
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

From Continuous Observations to Symbolic Concepts

Nevens, Jens; Eecke, Paul Van; Beuls, Katrien

Published in:
Frontiers in Robotics and AI

DOI:
10.3389/frobt.2020.00084

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Nevens, J, Eecke, PV & Beuls, K 2020, 'From Continuous Observations to Symbolic Concepts: A Discrimination-
Based Strategy for Grounded Concept Learning.', Frontiers in Robotics and AI, vol. 7, 84.
https://doi.org/10.3389/frobt.2020.00084

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Apr. 2024

https://doi.org/10.3389/frobt.2020.00084
https://researchportal.unamur.be/en/publications/bb645951-e1a2-496c-aac8-eb5b72a82d2a
https://doi.org/10.3389/frobt.2020.00084


ORIGINAL RESEARCH
published: 26 June 2020

doi: 10.3389/frobt.2020.00084

Frontiers in Robotics and AI | www.frontiersin.org 1 June 2020 | Volume 7 | Article 84

Edited by:

Georg Martius,

Max Planck Institute for Intelligent

Systems, Germany

Reviewed by:

Emre Ugur,
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From Continuous Observations to
Symbolic Concepts: A
Discrimination-Based Strategy for
Grounded Concept Learning
Jens Nevens*, Paul Van Eecke and Katrien Beuls

Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium

Autonomous agents perceive the world through streams of continuous sensori-motor

data. Yet, in order to reason and communicate about their environment, agents need

to be able to distill meaningful concepts from their raw observations. Most current

approaches that bridge between the continuous and symbolic domain are using deep

learning techniques. While these approaches often achieve high levels of accuracy, they

rely on large amounts of training data, and the resulting models lack transparency,

generality, and adaptivity. In this paper, we introduce a novel methodology for grounded

concept learning. In a tutor-learner scenario, the method allows an agent to construct

a conceptual system in which meaningful concepts are formed by discriminative

combinations of prototypical values on human-interpretable feature channels. We

evaluate our approach on the CLEVR dataset, using features that are either simulated or

extracted using computer vision techniques. Through a range of experiments, we show

that our method allows for incremental learning, needs few data points, and that the

resulting concepts are general enough to be applied to previously unseen objects and

can be combined compositionally. These properties make the approach well-suited to

be used in robotic agents as the module that maps from continuous sensory input to

grounded, symbolic concepts that can then be used for higher-level reasoning tasks.

Keywords: grounded concept learning, language games, hybrid AI, CLEVR, emergent communication

1. INTRODUCTION

A concept can be described as a mapping between a symbolic label and a collection of attributes
that can be used to distinguish exemplars from non-exemplars of various categories (Bruner
et al., 1956). In the context of grounded, autonomous agents, these attributes correspond to
streams of continuous-valued data, obtained through the agent’s various sensors. In order to
communicate and reason about the world, agents require a repertoire of concepts that abstracts
away from the sensori-motor level. Without this layer of abstraction, communication would
happen by directly transmitting numerical observations. Such a system easily leads to errors in
communication, for example when the agents observe the world from different perspectives, or
when calibration is difficult because of changing lighting conditions or other external factors. To
obtain a repertoire of concepts, i.e., mappings from labels to attribute combinations, autonomous
agents face two learning problems simultaneously. First, the agents need to find out which
attributes are important for each concept. This requires a mechanism for identifying meaningful

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00084
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00084&domain=pdf&date_stamp=2020-06-26
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jens@ai.vub.ac.be
https://doi.org/10.3389/frobt.2020.00084
https://www.frontiersin.org/articles/10.3389/frobt.2020.00084/full
http://loop.frontiersin.org/people/927595/overview
http://loop.frontiersin.org/people/949876/overview
http://loop.frontiersin.org/people/970329/overview


Nevens et al. Discrimination-Based Grounded Concept Learning

combinations of attributes from their sensori-motor data streams
and attaching a symbolic label to each of these combinations.
Second, the agents must be able to recognize instances of
particular concepts and distinguish concepts from each other. For
representing concepts, we make use of prototype theory (Rosch,
1973), although also other approaches have been proposed in the
psychological literature (McCarthy andWarrington, 1990; Squire
and Knowlton, 1995; Patalano et al., 2001; Grossman et al., 2002).

A range of different approaches have been applied to
concept learning, including version spaces and deep learning
techniques. However, we identify a number of drawbacks in these
approaches. In version space learning, a concept is represented
as an area in a hypothesis space. This space can for example
denote the possible ranges of values of various attributes of
the concept. Each concept is bound by the most general and
the most specific consistent hypothesis. Using positive and
negative examples, these boundaries can be updated using
the candidate elimination algorithm (Mitchell, 1982). A well-
known caveat of this technique, however, is its inability to
handle noisy data. In deep learning approaches, concepts are
often represented through embeddings, i.e., high-dimensional
numerical representations, which lack human-interpretability
(see e.g., Mao et al., 2019; Shi et al., 2019). Additionally, as these
embeddings are learned in a statistical way, they often fail to
adapt to unseen scenarios and require huge amounts of training
data. Neither of these approaches offer a learning mechanism
that would be suitable for an autonomous agent, i.e., responsive
to changes in the environment, able to support incremental
learning, and able to dynamically expand the agent’s repertoire
of concepts.

In this paper, we propose a novel approach to grounded
concept learning. Using the language game methodology (Steels,
2001), we set up series of scripted, task-oriented communicative
interactions in a tutor-learner scenario. The environment in
which these interactions take place is adopted from the CLEVR
dataset (Johnson et al., 2017). This environment consists of
scenes made up of geometrical objects, where the objects
differ in color, size, shape, material, and spatial position.
Through the communicative task, an agent must learn the
concepts present in this dataset, such as SMALL, RED, or LEFT.
Learning these concepts requires not only finding relevant
attribute combinations (e.g., “r,” “g,” and “b” for color), but
also their prototypical values (e.g., “r:44,” “g:76,” and “b:215”
for BLUE). Both the tutor and the learner agent make use
of the notion of discrimination, i.e., maximally separating
one particular object from the other objects in the scene.
Discrimination is an often-used mechanism in experiments on
the emergence and evolution of language (Steels, 1997; Vogt,
2002; Pauw and Hilferty, 2012; Wellens, 2012; Bleys, 2016).
In language production, the tutor looks for the concept that
is maximally discriminating for a particular object, thereby
helping the learner to solve the communicative task. The
learner, on the other hand, uses the tutor’s feedback and
discrimination to update its repertoire of concepts after every
interaction. This ensures that the concepts are optimally relevant
for the communicative task and the environment in which
they occur.

The main contribution of this paper is a novel method
to represent and learn symbolic concepts that provide an
abstraction layer over continuous-valued observations. This
method builds on earlier work by Wellens (2012) and extends
the discrimination-based learning of concepts represented by
weighted combinations of attributes, so that they can be learned
from continuous streams of data. Through various experiments,
we demonstrate how the learner acquires a set of human-
interpretable concepts in a way that is (i) general, (ii) adaptive to
the environment, (iii) requires few interactions, and (iv) allows
for compositionality.

The remainder of this paper is structured as follows. In section
2, we discuss existing approaches to concept learning. Section 3
introduces the environment in which the agents operate and the
language game setup. In section 4, we introduce the experiments,
each showcasing a desirable property of our approach. The
experimental results are provided and discussed in section 5.
Finally, in section 6, we summarize and conclude.

