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The role of the environment in collective perception:
A generic complexity measure

Dari Trendafilov, Ahmed Almansoori, Timoteo Carletti and Elio Tuci

Namur Institute for Complex Systems, University of Namur, Belgium
dari-borisov.trendafilov@unamur.be

Abstract

We propose a novel generic information-theoretic framework
for characterizing the task difficulty in the Collective Percep-
tion paradigm. Our formalism builds on the notion of Em-
powerment - a task-independent, universal and generic utility
function, which characterizes the level of perceivable control
an embodied agent has over its environment. Series of simu-
lations with an empowerment model of the collective percep-
tion scenario revealed a significant correlation between the
levels of empowerment and the accuracy demonstrated by a
set of standard collective decision-making strategies and a re-
cent state-of-the-art neural network controller on nine bench-
mark patterns, used previously for assessing swarm perfor-
mance. The results elucidate the key role of both the agent
embodiment and the environmental pattern in characterising
task difficulty, and justify the application of empowerment to
analytically assess this role, which could help predict swarm
performance and support the development of more efficient
decision-making strategies.

Introduction
Swarm robotics studies multi-robot systems in which each
robot has its own controller, perception is local and com-
munication is based on spatial proximity (Hamann, 2018).
The group-level response emerges from a self-organisation
process (Camazine et al., 2001), based on the interaction
between the robots and their physical environment. How-
ever, the autonomous nature of this process poses a chal-
lenge for designers, since it is notoriously difficult to infer
which set of individual actions leads to the emergence of
a desired collective response. Moreover, traditional design
methods lack the ability to tackle problems and swarms of
increasing complexity in uncertain and unpredictable envi-
ronments. This further intensifies the need for fundamental
and generic automated methodologies for modulating col-
lective behaviour, with the potential to circumvent tedious
trial-and-error model tuning. To enable large swarm-like
robot collectives, generic measures of behavioural diversity
could be highly beneficial. They could facilitate establish-
ing the theoretical bounds on the complexities of individual
robots, swarm and environment, and assessing their inter-
actions and trade-offs. However, we argue that to date, the

research community has not taken full advantage of what
complexity measures can offer to swarm robotics.

We believe that information-theoretic approaches could
address the above challenges in a generic fashion, by ab-
stracting from implementation details and focusing on the
interactions and dynamics related to information processing
only (Roli et al., 2019). In this paper, we propose a novel
generic measure for the characterization of task difficulty,
based both on the environmental complexity and the robot’s
embodiment. To our knowledge, this is the first study to con-
sider the agent’s capabilities in the characterization of task
difficulty in this domain. We apply this measure on a per-
ceptual discrimination task, used in the swarm robotics lit-
erature to design mechanisms allowing swarms of robots to
collectively decide which colour covers the majority of the
arena floor. The aim is to provide a more rigorous theoretical
treatment for the evaluation of the concept of task complex-
ity, which could represent a useful metric to design progres-
sively more effective solutions for swarm robotics. In our
study, we explore the potential of the concept of empower-
ment to capture and predict the effect of different topological
structures of the basic features on the task difficulty in the
collective perceptual discrimination task. The information-
theoretic concept of empowerment has been originally intro-
duced by Klyubin et al. (2008), for providing a generic char-
acterization of embodied agents and their environment. In
order to validate our approach, we relate the empowerment
levels to the performance achieved by four existing state-
of-the-art decision-making strategies on the benchmark set
of nine characteristic feature distribution patterns, illustrated
in Figure 1 (see Bartashevich and Mostaghim, 2019; Alman-
soori et al., 2023).

