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Abstract
The present work focuses on valorizing the various biochar supports of nano-catalysts and investigates the effect of the type 
of the initial biomass on the deposition and salient physico-chemical features of the zinc oxide (ZnO) nanoparticles. In this 
regard, we have used four different biomasses, namely, sugarcane bagasse (Saccharum officinarum), algae (Phaeophyta), 
mandarin orange peels (Citrus reticulata), and China rose petals (Rosa chinensis) as sources of biochar. Their wet impreg-
nation with zinc acetate was followed by pyrolysis at 500 °C. It led to biochar (nicknamed “sweety,” “salty,” “sour,” and 
“romantic” biochar, respectively) loaded with very well dispersed, 20–360 nm-sized (mostly) ZnO nanoparticles. Interest-
ingly, depending on the type of biomass used, the size, shape (quartz-like, semi-spherical, spherical, semi-cauliflower, needle 
or rod-like), and degree of crystallinity of ZnO nanoparticles (hexagonal crystal system) vary, in spite of all other synthesis 
parameters being similar. Nanoparticle-induced graphitization and crystallization of biochar have been also observed by 
Raman spectroscopy. The malachite green dye mineralization efficiency in the presence of H2O2 and different biochar-
supported ZnO nanocatalysts was 15.1%, 46.3%, 99.9%, 67.9%, and 66.4% for H2O2, china rose petals, algae, mandarin 
peels, and sugarcane bagasse-supported ZnO catalyst in the presence of H2O2, respectively. Malachite green removal fits 
in very well with a pseudo-first-order kinetic model with R2 = 0.9701 (at algae biochar-ZnO). 6.6 times enhancement in the 
mineralization efficiency is observed as compared to just H2O2. The recyclability test of algae biochar impregnated with 
ZnO after 5 cycles indicates the mineralization efficiency levels up to 81.4%. Beyond these scientific results, this work is 
based on the principle of biomass waste valorization for sustainable development and circular economy, on the one hand, 
and addresses the UN Sustainable Development Goals 6, 13, and 14, on the other hand. It is also very clear that biochar is 
the new romance in the field of materials science and for sustainable future.

Keywords  Trash-to-treasure, Environmental remediation · Rosa chinensis · Saccharum officinarum · Citrus reticulata · 
Phaeophyta · Sustainability

1  Introduction

In the current scenario of the world, humanity is facing 
many challenges such as new disease outbreaks (novel cor-
onavirus and monkeypox) [1, 2], inflation[3], poverty [4], 
climate change [5], water and air pollution [6, 7], and war 
and food crisis [8]. Throughout the globe, synthetic organic 
dyes are manufactured > 106 t per year commercially. They 
are utilized for various purposes such as cosmetics, textiles, 
food, tannery, and pharmaceutical industry [9, 10]. One 
such dye is malachite green (MG). It is stable and stays for 
longer duration in environment, results in their entry into 
food chain. They are mutagenic, carcinogenic, and genotoxic 
[11–14]. It becomes essential to shift our focus towards the 
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concept of water treatment, sustainable development [15], 
circular economy [16, 17], and waste to wealth or trash to 
treasure [18]. This is the reason why efforts have already 
been started towards this concept by working on biomass 
waste valorization [19].

One way to valorize biomass is to produce biochar [20]. 
Biomass-derived carbon produced via pyrolysis is termed 
as biochar [21, 22]. They are well known for their unique 
physical (surface area, surface charge, high porosity, and 
water holding capacity), chemical (cation exchange capacity, 
carbon sequestration, nutrient exchange site, high pH, and 
surface functionalities: –COOH, –OH, –R–OH, and C = O), 
and agronomic properties (salinity and nutrients) [23–25]. 
They are employed in various applications [26] such as pes-
ticide decontamination [27], soil amendment [28, 29], oil 
removal [30], anti-kinetoplastid agents [31], dye degradation 
[32, 33], lipase immobilization [34], drugs degradation [35, 
36], personal care products removal [37], NH3 sorption [38], 
hydrogen production [25], reinforcing fillers [39], combusti-
ble briquettes [40], biorefinery [41], fertilizers [42], hydro-
carbon removal [43], to mention but a few. Biochar also acts 
as a source for synthesizing other carbon allotropes such as 
graphene oxide [44].