2. RELATED WORK

2.1. Version Space Learning
One method for representing and learning concepts is through
version spaces (Mitchell, 1982). In this method, a concept is
represented as an area in a space with dimensionality equal to
the number of attributes. The concept area is bounded by both
the most specific consistent hypothesis and the most general
consistent hypothesis. A hypothesis consists of a combination of
attribute values and it is considered consistent when it agrees with
the observed examples. With this representation, the simplest
way of learning concepts is through the candidate elimination
algorithm. Provided with both positive and negative training
examples, the algorithm works as follows. The most general and
most specific hypotheses are being updated in such a way that
the former covers all positive training examples, including as
much as possible of the remaining attribute space but excluding
any negative examples, and the latter covers all positive training
examples with as little as possible of the remaining attribute
space. These updates happen in an incremental manner, looking
for the minimal specialization for the most general hypothesis
and the minimal generalization for the most specific hypothesis.

A major drawback of the candidate elimination algorithm
is its inability to handle noisy data. Noisy or wrongly labeled
training examples can incorrectly update one or both of the
boundaries and recovering from such errors is often difficult. On
the positive side, because of the relatively simple representation
and learning algorithm, concepts learned using version spaces are
often human-explainable and transparent. Furthermore, when
the boundaries are allowed to be updated after training, the
concepts remain adaptive over time.

2.2. Neural Approaches
More recent approaches to concept learning are dominated
by deep learning techniques. State-of-the-art results have been
achieved by Higgins et al. (2016) and Shi et al. (2019). These
two approaches vary strongly in the neural network architecture,
the learning regime (e.g., binary or multi-class classification
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or unsupervised learning), the concept representation (e.g., a
label in a classifier or a group of latent variables) and the
task or domain in which concepts are being learned (e.g.,
hand-written characters or generated graphics). However, the
aforementioned papers are particularly interesting since both
of them take inspiration from human concept learning and
incorporate this in their models. For example, how humans
require only one or a few examples to acquire a concept is
incorporated through one-shot or few-shot learning or how
known concepts can be used to recognize new exemplars is
achieved through incremental learning and memory modules.
Many more approaches to concept learning using deep learning
techniques exist (e.g., Wang et al., 2015; Dolgikh, 2018; Xu et al.,
2018; Rodriguez et al., 2019). In general, these approaches yield
high levels of accuracy but require huge amounts of training data
and/or training time. Additionally, the concepts are represented
in a way that is often not human-interpretable and the set of
concepts is often predefined and fixed over time. Some of the
aforementioned approaches tackle one or two of these issues, but
not all together.

In other approaches, concepts are learned as a “side effect”
while tackling another, typically larger task. In the work by
Mao et al. (2019) and Han et al. (2019), not only concepts
but also words and semantic parses of sentences are learned in
the context of a Visual Question Answering task. Specifically,
a perception module learns visual concepts, represented as
embeddings, based on the linguistic description of the object
being referred to. As reported by Mao et al. (2019), the
concepts are acquired with near perfect accuracy (99.9%) and
a relatively small amount of training data (5K images), but the
resulting concept representations are not human-interpretable.
The proposed model does allow for incremental learning and
generalizes well to unseen combinations of attributes. This
generalization, however, requires fine-tuning the model on a
held-out dataset.

2.3. The Omniglot Challenge and Bayesian
Program Learning
One particular line of research that focusses exclusively on
human-like concept learning is centered around the Omniglot
dataset (Lake et al., 2015). This is a dataset of hand-written
characters from 50 different alphabets. Each character is written
by 20 people and stored as both an image and pen stroke data.
The Omniglot challenge aims to push forward the state-of-the-
art in human-like concept learning. The main challenge consists
of a within-alphabet one-shot classification task: given a new
character and an alphabet, identify the character in the alphabet
that is the same character as the one presented. This task aims
to replicate the ability of humans to acquire a new concept
with only a single example. Next to this, there are three other
tasks designed to test several concept learning-related abilities:
parsing of exemplars into parts and relations, generating new
exemplars of a given concept and generating new concepts of a
particular type.

In his own work, Lake et al. (2015) introduces Bayesian
Program Learning (BPL) to tackle the Omniglot challenge. Here,

concepts are represented as probabilistic generative models,
trained using the pen stroke data and built in a compositional
way such that complex concepts can be constructed from (parts
of) simpler concepts. In this case, the model builds a library of
pen strokes and characters can be generated by combining these
pen strokes in many different ways. This approach has many
advantages, including the ability to do one-shot learning and a
powerful compositional representation of concepts that allows
not only to classify concepts but also to generate them.While this
model achieves impressive results, learning through pen stroke
data offers a limited range of possibilities. Other researchers have
tackled the Omniglot challenge, mostly using neural approaches
as reported by Lake et al. (2019). Almost all of them have focussed
on the one-shot classification task using the image data as input.
As a result, the BPL approach remains the SOTA model for all
tasks in the Omniglot challenge.

2.4. Reinforcement Learning
Concept learning has also been approached from a reinforcement
learning perspective. In this context, a concept is regarded as
an abstraction over an agent’s states or actions. Abstraction over
discrete states can be achieved through tile-coding (Sutton, 1996).
Recently however, following advances in the domain of deep
reinforcement learning, abstraction over continuous states is
often performed through function approximation (Mnih et al.,
2015). Abstraction over actions is commonly achieved through
the use of options (Sutton et al., 1999).

One line of research that is particularly relevant to
our approach is the work by Konidaris and colleagues.
Initially, the authors mapped propositional symbols to a
set of low-level states (Konidaris et al., 2014). These states
were obtained from the continuous environment through
a classifier. A planning problem is then solved using the
propositional symbols as operators, which can be translated
to sets of low-level states, executed in the environment. In
later work, the set-based representation was replaced by a
probability distribution, to better capture the uncertainty about
the successful execution of each high-level step (Konidaris
et al., 2015, 2018). Again, this approach was validated
through a planning problem in a continuous state space,
where policies for high-level planning problems in a game
environment, such as “obtain key” or “obtain treasure,” could be
computed efficiently.

The symbolic high-level steps can be represented in a human-
interpretable way, as the pre- and postconditions can be easily
visualized in the game environment. Additionally, the model
proposed by Konidaris et al. (2015) can be learned efficiently
with relatively few data points: 40 iterations of 100 randomly
chosen actions were used to extract the high-level steps. As
is typical in a Reinforcement Learning setting, the planning
steps are learned through experience. Hence, new planning steps
must be learned by collecting new experiences specific to this
concept. Additionally, the resulting steps are relatively domain-
specific. No experiments are reported that investigate generality,
e.g., would JUMP-LEFT generalize to other game settings, or
adaptivity, e.g., does the concept JUMP-LEFT change when the
game physics change.
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2.5. Robotics
A large body of work exists in the robotics community that
considers various tasks very similar to what we refer to
as concept learning. Common names for this task include
symbol emergence, perceptual anchoring, affordance learning,
and category learning.

As a first approach, we consider the task of perceptual
anchoring. The goal of perceptual anchoring is to establish and
maintain a link between symbols and sensor data that refer to
the same physical object (Coradeschi and Saffiotti, 2003). This
link should remain stable through time and space, e.g., when
an object moves through a robot’s view, when it is covered by
another object, or when it disappears and later reappears. The
symbol system can manipulate individual symbols, referring to
objects as a whole, but also predicates reflecting properties of
the objects. Different representations can be used by the sensor
system, e.g., a set of continuous-valued features or a vector in
some embedding space. An anchoring system can be bottom-up,
starting from the perceptual level, and top-down, starting from
the symbolic level. In the context of perceptual anchoring, the
combination of a symbol, a set of predicates and sensor data can
be considered a single concept.

