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Abstract
Anti-unification in logic programming refers to the process of capturing common syntactic structure
among given goals, computing a single new goal that is more general called a generalization of the
given goals. Finding an arbitrary common generalization for two goals is trivial, but looking for those
common generalizations that are either as large as possible (called largest common generalizations)
or as specific as possible (called most specific generalizations) is a non-trivial optimization problem,
in particular when goals are considered to be unordered sets of atoms. In this work we provide an
in-depth study of the problem by defining two different generalization relations. We formulate a
characterization of what constitutes a most specific generalization in both settings. While these
generalizations can be computed in polynomial time, we show that when the number of variables in
the generalization needs to be minimized, the problem becomes NP-hard. We subsequently revisit an
abstraction of the largest common generalization when anti-unification is based on injective variable
renamings, and prove that it can be computed in polynomially bounded time.
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1 Motivation and Objectives

Anti-unification refers to the process of generalizing two (or more) program objects S into a
single, more general, program object that captures some of the structure that is common to
all the objects in S. In a classical logic programming context, the atom p(X, Y ) can thus be
seen as a generalization of both the atoms p(f(A), U) and p(f(g(B)), h(C)), thanks to the
variables X and Y .

Anti-unification constitutes a useful tool in various contexts ranging from program
analysis techniques (including partial evaluation, refactoring, automatic theorem proving,
program transformation, formal verification and test-case generation [5, 24, 11, 22, 15])
to automated reasoning [20, 21] or analogy making [18], supercompilation [27] and even
plagiarism detection [28]. Many of these static techniques are executed on programs written
in the form of (constraint) Horn clauses, a formalism that has been praised for its ability to
capture a program’s essence in a quite universal and straightforward manner [14].

In the introductive example above, the presence of variables X and Y conceptually allows
concrete instances (i.e. less general objects) to harbor any value at the positions corresponding
to the variable positions. The generalization process is indeed usually achieved by “forgetting”
parts of the objects to generalize (either by replacing sub-objects with variables or by dropping
them altogether): the less syntactic information in an object, the more general it is. Most
anti-unification methods are thus steered by a variabilization algorithm determining how
to “forget” object parts when necessary while keeping (common) parts in the generalization.
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37:2 Anti-Unification of Unordered Goals

Therefore, in general one is typically interested in computing what is often called a most
specific generalization (or synonymously least general generalization), that is a generalization
that captures a maximal amount of shared structure. With the atoms of the example above,
the common generalization p(f(X), Y ) is in that regard a better anti-unification result than
p(X, Y ), as it exhibits more common structure (namely the use of functor f). As this
example hints, “better” results are often obtained at the cost of more complex anti-unification
algorithms. In that regard, computing more specific generalizations often boils down to
performing some kind of optimization in the variabilization process.

In a classical approach where goals are ordered sequences of atoms, a goal G is more
general than some other goal G′ if G′ can be obtained by applying on G some substitution
θ, being a mapping from variables to values. G then typically harbors more variables than
G′, making it a less instantiated, thus more general, version of G′. In that case, G and G′

are related by the θ-subsumption relation from [25], often considered to be a foundation
of Inductive Logic Programming where anti-unification is used as a way to learn a general
hypothesis from specific examples [20]. As the name may suggest, looking for a generalization
that is common to a group of program artefacts (be it terms, atoms, goals or even predicates
as a whole) is referred to as anti-unification due to it being the dual operation of unification.
Both can, in fact, be applied in similar contexts. Such applications of (anti-)unification include
program transformation techniques for partial deduction [13, 11], fold/unfold routines [23],
invariant generation [17] and reuse of proofs [3, 24].

The study of anti-unification so far has mainly been focused on such ordered goals.
However, many applications require goals to be defined as (unordered) sets of atoms. It is
the case, for instance, when considering the most declarative semantics of logic programs [12,
16, 14]. Having a clear overview of anti-unification operators computing most specific
generalizations for unordered goals (sometimes called linear generalizations) in logic programs
is necessary for generalization-driven semantic clone detection with programs composed of
constraint Horn clauses [28, 19]. Indeed, generalization operators allow to quantify a certain
amount of structural similarity between different predicate definitions by highlighting what
parts these have in common. In [28], this quantitative similarity measurement is used as
an indication of which semantic-preserving program transformation should be applied next
in order to ultimately assess whether two programs (or predicates) are semantic clones. A
quite similar approach has already been taken in the case of ordered goals in [5], an obvious
application of this being plagiarism detection.

Directing our interest towards unordered goals also has the advantage of broadening the
traditional anti-unification theories usually rooted in a setting where logic programming
is based on operational semantics, by extending the theories to the more general area of
Constraint Logic Programming (CLP), unordered goals being a crucial ingredient of the
CLP(X) framework. The fixpoint semantics of CLP programs are indeed typically defined
with no regard to the order of appearance of the atoms in a clause’s body [16]. While CLP is
interesting in its own right, it is also considered a serious candidate for representing abstract
algorithmic knowledge, rather than mere computations, in a quite universal manner [14]. In
that regard, focusing on unordered goals could pave the way for performing anti-unification
at the algorithmic level rather than at the level of language-specific operations.

The topic of anti-unification in the case of unordered goals has ocasionally come up in
studies focussed on related fields such as equational anti-unification, encompassing theories
specified by commutativity or associative-commutativity axioms. The topic has been treated
for first-order theories [1] as well as higher-order variants [9]. The latter work applies to the
first-order case as well and provides polynomial algorithms for variants of anti-unification
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for unordered input. A grammar-based approach to equational anti-unification including
commutative theories, called E-generalization, was introduced in [6] and refined with a
working implementation in [7]. The authors of [3] elaborate a rigid anti-unification algorithm
that can apply to unordered (and so-called unranked) theories by instantiating a parameter
called rigidity function, a direct application of which being the computation of longest
common substrings. The algorithms described in all of these works can be used to compute
what we will call ⊑-common generalizations below in the present paper. Although none
of these works develop a general (non-equational) taxonomy allowing to extend the results
beyond that simple setting, nor discusses variable- or injectivity-based variants of anti-
unification operators, their usages do point out other interesting (and recent) applications of
anti-unification when focused on unordered goals, namely detection of recursion schemes in
functional programs (as explained in [2]) and techniques for learning bugfixes from software
code repositories (an example being [26]).