Biochar activation can be achieved through different treat-
ments [45, 46] such as chemical activation (HCl, H2SO4, 
NaOH, ZnCl2, KOH, K2CO3, citric acid) [47, 48] and physi-
cal activation (electrochemical modification, microwave, 
plasma treatment, and ultrasonication irradiation, gaseous 
such as steam, ozone, and CO2) [49]. As biochar is a very 
good substrate to disperse nanocatalyst, it is one of the 
potential candidates to host zinc oxide II-IV (ZnO), which 
is an n-type semiconductor. ZnO has high excitation energy 
(60 meV) at ambient temperature and possess wide range 
band gap (3.37 eV). They are thermally and chemically sta-
ble, anti-microbial, cost-effective, exhibit optical properties 
of photoluminescence [50] like some organic compound 
[51], eco-friendly, easy to use, and bio-compatible [52–54]. 
They can be synthesized in different sizes, shapes [55], and 
multifunctionalities [56]. These unique properties make it 
one of the most favorable catalysts among metal oxides to 
be utilized in the field of dye degradation [57, 58].

This biochar/ZnO composite can be one of the best fits for 
water decontamination because of the following reasons: (1) 
both biochar and ZnO are economic, (2) ZnO is photocatalyst 
[9, 59, 60], and (3) due to electron conductive nature of bio-
char, it can reduce the e-/h recombination during photocataly-
sis [61]. There are two major ways to depollute water: either 
adsorption [62] or degradation /mineralization. In adsorption, 
the fate of an adsorbate is not so clear. In degradation, some-
times the partially degraded product can be toxic. Hence, min-
eralization is one of the best ways to treat wastewater pollut-
ants. In this scenario, advanced oxidation process (AOP) [32, 
63, 64] is very popular for the removal of toxic and persistent 

organic pollutants [65]. Their efficiency is enhanced by het-
erogeneous catalyst. Preparation of catalyst and treatment of 
pollutant at industrial scale as well new emerging pollutant 
[66] are still challenging. Thus, need for cost-effective and 
efficient catalysts is still there for water decontamination. 
It rests on the utilization of efficient photocatalysts that are 
favored to be dispersed over a plethora of supports. Biochar@
ZnO materials are the subject of current and timely investi-
gations in the domain of environmental chemistry. Herein, 
our main objective is to valorize various biochar supports of 
nanocatalysts, and investigate the effect of type of the initial 
biomass on the deposition and salient physico-chemical fea-
tures of the zinc oxide (ZnO) nanoparticles.

In the present work, we have utilized four different bio-
masses, namely, algae, China rose petals, sugarcane bagasse, 
and mandarin orange peels. Their biochars act as active sup-
ports to host ZnO nanophotocatalyst. The selection crite-
ria of biomass were based on considering different group 
of biomasses. Sugarcane bagasse represents the industrial 
waste, algae is a third-generation biomass [67] and avail-
able in plenty, and rose petals and mandarin are the biomass 
produced in our day today life. Also, they represent biomass 
with different porosity and hydrophobicity/hydrophilicity.