Background
For designing large groups of robots, which coordinate and
cooperatively perform a task, swarm robotics takes inspi-
ration from natural self-organizing systems and attempts to
recreate the emergence of collective behaviour from simple
local interaction rules (see Kube and Zhang, 1993; Wer-
fel et al., 2014). Through the design of individual robot
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Figure 1: The layout of all nine test environmental conditions used in our study. Each environment is represented by a discrete
2-D grid of 20 × 20 cells. These bench-marking patterns have been proposed by Bartashevich and Mostaghim (2019) and
employed in perceptual discrimination tasks (e.g., Almansoori et al., 2023) for assessing swarm performance and task difficulty.

behaviour, swarm robotics aims to achieve locally coordi-
nated interaction that results in a self-organized collective
behaviour (Ferrer et al., 2021; Boudet et al., 2021; Hassel-
mann et al., 2021). Robot collectives of fixed-size have been
demonstrated in lab settings, typically employing a small
number of robots (Nouyan et al., 2009). However, future
swarms need to operate at many different scales.

To move away from hand-crafted solutions and designer-
imposed bias, the multi-agent and robotics communities
have recently turned their attention to information-theoretic
measures. This is due to their ability to capture salient fea-
tures of robot behaviour, based on generic information pro-
cessing principles, while abstracting from system-specific
details (see Roli et al., 2019). Information-theoretic ap-
proaches allow for a quantitative study of robot-environment
systems (Beer, 1995; Smithers, 1995; Tarapore et al., 2006),
and are fundamental in embodied systems research (Pfeifer
and Scheier, 2001). Information theory has been used to
formalise guided self-organization (Prokopenko, 2014; Ay
et al., 2011; Polani et al., 2013; Prokopenko and Gershen-
son, 2014), relying on relatively simple local interactions
from which complex global patterns emerge, stabilize and
become more predictable as the information content de-
creases (see Polani, 2003, 2008; Prokopenko et al., 2006;
Fernández et al., 2014). Generic information-theoretic com-
plexity measures could capture non-linear relationships and
have been used to study system dynamics (Lizier, 2013;
Da Rold, 2018; Beer and Williams, 2015), to characterise
information flows in the sensorimotor loop (Lungarella
et al., 2005; Lungarella and Sporns, 2006), and to anal-
yse robot behaviour (Roli et al., 2018). Shannon entropy-
based measures, used to characterise self-organized emer-
gent robot behaviour, range from mutual information (Salge
and Polani, 2011; Sperati et al., 2014) and transfer en-
tropy (Schreiber, 2000), to predictive and integrated infor-
mation (Martius et al., 2013; Der et al., 2008; Balduzzi and
Tononi, 2008). The potential of such measures, demon-
strated by initial investigations, provides motivation for fur-
ther exploration of information-theoretic approaches with
respect to the automatic design of robot swarms and the
analysis of their behavioural dynamics. One plausible op-
tion is the information-theoretic capacity of empowerment,
introduced by Klyubin et al. (2008), which has previously
been applied in various domains, e.g., to well-known prob-

lems in dynamical control systems (Jung et al., 2011),
robotics (Salge et al., 2014), and human-computer interac-
tion (Trendafilov and Murray-Smith, 2013). We believe that
empowerment is a good candidate for providing a complex-
ity measure in the perceptual discrimination task as illus-
trated in (Bartashevich and Mostaghim, 2019; Almansoori
et al., 2023) for swarm robotics.