In recent work, a bottom-up perceptual anchoring system
was combined with a probabilistic symbolic reasoning system
(Persson et al., 2019). This approach allowed to improve the
overall anchoring process by predicting, on the symbolic level,
the state of objects that are not directly perceived. There are
multiple advantages to this approach. First, the authors achieve
high accuracy (96.4%) on anchoring objects and maintaining
these anchors in dynamic scenes with occlusions, using relatively
little training data (5400 scenes, 70% used for training).
Additionally, their system is completely open-ended and allows
for incremental learning, since the anchor matching function will
simply create new anchors when it encounters previously unseen
objects. The anchor matching function, in some way a similarity
measure, is closely related to the notion of discrimination.
The difference being that discrimination also takes the other
objects into account. Finally, the representation of a concept
can be human-interpretable, depending on the representation
of objects in the sensor system and the corresponding symbols
and predicates.

For a second approach, we focus on affordance learning.
With this approach, the focus lies on the interaction between
the perceptual system and the motor system of an autonomous
agent. Put differently, an affordance can be considered as a
learned relation between an action in the environment, caused
by the motor system, and the effect observed in the environment,
captured by the perceptual system (Şahin et al., 2007). Building
on this, the agent can learn concepts in terms of affordances.
As proposed by Ugur et al. (2011) and further worked out in
Ugur and Piater (2015a,b), affordances can be grouped together
in effect categories. These are consequently mapped to clustered
object properties to form a particular concept. For example,
the concept BALL is an object with spherical properties that
exhibits the roll-effect when pushed and the disappear-effect
when lifted, as it rolls off the table when dropped. In these works,
the authors use concepts learned through their affordances in

plan generation and execution, with an agent being capable of
planning the necessary actions involving specific objects to reach
a given goal state. This approach offers amore action-centric view
on the agent’s world, which is complementary to our approach.
It not only allows an agent to recognize and describe objects
in the world, but also correctly act on them. The concepts that
are acquired, combining effect categories with object properties,
offer a transparent view. The effect categories are expressed in
terms of change in visibility, shape and position, and the object
properties are stored in a numerical vector with explainable
entries, such as features relating to position and shape (Ugur
et al., 2011). Additionally, since the concepts are learned through
unsupervised exploration, the proposed model is adaptive to the
environment. New concepts can be added incrementally through
additional exploration and learned concepts can be progressively
updated (Ugur and Piater, 2015b). As is typical in robotics, the
proposed approach combines learning in simulation and using
physical robots. The concepts, specifically, could be acquired after
only 4,000 simulated interactions (Ugur et al., 2011). The robot
is used to validate these concepts in several planning problems.
Finally, as the agent assesses the object features relevant for each
effect category, the resulting mappings offer some generality, e.g.,
a ball exhibits the same effect categories regardless of its color.

Other approaches take a probabilistic perspective on concept
learning, similar to Lake et al. (2015), but focussing on the
domain of robotics. Concepts are learned through unsupervised
online learning algorithms, combining multi-modal data streams
(most often perceptual data and raw speech data) through
statistical approaches such as Bayesian generative models or
latent semantic analysis (Nakamura et al., 2007; Aoki et al.,
2016; Taniguchi et al., 2016, 2017). Through this integration of
data streams, the acquired concepts constitute mappings between
words and objects, as studied by Nakamura et al. (2007) and
Aoki et al. (2016), or between words and spatial locations,
as studied by Taniguchi et al. (2016, 2017). The latter further
used these concepts to aid a mobile robot in generating a
map of the environment without any prior information. The
statistical methods have the advantage of being able to infer
a considerable amount of information from a limited number
of observations, and are therefore suitable for use in robotics
scenarios. Additionally, they offer model interpretability to a
certain extent, through a graphical model representation such as
a Bayesian network. Finally, the proposed models are adaptive
to changes in the environment and offer incremental learning
through the online learning algorithms.

Among the various approaches to concept learning discussed
so far, our proposed approach is most closely related to the
robotics literature, as many of these studies deal with similar
issues such as grounding, adaptivity, generality, and fast learning.
For a more comprehensive overview on symbol emergence from
the viewpoint of cognitive systems/robotics, we refer to Taniguchi
et al. (2018).

2.6. Discrimination-Based Learning
One particular experiment byWellens (2012) has heavily inspired
this work. Wellens makes use of the language game methodology
to study multi-dimensionality and compositionality during the
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emergence of a lexicon in a population of agents. In this language
game, called the compositional guessing game, the speaker
tries, using language, to draw the attention of the listener to a
particular object in a shared scene. Each object in such a scene
is observed by the agent as a collection of symbolic attributes,
e.g., “a-1,” “a-2,” “a-3” and so on. The words used by the agents
have one or multiple of these same symbols as their meaning
(multi-dimensionality) and the agents can use multiple words to
describe a particular object (compositionality). At the end of a
game, the agents give each other feedback on the outcome of the
game and the speaker points to the intended object in case of
failure. This setup leads to a large amount of uncertainty for the
agents, as they should find out what part of the meaning should
be linked to which word in the multi-word utterance.

In his work, Wellens proposes two distinct types of strategies
for reducing this uncertainty: competitive strategies and adaptive
strategies. Both make use the notion of discrimination, i.e.,
maximally separating one object from the others, for both
language production (the speaker) and interpretation (the
hearer). However, in the former type of strategies, the agents
explicitly enumerate competing hypotheses (i.e., the same
word with a different meaning) and mechanisms are in place
to gradually reduce this enumeration. This soon becomes
intractable, leading to scaling issues in environments with many
objects or many attributes per object. The latter type of strategies,
on the other hand, avoids enumerating competing hypotheses.
Instead, only a single meaning, composed of a set of attributes, is
kept for each word. Over the course of interactions, this meaning
is gradually being shaped based on the feedback provided after
each interaction. How this shaping is implemented depends
on the particular strategy. Adaptive strategies focus on re-use,
allowing agents to use words even when the associated meanings
are not (yet) fully compatible with the topic object. Figure 1
illustrates the difference between the two types of strategies.

Within the realm of adaptive strategies, a distinction is made
between the baseline adaptive strategy and the weighted adaptive
strategy. In the former strategy, the ideas underpinning adaptive
strategies are implemented in a rather crude way. The agents
gradually shape the meaning of words simply by adding or
removing attributes from the set, based on the feedback after
the game. The latter strategy offers a more gradual shaping of

the meaning. Here, the meaning is no longer a regular set of
attributes but instead it is a weighted set. Each attribute receives
a score, expressing the certainty that the attribute is important
for the word it is linked to. Based on the received feedback,
agents cannot only add or remove attributes, but also alter the
score of attributes to reflect changes in certainty. Over time, the
meanings are shaped to capture attribute combinations that are
functionally relevant in the world, driven by the force to obtain
communicative success and the notions of discrimination and
alignment. For more details about the compositional guessing
game and the various strategies, we refer to Wellens (2012).

Our approach to concept learning is heavily inspired by
the weighted adaptive strategy. As we will discuss later on,
concepts in our approach are also represented by weighted
attribute sets. However, where previous work only considers
symbolic attributes, we extend this approach to continuous-
valued attributes, introducing the need for more sophisticated
representations and processing mechanisms.