Depending on the chosen biomass, the size and mor-
phology of ZnO vary. They are successfully applied in 
complete mineralization of MG dye. Though, in the lit-
erature, biochar@ZnO have already been used for the pol-
lutant removal, for example, pecan nutshell biochar-ZnO 
for acid red 97 removal [68], hemp stem biochar/ZnO for 
methylene blue (MB) degradation [69], Calotropis gigantea 
biochar-ZnO for ciprofloxacin [70], and maize biochar-ZnO 
for organic and inorganic pollutants [71]. Mostly, single 
biomass had been considered as support for ZnO. Some 
have considered two different biomasses (brewed coffee and 
chitosan) but without obtaining any differences in the ZnO 
characteristics [72]. In review papers, general aspects are 
covered and performances of individual biochar@ZnO are 
compiled in synoptic tables [73–75]. Given the countless 
number of biomasses available for making biochar photo-
catalyst, we reasoned it is worth to investigate the physico-
chemical characteristics and compare the performances of 
various biochar@ZnO catalysts obtained by conversion 
of four different zinc acetate impregnated biomasses. To 
the best of our knowledge, no paper has tackled the effect 
of biomass/agrowaste nature on the properties and perfor-
mances of ZnO in the same investigation, hence our moti-
vation for this contribution. The results obtained clearly 
show that the effect of nature of biomass on ZnO nano-
particle growth synthesized in the same condition is quite 
impressive and unique. This work also takes into account 
the United Nations Sustainable Development Goals 6, 13, 
and 14 [76]. The cost-effectiveness in terms of converting 
trash to treasure is one of the advantages of this work.
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2 � Materials and methods

2.1 � Chemicals

Malachite green oxalate salt and zinc acetate (99.99%) were 
obtained from Sigma and Aldrich, respectively. Double-dis-
tilled water was used to prepare all aqueous solution.

H2O2 (30%) was received from Merck. Sugarcane (Sac-
charum officinarum L.) was cultivated in Minya Governo-
rate, Upper Egypt, and mandarin orange (Citrus Reticulata 
Blanco) was cropped in Ismailia Governorate, Egypt. ETS 
Laurent Mace (Huitres Creuses de Normandie, F-50560 
Gouville-Sur-Mer) has provided algae samples.

2.2 � Apparatus

Cary 4000 UV–vis spectrophotometer (SpectraLab Scientific 
Inc., Markham, Ontario, Canada) was utilized to do kinetic 
studies in the UV–vis range. FESEM study was carried out 
using GeminiSEM 360. Accelerating voltage and emission 
current were maintained at 5 kV and 30 µA, respectively. Sam-
ple preparation step involves drop casting of dispersed biochar 
in ethanol on silica plate, which is fixed on sample holder via 
carbon tape. Horiba HR 800 spectrometer (Kyoto, Japan) was 
used to perform Raman study. He–Ne laser beam wavelength 
was set to 633 nm. The range of the spectra acquired was 800 to 
2700 cm−1 region. X’Pert PRO PANalytical instrument (Cam-
bridge, UK) was used for XRD characterization. This instru-
ment was maintained at operating voltage = 40 kV, and tube 
current were kept = 40 mA. XPS was performed on a Thermo-
Scientific K Alpha + instrument with pass energy = 200 and 
80 eV for survey scan and high-resolution spectra, respectively.

2.3 � Synthesis of ZnO‑coated biochar

2.3.1 � Biomass powder preparation

Sugarcane bagasse powder and mandarin orange peel pow-
der were designated as SB and MOP, respectively. The lefto-
ver dried China rose flower petals were plucked, washed 
with two times with tap water, followed by two times with 
distilled water. Then, they were dried at 60 °C for 66 h. Fur-
thermore, they were ground in coffee mill for 2 min. This is 
labeled as CRP. Algae biomass was washed two times with 
tap water and two times with distilled water, dried in air for 
a week then in oven at 60 °C overnight. It was then ground 
in coffee mill for 2 min. This is labeled as A.

2.3.2 � Impregnation of biomass with zinc acetate

A wet impregnation technique was used to impregnate the bio-
mass [77]. The amount of different biomass and zinc acetate 
used (1 mmol of zinc acetate/1 g of biomass) are shown in 
Table 1. After wet impregnation, all the samples were dried 
overnight in oven at 60 °C and ground using mortar and pestle.

