. Replacing a single SQL statement by an often complex piece
of new program code that simulates the execution of the SQL statement by a DBMS,
will dramatically increase the number of paths to be explored compared to the original
code [11]. In particular, given a path in the original code, all the combinations between
this original path and the different subpaths traversing the newly added code should be
shown infeasible, in order to show that the original path was infeasible in the original
code. As the new code will contain loops to enumerate the unbounded content of the
database tables [13], there is an infinite number of subpaths that traverse this new code,
and an infinite number of paths should thus be analysed in the combined code to detect
properly if a path in the original code was infeasible. In contrast, in our approach, the
execution paths to be considered are limited to paths in the original program code and,
consequently, our technique is able to quickly detect the definite unfeasibility of a path.

In [12], the authors propose a symbolic execution algorithm for programs performing
basic SELECT queries on a relational SQL database. Constraints are solved using an
ad-hoc solver for linear arithmetic and strings. The proposed algorithm is integrated in a
test generation technique based on a dynamic path exploration process and evaluated
over real application code. Compared to this approach, our technique handles INSERT,
UPDATE and DELETE statements, as well as transaction management primitives, which
are crucial components of database applications. Moreover, [12] ignores the data integrity
constraints defined in the database schema, leading to the possible generation of invalid
test data. On the other hand, our approach only considers SQL statements whose structure
is completely defined statically, where [12] (and also [13]) can allow to account, at least
to some extent, for dynamically crafted SQL statements. This is linked to the fact that
these two techniques use a dynamic path exploration process, where symbolic execution is
performed in parallel with a concrete run of the program, giving direct access to the code
of the dynamic SQL statements, as it is built by the program during the concrete run.

Following [12], several works have studied additional research questions in the framework
of test generation for database programs using symbolic execution and a dynamic path
exploration process. Among them, [31] proposes to use a mock database in case the
original database is not available, [32] considers using advanced code coverage criteria, [33]
considers programs where parts of the executed SQL queries are inputs of the program.
Finally, [30] and [33] study situations where the test data should be selected in an existing
database instead of being generated from scratch.

On a related but complementary level, a substantial amount of work (e.g. [34, 35,
36, 37, 38, 39, 40, 41, 42, 43]) has been done on how to generate test database content
exhibiting some desirable properties, given only the database schema and a set of queries
to be executed over the database. The main difference between our work and these
approaches is that they essentially work without considering the control flow of the
programs manipulating the database. Other work [44, 45] considers mutation testing of
database programs, where our approach performs structural testing. In mutation testing,
the quality of the test data is no more measured in terms of code coverage, as in structural
testing, but in terms of program fault detecting ability (see [4] for a broader discussion).
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Some works have also focused over testing of non-functional aspects of database programs,
like security testing [46, 47] and performance testing [48].

4.3. Future work

In future work it should be investigated to what extent the symbolic execution mech-
anism can be generalised and extended towards dealing with a larger part of the SQL
language. In particular, it should be investigated how and to what extent fully dynamic
SQL can be integrated in our technique, possibly by relying on static analysis [49, 50, 51]
or by coupling our symbolic execution algorithm with a dynamic path exploration process,
in a similar way to [12, 13]. Ideas proposed in [33], where parts of the executed SQL
queries are inputs of the program, should also be investigated. It also frequently happens
that SQL statements have a non-deterministic behaviour, because the statement has a
non-deterministic semantics, or because the interaction with the DBMS might not be
reliable or because the database is modified concurrently by other methods or programs.
How an approach for test data generation could handle handle such non-deterministic
behaviour remains a topic for further research.

In the perspective of using an approach such as ours for testing large real-world programs
that manipulate huge databases using many complex SQL statements, it is to be expected
that a tighter integration between constraint generation (path exploration) and constraint
solving would be beneficial. The constraint generator should be tailored so to generate
very efficient sets of constraints, expressed in parts of the logic that are decidable or
optimized for the heuristics used by the solver. Conversely, the use of solving algorithms
or heuristics tailored to the kind of constraints produced by the symbolic execution of
large pieces of complex SQL code should also be considered.

In addition to dealing with more involved database manipulations, the approach would
also profit from an integration with existing symbolic execution test generation tools [9],
handling a larger part of Java, like [52] or [53, 54]. In a similar vain, the use of existing
Z3 plug-ins, like [55], allowing the native management of string constraints within the Z3
solver, should permit our algorithm to more easily handle string values, which are widely
used in practice within database programs.

The problem of generating test data for programs manipulating an existing database is
a very common problem in practice. Whether and how our technique should select test
data from an existing database, instead of generating one from scratch, in a similar way
to [30, 33], is an interesting matter of further research, as is the problem of considering or
generating a single database content that could be used with several successive test cases.

Finally, being somehow parametrised with respect to the paths that should be considered,
our approach allows to be used with respect to any traditional code coverage criterion
based on the notion of execution path [4]. Nevertheless, several works [56, 57, 58, 59, 60]
propose test adequacy criteria particularly tailored towards testing of database programs.
Integrating such criteria into our constraint-based approach is a topic of ongoing research.
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