3. METHODOLOGY

The goal of this work is for an agent to distill meaningful
concepts from a stream of continuous sensory data through a
number of communicative interactions called language games.
These interactions are set in a tutor-learner scenario and take
place in a shared environment consisting of scenes of geometric
shapes. Driven by the communicative task and the notion of
discrimination, the agent will gradually shape its repertoire of
concepts to be functional in its environment. In this section,
we elaborate on the language game methodology (section 3.1),
the environment in which the agents operate (section 3.2),
the concept representation and update mechanism as used by
the learner (section 3.3) and the mechanisms used by the
tutor (section 3.4).

3.1. Language Game
The language game methodology is commonly used to study
how a population of agents can self-organize a communication
system that is effective and efficient in their native environment.
By playing language games, agents take part in a series of scripted
and task-oriented communicative interactions. A language game

FIGURE 1 | (A) Competitive strategies enumerate competing hypotheses. (B) Adaptive strategies allow the meaning to be shaped gradually. By adding weights, this

can be done in a more fine-grained manner.
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is typically played by two agents from the population, one
being the speaker and another being the hearer. There is no
central control and the agents have no mind-reading capabilities.
The agents are only allowed to communicate through language.
After a number of games, the population converges on a shared
communication system through selection and self-organization.
Thismethodology has been used to study the emergence of a wide
range of linguistic phenomena, including grammatical agreement
(Beuls and Steels, 2013), color lexicons (Bleys, 2016), argument
marking (Lestrade, 2016), quantifiers (Pauw and Hilferty, 2012),
spatial language (Spranger and Steels, 2012), case (van Trijp,
2016), etc.

The language game in this work is set up in a tutor-learner
scenario. The tutor is an agent with an established repertoire of
concepts, while the learner starts the experiment with an empty
repertoire. The tutor is always the speaker and the learner is
always the listener. Before each game, both agents observe a
randomly sampled scene of geometric shapes. The environment
itself will be explained in greater detail in section 3.2. For
now, we note that the tutor has access to a high-level symbolic
annotation of the scene, while the learner observes the scene
through streams of continuous data. The symbolic annotation
constitutes the ground-truth of the scene and the learning target
for the learner agent. This avoids having to manually design a
number of concepts in terms of the observed data stream for the
tutor, which could bias the system.

The interaction script, which are the steps both agents go
through during a single language game, goes as follows. The tutor
starts the interaction by choosing one object from the scene as
the topic. Using the symbolic annotation, the tutor looks for a
concept that optimally discriminates the topic and utters it. By
looking for the most discriminative concept, the tutor is actively
trying to help the learner in solving the communicative task. If
the topic cannot be discriminated using a single concept, the
tutor picks another object or scene. This restriction will be lifted
later on in one of the more advanced experiments. The learner
receives this word and checks its repertoire of concepts. If the
concept denoted by this word is unknown, the learner indicates
failure to the tutor. Alternatively, if the learner does know the
word, it will try to interpret the corresponding concept in the
current scene. In other words, the learner will look for the object
that best matches the concept. The learner points to this object
and the tutor provides feedback on whether or not this is correct.

After each interaction, the tutor provides feedback by pointing
to the intended topic. This is a learning opportunity for the
learner. We call this phase of the game “alignment.” If the
concept was unknown for the learner, it is now able to create
a new concept. At this stage, the learner cannot yet know
which attributes are important for the concept. It does know,
however, that the tutor could discriminate the topic using this
concept. Thus, the learner stores an exact copy of the topic
object as the initial seed for the corresponding concept. Each
attribute receives an initial score of 0.5, reflecting the uncertainty
that the attribute is important for the newly created concept.
Alternatively, if the learner did know the concept, it can refine its
representation using the newly acquired example. This involves
updating the prototypical values and the certainty scores of the

attributes. We elaborate on this mechanism in section 3.3. A
schematic overview of the complete interaction script is shown
in Figure 2.

Note that in our description of the interaction script in
the previous paragraphs, we have used the words “concept”
and “word” interchangeably. We will continue to do so in
the remainder of this paper, as in the experiments that we
describe, there is a one-to-one correspondence between words
and concepts.

To evaluate the learner agent, we measure both
communicative success and concept repertoire size.
Communicative success indicates whether or not the interaction
was successful. In other words, it tells us if the learner could
successfully use the concept in interpretation and consequently
points to the topic intended by the tutor. Also, we can monitor
the number of interactions required to reach a particular
level of communicative success, indicating the speed at which
the agent is learning. By keeping track of the size of the
learners concept repertoire over time, we can check how
many interactions are required for the learner to acquire all
concepts known by the tutor. In the experimental environment,
there are 19 concepts to be learned in total. These are
summarized in Table 1.

3.2. Environment
3.2.1. The CLEVR Dataset
The agent’s environment is based on the CLEVR dataset (Johnson
et al., 2017). This dataset contains 100K rendered scenes of
geometric objects. Each scene contains between 3 and 10
randomly placed objects. The objects have four basic properties:
color, size, material, and shape. In total, there are 8 distinct
colors, 2 sizes, 2 materials, and 3 shapes. Next to an image
of the scene, there is also a ground-truth symbolic annotation,
encoded in JSON format. An example scene and annotation
are shown in Figure 3. The CLEVR dataset is split into a
training set (70K images), a validation set (15K images) and a
test set (15K images). In this work, we only make use of the
images of the validation set, as no ground-truth annotations
are available for the test set. Additionally, since the language
game paradigm features online interactive learning, there are
no separate training and test phases. The agent is evaluated
whilst learning and hence, no held out dataset is required. The
CLEVR dataset is ideal for concept learning experiments, as the
dataset was specifically designed to avoid dataset biases as much
as possible. In practice, this means that across the scenes, there
will be as many blue objects as red objects, as many cubes as
cylinders, etc.

The learner agent observes its environment through streams
of continuous-valued sensor data. To achieve this, the CLEVR
scenes need to be transformed into numerical data. We consider
two ways of making this transformation. As a first method, we use
manually written rules and procedures to transform the symbolic
JSON annotation into numerical data. This method is explained
in section 3.2.2. For the second method, we use a state-of-the-
art Mask R-CNN model (Yi et al., 2018) to detect and segment
the objects directly from the image. Section 3.2.3 is dedicated to
this method.
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FIGURE 2 | During a single interaction, both agents observe a scene of geometric shapes. The tutor chooses a topic and produces a word denoting a concept that

discriminates this topic. The learner looks up this word in his repertoire. If the word is known, the learner tries to interpret this in the scene. Otherwise, the learner

indicates failure. After the interaction, the tutor provides feedback to the learner, allowing it to learn.

TABLE 1 | All concepts in the experimental environment.

Shapes Colors Sizes Materials Positions

CUBE BLUE LARGE METAL BEHIND

CYLINDER BROWN SMALL RUBBER FRONT

SPHERE CYAN LEFT

GRAY RIGHT

GREEN

PURPLE

RED

YELLOW

3.2.2. Simulated Attributes
The first method starts from the symbolic scene annotations
and transforms these into continuous-valued attributes based on
simple rules and procedures. We provide an overview of these
rules in Table 2. Each symbolic attribute is mapped to one or
more continuous attributes with a possible range of values. For
example, color is mapped to three attributes, one for each channel
of the RGB color space, and size is mapped to a single attribute,

namely area. We also include the x- and y-coordinates. These
attributes were already present in the CLEVR dataset and are
simply adopted.

The values for the various attributes are not chosen arbitrarily.
For color concepts, e.g., RED, we use the RGB value that was used
during the image rendering process of the CLEVR dataset1. This
value is used as a seed value and random jitter is added. The same
technique is used for the size-related concepts. The amount of
jitter is shown in the rightmost column of Table 2. Generating
the continuous attributes for the shape-related attribute proceeds
as follows. We consider a sphere to have 1 side, 0 corners and a
width-height ratio of 1, a cylinder to have 3 sides, 2 corners and
a width-height ratio of 0.5 and a sphere to have 6 sides, 8 corners
and a width-height ratio of 1. Finally, material is identified by a
measure of surface roughness.