2.3.3 � Preparation of ZnO‑coated biochar

Zinc acetate-impregnated different biomass samples were 
pyrolyzed to obtain ZnO-coated biochar as shown in Fig. 1. 
Pyrolysis furnace (Carbolite Gero) was maintained at type 
of method: P10 KOH free, N2 gas flow rate 1 L/min, ramp 
20 °C/min, temperature 500 °C, residence time 1 h, and cool-
ing time 1 h. The percentage yields are reported in Table 1.

A pyrolysis temperature of 500 °C is preferred to make 
biochar because from the literature, It is found that at this 

Table 1   Type of the used biomass, impregnated and corresponding biochar with yield %

Type of samples and designation (before pyrolysis) Weight 
(g) before 
pyrolysis

Sample designation after pyrolysis Weight 
(g) after 
pyrolysis

Yield %

A: Algae powder 1.0009 AB (salty biochar) 0.3420 34.2%
A@ZA: 1.004 g of algae biomass powder was mixed with solution 

(10 mL water + 183.48 mg zinc acetate), dried in oven for 60 °C 
overnight, and ground.

1.0908 AB@ZnO 0.4316 43.1%

CRP: China rose petals powder 1.0026  CRPB (romantic biochar) 0.3018  30.1%
CRP@ZA: 1.0006 g of China rose petal powder was mixed with 

10 mL solution of 183.5 mg of zinc acetate, dried in oven over-
night at 60 °C and ground.

1.0352  CRPB@ZnO 0.3659  35.4%

MOP: mandarin orange peel powder 1.0234  MOPB (sour biochar) 0.2913  28.5%
MOP@ZA: 1.0019 g mandarin orange peels powder were mixed 

with solution containing 10 mL of water and 183.5 mg zinc 
acetate, dried in oven for 60 °C overnight, and ground. 

0.9727  MOPB@ZnO 0.3470  35.7%

SB: sugarcane bagasse powder 1.0065  SBB (sweety biochar) 0.2265 22.5%
SB@ZA: 1.0000 g sugarcane bagasse powder was mixed with zinc 

acetate solution (10 mL water + 183.5 mg zinc acetate), dried in 
oven for 60 °C overnight and ground.

1.0523  SBB@ZnO 0.3174  30.2%



	 Emergent Materials

1 3

temperature, per- and polyfluoroalkyl substances (PFASs) 
have been removed partially (more than 97%) or completely 
depending on the used sample [78]. Thus, to avoid PFAS in 
biochar, a moderate temperature pyrolysis is preferred [79].

2.4 � Mineralization of malachite green

One milligram of catalyst was added into the 10 mL of 
50 ppm malachite green aqueous solution. Further, 100 µL 
H2O2 was added and stirred for 60 min. Thereafter, UV–vis 
measurement has been carried out. This experiment was 
performed up to 60 min for studying the kinetics (0, 15, 
22, 30, 45, and 60 min). The reusability of the catalyst was 
checked for 5 cycles. Firstly, 10 mL of 50 ppm MG solu-
tion was added into beaker followed by 1 mg catalyst and 
100 µL H2O2 for 60 min. After that, the same amount of 
solution (MG + H2O2) was added in the same beaker. This 
process was repeated until 5 cycles are completed. Note: 
Before conducting all UV–vis measurements (for kinetics 
and reusability test), filtrate has been diluted by adding 1 mL 
of filtrate in 3 mL of water.

3 � Results and discussions

3.1 � Surface morphology

Surface morphology of the different biochars coated with 
ZnO nanoparticles were studied using FESEM technique 
(Figs.  2 and 3). The global view of AB@ZnO FESEM 
micrographs is shown in Fig. 2a. Biochar appears as a coral 
reef-like structure which is coated with tiny ZnO particles. 
Furthermore, high-resolution images show bimodal distri-
bution of ZnO nanoparticles (Fig. 3). There are quartz-like 
nanoparticles (Fig. 3a) formed in the cavities of biochar. The 
side edge of biochar has an appearance-like ribs possessing 

semi-spherical particles (Fig. 3b). The particle sizes are less 
than 100 nm.