Anti-unification techniques that are adapted for CLP(X) have been defined in [29], but
its focus is set on a polynomial abstraction procedure for a specific case where terms cannot
be generalized (only variables can) and where generalization has to be carried out through
injective substitutions. While [29] provides useful insights and results, it lacks a more general
and in-depth study of the used generalization operator. In this work we broaden, generalize
and complete the latter work by providing a detailed and systematic study of generalization
operators and their characteristics in the context of CLP.

The main contributions of the present work are the following. In Section 2 we define
relations close to the well-known θ-subsumption in an effort of adapting this notion to
the case of unordered goals. As will be illustrated throughout the paper, our adaption of
anti-unification to unordered goals makes the usual subsumption techniques unusable. In
Section 3 we reframe the problem of looking for a most general/largest generalization as
an optimization problem, parametrized by the generalization operator (or anti-unification
strategy) and variabilization function (responsible for introducing variables in the resulting
generalization) at hand. We will see that given two unordered goals as input, searching
for such generalizations can be done in polynomial time. The algorithms, as well as their
worst-case time complexities, are detailed throughout the development of our anti-unification
framework. In Section 4 we provide an in-depth examination of several key variations of
the anti-unification problem, namely variable generalization (where no terms are allowed
to be generalized), injective generalization (where the generalizing substitutions need to be
injective) and dataflow optimization (where the number of generalizing variables needs to be
minimized) – the latter of which is proved to make the anti-unification statement NP-hard.
Finally, addressing this last problem more in depth in Section 5 we revisit a tractable
abstraction that was introduced in [29] but we provide for the first time a formal proof of
its worst-case complexity, showing that the approximation can effectively be computed in
polynomially bounded time. With the exception of this last result, the proofs of propositions,
lemmas and theorems are provided in the Appendices.

2 Preliminaries

In the following, we introduce concepts and notations that will be used throughout the paper.
We suppose a language of Horn clauses defined over a context, which is a 4-tuple ⟨X,V,F ,Q⟩,
where X is a non-empty set of constant values, V is a set of variable names, F a set of function
names andQ a set of predicate symbols. The sets X,V,F andQ are all supposed to be disjoint
sets. Symbols from F and Q have an associated arity (i.e. its number of arguments) and
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37:4 Anti-Unification of Unordered Goals

we write f/n to represent a symbol f having arity n. Given a context C = ⟨X,V,F ,Q⟩, we
define the set of terms over it as TC = X ∪V ∪{f(t1, t2, . . . , tn)|f/n ∈ F ∧∀i ∈ 1..n : ti ∈ TC}.
Terms are thus ground domain constants, variables and functor-based expressions over
other terms. In what follows we will use uppercase symbols to represent variables whereas
lowercase symbols will be used for function and predicate symbols. The set of atoms over
C is defined as AC = {p(t1, . . . , tn) | p/n ∈ Q ∧ ∀i ∈ 1..n : ti ∈ TC}. An atom p(t1, . . . , tn) is
understood as representing an atomic formula involving the predicate p over n arguments,
the arguments being represented by terms. A goal G is a set of atoms, representing an
(unordered) conjunction, thus G ⊆ AC .

▶ Example 1. Let us consider a numerical context (e.g. X = Z and F is the set of usual
functions over integers composed of addition (+), substraction (−), integer division (/),
multiplication (∗) and modulo (%)). Supposing X and Y to represent variables, then the
following are terms: 3, X, +(3, X), +(4, ∗(X, %(Y, 2))). Given predicates p/1, q/1, r/2 and
c/2, the following are atoms: p(3), q(X), r(+(2, 4), +(3, X))

In what follows we will often leave the underlying context implicit and simply talk about
variables, function and predicate symbols. A substitution is a mapping from variables to
terms and will be denoted by a Greek letter. For any substitution σ : V 7→ TC, dom(σ)
represents its domain, img(σ) its image, and for a program expression e (be it a term, an
atom or a goal) and a substitution σ, we write eσ to represent the result of substitution
application, i.e. simultaneously replacing in e those variables V that are in dom(σ) by
σ(V ). A renaming is a special kind of substitution, mapping variables to variables only.
Thus for any renaming ρ we have that img(ρ) ⊆ V. We can now define what constitutes a
generalization relation ⊑, which essentially defines a goal as more general than another if
the latter is a potentially larger and potentially more instantiated goal than the former.

▶ Definition 2. Let G and G′ be goals. G is a generalization of G′ if and only if there exists
θ, a substitution such that Gθ ⊆ G′. We denote this fact by G ⊑ G′ (or sometimes G ⊑θ G′

if we want to emphasize the substitution θ in question).

▶ Example 3. {p(X, Y, Z)}, {q(a(X))} and {p(t(1), Y, u(Z)), q(W )} are generalizations of
{p(t(1), t(2), u(+(4, X))), q(a(t(u(1))))}.

In some applications (e.g. for some usual computation domains in Constraint Logic
Programming), it makes sense to use a more restricted generalization relation, in which
variables are substituted by other variables rather than terms. As such, when the substitution
θ in Definition 2 is a renaming, we say that G is a variable generalization of G′, which
we denote by G ⪯ G′ (or sometimes G ⪯θ G′ to emphasize the renaming θ in question).
When considering the relation ⪯, only variables are generalized and the function symbols
are considered as being a part of the language structure itself (i.e. they are not subject to
generalization). This can be advantageous, for instance in applications working with a small
finite domain such as Booleans, where considering G = {=(A, B)} to be a generalization of
both {=(X, true)} and {=(Y, false)} can feel like ignoring too much of the goal’s semantics.

Our generalization relations are variations of the classical θ-subsumption [25], adapted to
goals being sets rather than ordered sequences of atoms. They share the following property
with θ-subsumption.

▶ Proposition 4. Relations ⊑ and ⪯ are quasi-orders.

We will now turn our attention towards the basic concept in anti-unification, namely that
of a goal being a common generalization of some given goals [25]. In the following, we restrict
ourselves to common generalizations of two goals, but the concept can straightforwardly be
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extended to any number of goals. As for notation, when a result or definition holds for both
our relations ⪯ and ⊑, for the sake of simplicity we will sometimes use ⩽ to denote both
relations at once.

