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Divergence of the ADAM algorithm with fixed-stepsize:

a (very) simple example

Philippe L. Toint∗

19 VI 2023

Abstract

A very simple unidimensional function with Lipschitz continuous gradient is constructed
such that the ADAM algorithm with constant stepsize, started from the origin, diverges when
applied to minimize this function in the absence of noise on the gradient. Divergence occurs
irrespective of the choice of the method parameters.

Keywords: ADAM algorithm, machine learning, deterministic nonconvex optimization.

1 Introduction

This short note provides a new explicit example of failure of the ADAM algorithm [3], one of the
most popular training methods in machine learning. Given the problem

min
x∈IRn

f(x) (1)

where f is continuously differentiable function from IRn into IR with Lipschitz continuous gradient,
and a starting iterate x0, the ADAM sequence of iterates is defined (see [4]), for i ∈ {1, . . . , n}
and k ≥ 0, by the recurrences

[mk]i = β1[mk−1]i + (1− β1)[gk]i, (2)

[vk]i = β2[vk−1]i + (1− β2)[gk]2i , (3)

[xk+1]i = [xk]i − α
[mk]i√

[vk]i
, (4)

where [v]i is the i-th component of the vector v ∈ IRn, mk is the k-th “momentum”, xk is the k-th
iterate, gk = ∇1

xf(xk), β1 ∈ [0, 1) is the momentum parameter and β2 ∈ [0, 1) is the “forgetting”
parameter, and α > 0 is a (fixed) steplength/learning-rate parameter. The recurrences (2) and
(3) are initialized by setting, for i ∈ {1, . . . , n}, [m−1]i = [g0]i and [v−1]i = [g0]2i , respectively.
ADAM is intended to converge to find first-order points for problem (1), in the sense that, for
each i ∈ {1, . . . , n}, |[gk]i| should converge to zero when k tends to infinity. In practice, this
algorithm is most often used in a stochastic context where the gradient gk is contaminated by
noise (typically resulting from sampling) and has generated a considerable interest in the machine
learning community.

Despite its widespread use, difficulties with this algorithm are not new. In the noiseless (de-
terministic/full batch) case, obstacles for proving convergence were in particular mentioned in
[2], essentially pointing out the possibility that second-order terms in the Taylor’s expansion of
the objective function could not vanish quickly enough. In [4, Theorem 1] an example of non
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convergence on a convex function was produced in the online-learning stochastic context, but this
example crucially depends on the nonzero variance of the noise. In a recent discussion at the
June 2023 Thematic Einstein Semester on Optimization and Machine Learning in Berlin, it was
suggested that, although likely, no explicit example of failure of Adam with fixed stepsize was
available for the deterministic case (where the variance is zero). This prompted the author to
produce the (very simple) one which is, for the record, detailed in the next section. We note
that an again convex but deterministic example had already been provided in the comprehensive
analysis of ADAM’s behaviour (with decreasing stepsize) detailed in [5] (see Propositions 3.3 and
E1). This analysis describes conditions which delineate a region strictly included in [0, 1)2 such
that ADAM with parameters β1 and β2 chosen in this region generates a diverging sequence on
this example. In contrast, the simple example we are about to discuss is nonconvex and applies
to the entire [0, 1)2, but requires constant stepsize. It can therefore be seen as complementing the
analysis of [5].