FESEM images of CRPB@ZnO (Fig. 2b) show smooth 
biochar surface with more or less spherical embedded par-
ticles (Fig. 3c). In contrast, the biochar obtained from man-
darin peels appears very rough (Fig. 2c) and ZnO particles 
look like pebbles (Fig. 3d).

Interestingly, again, sugarcane bagasse biochar coated 
with ZnO shows bimodal distribution but entirely different 
morphology of ZnO nanoparticles. This biochar appears like 
leaflet (Fig. 2d). There is semi-cauliflower-like nanoparticles 
(Fig. 3e), and rod or needle-like nanoparticle (Fig. 2f) was 
observed

As it can be clearly seen (Table 2), all the samples have 
varieties of ZnO shapes and sizes in spite of their prepara-
tions in similar condition. These differences can be attrib-
uted to the different chemical composition of biomass in 
terms of cellulose, lignin, hemicellulose, extractives and 
other organic and inorganic minerals. Thus, there are two 
important parameters seem to influence the shape and dis-
persion of ZnO NPs: the total percentage of lignocellulosic 
matter and the initial (hemicellulose + lignin)/cellulose ratio. 
Also, porosity and hydrophobicity/hydrophilicity of biomass 
matter in this regard. There are two major possibility via a 
biochar host the nanoparticle: (a) it surrounds the nanoparti-
cles (entangled) and (b) the functional group present on the 
biochar anchors the nanoparticles [81]. The difference tex-
ture and porosity could lead to difference area which could 
be probed by the BET surface area measurements [82].

3.2 � Crystalline structure and elemental 
composition

The XRD patterns of the different biochars@ZnO are reported 
in the Fig. 4. In the sample AB@ZnO (Fig. 4), the peak at 
2Ѳ = 37.0°, 40.1°, 42.3°, 55.7°, 66.7°, 74.4°, and 78.9° were 
due the planes (010), (002), (011), (012), (110), (013), and 

Fig. 1   Schematic representation of different biomass impregnated with zinc acetate and corresponding ZnO-coated biochar
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(020), respectively. This is a clear indication of zincite min-
eral with chemical formula O1Zn1 having hexagonal crystal 
system [83]. The structures of MOPB@ZnO [84], SBB@ZnO 
[84], and CRPB@ZnO [85] also fall in this category.

The elemental composition of the different biochar 
samples was studied by XPS, and the data were treated 
by Avantage software. The atomic composition % is 
reported in Table 3. It is very clear that the pristine bio-
char contains Zn, S, N, C, O, Si, Ca, Na, Mg, and Cl 
(Table 3). In general, in the impregnation of ZnO nano-
particles, the amount of carbon decreases and Zn and O 
increases. There is an exception observed in the case of 
algae biochar where it has already good amount of Zn. If 
we remove the contribution 3.20% from 18.54% (sample 
AB), we will end up getting 15.34% O, which fullfils 
the trend of increase in oxygen after ZnO impregnation. 
Though there is a presence of Na and Cl, it does not have 
any adverse effect on catalytic activity of AB@ZnO. Sul-
fate S2p for AB and AB@ZnO could be due to fucan 
[86]. The modified Auger parameter of biochar@ZnO is 
at 2010.2 eV, which is in accordance with the literature 
confirming the zinc in ZnO state [87]. The high-resolu-
tion Zn2p3/2 and ZnLMM spectra of four biochar@ZnO 
samples are reported in Fig. 4e and f, respectively.