The collective perceptual discrimination task for swarm
of robots has been originally introduced by Morlino et al.
(2010), who used a binary version of this scenario to de-
sign and evaluate individual mechanisms underpinning the
collective decision-making process. In this task, the swarm
explored a close arena patched with tiles, randomly painted
in black and white, with the aim to collectively decide which
colour is dominant. In this task, the two colours are the op-
tions or features, and the proportion with which each colour
covers the arena floor corresponds to the option/feature qual-
ity. The scientific challenge of this task is to develop indi-
vidual opinion selection mechanisms that allow the swarm
to converge on the desired consensus state (i.e., all robots
selecting the opinion corresponding to the most represented
colour on the arena floor). Various individual mechanisms
for opinion selection have been developed, from the classi-
cal hand-crafted solutions, based on the voter model, the ma-
jority rule, and their variants (see Valentini, 2017), to more
recent ones, based on the synthesis of artificial neural net-
works (Almansoori et al., 2023). The perceptual discrimina-
tion task has been used by Valentini et al. (2016) to investi-
gate the performance of various decision-making strategies
for swarm of robots while varying the options quality (i.e.,
the features ratio) for controlling task difficulty. Strobel
et al. (2018) explored further variations of this task, char-
acterised by the presence of byzantine robots, i.e., robots
that communicate deceptive messages with the intent to en-
tice the swarm to converge on a consensus to a non-optimal
choice. Ebert et al. (2018) investigated scenarios with more
than two options/features. While earlier research focused on
the environmental feature ratio as a main characteristic of
task difficulty, more recently, Bartashevich and Mostaghim
(2019) suggested that the key determinant of the difficulty
of the perceptual discrimination task for swarms of robots
required to choose the best option (i.e., the most repre-
sented feature in the environment) is the features’ distribu-
tion. Thus, Bartashevich and Mostaghim (2019) proposed



a set of variations in the environmental topology and intro-
duced measures for their characterization, however, disre-
garding robot’s capabilities. To support and expand their
work, we propose a universal and generic measure of task
difficulty, which takes into account not only the environ-
mental complexity (i.e., the features distribution), but also
the agent’s capabilities – arguably a key factor contributing
to the overall swarm performance. We demonstrate the abil-
ity of the empowerment measure to quantify salient features
of the environment, independent from the task or goal of the
swarm, which makes our model directly applicable to fur-
ther scenarios in this domain. Our study provides important
insights about the generalizability of task difficulty with the
proposed information-theoretic abstraction of the perceptual
discrimination task.

Collective Perception
Our research is based on the collective perceptual discrim-
ination task as described in (Bartashevich and Mostaghim,
2019; Almansoori et al., 2023), which is characterised by a
square arena whose floor is covered by black and white tiles.
In these studies, the most dominant colour, corresponding to
the best quality option/feature, covers 55% of the arena floor,
while the other colour covers the remaining 45%. Within
each evaluation trial, the dominant colour can be either the
black or the white. At the beginning of each trial, 20 robots
are located in the arena without knowing whether the black
or the white is the dominant colour. They are required to
randomly explore the arena while perceiving the floor colour
underneath their body, and by communicating their opinion
on what is the dominant colour to spatially proximal robots.
The objective of the swarm is to reach a consensus on which
colour covers the largest proportion of the arena floor. Both
in (Bartashevich and Mostaghim, 2019) and in (Almansoori
et al., 2023), to induce significant variability in the task
complexity (i.e., difficulty level), the mechanisms underpin-
ning the collective decision-making process are evaluated on
multiple environments that differ in the spatial distributions
of the two features.

The most frequently used features’ distribution in per-
ceptual discrimination tasks is the random distribution of
colour patches on the arena floor (see Figure 1/left most),
which, however, has its limitations with respect to gen-
eralization of swarm behaviour; that is, decision-making
strategies designed for randomly distributed patches are not
equally successful in environments where features are dis-
tributed in a different way. In order to quantify the dif-
ference between various environmental patterns, Bartashe-
vich and Mostaghim (2019) proposed a set of measures
characterizing task difficulty, and validated them on the set
of nine structurally different patterns shown in Figure 1.
More recently, (Almansoori et al., 2023) used these pat-
terns to evaluate the effectiveness of neural network-based
decision-making mechanisms. Regardless of the nature

of control mechanisms (hand-coded in Bartashevich and
Mostaghim (2019), and neural network-based in Alman-
soori et al. (2023)), the results of the evaluation tests reveal
that the swarm performance tends to deteriorate when the
perceptual evidence is spatially arranged in distinctive clus-
ters. In general, the less clustered the distribution of percep-
tual evidence, the higher the swarm accuracy in making the
collective decision (see Bartashevich and Mostaghim, 2019;
Almansoori et al., 2023). This observation can be explained
by the potential emergence of an alignment in the opin-
ions of spatially proximal robots exploring specific clusters,
which hinders the swarm convergence to the correct option.