Obtaining sensory data in this way is straightforward and
creates a controlled environment. Indeed, even with the presence
of random jitter, there is no overlap between different instances
of a particular concept, such as BLUE and CYAN or LARGE and

1This information is available at https://github.com/facebookresearch/clevr-
dataset-gen.
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FIGURE 3 | Example image from the CLEVR dataset (A) with the corresponding symbolic annotation of a single object (B), namely the green cylinder.

TABLE 2 | Rules used to transform symbolic object properties to

continuous-valued attributes.

Symbolic Continuous Values Jitter

Color

R [0, 255] ±[0, 2]

G [0, 255] ±[0, 2]

B [0, 255] ±[0, 2]

Shape

nr-of-sides {1, 3, 6} /

nr-of-corners {0, 2, 8} /

Width-height ratio [0, 1] /

Size Area [0, 100] ±[0, 15]

Material Roughness [0, 10] ±[0, 2.5]

x-coordinate [0, 500] /

y-coordinate [0, 300] /

Note that objects in the CLEVR dataset already have xy-coordinates.

SMALL. For each particular type of concept, every instance takes
up a disjoint area in the space of continuous-valued attributes.
This makes the concept learning task easier and allows us to
validate the proposed learning mechanisms before moving to an
environment with more realistic perceptual processing.

3.2.3. Extracted Attributes
To test our approach using more realistic perceptual processing,
we make use of a state-of-the-art Mask R-CNN model to
detect and segment the objects directly from the image. After
segmentation, we extract a number of numerical attributes from
the proposed segments. With this approach, different instances
of a particular concept will no longer take up disjoint areas in the
attribute space. Additionally, the numerical values will be subject
to more noise due to variations in the images such as overlapping
objects, lighting conditions or shade effects.

For object detection, we use a pre-trained neural network
model developed by Yi et al. (2018) using theMask R-CNNmodel

(He et al., 2017) present in the Detectron framework (Girshick
et al., 2018). Given an image, this network generates a mask
for each of the objects in the scene. All masks with a certainty
score below 0.9 are removed. The model was pre-trained on a
separately generated set of CLEVR images. For training regime
details, we refer to Yi et al. (2018). To our knowledge, there was
no separate evaluation of the object detection accuracy.

We combine the obtained segments with the original image
to extract a number of continuous-valued attributes. These are
summarized in Table 3. As with the previous environment, we
foresee a number of continuous attributes for each symbolic
attribute of the CLEVR objects. For colors, we extract both
the mean and standard deviation of the color of the region,
expressed in the HSV color space and split for each channel.
For shapes, we extract the estimated number of corners, the
hamming distance between the shape’s contour and the enclosing
circle, and the width-height ratio. The size-related attributes
are straightforward, except for the last two. The bb-area ratio
expresses the ratio between the area of the region and the area
of the rotated bounding box. Similarly, the image-area ratio
expresses the ratio between the region’s area and the area of the
entire image. Finally, the material of objects is expressed by the
ratio of both dark and bright pixels. These attributes are based
on the idea that the metal objects are more reflective and thus
contain more bright pixels.

3.3. Concept Representation
A concept is represented as a mapping from a symbolic
label, in this case used as a word, to a set of continuous-
valued attributes. Similar to Wellens (2012), we make use of a
weighted set representation where each concept-attribute link
has a score (∈ [0, 1]), representing the certainty that the given
attribute is important for the concept. In contrast to Wellens
(2012), the attributes are continuous, represented through a
normal distribution. This enables the use of such concepts in
grounded, embodied scenarios. An example concept is shown in
Figure 4.

To computationally operationalize this concept
representation in a language game scenario, we require two
pieces of functionality: the ability to match a concept to an object
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TABLE 3 | Mapping from symbolic attributes to continuous attributes obtained by

the image segmentation process.

Symbolic Continuous Values

Color

Mean-H [0, 255]

Mean-S [0, 100]

Mean-V [0, 100]

Std-H R
+

Std-S R
+

Std-V R
+

Shape

nr-of-corners R
+

Hamming distance [0, 1]

Width-height ratio [0, 1]

Size

Width R
+

Height R
+

Area R
+

Bounding-box area R
+

bb-area ratio [0, 1]

Image-area ratio [0, 1]

Material
Bright-pixels [0, 1]

Dark-pixels [0, 1]

Angle [0, 180]

x-coordinate [0, 480]

y-coordinate [0, 320]

FIGURE 4 | The concept CUBE is linked to a weighted set of attributes. The

weight represents the certainty of an attribute belonging to the concept. Each

attribute is modeled as a normal distribution that keeps track of its prototypical

value (i.e., the mean) and the standard deviation. The values between square

brackets denote two standard deviations from the mean. These are not used

in similarity calculations directly, but give an indication of the observed range of

prototypical values.

and the ability to update an existing concept representation. The
former is used by the learner during interpretation, while the
latter is used during alignment.

3.3.1. Matching a Concept to an Object
In order to match a concept to an object from the environment,
we should foresee some form of distance or similarity measure.

Based on this measure, the agent can decide whether or not a
particular concept is applicable or discriminative for a particular
object, e.g., during interpretation. This idea is similar to Wellens
(2012), since it allows an agent to use a concept even if it
does not exactly match a particular object. However, Wellens
(2012) only considers symbolic attributes, allowing him to
implement such a measure using set operations. In this work,
we make use of a continuous similarity measure. Specifically, the
similarity between a concept C and an object O can be computed
by the average similarity between each of the attributes, weighted
by the certainty that an attribute belongs to the concept.
Formally, the similarity S(C,O) is implemented as follows:

S(C,O) =
1

|Ac|
∑

a∈AC

c(Ca) ∗ S′(Ca,Oa) (1)

where AC is the set of attributes linked to concept C, |Ac|
represents the number of attributes, c(Ca) returns the certainty
score for a certain attribute a in concept C and Ca and Oa

represent the attribute value for the attribute a in the concept C
and object O, respectively.

Given the above definition of a similarity measure S between
a concept and an object, we need the similarity measure S′ for a
particular attribute a of the concept and object, respectively. For
this, we represent the attribute value within a concept (Ca) as a
normal distribution. The similarity function S′ is based on the z-
score of the attribute value of the object (Oa) with respect to this
normal distribution.We embed the z-score in a linear function to
transform a small z-score in a high similarity value and a large z-
score in a low similarity value. This function maps a z-score of 0
to a similarity of 1 and when a z-score reaches 2, the similarity has
dropped to 0. If the z-score would be larger than 4, the similarity
is cut off at −1. The similarity measure S′ can be expressed with
the following equation:

S′(Ca,Oa) = max

(

| − zOa |
2

+ 1,−1

)

(2)

where zOa refers to the z-score of the attribute value of the object
Oa with respect to the attribute of the concept, Ca, represented as
a normal distribution.

Given that the similarity function S′ returns a value between
−1 and 1 and the score is always between 0 and 1, the similarity
measure S also returns a value between−1 and 1.