3.3 � Raman study

The Raman characterization was performed to test the qual-
ity of biochar samples besides the degree of graphitization 
and crystallization [88, 89]. The Raman peak fitting (Fig. 5) 
shows mostly the 6 components as follows: SL (hydrogen 
circulation along periphery), S (alky-alkyl ether), D (defects 
and heteroatoms), V (sp2 carbon), G (degree of graphitiza-
tion), and GL (carbonyl function) [90]. D/G ratio (Fig. 6) has 
decreased after ZnO impregnation except for MOPB sample, 
showing that the nanoparticles induced graphitization which 
is in accordance with literature [91]. This anamoly can be 
attributed to the different chemical composition and poros-
ity [92].

3.4 � Dye mineralization

The application of the four synthesized catalysts is demon-
strated in the mineralization of a model pollutant MG dye. 
The 50 ppm of MG dye treated with 1 mg catalyst in the pres-
ence of H2O2 resulted in complete mineralization for MG dye 
in 60 min. Figure 7a demonstrates the UV–vis spectrum of 
the initial MG dye besides its treatment with just H2O2 and 
in the presence of different catalysts (MOPB@ZnO, SBB@

Fig. 2   FESEM images of a AB@ZnO, b CRPB@ZnO, c MOPB@ZnO, and d SBB@ZnO
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Fig. 3   FESEM images of a, b AB@ZnO, c CRPB@ZnO, d MOPB@ZnO, and e, f SBB@ZnO

Table 2   Cellulose, hemicelluloses, and lignin composition of different biomass with corresponding biochar shape and size of impregnated ZnO 
nanoparticles

*Algae (cellulose = 4.6, hemicelluloses = 6.1, and lignin = 19) [80]

Cellulose Hemi-cellulose Lignin Shape of biochar Shape and size (nm) of ZnO

AB@ZnO * * * Coral reef Bimodal distribution, quartz (20–200 nm approx.) andsemi-spherical 
NPs (20–85 approx.)

CRPB@ZnO NA NA NA Flower or octopus Spherical particles (25–230 nm approx.)
SBB@ZnO 31.16 25.28 5.35 Leaflet Cauliflower/semi-cauliflower-like NPs (70–360 nm) and rod or needle-

like NPs (80–1190 nm in length and max. width is 150 nm approx.)
MOPB 3.32 5.74 5.7 Porous mountain 

or honeycomb
Pebbles (15–170 nm)
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ZnO, CRPB@ZnO, and AB@ZnO). The corresponding min-
eralization efficiency is plotted in the form of a histogram 
(Fig. 7b). It is observed that MG dye mineralization occurs in 
the presence of H2O2 and CRPB@ZnO, AB@ZnO, MOPB@
ZnO, and SBB@ZnO with the efficiencies of 46.3%, 99.9%, 

67.9%, and 66.4%, respectively. On the contrary, minerali-
zation efficiency leveled off at 15.1% in the presence of just 
hydrogen peroxide. Thus, increasing order of MG dye effi-
ciency follows the following pattern: CRPB@ZnO < SBB@
ZnO < MOPB@ZnO < AB@ZnO. MG removal fits in very 

Fig. 4   XRD patterns of a AB@ZnO, b MOPB@ZnO, c SBB@ZnO, and d CRPB@ZnO. e Zn2p3/2 and f ZnLMM high-resolution XPS spectra 
of four biochar@ZnO samples

Table 3   XPS atomic % 
composition of different biochar 
and biochar@ZnO samples