In this work, we draw inspiration from the above men-
tioned studies, by proposing an alternative way of measur-
ing the task complexity with respect to the distribution of
features characterising the collective perceptual discrimina-
tion task. Our view is grounded in the belief that the envi-
ronmental complexity is intertwined with the robot’s sensing
and actuation abilities, and therefore must be taken into con-
sideration when assessing task difficulty, i.e., a given task
might be difficult for one type of robot and easier for another.
Thus, for the characterization of task difficulty, our approach
places a robot with a particular morphology into a specific
environmental condition. Hence, we are interested in quanti-
fying the complexity of the environment as perceived by the
agent, which essentially depends on the agent’s perception–
action loop.

In order to carry out our task-complexity analysis, we
make a few simplifications with respect to the original
robot-based scenario as illustrated in (Bartashevich and
Mostaghim, 2019; Almansoori et al., 2023). In particular,
we consider a single agent placed in a discretized square
grid of size of 20 × 20 cells. Each cell corresponds to a
tile, that can be either black or white. The cells are coloured
in order to recreate the nine features distribution patterns as
shown in Figure 1. The agent can perceive the colour of the
cell in which it is located and the colours of neighbouring
cells. The number of the perceivable cells can vary from 5
(when the range is 1), to 61 (when the range is 5). The differ-
ent neighbourhoods sizes with respect to the range are illus-
trated in Figure 2. The access to the colour of neighbouring
cells intends to simulate the information generated by social
influence. Within this metaphor, the different ranges model
different values of the maximum robot–robot communica-
tion distance. There is, however, a direct mapping between
our model and swarm robotics studies based on the e-puck2
platform, which has a communication range of 50 cm and
the robots are placed in an environment of 2m×2m, patched
with black and white tiles, 10cm × 10cm each (see, for ex-
ample Almansoori et al., 2023). For the sake of simplicity,
we follow the discrete grid boundaries in the definition of the
neighbourhoods instead of using Euclidean distances, which
would provide a better real-world representation in the form
of smooth concentric circles, as we believe that such a loss
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Figure 2: The experimental 2-D grid (20 × 20 cells) used
in our study. The perceivable range of agent A is defined
with the following colour map: range0 (blue), range1 (red),
range2 (green), range3 (yellow), range4 (purple), and range5
(orange). E.g., the neighbours N2 and N3 are in range5,
while N1 is out of range.

of resolution would not have a major impact on our results
and our model is discrete by assumption.

To compute empowerment, for every feature distribution
pattern and for each neighbourhood size (i.e., range), the
agent is located in every cell of the grid. Thus, empower-
ment provides a measure of perceivable features with respect
to the current position and range. For example, if the agent
is placed on a black cell and all perceivable neighbouring
cells are black, the empowerment will be zero (minimum
empowerment value). Otherwise, if the agent is placed on
black and at least one of the perceivable neighboring cells
is white, then the empowerment will be one (maximum em-
powerment value). By computing this measure for all pos-
sible positions of the agent in the arena and for each of the
nine feature distribution patterns, we obtain an estimate of
the task complexity, which integrates both the environmen-
tal structure and the agent’s sensory capabilities.

Empowerment Model
Our information-theoretic model of the Collective Per-
ception paradigm is based on the empowerment formula-
tion (Klyubin et al., 2008) of the perception–action loop
of an embodied agent and its environment. According to
that, the perception–action loop is represented as a commu-
nication channel in which when an agent performs an ac-
tion, it injects information into the environment, and sub-
sequently reacquires part of this information from the envi-

ronment via its sensors. For stochastic dynamic systems in
which transitions arise as the result of making a decision,
empowerment measures the information an agent can inject
into its environment and later perceive by its sensors. For-
mally, it is defined as the Shannon channel capacity from the
sequence of actions Ut, Ut+1, ..., Ut+n−1 to the perception
Yt+n through the environment Xt+1, Xt+2, ..., Xt+n after
an arbitrary number of (n) time steps (Figure 3), using the
following formula