2 The example

To show that the ADAM algorithm may fail to converge on nonconvex functions with Lipschitz
gradient, we will exhibit an example in dimension one, which we construct in two stages. We first
define sequences of iterates, together with associated function and gradient values which remain
constant throughout the iterations. We next verify that these sequences may be considered as
generated by applying the ADAM algorithm to a nonconvex objective function with Lipschitz
gradient. (Since the example is unidimensional, we omit the component indices (i) if what follows.)
For k ≥ 0, let the sequence of function values and gradients be defined by

fk = 0 and gk = −1, (5)

and the sequence of (potential) iterates be defined (from (2)-(4)) by

mk = β1mk−1 + (1− β1)gk = −1, (6)

vk = β2vk−1 + (1− β2)g2k = 1, (7)

xk+1 = xk − α
mk√
vk

= xk + α, (8)

where we used (5) to derive the last equality in (6) and (7). Thus
∑k

j=0 β
k−j ≤ 1/(1 − β) for

β ∈ (0, 1) imply that
sk = xk+1 − xk = α, (9)

for k ≥ 0 and xk tends tp infinity. We now show that there exists a (nonconvex) univariate
function f1 defined on IR+ with Lipschitz continuous gradient such that fk = f(xk) = 0 and
gk = ∇1

xf1(xk) = −1 for all k ≥ 0. Indeed, a simple Hermite interpolation calculation based of
these conditions yields that, for all t ≥ 0,

f1(t) = −(t− xk(t)) +
3

sk(t)
(t− xk(t))2 −

2

s2k(t)
(t− xk(t))3, (10)

where k(t) is such that t ∈ [xk, xk+1]. We may then define

f(t) =

{
f1(t) if t ≥ 0,
−t if t < 0,

so that f(t) is well-defined on the whole of IR, has Lipschitz continuous gradient and is such that
the ADAM algorithm (6)-(8) applied on f starting from x0 = 0 generates iterates with |gk| = 1
for all k ≥ 0. We thus conclude that the ADAM algorithm fails to converge on this particular
instance of problem (1). A graph of f(t) for t ∈ [−1, 10], β1 = β2 = 0.9 is shown in Figure 1. One
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Figure 1: The shape of f(t) for small values of |t|

also verifies that the Lipschitz constant on the interval [xk, xk+1] is given by

Lk = sup
t∈(xl,xk+1)

|∇2
tf(t)| = 6

sk

so that, using (9),

L = max
k≥0

Lk =
6

α

Moreover, defining Tk(s) = fk+gks, it results from (5), [1, Theorem A.9.2], (9) and the inequalities

|fk+1 − Tk(sk)| = sk ≤
1

α
s2k and |gk+1 −∇1

sTk(s)| = | − 1 + 1| ≤ 1

α
sk

that f(t) is bounded below by a constant only depending on α. As a consequence, we see that,
for any fixed (β1, β2) ∈ [0, 1)2 and α > 0, there exist unidimensional functions with Lipschitz
continuous gradient whose gradient’s Lipschitz constant is as small as 6/α, which is bounded
below by a constant only depending on α and for which the ADAM algorithm (6)-(8) starting from
x0 = 0 generates iterates with constant nonzero gradients (therefore failing to converge).

Since our example is unidimensional and since ADAM is defined componentwise, the same
conclusion obviously applies irrespective of n, the problem dimension. Indeed divergence in a
single component implies divergence on the whole space.

Our result thus extends that of [5] in that it includes methods for arbitrary (β1, β2) ∈ (0, 1)2

but fixed stepsize. Note that |∇1
tf(t)| is bounded by L for all t ∈ IR, again at variance with the

example of this reference.
Observe that our conclusions would also hold if we had fixed gk to another negative constant

(we can multiply f by this constant) or if, instead of (4), we had considered

[xk+1]i = [xk]i −
α [mk]i√
ε+ [vk]2i

, or [xk+1]i = [xk]i −
α [mk]i

ε+
√

[vk]2i
,

where ε is a small positive constant, but they do not apply in the more realistic situation where
stepsizes αk → 0 are used (as is for instance the case in [5, Proposition 1.1], where αk is a multiple
of 1/

√
k). We finally note that we have chosen a constant zero value for fk in order to simplify our

bounds, but that it is also possible to choose fk+1 > fk (leading to an monotonically increasing
sequence of function values) without qualitatively affecting our conclusion, although this leads to
a larger value of L.
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