Samples % Zn % S % N % C % O % Si % Ca % Na % Mg % Cl

AB 3.20 1.12 1.00 68.73 18.54 0.35 1.63 2.10 0.99 2.34
AB@ZnO 5.93 0.82 0.92 67.27 17.56 0.34 1.33 2.49 0.93 2.40
CRPB 0.44 0.11 2.35 82.88 11.75 1.70 0.40 0.09 0.19 0.07
CRPB@ZnO 4.71 0.20 1.62 76.25 15.63 0.47 0.29 0.26 0.28 0.28
MOPB 0.09 0.11 1.63 83.39 12.77 0.56 0.75 0.28 0.18 0.24
MOPB@ZnO 9.19 0.13 1.68 71.44 15.23 0.73 0.76 0.37 0.20 0.27
SBB 0.47 0.21 0.99 85.07 11.47 0.97 0.38 0.14 0.20 0.09
SBB@ZnO 7.08 0.16 0.60 73.34 15.64 2.41 0.19 0.22 0.17 0.19
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Fig. 5   Raman spectra peak fitting of a AB, b AB@ZnO, c CRPB, d CRPB@ZnO, e MOPB, f MOPB@ZnO, g SBB, and h SBB@ZnO
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well with pseudo-first-order kinetic model with R2 = 0.9701 
(at AB@ZnO). It is also very clear that there is a 6.6-fold 
enhancement in the rate of reaction of oxidative degradation 
for MG after adding the catalysts (AB@ZnO). This could be 
due to the fact that present work reports on the advance oxi-
dation process to mineralize the dye, based on the principle 
of oxidation and degradation. First step is the production of 
hydroxyl radical, which attacks the pollutant and degrades 
them into simpler forms. This process is facilitated by het-
erogeneous catalyst such as ZnO [93]. Recyclability test of 
AB@ZnO after 5 cycles indicates that the mineralization 
efficiency boosted up to 81.4%. Thus, it is found that algae 
biomass creates better ZnO over its surface for catalytic 
application as compared to other 3 biomasses used. Also, 
inherent Zn containing species helps in catalytic activity. 
The reason for differences in the catalytic behavior can be 
related to the ZnO shapes, size, and nature of biochar. Poros-
ity and hydrophobicity/hydrophilicity of biomass are directly 
proportional to their characteristic’s biochar. It has a direct 

Fig. 6   AD/AG ratio of different biochar samples derived from Raman 
peak fitting

Fig. 7   a UV–vis spectrum of MG dye (50 ppm, 10 mL) after treat-
ment with H2O2 and various catalysts, b corresponding mineraliza-
tion efficiency of H2O2 and their combination (H2O2 + CRPB@ZnO, 

H2O2 + AB@ZnO, H2O2 + MOPB@ZnO, and H2O2 + SBB@ZnO) 
with various catalyst, and c plot of C/C0 vs time at AB@ZnO (left 
side) and kinetic study (right side)



	 Emergent Materials

1 3

effect in the pollutant degradation. More hydrophobic bio-
mass will give rise to more hydrophobic biochar which can 
face dispersibility problem while performing dye degradation 
experiments in aqueous medium. This fact is also supported 
by poor catalytic behavior of rose petals biochar@ZnO than 
other biochar@ZnO. Nevertheless, rose petal biochar will 
be a very good deal to remove oil spill via adsorption due 
to their hydrophobic nature. On contrary, porous and hydro-
philic biomass can lead to absorbing metal salt solution more 
efficiently by wet impregnation process which can have direct 
effect on loading of metal salts, and hence concentration of 
ZnO on biochar surface, which has reflected in their catalytic 
performance positively.

The mechanism of MG dye mineralization [94] is as 
follows:
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The step-by-step degradation pathway of MG is well 
reported by Jing et al. through LC–MS analysis [95]. They 
have demonstrated that methyl group and amine group is 
first attacked by the reactive species followed by the benzene 
ring and central carbon atom and ultimately final degrada-
tion happen. Thus, literature has proved that the presence of 
H2O2 leads to mineralization of dyes through Fenton-like 
process. Literature have also suggested that ZnO is a good 
photocatalyst under UV illumination [96], but our intention 
here was in the normal room light (dim). In order to further 
understand the mechanism of the reaction, the experiment 
is conducted in the dark also. It is found that the complete 
mineralization is also observed here (Fig. 8), and there is no 
difference observed when it was performed in the room hav-
ing a dim light. Based on this, we have given the following 
explanations: H2O2 is oxidized when exposed to air and form 
hydroxyl radical. In order to have this phenomenon fast, it 
needs a catalyst or light or both. Then, this hydroxyl radical 
attacks the dye to mineralize it. In the present case probably, 
the light is not sufficiently strong to make the difference, but 
it is clearly proved that the following process can happen 
without providing any special light condition. Literature has 
revealed that in the case of photocatalysis, mineralization is 
faster under UV light then visible light [97].