C(Ut, ..., Ut+n−1 → Yt+n) = sup
p(u⃗)

I(Ut, ..., Ut+n−1;Yt+n)

where u⃗ = (ut, ..., ut+n−1) and the mutual information be-
tween two discrete random variables U and Y is defined by

I(U ;Y ) =
∑
u

p(u)
∑
y

p(y|u) log p(y|u)
p(y)

. (1)

Empowerment is a task and representation independent
utility function, fully specified by the dynamics of the
perception–action loop of the agent–environment coupling
unrolled over time. It quantifies the maximal potential in-
formation flow from the agent’s actuators to its sensors
through the environment. Empowerment reflects the capac-
ity of an agent to control or influence its environment as
perceived by its sensors. It captures various sources and
types of uncertainty (e.g., noise, delays, errors, etc.) in
the perception–action loop in a single quantity, measured in
source-independent uniform units (bits).

Intuitively, empowerment quantifies the number of ac-
tions available to the agent on a logarithmic scale, the out-
come of which it can perceive. At its extremes, it is zero, if
regardless of the action the outcome will be the same, and is
maximal, if every action has a distinct outcome (Figure 4).
Empowerment depends on the agent’s embodiment, i.e., its
sensoric apparatus and motoric abilities, and on the degree
of interaction between agents, i.e., agents need freedom to
act and at the same time they need certain constraints im-
posed by other agents (Capdepuy et al., 2007).

. . .Xt−3

Yt−3 Ut−3

Xt−2

Yt−2 Ut−2

Xt−1

Yt−1 Ut−1

Xt . . .

Yt

Figure 3: Perception–action loop as a causal Bayesian net-
work – an agent performs an action U and injects informa-
tion into the environment X , and subsequently reacquires
part of this information via its sensors Y . Empowerment
is the channel capacity from the action sequence to the re-
sulting observation after n time-steps (e.g., from action se-
quence Ut−3, Ut−2, Ut−1 to perception Yt).
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Figure 4: Transitions between perception states x and y
when executing actions u. Intuitively, empowerment char-
acterizes the number of actions available to the agent in a
particular state, the outcome of which it can perceive. It is
low, if regardless of the action the perception will be the
same (in green), and it is high, if every action results in a
distinct perception (in red). Note, that certain transitions can
potentially be stochastic.

The decision-making mechanisms for collective percep-
tion are based on the agent’s own perception and the opin-
ions of its neighbours, which contain information about the
environment at various remote positions and are transmit-
ted from a distance within a specific communication range.
This enables the agent to extend its sensing abilities and to
acquire information about (perceive) the environment at dis-
tant locations. In a broader sense, from the agent’s point
of view, the environment is defined by the 2-D grid and
the rest of the swarm. Since in this study, we use a single
agent for the empowerment computation, in the following
we will consider the environment to represent the 2-D grid
only, and the swarm influence will be addressed in future
work. Hence, in our model, the state space will consist of the
position of a single agent in the grid. To translate the collec-
tive perception scenario to the empowerment formalism, we
reframe the paradigm into a communication problem by us-
ing swarm communication as an action space and represent-
ing the action horizon with the communication range. For
simplicity, we use only the main four orthogonal directions
in our model, and build up a neighbourhood of a particular
size, using an action space U consisting of the following five
primitive actions

U = {north, south, east, west, idle}.

The first four actions correspond to communicating with
(polling the opinions of) the immediate neighbours in the
four respective directions, while the last (idle) action re-
flects the agent’s own sensor reading, and n-step action se-
quences represent communication with agents in a neigh-
bourhood of a particular range. The borders of the environ-
ment are hard and constrain the actions. Following this rep-
resentation, Figure 2 depicts the perceivable range of agent
A, in a blank 2-D grid, defined by a colour map – range0

(blue), range1 (red), range2 (green), range3 (yellow), range4
(purple), and range5 (orange).