▶ Definition 5. Let G1, . . . , Gn be goals and ⩽ a generalization relation. Then G is a
⩽-common generalization of {G1, . . . , Gn} if and only if ∀i ∈ 1..n : G ⩽ Gi.

The definition essentially states that each Gi(1 ≤ i ≤ n) can be generalized by G through
its own substitution. Formally there exist θ1, . . . , θn such that ∀i ∈ 1..n : G ⊑θi Gi. A
common generalization of goals is thus, in essence, a part of their shared atomic structure,
with a possible introduction of variables in certain places – the liberality of which depends
on the underlying relation. Note that renamings being (restricted) substitutions, for any
two goals G and G′ it holds that G ⪯θ G′ ⇒ G ⊑θ G′ so that if a goal is a ⪯-common
generalization of a set of goals it is also a ⊑-common generalization of said goals.

▶ Example 6. Let G1 = {p(t(X), Y ), q(3, f(X))} and G2 = {p(5, Z), q(3, f(Z))}. The
following is a (non-exhaustive) list of ⊑-common generalizations of G1 and G2: ∅, {p(V1, V2)},
{q(3, f(V1))}, {p(V1, V2), q(V3, V4)}, {p(V1, V2), q(3, V3)}. The following are ⪯-common gener-
alizations of G1 and G2 as well: ∅, {q(3, f(V1))}.

As a slight lexical abuse, given atoms {A1, ,̇An} we will say that an atom A is a ⩽-common
generalization of {A1, ,̇An} iff {A} is a ⩽-common generalization of {A1, ,̇An}. Note that no
matter the relation and no matter the goals G1 and G2, at least one common generalization
will always exist: the empty goal ∅. Obviously, wherever possible we are interested in more
detailed representations of the common structure found in goals.

For an expression e, we use vars(e) to represent the set of variables that appear in e

and τ(e) to denote the multiset of all atoms and non-variable terms occurring in e. We will
sometimes refer to the cardinality of τ(e) as the τ -value of e. The multiset of all atoms and
terms, variables included, is denoted by ter(e).

▶ Example 7. Let G be the goal {p(f(x, Y )), q(Y, X)}. The multiset τ(G) is equal to
{p(f(x, Y )), f(x, Y ), x, q(Y, X)}. G’s τ -value is 4, vars(G) = {X, Y } and ter(G) is the
multiset {p(f(x, Y )), f(x, Y ), x, Y, q(Y, X), Y, X}.

One is typically interested in those common generalizations that are the most specific, i.e.
that capture as much common structure as possible amongst G1 and G2 [25].

▶ Definition 8. Given goals G1, . . . , Gn and G such that G is a ⩽-common generalization
of {G1, . . . , Gn}, we say that G is a ⩽-most specific generalization (⩽-msg) of {G1, . . . , Gn}
if ∄G′, another ⩽-common generalization of {G1, . . . , Gn}, such that |τ(G′)| > |τ(G)|.

▶ Example 9. Consider again the goals G1 and G2 from Example 6. It is easy to see that
G = {p(V1, V2), q(3, f(V3))} has a higher τ -value than all the other common generalizations
listed in the example; G is in fact a ⊑-msg of G1 and G2, and in this case, all other msg’s of
G1 and G2 differ from G only in a renaming of the variables V1, V2 and V3. As for relation
⪯, the goal {q(3, f(V1))} as well as its variants with V1 renamed are ⪯-msg’s of G1 and G2.

A weaker yet useful measure for comparing common generalizations is the number of
atoms (i.e. the cardinality) of the common generalization G.

▶ Definition 10. Given goals G1, . . . , Gn and G such that G is a ⩽-common generalization of
{G1, . . . , Gn}, we say that G is a ⩽-largest common generalization (⩽-lcg) of {G1, . . . , Gn}
if ∄G′, another ⩽-common generalization of {G1, . . . , Gn}, such that |G′| > |G|.

CSL 2022



37:6 Anti-Unification of Unordered Goals

▶ Example 11. Let us again take a look at the goals from Example 6. Each goal of size 2
(such as {p(V1, V2), q(V3, V4)}) is a ⊑-lcg, seeing that no larger ⊑-common generalization can
exist as |G1| = |G2| = 2. Regarding the ⪯ relation, common generalizations of size 1 (e.g.
{q(3, f(V1))}) are the largest that exist in the example since the atoms involving p/2 have
no ⪯-common generalization because of the structural difference in their first argument.

Before we can dive into the process of computing common generalizations, a few more
preliminary observations need to be assessed regarding relations ⊑ and ⪯. First, we state
that there is no other way for a common generalization to be most-specific than to harbor as
many atoms as possible.

▶ Proposition 12. Any ⩽-msg is a ⩽-lcg and any ⪯-lcg is a ⪯-msg.

▶ Example 13. Let us consider G1 = {a(Y, Z), a(t(1), X)} and G2 = {a(t(1), E)} as well as
G = {a(t(1), V1)}. It is easy to see that G (and all its variations with V1 renamed) is the
only ⪯-lcg (thus ⪯-msg), as G2’s atom can only be anti-unified with the atom in G1 that
has the same structure – and so the same τ -value. Here, G is also a ⊑-msg (thus a ⊑-lcg).

Regarding ⊑, the converse of the above proposition (“any ⊑-lcg is a ⊑-msg”) is not
true, as shown by the following example. Let us consider G1 = {a(Y, Z), a(t(1), X)} and
G2 = {a(t(1), E)} as well as the following ⊑-lcg’s: G = {a(V1, V2))} and G′ = {a(t(1), V1)}.
Obviously |τ(G′)| = 3 > |τ(G)| = 1. In fact, G′ is a ⊑-msg for this example.

For a set of goals {G1, . . . , Gn}, we have defined most specific and largest generalizations
using the plural. In fact, by the definitions above and as appears clearly in our examples,
G1, . . . , Gn can have more than one ⪯-lcg (and equivalently ⪯-msg), but all are equivalent
modulo a variable renaming. The same does not necessarily hold with the relation ⊑: there
might exist more than one sensibly different ⊑-lcg’s, depending on the degree at which
the different terms are abstracted away through the generalizations process. The following
example shows that a similar observation holds for ⊑-msg’s.