3.3.2. Updating Concepts
After each game, the concept used in that game can be updated
in terms of both the prototypical value and the certainty score
of each attribute. This way, the agent can gradually shape its
concept representation to fit the environment, again similar to
Wellens (2012). The update mechanism relies on the feedback
given by the tutor after the interaction. Specifically, the learner
will update the concept it used during the interaction to be closer
to or better fit with the topic object. This update procedure works
in two steps:

1. The agent updates the prototypical value of all attributes
in the concept. Here, we choose to update all attributes
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since the certainty scores of the attributes might not yet
be stable. When a particular attribute suddenly becomes
important, e.g., because of changes in the environment,
we also want its value to reflect the examples already
seen. The update mechanism makes use of Welford’s online
algorithm (Welford, 1962). This is an online algorithm that
specifies recurrence relations for the mean and standard
deviation. This allows us to recompute the mean and
standard deviation of the distribution by adding a single
observation, without the need to store all observations. On
the implementation level, each attribute keeps track of the
number of observations N, the prototypical value pn and the
sum of squared differences from the current meanM2,n with
n denoting the current interaction. The latter is initialized
at 0.05. Given a new observation xn, these values can be
updated using the following equations:

N = N + 1

δ1 = xn − pn−1

pn = pn−1 +
δ1

N

δ2 = xn − pn

M2,n = M2,n−1 + (δ1 ∗ δ2)

The standard deviation, required in the similarity
calculations discussed above, can be computed from N
andM2,n as follows:

σ =
√

M2,n

N

2. The agent will increase the certainty of the subset of
attributes that is most discriminative for the topic. The
certainty score is decreased for all other attributes. A subset
of attributes is discriminative when it is more similar to the
topic than to any other object in the scene. Since this can be
true for multiple subsets, we define the most discriminative
subset as the one where the difference between the similarity
to the topic and the most similar other object is maximized.
Thus, during the update procedure, we not only make use
of the topic object itself, but also compare this to other
objects in the scene. This ensures that the combination of
attributes, and ultimately the entire repertoire of concepts, is
functionally relevant in the agent’s environment. To compute
the most discriminative subset of attributes, we make use of
the similarity functions S and S′ as defined above. Finally, to
reduce the computational load, not all subsets of attributes
are considered. These are filtered to contain at least the
set of attributes that are discriminative on their own. The
procedure to update the certainty scores can be summarized
as follows:

• Identify the discriminative attributes, i.e., attributes that
are more similar to the topic than to any other object in
the scene. Here, we use similarity function S′. This yields
e.g., area and nr-of-corners.

• Compute all subsets of the attributes of the concept.

• Filter all subsets to contain at least the attributes found
in the first step. This yields subsets such as {area, nr-
of-corners}, {area, nr-of-corners, wh-ratio}, {area, nr-of-
corners, roughness}, etc.

• Find discriminative subset(s) of attributes, i.e., the subset
for which the similarity to the topic is larger than to
any other object in the scene. Here, we use similarity
function S.

• The previous step can produce multiple subsets. We
take the one that maximizes the difference in similarity
between the topic and the most similar other object.

• Increase the certainty score of the attributes in
this subset, and decrease the certainty score of all
other attributes.

While this concept representation is easy to grasp, there is
however an important assumption, namely that the attribute
values are modeled using normal distributions. Statistical testing,
using the normality test by D’Agostino and Pearson (d’Agostino,
1971; D’Agostino and Pearson, 1973), tells us that this is not the
case for any of the attributes. The distributions of the attributes
do come close to normal distributions but have thinner tails at
both ends. Still, this can be viewed as odd, especially for some of
the studied concepts. Take the concept LEFT as an example. It is
important to note that the concept of LEFT refers to “left in the
image” and not “left of another object.” With this definition of
left, the x-coordinate is an important attribute for this concept. If
we consider the images of the CLEVR dataset, the x-coordinate
of an object can be anywhere between 0 and 480. In this setting,
we consider an object to be LEFT when the x-coordinate is
smaller than 240. The bulk of objects that can be considered
LEFT will not be close to 0, nor close to 240, but somewhere
in between, e.g., around x-coordinate 170. From this, it is easy
to see that our assumption will not cause many issues in this
particular dataset, but in general one could argue that objects
with an x-coordinate smaller than 170 can actually be considered
“more left,” while objects with an x-coordinates larger than 170
are gradually “less left.” This is currently not captured by our
concept representation.

3.4. Tutor Behavior
As mentioned in section 3.1, the tutor looks for the smallest set
of concepts that discriminates the topic from the other objects
in the scene, based on the symbolic ground-truth annotation of
the scene. Given a topic that can be described symbolically as
(GREEN, CUBE, LARGE, RUBBER, LEFT, FRONT), the tutor will try
to describe this with a single concept. Traversing the concepts
of the topic in a random order, the tutor will check if no other
objects in the scene share this concept. For example, if the topic
is the only cube in the scene, the concept CUBE will be returned.
In most experiments, we restrict the tutor to only use a single
concept to describe an object. In some scenes, however, it is
impossible to describe an object with a single, discriminative
concept. When this is the case, the tutor will choose a new topic
object or sample a new scene.

In the compositional learning experiment, discussed in
section 4.4, we lift the single-word restriction. There, if no single
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discriminative concept can be found, the tutor will try all subsets
of two concepts. For example, there might be multiple cubes and
multiple green objects, but exactly one green cube. In this case,
the combination of GREEN and CUBE is discriminative. Again,
these subsets are considered in a random order. This procedure
can be repeated for subsets of three concepts and four concepts,
until a discriminative subset is found.

4. EXPERIMENTAL SETUP

In this section, we describe the various experiments designed
to showcase different aspects of the proposed approach to
concept learning. In the first experiment, we establish the baseline
performance of our approach (section 4.1). In the following
experiments, we test how well the concepts generalize (section
4.2), how they can be learned incrementally (section 4.3), and
how they can be combined compositionally (section 4.4). A
graphical overview of the experiments is given in Figure 5.

4.1. Transparent, Multi-Dimensional
Concepts
In the first experiment, we validate the learning mechanisms
through the language game setup laid out in section 3.1. We
compare the learner’s performance both using simulated (section
3.2.2) and more realistic (section 3.2.3) continuous-valued
attributes. In both cases, we use scenes from the validation split
of the CLEVR dataset. The learner agent is evaluated in terms of
communicative success and concept repertoire size. Our goal is
to validate whether or not the agent can successfully acquire and
use the concepts known by the tutor. Additionally, we examine
the acquired concepts to see if the agent finds combinations of
attributes that are relevant in the present environment.

4.2. Generalization
Using the CLEVR CoGenT dataset (Johnson et al., 2017), we test
if the acquired concepts are general enough to extend to unseen
instances and combinations of attributes. The CLEVR CoGenT
dataset consists of two conditions. In condition A, cubes can be
gray, blue, brown, or yellow, cylinders are red, green, purple,
or cyan and spheres can have any of these colors. In condition
B, the color options for cubes and cylinders are swapped. Like
the original CLEVR dataset, the CoGenT data comes with a
symbolic annotation that can be transformed into continuous-
valued attributes using the methods described in section 3.2.
Our goal is to validate if the learner agent truly learns the
concepts, independently from the statistical distribution or co-
occurrences in the environment. We evaluate this by playing a
number of interactions in condition A, after which we switch
off learning, followed by a number of games in condition B to
evaluate the communicative success. Here, we expect to see that
the communicative success remains stable between condition
A and B, indicating that the concepts acquired by the agent
do not rely on co-occurrences in the environment, as is often
the case for other types of models. Additionally, by varying the
number of interactions in condition A, we gain insight into how
quickly the learner can acquire concepts that are functional in
the world.