Since we are interested in the overall task difficulty level,
we compute empowerment in all positions across the grid,
using the environmental features as sensor readings. For any
state x ∈ X in the grid, empowerment is computed by

E(x) = max
p(u⃗)

I(Ut, ..., Ut+n−1;Yt+n|x),

where the action space U consists of the above five actions
and the perception space Y is defined by a binary value

Y = {0, 1},

representing the environmental features (black and white) in
state y ∈ X , where y is the resulting state after applying the
action sequence Ut, ..., Ut+n−1 starting from x. Note, that x
is a starting position on the 2-D grid and has two coordinates,
while the perception Yt+n ∈ Y is a single value representing
the feature in the final position.

Results
Using the above model, we computed the empowerment lev-
els for every starting position in the 2-D grid for all nine
test environments (Figure 1), using a range of empowerment
horizons from one to five, which corresponds to a discrete
communication radius of one to five cells and is in line with
previous swarm robotics studies in this scenario (see Alman-
soori et al., 2023).

The evolution of the empowerment levels, as the commu-
nication horizon increases, is presented in Figure 5 for one
environmental pattern (Band(3)). It reveals the ability of
empowerment to detect and characterize large homogeneous
clusters in the environment with respect to the communica-
tion abilities (range) of the agent.

Since the agent can occupy any cell in the environment
at any given moment, we averaged the empowerment levels
across the grid and use the average values as characteristic
for a particular experimental configuration. The average em-
powerment curves, for different horizons in all nine environ-
mental conditions (Figure 6), are monotonically increasing
with the horizon span, as expected, however, they reveal a
significant variability between different environment types.
The maximal empowerment level of 1 bit (since the agent
can perceive at most two features and Equation 1 uses a bi-
nary logarithm), is reached for Random (1) in step 2 and for
Star (9) in step 3, while Stripe (8) and Off-diagonal (7) have
considerably lower empowerment at the presented horizon
spans due to large homogeneous feature clusters. This in-
sight emphasizes the key role of agent’s abilities in charac-
terizing task difficulty and predicting swarm performance.

The distribution of empowerment levels across the grid
(Figure 7) reveals further details elucidating the significant
difference between various patterns. The figure shows that



Figure 5: Empowerment maps for one- (left), two- (center) and three-step (right) horizons in one environmental condition.
Empowerment (z) is presented as a function of the starting position in the grid (x-y coordinates). The pattern, corresponding
to condition Band (3), is depicted in white and gray on the X-Y plane. On the left, the empowerment is highest around the
transition edges between the two features and it is zero in homogeneous areas occupied by the same feature. As the horizon
increases (center-right), it bridges relatively narrow homogeneous areas, raising their empowerment level, while staying low
in the wider diagonal corridor.
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Figure 6: Empowerment curves, representing the average levels aggregated over the 2-D grid, for five discrete horizon spans
in all nine environmental conditions. All trends are monotonically increasing, as expected, however with a significant variation
between different environmental patterns. Note, that the maximal empowerment level for this scenario is 1 bit, which is reached
for Random (1) in step 2 and for Star (9) in step 3. Large homogeneous feature clusters imply lower empowerment at these
horizon spans for Stripe (8) and Off-diagonal (7).

the empowerment level is at maximum at the shortest hori-
zon for condition Random (1), which is followed closely by
Star (9). On the other extreme are conditions Off-diagonal
(7) and Stripe (8), which do not converge overall to the max-
imum empowerment at this horizon range. These trends res-
onate well with the overall task difficulty levels measured
empirically by swarm performance in previous studies.