Mixture of compound analysis would have been also 
interesting. However, the important aspect of the paper was 
to investigate the effect of different biomass on the physico-
chemical properties of the ZnO nanaoparticles and their 
catalytic activity which have been achieved successfully. 
Indeed, the present catalyst is expected to have the potential 
to mineralize the dye mixtures.

MG+ OH
.
→ CO

2
+ H

2
O + NO

3−

Fig. 8   MG dye (50 ppm) mineralization over AB@ZnO for 60 min under room dim light and dark
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When this work was compared with a reported one in 
literature (Table 4) for the degradation of malachite green 
dye, it was found that this work has advantages in terms of 
several parameters as mentioned below:

Cost-effectiveness: minimum catalyst dosage (just one 
mg) is used compared to some work where 200 mg is 
required.
Faster kinetics: 60 min is to mineralize the dye.
Mineralization efficiency: complete mineralization is 
obtained.
H2O2: 100 μL used but in literature, even 10 mL of H2O2 
is used and mineralization efficiency is just 77.8%.

The above analysis has clearly proven that biochar@ZnO 
catalyst is very efficient in malachite green dye degradation. 
It is expected to have a similar effect for other pollutants. 
So, biochar@ZnO catalyst can play a major in the field of 
environmental remediation, specially the one at AB@ZnO.

4 � Conclusions

Simple, cost-effective, non-toxic biochar-supported ZnO 
nano-catalysts have been prepared by wet impregnation 
of four biomasses with zinc acetate followed by pyroly-
sis at 500 °C under N2 atmosphere. It is experimentally 
found that size, shape, and crystallinity of the nanopar-
ticles are directly affected by their respective supports. 
These features are demonstrated by employing differ-
ent biomass sources. The effectiveness of the catalyst is 
clearly proved by efficient total mineralization of mala-
chite green dye with fast kinetics, i.e., within 60 min. It 
is clear that there is a 6.6-fold enhancement in the rate of 
reaction for the oxidative degradation of MG after adding 

the catalysts. This work is a step towards biomass waste 
valorization for sustainable development and circular bio-
economy. This simple and cost-effective process of making 
biochar@ZnO composite could be applied to several kinds 
of agrowastes and opens up an interesting perspective in 
the field of materials for environmental remediation. This 
could act as a general approach for making ZnO nanopar-
ticle impregnation on biochar.

Apart from managing the tremendous amounts of agro-
wastes, biomass thermochemical conversion into biochar-
based functional material is considered as a smart and 
cost-effective solution for a green and sustainable envi-
ronmental chemistry.
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Table 4   Degradation of malachite green dye over different catalyst in the literature

Type of catalyst Catalyst dosage Time (min) Temp. (°C) H2O2 Conc. of MG 
(mg/L)

Degradation Ref

Fe2O3/kaolin 800 mg/L 30 50° 7 mL - 94.8% [98]
Magnesium porphyrin 

complex (I)
5 mg 420 Room temp. 4 mL 12  84.0% [99]

Ni/kaolin 200 mg 180 Room temp. 10 mL 20  77.8% [100]
Fe3O4@SiO2 15 mg 30 30° 50 µL 25  96.2 [101]
CRPB@ZnO 1 mg 60 Room temp. 100 µL 50  46.3% This work
AB@ZnO 1 mg 60 Room temp. 100 µL 50  99.9% This work
MOPB@ZnO 1 mg 60 Room temp. 100 µL 50  67.9% This work
SBB@ZnO 1 mg 60 Room temp. 100 µL 50  66.4% This work
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