4.3. Incremental Learning
By incrementally expanding the environment, we demonstrate
the adaptivity and open-endedness of our concept learning
approach. For this experiment, we created our own variation on
the CLEVR dataset consisting of five splits. In each split, more
concepts are added and less data is available. In the first split, we
offer 10,000 images where all objects are large, rubber cubes in

FIGURE 5 | Overview of the experiments, each showcasing a particular aspect of our approach to concept learning.
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four different colors. In the second split, there are 8,000 images
and these cubes can be large or small. Spheres and cylinders are
added in the third split and the data is reduced to 4,000 scenes.
The fourth split again halves the amount of data andmetal objects
are added. Finally, in the fifth split, four more colors are added
and only 1,000 scenes are available. The splits are summarized
in Table S1.

The learner agent is exposed to each of the splits consecutively,
without resetting its repertoire of concepts or switching off the
learning operators. We monitor the communicative success and
the concept repertoire size throughout the entire experiment.
Our goal in this experiment is two-fold. First, we show that the
learning mechanisms can easily and quickly adjust to a changing
environment. There is no need to fully or even partially re-
train the repertoire when new concepts become available, nor
to specify the number of concepts that are to be learned in
advance, as would be the case for other types of models. By
looking at the evolution of the concepts, we can study how
certain attributes might become more or less important as the
environment changes. Second, we again show the data efficiency
of our approach by reducing the available number of scenes
throughout the splits.

4.4. Compositional Concepts
The concept representation, as described in section 3.3, can
be easily extended to compositional, multi-word utterances. In
order to do so, the weighted set representation of multiple
concepts needs to be combined. This is achieved by an operation
similar to the union operator from fuzzy-set theory (Zadeh,
1965). Given two concepts,C1 andC2, their corresponding sets of
attributes are combined such that for each attribute that occurs in
both concepts, the one with the highest certainty score is chosen.
This is illustrated in Figure 6.

In this experiment, the tutor can use up to four words to
describe the topic object. When all words in the utterance are
unknown to the learner, it adopts all of them with the topic
object being the initial seed. If all words are known, the learner
performs the alignment using the composed concept. Due to this,
not all attributes of all involved concepts will receive an updated
prototypical value and certainty score, but only those that occur

in the combined concept. For example, in the combined concept
“C1+C2” from Figure 6, attributes “a-2” and “a-3” from concept
“C1” and attributes “a-1” and “a-7” from concept “C2” will
receive an update. Finally, if some words of the utterance are
known and others are unknown, the learner will first adopt the
unknown words and then perform alignment using the known
words. In this experiment, we investigate how the communicative
success, the learning speed and the resulting concepts of the agent
are affected in the multi-word utterance setting and compare this
to the single-word experiment described in section 4.1.

5. RESULTS

In this section, we elaborate on the results of the experiments
described above. In order to produce the plots, we ran all
experiments five times for 10,000 interactions and averaged the
results. The error bars show the standard deviation. The plots
were created using a sliding window of 250 interactions. All
experiments were run on the validation split of the CLEVR
dataset (15K scenes), using a randomly sampled scene for every
interaction. The experiments were implemented using the open-
source Babel toolkit (Loetzsch et al., 2008; Nevens et al., 2019).

5.1. Transparent, Multi-Dimensional
Concepts
In the first experiment, we validate the learning mechanisms
proposed earlier in this paper. We evaluate the learner agent on
its ability to successfully communicate and on its repertoire of
concepts, both in the more simple, simulated environment and
in the more realistic, noisy environment. In Figure 7A, we show
the communicative success of the agents in these environments.
The agents are able to achieve 100% communicative success
in the simulated world, after merely ∼500 interactions. From
the same figure, we see that the learning mechanisms perform
somewhat less good in themore realistic, noisy environment. The
agents achieve a fairly stable level of communicative success after
∼500 interactions, reaching 91% communicative success (0.3%
standard deviation).

FIGURE 6 | When combining concepts compositionally, the same attribute can occur multiple times. In this case, the resulting concept takes the one with the highest

certainty score.
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FIGURE 7 | (A) The communicative success rises quickly and achieves 100% in the simulated world and 91% in the noisy world. (B) In both environments, the agent

acquires exactly 19 concepts. The concepts are human-interpretable and capture discriminative combinations of attributes. The concept SPHERE focusses on

attributes related to shape, both in the simulated environment (C) and the extracted environment (D). Attributes with certainty score 0 are hidden.

Figure 7B shows the lexicon size of the learner agent in both
environments. Just like the communicative success, we see that
it quickly increases and stabilizes at 19 concepts, which are all
concepts present in the CLEVR dataset. We cut off these figures
after 2,500 of the 10,000 interactions, since the metrics reached a
stable level.

The concept representation proposed in this work allows for
a clear and easy to interpret view on the learned concepts. We
demonstrate this in Figures 7C,D, showing the concept SPHERE

obtained after 5,000 interactions in both the simulated and noisy
environments. In both cases, we see that a few attributes have
become important for the learner, reflected by the high certainty
scores. In the simulated world, these are nr-of-corners and nr-of-
sides, while in the noisy world these are the width-height ratio,
the circle-distance and bb-area-ratio. The circle-distance attribute
represents the Hamming distance between the contour of the
object and the minimal enclosing circle and the bb-area-ratio
attribute represents the ratio between the area of the object and
the area of its bounding box. All of these attributes are indeed
intuitively shape-related. We give an overview of all learned

concepts obtained in the simulated world and the noisy world
in Figures S1, S2, respectively.

With this experiment, we have shown that the learner
agent can automatically distill meaningful concepts from a
stream of continuous data, in the form of discriminative
subsets of attributes and their prototypical values, and is able
to successfully use them in communication. Furthermore, as
these concepts are expressed using human-interpretable feature
channels, the model and resulting repertoire of concepts is
completely transparant.

5.2. Generalization
In the generalization experiment, we show that the agent’s
ability to learn the concepts is completely independent from the
statistical distributions or co-occurrences in the dataset. For this
experiment, we use the CLEVR CoGenT dataset, which consists
of two conditions. The agent first learns during a number of
interactions in condition A. Afterwards, learning operators are
turned off and we evaluate the communicative success of the
agent in condition B for the remainder of the interactions. We
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expect the agents to remain at a stable level of communicative
success when making the transition from condition A to B.
We again evaluate on both the simulated environment and the
noisy environment. Additionally, we vary the amount of training
interactions on condition A to test the speed at which the learner
agent can acquire useable concepts.

In Figure 8, we show the communicative success of the agents
both during learning in condition A and evaluation in condition
B. From this figure, it is clear that the learner agent cannot
reach the same level of success as the previous experiment
after 100 training interactions. However, with only 500 training
interactions this level of success is achieved. This indicates that
the learner’s repertoire of concepts is shaped quickly and is
sufficient to have successful interactions. Additionally, when
transitioning from condition A to B, there is no decrease in
communicative success in the simulated environment and only
a minor decrease in the noisy environment. This indicates that
the concepts acquired by the agent abstract away over the
observed instances.

To further investigate the generalization abilities of the
learner, we study the acquired concepts. Remember that in
condition A in the CoGenT dataset, cubes can be gray, blue,
brown, or yellow, cylinders have a set of different colors and
spheres can be any color. In Figure 9, we study the concept
representation of the colors for cubes after being learned on
condition A for 500 interactions. If the agent would rely on

co-occurrences of the dataset, the concept representation of
these colors could contain attributes related to shape, since each
time one of these colors occurs it is either a cube or a sphere.
Additionally, the cube and sphere have the same value for the
wh-ratio attribute, so it could be considered discriminative in
some cases. From Figure 9, we see that even though this feature
is present in some of the concepts, its certainty score is very
low. Hence, the agent does not focus on particular dataset co-
occurrences and is able to generalize over various observations.
We attribute this to the notion of discrimination, which will make
sure that only relevant attributes obtain a high certainty score.