In order to validate the proposed measure, we averaged
the empowerment levels across the presented five horizons,
since the agents communicate their opinion with neighbours
that can be anywhere within the maximal communication
range of five cells. We related the average values to the em-

pirical swarm performance achieved by four existing state-
of-the-art decision-making strategies – Voter model, Major-
ity rule and Direct comparison, as reported by Bartashe-
vich and Mostaghim (2019), as well as of an evolved neural
network controller (NN), as reported by Almansoori et al.
(2023) (Figure 8). We performed tests for correlation be-
tween the average empowerment and the accuracy of the
above decision-making mechanisms. Due to the evolution-
ary bias in neural network controllers, leading to an ob-
vious performance difference between black-dominant and
white-dominant environments of the same type and ratio
(Figure 8), we computed the correlation levels separately for



0.00

0.25

0.50

0.75

1.00

Random Band−Stripe Band Bandwidth−R Bandwidth Block Off−diagonal Stripe Star

E
m

po
w

er
m

en
t (

bi
ts

) Step

1

2

3

4

5

Figure 7: Box plots representing the empowerment distribution over the 2-D grid for horizon steps from one to five in all nine
environmental conditions. The convergence to the maximal empowerment level of 1 bit is rather quick for conditions Random
(1) and Star (9), and is much slower for conditions Off-diagonal (7) and Stripe (8). The bars reflect the balance between the
number of 0 values and the number of 1 values, which the empowerment takes in this case.

Random Band-Stripe Band Bandwidth-R Bandwidth Block Off-diagonal Stripe Star
0.0

0.2

0.4

0.6

0.8

1.0

Sw
ar

m
 a

cc
ur

ac
y 

/ E
m

po
we

rm
en

t l
ev

el
 (b

its
) Empowerment level

Black dominant
White dominant
Voter Model
Majority Rule
Direct Comparison

Figure 8: Average empowerment levels in all nine environmental conditions (in orange) and swarm accuracy of various collec-
tive decision-making strategies reported in previous work – an evolved neural network controller (Almansoori et al., 2023) (in
black and white), and three standard hand-crafted solutions (Voter model, Majority rule and Direct comparison (Bartashevich
and Mostaghim, 2019). Black and white bars stand for black-dominant and white-dominant environments respectively, which
in the case of the neural controller have somewhat different accuracy due to evolutionary bias and are therefore analysed sepa-
rately. The correlation between empowerment and accuracy is significant positive across strategies (Table 1).

NN black-dominant and NN white-dominant, as well as for
their average performance. Pearson correlation analysis re-
vealed significant positive correlation in all cases (Table 1),
which suggests the relevance of the proposed measure for
characterizing task difficulty and predicting swarm perfor-
mance in the Collective Perception task. The only strategy
with a lower confidence score is the Voter model.

Discussion
We have explored a novel approach for characterizing task
difficulty, related to environmental topology, in the collec-
tive perception paradigm, based on a generic information-
theoretic principle. We applied the empowerment formal-
ism to derive a measure of environmental complexity rela-
tive only to the agent’s perception-action abilities and inde-
pendent of the task. Two key parameters influencing swarm
performance in this scenario are the number of agents (i.e.,

agent density) and communication range. Our study inves-
tigated the effect of the communication range – represented
by the empowerment horizon – on the proposed measure,
which reveals monotonically increasing trends for all nine
environments. Expanding the horizon increases empower-
ment, i.e., makes the task easier for the swarm at the ex-
pense of extended communication capabilities. The agent’s
embodiment is crucial in performing the task and essential
in measuring task difficulty.

The results demonstrate a significant correlation between
the empowerment levels and the accuracy of standard state-
of-the-art decision-making strategies, which suggests the
potential of the proposed measure to predict swarm perfor-
mance based solely on properties of the environment and in-
dependent of the particular task. This makes the approach a
good candidate for a universal complexity measure for sup-
porting the design of robot swarms. The results reveal that