▶ Example 14. Consider the goals G1 = {p(t, u)} and G2 = {p(t, X), p(X, u)}. There are
two possible structures of ⊑-msg’s, namely {p(t, V1)} and {p(V1, u)}. There is one more
possible structure of ⊑-lcg, namely {p(V1, V2)}

For the sake of clarity, in the results and discussions that follow we will simplify and
consider common generalizations of two goals, but the ideas are straightforwardly applicable
to groups of more than two goals. Furthermore, when discussing the generalization process
of two goals we will suppose that the goals in question share no common variable name.
This hypothesis is by no means a loss of generality as renaming all variables from one goal
into fresh, unused variable names can ensure this property while not altering the goal’s
semantics.

3 Large and Specific Generalizations

In this section we prove that msg’s and lcg’s as defined above can be computed with
polynomial-time algorithms. First, we need the concept of a variabilization which is basically
a function mapping couples of terms to new variables.

▶ Definition 15. Given a context ⟨X,V,F ,Q⟩, let V ⊂ V denote a set of variables. A
function ΦV : T 2 7→ V ∪X is called a variabilization function if, for any (t1, t2) ∈ T 2 it holds
that if ΦV (t1, t2) = v, then (1) v /∈ V, (2) ∄(t′

1, t′
2) ∈ T 2 : (t′

1, t′
2) ̸= (t1, t2) ∧ ΦV (t′

1, t′
2) =

v, (3) v ∈ X ⇔ t1 = t2 ∈ X and in that case, v = t1 = t2.
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Note that a variabilization function ΦV introduces a new variable (not present in V ) for
any couple of terms, except when the terms are the same constant. It can thus be seen as a
way to introduce new variable names when going through the process of anti-unifying two
goals. In what follows, when manipulating goals G1 and G2, we will use Φvars(G1∪G2) to
represent an arbitrary variabilization function. If the goals at hand are clearly identified
from the context, we will abbreviate the notation to Φ. In most upcoming examples we will
use applications of Φ (e.g. Φ(X, Y ), Φ(t(X), 5), . . . ) rather than coined variable names (e.g.
V1, V2, . . . ) when an anti-unification operator is – ostensibly or not – at work.

Algorithm 1 shows the intuitive solution for computing a lcg with two goals G1 and G2
(where we suppose |G1| ≤ |G2|) as input. In the algorithm, au⩽(A1, A2) denotes the use of a
function that outputs a ⩽-common generalization on the atomic level for atoms A1 and A2
with respect to relation ⩽. In our development we will call such functions anti-unification
operators. As stated in the following observation, such operators exist for our relations.

Algorithm 1 Computing a lcg G for goals G1 and G2 with generalization relation ⩽.

G = {}, R = {}
for each (A1 ∈ G1) do

for each (A2 ∈ G2 \R) do
A′

1 = au⩽(A1, A2)
if A′

1 ̸= ⊥ then
G← G ∪A′

1
R← R ∪A2
break out of the inner loop

return G

▶ Lemma 16. There exist polynomial anti-unification operators to compute the ⩽-lcg and/or
the ⩽-msg of two atoms. In particular for two atoms A1 and A2, there exist (1) an operator
au⊑(A1, A2) computing a ⊑-lcg for A1 and A2 in O(n) with n the arity of A1; (2) an
operator au⪯(A1, A2) computing a ⪯-lcg in O(m) with m the maximum number of function
applications in the argument terms of the atom A1; (3) an operator dau⊑(A1, A2) computing
a ⊑-msg with a complexity that is linear in the number of terms appearing in A1.

Algorithm 1 merely applies a given anti-unification operator to pairs of atoms and keeps
the results (if not ⊥) in the generalization under construction, leading to the conclusion:

▶ Theorem 17. Given two goals G1 and G2, Algorithm 1 can compute (1) a ⊑-lcg in
O(|G1| · |G2| ·N) with N the maximum arity of the predicate symbols occurring in G1 and
G2; (2) a ⪯-lcg in O(|G1| · |G2| ·N) with M = max

A∈G1
{|ter(A)|}.

Note that although Algorithm 1 is able to find a ⊑-lcg for two goals G1 and G2, it
can produce different lcg’s depending on the order in which the atoms of G1 and G2 are
considered. Although the ⪯-lcg computed by Algorithm 1 is necessarily a ⪯-msg (according
to Proposition 12), the same observation does not hold when the underlying relation is ⊑
and the anti-unification operator is adapted accordingly. The fact that Algorithm 1 can
miss out on a ⊑-msg is due to the algorithm itself not trying to match those pairs of atoms
(A1, A2) that share as much structure as possible. Therefore, finding a ⊑-lcg with maximal
τ -value (i.e. a ⊑-msg) can be seen as an optimization problem.

Indeed, applying Algorithm 1 as-is does not guarantee that the matched atoms from
G1 and G2 are chosen in a way that optimizes the output’s τ -value. The algorithm should
be adapted in such a way that first, the anti-unification of A1 and A2 is computed for all
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p(X, t(4))

r(u(5, s(Y )), 8)

r(u(8, Z), 5)

p(A)

r(u(8, s(3)), 5)

G1 G2
−1

−1

−1

3
−1

4

Figure 1 The bipartite graph for the assignment problem from Example 18.

A1 ∈ G1 and A2 ∈ G2; then, there must be a selection of pairs of atoms so that the resulting
generalization has a maximized τ -value. This is similar to the well-known assignment problem,
and can consequently be solved by existing maximization matching algorithms [8]. Indeed,
with G1 and G2 the goals at hand, our problem can be characterized by drawing a weighted
bipartite graph with as left vertexes the atoms of G1 and as right vertexes the atoms of G2.
When considering as granted an operator dau1

⊑ computing a ⊑-msg for two atoms, an edge
between two vertexes A1 and A2 has an associated weight w indicating the potential benefit
(in number of terms and predicate symbols) of anti-unifying A1 and A2, formally defined as

w(A1, A2) =
{
−1 if dau⊑(A1, A2) = ⊥
|τ(dau⊑(A1, A2))| otherwise.

Since all edges are labeled by a measurement of their τ -value, the maximum weight
matching (MWM) in the bipartite graph will give the selection of pairs of atoms that, once
properly anti-unified, keep the maximal structure in the generalization. Observe that by
giving negative scores to atom couples that do not anti-unify, we prevent these couples from
playing any part in the computed generalization.