5.3. Incremental Learning
Our approach to concept learning is completely open-ended
and has no problems dealing with a changing environment.
We validate this through an incremental learning experiment
where, over the course of 10,000 interactions, the number of
available concepts increases. We vary the amount of interactions
before new concepts are introduced between 100, 500, and 1,000
interactions. The learning mechanisms are able to adjust almost
instantly to these changes, as is shown in Figure 10. In the
simulated world, we see minor drops in communicative success
when transitioning from one phase to the next. These are more
present in the noisy world, but the agent quickly recovers from it.

If we investigate the concepts in the incremental learning
experiment, we find that the relevant attributes have obtained

FIGURE 8 | Communicative success after learning for 100 interactions (A), 500 interactions (B), or 1,000 interactions (C) in condition A. The concepts are learned

completely independently from the co-occurrences in the environment. The agents achieve the same level of communicative success as in the previous experiment,

given at least 500 interactions in condition A.
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FIGURE 9 | A subset of the agent’s repertoire of concepts after the generalization experiment. In condition A, the concepts BLUE (A), BROWN (B), GRAY (C), and

YELLOW (D) are always observed as cubes or spheres. The agent is not “distracted” by statistical distributions of the environment and learns combinations of attributes

that are relevant to solve the communicative task.

a high certainty score already after the first phase of the
experiment (see Figure 11). Consequently, these remain stable
over the various phases, while other attributes never achieve high
certainty scores. Additionally, we note that the resulting concepts
have the same high-scoring attributes as those obtained in the
baseline experiment, independent of the phase in which they were
introduced (see Figure 12).

5.4. Compositional Utterances
In the final experiment, we find that the agent is successful
at learning the separate concepts, even if they are combined
in compositional utterances. To test this, we allow the tutor
to use up to four words when describing an object. It is
important to note that the tutor will always generate the
shortest discriminative utterance, as described in section 3.4.
In Figure 13, we measure how often the tutor uses different
utterance lengths. From this, it is clear that most objects can be
described using a single word. Slightly less than 40% of objects

require two words to be discriminative and only very few objects
are described with three words.

In Figure 14, we compare the communicative success when
a tutor uses a single word (and skips scenes where this is not
possible) and when the tutor uses up to four words. In the
simulated environment (Figure 14A), communicative success
drops 3 percentage points to 97%. In the noisy environment
(Figure 14B), the communicative success drops 8 percentage
points to 83%. With this experiment, we show that the
agent is capable of extracting the discriminative attributes and
their prototypical values for each concept and, at the same
time, learning the meaning of each word separately in a
multi-word utterance.

Finally, we consider the repertoire of concepts and find,
similar to the first experiment, that the agent has found
discriminative sets of attributes that are intuitively related to the
concept they describe. The conceptMETAL is shown in Figure 15,
both for the simulated and noisy environment. Interestingly, we
note from this Figure that the agent has learned to identify the

Frontiers in Robotics and AI | www.frontiersin.org 15 June 2020 | Volume 7 | Article 84

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Nevens et al. Discrimination-Based Grounded Concept Learning

FIGURE 10 | Communicative success in the incremental learning experiment. A new split is introduced every 100 interactions (A), 500 interactions (B), or 1,000

interactions (C). The learning mechanism is completely open-ended, allowing the agent to adapt to a changing environment without any issues. Note that the x-axes

vary to best show the changes in communicative success.

material of an object through the “value” dimension of the HSV
color space.

6. DISCUSSION AND CONCLUSION

In order to be able to communicate and reason about their
environment, autonomous agents must be able to abstract away
from low-level, sensori-motor data streams. They therefore
require an abstraction layer that links sensori-motor experiences
to high-level symbolic concepts that are meaningful in the
environment and task at hand. A repertoire of meaningful
concepts provides the necessary building blocks for achieving
success in the agent’s higher-level cognitive tasks, such as
reasoning or action planning. Similar to how humans can grasp a
concept after only a few exemplars, an autonomous agent should
ideally acquire these concepts quickly and with relatively little
data. Learned concepts should be general enough to extend to
similar yet unseen settings. As the environment of the agent
can change or new concepts can be introduced at any time,
the learning methodology should also be adaptive and allow for
incremental learning. Finally, to truly understand the reasoning
processes of an autonomous agent, its learning mechanisms and
representations should be fully transparent and interpretable in
human-understandable terms.

The task of concept learning has been considered in various
subfields of AI. Deep Learning approaches, for example, offer a
very powerful paradigm to extract concepts from raw perceptual
data, achieving impressive results but thereby sacrificing data
efficiency and model transparency. Version space learning offers
a more interpretable model but has difficulties in handling noisy
observations. Most similar to the approach presented in this
paper is work from the robotics community, considering tasks
such as perceptual anchoring and affordance learning. However,
these tasks focus mostly on a single robot extracting concepts
from observations of the world around it. In this work, we argue
for interactive learning through the language game paradigm.
The notion of discrimination plays a central role in forming
the concepts, thereby ensuring the generality and adaptivity
of the concepts such that these are relevant in the agent’s
environment. Additionally, our method offers an explainable
concept representation, acquired through a data efficient and
incremental method. Each of these properties was highlighted in
a dedicated experiment.

In sum, we have presented a novel, discrimination-based
approach to learning meaningful concepts from streams of
sensory data. For each concept, the agent finds discriminative
attribute combinations and their prototypical values. We have
shown that these concepts (i) can be acquired quickly with
relatively few data points, (ii) generalize well to unseen instances,
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FIGURE 11 | The concept GRAY after each of the five phases: (A) phase 1, (B) phase 2, (C) phase 3, (D) phase 4, and (E) phase 5. The relevant attributes obtain a

high certainty score after the first phase of the experiment.

FIGURE 12 | The final representation of concepts introduced in various phases of the experiment. The concept BLUE was introduced in phase 1 (A), CYLINDER in

phase 3 (B), and CYAN in phase 5 (C).

(iii) offer a transparent and human-interpretable insight in the
agent’s memory and processing, (iv) are adaptive to changes
in the environment, and (v) can be combined compositionally.
These properties make this work highly valuable for the domains
of robotics and interactive task learning, where interpretability,
open-endedness and adaptivity are important factors. Once
a repertoire of symbolic concepts, abstracting away over the

sensori-motor level, has been acquired, an autonomous agent
can use it to solve higher-level reasoning tasks such as
navigation, (visual) question answering, (visual) dialog and
action planning.

In order to ensure that the learned concepts are human-
interpretable, the methodology starts from a predefined set of
human-interpretable features that are extracted from the raw
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FIGURE 13 | The tutor describes 63% of the objects with a single word, 36% of the objects with two words and 1% with three words.

FIGURE 14 | Comparison of the communicative success when the tutor uses one or up to four words. In both the simulated environment (A) and the extracted

environment (B), there is a drop in communicative success (3 and 8 p.p., respectively).

FIGURE 15 | The concepts learned in the compositional experiment capture discriminative sets of attributes that are intuitively related to the concept they describe.

We show the concept METAL in both (A) the simulated and (B) extracted environment.
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images. While we argue that this is necessary to achieve true
interpretability, it can also be seen as a limitation inherent to the
methodology. However, this limitation cannot be lifted without
losing interpretability that the method brings.
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