Empowerment vs. ρ p− value

NN black-dominant 0.86 0.003

NN white-dominant 0.88 0.002

NN average 0.88 0.002

Voter model 0.73 0.025

Majority rule 0.83 0.005

Direct comparison 0.86 0.003

Table 1: Pearson correlation between the average empower-
ment levels for all nine test environments and the empirical
swarm accuracy using various standard collective decision-
making strategies. Due to evolutionary bias in neural net-
work controllers (Figure 8) we applied the test separately
for NN black-dominant and NN white-dominant, as well as
for the average NN performance. The rest of the strategies
are bias-free.

the proposed method is able to quantify salient features of
the environment from the agent’s point of view, grounded in
the embodied agent’s morphology. Our approach does not
explore the topological structure of the environment, e.g.,
number, size, shape and inter-connectivity of clusters, but in-
stead, it explores the environment with the given agent mor-
phology, which is critically relevant in determining task dif-
ficulty. Methods, quantifying task difficulty, based only on
environmental features, as in (Bartashevich and Mostaghim,
2019), disregard the importance of the agent’s capabilities
for solving the task. Empowerment captures in a single mea-
sure salient features of the agent–environment perception-
action loop, such as topology, morphology, noise in the sens-
ing, actuation and communication channels, and it does so
with a generic information-theoretic model. The empower-
ment curves (Figure 6), on the one hand, could be used for
inferring the horizon span corresponding to a particular level
of task difficulty, which could then serve as a predictor for
swarm performance. The empowerment maps (Figure 5), on
the other hand, could reveal critical salient points in the en-
vironment, which might inflict a significant drop in swarm
performance and potentially raise designer’s attention for a
more careful consideration.

The key benefits of the applied information-theoretic
treatment are that it is universal, general and could enable
the analytical comparison of scenarios with different com-
putational models. The proposed approach elucidates the
trade-off between task difficulty (and swarm performance)
and the cost of enabling particular agent capacities, and pro-
vides information-theoretic bounds, which are fundamental
properties of agent–environment systems. Such theoretical
bounds could provide guidelines and benchmarks for the
evolution of optimal controllers by analytically evaluating
task difficulty with a universal measure.

We believe that theories and tools from complex systems
and information theory can successfully be applied for facil-
itating the automated design of robot collectives and for the
analysis of their dynamics. Combining complexity measures
with task-specific objective functions could enhance the
swarm adaptivity and re-calibration in cases of environmen-
tal and task variations, and enable modulating the swarm
complexity to the specific requirements. Generic complexity
measures, such as empowerment, could provide a general-
purpose tool for minimising designer-imposed bias. Lever-
aging classical Shannon’s information theory by way of cre-
ating generative mathematical models and artificial simula-
tions, empowerment offers a novel perspective for evolu-
tionary swarm robotics, building on objective quantitative
measures and analytical tools, which could support the au-
tomated design of robot swarms. The proposed formalism
could contribute to the design of hybrid systems, combin-
ing model-free and model-based approaches, and offering a
universal methodology that scales across domains.

Conclusion
This paper introduced a generic information-theoretic char-
acterization of the environmental complexity in the Collec-
tive Perception paradigm for a homogeneous swarm consist-
ing of robots with a particular morphology. It demonstrated
an application of the information-theoretic capacity of em-
powerment to the field of swarm robotics and highlighted
the benefits of utilising such a generic utility measure for
predicting swarm performance. The proposed approach is
task-independent, and the same model could be applied to
various scenarios in this domain, e.g., shortest-path or site-
selection problems. The results have shown a strong corre-
lation between our measure and swarm performance, using
standard strategies in this field. This suggests the potential
of the approach in providing an analytical tool for making
predictions and providing theoretical bounds, based solely
on properties of the environment. Such a tool could support
existing design frameworks in performance tuning, before
resorting to costly empirical studies. Building on this for-
malism, future research will investigate the impact of vari-
ous agent morphologies on the task difficulty level for spe-
cific environmental conditions. Another research direction
is to extend and explore the formalism for heterogeneous
swarms and for environments with multiple options. The re-
sults presented here are important for raising the awareness
of the research community about the potential empowerment
has in providing better theoretical foundations for the field
of swarm robotics.
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