▶ Example 18. Let us consider the goals G1 = {p(X, t(4)), r(u(5, s(Y )), 8), r(u(8, Z), 5)} and
G2 = {p(A), r(u(8, s(3)), 5)}. The corresponding assignment problem is shown in Figure 1.
The MWM consists of the sole edge (r(u(8, Z), 5), r(u(8, s(3)), 5), so that the resulting
generalization for this simple example is G = {r(u(8, Φ(Z, s(3))), 5)}.

▶ Theorem 19. Let G1 and G2 be goals and N = max
A∈G1

{|ter(A)|}. Then a ⊑-msg of G1 and

G2 can be computed in O
(
|G1| · |G2| ·N + max(|G1|, |G2|)3).

Note that the process described above finds a ⊑-msg but there is no guarantee regarding
which ⊑-msg is found: as previously observed, the maximal τ -value can sometimes be reached
through different atomic structures. Another inconstant parameter from one msg to the
other is the number of different variables that are introduced in the generalization process.
In fact, both aspects can sometimes be related, for example when minimizing the number
of variables leads to the choice of a certain msg structure over another. A ⊑-most specific
generalization that has as few different variables as possible is often seen as an even more
specific generalization; the computation of such a msg is the main topic of the following
section.

1 For deep anti-unification.
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4 Dataflow Optimization

Relations ⊑ and ⪯ are defined over substitutions that do not necessarily need to be injective.
Indeed, a single term occurring multiple times in one of the goals can potentially be generalized
by two (or more) different variables. Therefore, some most specific generalizations may contain
more different variables than others depending on the underlying variabilization process.
Among two common generalizations of the same pair of goals, the common generalization
that has more variables than the other can be considered less specific as some information –
namely the fact that two or more values, possibly in different atoms, are equal – has been
abstracted by introducing different variables. In what follows, we will call the search of a
common generalization with as few different variables as possible dataflow optimization. The
following example illustrates the concept over the finite domain from [10].

▶ Example 20. Consider the domain of Booleans B = {true, false} as well as the fol-
lowing goals: G1 = {= (X, or(Y, Z)), = (V, and(Y, Z))} and G2 = {= (B, or(C, D)), =
(A, and(C, D)), =(E, and(F, G))}. Note that in G1 the or and and operations are eval-
uated on the same values, represented by the multiple occurrences of the variables Y and Z.
In G2 the or and the and operation from the second atom exhibit this very same behavior
(represented by the variables C and D), whereas the third atom represent an and operation
on different values. Computing a ⪯-msg (and in this example, a ⊑-msg) for G1 and G2 can
lead to two different generalizations, namely

G = {=(Φ(X, B), or(Φ(Y, C), Φ(Z, D))), =(Φ(V, E), and(Φ(Y, F ), Φ(Z, G)))}
G′ = {=(Φ(X, B), or(Φ(Y, C), Φ(Z, D))), =(Φ(V, A), and(Φ(Y, C), Φ(Z, D)))}.

Clearly, both generalizations are correct msg’s, but the fact that all the variables in G only
occur once merely denotes that there exist six variables that together can make G true. The
repetition of Y and Z in G1 as well as their connection with C and D is a lost information,
abstracted by the anti-unification process. On the other hand, G′ by harboring less different
variables introduces less variable abstraction, effectively depicting some dataflow logic that is
common to G1 and G2, through the occurrence of Φ(Y, C) and Φ(Z, D) in both its atoms.
On that level, G′ can be considered less general than G.

Dataflow optimization thus formally boils down to finding, among a group of common
generalizations for two goals G1 and G2, a goal G such that |vars(G)| is minimal. In
Example 20, we were interested in finding, among all possible msg’s of G1 and G2, one that
harbors a minimal number of variables; it makes sense, since abstracting one Boolean value
with two different variables can be too liberal, depending on the applications. In that case of
dataflow optimization, where the target goal must be a msg (i.e. when both structure and
dataflow must be optimized), the dataflow problem is NP-complete. The same is true for
lcg’s. In order to show this formally, we consider a formulation in terms of decision problems.

▶ Theorem 21. Let MSG-MIN (resp. LCG-MIN) denote the following decision problem:
“Given goals G1, G2 and a constant p ∈ N0, does there exist a ⩽-msg (resp. ⩽-lcg) of G1 and
G2 that has less than p different variables?” MSG-MIN and LCG-MIN are NP-complete.

Now instead of looking to minimize the number of different variables in the computed
generalization G, one could be interested in forcing to preserve all the dataflow implied
in the generalized goals, not allowing to abstract away the links that appear in the goals’
terms. Intuitively, this can be done by forbidding any term from one of the input goals
to have more than one “corresponding term” in the other input goal. In other words, the
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dataflow is considered entirely preserved if the underlying variabilization function Φ doesn’t
associate any term with two or more different terms at the same time. Formally, this amounts
to using an injective version of our generalization relations. We say that a generalization
relation is injective if its definition only holds for injective substitutions. For a common
generalization G of goals G1 and G2 and for some function Φ associating fresh variable
names to couples of variables, this implies when using an anti-unification algorithm (e.g.
Algorithm 1) that for any two different variables Φ(T1, T2) and Φ(T3, T4) appearing in G, it
holds that T1 ̸= T3 ̸= T2 ̸= T4 ̸= T1. We will denote by ⊑ι (resp. ⪯ι) the versions of ⊑ (resp.
⪯) that exhibit this property.

▶ Example 22. Consider the injective relation ⪯ι as well as the goals G1 =
{and(A, B), or(B, C), xor(C, A)} and G2 = {and(X, Z), or(Y, X), xor(Z, Y )}. The only
common generalizations are ∅, {and(Φ(A, X), Φ(B, Z))}, {or(Φ(B, Y ), Φ(C, X))} and
{xor(Φ(C, Z), Φ(A, Y ))}. No common generalization of size larger than 1 exists, since
(at least) one of the matching substitutions is not injective. For example, the goal
G = {and(Φ(A, X), Φ(B, Z)), or(Φ(B, Y ), Φ(C, X))} is not a common generalization of
G1 and G2, since (at least) one of the substitutions mapping this goal to G1 or G2 is not in-
jective. Indeed, the substitution [Φ(A, X) 7→ A, Φ(B, Z) 7→ B, Φ(B, Y ) 7→ B, Φ(C, X) 7→ C]
maps both Φ(B, Z) and Φ(B, Y ) to B; this is sufficient to reach the conclusion that G is
not an injective generalization of G1 and G2. Note that in this case, the other potential
substitution, i.e. the one mapping G on G2, is not injective either.

The two following observations immediately result from the injective relations being more
constrained versions of their non-injective counterparts.

▶ Proposition 23. Relations ⊑ι and ⪯ι are quasi-orders.

▶ Proposition 24. Let G1 and G2 be goals. If G1 ⊑ι
θ G2, then G1 ⊑θ G2. If G1 ⪯ι

θ G2, then
G1 ⪯θ G2 and G1 ⊑ι

θ G2.

With an injective generalization relation, the computing of a msg is fundamentally
dissociated from that of an lcg, as an msg is not necessarily a lcg due to the injectivity
constraint. However, both situations are intractable. In order to show this formally, we
define the following decision problem variant.

▶ Theorem 25. Let INJ denote the following decision problem: “Given an injective general-
ization relation ⩽ι along with goals G1 and G2 such that |G1| ≤ |G2|, verify whether there
exists an ad hoc injective substitution θ such that G1θ ⊆ G2.” INJ is NP-complete.

INJ is basically the verification of whether a goal G1 can be adequately mapped onto (a
subset of) another goal G2. If there exists a substitution θ (resp. a renaming ρ) making this
possible, then G1 is a ⊑ι- (resp. ⪯ι-)largest and most specific generalization of G1 and G2,
since no larger nor structurally more specific goal than G1 can exist for this specific situation.

Due to the inherent intractability of injective relations, it is sometimes preferable to make
use of tractable abstractions rather than exact brute-force algorithms, especially if a quick
and approximate (though entirely dataflow-preserving) anti-unification result suffices for the
application at hand. In the next section, we give such an efficient – yet highly accurate –
abstraction for the computation of ⪯ι-lcg’s.

5 The k-swap Stability Abstraction

In what follows, we introduce an abstraction for the largest common generalization with
respect to ⪯ι that can be computed in polynomial time. The abstraction was already
introduced in [29] but no formal proof of its complexity was given. The abstraction is based
on the k-swap stability property, which is in turn defined in terms of pairing generalizations.
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▶ Definition 26. Let G1 and G2 be two renamed apart goals and G be a ⪯ι-common
generalization of G1 and G2 such that G ⊆ G1. Let ρ be any renaming such that Gρ ⊆ G2.
The pairing generalization of G, denoted π(G), is the set of pairs (A1, A2) ∈ G1 ×G2 such
that ∀(A1, A2) ∈ π(G) : A1ρ = A2.

▶ Example 27. Considering the goals G1 = {p(A), p(B), q(A)} and G2 = {p(X), q(Y )}, it is
easy to see that G = {p(Φ(B, X)), q(Φ(A, Y ))} is a ⪯ι-common generalization of them. The
corresponding pairing generalization is π(G) = {(p(B), p(X)), (q(A), q(Y ))}.

The notion of a pairing generalization renders thus explicit the corresponding atoms from
the generalized goals that contribute to the generalization. As a slight abuse of language,
given a pairing generalization π of some generalization G for goals G1 and G2, we will simply
say that π is a pairing for G1 and G2. Pairings can be used to express a notion of goal
stability in the following sense.

▶ Definition 28. Let G1 and G2 be two renamed apart goals and G be a ⪯ι-common
generalization of G1 and G2 such that G ⊆ G1. G is k-swap stable if and only if there does
not exist some generalizations Ĝ and G′ of G1 and G2 such that Ĝ ⊃ G′ and |π(G)∩π(G′)| ≥
|π(G)| − k for some k ∈ N.

Intuitively, a generalization G is k-swap stable if it is impossible to transform G into a
larger generalization Ĝ in spite of “swapping” at most k pairs in π(G). This stability notion
gives a characterization of the quality of a computed generalization. If a generalization
is 0-swap stable (the weakest characterization), it cannot be extended by adding another
atom but this guarantees in no way that a larger generalization could not be found. If a
generalization G is k-swap stable (for k > 0), it means that even if we exchange up to k pairs
in π(G) by others, the generalization cannot be extended into a larger one. Consequently, if
a generalization is k-swap stable for k the number of atoms in the smallest of the two goals
(denoted by ∞-swap stable), it means that the computed generalization is a largest common
generalization. Operationally, when naively searching for a lcg by backtracking, the fact that
a computed generalization is k-swap stable means that one should backtrack by more than k

choice points in order have a chance of finding a larger generalization.

▶ Example 29. Consider the goals G1 = {add(X, Y, Z), even(X), odd(Z), p(Z)} and G2 =
{add(A, B, C), add(C, B, A), even(C), odd(A), p(C)}. π1 = {(add(X, Y, Z), add(A, B, C))}
is not 0-swap stable. Indeed, we can enlarge π1 by adding (p(Z), p(C)), in order to
obtain π2 = {(add(X, Y, Z), add(A, B, C)), (p(Z), p(C))}. Note that π2 is 0-swap stable,
it is impossible to add another pair to π2 and still obtain a common generalization.
It is also 1-swap stable, seeing that replacing (or removing) one of the pairs doesn’t
lead to a pairing readily extensible to a pairing of size strictly greater than 2. How-
ever, π2 is not 2-swap stable. Indeed, replacing the pair (add(X, Y, Z), add(A, B, C))
by the pair (add(X, Y, Z), add(C, B, A)) in π2 and removing the now incompatible pair
(prime(Z), prime(C)) (i.e. choosing the renaming [X 7→ C, Y 7→ B, Z 7→ A] instead of
[X 7→ A, Y 7→ B, Z 7→ C]) gives rise to π′

2 = {(add(X, Y, Z), add(C, B, A)), which can readily
be extended into π3 = {(add(X, Y, Z), add(C, B, A)), (even(X), even(C)), (odd(Z), odd(A))}
which is a pairing of size 3. The latter being ∞-swap stable, it represents a ⪯ι-lcg, namely
Ĝ = {add(Φ(X, C), Φ(Y, B), Φ(Z, A)), even(Φ(X, C)), odd(Φ(Z, A))}

An algorithm has been introduced in [29] that builds up a k-swap stable generalization using
the process suggested in Example 29. Its practical performance has been assessed on different
test cases. The tests indicate that the k-swap stability property represents a well-suited
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approximation of the concept of ⪯ι-lcg. Indeed, in all test cases the size of the k-swap
stable generalization was at least 90% of the size of an lcg for the same anti-unification
problem, while the computational time was radically reduced – especially as the size of
the input goals grows2. However, in [29] only pragmatical aspects have been explored;
the theoretical foundations of the k-swap technique were not detailed, and no actual time
complexity upper bound has been demonstrated. We fill this gap in the remainder of this
section. First, we introduce the algorithm, then we formally prove that its time complexity
is polynomially bounded. Before introducing the algorithm, which is essentially composed of
two sub-algorithms, we give some notations that will facilitate their formulation. First, we
define an operator that allows to combine two pairings into a single pairing.

▶ Definition 30. Let G1 and G2 be two renamed apart goals. The enforcement operator is
defined as the function ◁ : (G1 ×G2)2 7→ (G1 ×G2) such that for two pairing generalizations
π and π′ for G1 and G2, π ◁ π′ = π′ ∪M where M is the largest subset of π such that π′ ∪M

represents a ⪯ι-common generalization of G1 and G2.

In other words, π ◁ π′ is the mapping obtained from π ∪ π′ by eliminating those pairs
of atoms (A, A′) from π that are incompatible with some (B, B′) ∈ π′ either because they
concern the same atom(s) or because the involved renamings cannot be combined into a
single injective renaming.

▶ Example 31. Consider π = {(p(X, Y ), p(A, B)), (q(X), q(A))} as a pairing for two goals
G1 and G2. Suppose π′ = {(r(Y ), r(C))} is also a pairing for G1 and G2. Enforcing π′

into π gives π ◁ π′ = {(q(X), q(A)), (r(Y ), r(C))}. Indeed, this can be seen as forcing Y

to be mapped on C; therefore the resulting pairing generalization can no longer contain
(p(X, Y ), p(A, B)) as the latter maps Y on B.

For π1 and π2 pairings we will also denote by compπ1(π2) the subset of π2 of which each
element can be added to π1 such that the result is a pairing (i.e. there is no injectivity conflict
in the associated renaming). Finally, we use gen(G1, G2) to represent those atoms from
G1 and G2 that are variants of each other, formally gen(G1, G2) = {(A, A′) | A ∈ G1, A′ ∈
G2 and Aρ = A′ for some renaming ρ}. The first algorithm is depicted in Algorithm 2. The
algorithm represents the construction of a k-swap stable generalization of goals G1 and G2.
At each round, the process tries to transform the current generalization π (which initially is
empty) into a larger generalization by forcing a new pair of atoms (A, A′) from gen(G1, G2)
in π, which is only accepted if doing so requires to swap no more than k elements in π. More
precisely, the algorithm selects a subset of π (namely πs) that can be swapped with a subset
πc of the remaining mappings from gen(G1, G2) \ π such that the result of replacing πs by
πc in π and adding (A, A′) constitutes a pairing. Note how condition 1 in the algorithm
expresses that πs must include at least those elements from π that are not compatible with
(A, A′). The search continues until no such (A, A′) can be added.

The main operation of Algorithm 2, namely the selection of πs and πc, is detailed in
Algorithm 3 which aims to select the parts of the pairings to be swapped in order to enlarge
the resulting pairing under construction (π) by the couple (A, A′). To that purpose πs is
initialized with the part of π that is incompatible with the pair of atoms (A, A′) that we

2 For example, with k fixed to 4, anti-unifying goals harboring 15 to 22 atoms, each of arity between 1
and 3, comes on average down from more than 7 minutes (using bruteforce) to 272 milliseconds (using
the algorithms presented in this section), while the size of the computed generalization is on average
95% of the size of a lcg. More detailed test results are exposed in [29].
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Algorithm 2 Computing a k-swap stable generalization G for goals G1 and G2.

π ← ∅
repeat

found← false

for all (A, A′) in gen(G1, G2) \ π do
select πs ⊆ π and πc ⊆ gen(G1, G2) \ (π ∪ {(A, A′)}) such that:

(1) πs ⊇ π \ π ◁ {(A, A′)}
(2) |πs| ≤ k

(3) |πc| = |πs|
(4) π \ πs ∪ πc ∪ {A, A′} is a pairing generalization of G1 and G2

if such πc and πs are found then
π ← π \ πs ∪ πc ∪ {(A, A′)}
found← true

break out of the for loop
until ¬found

G← dom(π)

wish to enforce into the generalization. Its replacement mapping πc is initially empty and
the algorithm subsequently searches to construct a sufficiently large πc (the inner while loop).
During this search, S represents the set of candidates, i.e. couples from gen(G1, G2) that
are not (yet) associated to the generalization. In order to explore different possibilities with
backtracking, the while loop manipulates a stack GS that records alternatives for πc with
the corresponding set S for further exploration.

If the search for πc was without a satisfying result (i.e. no πc is found equal in size to πs),
the algorithm continues by removing another couple from π (thereby effectively enlarging πs).
The rationale behind this action is that there might be a couple in π that is “blocking” the
couples in S from addition to π. In order to achieve the removal of such potentially blocking
couples, an arbitrary couple from π \ πs is selected, and alternatives are recorded in a queue
(BS). Note the use of a queue (and its associated operations enter and exit) as opposed to
the stack GS. The process is repeated until either |πc| = |πs| in what case we have found a
suitable k-swap, or until |πs| > k in what case we have not, and the algorithm returns ⊥.

While the algorithms have been proven to correctly compute a k-swap stable generaliza-
tion [29], no result on their complexity has yet been formally established.

▶ Theorem 32. For a given and constant value of k, the combination of Algorithms 2 and 3
computes a k-swap stable common generalization of input goals G1 and G2 in polynomial
time O((αM)k+1), with 0 ≤M ≤ |gen(G1, G2)| and 0 ≤ α ≤ min(|G1|, |G2|).

Proof. In order to search for a suited πc to be swapped with a certain πs, Algorithm 3 must
try to add |πs| couples to π \ πs among the couples in S that are compatible with it. To
simplify notation, let i = |πs| and n = |compπ\πs∪πc

(S)|. Note that at any moment i ≤ k.
The attempt of Algorithm 3 to find πc is essentially a search of a combination of i couples
among n; that is

(
n
i

)
possibilities to explore. We have

(
n
i

)
= n!

i!(n−i)! which reduces to a
polynomial of degree ni:

n!
i!(n−i)! = n·(n−1)····(n−(i+1)·(n−i)·(n−(i−1))·····1

i!·(n−i)·(n−(i−1))·····1 = n·(n−1)····(n−(i+1))
i! ≈ O(ni)

If no suiting πc is found during such a search, then πs gets enlarged, having its size
m increased by (at least) one unit. In the worst case, the size i of πs is, at the start of
Algorithm 3, equal to 1. It then gets incremented by one, until it reaches k (each time more
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Algorithm 3 Selecting πs and πc for a given (A, A′).

GS ← {}, BS ← {}, πc ← {}
πs ← π \ π ◁ {(A, A′)}
S ← gen(G1, G2) \ π ◁ {(A, A′)}
while |πc| < |πs| and |πs| ≤ k do

while |πc| < |πs| and ¬(compπ\πs∪πc
(S) = {} and GS = {}) do

for all p in compπ\πs∪πc
(S) do

push(GS, (πc ∪ p, S \ {p}))
(πc, S)← pop(GS)

if |πc| < |πs| then
for all p in π \ πs do

enter(BS, πs ∪ {p})
if BS ̸= {} then

πs ← exit(BS)
πc ← {}
S ← gen(G1, G2) \ (π ∪ {(A, A′)})

else
return ⊥

if |πc| = |πs| then
return πs, πc

rreturn ⊥

atoms from π being considered to be part of πs). Let p denote the size of the pairing π under

construction, that is p = |π|. As k is constant, if backtracking is exhaustive there are
k∑

i=1

(
p
i

)
possibilities for πs pairings that are explored this way. Each of these πs pairings leads to the
search for a corresponding πc pairing. As such, the overall search carried out by Algorithm 3
takes a number of iterations that is in the worst case represented by

k∑
i=1

(
p
i

)
·
(

n
i

)
≈

k∑
i=1
O(pi) · O(ni) ≈ O((p · n)k)

Given that n is bound by the number of compatible couples of atoms from G1 ×G2, we will
denote the worst-case time complexity of Algorithm 3 by O((p ·M)k) with M ≤ |gen(G1, G2)|
and p the length of the pairing under construction π.

Turning our attention to Algorithm 2 it is clear that the size of pairing π is incremented
by 1 in each iteration of the repeat-loop, since found must be true for a new iteration to
occur. As such, in the worst-case scenario there can be as many iterations as there are atoms
in the smallest goal amongst G1 and G2, seeing that a generalization size cannot exceed
that of the goals it generalizes. We will denote this number by α = min(|G1|, |G2|). As for
the inner loop of Algorithm 2, it can browse through up to |gen(G1, G2)| − p candidates for
choosing the couple (A, A′) that will be enforced in the pairing π. This gives us at most

α∑
p=1

(|gen(G1, G2)| − p) ≈
α∑

p=1
O(M − p) iterations of Algorithm 2.

Algorithm 3 being called at each inner loop iteration of Algorithm 2, we can repres-
ent the time complexity of the combined algorithms by

α∑
p=1
O(M − p) · O((p · M)k) ≈

α∑
p=1

(
(M − p) · pk ·Mk

)
which can be rewritten as Mk+1 ·

(
α∑

p=1
pk

)
−Mk ·

(
α∑

p=1
pk+1

)
.
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Since
α∑

p=1
pk ≈ O(αk+1) and

α∑
p=1

pk+1 ≈ O(αk+2), we can conclude the total complexity

to be of the order O((α ·M)k+1)−O(αk+2 ·Mk) which proves the result. ◀

Whenever there is a need to compute numerous anti-unifications of unordered goals
with limited time resources, the k-swap stability abstraction allows to keep the search space
tractable while outputting goals that are, on average, close in size to that of a lcg. Such
situations can e.g. arise in static analysis techniques for large Horn clause programs, such as
the assessment of structural similarity between algorithms expressed in CLP [28].

6 Conclusions and Future Work

In this work, we have systematically studied different key notions and results concerning anti-
unification of unordered goals, i.e. sets of atoms. We have defined different anti-unification
operators and we have studied several desirable characteristics for a common generalization,
namely optimal cardinality (lcg), highest τ -value (msg) and variable dataflow optimizations.
For each case we have provided detailed worst-case time complexity results and proofs. An
interesting case arises when one wants to minimize the number of generalization variables or
constrain the generalization relations so as they are built on injective substitutions. In both
cases, computing a relevant generalization becomes an NP-complete problem, results that
we have formally established. In addition, we have proven that an interesting abstraction
– namely k-swap stability which was introduced in earlier work – can be computed in
polynomially bounded time, a result that was only conjectured in earlier work.

Our discussion of dataflow optimization in Section 4 essentially corresponds to a reframing
of what authors of related work sometimes call the merging operation in rule-based anti-
unification approaches as in [4]. Indeed, if the “store” manipulated by these approaches
contains two anti-unification problems with variables generalizing the same terms, then one
can “merge” the two variables to produce their most specific generalization. If the merging
is exhaustive, this technique results in a generalization with as few different variables as
possible. In this work we isolated dataflow optimization from that specific use case and
discussed it as an anti-unification problem in its own right.

While anti-unification of goals in logic programming is not in itself a new subject, to the
best of our knowledge our work is the first systematic treatment of the problem in the case
where the goals are not sequences but unordered sets. Our work is motivated by the need
for a practical (i.e. tractable) generalization algorithm in this context. The current work
provides the theoretical basis behind these abstractions, and our concept of k-swap stability
is a first attempt that is worth exploring in work on clone detection such as [28].

Other topics for further work include adapting the k-swap stable abstraction from the ⪯ι

relation to dealing with the ⊑ι relation. A different yet related topic in need of further research
is the question about what anti-unification relation is best suited for what applications. For
example, in our own work centered around clone detection in Constraint Logic Programming,
anti-unification is seen as a way to measure the distance amongst predicates in order to
guide successive syntactic transformations. Which generalization relation is best suited to be
applied at a given moment and whether this depends on the underlying constraint context
remain open questions that we plan to investigate in the future.
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